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Abstract

Industrial robots can be found in automotive, food, chemical, and electronics industries. These
robots are often caged and are secluded from human beings. A recent trend in a subclass of
industrial robots named collaborative robots allows the humans to interact with the robots
safely. The word “safety” mentioned above is of supreme importance. The safety is achieved
in these robots by their lightweight and sleek design. Often, robots are operated under low
stiffness conditions to achieve less impact force during an unavoidable collision. A severe
damage to the environment may occur if the robot becomes unstable under any conditions.
It is of paramount importance for the controller present in the robot to stabilize the system
under all conditions. One such controller is the joint impedance controller, which helps the
robot to interact with an unknown environment by causing no harm to humans.

The thesis marks its importance, as it is closely related to ensuring safety in collaborative
robots and is mainly focused on tackling the situations whenever the controller fails. The
controller in these manipulators has an Inverse Dynamics Model (IDM) and a Proportional
Derivative (PD) controller. Under low stiffness and damping conditions, the PD gains are low
and the manipulator is entirely compensated by the inverse dynamics model. This inverse
dynamics model can become problematic in the presence of the un-modeled dynamics like
flexibility, friction, dynamics of hydraulic tubes, actuators and cable drives or if the IDM
model is inherently inaccurate. Consequently, the in-built joint impedance and position con-
troller will fail to work under low stiffness and damping conditions, in-turn making the robot
unstable. If this robot was to be used on an industrial platform and the problem is unresolved,
it might cause some danger to the humans working closely and also damage the environment
and itself.

Since the robot is entirely compensated by the IDM under low stiffness and damping condi-
tions, the thesis tries to acquire the accurate IDM of the robot for control purposes. To do so,
two cases were modeled in this thesis, one with the internal IDM with correct base parame-
ters and another one with the incorrect internal IDM by adding offset in the base parameters.
But in both cases, the internal IDM model failed to compensate for the un-modeled dynamics
occurring in the manipulator.

The thesis incorporates a semi-parametric Gaussian process regression to tackle the two cases.
A semi-parametric model consists of a parametric term and a non-parametric term. First, the
parametric term is identified using the least squares approach. Later, the parametric term
is used as mean to capture the non-parametric term using the Gaussian Process Regression.
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ii Abstract

The proposed methods were tested on the PUMA 560 robot and the two-link manipulator
in MATLAB. From the simulation results, the semi-parametric model was able to provide
accurate feed-forward control torques to compensate for the model inaccuracies and the un-
modeled dynamics at low stiffness and damping conditions. Additionally, implementing these
proposed methods on a real robot will be a future scope of improvement on this topic.
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Chapter 1

Introduction

Robotic manipulators can be found in many industries namely, automotive, electronics, chem-
ical, and food industries. The demand for robotic manipulators is predicted to rise in the up-
coming years [3]. An important growing subclass that needs more attention and development
is collaborative robotics [1]. So, the project closely focuses on the research and development
of collaborative robotics. In Section 1-1, a general information on collaborative robotics is
given. In Section 1-2, the problem statement for the thesis is formulated. Subsequently in
Section 1-3, approaches to solve the problem stated in Section 1-2 is discussed. Section 1-4
discusses in detail, the reasons for the problem stated in Section 1-2 and the importance of
carrying out this project. Section 1-5 talks about the new contributions offered by this thesis
towards solving the problem statement. Lastly, Section 1-6 ends the chapter with an outline
of the entire thesis.

1-1 Collaborative Robotics

In earlier days, industrial robots were caged and cut off from human beings for safety con-
ditions. Whereas in the past decade, there is a growing interest in bringing humans and
robots closer together in the manufacturing working environment [2]. The subclass of indus-
trial robots that solves the above purpose is a COBOT (COllaborative industrial roBOT).
So, when the robots share their work-space with humans, safety is of paramount importance.
The safety in these robots is usually ensured by low weight robot design and good compliance
behavior [5]. Some robots even have sensitive detection of contacts and collisions to allow
for a safer interaction with humans. On the one hand, the compliance in these robots is
achieved by introducing springs and other flexible mechanisms in their joints. This kind of
robot with mechanical springs at all joints is called passive compliance. On the other hand,
some manipulators give the end-users to set the desired stiffness and damping to achieve the
desired compliance control [7]. This class of compliance falls under the category of active
compliance. In general, compliance helps in decoupling the inertia of the impacting link with
the rest of the robot. Therefore, only the impacting link is felt during the collision. Virtu-
ally all major manufacturers produce collaborative robots, including Fanuc, ABB, KUKA,
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2 Introduction

Rethink Robotics, Universal Robot, and Bosch. The robots produced by these companies
may have a different structure, size, and capabilities but they all possess the aforementioned
characteristics to ensure safety.

	
	

Inverse	
Dynamics	
Model	

!"	

!#	

Robot	

Feed-forward	

Feedback	

$̈& 	

$& 	

$̇& 	

−	

−	

+	
*	

$̇+	$+	

Figure 1-1: Inverse Dynamics + PD controller, where Kp, Kv is the proportional and deriva-
tive gain, τ is the joint torque, qd, q̇d, q̈d represents the desired joint positions, velocities and
accelerations, qm, q̇m denotes the measured joint positions and velocities.

1-2 Problem Formulation

In General, the serial manipulators have two controllers namely, the feed-forward and the
feedback controller as depicted in Figure 1-1 [11]. The feed-forward controller uses the inverse
dynamics model of the robot. Whereas, the feedback controller is basically a Proportional-
Derivative (PD) controller. The robot is entirely compensated by the inverse dynamics model
of the robot under low stiffness and damping conditions. Often, the inverse dynamics model is
inherently inaccurate or it fails to capture the un-modeled dynamics like flexibility, dynamics
of hydraulic tubes, actuator, and cable drives. Thereby, making the system unstable at low
PD gains. Therefore, the remainder of the report focuses on

“Acquiring the accurate inverse dynamics model of the manipulator by capturing
the model inaccuracies, un-modeled dynamics and other perturbations for model-
based compensation”

Sathish Krishnamoorthi Master of Science Thesis



1-3 Approach 3

1-3 Approach

In this thesis, the problem statement is formulated into two cases. The brief description of
the two cases and the approach incorporated to tackle the cases is depicted below.

• Case 1 - For the first case, the robot depicted in Figure 1-1 is compensated by an
internal Inverse Dynamics Model (IDM) with correct base parameters. However, the
internal IDM fails to compensate for the un-modeled dynamics occurring in the manip-
ulator. It is assumed in this case, that it is possible to replace or turn OFF the internal
IDM.
The un-modeled dynamics that cannot be explained by the internal IDM, is captured in
two steps to tackle the first case. First, the least squares approach is used to estimate
the base parameters and the linear coefficients of viscous and Coulomb friction of the
robot. With these estimated parameters, an Rigid Body Dynamics (RBD) model can
be built, which gives a unique relationship between the joint torques with the joint
position, velocity, and acceleration. Second, the Gaussian Process Regression (GPR)
is used to capture the non-linearities that cannot be explained by the estimated RBD
model. After GPR, the internal IDM is replaced by the estimated RBD model. Then,
the feed-forward torques from the Gaussian process model are given to the robot to
compensate for the un-modeled dynamics that cannot be compensated by the estimated
RBD model

• Case 2 - Unlike case 1, the robot depicted in Figure 1-1 is compensated by an incorrect
internal IDM for the second case. The internal IDM is made incorrect by introducing
offset in the base parameters. Like case 1, the internal IDM also fails to compensate for
the un-modeled dynamics occurring in the manipulator. But in this case, it is assumed
that the internal IDM cannot be replaced or set to zero.
To solve this issue, first, the RBD error model is identified using the least squares
approach. This model compensates for the model inaccuracies occurring in the internal
IDM. Subsequently, the RBD error model is used as mean to capture the un-modeled
dynamics occurring in the manipulator using the GPR. After GPR, the feed-forward
signals are given to the robot in the presence of incorrect internal IDM. These feed-
forward signals are combinations of torque signals from the RBD error and Gaussian
process models for a given joint position, velocity, and acceleration.

The second case is more interesting than the former as many robots do not provide the end-
users the possibility to set the internal IDM to zero. Instead, some robot gives the users
the opportunity to overlay torque signals with the torque signals coming from the low-level
controller. For example, the KUKA LWR 7 R800 allows the user to overlay torque signals
using a platform named Fast Research interface [78].

1-4 Motivation

From Section 1-2, it can be inferred that the project demands an accurate model to do model-
based control. It is required to compensate for the inaccurate inverse dynamics model used
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4 Introduction

in the joint position and impedance controller under low stiffness and damping conditions.
Hence, the necessities of model-based control, joint impedance and position control, low
stiffness and its relevance to day-to-day applications are listed below.

Need for joint impedance and position control: The importance of the joint position
and the impedance controller can be traced to many applications like welding, cutting of met-
als, deburring, polishing, pick and place of heavy objects, assembling, etc.. The joint position
controller helps in tracking the desired trajectory asymptotically. For example, cutting of
sheet metals in automotive industries in the desired manner. Meanwhile, the joint impedance
controller ensures that the end-effector follow the desired trajectory in a stable way in the
presence of external forces and torques [8]. So, it is widely used in areas where the contact
forces play a major role, for e.g., deburring, polishing, assembling, etc.. So, the active working
of these controllers at all situations is of prime importance.

Although the proposed methods in this thesis, can be extended to Cartesian space control
with an additional forward kinematics transformation, the thesis concentrates more on the
joint space control over the Cartesian space control. In Cartesian space control, the task
description is represented in a sequence of end-effector coordinates in the Cartesian space.
Later, inverse kinematics transformation is used to convert the information of end-effector
coordinates in the Cartesian spaces to a series of angular positions in the joint space. Then,
the end-effector is controlled indirectly by controlling the joint angles which correspond to
the end-effector coordinates through forward kinematics. This kind of indirect approach to
end-effector control is both computationally inefficient and becomes complicated as different
combinations of joint angles might exist for a given end-effector condition. Furthermore,
small errors in the joint angles may result in accumulation of large errors in the end-effector
coordinates, depending on the manipulator geometry. So in this thesis, the joint space control
is preferred over the Cartesian space control.

Need for low stiffness: When it comes to industrial robots like welding robots, a stiff
actuator improves the precision, stability, and bandwidth of position control. But, high
stiffness may not satisfy all applications, for e.g. application of robot doing pick and place
operation, packaging, material handling or assembling. It requires the robot to work under
variable stiffness condition. Therefore, irrespective of any stiffness value, it is of paramount
importance for the robot to be stable at all conditions. In addition, the impact of force during
the collision of the robot under low stiffness condition is low [5]. So, cobot working in low
stiffness condition improves safety conditions as well.

Need for Model Based Control: Acquiring an accurate inverse dynamics model is im-
portant as the dependency on feedback term will reduce. Generally, the feedback term com-
pensates for the inaccuracies in the inverse dynamics model and non-linearities acting on the
robot. Being said, the joint impedance controller feedback term becomes almost zero at low
stiffness and damping conditions. If the inverse dynamics model is imperfect, the demand
arises to do a model based control to acquire a perfect inverse dynamics model to make the
system stable [48], [65], [76]. Meanwhile, increasing the feedback gain to compensate for the
offset will increase the stiffness of the robot. Higher stiffness leads to decreased compliance,
saturation of actuators and may cause severe damage in case of collision [5].
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1-5 Research Contribution

The thesis combines the works of linear identification techniques addressed in [49], [32], [35],
[33], [34], [37], [41], [36] and semi-parametric Gaussian Process Regression from [65] to do
model-based control of serial manipulators. The previous research works [49], [32], [35], [33],
[34], [37], [41], [36] does not take into account the dynamics of electrical cables, actuator dy-
namics and flexibility. Meanwhile, [65] do address the aforementioned un-modelled dynamics
but has the following shortcoming.

• GPR is trained with an excitation trajectory which is a superposition of two sine waves.
The amplitude and frequency values of the sine signal were chosen randomly. Due to
this, the optimally of the trajectory was not considered. The trajectory lacks its richness
in exciting all the base parameters and un-modeled dynamics.

• D.N. Tuong and J. Peters addressed case 1 (refer Section 1-3) for the 7 DOF real Barrett
WAM and 7 DOF SARCOS robot arm. However, the semi-parametric Gaussian process
regression was not incorporated to capture the inaccuracies or offsets occurring in the
base parameters of the internal inverse dynamics model of the robot.

The project handles the first shortcoming by exciting all the base parameters and the un-
modeled dynamics. The excitation trajectory is generated by minimizing a criterion to acquire
the optimal amplitude values for the trajectory. Additional signals were used to sweep the
entire closed-loop bandwidth frequency of the manipulator to capture the un-modeled dynam-
ics. The second shortcoming is modeled by deliberately including offset in the internal rigid
body dynamics of the robot. Then, the issue is solved by acquiring the inaccuracies in IDM
through least squares approach and further capturing the nonlinearities through Gaussian
process regression.

On a lighter note, the thesis also differs from [65] from the kind of prior knowledge taken for
training the Gaussian process regression. The RBD model of 7 DOF Barrett WAM robot is
obtained from CAD data, which is the approximate values of all standard inertial parameters.
It is utilized as mean for GPR to capture the non-linearities in [65]. In this project, the RBD
model is obtained using the least squares technique and the model is a reduced model set of
the manipulator with base parameters.

Additionally, the thesis uses the setting used for case 1 for different evaluation studies. In
this thesis, three different evaluation studies were done using the first case and they are given
as follows:

• Study of over-fitting in the model selection during Gaussian Process Regression.

• Studying the importance of richness in the excitation during the least squares identifi-
cation and GPR.

• Studying the performance of the semi-parametric models trained with different trajec-
tories, which are generated using different optimization criteria.
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1-6 Thesis Outline

The rest of the report is structured as follows,

• Chapter 2 discusses modeling of serial manipulators in general. The model is divided
into a parametric and a non-parametric equivalent in this chapter, where it meticu-
lously ponders on these terms. In addition, the chapter confers about a method for
model reduction in the Rigid Body Dynamics (RBD) to obtain a minimum set of base
parameters for identification.

• Chapter 3 gives insights on the previous research works related to the RBD identifi-
cation with optimal excitation of the manipulators. Later, the chapter focuses on a
particular class of trajectory named Fourier series. In addition, the chapter introduces
a novel excitation signal for the RBD identification and training the Gaussian Process
Regression.

• Chapter 4 talks about previous research work on the identification of the inverse dy-
namics model of the manipulator. Then, it lays out the reasons for adopting a certain
technique for identification and discusses them in detail. Later, the chapter introduces
a new approach to capture the offsets occurring in the internal rigid body dynamics
model to the solve the problem statement.

• Chapter 5 tests the proposed methods discussed in Chapters 2, 3, and 4 on the 6-DOF
PUMA-560 manipulator and a two-link manipulator. It models and addresses the two
cases depicted in Section 1-3. Furthermore, the problem of the over-fitting in model
selection during GPR is discussed. The chapter also gives a comparison study on the
tracking performance of the semi-parametric models trained with different trajectories,
generated with different optimization criteria.

