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Bayesian Networks for identifying incorrect probabilistic

intuitions in a climate trend uncertainty quantification context

Abstract

Probabilistic thinking can often be unintuitive. This is the case even for simple

problems, let alone the more complex ones arising in climate modelling, where dis-

parate information sources need to be combined. The physical models, the natural

variability of systems, the measurement errors and their dependence upon the ob-

servational period length should be modelled together in order to understand the

intricacies of the underlying processes. We use Bayesian networks (BNs) to connect

all the above mentioned pieces in a climate trend uncertainty quantification frame-

work. Inference in such models allows us to observe some seemingly nonsensical

outcomes. We argue that they must be pondered rather than discarded until we

understand how they arise. We would like to stress that the main focus of this pa-

per is the use of BNs in complex probabilistic settings rather than the application

itself.

1 Introduction

Probabilistic thinking is not always as intuitive as one would like, but it is the only

proper way to avoid pitfalls and misconceptions, and to extract useful information

from conflicting signals in the data. Many interesting phenomena may occur when

classical statistical intuition plays tricks on the thought process. Some of these

are: negative learning, concordant disagreement, discordant agreement, shifting

consensus and obsolescence (Cooke and Wielicki 2016a).

Negative learning contradicts the familiar paradigm that new observations al-

ways increase our confidence, and welcomes the idea that an unexpected piece of in-

formation can sometimes increase the uncertainty. In a multivariate normal setting

the conditional variance is always less than or equal to the unconditional variance,

but this is rather atypical. Under a more complex error model unexpectedly high

results may influence the prior enough to increase variance.
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Concordant disagreement happens when disagreement decreases uncertainty,

rather than increasing it, contradicting the intuition that when conflicting results

occur, one must be right, and the other must be wrong. Rather than discarding

one of the measurements, they can be combined in a probabilistic model acknowl-

edging that conditional on conflicting results, we expect the errors to be negatively

correlated.

Discordant agreement contradicts the intuition that different measurements of

same system, returning the same values, should yield the same conclusions. This

is not necessarily the case when the variance affects the mean, causing difference

between more and less accurate measurements, even when they return the same

value.

It is hard to imagine what combining concordant measurements will result in,

apart from strengthening confidence in the common result. Shifting consensus

happens when by combining the measurements their joint variance decreases, and

that allows the posterior mean to drop.

A natural question that emerges in various engineering settings is if it is worth-

while retaining older systems once better systems have become available. Older

measuring systems may be considered obsolete once new, improved ones become

available. However it sometimes turns out that the older systems can still provide

useful information, when used in conjunction with the new systems.

This paper will only touch on three of these phenomena, i.e. negative learning,

discordant agreement and obsolescence, and it will do so using a climate change

application. The focus of this paper in not the application itself, but the probabilis-

tic modelling tools which allow us to tackle the above mentioned misconceptions.

These tools are Bayesian networks (BNs). BNs are probabilistic graphical models

which allow for rigorous multivariate uncertainty modelling, while providing a rel-

atively simple visualization of the complicated relationships among the variables.

This last feature makes them great tools for communicating future risks and their

implications. We use a particular type of BNs, namely Non-Parametric Bayesian

Networks (NPBNs) to help us understand where some of the disagreements on this

topic are coming from, and how to use these disagreements to advance science.
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The remainder of the paper is organized as follows: Section 2 describes the

climate trend application, its modelled and measured variables, and it reveals how

various sources of uncertainty in climate trends materialize in the dependence re-

lationships among these variables. Section 3 provides background on NPBNs in

general, and it discusses the NPBNs built for this application. The analysis ad-

dressing emerging challenges in understanding the complex probabilistic system is

contained in Section 4. We draw conclusions in Section 5.

2 Climate trend modelling

The adverse effects of climate change are recognised by scientists all over the world.

Environmental and social changes are constantly being observed and future changes

depend on climate policies and emission paths. The decision making context we

are interested in here is one where a switch is required from a current to a reduced

emissions path. We switch to a reduced emission path when a trigger variable

exceeds a threshold value with requisite confidence. The benefits of such a switch

depend on the natural variability of the modelled processes and the uncertainty of

measuring instruments. An enhanced measuring system might reduce uncertainty

and lead to better predictions. However, given the different sources of uncertainty

and the complexity of the problem, a value of information analysis is required to

quantify the true benefits of the new observing system relative to the existing one.

