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Linné FLOW Centre, KTH Mechanics

Royal Institute of Technology
100 44 Stockholm, Sweden

pschlatt@mech.kth.se

Arne V. Johansson
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ABSTRACT
The objective is to investigate flow topology and re-

lated Reynolds-number scaling in the eigenframe of the
strain-rate tensor for wall-bounded turbulent flows. The
databases used in the current study are from direct numer-
ical simulations (DNS) of fully developed channel flow up
to friction Reynolds numberReτ ≈ 1500, and a spatially de-
veloping, zero-pressure-gradient turbulent boundary layer
up toReθ ≈ 4300 (Reτ ≈ 1400). It is found that for all cases
considered, the averaged flow patterns in the local strain-
rate eigenframe appear universal: large scale motions are
separated by a shear layer with a pair of vortices. Based on
Kolmogorov (η ,uη ), Taylor (lt ) and integral length scales,
Reynolds-number scalings of the averaged flow patterns, in-
cluding the thickness and strength of the shear layer, the
distance between the two vortical regions, and the veloc-
ity distribution along the most compressing and stretching
directions are considered. It is found that the Taylor scal-
ing of the profiles for the thickness of the shear layer seems
more suitable than the Kolmogorov scaling, and the inte-
gral scaling collapses well away from the shear layer, which
confirms that those patterns represent large scales. Gener-
ally speaking, the scaling profiles based on the Kolmogorov
length and velocity collapse well near the origin, but the
Taylor scaling seems best suited in a broader region.

1 Introduction
Turbulent flows are usually characterized by a broad

range of scales (the higher the Reynolds number, the
broader the range of scales), where large scales are flow
dependent, but small scales show some universal character-

istics. This universality has led to the development of turbu-
lence modeling like large-eddy simulation (LES). The aim
of the present work is to investigate the universality and its
related Reynolds-number scaling for different types of wall-
bounded turbulent flows.

Many studies have been done to discover and under-
stand the universal features of small-scale turbulent mo-
tions. Ashurstet al. (1987) simulated isotropic turbulence
and homogeneous shear flow with Reynolds numbers of
around 83 based on the Taylor microscale. It was found that
there was a preferential alignment of the vorticity vector
with the intermediate strain direction. They argued that the
alignment was a consequence of angular momentum con-
servation. Jiḿenez (1992) offered another explanation for
the alignment using a kinematic model and attributed it to
purely kinematic effects. Chonget al. (1990) proposed a
topology classification for three dimensional flow fields us-
ing tensor invariantsP, Q, R, in which four different regions
were categorized in theQ-R space. Blackburnet al. (1996)
studied fine-scale motions in turbulent channel flow and
confirmed the teardrop shape of joint probability-density
function (p.d.f.) ofQ-R and the alignment of the vortic-
ity vector and the intermediate eigenvector of the strain-rate
tensor. More recently, Elsinga & Marusic (2010) proposed
a method to extract average flow patterns in a local frame of
reference defined by the eigenvectors of the strain rate ten-
sor and applied the method to three turbulent flow cases: a
turbulent boundary layer, a turbulent channel flow, and ho-
mogeneous isotropic turbulence. It was found that for all
three cases the average pattern showed a shear layer struc-
ture separating two larger-scale, relatively uniform regions.

The Reynolds number has a great effect on turbulence
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motions, especially the size of the smallest scales. Tur-
bulent flows with a broad range of Reynolds numbers are
needed for a further study of the universality of small-scale
turbulence motions. The current work uses the averag-
ing scheme proposed by Elsinga & Marusic (2010) (with
slightly different local coordinate systems) in the strain-
rate eigenframe to investigate the universality of turbulent
boundary layer and channel flows with different Reynolds
numbers and the related Reynolds-number scalings. One
big difference between turbulent boundary layer and chan-
nel flows is that the former exhibit a large degree of inter-
mittency in the outer region (Corrsin & Kistler, 1955). This
study will be focused on the turbulence-dominated region.