• Chapter 6 ends the report with a conclusion. In addition, recommendations were given
in this chapter for future research work on this topic.
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Chapter 2

Modelling

A semi-parametric model includes a parametric and a non-parametric term. Here, the para-
metric term is the Rigid Body Dynamics (RBD) of the manipulator. It gives a unique and
global relationship between the joint actuator torques with joint positions, velocities and
accelerations [65]. Whereas, the non-parametric term includes the un-modeled dynamics.
Therefore, this chapter discusses the two aforementioned terms in detail. The Euler-Lagrange
method is used in Section 2-1 to formulate the parametric term. In Section 2-2, the paramet-
ric term is discussed meticulously. In addition, it also discusses model reduction to obtain
the minimum set of base parameters. Section 2-3 discusses the non-parametric term. Lastly,
the chapter ends with a conclusion.

2-1 Euler-Lagrange Formulation

The inverse dynamics model of a n DOF robot can be obtained by two standard approaches.
The first method is the Newton-Euler’s formulation, where it yields the model in a recursive
form for each link separately. The second method is based on the Euler-Lagrange formulation,
where it delivers equation for the entire robot body. Unlike Newton-Euler, this approach is
simple and systematic as the closed-form symbolic equations can be directly obtained [11].
The closed-form expressions will be proved to be useful in the parameter estimation and
trajectory optimization, which will be discussed in further chapters. So, the energy-based
Euler-Lagrange formulation is incorporated and it is given by

τ = d

dt

[
∂L

∂q̇

]T
−
[
∂L

∂q

]T
+ τf , (2-1)

where τf denotes the torque due to friction, q, q̇ are the joint position and velocity respectively
and L is the Lagrangian of the robot, which is taken to be difference between the kinetic energy
E and the potential energy U . After developing the Equation (2-1), we obtain,

τ(q, q̇, q̈) = M(q, ν)q̈ + C(q, q̇, ν)q +G(q, ν)︸ ︷︷ ︸
τi

+Fv q̇ + FcSgn(q̇)︸ ︷︷ ︸
τf

. (2-2)
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8 Modelling

Table 2-1: The definition of parameters defined in Equation 2-2

Notations

q, q̇, q̇ Joint position, velocity and acceleration
τ , τi, τf Joints torques, joints inertial torques, joints friction torques
M(q), C(q, q̇), g(q) Inertia matrix, Coriolis matrix and gravitational term
Fv, Fc Viscous and Coulomb friction

The Equation 2-2 considers the widely accepted linear friction model with viscous and Coulomb
friction [45]. The variables used in Equation (2-2) are defined in Table 2-1. In Equation (2-2),
the inertial matrixM(q, ν), Coriolis matrix C(q, q̇, ν) and G(q, ν) are the non-linear functions
of model parameters ν, which includes the Center of Mass (CoM), inertia and mass of each
link. By barycentric parmaterization, the Equation (2-2) can be written in a linear fashion
which will be discussed in the upcoming section.

2-2 Parametric Term

Using the barycentric parameters (χ) and the Denavit Hartenberg (DH) convention, Equation
(2-2) can be re-grouped in a linear fashion [11]. It is given as,

τ(q, q̇, q̈) = W (q, q̇, q̈)χ︸ ︷︷ ︸
Parametric

, (2-3)

where χ ∈ Rm×1 is the set of dynamic model parameters and W ∈ Rn×m is the observation
matrix. The observation matrix W in Equation (2-3) can be obtained by using the Lagrange-
Euler method recursively. The matrix W is a upper triangular matrix as a function of joint
positions, velocities and accelerations and it is given by,

τ1
τ2
...
τn

 =


W11 W12 · · · W1n

0 W22 · · · W2n
...

...
...

...
0 0 · · · Wnm



χ1
χ2
...
χm

 . (2-4)

wherem is the number of base parameters, n is the DOF of the robot. The dynamic parameter
χ in Equation (2-3) consist of the following terms to be estimated

χ =
[
XXi XYi XZi Y Yi Y Zi ZZi MXi MYi MZi Mi fvi fci

]
, (2-5)

whereMi is the link mass,
[
MXi MYi MZi

]
are the three components of the first moment

of inertia of link i,
[
XXi XYi XZi Y Yi Y Zi ZZi

]
are the six components of the inertial

tensor of link i and fvi, fci are the coefficients of viscous and Coulomb friction respectively [11].
The relationship between the inertial tensor with respect to the DH coordinate frame and
the inertial tensor with respect to the coordinate frame which is fixed at the center of mass
can be obtained by applying either the parallel axis theorem or the Steiner theorem. Some
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2-2 Parametric Term 9

manufacturers share the approximate values of the inertia tensor, masses and the center of
masses of each link of the manipulator. But, this information is provided with the respect
to the center of mass as the frame of each link and cannot be used for model-based control
directly. So, the Steiner theorem becomes handy in defining the inverse dynamics model to
do model-based control. In addition, it will be useful for cross-validation of the obtained base
parameters through linear identification, if the approximate initial data is available.

It is worth noting that not all dynamic parameters χ contribute to the robot dynamics. In-
deed, not all the parameters are observable through measuring the joints positions, velocities,
accelerations and torques. As a result, the matrixW will not be full row rank as some param-
eters will be in linear combination with other parameters. Hence, to reduce the computational
effort and to acquire a robust dynamic model, it is paramount to derive a minimum set of
inertial parameters (Base parameters) to be estimated [15]. To do so, first the frames are
assigned for each joints and Denavit Hartenberg (DH) table is filled out. Later, the dynamic
parameters are regrouped with the help of theorem depicted in Section A-1-1. This sequen-
tial procedure can be applied to all manipulators. One example is illustrated in Appendix A,
where the model reduction is done for the 6 DOF PUMA 560 robot.

After regrouping of the dynamic parameters, a reduced parameter set called the base pa-
rameters (χb) can be obtained. Subsequently, the matrix φb can be built with the columns
corresponding to the base parameters. So, the Equation 2-3 is transformed into,

τ(q, q̇, q̈) = φb(q, q̇, q̈)χb. (2-6)

Since the joint position, velocity, and acceleration are functions of time, the matrix is stacked
row-wise for each time instant. So, the observation matrix constructed for p measurements is
given as follows,

Wb =


φb(q(t1), q̇(t1), q̈(t1))n×m
φb(q(t2), q̇(t2), q̈(t2))n×m

...
φb(q(tp), q̇(tp), q̈(tp))n×m

 . (2-7)

where Wb is the observation matrix built with the columns of the base parameters (χb) for
p measurements. The matrix (Wb) will be crucial in generating the excitation trajectory for
the identification of the robot model, and its importance can be witnessed in the upcoming
chapters.

Deriving the columns of observation matrix W is quite complex for a robot with more than
2 DOF [14] [12]. Open source softwares like Sympybotics1, SYMORO (SYmbolic MOdeling
of RObots) [13] or Damarob 2 can be used to compute the columns of observation matrix W .
In this thesis, Sympybotics is used and the software takes DH table as input and returns the
columns of the matrix W as output. More information on acquiring the matrix W by using
Sympybotics can be referred to Appendix A.

1https://github.com/cdsousa/SymPyBotics
2http://www.damarob.altervista.org/download.html
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10 Modelling

2-3 Non-Parametric Term

The nonlinear friction τf can be modelled in many ways. One standard approach is to
represent the friction τf as given in the Equation (2-2). This kind of linear friction modelling
is used in [32], [35], [45], [41]. But, the modelled friction fails to capture Stribeck, stiction at
low velocity region. In addition, modelling errors also occurs from un-modeled dynamics like
flexibility, dynamics of hydraulic tubes, actuator and cable drives etc which will lead to poor
model based control. Hence, a RBD model with linear friction will not be suffice. To resolve
this, the Equation (2-6) is modified into

τ(q, q̇, q̈) = Wb(q, q̇, q̈)χb + ε(q, q̇, q̈)︸ ︷︷ ︸
Non-Parametric

, (2-8)

where ε represents the non-linear terms due to un-modeled dynamics [65].

2-4 Discussions

First, the chapter discussed about the modelling of serial robots in general. Subsequently, a
solution to obtain the minimum base parameter set and the columns of observation matrixW
was reported. Lastly, the robot was modelled with an additional term (ε) to captures all the
non-linearities and the un-modeled dynamics. The observation matrix Wb discussed in this
chapter will be proved to be crucial in the upcoming chapters, especially in Chapter 4 where
it would be vital for trajectory optimization and least squares estimation. Furthermore, the
report is structured in a such way that RBD model (parametric term) is obtained through
linear identification technique. Later, it is used as mean for Gaussian Process Regression to
the capture the non-parametric term (See Chapter 4).
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Chapter 3

Excitation Trajectory

A key to proper system identification lies in its collected input-output data. Only certain
combinations of joint positions, velocities, and accelerations give the needed information to
identify the dynamic model properly. The trajectory which gives this information is called an
excitation trajectory. To generate such an excitation trajectory for a manipulator, the trajec-
tory has to be parametrized and the parameters have to be estimated using an optimization
problem obeying the physical constraints of the robot. Section 3-1 lists the previous research
works on optimal robot excitation and in addition, it points out the pros and cons of differ-
ent excitation trajectories. Section 3-2 discusses an excitation trajectory named Fourier series
(FS) in detail. In Section 3-3, an optimization problem is designed to estimate the parameters
of the trajectory discussed in Section 3-2. Section 3-4 proposes a new excitation trajectory
and a modified trajectory optimization criterion to acquire a better semi-parametric model.
Lastly, the chapter ends with a conclusion.

3-1 Previous Works

The most standard trajectory used for robot excitation is the Fourier Series (FS). It is used
for identification of the RBD model of the 6 DOF Staubli TX-90 robot in [41], the 6 DOF
KUKA IR:250 industrial robot in [36], the 6 DOF KUKA KR150 in [46] and the 7 DOF
in KUKA lightweight robot IV in [33]. Sine series as an excitation trajectory was adopted
in [50] for identification of the IDM of a 2-DOF SCARA robot. Subsequently, from the class
of periodic trajectories, cosine series with fifth order polynomial was used for identification
of inverse dynamics model of the 6 DOF CRS A465 industrial robot in [51] and the 7 DOF
KUKA LBR iiwa 14 r800 in [49]. Aforementioned trajectories enjoy the following advantages.

• They have improved signal to noise ratio as it allows for data averaging in the time
domain which in turn helps in calculation of joint torque and position covariances. On
the other hand, data averaging also reduces the number of data measurements.

• The joint velocities and accelerations can be calculated analytically. Hence, numerical
differentiation method can be avoided, which is an error-prone procedure.
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12 Excitation Trajectory

• With these trajectories, frequency domain differentiation can be done to obtain joint
velocities and accelerations from joint positions. This approach of differentiation of joint
positions is simple, efficient and accurate. Due to the periodicity of the signal, there
is no leakage error for the transformation of the signal from time domain to frequency
domain [46], [51].

• The filtering of the joint positions of the Fourier Series can be easily done in the fre-
quency domain by using the property of windowing the spectrum. This technique will
reduce the noise at the desired spectrum without introducing any phase distortions.

In the class of non-periodic trajectories, Jubien et al. used Point-To-Point (PTP) excitation
trajectories to identify the model of the 7 DOF KUKA LWR 4 robot in [34] and [32]. PTP
consists of typical trapezoidal acceleration shapes where the desired end positions of each
joint were given as input to the robot. Accordingly, the robot calculates which joint needs
the longest time to move, by considering the distance, velocity and acceleration limits. The
disadvantage of this method is quite obvious as it does not gives the end user to shape the
trajectory according to their needs. Following, B-splines as excitation trajectory was tested
on the 7 DOF KUKA LWR 4 robot for the identification of inertial base parameters in [52].
B-splines are smooth curves and are formed by compounding multiple Bezier curves. This
kind of trajectory was used for the identification of inertia parameters alone and does not
have enough excitation for the identification of full base parameters [52] [49]. Overall, the
non-periodic trajectories do not possess the advantages exhibited by the periodic trajectories
and have minimal excitation as compared to periodic trajectories [49].

The main problem concerning the excitation trajectory is that it should be able to excite all the
base parameters obeying all the robot constraints. The idea started with moving one or two
joints at a time and identifying the base parameters corresponding to that joint by the Least
Squares (LS) method. This approach of segmented identification was used by authors like H.
Mayeda, P. Khosla, C.G. Atkeson, H.B. Olsen and T. Beckey. But, neither this method yielded
a global LS solution nor the optimality of trajectories were considered. B. Armstrong found a
solution to the aforementioned problem by minimizing the condition number of an observation
matrix (Wb), which is estimated from the joint positions, velocities, and accelerations (See
Chapter 2). Thereby, laying the foundation for trajectory optimization. Minimizing the
condition number of observation matrix Wb is a standard approach and it is used in [56], [26],
[46], [35], [57], [36], [30], and [47] for the optimal robot excitation. Later on, different objective
functions were constructed for trajectory optimization. A slight modification was done to the
minimization of condition number by including the torque co-variance matrix into account for
the computation of optimal parameters of the periodic wave. This approach was successfully
implemented in [33], [44], [50], [51], [45]. In [41], a d-optimality criterion was proposed which
is basically the minimization of −log(det(W T

b Σ−1Wb)). Later, a slight variation of the d-
optimality criterion was proposed in [41] to reduce the computational cost. The basic idea is to
replace the determinant expression in d-optimality criterion with Hadamard’s inequality [38].
Due to this, the complexity of computing the determinant of W T

b Wb for a m × n matrix
dropped from O(mn2 + n3) to O(n).
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3-2 Trajectory Parametrization

From Section 3-1, it is clear that the class of periodic signals are better compared to non-
periodic signals. The advantage of noise free differentiation exhibited by periodic signals can
be utilized for constructing the observation matrix Wb, which is the function of the desired
joint positions, velocities, and accelerations. Therefore, the Fourier series is incorporated in
this thesis. The Fourier series is a finite sum of sine and cosine functions of each joint i as
represented in Equation (3-1). As mentioned in Section 3-1, the analytical differentiation of
joint positions can be obtained using the following equation

qi(t) =
L∑
l=1

ai,l
ωf l

sin(ωf lt)−
bi,l
ωf l

cos(ωf lt), (3-1)

q̇i(t) =
L∑
l=1

ai,lcos(ωf lt) + bi,lsin(ωf lt), (3-2)

q̈i(t) = ωf l
L∑
l=1
−ai,lsin(ωf lt) + bi,lcos(ωf lt), (3-3)

where i runs from 1, 2, .., n with n being the degree of freedom of the robot, qi, q̇i, q̈i are
the desired joint positions, velocities and accelerations respectively, ωf is the fundamental
frequency, ai,l and bi,l are the amplitudes of the cosine and sine function, and L denotes the
number of sine and cosine terms.

It is to be noted from Equations (3-1), (3-2), (3-3) that fundamental frequency ωf is common
for all joints. This makes the excitation trajectory periodic. The Fourier series represented
in Equation (3-1) covers a frequency ranges between [ωf , Nωf ]. It is advisable to choose
a low fundamental frequency ωf , as it would lead to longer excitation period. The longer
measurement time will cover a larger part of the robot workspace for a given maximum joint
velocity. In addition, it will improve the information content of the measurements and the
accuracy of the parameter estimates [45]. Each Fourier series contains 2× L+ 1 parameters
that are needed to generate the reference trajectory. The parameters ai,l and bi,l can be
determined through trajectory optimization which will be discussed in the upcoming section.