Such analysis is undertaken in Cooke et al. (2014) and Cooke et al. (2016). For the

analysis undertaken here we consider three variables, two of which are measurable:

the decadal rate of global temperature rise (DTR) and the decadal percentage

change in cloud radiative forcing (CRF). DTR and CRF can be measured with

different measurement systems which will differ in the technology used, hence they

will have different measurement errors.

An enhanced measuring system that uses better calibration of existing sys-

tems to observe trends is the Climate Absolute Radiance and Refractivity Obser-

vatory (CLARREO) system1. CLARREO is set to launch no earlier than 2020.

1https://clarreo.larc.nasa.gov/
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This may be contrasted with existing systems: for global temperature rise, these

are weather satellite infrared spectrometers IASI (EUMETSAT instrument), AIRS

(NASA instrument), and CrIS (NOAA instrument), abbreviated as IAC. They look

at about 1/3 of the Earth’s emitted infrared radiation where CO2 and H2O absorb

radiation in varying levels. For CRF, the existing system is the Clouds and the

Earth Radiant Energy Systems (CERES) system, a broadband radiation budget

instrument. It measures the total reflected solar energy as a single value, and the

total emitted thermal infrared energy as a second value.

Along with the measured values for DTR and CRF, their theoretical values may

be calculated using deterministic models. These theoretical values are determined

by Equilibrium Climate Sensitivity (ECS). ECS is defined as the equilibrium change

in global surface air temperature as a response to doubled CO2. One such determin-

istc model is the Dynamic Integrated model of Climate and the Economy (DICE)

assessment model (Nordhaus and Sztorc 2013), certified by the Inter-Agency Work-

ing Group on the Social Cost of Carbon IWG SCC (2013).

Putting all of the above together (variables of interest, their modelled versions

and their measured versions) results in a model involving seven variables: ECS, the

theoretical DTR, the theoretical CRF, two measured DTR (IAC and CLARREO),

and two measured CRF (CERES and CLARREO). Despite the DICE model being

deterministic these variables are nonetheless uncertain. Different sources of uncer-

tainty have been identified to account for the climate trend uncertainty; a list of

key examples, as well as relevant references can be found in Cooke et al. (2014) and

Cooke et al. (2016). An important source of uncertainty is introduced by the natu-

ral variability, denoted by σ2var, which is mainly driven by oceanic and atmospheric

dynamics of the climate systems, along with solar variability. Degrading calibration

of satellite instruments over time yields additional uncertainties, denoted by σ2cal.

Finally, we consider σ2orbit, the satellite orbit sampling uncertainty. Following Leroy

et al. (2008) and Wielicki et al. (2013), the total uncertainty in a decadal trend

δm can be decomposed as:

(δm)2 =
12

(∆t)3
(
σ2varτvar + σ2calτcal + σ2orbitτorbit

)
, (1)
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where ∆t is the observation period length (in years) and τvar is the autocorrelation

characteristic time length of natural variability, accounting for the dependencies

between successive measurements. Similarly, τcal and τorbit denote the characteristic

time lengths of calibration and satellite orbit uncertainty. Note that δm decreases at

a rate proportional to (∆t)−3/2. The decomposition from equation (1) can be used

in general for any climate variable of interest, and the units will be determined

by the choice of the variable. A derivation of equation (1) can be found in the

Supplementary Online Material of Cooke et al. (2014). It suffices here to say

that the variance decomposition for linear models is the basis of the uncertainty

representation in equation (1).

Using the σ2var and σ2cal from equation 1, we can describe the uncertainty of

the variables by adding noise to their deterministic values obtained from the DICE

model. The relationship between these variables can be depicted in a graphical

form which reflects the flow of influence between them. The chosen graphical rep-

resentation is shown in Figure 1.

Figure 1: Graphical representation of the joint distribution of the variables
of interest.