2 Methodology
The strain-rate eigenframe of reference is chosen to

evaluate the flow field statistically, mainly because this
frame of reference is associated with some universal fea-
tures of small-scale turbulence like the preferential align-
ment between the vorticity vectorωωω and the intermediate
principal straining direction, and in addition, the invariants
of the velocity gradient tensor (Q,R) are also linked, in part,
to principal straining. The strain-rate tensor,SSSi j = 0.5∗
(∂ui/∂x j +∂u j/∂xi), has three eigenvalues (λ1 > λ2 > λ3)
and respective three eigenvectors (λλλ 1, λλλ 2, andλλλ 3), which
are orthogonal due to the symmetry ofSi j. For incompress-
ible flowsλ1 > 0 andλ3 < 0. λλλ 1 andλλλ 3 represent the most
stretching and compressing directions, respectively. The di-
rection ofωωω at different points in a flow field is different,
however, it is often aligned withλλλ 2, as shown by many
studies (e.g. Ashurstet al., 1987; Jiḿenez, 1992; Blackburn
et al., 1996; Elsinga & Marusic, 2010). If the flow field
around each point is mapped along the localλλλ 1, λλλ 2, λλλ 3 di-
rections, a local flow field is obtained as it is viewed from
an observer aligned with the local eigenframe. We may ex-
pect to see some common features associated with the local
strain field and it is interesting to investigate their statistical
structures both qualitatively and quantitatively.

Specifically, the point-wise statistics collecting method
in the local strain-rate eigenframe consists of the follow-
ing steps (see figure 1 for a 2D illustration): 1) Choose a
global measurement volume (G) in a turbulent region of a
flow field. 2) Computeλλλ 1, λλλ 2, andλλλ 3 of SSSi j at one point,
e.g. A. Typically theλλλ 3 direction is adjusted to maintain a
right-handed system, afterλλλ 2 andλλλ 1 are fixed (Note that
the principal straining axes do not have a positive direction
defined. Therefore one may define a positive direction, for
instance, based on the vorticity and thexxx-direction). λλλ 2 is
chosen to point to the positiveωωω, the same as Elsinga &
Marusic (2010). The different part is thatλλλ 1 is also made
aligned with the positivexxx direction (the dot product ofλλλ 1
andxxx is positive). 3) Create a uniform grid in the local coor-
dinate system originated atA with three principal directions
along λλλ 1, λλλ 2, andλλλ 3. 4) Map the global fluctuating ve-
locity field aroundA onto the local uniform grid to get the
local velocity field. 5) Apply steps 2–4 to all points in the
global volume (G) and average the obtained local velocity
fields over the local grid to get the averaged flow patterns.

3 Results and analysis
The databases used in the current study are from di-

rect numerical simulations (DNS) of fully developed chan-
nel flow with friction Reynolds numbers up toReτ ≈

Figure 1. 2D illustration of the global and local grids.
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Figure 2. p.d.f. of the angle betweenλ2 andω.

1500, and a spatially developing, zero-pressure-gradient
turbulent boundary layer with the Reynolds number up to
Reθ ≈ 4300 (Reτ ≈ 1400), based on the momentum thick-
nessθ and free-stream velocity (Schlatteret al., 2009;
Schlatter &Örlü, 2010). For comparison/scaling purpose,
the Reynolds numbers considered for the current cases
areReτ ≈ 550,1000,1500/550,1000,1350 for channel and
boundary layer flows respectively, and the global measure-
ment volume considered for both type of flows are around
0.3h (whereh is the half channel width for channel and the
boundary layer thicknessδ for boundary layer flows), well
in the outer region, more specifically, 0.3h for channel flow,
and 0.22-0.38δ for boundary layer, where turbulence dom-
inates and boundary layer intermittency is negligible.