3-3 Trajectory Optimization

The parameters of the trajectory can be identified without solving any optimization problem
by trial and error method. But, this way of random selection of amplitude values will result
in poor excitation of base parameters. In addition, the observation matrix Wb which is con-
structed from the desired joint position, velocity and acceleration can become rank deficient
and it might pose some problems when carrying out least squares estimation as the inverse will
not exist [47]. Therefore, it is essential to construct a proper objective and constraints func-
tion for trajectory generation before carrying out the identification experiment. Subsection
3-3-1 discusses different constraints that are needed to be obeyed for the excitation trajectory.
Subsection 3-3-2 presents a proper objective function that is needed to be minimized.
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3-3-1 Trajectory Constraints

FS has a drawback due to sudden change in velocity and acceleration at the start and end
of motion, i.e., q̇i(0) 6= 0, q̇i(tf ) 6= 0, q̈i(0) 6= 0, q̈i(tf ) 6= 0 for i = 1, 2, ..., n, which may
cause the robot to vibrate. Due to this, it is difficult for robots to track FS signal closely.
Thereby, deteriorating the identification accuracy [44]. Therefore, to avoid the large control
action for tracking non zero initial conditions, the constraint Equations (3-4),(3-5), (3-6) were
constructed. It ensures that the trajectory has zero initial and final joint positions, velocities
and accelerations.

qi(tf ) = qi(0) =
L∑
l=1

bi,l
ωf l

+ qi,0 = 0 (3-4)

q̇i(tf ) = q̇i(0) =
L∑
l=1

ai,l = 0 (3-5)

q̈i(tf ) = q̈i(0) =
L∑
l=1

ωf lbi,l = 0 (3-6)

In Equations (3-4), (3-5), (3-6), qi(0), q̇i(0), q̈i(0) are the initial joint positions, velocities
and accelerations respectively and qi(tf ), q̇i(tf ), q̈i(tf ) are the final joint positions, velocities
and accelerations respectively. Likewise, a second group of constraints can be constructed
based on robot’s physical limits. In order to avoid collision of the robot with the environment
and also with itself, the joint positions, velocities and accelerations of the desired trajectories
should be limited by the following, constraints

|qi(t)| ≤
L∑
l=1

1
lωf

√
a2
i,l + b2

i,l + |qi,0| ≤ qi,max, (3-7)

|q̇i(t)| ≤
L∑
l=1

√
a2
i,l + b2

i,l + |qi,0| ≤ q̇i,max, (3-8)

|q̈i(t)| ≤ ωf
L∑
l=1

l
√
a2
i,l + b2

i,l ≤ q̈i,max, (3-9)

where qi,max, q̇i,max, q̈i,max are the maximum joint position, velocity and acceleration re-
spectively and |qi(t)|, |q̇i(t)|, |q̈i(t)| denotes the minimum or lower bound on joint position,
velocity and acceleration respectively. The aforementioned constraints will be incorporated
in a non-linear constrained optimization problem with an objective function J , to find the
amplitudes ai,l and bi,l for rich excitation which will be discussed in the upcoming subsection.

3-3-2 Trajectory Objective Function

Different objective functions will be discussed and compared in this project. The complexity
is not an issue as the trajectory optimization is done offline. Therefore, the variant of d-
optimality with Hadamard’s inequality is avoided. In this section, the most standard objective
function cond(Wb) will be discussed. The condition number of the matrix Wb is the measure
of the sensitivity of the least squares solutions to the perturbations on the observation matrix
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Wb and the joint torque τ (Refer Equation (4-3)) [39]. There are three different measures to
compute the condition number of a matrix and they are given as follows

• 2-norm condition number using SVD decomposition,

• 2-norm condition number using QR decomposition,

• condition number with Frobenius norm - condF (Wb) = ‖A‖F ‖A−1‖F .

These measures were compared and tested in [47]. According to [47], the last measure gave a
faster convergence rate as compared to the other two, but all the three gave similar results.
So, the 2-norm condition number using SVD decomposition will be adopted in this project
as the computation effort is not a big priority. The 2-norm condition number is given as the
ratio of the maximum singular value ζmax and the minimum singular value ζmin of the matrix
Wb as depicted in Equation (3-10) [49].

J = min
ai,l,bi,l

cond(Wb) = min
ai,l,bi,l

ζmax
ζmin

(3-10)

The smaller condition number leads to the well-equilibrated observation matrix and higher
excitation of the base parameters. In the meanwhile, the impact of perturbations on the least
squares solution is reduced [36] [47].

3-4 New Approach

The main goal of the thesis is to identify the accurate inverse dynamics model of the ma-
nipulator. A brief description on how to acquire it is discussed in Chapter 2. It is difficult
and quite complex to model the dynamics of hydraulic tubes, actuator and cable drives and
other non-linearities. So, GPR is incorporated to tackle the issue. However, for the GPR to
capture these un-modeled dynamics, it is imperative to excite all these non-linearities. In [54],
general combinations of sinusoidal trajectories were used as the reference for every joint with
relatively high accelerations so that the dynamics effects were observable. This kind of exci-
tation trajectory was used in [54] to train the neural network for inverse dynamics learning.
Likewise in [65], [74], excitation trajectory with two sinusoids having different frequencies and
amplitudes were chosen for training the GPR. The aforementioned used random trajectory
parameters and it is highly questionable if these trajectories excited all the non-linearities.

In [41], [36], [46], [33], [52], [49], [53], [45], [44], [43] and [40] a linear viscous and Coulomb
friction model was embedded in the observation matrix and the trajectory was optimized.
Often, the information of the non-linearities and what kind of friction acting on the robot is not
predictable. In this thesis, a different approach is taken where the two excitation trajectories
were generated for the identification experiment. First, a Fourier series is optimized and
generated in such a way that it excites all the base parameters of the manipulator alone.
The generated trajectory has the frequency ranging from ωn to Nωn, where N denotes the
number of Fourier terms, ωn is the fundamental frequency. Secondly, an another Fourier Series
is generated that covers a frequency range from [Nωn, ωb], where is the ωb is the closed-loop
bandwidth of the system. This trajectory is a high frequency and a high acceleration trajectory
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where the amplitudes are chosen in a such way, it obeys all the constraints mentioned in
Equation (3-4),(3-5), (3-6), (3-7), (3-8) and (3-9). By incorporating this kind of trajectory
for identification, the disturbances due to non-linearities can be purposefully captured in
Gaussian process regression.

The sensitivity of the least squares approach for the RBD identification depends on the
condition number of the observation matrix (Wb). Therefore, attaining the lowest condition
number for the matrix Wb will lead to better excitation and better least squares estimates.
Therefore, the trajectory optimization criterion mentioned in Subsection 3-3-2 can be used
for the identification only if the observation matrix is well equilibrated. In some cases, smaller
link parameters are difficult to identify as they have less influence on robot dynamics and
can eventually lead to an ill-conditioned Wb matrix. This problem is addressed in [17] by
incorporating a new criterion for trajectory optimization. G. Venture used two optimization
criterion to generate the excitation trajectory with low condition number. The corresponding
objective functions are depicted in Equations (3-11), (3-12), where the first criterion excites
the regressor matrix built with static parameters like the masses and center of mass of each
link (WS

bi) separately and the second criterion excites the regressor matrix built with the
dynamic parameters like the inertia of each link (WD

bi ) separately. The dynamic postures
were exclusively obtained by optimal excitation between the static postures. Subsequently, the
obtained joint configuration for static postures qS and dynamic postures qD was interpolated
by B-splines techniques.

qS = min
qS

N∑
i=1

Micond(W̄S
bi) (3-11)

qD = min
qD

N∑
i=1

Micond(W̄D
bi ) (3-12)

In this thesis, the idea of dividing the total observation matrix (Wb) into sub-regressors con-
taining the information of individual links was incorporated. Unlike [17], the sub-regressors
are not further split into separate regressor containing static and dynamic parameter infor-
mation. In [17], the condition number is multiplied with the link mass (Mi) to give more
importance to the larger links. Whereas in this thesis, the weights are taken to be unity
to give equal importance to all the links and to attain better excitation for all links. By
doing this, a lower condition number can be obtained as compared to the criterion specified
in Subsection 3-3-2. The proposed minimization criteria is given as follows,

J = min
ai,l,bi,l

N∑
i=1

cond(Wbi), (3-13)

where the ai,l, bi,l denotes the amplitude values of the Fourier series, Wbi denotes the sub-
regressor for each link i, J is the objective function and N represent the number of links.

3-5 Discussions

The chapter started with the discussion of previous research works related to the trajectory
parametrization and optimization. It laid out the reasons for incorporating Fourier series as
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excitation trajectory. In addition, it proposed a new trajectory to capture the un-modeled dy-
namics by introducing frequency dependent signals. Later, the chapter introduced a modified
objective function for trajectory optimization to treat the aspect of numerical issues arising
during the least squares identification. Following this chapter, the generated trajectory will
be used for the least squares identification and training the GPR. The importance of low
condition number in excitation trajectories highlighted in this chapter can be witnessed in
the upcoming chapters.
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Chapter 4

Identification

Chapter 2 modeled the serial manipulator into a parametric and a non-parametric equivalent.
Now, this chapter ponders on the methods to identify these two terms with the excitation
trajectory that is generated from Chapter 3. The non-parametric Gaussian process regression
learns the entire Inverse Dynamics Model (IDM) from scratch [65] [71]. It does not use of
any prior knowledge of the robot. This kind of regression techniques has several drawbacks.
First, it requires a huge amount of data to learn the accurate IDM of the robot. Second,
the non-parametric GPR model will fail to generalize for any unknown data, if the excitation
trajectory is not sufficiently exciting or if the data set is poor with less information [74] [65]. In
this chapter, the strengths of non-parametric and parametric model learning were combined
to obtain a semi-parametric regression framework. First, the parametric term is identified by
the least squares technique. Second, the non-parametric term is identified using the Gaussian
Process Regression (GPR) with the obtained parametric term as mean. Unlike the non-
parametric GPR, learning the entire IDM of the robot is avoided and the learning is done
to captures only the un-modeled dynamics and other non-linearities. Therefore, the Semi-
parametric GPR (SGPR) has better generalization as compared to the non-parametric GPR
as SGPR uses the RBD model of the robot for any unknown data.

The remainder of this chapter will be organized as follows, Section 4-1 presents the previ-
ous research works on the identification of the inverse dynamics model. It points out the
advantages and the disadvantages of each method and paves the way for other sections to
reason the methods incorporated in this project. Section 4-2 ponders on the Weighted Least
Squares and the Least squares technique for identifying the rigid body dynamics of the robot.
In addition, it points out the different class of perturbations occurring in the manipulator in
detail. Section 4-3 incorporates the GPR to the capture the un-modeled dynamics occurring
in the manipulator. Section 4-4 proposes a new approach based on the method discussed in
Section 4-3 to address the problem of inaccuracies occurring in the internal inverse dynamics
model. Lastly, a discussion is given about the proposed methods in Section 4-5.

Master of Science Thesis Sathish Krishnamoorthi



20 Identification

4-1 Previous Works

In the domain of linear identification of the robot’s RBD model, the most popular technique
is the Weighted Least Squares (WLS)/Least Squares (LS) approach. It is an offline non-
iterative method, which was successfully tested on a 7 DOF KUKA LWR 4 robot in [32], [34],
7 DOF KUKA LBR iiwa R820 in [49], 7-DOF Mitsubishi PA10 in [35], [33], 6-DOF PUMA
560 in [37], 6-DOF Stäubli TX-90 in [41] and a 3-DOF KUKA IR 361 in [36]. Unlike WLS/LS,
W. Wu incorporated a statistical approach named Maximum Likelihood Estimation (MLE)
to estimate the base parameters. It was proved to work successfully on the first three axes of
QIANJIANG-I 6-DOF robot [24]. Irrespective of the measurement noise, this method yields
unbiased estimates with minimum uncertainty. Meanwhile, it is a non-linear optimization
approach and requires the initial guess of parameters to converge to a minimum. In addition,
the convergence of global optimum cannot be guaranteed. The Extended Kalman Filter is
an another statistical framework approach. It is an online recursive estimation technique,
which was successfully adopted for the 2-DOF SCARA robot in [30] and [31] and the 5 DOF
KUKA youBot in simulation in [48]. Since the system to be identified is non-linear, this
approach proves to be useful as it linearizes the non-linear model using the Taylor expansion
at every instant. The main disadvantage of this method is that it is sensitive with respect
to initial values. So, a prior knowledge is required to obtain a better estimation of the base
parameters. Also, it is unlikely for the zero initial values to yield good results as in some
cases the CAD data is unavailable. In addition, the calculation of the Jacobian matrix (used
in Taylor expansion) for the extended state is computationally heavy and consumes a lot of
time [31].

The aforementioned works use only the Inverse Dynamic Model (IDM) for the base parameter
estimation. M. Gautier and A. Janot in 2008 proposed a strategy that employs both the direct
dynamic model and the inverse dynamic model to avoid the numerical computation of q̈, q̇ by
utilizing only torque data for dynamic model identification [27], [26]. The main disadvantage
of this method is that it requires the control law used by the robot controller for the direct
dynamic model, which is often a black-box.

A. Janot and P.O. Vandanjon dealt with noisy observation matrix by using the instrument
variable approach to estimate the base parameters of the 6-DOF Stäubli TX-40 robot, which is
a combination of the direct and the inverse dynamic model of the robot. The main advantage
of this approach is that it yields an unbiased estimate by dealing with noisy observation
matrix W and has faster convergence as compared to MLE. Janot compared the obtained
estimates from the IV approach with the results of a classical LS approach. According to
their results, the IV approach does not lead to better estimations than the Least Squares
formulation. In addition, the direct dynamic model is built from the approximation of the
noise-free model of the physical process to be identified, which is often unknown.

In 2013, M. Gautier introduced a new method named power model which expresses the
base parameters in terms of total energy and the power of the robot system. This method
was adopted to avoid the tedious symbolic computation of the observation matrix used in
the IDM model [29]. Gautier also compared the estimation results from the power model
approach with the IDM - LS approach. It was inferred that the estimated values were closer
to IDM-LS estimates but did not improve IDM -LS.

Some robots give the opportunity for the end-users to calculate the link inertial matrix and
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gravity vector at the current robot configuration through its Fast Research Interface (FRI). C.
Gaz exploited this advantage and introduced a reverse engineering approach to estimate the
inverse dynamics model of the robot. Reverse engineering approach was successfully applied
on a 7-DOF KUKA LWR IV robot for all joints in [28]. The main disadvantage of this method
is that it is not applicable for the robots where the inertial and gravity matrix at every robot
configuration is not measurable.

In the domain of machine learning, learning of IDM can be broadly classified into offline
and online techniques. The most popular offline estimation techniques are Support Vector
Regression (SVR) and Gaussian Process Regression. In [71], the support vector regression was
successfully implemented for learning the entire IDM of the 7 DOF SARCOS robot. On the
contrary, D.N. Tuong uses the GPR to capture only the un-modeled dynamics occurring in
the 7 DOF Barrett WAM robot [65]. In addition, D.N. Tuong introduces different methods to
use the prior information, i.e., CAD data of the robot. The prior knowledge was used as mean
and kernel for capturing the un-modeled dynamics. Both GPR and SVR are computationally
heavy and a slow process. This kind of learning can be adopted when the computational
effort is not a big priority.

