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SUMMARY

Data transmission is ubiquitous in all walks of life, ranging from basic home and of-
fice appliances like compact disc players and hard disk drives to deep space communica-
tion. More often than not, the communication and storage channels are noisy, and data
might be distorted during transmission. However, noise is not the only disturbance dur-
ing the data transmission, and information can sometimes be seriously distorted by the
phenomena of unknown channel gain or offset (drift) mismatch. The conventional mini-
mum Euclidean distance based detection, where the receiver picks a codeword from the
codebook to minimize the Euclidean distance with the received word, has a poor per-
formance under the gain and/or offset mismatch. Recently, a Pearson distance based
detection was introduced, which is immune to unknown offset and/or gain mismatch,
but the drawback is that it is pretty sensitive to errors caused by the noise.

This thesis investigates possible coding techniques to improve decoders’ performance
in noisy channel conditions while maintaining the resistance against the gain and/or off-
set mismatch. The results discussed in the thesis are divided into four parts, based on
different assumptions on the gain and/or offset mismatch. We describe each of the parts
in further detail below.

We start with a fundamental model, where the offset mismatch is constant within
a codeword length. A method called maximum likelihood (ML) decoding outputs the
codeword that has the highest likelihood to the received word. Firstly, an ML decoding
criterion is derived when assuming bounded distributions for both noise and offset mis-
match. Most importantly, we investigate, for the proposed decoder, under which condi-
tions zero word error rate performance can be achieved. Moreover, assuming Gaussian
distributions for both noise and offset mismatch, we show that an ML decoding criterion
is, in fact, to minimize a weighted average of Euclidean distance and Pearson distance.
Based on this, we propose a concatenated scheme and its corresponding decoding algo-
rithm. The concatenation is between a Reed-Solomon (RS) code and a certain coset of a
block code (Coset). To maintain the immunity to offset mismatch, decoding on the inner
Coset code is based on the Pearson distance while decoding the outer RS code adapts an
efficient two-stage decoding algorithm. The proposed scheme achieves significant cod-
ing gain while it is simultaneously immune to offset mismatch.

Next, we look at a different model of the offset mismatch, where the offset mismatch
is a signal dependent parameter. The signal dependency of the offset signifies that it
may differ for distinct signal levels. We investigate an ML decoding criterion, assuming
uniform distributions for both the noise and the signal dependent offset. In particular,
for the proposed ML decoder, specific constraints on the standard deviations of the noise
and the offset can lead to a zero error performance. Later, we derive an ML decoding
criterion for signals suffering from Gaussian noise and signal dependent offset. Besides
the ML criterion itself, an option to reduce the complexity is also considered. A brief
performance analysis demonstrates the superiority of the newly developed ML decoder
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over classical decoders based on the Euclidean or Pearson distances.
We then direct our attention to a channel model in which the retrieved data is cor-

rupted by Gaussian noise, gain, and offset mismatch. The intervals from which the gain
and offset values are taken are known, but no further assumptions on their distributions
are made. We derive a general framework of ML decoding criteria for such channels
based on finding a codeword with the closest Euclidean distance to a specified set de-
fined by the received vector and the gain and offset parameters. In addition, we give
a geometric interpretation of the proposed ML criteria. It is shown that certain known
criteria, including the gain-only case and the offset-only case, appear as special cases.

Lastly, we consider an even more complicated model, where data is transmitted over
noisy channels with unknown gain and varying offset mismatch. We present a scheme
for channels with unknown gain and varying offset, where Pearson distance based detec-
tion is used in conjunction with a difference operator. Pair-constrained codes are pro-
posed for unambiguous decoding, where, in each codeword, certain adjacent symbol
pairs must appear at least once. These codes significantly reduce redundancy compared
to previously proposed mass-centered codes, making the new scheme an attractive al-
ternative for practical applications. We also propose a systematic encoding algorithm of
pair-constrained codes, and its redundancy is analyzed for memoryless uniform sources.