The functional relationships (modelled with DICE) between ECS and DTR, and

between ECS and CRF are augmented with uncertainty by adding noise which

describes the natural variability (see the upper half of Figure 1). Instrument error

affects the DTR and CRF variables, and these errors are modelled as additive noise

to obtain the DTR and CRF as measured by the current observational system, and

by the enhanced system (see the lower half of Figure 1).
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3 Bayesian Networks for climate modelling

The graphical model presented above can be thought of as a Bayesian network

(BN)(Pearl 1988). A BN consists of a directed acyclic graph (DAG) and a set of

conditional distributions. The DAG alone is sometimes called the qualitative part

of the BN and the set of conditional distributions is considered to be the quanti-

tative part of such models. Each node in the graph represents a random variable

and the arcs represent direct potential dependence2 relationships. The absence of

arcs guarantees a set of conditional independencies. The direct predecessors of a

node are called parents, and the direct successor are children. A marginal distri-

bution is specified for each node with no parents, and a conditional distribution is

associated with each child node. The (conditional) distributions serve as the quan-

titative information about the strength of the dependencies between the variables

involved. The graph with the conditional independence statements encoded by it,

together with the (conditional) distributions, represent the joint distribution over

the random variables represented as nodes in the graph. BNs whose nodes represent

discrete random variables are called discrete BNs. These models specify marginal

distributions for the nodes with no parents, and conditional probability tables for

child nodes. However, many domains require reasoning about the behaviour of a

mixture of discrete and continuous variables. These domains are often called hy-

brid domains. Hence, BNs involving both discrete and continuous variables are

called hybrid BNs. Purely continuous BNs are often assumed to represent a fully

parametric joint distribution (e.g. multivariate normal). This assumption is often

too restrictive and it can be relaxed by allowing for the factorisation of the joint

distribution into marginals and dependence.

In this research we use BNs to tackle the difficulties of integrating disparate in-

formation sources in an ECS estimation problem. Because all the variables involved

in our analysis are measured on a continuous scale, we chose to work with a Non -

Parametric Bayesian Network (NPBN). NPBNs (Hanea et al. 2015) associate nodes

with random variables for which no parametric marginal distribution assumption is

made and arcs with one-parameter conditional copulae (?), parameterized by rank

2The strength of such relationship becomes apparent only through quantification.
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correlations.

3.1 Non - Parametric Bayesian Networks

NPBNs concepts were proposed in Kurowicka and Cooke (2004) and extended and

refined in Hanea et al. (2006) and Hanea et al. (2010). NPBNs construct the joint

distribution of a set of variables represented as a DAG by coupling marginal distri-

butions of all variables with the dependence structure constructed from bivariate

pieces of dependence.

NPBNs associate nodes with random variables for which no parametric marginal

distribution assumption is necessary, and arcs with one-parameter conditional cop-

ulae (?), parameterised by Spearman’s rank correlations. The (conditional) copulae

are assigned to the arcs of the NPBN according to a protocol that depends on a

(non-unique) ordering of the parent nodes. The conditional copulae, together with

the one-dimensional marginal distributions and the conditional independence state-

ments implied by the graph uniquely determine the joint distribution, and every

such specification is consistent (Hanea et al. 2015).

The marginal distributions can be obtained from data or experts (Cooke 1991).

Even though the empirical marginal distributions are used in most cases, paramet-

ric forms can be also fitted. The (conditional) copulae used in this method are

parametrised by constant (conditional) rank correlations that can be calculated

from data or elicited from experts (Morales et al. 2008). The conditional rank

correlations need not (in general) be constant. Nevertheless they are usually as-

sumed constant for convenience. Each parent-child influence is associated with a

(conditional) rank correlation. For each child with more than one parent, the set

of respective parents can be ordered in a non-unique way. When experts partic-

ipate in building the structure of the NPBN they can agree upon an ordering of

the parents that corresponds to their decreasing strength of influence on the child.

Otherwise, the order of the parents can be driven by the availability of data. The

rank correlation assigned to the arc between the child and its first parent (in the

chosen ordering) is an unconditional one. The rack correlation between the child

and its second parent is conditional on the first parent in the ordering; the rank
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correlation between the child and the third parent is conditional on the first two

parents, and so on.

The rank correlation has a number of attractive properties, among which: it

measures monotone dependence, rather than just linear dependence, and it is in-

dependent of the marginal distributions.

We employ the NPBN software called Uninet. Uninet was designed by the

Department of Applied Mathematics of the Delft University of Technology and

licensed by LightTwist Software. A free version is available for academic users at

http://www.lighttwist.net/wp/. Initially developed for the Dutch Ministry of Trans-

port, Uninet was designed for mixed (discrete and continuous) multivariate distri-

butions in very high dimensions (Ale et al. 2009). Uninet uses the normal copula

to realise the rank correlations which quantify the arcs. This allows for extremely

fast exact inference. The reasons for this along with some properties of the normal

copulae and the partial and conditional correlations are outlined in the Appendix.