Meanwhile, online techniques help in capturing the time-varying un-modeled dynamics. Thereby,
assisting the robot controller to adapt itself for time-varying non-linearities. The popular
methods are Local Gaussian Process Regression and Locally Weighted Projection Regression
(LWPR). These methods were tested successfully on the 7 DOF SARCOS master arm and 7
DOF Barrett WAM robot in [68]. The major disadvantages faced by these methods are given
as follows,

• Achieving inverse dynamics learning and torque prediction at a rate greater than 1000
Hz (< 1ms) will be difficult.

• Even if the above said is achieved. There will be more data incoming, for e.g., for the
sampling rate of 1 ms, 600000 data points will be collected for 10 minutes. Without
proper handling, the online technique will be difficult.

• The model has to be adapted continuously for new data points.

• LWPR and LGP are not better than offline Gaussian Process Regression (GPR) and
Support Vector Regression (SVR) in terms of accuracy [68].

4-2 Inverse Dynamic Model - Least Squares / Weighted Least
Squares (IDM LS/WLS)

From Section 4-1, it can be inferred that every methods has its own advantages and disadvan-
tages. Unlike other methods,the Least Squares approach (LS) is less complex as it estimates
the parameters in a single-step. It is better compared to other methods mentioned in Section
4-1 and in addition, it does not require any prior information about the estimates before-
hand. So, LS method is preferred for the identification of Rigid Body Dynamics (RBD) of
the manipulator in this thesis. Generally, the IDM of a manipulator is given as

τIDM = M(q)q̈ + C(q, q̇)q̇ +G(q), (4-1)
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where τIDM is the joint torque of the IDM model. The actual torque τ varies from τIDM by
an error ρ as depicted in Equation (4-3). The error ρ witnessed in robotic manipulators can
be classified as follows,

• Measurement noise (φ̃b) - It occurs due to the sensor noise and numerical noise arising
from the numerical differentiation of the joint positions to obtain joint velocities and
accelerations.

• Motion noise (τ̃) - These are the uncertainties acting on the joint torques. It occurs due
to complex friction and random noise acting on the robot.

• Systematic error (ν) accounts for the un-modeled dynamics of the robot like flexibilities,
dynamics of hydraulic tubes, actuators, and cable drives etc.

The aforementioned noises are represented in the following equations

τ = (φb + φ̃b)χb + τ̃ + ν, (4-2)

τ = τIDM + ρ = φb(q, q̇, q̈)χb + ρ, (4-3)

where φb is the observation matrix, χb is the minimum set of inertial parameters or the
base parameters of the robot and ρ is the total perturbation on the joint torques. The
observation matrix (φb) is an upper triangular matrix constructed with the columns of the
base parameters [11]. For p measurements, the observation matrix and the torque vector is
constructed as follows

Wb =


φb(q(t1), q̇(t1), q̈(t1))n×m
φb(q(t2), q̇(t2), q̈(t2))n×m

...
φb(q(tp), q̇(tp), q̈(tp))n×m

 , Γ =


τ(t1)T
τ(t2)T

...
τ(tp)T

 , (4-4)

where m is the number of base parameters, n is the DOF of the robot, Γ is the vector of
torque signals for p measurements and Wb is the observation matrix corresponding to the
base parameters χb constructed for p measurements. By using Equation (4-4), the Weighted
Least Squares (WLS) solution to Equation (4-3) can be given as

χ̂b = min
χb
‖ρ‖22 = (W T

b Σ−1Wb)−1W T
b Σ−1Γ, (4-5)

| Σ = diag(σ2
1, σ

2
2, . . . , σ

2
n), (4-6)

where Σ is the diagonal co-variance and σ2
i is the torque co-variance of the joint i. Since the

chosen excitation trajectory for identification is periodic (See Chapter 3), the variances of the
measurement can be calculated by recording multiple periods (k = 1, 2, . . . ,K) and averaging
them over K periods. The mean and co-variance of the measured data can be given by the
following equations

x̄i(m) = 1
K

K∑
k=1

xk,i(m), (4-7)

σ2
i = 1

K

K∑
k=1

(xk,i(m)− x̄i(m))(xk,i(m)− x̄i(m))T , (4-8)
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where x can be joint positions or joint torques, x̄i(m) is the mean, σ2
i is the co-variance, m is

the number of observation points (samples) and i runs from 1 to n for n links [49]. The WLS
can be converted to LS problem by dropping the scaling with inverse of torque co-variance by
considering constant variance in the torque error and the equation pertinent to it is given by

Σ = I, (4-9)
χ̂b = min

χb
‖ρ‖22 = (W T

b Wb)−1W T
b Γ. (4-10)

Like other methods, Least Squares has its own weakness, it yields a biased estimate, if Wb is
correlated with ρ. One way to tackle the issue is by using a proper filter before computing
the LS solution. Since, the method cannot captures complex friction and unknown dynamics.
The report addresses the issue by using the Gaussian Process Regression with the obtained
LS estimate as mean which will be further discussed in the upcoming sections.

4-3 Semi-Parametric Gaussian Process Regression (GPR)

The offline machine learning technique is adopted in this thesis as it is more suitable for model-
based compensation due to the disadvantages listed for online learning techniques in Section
4-1. But, the GPR has an upper hand as the hyperparameters of the kernel function can be
obtained easily by maximizing the log-likelihood. Furthermore, GPR gives the property of
combining the automatic feature selection with learning using the ARD kernel. Unlike SVR,
GPR can handle uncertainties in the unknown function f by averaging, not minimization.
Due to these reasons, GPR is chosen over SVR. In this project, the GPR is not used to learn
the entire IDM of the robot. Instead, the GPR is used to capture the un-modeled dynamics
and other non-linearities. Therefore, this section ponders deeply on how to incorporate the
prior information obtained from least squares as mean to do semi-parametric Gaussian process
regression.

The GPR framework discussed in Appendix B can be easily extended for inverse dynamics
learning of manipulators. From Chapter 2, the inverse dynamics model can be given as follows

τ = Wbχb + ε(q, q̇, q̈), (4-11)

where ε(q, q̇, q̈) captures the non-linearities occurring in the robot. Using the GPR technique,
the robot dynamics from Equation (4-11) can be modelled as

τ ∼ GP(m(x), k(x, xT )), (4-12)

where x = [q, q̇, q̈]T is the function of joint position, velocity and acceleration, m(x) is the
mean function and k(x, xT ) is the covariance or kernel function. The regression becomes
non-parametric if no prior knowledge is used or the mean is assumed to be zero. This can be
visualized in Equation (4-13).

τ ∼ GP(0, k(x, xT )). (4-13)

The main concern with this approach is that the parameters are learned from scratch without
any use of prior information of the robot. In [65], a comparison was made between non-
parametric GPR and GPR with prior knowledge for a 7 DOF real Barrett WAM robot. It
was found that the non-parametric GPR had poor tracking performance as compared to the
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GPR with RBD as mean. So, the RBD of the manipulator obtained from the least squares
technique in Section 4-2 is used as mean for the GPR to make the non-parametric regression
to a semi-parametric regression. Subsequently, the Equation (4-13) is converted to

τn ∼ GP(Wbχb, k(x, xT )), (4-14)
τn ∼Wbχb + GP(0, k(x, xT )). (4-15)

By incorporating the fixed mean as represented in Equation (4-15), the Gaussian process
model is biased towards this information. So, whenever the GPR encounters an unseen data,
it uses the RBD model of the manipulator. The kernel function k in Equation (4-15) gives the
similarity measure between two points X and x∗. Exponential, squared exponential, Matern
3/2, Matern 5/2, rational quadratic etc. are some common Kernel functions used for GPR.
One example of a kernel function is given below

k∗(X,x∗) = σ2
fexp

(
− 1

2
(X − x∗)T (X − x∗)

σ2
l

)
, (4-16)

where k∗(X,x∗) is the squared exponential kernel, σl is the width of the kernel and σf is the
input signal standard deviation. Similarly, the torque prediction obtained by using RBD as
mean for n DOF can be given as follows

τ̄n = w(xT∗ )χb + kT∗ (K + σ2
nI)−1 (τn −Wb(X)χb)︸ ︷︷ ︸

error

, (4-17)

where τ̄n is the torque prediction obtained for input query point x∗, w is the observation matrix
estimated for the query point x∗, Wb is the observation matrix obtained using training data
X, k∗ is the covariance vector estimated on training data set X and the query point x∗, K is
the covariance matrix obtained from training input data X, and τn is the filtered torque signal
for the joint n. The error term vanishes from Equation (4-17), if RBD correctly portrays the
robotic manipulator. In addition, the error term vanishes even if X is much greater than x∗
(if x∗ is far away from X).

The major limitation faced by GPR is that it takes a lot of computation time during the
training and prediction step. During training, evaluating the inversion of the kernel matrix
(K(X,X)) of size n × n and computing log(P (τ |X)) is O(n3) respectively. Therefore, the
complexity becomes O(kn3) for a k number of function evaluations for maximization and n
number of observations. Since the training of Gaussian process regression is done offline, the
computational complexity is of minor significance. On the other hand, the prediction is done
online with the trained GPR. So, the complexity is an important factor to be considered.
The prediction step depicted in Equation (4-17) has computational complexity of O(n3) for
the evaluation of the term (K + σ2

nI)−1. But, this term can be stored and it is not required
to be computed every time. The memory requirement of the aforementioned term scales to
only O(n2). The issue can also be addressed by not predicting torque signals at every time
instant but with certain time intervals.
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Figure 4-1: Left - Compensation of un-modeled dynamics using the Semi-parametric GPR (S-
GPR) for Case 1, Right - Compensation of model inaccuracies and un-modeled dynamics using
the Semi-parametric GPR (S-GPR) for Case 2.

The difference between the research carried out in [65] and in this thesis can be visualized in
Figure 4-1. The first case depicted in Section 1-3 can be tackled using the approach suggested
in Section 4-3 (similar to the work done in [65]). In the previous section, first, the internal
IDM which failed to compensate for the un-modeled dynamics is replaced by the RBD model
estimated from the least squares. Subsequently, feed-forward signals from Gaussian process
model are given to the robot to compensate for the non-linearities that cannot be explained
by the estimated RBD model. Whereas in this section, the same technique is used to capture
the model inaccuracies and un-modeled dynamics occurring in the internal inverse dynamics
model (refer Figure 4-1). Further, it is assumed in this section, that it is not possible to
replace or turn OFF the internal IDM controller of the robot. So, it can be inferred from
Figure 4-1, that the feed-forward torque signals from the semi-parametric model, are given
in the presence of the inaccurate IDM of the robot. This section will now ponder deeply on
the method to acquire the semi-parametric model for this special case.

At low stiffness and damping conditions, the robot becomes completely unstable as the inter-
nal inverse dynamics is inherently unstable. This demands for proper feed-forward signals to
compensate for the inaccuracies in IDM and the un-modeled dynamics. Generally, in these
case, the high PD gains are set to make the robot rigid and stable. Subsequently, the identifi-
cation experiment is carried out. The high feedback gain will compensate for the inaccuracies
in the internal IDM and un-modeled dynamics. Hence, the total torque given to the robot to
track the desired trajectory is given as

τ = τPD + τI-IDM, (4-18)
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where τ is the total joint torque given to the robot, τPD is the feedback toque and τI-IDM
is the torque due to the Inaccurate internal Inverse Dynamics Model (I-IDM). The feedback
torque can be measured using the relation

τPD = Kp(qd − qm) +Kd(q̇d − q̇m), (4-19)

where Kp and Kd are the proportional and derivative gains respectively, qd and q̇d are the
desired joint position and velocity respectively. In Equation (5-7), the parameters Kp, Kd,
qm, q̇m, qd, q̇d are all measurable, thereby making the τPD measurable. With the measured
feedback torque as input and measured joint position, velocity and acceleration as output, the
least square is incorporated to estimate the error in the base parameters (χerror). Subsequently
with the obtained error model as mean, the Gaussian process regression is used to capture
the remaining un-modeled dynamics and other complex perturbations. The semi-parametric
Gaussian process regression framework for learning the inaccuracies and other perturbations
can be given as,

τPD ∼Wb(qd, q̇d, q̈d)χerror + GP(0, k(x, xT )), (4-20)

where x = [q, q̇, q̈]T is the function of joint position, velocity and acceleration,Wb(qd, q̇d, q̈d)χerror
is the mean function and k(x, xT ) is the covariance or kernel function. The corresponding
torque prediction for new query point x∗ is given by the following relation

τ̄n = w(xT∗ )(χinc + χerror) + kT∗ (K + σ2
nI)−1 (τPD −Wb(X)χerror)︸ ︷︷ ︸

error

, (4-21)

where χinc is the incorrect base parameters, τ̄n is the torque prediction obtained for input
query point x∗, w is the observation matrix estimated for the query point x∗, Wb is the
observation matrix obtained using training data X, k∗ is the covariance vector estimated on
training data set X and the query point x∗, K is the covariance matrix obtained from training
input data X, and τPD is the measured feedback torque signal. The error term vanishes from
Equation (4-21) when no complex friction and other non-linearities act on the robot and if the
RBD error model is able to compensate for the inaccuracies in the internal IDM. In addition,
the error term also vanishes even if the X is much greater than x∗ (if x∗ is far away from X).
In this case, the semi-parametric model will compensate for the inaccuracies in the internal
RBD model but will fail to capture the un-modeled dynamics and other perturbations due to
an unseen data.

The feed-forward signals are given to the robot in the presence of incorrect internal IDM
after obtaining the semi-parametric model. These feed-forward signals are the combinations
of torque signals from the RBD error and Gaussian process models for a given joint position,
velocity, and acceleration as shown in Figure 4-1. This makes the robot stable at low compliant
conditions and to become less dependent on feedback.

4-5 Discussions

In this chapter, the previous works related to inverse dynamics learning were discussed. It
laid out the advantages and the disadvantages of each method. In addition, it pointed out
the need to adopt the least squares and GPR towards IDM learning. In short, the rigid
body dynamics was estimated using the least squares method and it was used as mean to
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capture the perturbations through GPR. By doing this, the chapter highlighted the fact that
SGPR will never fail to generalize an unknown data as the used RBD mean gives the unique
relationship between joint torques and joint position, velocity and acceleration. Later, the
chapter proposed a new technique to address the inaccuracies occurring in the internal IDM
by incorporating the semi-parametric approach. Following this chapter, the identification
methods will be tested on the PUMA-560 and a twolink manipulator.
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Chapter 5

Evaluations

In this thesis, the robot is compensated by a PD + inverse dynamics model as depicted in
Figure 1-1. The feedback term becomes less at low stiffness and damping conditions. As a
result, the manipulator becomes entirely dependent on the internal inverse dynamics model.
Therefore to reduce the dependency on feedback and to achieve good performance at low
compliant conditions, learning accurate inverse dynamics model becomes crucial. Hence, two
different cases were considered in this chapter. For the first case, the rigid body dynamics
model with the correct base parameters is used for controlling the robot. Whereas in the
second case, the rigid body dynamics model was deliberately made inaccurate by including
an offset in the base parameters. However, the rigid body dynamics failed to capture the
un-modeled dynamics and the complex friction in both the cases. The modeling of the robots
was done using Peter Corke’s - Robotic Toolbox. The GPR and trajectory optimization was
done using the machine learning and optimization toolbox respectively provided by MATLAB.
Furthermore, the columns of the observation matrix (W ) were generated using a python based
open software named Sympybotics. The procedure to acquire the matrix using the software
is illustrated in the Appendix A.