SAMENVATTING

Gegevensoverdracht is alomtegenwoordig, variërend van basistoestellen voor thuis
en op kantoor, zoals compact disc-spelers en harde schijven, tot communicatie in de
ruimte. De communicatie- en opslagkanalen hebben vaak last van ruis en de gegevens
kunnen tijdens de transmissie worden vervormd. Ruis is echter niet de enige versto-
ring tijdens de gegevensoverdracht, en de informatie kan soms ernstig worden vervormd
door onbekende kanaalverschijnselen, zoals mismatch van de gain of de offset (drift). De
conventionele detectie op basis van de minimale Euclidische afstand, waarbij de ontvan-
ger een codewoord uit het codeboek kiest om de Euclidische afstand met het ontvangen
woord zo klein mogelijk te houden, levert slechte prestaties bij mismatch in gain en/of
offset. Onlangs is een Pearson afstandsgebaseerde detectie geïntroduceerd, die immuun
is voor onbekende offset en/of gain, maar het nadeel is dat deze erg gevoelig is voor fou-
ten veroorzaakt door ruis.

Deze dissertatie onderzoekt mogelijke coderingstechnieken om de prestaties van de-
coders in ruisige kanaalomstandigheden te verbeteren, terwijl de weerstand tegen de
mismatch van de gain en/of de offset behouden blijft. De resultaten die in het proef-
schrift worden besproken zijn verdeeld in vier delen, gebaseerd op verschillende aanna-
mes over de gain en/of offset mismatch. We beschrijven elk van de delen hieronder in
meer detail.

We beginnen met een fundamenteel model, waarbij de offset mismatch constant is
binnen een codeword lengte. Een methode genaamd maximum likelihood (ML) deco-
ding geeft het codewoord dat de hoogste waarschijnlijkheid heeft voor het ontvangen
woord. Eerst wordt een ML-decodeercriterium afgeleid wanneer wordt uitgegaan van
begrensde verdelingen voor zowel ruis als offset mismatch. Het belangrijkste is dat we
onderzoeken, voor de voorgestelde decoder, onder welke voorwaarden een woordfou-
tenkans van nul kan worden bereikt. Bovendien tonen we aan, uitgaande van Gaussi-
sche verdelingen voor zowel ruis als offset mismatch, dat een ML-decoderingscriterium
in feite het minimaliseren is van een gewogen gemiddelde van Euclidische afstand en
Pearson-afstand. Op basis hiervan stellen wij een aaneengeschakeld schema en het bij-
behorende decoderingsalgoritme voor. De aaneenschakeling is tussen een Reed-Solomon
(RS) code en een bepaalde coset van een blokcode (Coset). Om de immuniteit tegen
offset-mismatches te behouden, is de decodering van de binnenste Coset-code geba-
seerd op de Pearson-afstand, terwijl voor de decodering van de buitenste RS-code een
efficiënt tweefasig decoderingsalgoritme wordt gebruikt. Het voorgestelde schema be-
reikt een aanzienlijke coderingswinst terwijl het tegelijkertijd immuun is voor offset mis-
match.

Vervolgens bekijken we een ander model van de offset-mismatch, waarbij de offset-
mismatch een signaal afhankelijke parameter is. De signaalafhankelijkheid van de off-
set betekent dat deze kan verschillen voor verschillende signaalniveaus. Wij onderzoe-
ken een ML-decodeercriterium, uitgaande van uniforme verdelingen voor zowel de ruis

xi
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als de signaal afhankelijke offset. In het bijzonder kunnen voor de voorgestelde ML-
decoder specifieke beperkingen op de standaardafwijkingen van de ruis en de offset lei-
den tot een nul-fout prestatie. Later leiden we een ML-decodeercriterium af voor signa-
len met Gaussische ruis en signaal afhankelijke offset. Naast het ML-criterium zelf, wordt
ook een optie overwogen om de complexiteit te verminderen. Een beknopte prestatie-
analyse toont de superioriteit aan van de nieuw ontwikkelde ML-decoder ten opzichte
van klassieke decoders gebaseerd op de Euclidische of Pearson-afstanden.