3.2 Quantification of the NPBN

The starting point for the BN modelling and analysis in this paper is the graph

from Figure 1, which represents the DAG of a NPBN. It consists of seven nodes

representing continuous random variables and six arcs. To quantify this model

we need seven continuous distributions, and six rank correlations. No variable has

more that one parent, and as a consequence, there is no conditional rank correlation

needed for this model.

The variable of interest is ECS. Its probability distribution has been derived in

Roe and Baker (2007), truncated for an increased consistency with IWG SCC 2013

(Cooke and Wielicki 2016b), and presented below:

ECS =
1.2

1− f
, where f ∼ N(0.62, 0.192). (2)

The ECS distribution exhibits a right long tail that suggests higher probabilities for

high and very high temperature changes rather than for small or no temperature

change. It is easy to sample from the ECS distribution (using equation 2), and then
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to obtain the corresponding true CRF and the true DTR values, using the DICE

model. Then natural variability noise is added to each of the possible true trend

values (using σ2var from equation 1). These form the empirical distributions of the

variables DTR and CRF when the natural variability is taken into account.

Instrument error is added to the CRF and DTR values already perturbed by

natural variability, to obtain the empirical distributions of the measured quantities.

The σ ’s used for the measurement errors are the ones corresponding to the noise

contribution from calibration and orbit sampling. The values of these parameters

that have been used in this and previous analyses are taken from Table 2 of Cooke

et al. (2014), for CLARREO and IAC global temperature trend uncertainty, and

from Table 5 of Cooke and Wielicki (2016b), for the variance decomposition for

CLARREO and CERES. They are reproduced below, in Table 1, for completeness.

Table 1: Natural variability and observation uncertainties for CRF and DTR

CRF DTR
CLARREO CERES CLARREO IAC

σvar 0.6 0.6 0.08 0.08
τvar 0.8 0.8 1.5 2.3
σcal 0.15 1 0.03 0.18
τcal 10 10 5 5
σorbit 0.21 0.006 0.019 0.012
τorbit 1 1 1 1

The dependence structure of the seven dimensional distribution is determined by

the rank correlations corresponding to the arcs of the NPBN, and the choice of

the copula, which in this case, is the normal copula. The next step in quantifying

the model is to assign rank correlations to the arcs of the NPBN. The normal cop-

ula inherits many of the normal distribution properties, including the relationship

between the rank and the product moment correlation given by Pearson’s transfor-

mation (see Appendix). The time dependent standard deviations may be used to

compute product moment correlations in the following manner: assume we observe

the random variable X with random noise ξ, with X and ξ independent (which

is how we modelled the natural variability and the instrument errors). Then the

product moment correlation of X and Z = X + ξ is given by:
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ρX,Z =
σX√
σ2X + σ2ξ

. (3)

These product moment correlations can be then transformed to the rank correla-

tions needed to quantify the arcs of the NPBN. A different approach is an empirical

one: since we have the empirical bivariate margins of ECS and DTR, ECS and CRF,

and all modelled and measured versions of DTR and CRF, the empirical rank cor-

relations are calculated from the corresponding sampled bivariate distributions. It

is worth mentioning that instead of calculating the rank correlation between the

CRF disturbed by natural variability and ECS, we calculate the rank correlation

between the CRF disturbed by natural variability and the true CRF. Theoretically,

these two rank correlations are equal since the true CRF and ECS have a monotonic

relationship and rank correlations are invariant under monotone transformations of

the margins.

There is no correlation between the uncertainties of the CERES and IAC in-

struments. There is almost no common technology, and their calibration issues are

very different3.