The remainder of this chapter is structured as follows, Section 5-1 discusses modeling of the
PUMA 560 and the twolink manipulator in MATLAB. The chosen values for the inertia, mass,
Center of Mass (CoM), and friction for the manipulators were reported. Furthermore, it talks
about the considered noise model in the PUMA 560 and the twolink manipulator. Later in
this section, the control scheme of the robot is discussed and it also points out the reasons to
use the particular scheme. In Section 5-2, a reference excitation trajectory is generated with
the help of the constraint designed for the PUMA 560 and the twolink manipulator. Section
5-3 talks about the identification of the rigid body dynamics of the twolink and the PUMA
560 manipulator with the least squares approach. Further, it concentrates on capturing the
un-modeled dynamics and other perturbation using Gaussian process regression. Lastly, in
Section 5-4, the second case is solved by first learning the offset in the internal RBD model
through the LS approach. Subsequently, with the learned error model as mean, GPR is used
to capture the un-modeled dynamics and other perturbations.
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Figure 5-1: Left - PUMA 560 Manipulator, Right - Twolink Manipulator

Table 5-1: Dynamic and electrical parameters of the PUMA 560 robot

DOF Mass [kg] COM [m] I [kgm2] Jm Bm Tc G
1 0 [0,0,0] diag([0,0.35,0]) 0.0002 0.00148 [0.395 -0.435] -62.61
2 17.4 [-0.3638,0.006,0.2275] diag([0.13,0.524,0.539]) 0.0002 0.000817 [0.126 -0.071] 107.8
3 4.8 [-0.0203,-0.0141,0.07] diag([0.066,0.086,0.0125]) 0.0002 0.00138 [0.132 -0.105] -53.79
4 0.82 [0,0.0019,0] diag([0.0018,0.0013,0.0018]) 3.3× 10−5 7.12× 10−5 [0.0112 -0.0169] 76.04
5 0.34 [0,0,0] diag([0.0003,0.0004,0.0003]) 3.3× 10−5 8.26× 10−5 [0.00926 -0.0145] 71.92
6 0.09 [0,0,0.032], diag([0.00015,0.00015,4× 10−5) 3.3× 10−5 3.67× 10−5 [0.00396 -0.0105] 76.69

5-1 Simulation Setup

In this thesis, all the proposed methods were tested on the PUMA 560 and the twolink
manipulator. The visual representation of these manipulators is depicted in Figure 5-1. The
Unimate Puma 560 is a 6 DOF robot. The kinematic, dynamic and electrical parameters
for the PUMA 560 robot have been compared and reported in the literature [79]. The thesis
incorporates these parameter values for the PUMA 560 robot. The twolink manipulator has
two links with equal length. The kinematic, dynamic and electrical parameters for the twolink
manipulator were chosen from [50], where the experiment was carried out on a two-link IMI
manipulator. The dynamic and electrical parameters for the PUMA 560 and the twolink
manipulator can be found in the Tables 5-1, 5-2 respectively. Meanwhile, the kinematic model
for the PUMA 560 and the twolink manipulator can be found in Tables A-1, A-2, where the
model is represented using the Denavit Hartenberg convention. Furthermore, the methods to
obtain the reduced model set for identification can be found in Appendix A. The remainder
of this section is structured as follows. In subsection 5-1-1, the different perturbations on
the PUMA 560 and the twolink manipulator are discussed. Subsequently, Subsection 5-1-2
discusses the control structure of the robot that is incorporated in this thesis. In addition, it
ponders on the reasons to incorporate the particular control structure.
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Table 5-2: Dynamic and electrical parameters of the Twolink Manipulator

DOF Mass [kg] COM [m] I [kgm2] Jm Bm Tc G
1 1 [-0.5,0,0] diag([0,0,0]) 0.0002 0.0005 [0.1 -0.1] -20.61
2 1 [-0.5,0,0] diag([0,0,0]) 0.0002 0.00025 [0.05 -0.03] 20.82

Table 5-3: The definition of parameters used in Table 5-1 and 5-2

COM [m] Center Of Mass link with respect to link coordinate frame.
I [kgm2] Moment of Inertia with respect to link COM
Jm Motor Inertia
Bm Link Viscous Friction
Tc Link Coulomb Friction
G Gear Ratios

5-1-1 Noise Model

As discussed in Chapter 4, there are three major perturbations occurring in the manipulators
namely, measurement noise, motion noise, and systematic noise. Even-though the Fourier
series gives the property of analytical and frequency domain differentiation of the joint po-
sitions. The joint velocities and accelerations are obtained by numerical differentiation of
joint positions. By doing this, the measurement noise can be deliberately included into the
model. The joint position, velocity, and acceleration will be crucial in constructing the matrix
Wb, which is further utilized in trajectory optimization and least squares identification. The
error due to numerical differentiation of the joint position to obtain joint acceleration can be
visualized in Figure 5-2.

Peter Corke’s toolbox provides the end-users the possibility to set the frictional parameters
of the robots. Therefore, the motion noise can be introduced in these robots by including
the Coulomb and viscous friction. The friction parameters for the twolink and the PUMA560
manipulator are depicted in Tables 5-2 and 5-1 respectively. The frictional forces vary with
respect to the direction of motion. The - or + shows the negative and positive direction of
rotation of the manipulator. Apart from Coulomb and viscous friction, the aforementioned
manipulators exhibit stiction and Stribeck at low-velocity regions [80].

Peter Corke’s toolbox provides a linear inverse dynamics model for the two-link and the
PUMA 560 robot for control purposes. Furthermore, it gives the end-users two options for
choosing the IDM of the robot. One with compensation for viscous and Coulomb friction
(modeled as given in Equations (2-3), (2-5)) and other without compensation for viscous
and Coulomb friction (modeled as given in Equations (5-3), (5-4)) [80]. When the IDM
with viscous and Coulomb compensation, was used for controlling the PUMA 560 robot, the
measured joint position was unable to track the desired joint positions at zero PD gains as
depicted in Figure 5-3. This signifies that the parametric term modeled with Equations (2-3),
(2-5) have un-modeled dynamics. One of the un-modeled dynamics includes motor inertia
of the PUMA 560 and the two-link manipulator. In this way, the systematic error can be
implemented, for the upcoming experiments.
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Figure 5-2: Comparison of actual joint acceleration and joint acceleration obtained through
numerical differentiation of joint position for the 1st DOF PUMA 560 robot
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Figure 5-3: Tracking Performance of the PUMA 560 robot for 2nd DOF with the control scheme
depicted in Figure 1-1, where the PD gains are set to zero
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Table 5-4: Physical limits of the twolink manipulator (qi,max q̇i,max q̈i,max are the maximum joint
position, velocity, and acceleration)

Joint qi,max q̇i,max q̈i,max
1 1.5708 2 2
2 1.5708 2 2

5-1-2 Nonlinear Feed-Forward Controller

The nonlinear feed-forward controller has the control scheme similar to the one depicted in
Figure 1-1. It is found to be efficient in tracking high velocity trajectories with high accuracy
as compared to PID and PD + gravity controller. The controller does this by cancelling
the non-linearities in the robot dynamics [11]. On the other hand, the popular passivity
based controller cannot be implemented as the motor torques and motor positions are not
measurable in Peter Corke’s robotic toolbox. Therefore, non-linear feed-forward controller is
incorporated in this project. The control diagram is presented in Figure 1-1 and the control
equation pertaining to it, can be described as follows

u = M(qd)q̈d + C(qd, q̇d) +G(qd) +Kp(qd − qm) +Kd(q̇d − q̇m), (5-1)

where qd, q̇d, q̈d are the desired joint position, velocity and acceleration, qm, q̇m are the
measured joint position and velocity. Combining the rigid body dynamics from Chapter 4
(Equation (4-1)) with Equation (5-1), the closed error dynamics of the non-linear feedback
controller is given as

ë+M−1Kv ė+M−1Kpe = 0, (5-2)

where e = qd − q, ė = q̇d − q̇, ë = q̈d − q̈, Kp is the proportional gain and Kv is the derivative
gain. The feedback gains are chosen in such a way that the error Equation (5-2) is stable [65].

Like other controller, the mentioned control scheme has its own disadvantages. The control
structure is highly dependent on the inverse dynamics model of the manipulator. So, the robot
becomes unstable if the inertia matrix M(q), centrifugal matrix C(q, q̇) is imperfect. Even
though the uncertainties in the inverse dynamics model can be addressed by setting high gains.
The situation is not always applicable as some robots work under low compliant conditions
as pointed out in the Chapter 1. Therefore, the controller will be improved by adding an
extra feed-forward term to have less dependence on feed-back term and to compensate for the
imperfectness in the inverse dynamics model. The extra feed-forward term will be estimated
using GPR, which will be discussed in the upcoming sections.

5-2 Excitation Trajectory

As discussed in Chapter 3, the Fourier Series is used as the excitation trajectory for the
identification of rigid body dynamics and training the Gaussian process regression. The
number of Fourier terms N is taken to be 4 and 3 for the PUMA 560 and the twolink
manipulator respectively. The fundamental frequency for the Fourier series is set to 0.1 Hz
to get a period of excitation for 10s. With these settings, the excitation trajectory covers
a frequency range of [0.1 Hz - 0.4 Hz] for the PUMA 560 robot and [0.1 Hz - 0.3 Hz] for
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Table 5-5: Physical limits of the PUMA-560 robot (qi,max q̇i,max q̈i,max are the maximum joint
position, velocity, and acceleration)

Joint qi,max q̇i,max q̈i,max
1 2.79 5 6
2 3.92 5 6
3 0.78 5 6
4 2.96 5 6
5 1.74 5 6
6 4.64 5 6

the twolink manipulator. The maximum joint position, velocity and acceleration limits of
all the joints of the PUMA-560 and the twolink manipulator are depicted in the Tables 5-
5, 5-4. These tables will help in building up the constraints mentioned in Equations (3-7),
(3-8) and (3-9). The trajectory optimization is a nonlinear and a non-convex constrained
optimization problem, which can be solved by fmincon solver in MATLAB. Interior-point,
trust-reflective region, Sequential Quadratic Programming (SQP), SQP-legacy, and active set
are the methods provided by the fmincon solver to the end-users. For PUMA-560, there are
18 linear equality and nonlinear equality constraints and has 48 trajectory parameters to be
solved. Meanwhile, the twolink has 6 equality and nonlinear equality constraints and has 12
trajectory parameters. Therefore, the algorithm has to selected according to their ability to
solve the complex large-scale optimization problem.

SQP, SQP-legacy and active set algorithms are avoided as it would require longer execu-
tion time and significant amount of memory to store the matrices. On the other hand,
trust-reflective region can be used for large-scale optimization problem but it requires the
information of gradient. Unfortunately, the gradient information of the objective function is
not available. Therefore, the parameters ai,l and bi,l are obtained by solving the optimization
problem with the interior-point algorithm.

The parameters of the Fourier series obtained after optimizing the condition number of the
observation matrix (Wb) is depicted in the Tables C-1 and C-2. These estimated values are
used to generate the Fourier series. The generated trajectories for the PUMA 560 robot and
the two-link manipulator are depicted in the Figures 5-4 and 5-5 respectively. From Figures
5-4 and 5-5, it can be observed that trajectories obey the robot physical constraints specified
in Tables 5-5 and 5-4. Furthermore, the generated trajectories also obey the second set of
constraints (refer Equations (3-4), (3-5) and (3-6)) as the initial and final joint positions were
found to be zero.

5-3 Case 1 : Semi-parametric Gaussian Process Regression

To solve the problem statement depicted in Section 1-2, two cases were considered and mod-
eled in MATLAB. The first case is addressed in this section, where the two-link and the
PUMA 560 manipulator is compensated by an internal inverse dynamics model. But, the
internal IDM model failed to capture the noises depicted in Subsection 5-1-1. It is assumed
in this Section that the internal IDM of the robot represented in the Figure 1-1 is replace-
able. So with this assumption, the remainder of this section will be focusing on addressing
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Figure 5-4: Trajectory 1 - Desired excitation trajectory obtained for the PUMA-560 robot
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the first case. In addition, it compares and discusses different evaluation studies under this
setting. In Subsection 5-3-1, the first case is solved by learning the un-modeled dynamics
occurring in the PUMA 560 and the twolink manipulator through semi-parametric Gaussian
Process Rgression. In Subsection 5-3-2, the importance of exciting the friction parameters is
highlighted. Lastly, the Subsection 5-3-3 compares the semi-parametric models trained with
different excitation trajectory optimized with different optimization criterions for the PUMA
560 manipulator.

Table 5-6: Proportional and Derivative Gains for the PUMA-560 robot

Proportional Gain Derivative Gain
Identification diag(75,75,75,75,75,75) diag(0.32,0.32,0.32,0.32,0.32,0.32)

Testing diag(10,10,10,10,10,10) diag(0.2,0.2,0.2,0.2,0.2,0.2)

Table 5-7: Proportional and Derivative Gains for the twolink manipulator

Proportional Gain Derivative Gain
Identification diag(75,75) diag(0.32,0.32)

Testing diag(10,10) diag(0.2,0.2)

5-3-1 Identification

For identification, the IDM depicted in the Figure 1-1 is obtained from Peter Corke’s library.
The IDM provided by the Peter Corke’s is modeled as

τ(q, q̇, q̈) = W (q, q̇, q̈)χ, (5-3)

Where, χ =
[
Mi MXi MYi MZi XXi XYi XZi Y Yi Y Zi ZZi

]T
. (5-4)

The definitions of above parameters can be referred back to chapter 2 [80]. It can be inferred
from the Equations (5-3) and (5-4) that IDM provided by the Peter Corke’s fails to capture
friction and other noises presented in the Section 5-1-1. So, the PUMA 560 robot will fail
to track the desired trajectory under zero PD gains. Therefore, high proportional gains were
chosen to establish stable error dynamics. The obtained gain values are depicted in Tables
5-6 and 5-7. The adopted proportional and derivative gains were taken to be diagonal to
avoid the coupling effect from the feedback term. Therefore, the feedback for each DOF of
the robot is strictly independent of other joints. This prevents inaccuracies in one joint to
actively disturb the control action on other joints.

The identification experiment is carried out with the excitation trajectories depicted in Fig-
ures 5-4 and 5-5 for the corresponding manipulators. The trajectory was simulated for 100s
generating a data set with 6006 samples for the PUMA 560 robot and 2002 samples for
the twolink manipulator. After the identification experiment, the observation matrix is con-
structed with the measured joint position, velocity, and acceleration samples to get the least
squares estimates. The condition number of the observation matrix built with the measured
joint position, velocity and acceleration were found to be 52.47 and 8.78 for the PUMA 560
and the twolink manipulator respectively, which indicates the fact that the system is well
excited. After estimating the base parameters, the model is tested at very low gains to check
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Figure 5-6: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (LS) (LS - IDM) and the Peter Corke’s IDM under the training set for the
PUMA 560 robot
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Figure 5-7: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (LS) (LS - IDM) and the Peter Corke’s IDM under the test set for the PUMA
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the efficiency of the estimated RBD model. The estimated RBD model was successful in
capturing the inverse dynamics of the robot, viscous and the Coulomb friction. But, it fails
to capture the un-modeled dynamics like the motor inertia of each joint, Stribeck, stiction
and numerical noises arising due to differentiation of joint positions. Due to this, the perfect
cancellation of the robot model did not happen at low PD gains. This can be visualized
in Figures 5-6 and 5-8, where the robot has the problem in tracking the desired trajectory
only with the RBD model. Subsequently, the Gaussian Process Regression is incorporated to
capture the remaining noises that is not explained by the estimated RBD model.