Vervolgens richten wij onze aandacht op een kanaalmodel waarin de opgehaalde ge-
gevens worden gecorrumpeerd door Gaussische ruis, gain en offset mismatch. De inter-
vallen waaruit de gain- en offset-waarden worden genomen zijn bekend, maar er worden
geen verdere aannames gedaan over hun verdelingen. Wij leiden een algemeen kader af
van ML-decodeercriteria voor dergelijke kanalen, gebaseerd op het vinden van een co-
dewoord met de Euclidische afstand die het dichtst ligt bij een gespecificeerde reeks,
gedefinieerd door de ontvangen vector en de gains- en offset-parameters. Bovendien
geven wij een geometrische interpretatie van de voorgestelde ML-criteria. Er wordt aan-
getoond dat bepaalde bekende criteria, met inbegrip van het geval van alleen de gain en
alleen de offset, als speciale gevallen voorkomen.

Tenslotte beschouwen wij een nog gecompliceerder model, waarbij gegevens wor-
den verzonden over ruiskanalen met onbekende gain en een variërende offset-mismatch.
Wij presenteren een schema voor kanalen met onbekende gain en variërende offset,
waarbij detectie op basis van Pearson-afstand wordt gebruikt in combinatie met een
verschil-operator. Voor ondubbelzinnige decodering worden paarsgewijze codes voor-
gesteld, waarbij in elk codewoord bepaalde aangrenzende symboolparen ten minste een-
maal moeten voorkomen. Deze codes verminderen de redundantie aanzienlijk in verge-
lijking met eerder voorgestelde massa-gecentreerde codes, waardoor het nieuwe schema
een aantrekkelijk alternatief wordt voor praktische toepassingen. We stellen ook een sys-
tematisch coderingsalgoritme voor paarsgewijze codes voor, en de redundantie wordt
geanalyseerd voor geheugenloze uniforme bronnen.



1
INTRODUCTION

This chapter provides an introduction to this thesis. We first introduce the background
and the basics of error-correcting codes. Then we talk about the research status of coding
techniques over channels with noise, gain and/or offset mismatch, and present the moti-
vation of this work. Afterward, we shortly describe the contribution of each chapter.

1.1. BACKGROUND
With the rapid development of the Internet and personal consumer electronics, the

amount of data created and replicated experienced unusually high growth in 2020 due
to the dramatic increase in the number of people working, learning, and entertaining
themselves from home. According to the International Data Corporation [1], the ‘Global
Datasphere’ in 2020 reached 64.2 zettabytes, defying the systemic downward pressure
asserted by the COVID-19 pandemic on many industries. The explosive growth of data
caused a great deal of pressure. The rapid growth in the amount of data has an increas-
ingly high demand for storage capacity. The increasing value of the data itself also re-
quires fewer risks of error when transmitting it. As a result, the ability to transmit and
store large-scale data reliably is of great importance.

It is usually found that noise is an important issue during data transmission. How-
ever, other physical factors may also hamper the reliability of the stored data. Tackling
the problem of data distortions such as noise, intersymbol interference, gain and/or off-
set mismatch, fading, clock jitter, etc., is a fundamental and challenging topic in the the-
ory of channel coding. We are interested in data transmission and storage over channels
with noise and gain and/or offset mismatch. Perhaps the best-known example of these
channels is Flash memory, which we will discuss in detail in the following section.

1.1.1. FLASH MEMORY AND ITS ISSUE OF CHARGE LEAKAGE
Storage media can be divided into volatile memory and non-volatile memory ac-

cording to whether they can keep the information even after power is removed. The
most typical volatile memory includes dynamic random access memory and static ran-

1
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dom access memory. Although volatile memory can only save data temporarily, its high-
speed access feature makes it widely used in processing units, which undertakes the vital
task of caching data and instructions in both big data systems and embedded systems.
Besides, the non-volatile memory is usually for external and long-term uses because it
can stably keep the data for a long time.