Assuming CLARREO launch in 2020, the system can be observed for a large

number of years after that. We can build several models which reflect the situation

in 2030, 2050, etc. The qualitative part of these models (the graphs) will stay

the same, but the quantification will change, and these changes will be reflected

in the dependence coefficients rather than in the marginal distributions. Inferring

decadal trends over a shorter period of time (e.g. 10 as opposed to 30 years)

results in higher contributions from natural variability and measurement noise (see

equation 1). This will be reflected in lower correlations. In time, less variability and

less measurement noise are translated into larger correlations between the variables

3The enhanced measuring system for CRF employs a reflected solar spectrometer with a large 2D
detector array (512 by 512 detectors) that uses scans of the sun, moon, and nearby deep space to do
calibration and SI traceability. It shares no types of components with the IR spectrometer, uses a 2-
axis gimbal to point the entire instrument so that the exact same optics path is used for solar, lunar,
and earth viewing observations. The enhanced measuring system for temperature is an interferometer
that uses deep cavity blackbodies (0.9998 emissivity where 1.0 is perfect), 3 different temperature phase
change cells to calibrate temperature of the blackbody to SI standards, a blackbody emissivity monitor,
and varies its blackbody temperatures for calibration from 200K to 320K. The physics of how such
instruments would change in orbit has no common element, even the electronics of these instruments are
very different.
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in the NPBN models.

Figure 2 shows two NPBNs. The NPBN from the left (right) hand side reflects

the situation after ten (30) years of observing decadal trends that follow the launch

of the enhanced measuring system in 2020. In both models the nodes are now

depicted as the empirical marginal distributions of the variables, together with the

expected values and the standard deviations (presented at the bottom of each of

the nodes). The rank correlations associated with the arcs of the model on the

left hand side are substantially lower than the ones associated with the arcs of the

model on the right hand side.

Figure 2: NPBN after 10 years (left) and after 30 years (right) of observing
decadal trends that follow the CLARREO launch in 2020.

Instead of considering separate slices of time as different NPBNs as above, we

can include the time dimension into one temporal NPBN which is usually called

a Dynamic NPBN (DNPBN). A DNPBN has extra arcs which correspond to the

dependence between time frames. This allows variables to be connected with (de-

pendent on) themselves at earlier stages in time. For the DNPBN in this paper

we consider only the variable DTR with its two corresponding measuring systems

(IAC and CLARREO), for which we include three time steps from 2030, 2050,

and 2070. The choice of excluding CRF is made for clarity of presentation, rather

than a methodological restriction. Adding explicit dependence (arcs) between the

different temporal versions of DTR induces dependence between the corresponding

measuring systems.

The new (temporal) dependencies represented as new arcs in the DNPBN need

to be quantified using conditional rank correlations, since each DTR node except
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DTR30 has now two parents instead of one (as in the static version of the models).

For example the node DTR50 has ECS and DTR30 as parents. The arc between

ECS and DTR50 is quantified by the (unconditional) rank correlation used in the

static model, whereas the arc between DTR30 and DTR50 is quantified by the

conditional rank correlations of the two variables given the first parent (i.e. ECS).

This conditional rank correlation is calculated using the unconditional correlations

of each pair of the three variables mentioned above in addition to the formula

connecting rank and the product moment correlation, the relationship between

the partial and conditional product moment correlations (under the normal copula

assumption),and finally a recursive formula to calculate partial correlations (see

the Appendix for the exact formulae). The unconditional rank correlation between

DTR30 and DTR50 is calculated empirically through simulations of the bivariate

marginal distribution of DTR30 and DTR50.

Figure 3: Dynamic NPBN with only DTR and three periods of observa-
tions.

Figure 3 shows the DNPBN used further in this analysis. The marginal distribu-

tions of the nodes remain unchanged when compared with the static models. Some

of the rank correlations are the same as the ones in Figure 2, and the remaining

are calculated as explained above. Some of the numbers shown on the arcs cor-

respond to conditional rank correlations, which explains their very small (almost

zero) values.
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4 Unintuitive results or incorrect intuitions?

Having built and quantified the models for our example application, we shall now

investigate some of the probabilistic phenomena described in the introduction of

this paper. The joint distributions represented by the NPBNs discussed in the pre-

vious sections clearly depart from joint normality, given that some of the univariate

margins (shown in the histograms) are not normal. Most of our probabilistic in-

tuitions are based on the behaviour of the joint normal distribution. Updating a

joint distribution when new information becomes available equates to conditioning

the joint distribution. Conditioning a non normal joint distribution may generate

surprising results.

4.1 Negative learning

Negative learning happens when an unexpected piece of information increases the

uncertainty. Inferring decadal trends on the basis of 10 years of data bears the full

brunt of natural variability, as reflected in the low correlations showed on the left

hand side of in Figure 2. In contrast, the right hand side of Figure 2 shows the state

of play in 2050, after 30 years of observations. The increased correlations reflect

the greater certainty in long term trends acquired after 30 years of observation.