First, a kernel function has to be chosen to do GPR. Since there is no specific thumb rule
to choose a kernel function, the squared exponential kernel is chosen. Subsequently, the
hyper-parameters of the squared exponential kernel is estimated by optimizing the marginal
log-likelihood. As a next step, the obtained RBD model is used as mean to do a semi-
parametric GPR. The GPR is trained with the error term (τ−Wb(qd, q̇d, q̈d)χ) and the desired
joint position, velocity and, acceleration. Since, it is assumed that it is possible to replace
the internal IDM of the robot, the internal IDM from the Peter Corke’s library is replaced
with the estimated RBD through least squares. Then, additional feed-forward signals from
Gaussian process model is given to the robot to compensate for the un-modeled dynamics
that cannot be explained by the estimated RBD model.

To validate the results, a different Fourier series is generated and tested for 10s. The data
samples were taken sufficiently different from the training data set to highlight the general-
ization ability of the GPR. After testing, the following could be inferred from the Figures 5-6,
5-7, 5-8, and 5-9.

• The estimated IDM is better than the Peter Corke’s IDM. It is due to the ability of
the estimated IDM to capture the viscous and Coulomb friction. The relative difference
between the estimated IDM and the Peter Corke’s IDM is high for the first three joints,
as the Coulomb and viscous friction are high for the first three joints as compared to
the rest (refer Table 5-1). This effect can be visualized in the Figures 5-6 and 5-7.

• The semi-parametric model tries to learn the error made by the estimated RBD model.
Since the perturbations on the fourth joint of the PUMA 560 manipulator is less, the
RMSE error of the estimated RBD and the semi-parametric model is equal. In this
case, the semi-parametric model relies more on the parametric term, .i.e., estimated
RBD model (refer Figures 5-6 and 5-7).

• The semi-parametric model outperforms the estimated RBD model and Peter Corke’s
IDM. This is due to the ability of the semi-parametric model to address all the noises
occurring in the PUMA 560 robot with its non-parametric term, i.e., Gaussian process
model. This effect can be visualized in Figures 5-6 and 5-7 for joints 1, 2, 3, 5 and 6 of
the PUMA 560 manipulator.

• The same aforementioned reasoning applies to the twolink manipulator as well. From
Figures 5-8, 5-9, it can be seen that the semi-parametric GPR has better tracking
performance than the estimated RBD model. This signifies the fact that the semi-
parametric model has efficiently captured the unknown non-linearities which cannot be
explained by the estimated RBD model.

Sathish Krishnamoorthi Master of Science Thesis



5-3 Case 1 : Semi-parametric Gaussian Process Regression 39

Training Trajectory

1 2

Degree of Freedom

0

0.05

0.1

0.15

0.2

0.25
R

M
S

E
 o

f 
J
o

in
 P

o
s
it
io

n
s

SGPR

RBD

Figure 5-8: Tracking performance of the semi-parametric model and the estimated RBD model
under the training set for the twolink manipulator
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Figure 5-9: Tracking performance of the semi-parametric model and the estimated RBD model
under the test set for the twolink manipulator
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• Generally, the semi-parametric model under the test set should work equally or worse
as compared to the semi-parametric model under the training set. From Figure 5-9
it can be seen that the relative difference between the estimated RBD model and the
semi-parametric model is more for the test set as compared to the relative difference
the estimated RBD model and the semi-parametric model under the training set. This
is because the given test trajectory was simple (refer Figures C-15 and C-16) and the
GPR model was able to generalize better. Unlike complex test trajectories given to
the PUMA 560 robot, it was done deliberately to test the performance of the semi-
parametric model under simple test trajectories for the twolink manipulator.

The similarity function used for both twolink and the PUMA 560 robot is a non-ARD Squared
exponential (KSEK) function and it is given as follows

KSEK(xi, xj |θ) = σ2
fexp

(
− 1

2
(xi − xj)T (xi − xj)

σ2
l

)
, (5-5)

where σf is the signal standard deviation, σl is the width of the kernel, xi and xj are the input
points, θ is the hyper-parameters that is needed to be estimated. The hyper-parameters of
the squared exponential kernel ((KSEK) are given as θ1 = log(σl), θ2 = log(σf ). The main
disadvantage of using this kernel type is that it assigns same weights for the length scales
(σl) for different features, i.e, joint positions, velocities and accelerations of different joints.
To overcome this, an Auto Relevance Determination Kernel is used. It is the special variant
of non-ARD kernel where the hyper-parameters are not considered same. The co-variance
function of this type is given below,

KARD(xi, xj |θ) = σ2
fexp

(
− 1

2

d∑
m=1

(xim − xjm)2

σ2
m

)
, (5-6)

where σf is the signal standard deviation, σm are the width of the kernel, KARD represent
the ARD - squared exponential kernel with the hyper-parameters θ1 = log(σm) with m =
1, 2, 3, . . . , d, θ2 = log(σf ). Unlike in Equation (5-5), the KARD considers different length
scales (σm) for the joint positions, velocities and accelerations for different joints.

The difference between the performance of the aforementioned kernels will be tested for the
twolink manipulator. The kernels differs by the number of hyper-parameters, which is 2 and
7 for the squared exponential and the ARD squared exponential kernel function respectively.
As discussed before, the hyper-parameters are obtained by maximizing the marginal log-
likelihood technique. Subsequently, the GPR is trained with the excitation trajectory different
from Figure 5-5 for the twolink manipulator with the two aforementioned kernels. After
training the GPR with two different kernels, the tracking performance was analyzed and the
RMSE of the semi-parametric model under training and validation data set were recorded in
Figures 5-10 and 5-11.

Generally, the over-fitting problem can occur, when training the GPR and while selecting the
hyper parameters. The later problem, i.e, over-fitting in model selection occurs when GPR
trains to memorize the training data set but fails to generalize the observed trend in the
training set. Due to this model memorization, the model fails to discover a general predictive
behaviour by consuming the noise in the data. In addition, over-fitting in model selection is
likely to be most severe when the sample of data is small and the number of hyper-parameters
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Figure 5-10: Comparison of tracking performance of the estimated RBD model and the semi-
parametric model trained with Squared Exponential Kernel (SEK) and ARD - SEK for the twolink
manipulator for the training trajectory, where the juxtaposition is given as Root Mean Square
Error of joint position for each DOF.
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Figure 5-11: Comparison of tracking performance of the estimated RBD and the semi-parametric
model trained with Squared Exponential Kernel (SEK) and ARD - SEK for the twolink manipulator
for the test trajectory, where the juxtaposition is given as Root Mean Square Error of joint position
for each DOF.

Master of Science Thesis Sathish Krishnamoorthi



42 Evaluations

to be tuned is relatively large [82]. Cawley suggest a method to detect over-fitting in model
selection. In that proposed method, the GPR is fitted with an Auto Relevance Determination
(ARD) kernal function and a non-ARD kernel function. It was found that ARD kernel fails
to perform better as compared to the non-ARD kernel for the validation set due to the
over-fitting in tuning the hyper-parameters.

From the Figures 5-10 and 5-11, it can be inferred that the performance of the GPR trained
with ARD squared exponential kernel has better performance as compared to the GPR trained
with squared exponential kernel. Therefore, according to Cawley there are no over-fitting in
model selection for the ARD squared exponential kernel for the two-link manipulator.

5-3-2 Importance of Excitation Trajectory

Accurate identification of a model requires the input to be persistently exciting
such that it excites all the parameters to be identified [9].

This section focuses to highlight the aforementioned fact. To do so, three different excitation
trajectories were generated.

• Trajectory 1 - It excites all the base parameters along with viscous and Coulomb friction
parameters of all the joints of PUMA-560 robot. The trajectory is generated as discussed
in Section 5-2 and it can be visualized in Figure 5-4.

• Trajectory 2 - It excites all the base parameters except viscous and Coulomb friction.
This is established by excluding the columns of viscous and Coulomb friction coefficients
in the observation matrix (Wb). The trajectory generated after optimizing the condition
number of matrixWb, excluding the columns of viscous and Coulomb friction is depicted
in Figure 5-12.

• Trajectory 3 - It is a combination of trajectory 2 and the trajectory depicted in Figure
5-14. Both trajectories does not excite viscous and Coulomb friction.

The trajectories discussed above is used to obtain three different semi-parametric models.
The procedure incorporated in this section to obtain the semi-parametric model is similar
to the one depicted in Subsection 5-3-1. The first two semi-parametric models are obtained
by using the Trajectory 1 and 2 with 6001 data samples of joint positions, velocities and,
accelerations for each trajectory. Whereas, the third semi-parametric model is obtained by
using the Trajectory 3 with 12002 data samples of joint positions, velocities and, accelerations.
Subsequently, a test trajectory is generated to test the tracking performance of the obtained
semi-parametric models. The test trajectory is chosen to excite the viscous and Coulomb
friction of all the joints. The comparison between the three different semi-parametric models
trained with three different trajectories under the test set can be visualized in the Figure 5-13
and the following inferences can be made,

• The semi-parametric model trained with a trajectory that has friction excitation has
better tracking performance as compared to the semi-parametric model trained with a
trajectory that has no friction excitation. This is because the semi-parametric model
uses the RBD model whenever it encounters an unseen data. But, the RBD model
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Figure 5-12: Trajectory 2 - Fourier series trajectory with no friction excitation generated for first
10s for the PUMA-560 robot

estimated from the LS approach failed to capture the correct viscous and Coulomb
friction coefficients as the trajectories 2 and 3 fails to excite those coefficients.

• Even though any un-modeled dynamics could be captured by the GPR. It is important
that the input/output data used for training the GPR should have sufficient informa-
tion. Since the Trajectory 2 and 3 failed to excite the Coulomb and viscous friction,
their corresponding semi-parametric model fails to predict the correct torque when it
encounters an unseen data. This due to the fact that the unseen data is the test tra-
jectory that excited the viscous and Coulomb friction coefficients. Therefore, it can be
concluded that the semi-parametric model will fail to capture the non-linearities if they
are not excited.

• Even though, the trajectory 3 has more data points. It can be seen from Figure 5-13
that, it is not better as compared to the semi-parametric model trained with Trajectory
1. Therefore, the betterment of the semi-parametric model does not lie in the number
of samples taken unless all the parameters are excited. The GPR generalizes better
only if the information is rich rather if it sees the same data again.

• The relative difference between the semi-parametric model trained with different trajec-
tories is high for the first three joints as compared to joint 4, 5 and, 6. This is because
the viscous and Coulomb friction is set high for the first three joints as compared to the
other joints (refer Table 5-1).
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Figure 5-13: Comparison of tracking performance of three different GPR trained with three
different training set forthe PUMA 560, where the juxtaposition is given as Root Mean Square
Error of joint position for each DOF.
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Figure 5-14: Trajectory with no friction excitation generated for the PUMA560 robot for 10s
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5-3-3 Comparison of Different Optimization Criterion

In this subsection, the performance of the semi-parametric model trained with different tra-
jectories is compared and examined. The procedure incorporated in this section to obtain
the semi-parametric model is similar to the one depicted in Subsection 5-3-1. However, it is
important to understand how these different trajectories were generated before analyzing the
comparison. The trajectories used for training the semi-parametric model were generated by
incorporating different optimization criteria. These criteria are briefly discussed below.

• Cond(Wfe) - The trajectory is optimized by minimizing the condition number of the
observation matrix Wb. The matrix Wb is built with the columns corresponding to the
base parameters and the columns of Coulomb and viscous friction of each link.

• Cond(Wnfe) - The trajectory is optimized by minimizing the condition number of the
observation matrix Wb by excluding the columns of Coulomb and viscous friction.

•
∑6
i=1 Cond(Wfe) - The observation matrixWb is built with the columns of base parame-

ters, viscous, and Coulomb friction corresponding to each link separately. Subsequently,
the condition number of observation matrix for each link is summed up and optimized.
The separation of base parameters and friction parameters of each link for PUMA 560
robot is given in Section A-1-1

•
∑6
i=1 Cond(Wnfe) - The observation matrixWb is built similarly as done for

∑6
i=1 Cond(Wfe).

But here, it does not take the columns of Coulomb and viscous friction of each link into
account.

The combination of trajectories generated using the aforementioned optimization criteria with
a High-frequency Fourier Series (HFS) signal, is used for training the semi-parametric model.
The HFS signal is a high acceleration Fourier wave generated for the PUMA 560 robot. The
maximum closed-loop bandwidth of the PUMA 560 robot with the control scheme depicted
in Figure 1-1 was found to be 5 Hz. Hence, the HFS signal was generated to cover the entire
bandwidth frequency. With these signals, eight different combinations were used, for training
the semi-parametric model as represented in Table 5-8.

Three different test sets are used to check the generalization ability of the obtained semi-
parametric models. The chosen test sets are completely different from each other and the
training set. The differences between the semi-parametric model trained with different tra-
jectories for the PUMA 560 robot, can be visualized in Figure 5-15. Figure 5-15 represents
the tracking performance of the PUMA 560 for joint 2, validated with one of the three test
trajectories. Furthermore, the mean of Root Mean Square Error (RMSE) for each joint for
three different test sets is calculated and reported in Table 5-8.

The following inference could be made from the Table 5-8:

• The semi-parametric model obtained after training with the Trajectory 5 has better
tracking performance as compared to the Trajectory 1. It is because the division of
the total observation matrix (Wb) into sub-regressors has led to better excitation and
a lower condition number. Consequently, a better RBD and a better Gaussian process
model are obtained.
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Figure 5-15: Tracking Performance of the semi-parametric model trained with different trajec-
tories for 2 DOF of the PUMA 560 robot.

Table 5-8: µi - Mean of RMSE of the semi-parametric model trained with 8 different trajectories
for the PUMA 560 robot, where i represents the joints of the robot.

S.no Trajectory µ1 µ2 µ3 µ4 µ5 µ6
∑
µi

1 Cond(Wfe) 0.16 0.46 0.35 0.203 0.236 0.082 1.491
2 Cond(Wnfe) 1.203 2.09 0.606 0.373 0.53 0.71 5.512
3 HFS + Cond(Wfe) 0.21 2.12 0.44 0.203 0.23 0.113 3.316
4 HFS + Cond(Wnfe) 0.183 0.386 0.353 0.22 0.243 0.099 1.4840
5

∑6
i=1 Cond(Wfe) 0.166 0.386 0.233 0.223 0.31 0.088 1.416

6
∑6
i=1 Cond(Wnfe) 1.053 1.94 0.51 0.29 0.43 0.503 4.726

7 HFS +
∑6
i=1 Cond(Wfe) 0.243 1.98 0.406 0.22 0.32 0.1066 3.275

8 HFS +
∑6
i=1 Cond(Wnfe) 0.2 0.33 0.35 0.22 0.323 0.17 1.593
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• The semi-parametric model trained with the Trajectory 2 and 6 fails miserably as the
most dominant viscous and Coulomb friction parameters were not excited. As depicted
in Subsection 5-3-2, the semi-parametric model will fail to capture the friction unless
the parameters are excited.