As a non-volatile memory with high reliability, high capacity, and low cost, Flash
memories [2, 3] are widely used for storage and data transfer in consumer electronics,
enterprise systems, and industrial applications. Flash memory programs several bytes of
data on a page and rewrites data at byte level. Several pages form a block, and the eras-
ing process is based on blocks. In addition to the information, each page has a relatively
small redundant area for storing the file system and error correction codes. Structure of
the storage array inside MT29F64G08CBAB[A/B] Flash memory chip of the Micron com-
pany [4] is shown in Figure 1.1 as an example. The storage capacity of 64 Gb is divided
into two sides, each of which has 2048 blocks. Each block contains 256 pages, and the
data area and redundancy area of each page are 8192 bytes and 744 bytes, respectively.
Double-sided design is a common way to improve the read-write efficiency in advanced
Flash memory. When one side is in the read or write state, the other side can execute
new read-write instructions.

1 Page = 8936 bytes 1 Page = 8936 bytes

1 Block = 256 Pages 1 Block = 256 Pages

1 Plane = 2048 Blocks 1 Plane = 2048 Blocks

Figure 1.1: Structure of storage array inside Flash.

The most direct way to increase the storage capacity of Flash memories is to intro-
duce multi-level cell technology. According to the number of bits stored in each mem-
ory cell, Flash memories can be divided into single-level cell (SLC) and multi-level cell
(MLC). Flash memories are built from programmable and erasable floating-gate transis-
tors. The information is represented by the amount of charge on a gate [5], and this
charge within a specific voltage range gives a possible value of a cell. Figure 1.2 de-
scribes the voltage distributions for an SLC, an MLC, and a triple-level cell (TLC). The
x-axis and y-axis are voltages and the distribution of voltages that correspond to differ-
ent charge states, respectively. Charge voltage in an SLC is only divided by high and
low levels, storing only one bit per memory cell, while an MLC is generally divided into
four intervals from the highest level to the lowest level. Each storage cell can store two
bits of information [6, 7]. There is a TLC with even more voltage intervals that can store
three-dimensional information to pursue a large capacity further. For instance, each
value level (0,1, . . . ,7) in a TLC represents a 3-bits information that is stored in the Flash
cell, e.g. 111, 110, 100, 000, 010, 011, 001, or 101. It is clear that, as the number of lev-
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1

3

els increases, MLC and TLC significantly enhance the storage capacity of Flash mem-
ories compared with SLC. However, the ranges of voltage that each value may occupy
decrease. Smaller intervals in the TLC, for instance, have a higher overlap, resulting in a
higher error possibility when the voltage may deviate from the nominal values due to the
physical effect. Thus, multi-level cell technology also reduces Flash memories reliability
and introduces higher error risk.
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Figure 1.2: The distributions of the voltage in a cell for various values are shown for the SLC (one bit per cell)
case on top, the MLC (two bits per cell) case in the middle, and the TLC (three bits per cell) case on the bottom.
Note that the distribution in the TLC case must be much thinner to fit the same voltage interval and, even so,
have a much larger potential for error.

The reliability of multi-level cell memories experiences a diverse set of short-term
and long-term deviations. Short-term variations exacerbate unpredictable stochastic
errors. For example, random errors occur under a program/erase (P/E) cycling process,
where the data was read out right after programming.

As for the long term, charge leakage may be one of critical issues of multi-level cell
memories. As documented in [8–13], voltage of a cell decreases and some cells even be-
come defective over time. The amount of charge leakage, which can be modeled as gain
and/or offset mismatch, depends on various physical parameters, such as the device
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temperature, the magnitude of the charge, and the time elapsed between writing and
reading data [11]. Importantly, the charge leakage leads to a severe shift in the voltage
distribution over time. Techspot reports an unfortunate degradation of the read perfor-
mance of Samsung’s solid-state drive (SSD) 840 [14], which happens in older data blocks.
Reading old files is always slower than normal (about 30MB/s) due to its inherent volt-
age drift, while newly written files (such as those used in benchmarks) are as fast as new
(about 500MB/s for the well-regarded SSD 840 EVO). Figure 1.3 shows the threshold volt-
age distribution of Flash memory at different retention ages for 8k P/E cycles [12]. If a
predetermined fixed threshold detection is used, these offsets will increase the potential
for errors.