An essential basis for the current averaging method is
the alignment ofλλλ 2 with ωωω. It is expected to see the align-
ment for the current turbulent flow cases. Figure 2 presents
the p.d.f. of the cosine of the angleθ betweenλλλ 2 andωωω
for channel flow (Reτ ≈ 550) in four different regions: vis-
cous sublayer, buffer layer, log layer, and wake region. It
can be seen that the profiles peak atθ = 0 for all regions.
The closer to the wall, the higher the peak values, and it
gets much higher in the viscous sublayer and buffer layer
regions, that is, the regions with high dissipation of turbu-
lent kinetic energy, due to the presence of the wall. Similar
results can be found for other Reynolds numbers and bound-
ary layers, and it is in good agreement with the results of
Blackburnet al. (1996).

Like the alignment, the averaged flow patterns in the
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local strain-rate eigenframe are similar for all cases. For
simplicity, only the results from channel flow atReτ ≈ 550
are shown here. Figure 3 presents the averaged fluctuating
velocity vector field in three different cross planes. Coordi-
nates are normalized using Kolmogorov scale. Two vortical
regions inside the shear layer can be seen in the vector field
plot on the planeλ2 = 0 (λ1-λ3 plane), as shown in figure
(a). The scaling of this structure will be discussed later in
this section. Figures(b) and(c) present the vector plots at
λ3 = 0 andλ1 = 0 planes, respectively. It is obvious to see
the stretching in theλλλ 111 direction and compression in theλλλ 3
direction. The vectors also indicate a weak stretching in the
λλλ 2 direction, which can also be seen in figure 3(d).

The flow topology can be classified into four differ-
ent quadrants in theQ-R plane (Chonget al., 1990; Black-
burnet al., 1996). The flow patterns in figure 3 mainly fall
into two categories: stable focus/stretching, and unstable
node/saddle/saddle. It is confirmed by the 2nd and 3rd in-
variants of the fluctuating velocity gradient tensorQ-R scat-
ter plots shown in figure 4. The green line is the zero-
discriminant lineD = 27/4R2 +Q3 = 0, which separates
the four quadrants together with theR = 0 line. The plot
reveals a preference for the 2nd and 4th quadrants, simi-
lar for all the current cases, which corresponds to stable
focus/stretching and unstable node/saddle/saddle structure
(Chonget al., 1990; Blackburnet al., 1996). The averaged
flow pattern in the local strain-rate eigenframe directly ex-
plains the preference of flow topologies.

The above discussions about the universality of the av-
eraged flow patterns are mainly conducted in a qualitative
way. A quantitative study is needed for further evaluating
the universality. The averaged flow field has patterns related
to flow topology and turbulence scales on which Reynolds
number has a significant effect. It will be interesting to in-
vestigate this effect which may shed some light on sub-grid
scale turbulence modeling LES.

Reynolds-number scalings of the universal flow pat-
terns for all cases are computed using the Kolmogorov

(lengthη and velocityuη ) and Taylor scales (lt =
√

u2/u2
x ,

where u is the streamwise fluctuating velocity andux =
∂u/∂x), and the integral scale (h). Since the local flow pat-
tern indicates a shear layer with two vortical regions, as in-
dicated in figure 3(a), the scalings will be focused on their
parameters, such as the thickness and strength of the shear
layer, the distance between the two vortical regions, veloc-
ity distributions in the most compressing and stretching di-
rections, which will be discussed below.