• Trajectory 4 and 8 performs better than Trajectory 2 and 6, even though the friction
parameters were not excited. This is due to the addition of extra HFS signal for the
identification of the semi-parametric model. The generated HFS signal has perfectly
excited all the noises present in the frequency range.

• Irrespective of the trajectories used, the mean of RMSE for joint 4, 5, 6 is approximately
equal for all the semi-parametric models. This is because the viscous and Coulomb
friction is sufficiently set high for the first three DOF (refer Table 5-1). The semi-
parametric model trained with trajectories 1, 4, 5 and 8 were successful in capturing
the Coulomb and viscous friction for the first three DOF as compared to the rest. Hence,
the relative difference could be seen for the first three joints.

• When the number of data points increases beyond a certain point, the GPR tends to
over-fit the data points and fails to observe the general trend. So, by including the
HFS signal along with the trajectory that has already excited the viscous and Coulomb
friction. The performance of the semi-parametric model trained with Trajectory 3 and
7 performs worse as compared to the semi-parametric model trained with Trajectory 1,
4, 5 and 8 due to over-fitting of data points.

5-4 Case 2 : Semi-parametric Gaussian Process Regression

Unlike the case 1 depicted in Section 5-3, the internal inverse dynamics model represented in
Figure 1-1 is inherently inaccurate for the second case. The internal IDM model also fails to
compensate for all the noises represented in Subsection 5-1-1 like the first case. Furthermore,
it is assumed in this section, that the internal IDM cannot be replaced or set to zero.

In this section, the case 2 is modeled, with the help of the twolink manipulator. To start with,
the inverse dynamics model of the twolink manipulator has four base parameters. With the
help of the Table 5-2 and the Steiner’s theorem, the values of these base parameters (χb) was
estimated to be [1.25,−0.5, 0, 0.5]T . As discussed before, the internal IDM is made inaccurate
by adding offset to the base parameters. Hence, the internal IDM used for identification and
control is given as follows,

τI-IDM = Wb(qd, q̇d, q̈d)


2.25
−1.5

1
1.5

 (5-7)

where τI-IDM is the torque due to Inaccurate-Inverse Dynamics Model (I-IDM). The internal
IDM represented in Equation 5-7, is not modeled with the linear coefficients of viscous and
Coulomb friction. So, it fails to capture the friction and other un-modeled dynamics occurring
in the two-link manipulator. Due to which, the two-link manipulator is unable to track the
desired trajectory properly under the low stiffness and damping conditions. This effect can be
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Figure 5-16: Tracking performance of the twolink manipulator for its 1st DOF compensated by
Inaccurate-Inverse Dynamics Model (I-IDM) under zero stiffness and damping conditions.
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Figure 5-17: Tracking performance of the twolink manipulator for its 2nd DOF compensated by
Inaccurate-Inverse Dynamics Model (I-IDM) under zero stiffness and damping conditions.
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visualized in the Figures 5-16 and 5-17. Since the twolink manipulator is not stable at low
feedback gains, the closed loop is made stable by increasing the proportional and derivative
gain, before carrying out the semi-parametric GPR. The obtained gain values are mentioned
in the Table 5-7. Like the previous section, the same excitation trajectory (Figure 5-5) was
incorporated, for the least squares identification and the GPR.

After recording the feedback torques for 100s, the RBD error model (Wbχerror) is identified
using the least squares approach. Then, it is used as mean to capture all the noises occurring
in the manipulator using the GPR. The GPR takes the desired joint position, velocity and
acceleration as input and the feedback error term (τPD −Wb(qd, q̇d, q̈d)χerror) as output. Like
before, the hyperparameters of the squared exponential kernel function are estimated using
the maximization of marginal log-likelihood. Subsequently, after training the GPR, the feed-
forward signals are given to the robot in the presence of incorrect internal IDM. These feed-
forward signals are combinations of torque signals from the RBD error model and the Gaussian
process model for a given joint position, velocity, and acceleration (refer Figure 4-1).

A trajectory different from the training set is chosen to test the generalization ability of the
obtained semi-parametric model. The performance of the two-link manipulator, compensated
by the internal IDM with the semi-parametric model and without the semi-parametric model,
is depicted in the Figures 5-18 and 5-19. Subsequently, the following inferences can be from
these figures:

• The Root Mean Square Error (RMSE) of the joint position for the two-link manipulator
compensated by the semi-parametric model is less as compared to the manipulator
compensated by the inaccurate internal inverse dynamics model. This is due to the
ability of the semi-parametric model to capture the model inaccuracies and un-modeled
dynamics occurring in the twolink manipulator.

• The internal IDM was inherently inaccurate and was not modeled to capture the vis-
cous and Coulomb friction. Since the test trajectory was chosen to excite the viscous
and Coulomb friction of the two-link manipulator, the relative differences between the
internal IDM and the semi-parametric model could be seen (refer Figure 5-19).
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Figure 5-18: Tracking performance of the semi-parametric model and the inaccurate IDM under
the training data set for the twolink manipulator.
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Figure 5-19: Tracking performance of the semi-parametric model and the the inaccurate IDM
under the test data set for the twolink manipulator.
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Chapter 6

Conclusion and Recommendations

The problem stated in Section 1-2 is tackled by considering two cases in this thesis. The
internal inverse dynamics model having correct base parameters was used for controlling the
robot for the first case. Whereas, the internal inverse dynamics model was made inherently
inaccurate by adding offset in the base parameters in the second case. But in both cases, the
internal IDM did not compensate for un-modeled dynamics occurring in the manipulator. So,
it demanded proper feed-forward torque signals to compensate for the noises occurring in the
manipulator. The thesis incorporated a semi-parametric Gaussian process regression to tackle
the two cases. First, the parametric term was identified using the least squares approach. The
parametric term was considered to be RBD model and RBD error model for the first case and
second case respectively. Later, the parametric term was used as mean to capture the non-
parametric term using the Gaussian Process Regression. The methods discussed in this thesis
towards solving the problem statement was implemented on the PUMA 560 and the two-link
manipulator in MATLAB. Furthermore, the thesis proposed a new excitation trajectory and
an optimization criterion and showed its efficiency in capturing the noises occurring in the
manipulator in Chapter 5. So, from the experiments carried out on the PUMA 560 and the
two link manipulator, the following conclusions were given in Section 6-1. Subsequently, in
Section 6-2, a few recommendations were given for future research work on this topic.

6-1 Conclusion

Industry 4.0 is a setup where the automation and computers come together in a completely
new way. The robots used in these industries are connected remotely to the computer systems
equipped with machine learning algorithms. These algorithms can learn and control the
robots with little input from human operators. Many manufacturing industries are trying
to transform themselves into industry 4.0. Since the robots in these industries work closely
with the human beings, the amount of safety and the robot’s efficiency to work under all
the conditions are of utmost importance. The thesis contributes to the research and the
development of collaborative robots using the machine learning algorithms. The main aim
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of the thesis is to improve the performance of the serial manipulator under low compliant
conditions. Under low stiffness and damping conditions, the robot is entirely compensated
by the inverse dynamics model. If the model is imperfect, the robot becomes unstable and
fails to perform better at low compliant conditions. To tackle this issue, an offline method
named semi-parametric Gaussian process regression was incorporated. The experiments were
carried out on the PUMA 560 manipulator and the two-link manipulator. With the obtained
simulation results, the following conclusions can be made,

Lowest Condition number leads to better excitation
Attaining lowest condition number for the matrix Wb during trajectory optimization will lead
to better excitation and better least squares estimates. The sensitivity of the least squares
approach for the RBD identification depends on the condition number of the observation ma-
trix (Wb). With this idea, the observation matrix was divided into sub-regressor for each joint
separately. By doing this, the obtained condition number was less as compared to minimizing
the condition number of the whole Wb matrix. Subsequently, the tracking performance of the
semi-parametric model was better. Subsection 5-3-3 clearly highlighted the above fact.

Using High Frequency Fourier series has lead to excitation of all the noises
Unknown dynamics cannot be modeled or added in theWb matrix for trajectory optimization.
So, sweeping the signal with sufficient amplitude over the entire frequency range will excite
all the noises. Hence, a high acceleration and high-frequency Fourier series were generated
to sweep the entire frequency range of the robot. The proposed high-frequency Fourier se-
ries proved to excite all the noise occurring in PUMA 560 robot and its efficiency could be
visualized in Figure 5-15 (refer Subsection 5-3-3).

In terms of modeling accuracy, the semi-parametric models outperforms RBD
model
The Semi-parametric model performs equally or better than the RBD model. It performs
equally with the RBD model when it encounters an unknown data. During this time, it uses
the information of the RBD model which was incorporated as mean. Meanwhile, the semi-
parametric model performs better than the RBD, when the GPR is able to recognize a new
query point. Since the semi-parametric model was able to capture the un-modeled dynamics
that cannot be explained by the RBD model, it outperforms the RBD model. This can be
visualized from the Figures 5-6, 5-7, 5-8, 5-9, 5-18 and 5-19 presented in the Sections 5-3 and
5-4.

In terms of learning speed, generalization capabilities and modeling accuracy, the
semi-parametric models outperforms standard GPR
Though, standard GPR was not tested and compared with the semi-parametric model in this
thesis. Intuitively, it can be reasoned that the semi-parametric model will outperform the
standard GPR. This is due to the fact the standard GPR requires a huge amount of data
to get trained accurately. The standard GPR fails when it sees a data from the unexplored
space. Whereas, the semi-parametric model incorporates the RBD model when it encounters
an unknown data. Since, the RBD model gives a unique relationship between the joint torques
and joint position, velocity and acceleration. The semi-parametric model will outperform the
standard GPR.

Estimating different weighting for the hyper-parameters through ARD kernel
outperforms non-ARD kernel
Unlike the non-ARD kernel, the hyper-parameters of the ARD kernel have different scaling
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for different inputs namely, the joint position, velocity, and acceleration. Due to this, the
tracking performance of the semi-parametric model trained with an ARD kernel was found to
be better than the semi-parametric model trained with a non-ARD kernel. If the above fact
is violated, then there is over-fitting in selecting the hyper parameters for the ARD kernel.

The semi-parametric model will not capture friction unless the excitation trajec-
tory excites them
The semi-parametric model trained with a trajectory that has friction excitation has better
tracking performance as compared to the semi-parametric model trained with a trajectory
that has no friction excitation. This is because the Gaussian Process model failed to capture
the non-linearities as they were not excited. Furthermore, the betterment of the GPR does
not lie in the number of samples taken unless all the parameters are excited, i.e., the input
should be rich enough.

6-2 Recommendations

The recommendations for future work on this topic is given as follows,

To Test the suggested methods on a real manipulator
The dynamics of hydraulic tubes, actuator, and cable drives are not modeled in the serial ma-
nipulators incorporated in this thesis. These errors occur prominently in a real manipulator.
It would be difficult and challenging to model all the aforementioned dynamics in simulation
as these modeling errors may vary from the errors witnessed on a real manipulator. But, the
proposed methods and concepts will not change when applied on a real manipulator.

Applicability of proposed methods for other control structures
The control structure assumed in this thesis is a PD + Inverse Dynamics Model controller for
the manipulator (Refer Figure 1-1). Some robot controllers do not use the inverse dynamics
model for control For e.g., a passivity-based controller. In this case, if the robot allows
the end-users to set the internal controller to zero, then applying the semi-parametric GPR
similar to the one applied in Section 5-3 will solve the issue. On the contrary, if the internal
controller cannot be set to zero, then improving the solution given in this thesis to meet all
control structures will be a future scope for improvement.

Extending the proposed method for time varying dynamics
The entire thesis focused on learning the robot dynamics under time-invariant conditions.
In some cases, the manipulator is used to pick and place of unknown objects, which may
cause instantaneous system changes. This kind of work has been addressed in [48] but the
optimally of the excitation trajectory was not considered during the identification process.
In addition, the idea of feedback learning with inaccurate inverse dynamics model using
semi-parametric approach was not incorporated. So, extending this thesis to time-variant
conditions and addressing the issue with the online semi-parametric GPR will be a future
scope for improvement.
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Appendix A

Dynamics Model Reduction

The dynamic model parameters can be reduced to base parameters by using analytical ap-
proach or by numerical approach as given in [11]. Numerical method for estimation of base
inertial parameters is based on QR decomposition. This approach is tedious and error prone.
Hence, it would be wise to take an analytical approach for dynamic model reduction, as it
is simple and straightforward. This section discusses about analytical approach in detail and
its steps to arrive at minimum base parameter set. In Section A-1, the rules for assigning
the frames for the robot structure is discussed. Then, Denavit Hartenberg (DH) table is
filled using the assigned frames for the PUMA 560 and twolink manipulator. Subsequently
in Subsection A-1-1, the minimum inertial parameters/base parameters are derived using the
DH table from the Section A-1. Section A-2 talks about the software named sympybotics,
which is used to obtain the columns of the observation matrix W .

A-1 Denavit Hartenberg

The robot kinematics and differential kinematics are required to calculate the dynamic model
of the robot manipulator. The robot kinematics can be assigned with the help of Denavit-
Hartenberg convention. To use this convention, the manipulator has to be assigned frames
for each joints. A serial manipulator has multiple joints where the links are assumed to be
rigid. The joints can be either prismatic or revolute. In this thesis, the joints of the PUMA
560 and the twolink manipulator were assumed to be rigid and revolute. For assigning the
frames for each joints, the following rules has to be obeyed as given in [11],

• z axis should be in the direction of joint axis

• x axis is perpendicular to both zi and zi−1. If no unique perpendicular could be found,
the x axis goes from zi−1 to zn direction

• y axis should follow Right hand rule

• xi axis must intersect the axis zi−1,
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where [xi yi zi] represent co-ordinates of each frame with i running from 1 to n. Subsequently,
the DH table can be filled using the co-ordinate frames from the Figure A-1. The DH
parameters for the PUMA 560 and the twolink manipulator are represented in Table A-1,
A-2 respectively. The definition of the parameters used in DH table can be referred to Table
A-3.