Figure 1.3: Threshold voltage distribution of MLC NAND Flash memory versus retention age [12].

Flash consumption on disk drives or SD cards has exploded over the last ten years,
and new products, such as SSDs, are now making a significant introduction into personal
electronics, mobile computing, intelligent vehicles, enterprise storage, data warehouse,
and data-intensive computing systems. It is a crucial task to improve and expand non-
volatile Flash technologies. However, Flash also faces significant challenges, which can
be overcome to a certain extent through innovative coding and signal processing tech-
nologies. We will give a brief introduction to coding theory in the following subsection.
The results in this thesis are not limited to only Flash memory but also support other
data transmission processes facing the same problem.

1.1.2. ERROR-CORRECTING CODES
Any communication channel refers to the transmission of information, either in a

spatial domain from one place to another or a time domain from one time to another. In
these two types of communication channels, information may not be transmitted cor-
rectly. Various factors may cause these distortions. If information is transmitted in the
spatial domain, then any natural source, such as weather conditions, radiation, thermal
effects, etc., will cause errors. In the time domain, information is stored on a memory de-
vice, and any physical defect or reduction in memory reliability will damage the stored
data. For example, a scratch on a CD will damage the stored information. In both chan-
nels, the reliability issue of information transmission needs to be solved with proper
signal processing and coding techniques.

Over half a century ago, the concept of coding theory was proposed by Claude E.
Shannon in a seminal paper entitled “A Mathematical Theory of Communication”. In his
paper, the coding theory is subdivided into source coding theory and channel coding
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theory. Source coding theory reduces the number of bits needed to describe the data be-
fore transmitting them, which provides an efficient representations of data. On the other
hand, by proper channel coding of the information, we can reduce the errors caused by
the channel to any desired level without sacrificing the information transformation rate,
as long as the information rate is less than the channel capacity. In this research, we
focus on improving the error-correction ability of data transmission by channel coding.

Error-correcting codes provide a way of protecting the information from corruption in
the channel. A simple block diagram of the data transmission in which error-correcting
coding is applied is shown in Figure 1.4. The idea is to add some redundancy into a
message u such that the original message can be obtained from received signals even
if it is corrupted. We call this encoding, and an encoder gives the encoded sequence
x, which is called the codeword. The set of codewords forms a code. We transmit the
codeword over the channel. The process is then to decode the received sequence r to
a message uo by a decoder. Successful decoding is not always guaranteed because of
channel distortions.

u x r o
u

Figure 1.4: Coding block diagram.

A simple method to add redundancy to protect our message is to transmit multi-
ple copies of the message. Instead of transmitting only the message itself, at least three
copies should be transmitted. A decoder decodes the received word to a message based
on a simple decoding rule – the most frequently occurred message is the transmitted
one. Then the decoder can output the correct message if only one copy is wrong. This
rule is not guaranteed to catch all errors. However, the probability of error is reduced. We
call this a repetition code. The Hamming code is another error-correcting code, which
entails redundant parity check bits in the original message. Each check bit calculates
the parity for some of the bits in the codeword. If the number of 1’s among these bits are
even, then the parity is 0; if the number of 1’s among these bits are odd, then the parity
is 1. On the receiver, calculating the parity of the received word can reveal whether there
are any errors and where the errors are located. We will introduce some well-known
error-correcting codes in detail in the next chapter.