We start with the model from the right hand side of Figure 2 (and repeated on

the left hand side of Figure 4 for clarity) and perform inference (conditionalizing)

assuming a high (higher than expected) value of DTR was observed when using

the old measurement system. The right hand side of Figure 4 shows the results

of such a measured value (0.5). Note that the mean value for ECS has risen to

5.83, and uncertainty (standard deviation) for ECS has increased from 1.73 to 2.09.

The conditional distributions are now shown in black and the grey histograms

represent the unconditional margins, provided for comparison. The unexpectedly

high measured value caused the mean value and also the uncertainty in ECS to

rise. This of course is impossible under the simple normal error model. Notice that

the distributions of ECS and decadal temperature rise are far from normal, so a

standard normal model is inappropriate.
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Figure 4: NPBN after 30 years of observing decadal trends that follow the
launch of CLARREO in 2020.

Intuitively, noisy measurements and large uncertainties are the playground for neg-

ative learning, which represent a reason for quantifying the full breadth of un-

certainty in our models. If our measurements are independent of the quantity of

interest (described by zero correlation), then the measurement has no effect, i.e.

the conditional distribution of the quantity of interest post observation is the same

as pre-observation. On the other hand, if the measurement has a very small error,

which is described by a correlation close to one, then the measurement eliminates

almost all uncertainty in the quantity of interest. Whatever the measured value,

the conditional variance of the quantity of interest will be nearly zero. Between

these extremes there are cases, depending on the unconditional distributions, where

an extreme measurement can drag away part, but not most of the probability mass,

causing higher conditional variance. In this example, negative learning is more dif-

ficult in 2050 than it is in 2030, and all but impossible in 2080.

We study now the effects of negative learning using the DNPBN in Figure 3.

Negative learning diminishes when observations are accumulated in time. The

diminishing process is faster when the new measuring system is used instead of

the current one. Figure 5 shows the conditional standard deviation of the climate

sensitivity when every 5 years we observe extreme values of the DTR. The solid line

corresponds to the current (IAC) system and the dashed line corresponds to the

new (CLARREO) measuring system. To obtain this picture, another DPBN model

(presented in the Appendix), similar to the one in Figure 3, was built, quantified

and conditionalised. For this DNPBN, 11 time steps were considered, every 5 years

15



starting with 2030.

Figure 5: Conditional standard deviation of ECS given extreme values of
DTR for the current (IAC) and enhanced (CL) measuring system.

Given the complexity of the problem, the simplifications made by the models and

the intricacies of the uncertainties, it is tempting to think that slightly different

correlations may not lead to the negative learning phenomenon observed above.

The fact that this phenomenon is difficult to observe in 2050, and impossible in

2080 is another incentive for a sensitivity analysis that verifies this conjecture. The

dependence between the variables of these models (as measured by the rank corre-

lations) changes with time. The links become stronger. When several concurrent

changes of the rank correlation values (within the same model) of order 10−1 are

made, and the same inferences are performed, negative learning is still observed.

How much should the weakest correlation change for the negative learning to

subside? We will use the NPBN from the left hand side of Figure 2 to further

explore how the magnitude of the rank correlation between DTR and DTR IAC

can influence negative learning. The figure below illustrates this behaviour.

Note that when the correlation achieves a value of almost 0.63, the conditional

variance of the climate sensitivity starts to decrease, i.e. the uncertainty decreases

when new information is assimilated into the system. It is interesting to notice

that in the 2050 model, the correlation between DTR and DTR IAC is 0.62. How-

ever, negative learning is still observed in this model due to all the other changed

parameters (see Figure 4).
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Figure 6: Conditional variance of climate sensitivity (ECS) given a high
value of DTR IAC for various rank correlations between DTR and DTR IAC.

4.2 Discordant agreement

Let us now investigate different measurements of the same system, returning the

same values. Intuition dictates that such measurements should yield the same

conclusions. We consider the NPBN from the left hand side of Figure 4, represent-

ing the year 2050, 30 years after CLARREO was launched. Assume temperature

is observed to have a very small value, 0.15, and this observation is consistent be-

tween the two measurement systems. Conditioning the model on DTR IAC = 0.15

changes the distribution of ECS as in Figure 7a. Both the expectation and the stan-

dard deviation decrease considerably. However, the decrease is even more dramatic

if the same value of DTR is observed using the new measurement system. The

conditional distribution of ECS given DTR CLARREO =0.15 is shown in Figure

7b. Not only the values of the mean and the standard deviation change, but the

shape of the distribution changes as well.