Figure A-1: Co-ordinate frame for a serial link structure [49]

Table A-1: Denavit Hartenberg Tabulation for the PUMA 560 robot
Link σi αi di θi ri
1 0 π/2 0 q1 0
2 0 0 0 q2 0.4318
3 0 −π/2 -0.15005 q3 0.0203
4 0 π/2 0.4318 q4 0
5 0 −π/2 0 q5 0
6 0 0 0 q6 0

Table A-2: Denavit Hartenberg Tabulation for the twolink manipulator
Link σi αi di θi ri
1 0 0 0 q1 1
2 0 0 0 q2 1

A-1-1 Regrouping of Dynamic Parameters

With the help of DH table from Subsection A-1, the dynamic model for the serial manipulator
can be reduced. The theorem from [11] is reported below, which can be used for obtaining
the base parameters.
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Table A-3: The definition of parameters used in Table A-1 and A-2

Notations

σi 0 if joint j is revolute and 1 if the joint is prismatic
αi Angle between Zj−1 and Zj about Xj−1
di Distance between Zj−1 and Zj about Xj−1
θi Angle between Xj−1 and Xj about Zj
ri Distance between Xj−1 and Xj about Zj

Table A-4: The definition of terms used in Section A-1-1

Notations[
MXRi MYRi MZRi

]
Three components of regrouped first
moment of inertia with respect to frame i[

XXRi XY Ri XZRi Y Y Ri Y ZRi ZZRi
]

Six components of the regrouped inertial tensor
with respect to frame i

If joint j is revolute, the parameters Y Yj, MZj and Mj can be grouped with the
parameters of link j and link j-1. the resulting grouped parameters are:

XXRj = XXj − Y Yj
XXRj−1 = XXj−1 + Y Yj + 2rjMZj + r2

jMj

XY Rj−1 = XYj−1 + djSαjMZj + djrjSαjMj

XZRj−1 = XZj−1 − djCαjMZj − djrjCαjMj

Y Y Rj−1 = Y Yj−1 + CCαjY Yj + 2rjCCαjMZj + (d2
j + r2

jCCαj)Mj

Y ZRj−1 = Y Zj−1 + CSαjY Yj + 2rjSSαjMZj + (d2
j + r2

jSSαj)Mj

MXRj−1 = MXj−1 + djMj

MYRj−1 = MYj−1 − SαjMZj − rjSαjMj

MZRj−1 = MZj−1 + CαjMZj + rjCαjMj

MRj−1 = Mj−1 +Mj

Using the above theorem, the dynamic model of the manipulator can be reduced. After
regrouping with the help of aforementioned equations, the number of parameters to be esti-
mated dropped from 60 to 48 for PUMA 560 robot and from 20 to 8 for twolink manipulator
(including the coefficients of viscous and Coulomb friction of each joints). The minimum
parameters set (χb) for the PUMA 60 robot is given as follows,

Joint 1:
Y Y1 + Y Y2 + ZZ3 − 0.3MY3 − 0.18M2 − 0.16M3 − 0.16M4 − 0.16M5 − 0.16M6
fv1
fc1
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Joint 2:
XX2 − Y Y2 + 0.18M2 + 0.18M3 + 0.18M4 + 0.18M5 + 0.18M6
XY2
XZ2 − 0.43MZ2 + 0.43MY3 − 0.06M3 − 0.06M4 − 0.06M5 − 0.06M6
Y Z2
ZZ2 − 0.18M2 − 0.18M3 − 0.18M4 − 0.18M5 − 0.18M6
MX2 + 0.43M2 + 0.43M3 + 0.43M4 + 0.43M5 + 0.43M6
MY2
fv2
fc2

Joint 3:
XY3 − 0.02MY3
XZ3
Y Y3 + ZZ4 + 0.86MY4 − 0.0004M3 + 0.18M4 + 0.18M5 + 0.18M6
Y Z3
MX3 + 0.02M3 + 0.02M4 + 0.02M5 + 0.2M6
MZ3 +MY4 + 0.43M4 + 0.43M5 + 0.43M6
fv3

Joint 4:
XX4 − ZZ4 + ZZ5
XY4
XZ4
Y Y4 + ZZ5
Y Z4
MX4
MZ4 −MY5
fv4
fc4

Joint 5:
XX5 − ZZ5 + Y Y6
XY5
XZ5
Y Y5 + Y Y6
Y Z5
MX5
MZ5 +MZ6
fv5
fc5

Joint 6:
XX6 − Y Y6
XY6
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XZ6
Y Z6
ZZ6
MX6
MY6
fv6
fc6

As stated in Section 2-1, Lagrange-Euler and Newton Euler are the standard approaches
for obtaining the matrix W which is a function of joint position, velocity and acceleration.
Moreover, the algorithm for obtaining the matrix W is quite complex and not practical to
derive for a 6 DOF robot by hand as stated in [14] [12]. To overcome this, an open source
software named Sympybotics is used to compute the observation matrix W . Later, the
observation matrix W is transformed to φb by considering only the columns corresponding to
the reduced parameter set (χb).

A-2 Sympybotics

Sympybotics is used for symbolic framework for modeling and identification of robot dynam-
ics. The software runs on a linux platform and requires Sympy and Numpy libraries before
installation. The ways to install could be found in the link described in the footnote 1. After
installing the software, open the terminal in linux and start the python installed in the com-
puter. The software takes the Denavit Hartenberg convention of the manipulator as input.
The code used for the generating the regressor matrix for PUMA 560 robot is given below.

1 import sympy
2 import numpy
3 import sympybotics
4 pi = sympy . pi
5 q = sympybotics . robotdef . q
6 puma560_def = sympybotics . RobotDef (’Puma 560 Robot’ ,
7 [ ( ’pi/2’ , 0 , 0 , ’q’ ) ,
8 ( 0 , 0 . 4318 , 0 , ’q’ ) ,
9 (’-pi/2’ ,’0.0203’ , ’0.15005’ , ’q’ ) ,

10 (’pi/2’ , 0 , 0 . 4318 , ’q’ ) ,
11 (’-pi/2’ , 0 , 0 , ’q’ ) ,
12 ( 0 , 0 , 0 , ’q’ ) ] ,
13 dh_convention=’standard’ )
14 puma560_def . gravityacc = sympy . Matrix ( [ 0 . 0 , 0 . 0 , −9.81])
15 puma560 = sympybotics . RobotDynCode ( puma560_def )
16 W_Regressor = sympybotics . robotcodegen . robot_code_to_func (
17 ’C’ , puma560 . H_code , ’H’ , ’H_puma560’ , puma560_def )
18 print ( W_Regressor )

After running the above code, the regressor matrix W will be generated in C format.

1https://github.com/cdsousa/SymPyBotics
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Appendix B

Gaussian Process Regression

Gaussian process regression is basically a non-parametric kernel-based method [69]. For a
given training set with unknown distributions x ∈ Rd and y ∈ R, the GPR model predicts a
response y∗ for a new input vector x∗. Generally, the Gaussian process does these predictions
by introducing latent variables, f(xi), i = 1, 2, ..., n, and explicit basis functions h. The
covariance function of the latent variables called the kernel function helps in capturing the
smoothness of the response and basis functions help in projecting the inputs x into a p-
dimensional feature space.

In general, Gaussian process is a collection of random variables with finite number of them
having a joint Gaussian distribution. “If f(x), x ∈ Rd is a GP, then given n observations
x1, x2, ..., xn, the joint distribution of the random variables f(x1), f(x2), ..., f(xn) is a Gaus-
sian” [69]. A Gaussian process can be represented as f(x) ∼ GP(m(x), k(xp, xq)) where the
covariance function k(xp, xq) = E[(f(xp) − m(xp))(f(xq) − m(xq))] and its mean function
m(x) = E[f(x)]. With this, a Gaussian process model can be given as

y = h(x)Tβ + f(x), (B-1)

where f(x) is a Gaussian process with zero mean and kernel function k(x, x′), h(x) is set of
basis functions that transform the original feature vector x in Rd into a new feature vector
h(x) in Rp. β is a p-by-1 vector of basis function coefficients. Since GPR is a non-parametric
probabilistic model, the posterior distribution of latent function f(x) for a given set of outputs
and inputs (p(f(X)|y) is obtained by using the Baye’s rule and it is given by the following
equations

Posterior = p(f(X)|y) = p(y|f(X))p(f(X))
p(y) , (B-2)

p(y|f,X) ∼ N (y|Hβ + f, σ2I), (B-3)
p(f(X)) = N (0,K(X,X)), (B-4)

p(y) =
∫
p(f(X))p(y|f(X))dX. (B-5)
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It can be inferred from Equation (B-2) that the posterior distribution is proportional to the
product of the prior (p(f(X))) and the likelihood (p(y|f(X)). Also, it is to be noted from
Equations (B-3) and (B-4) that prior and likelihood are Gaussian distributed, which makes
the posterior to be Gaussian distributed as well. The joint probability of the training data
set and the query point is defined to get the predictions f̄(x∗) for the new query point x∗ and
it is represented as follows[

y

f̄(x∗)

]
∼ GP

([
m(X)
m(x∗)

]
,

[
K(X,X) + σ2

nI k(X,x∗)
K(x∗, X) k(x∗, x∗)

])
, (B-6)

where K(X,X) is the covariance matrix built with the training data set as given in Equation
(B-9) and K(X,x∗) is the covariance calculated on the training set X and the new query
point x∗. Likewise, the mean predicted value f̄ and the variance V for every query point can
be predicted by conditioning the joint probability depicted in Equation (B-6). Consequently,
the obtained mean and variance is represented in Equation (B-7), (B-8).

f̄(x∗) = k(xT∗ , X)(K(X,X) + σ2
nI)−1(y −H(β)) (B-7)

V (x∗) = k(x∗, x∗)− k(xT∗ , X)(K(X,X) + σIn)−1k(X,x∗). (B-8)

K(X,X) =



k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . . . . .

. . . . . .

. . . . . .
k(xn, x1) k(xn, x2) . . . k(xn, xn)


(B-9)
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Appendix C

Observations

C-1 Amplitude Values of the Fourier Series

The amplitude values ai,l, bi,l of the Fourier series obtained after optimizing the criterion
the cond(Wb) for the PUMA 560 and the twolink manipulator is given in Table C-1, C-2
respectively.

Table C-1: Amplitude Values of Fourier Series obtained after optimization for the PUMA-560
robot

Variable Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
a1 0.88 1.20 0.0008 -0.28 -0.09 -1.44
a2 0.26 -0.13 0.0006 0.41 -0.026 0.19
a3 -0.54 0.41 0.066 -0.88 -0.86 0.26
a4 -0.76 0.21 0.11 -0.99 -0.22 -1
b1 -0.57 0.27 -0.63 0.24 0.75 0.091
b2 0.26 0.28 -0.30 -0.067 0.74 1.33
b3 0.23 -1.89 0.56 0.92 0.20 1.08
b4 0.11 -0.29 0.17 0.44 -0.44 -0.54

C-2 Case 1 : Correct IDM Model

The PUMA 560 and the twolink manipulator are compensated by a correct inverse dynam-
ics model. But, they fail to capture the noises occurring in the robot. A semi-parametric
Gaussian process regression was incorporated to capture the un-modeled dynamics and other
perturbations with obtained the RBDmodel as mean. Subsequently, the tracking performance
of the obtained semi-parametric model for the PUMA 560 and the twolink manipulator under
training and test set is plotted, which can be visualized from the Figures C-1, C-2, C-3, C-4,
C-5, C-6, C-7, C-8, C-9, C-10, C-11, C-12, C-13, C-14, C-15, and C-16.
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Table C-2: Amplitude Values of Fourier Series obtained after optimization for the two-link
manipulator

Variable Joint 1 Joint 2
a1 0.15 -0.25
a2 −2.80× 10−5 −6.59× 10−5

a3 -0.21 0.22
b1 8.96× 10−5 0.00021
b2 0.0648 0.029
b3 −5.04× 10−5 -0.00011

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

J
o

in
t 

P
o

s
it
io

n
 (

ra
d

/s
)

Tracking on PUMA-560 for 1st DOF

Desired

SGPR

RBD

Figure C-1: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the training set for the 1st DOF PUMA 560 robot
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Figure C-2: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the training set for the 2nd DOF PUMA 560 robot

Figure C-3: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the training set for the 3rd DOF PUMA 560 robot
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Figure C-4: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the training set for the 4th DOF PUMA 560 robot

Figure C-5: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the training set for the 5th DOF PUMA 560 robot
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Figure C-6: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the training set for the 6th DOF PUMA 560 robot
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Figure C-7: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the test set for the 1st DOF PUMA 560 robot
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Figure C-8: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the test set for the 2nd DOF PUMA 560 robot
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Figure C-9: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the test set for the 3rd DOF PUMA 560 robot
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Figure C-10: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the test set for the 4th DOF PUMA 560 robot
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Figure C-11: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the test set for the 5th DOF PUMA 560 robot
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Figure C-12: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the test set for the 6th DOF PUMA 560 robot
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Figure C-13: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the training set for the 1st DOF twolink robot
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Figure C-14: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the training set for the 2nd DOF twolink robot
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Figure C-15: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the test set for the 1st DOF twolink robot
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Figure C-16: Tracking performance of the semi-parametric model (SGPR), estimated RBD model
from Least Squares (RBD) under the test set for the 2nd DOF twolink robot

C-3 Case 2 : Incorrect RBD Model

The twolink manipulator is compensated by an incorrect inverse dynamics model. In ad-
dition, it failed to capture the noises occurring in the robot. To tackle the issue, first an
error model was identified using Least Squares approach to capture the model inaccuracies.
Later, the error model was used as mean to capture the remaining un-modeled dynamics
and other perturbations using GPR. Subsequently, the tracking performance of the obtained
semi-parametric model under training and test set is plotted, which can be visualized from
the Figures C-17, C-18, C-19 and C-20.
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Figure C-17: Tracking performance of the semi-parametric model (SGPR), inaccurate internal
IDM (RBD) under the training set for the 1st DOF twolink robot
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Figure C-18: Tracking performance of the semi-parametric model (SGPR), inaccurate internal
IDM (RBD) under the training set for the 2nd DOF twolink robot
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Figure C-19: Tracking performance of the semi-parametric model (SGPR), inaccurate internal
IDM (RBD) under the test set for the 1st DOF twolink robot
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Figure C-20: Tracking performance of the semi-parametric model (SGPR), inaccurate internal
IDM (RBD) under the test set for the 2nd DOF twolink robot
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Glossary

List of Acronyms

COBOT COllaborative industrial roBOT

RBD Rigid Body Dynamics

DH Denavit Hartenberg

SYMORO SYmbolic MOdeling of RObots

FS Fourier series

WLS Weighted Least Squares

EKF Extended Kalman Filter

MLE Maximum Likelihood Estimation

EKF Extended Kalman Filter

GPR Gaussian Process Regression

IDM-LS Inverse Dynamic Model - Least Squares

LWPR Locally Weighted Projection Regression

LGP Local Gaussian Process

List of Symbols

αi Angle between Zj−1 and Zj about Xj−1

χ Dynamic parameters
χb Reduced base parameter set
q̈i,max Maximum joint acceleration
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82 Glossary

q̇ Joint acceleration
q̇ Joint velocity
q̇i,max Maximum joint velocity
ε Unmodelled dynamics
ρ Error vector
σi Revolute or Prismatic joint
τ Joint torque
τf Joint friction torque
τi Joint inertial torque
θi Angle between Xj−1 and Xj about Zj
ζmax Maximum singular value
ζmin Minimum singular value
ai,l Amplitude of cosine function
bi,l Amplitude of sine function
C(q, q̇) Coriolis/Centrifugal matrix
di Distance between Zj−1 and Zj about Xj−1

E Kinetic energy
Fc Coulomb friction
Fv Viscous friction
g(q) Gravity vector
L Number of sine and cosine terms
Mi Link mass
n Number of degree of freedom
q Joint position
qi,max Maximum joint position
ri Distance between Xj−1 and Xj about Zj
U Potential energy
W Observation matrix
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Extended Kalman Filter, 20
Local Gaussian Process, 21
Locally Weighted Projection Regression, 21

ARD squared exponential kernel, 42

B-splines, 12

Collaborative Robotics, 1
Condition Number, 14

d-optimality, 14
Denavit Hartenberg Convention, 55
Dynamics Model Reduction, 55

Euler-Lagrange, 7

Fast Research Interface, 21
Fourier Series, 11

Gaussian process regression, 23

High-frequency Fourier Series, 45

Instrument Variable, 20

Squared exponential, 40
Sympybotics, 59

Trajectory Optimization, 13
Trajectory Parametrization, 13

Weighted Least Squares, 21
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