1.2. RELATED RESEARCH
As we discussed before, there are various distortions, and we are interested in dealing

with noise and gain and/or offset mismatch. One would like to understand how these
channels with gain and/or offset mismatch differ from the classical noisy ones. There
are conceptual connections, as well as significant differences between the noise distor-
tion and the offset mismatch. Both of them are considered to have negative effects on
the transmitted or stored signals. However, noise is a symbol-wise distortion, which is
usually independently distributed for each symbol, and thus its value changes symbol
by symbol. On the one hand, considering continuous inputs to the channel, the noise
is usually modeled as an additive Gaussian variable. Decoders based on Euclidean dis-
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tance are widely used as they have been shown to be optimal for additive white Gaussian
noise [15]. On the other hand, we take a look at a binary discrete memoryless channel.
When we wish to transmit a single bit (0 or 1), the bit may be flipped to the incorrect value
(0 → 1 or 1 → 0). A binary symmetric channel, where 0 → 1 and 1 → 0 errors occur with
equal probability, is the simplest model for information transmission via a discrete chan-
nel, where the only distortion is additive white Gaussian noise. Most classes of codes are
designed for adopting in symmetric channels, such as BCH codes [16], Reed-Solomon
codes [17], LDPC codes [18], trellis coded modulation [19], and so on.

Gain and/or offset mismatch, on the contrary, is a type of block-wise distortion. It
remains constant within one codeword length, then may change to another value and
remains constant for another codeword length, and so on. As a result, while Euclidean
distance-based decoding is known to be optimal if the transmitted or stored signals are
only disturbed by Gaussian noise, it may perform poorly if there is a channel mismatch
as well. We now turn to information transmission via a discrete channel. The offset
mismatch has a high possibility to cause asymmetric or unidirectional errors since it is
constant within a codeword length. A binary word is said to suffer from unidirectional er-
rors if all errors are of the same type when sending a certain codeword [20], even though
both 1 → 0 and 0 → 1 errors are possible. If we have a priori knowledge of what the
types will be, they are called asymmetric errors [21]. In many practical applications, we
can observe such asymmetric or unidirectional errors, for example, static random access
memory cell [22], on-chip buses [23], and phase change memory [24, 25].

Clearly, to ensure reliable transmission over channels with noise and gain and/or
offset mismatch, the use of some error detecting or/and correcting techniques has be-
come mandatory. However, handling the problem of the unknown channel mismatch
is a great challenge since coding techniques designed for noise may not be suitable for
dealing with the channel mismatch due to the differences between them. Much of the
research pays particular attention to gain and/or offset mismatch issues. These stud-
ies can be classified into the following three broad categories: (i) reference/pilot based
methods, (ii) code constructions, and (iii) efficient detecting schemes.

(i) A few proposals overcome the negative effect of the gain and/or offset mismatch by
using previous sequences or reference symbols.

A straightforward method applied in many practical transmission systems is an au-
tomatic gain (AGC) and offset control [26]. AGC modifies values of received signals de-
pending on the weighted average offset of previously received sequences. Nevertheless,
if the offset changes very rapidly, an AGC may be sub-optimal. A similar approach is
accomplished by using training sequences or reference memory cells to estimate the
unknown channel offset [27] and then adjusting the detector settings to match the ac-
tual values. Estimated values may be inaccurate because they lag behind actual values.
Inserting reference symbols more frequently can improve the estimation; however, this
comes at the cost of higher redundancy. A method is proposed in [13] for threshold cal-
ibration that is based on a small amount of pilot data per Flash page. Depending on the
observed number of errors in the pilot data, corrections of voltage shifts are taken from
a simple look-up table. However, the look-up tables are calculated using measurements
of only a small number of scenarios, which can not cover all possible life-cycle states.
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Recently, machine learning has developed rapidly, and it has shown superior per-
formance in many aspects of communication systems. Employing a machine learning
based technique in the improvement of the estimation of channel parameters is investi-
gated in [28–31]. With these machine learning based frameworks, all the unknown off-
set or unpredictable variations in channels can be learned from the training data, thus
avoiding the difficult task of modeling the practical channels. However, a large amount
of training data are required to establish an unknown input-output relationship of the
estimation model. The estimation may not be accurate without adequate training data.