Big differences are also observed when looking at the conditional distribution

of ECS given an extreme (this time large) value of CRF, as measured by the two

different systems.This is shown in Figures 7c and 7d. An increase of both the mean

and the standard deviation of the ECS are expected. However, what is not expected

is such a discrepancy between conditioning on the current system (4.13± 1.9) and

the new system (8.02± 1.38). The conditional expectation of ECS almost doubles

when the same value for CRF is observed using CLARREO.
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(a) DTR IAC = 0.15 (b) DTR CL = 0.15 (c) CRF CERES = 1 (d) CRF CL = 1

Figure 7: Conditional distribution of ECS given the same observations,
measured on different measurement systems, using the static NPBN model
from 2050.

Using the DNPBN from Figure 3 to investigate the same phenomenon, we condition

on the DTR value used above, 0.15, first in the IAC system, in all of the three time

steps, i.e. DTR IAC30 = DTR IAC50 = DTR IAC70 = 0.15. The conditional dis-

tribution of ECS given the 3 conditioned variables is presented in Figure 8a. When

conditioning on DTR CLARREO30 = DTR CLARREO50 = DTR CLARREO70

= 0.15 the conditional distribution of ECS changes by what may seem as little.

This new conditional distribution is shown in Figure 8b. The expected value of

the ECS’s conditional distribution when the current measurement system is used

is larger than the 99th quantile of the conditional distribution obtained when using

the new system.

(a) DTR IAC = 0.15 (b) DTR CL = 0.15

Figure 8: Conditional distribution of ECS given the same observations,
measured on different measurement systems, using the DNPBN model.

In the cases investigated above, the same measurements generate quite different

conclusions. The different uncertainties in the measurements’ errors affect the mean

in ways different than those the simple error model trained our intuitions with.

4.3 Obsolescence in time

Would maintaining older measuring systems still be useful even after better systems

have become available? One can argue that the older systems can still provide useful

information, if not on their own, at least when used in conjunction with the new
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systems.

Let us assume that in the 2050 (static) model measurements conducted with the

existing systems for DTR and CRF found measured values equal to expected values.

Such measurements would yield ECS = 3.33± 1.27. Conditioning the CLARREO

measured DTR and CRF at their expected values yields ECS = 3.18± 0.51. This

is a substantial uncertainty reduction relative to the existing systems. However,

the latter values would scarcely change if the older noisier systems also returned

their expected values (ECS = 3.17± 0.5). In this case the older system adds little

to the knowledge gained by the newer system.

If, along with conditioning the enhanced systems measurements on their ex-

pected value, we also condition the older systems measurements to be extreme,

that is DTR IAC = 0.5 and CRF CERES = 2, we would find ECS = 3.5± 0.59

(see Figure 9). Apparently the older systems can influence our results, even after

the introduction of the much more accurate enhanced EOS systems. However their

contribution to the knowledge about ECS depends on the actual measured values.

While older systems may indeed be uninformative if everything happens as we ex-

pect, they can add value when things do not turn out as we expect; categorical

judgements cannot be sustained. This conclusion would not be anticipated on the

basis of the simple normal error model.

Figure 9: Conditioning the enhanced measuring system variables at their
expected values followed by conditioning the current measuring systems’
variables at their expected values in the static 2050 model.

Given the two measuring systems for global temperature rise in our DNPBN model,

we are now interested in investigating the obsolescence phenomenon within the
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DNPBN. Expectedly, when conditioning in time on expected values on both sys-

tems, the current one becomes obsolete. Nonetheless, when the new measuring

system is conditioned on the expected value of their measurements and the current

IAC system on the extreme 0.5 value, then the conditional distribution of ECS is

different than the one obtained by only conditioning on the new measuring system

on its expected values. Figures 10 and 11 provide this comparison.

Figure 10: DNPBN when conditioning on the expected values for CLARREO
measurements at every time step.

Figure 11: DNPBN when conditioning on the expected values for CLARREO
measurements and the 0.5 value for the IAC measurements, at every time step.