The thickness and strength of the shear layer are deter-
mined from the profiles of tangential velocities in the vector
field at theλ2 = 0 plane, that is, along line II in figure 3(a)
with its origin located atλ3 = 0. The related Reynolds-
number scalings using Kolmogorov length/velocity scales,
Taylor scale are plotted in figures 5, 6, and 7. It can be seen
that the profiles for all the current cases collapse quite well
very near the origin for both scalings, but the Taylor scaling
seems to perform slightly better away from the origin. They
reach their peaks at the same locationλ3 ≈ 6η or 0.28lt ,
which gives the thickness of the shear layer of around 17η
or 0.79lt (note that the line is inclined at a 45 degree angle).
The Kolmogorov velocity scaling indicates a good collapse
of the profiles with a peak velocity around 3.5uη , shown
in figure 7. The shear layers share a universal thickness
and strength for both turbulent channel and boundary layer
flows. The quantitative universality extends up to about 1
Taylor scales, after which the profiles start to deviate. In
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Figure 3. Averaged fluctuating velocity field(a,b,c) and
3D streamlines (d) in the local strain-rate eigenframe for
channel flow atReτ ≈ 550. η is Kolmogorov length scale.
Lines I, II, III, and IV in (a) are used for scalings below.
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Figure 4. Q-R scatter plots for channel flow atReτ ≈ 550
in the local strain-rate eigenframe.QW is the 2nd invariant
of the rotation-rate tensor.
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Figure 5. Scaling of the shear layer using Kolmogorov
length scale, whereu is on the line II in figure 3(a) and
tangential to the shear layer,umax is the maximum velocity,
the same for figures 6 and 7.
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Figure 6. Scaling of shear layer using Taylor scale (lt ).

particular the tail is seen to increase with Reynolds number
consistent with the largest scales increasing in size when
expressed in Taylor length scales. Moreover, the tail seems
flow dependent, as expected for the largest scales. The
largest scales are further confirmed by the good collapse of
the integral scaling profiles in figure 8.

The distance between the two vortical regions can be
obtained through the profiles of perpendicular velocities in
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Figure 7. Scaling of shear layer, using Kolmogorov
scales.uη is the Kolmogorov velocity scale.
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Figure 8. Scaling of shear layer, using integral length
scale (h is the half channel width/boundary layer thickness).
urms is root-mean-square of the streamwise velocity.

the vector field at theλ2 = 0 plane, i.e., line IV in figure
3(a). The scaling profiles are shown in figures 9, 10, and
11. The peak and zero values of the velocities represent the
centre and edge of the vortical regions. It is indicated that
the edge location isλ3 ≈ 5η or 0.21lt with an edge velocity
around 0.6uη , and the centre of the vortical regionλ3 ≈ 14η
or 0.58lt . This gives a distance of around 39η or 1.64lt be-
tween the cores of two vortical regions for all cases, which
is similar to the spacing of 1.7lt given by Elsinga & Marusic
(2010). The scaling profiles based on the Taylor scale seem
to have a slightly better collapse between the cores of two
vortices, while both scalings work well between two edges.

The scaling of the velocity distribution in the most
compressing (λλλ 3) and stretching (λλλ 1) directions (lines III
and I in figure 3, respectively) are displayed in figures 12,
13, 14 and 15, 16, 17 respectively. On the one hand, the
Kolmogorov scaling gives a nice collapse before reaching
the peak location at around 14η , as indicated in figures 12
and 15. On the other hand, the Taylor scaling seems to give
a very good collapse in a broader region away from the ori-
gin in bothλλλ 333 andλλλ 111 directions, shown in figures 13 and
16. The Kolmogorov velocity seems to be a suitable scale
for stretching and compressing velocities, as indicated in
figures 14 and 17 . It is interesting to see that the maximum
velocity in theλλλ 3 direction is slightly higher than the one
in the λλλ 1 direction, which may provide an explanation for
the weak stretching in theλλλ 2 direction.

It can be seen from the above discussions that the ob-
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Figure 9. Scaling of the velocityu45 on the line IV in fig-
ure 3(a) using Kolmogorov length scale, whereu45 means
that the velocity is 45 degree inclined to theλλλ 3 direction,
that is, perpendicular to the shear layer, the same for figures
10 and 11.
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Figure 10. Scaling of the velocityu45 using Taylor scale.
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Figure 11. Scaling of the velocityu45 using Kolmogorov
length and velocity scales.