All of the studies reviewed here show a strong resistance for not only the mismatch is-
sue but also other unpredictable variations. This benefit comes at the cost of complexity
as they need plenty of training data or reference symbols. Accuracy of estimated channel
parameters might be another issue, especially for high-speed applications.

(ii) Up to now, various coding techniques have been applied to alleviate the detection
in case of channel mismatch, such as, rank modulation [32], balanced codes [33–37], and
composition check codes [38].

In rank modulation [32], data is carried by the relative charge levels of many cells
and not by the charge level in a single cell. Assume a sequence of the charge levels in 5
cells is (6,1,3,2,10). A codeword in this scheme is a permutation of cells induced by the
charge levels of the cells, that is, (5,1,3,4,2). This coding by ranking of charge levels elim-
inates the problem of charge leakage in aging devices. Research on the rank modulation
scheme since its introduction more than ten years ago is developed extensively [39–43].

The notion of dynamic thresholds based on balanced codes is introduced in [33] for
the reading of binary sequences. It is further shown to be highly effective against er-
rors caused by voltage drift in Flash memories [34–36]. A balanced code consists of the
sequences where the number of ones equals the number of zeros. With the dynamic
thresholds scheme, there are no thresholds for comparison when reading signals if we
use the balanced code since it has a fixed distribution of levels. However, this method
adds complexity in encoding and decoding balanced codes, and the size of the code-
book is relatively small. The generating function offers a tool for enumerating the bal-
anced codes [44, 45]. Encoding/decoding of balanced codes has attracted a considerable
amount of research and engineering attention [46, 47].

A balanced code is a constant composition code. The error performance of opti-
mal detection of codewords that are drawn from a single constant composition code is
immune to offset mismatch as showed by Slepian [37]. To further increase the size of
the codebook, a composition check code is proposed [38]. Composition check codes
have the virtues of Slepian’s optimal detection method. A label is added that informs
the receiver regarding the constant composition code to which the sent main data word
belongs such that the encoding of the main data into a constant composition code is
avoided.

The research reviewed here suggests a pertinent role in using proper coding schemes
to solve the offset mismatch issue. However, the disadvantages of these methods, which
have limited applicability, are the high redundancy and complexity. For example, the
redundancy of a full set of balanced codewords is O(logm), where m is the number of
user bits [48].
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(iii) A promising decoding technique with asymptotic zero redundancy as the code-
word length increases is proposed in [49], where it is shown that decoders using the
Pearson distance have immunity to offset and/or gain mismatch. A study [50] shows that
a digital modulation transceiver based on Pearson distance detection provides excellent
error performance for noisy channels with Rayleigh fading. The use of the Pearson dis-
tance requires that the set of codewords satisfies several specific properties. Such sets
are called Pearson codes, which have attracted a lot of interest [51–55]. In [51], optimal
Pearson codes are presented, in the sense of having the largest number of codewords
and thus minimum redundancy among all q-ary Pearson codes of fixed length n. Prop-
erties of binary Pearson codes are discussed in [52, 53], where the Pearson noise distance
is compared to the well-known Hamming distance. A simple systematic Pearson coding
scheme, that maps sequences of information symbols generated by a q-ary source to
q-ary code sequences, is proposed in [54]. Construction of a particular kind of Pearson
codes, i.e., T-constrained codes [49], using a finite state machine, is introduced in [55].

Furthermore, a considerable amount of literature has grown around the theme of
Pearson distance that tackles the offset mismatch issues. In [56], a decoder is proposed
based on minimizing a weighted sum of Euclidean and Pearson distances. A dynamic
threshold detection scheme is proposed in [57], where the gain and offset are first es-
timated based on Pearson distance detection. The estimates of the gain and offset are
used to re-scale the received signal within its normal range. Then, the re-scaled signal,
brought into its standard range, can be forwarded to the final detection/decoding sys-
tem, where the distance properties of the code can be optimally utilized by applying, for
example, the Chase algorithm [58]. A detection scheme for channels with gain and such
varying offset is investigated in [59, 60], where, for the binary case, minimum Pearson
distance based detection is used in conjunction with mass-centered codewords.