The ECS conditional distributions showed in Figures 10 and 11 have different pa-

20



rameters and quite different shapes. Hence, they are found to be different when

performing a two-sample Kolmogorov-Smirnov goodness-of-fit hypothesis test. The

two conditional distributions are plotted on top of one another in form of his-

tograms. Figure 12 allows us to observe their differences better.

Figure 12: Conditional ECS – approximated densities.

5 Conclusions

Understanding complex probabilistic models under the climate change paradigm

unveils great challenges. The drawbacks of classical modes of reasoning based on

simple statistical models, are highlighted by our analysis. New observations do

not always reduce uncertainty and older measuring systems may sometimes supply

useful information. Independent errors are always the easiest choice, but correlated

errors are more realistic. They can easily be modelled using NPBNs. Moreover, the

dynamic nature of the models presented here can be incorporated into DNPBNs.

Observing unintuitive effects of a more sophisticated approach should not be used

as a reason for avoiding a more rigorous, realistic model.

We used BNs to investigate and support our claims. BNs with variables tak-

ing continuous one dimensional marginal distributions and rank correlations lend

themselves for representing inferences from noisy data. BNs effortlessly perform

operations of computing conditional distributions that would be extremely oner-

ous analytically. The type of BNs used in this research, the NPBNs have easily
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handled models with over a thousand variables (Hanea et al. 2015). Furthermore,

DNPBNs model temporal influences, which acknowledge the dynamical nature of

the problem.
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Appendix

The first part of the appendix will collate a number of definitions and concepts

that may prove useful. All of them are necessary for establishing the probabilistic

background of the NPBN framework, and can be found in Kurowicka and Cooke

(2006) together with the original references.

Definition 1. The copula of two continuous random variables X and Y is the joint

distribution of FX(X) and FY (Y ), where FX , FY are the cumulative distribution

functions of X, Y respectively. The copula of (X,Y ) is a distribution on [0, 1]2 = I2

with uniform marginal distributions.

An overview of copulae can be found in Joe (1997) and Nelsen (1999). Here, we

only give the definition of the normal copula, which is the only copula used in the

analysis from this paper. The normal copula is a one parameter copula.

Definition 2 (Normal copula). If Φρ is the bivariate normal cumulative distribu-

tion function with product moment correlation ρ and Φ−1 the inverse of the standard

univariate normal distribution function then, the normal copula is defined as:

Cρ(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)
, (u, v) ∈ I2.

The joint normal distribution may be described by having normal marginal distri-

butions and a normal copula. This means that any continuous non-normal joint

distribution with its dependence realised by a normal copula could be transformed

to a join normal distribution by simply transforming the margins to normals.

One parameter copulae in general may be parametrised by the rank correlation,

which is different than the linear (product moment) correlation ρ. For the normal
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copula the relationship between the product moment correlation (ρ) and the rank

correlation (r), is given by the Pearson’s transformation.

Proposition 1. Let (X,Y ) be a random vector with the joint normal distribution,

then:

ρ(X,Y ) = 2 sin(π6 · r(X,Y )).

The normal copula inherits many properties from the joint normal distribution,

amongst which the fact that the partial correlations are equal to the conditional

correlations. Partial correlations can be defined in terms of partial regression coef-

ficients. Let us consider variables Xi with zero mean and standard deviations σi,

i = 1, ..., n. Let the numbers b12;3,...,n,...,b1n;2,...,n−1 minimise:

E
(

(X1 − b12;3,...,nX2 − ...− b1n;2,...,n−1Xn)2
)

.

Definition 3. The partial correlation of X1 and X2 based on X3,..., Xn is:

ρ12;3,...,n = sgn(b12;3,...,n)(b12;3,...,nb21;3,...,n)
1
2 .

Equivalently we could define the partial correlation as:

ρ12;3,...,n = − C12√
C11C22

,

where Cij denotes the (i, j)th cofactor of the correlation matrix.

The partial correlation ρ12;3,...,n can be interpreted as the correlation between the

orthogonal projections of X1 and X2 on the plane orthogonal to the space spanned

by X3,...,Xn.

Partial correlations can be computed from correlations with the following recursive

formula:

ρ12;3,...,n =
ρ12;4,...,n − ρ13;4,...,n · ρ23;4,...,n

((1− ρ213;4,...,n) · (1− ρ223;4,...,n))
1
2

.
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In the last part of this appendix we will show the DNPBN used to obtain Figure 5.

Figure 13: DNPBN with 11 time steps, every 5 years starting with 2030.
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