tained shear-layer like structure scales on not only Taylor
and Kolmogorov scales, but also the integral length scale,
which indicates that the structure represents both small and
large scales of turbulence. Kolmogorov scaling performs
well near the origin, where viscosity seems important, and
Taylor scale appears to have a good collapse in a broader re-
gion, while integral length scaling of the shear layer works
well further away from the origin, i.e. outside the shear
layer. The structure of the shear layer with a thickness of
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Figure 12. Scaling of the velocityu3 on the line III in fig-
ure 3(a) using Kolmogorov length scale, where,u3 means
the velocity in theλλλ 3 direction, that is, the most compress-
ing direction, the same for figures 13 and 14.
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Figure 13. Scaling of the velocityu3 using Taylor scale.
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Figure 14. Scaling of the velocityu3 using Kolmogorov
length and velocity scales.

around 17η or 0.79lt (two aligned vortices with a spacing
of 1.64lt ) separating large scale motions appears universal.

4 Summary
The universality of small-scale turbulence motions in

channel and boundary layer flows at different Reynolds
numbers and related Reynolds-number scaling has been
considered. The friction Reynolds numbers for the
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Figure 15. Scaling of the velocityu1 on the line I in fig-
ure 3(a) using Kolmogorov length scale, where,u1 means
the velocity in theλλλ 1 direction, that is, the most stretching
direction, the same for figures 16 and 17.
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Figure 16. Scaling of the velocityu1 using Taylor scale.
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Figure 17. Scaling of the velocityu1 using Kolmogorov
length and velocity scales.

DNS databases areReτ ≈ 550,1000,1500 for channel and
550,1000,1350 for boundary layer. There is a preferential
alignment between the vorticity vector and the intermediate
straining direction for turbulent flows. The methodology is
to map a global flow field around/near a point (in a chosen
global measurement volume) onto its local coordinate de-

fined by the eigenvectors of the strain-rate tensor, to obtain
a local flow field, and then average the obtained local flow
fields for all points in the global volume to get statistically
averaged flow patterns around a point.

The alignment between the vorticity vector and the in-
termediate strain-rate eigenvector was evaluated in the vis-
cous sublayer, buffer layer, log layer, and wake region. It is
found from the p.d.f. of the angle between the two vectors
that they are well aligned in all regions and the closer to
the wall, the closer the alignment, which indicates that the
presence of the wall significantly enhances the alignment.

The average flow patterns in the local coordinate ap-
pear universal across the wall-bounded flows considered
here. It features a shear layer (with two aligned vortices)
separating large scale motions which was confirmed by the
integral length scaling. It also indicates the preference of
2nd and 4th quadrants for the flow topologies in theQ-R
plane, which is also confirmed by theQ-R scatter plots.
Since the Reynolds number has a great effect on turbu-
lence scales, a Reynolds-number scaling using Taylor and
Kolmogorov length scales, as well as the integral length
scale is needed, which can also further quantify its uni-
versality. It was found that the Taylor scaling of the pro-
files for the thickness of the shear layer seems more suit-
able than the Kolmogorov scaling, while integral length
scaling works well away from the shear layer. Generally
speaking, for turbulent channel and boundary layer flows at
different Reynolds numbers, the features of the local aver-
aged flow field, such as the thickness of the shear layer, the
edge/centre location of the vortex, and the velocity distribu-
tion along the most compressing and stretching directions
scale well with the Kolmogorov length and velocity scales
close to the origin while the Taylor scale appears best suited
in a broader region.

REFERENCES
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson,

C. H. 1987 Alignment of vorticity and scalar gradient
with strain rate in simulated Navier-Stokes turbulence.
Phys. Fluids 30, 2343–2353.

Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996
Topology of fine-scale motions in turbulent channel flow.
J. Fluid Mech 310, 269–292.

Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A gen-
eral classification of three-dimensional flow fields.Phys.
Fluids A 2, 765–777.

Corrsin, S. & Kistler, A. L. 1955 The free-stream bound-
aries of turbulent flows.Tech. Rep. TR-1244. NACA.

Elsinga, G. E. & Marusic, I. 2010 Universal aspects of
small-scale motions in turbulence.J. Fluid Mech 662,
514–539.
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