1.3. RESEARCH QUESTIONS
The above decoding methods have improved the resilience to gain and/or offset mis-

match, or even established immunity to it. However, the price paid for this benefit is a
higher noise sensitivity. There is a natural decoding technique, known as maximum like-
lihood (ML) decoding, where the decoder outputs the codeword with the highest likeli-
hood of being the one that was actually transmitted.

Minimum Euclidean distance detection is an ML criterion for an additive white Gaus-
sian noise channel[15], but it may perform poorly against gain and/or the offset mis-
match. Minimum Pearson distance detection is an ML criterion for the gain and/or
offset mismatch channel without noise [49]. It is crucial and challenging to study the
ML decoding solutions considering both noise and offset issues. Blackburn [61] inves-
tigates an ML criterion for channels with Gaussian noise and unknown gain and offset
mismatch. In a subsequent study, ML decoding criteria are derived for Gaussian noise
channels when assuming various distributions for the offset in the absence of gain mis-
match [62]. This research aims to investigate possible coding techniques for noisy chan-
nels with gain and/or offset mismatch.

Main Research Question: what are possible ways to improve decoders’ error correction
performances with noisy channel conditions while maintaining the resistance against
gain and offset mismatch?
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Investigating this research question, we consider four models of offset mismatch
from simple to complex. The offset mismatch, which is constant within a codeword
length, serves as the most fundamental model. The next part concerns the dependency
between offset mismatch and signal levels. Later we discuss channels with gain and
offset mismatch. A gain and slowly varying offset model is our last consideration. The
various forms of the channel mismatch provide different ways to externalize physical
distortions in practical systems, but they are not limited only by those shown in this
work.

• How can an ML decoding criterion be established for noisy channels with offset mis-
match?

In storage and communication systems, noise is not the only disturbance during
data transmission. Sometimes the error performance can also be seriously de-
graded by other physical factors, such as offset mismatch. We focus on noisy chan-
nels with unknown offset mismatch, where an offset is constant within a codeword
length and may vary word by word. An ML decoding, which outputs that the code-
word has the highest likelihood to the received word, is carried out for such chan-
nels.

• How to establish an ML decoding criterion for noisy channels with signal dependent
offset mismatch?

With the changes in the environment, different signal levels may suffer from dis-
tinct offset mismatch values. The signal dependency of the offset signifies that it
may differ for different signal levels. This thesis explores an ML decoding crite-
rion for noisy channels with signal dependent offset mismatch and discusses two
situations – uniform and Gaussian distributions for noise and offset mismatch.

• What are an ML decoding criterion for noisy channels with gain and offset mis-
match?

An ML decoding is considered for channels with gain and offset mismatch. We
discuss an ML decoding for situations with different gain and/or offset and provide
geometric interpretations of gain and offset.

• What are possible detecting techniques for noisy channels with gain and slowly
varying offset mismatch?

The basic premises considered here are that a codeword is received with an un-
known gain, is offset by an unknown varying offset, and corrupted by additive
Gaussian noise. We study minimum Pearson distance based detection in conjunc-
tion with a difference operator. It is independent of unknown channel gain and
varying offsets. For such a detection scheme, constrained codes need to develop
further.

1.4. THESIS OVERVIEW
The first two chapters introduce the research background and basic mathematics

definitions used in this thesis. Related prior works are presented as well.
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Chapter 3 mainly discusses the coding techniques for a simple and basic model of
noisy channels with offset mismatch, where an unknown offset is assumed to be in the
all-one direction. An ML decoding criterion is first derived for such channels assuming
bounded distributions for both noise and offset mismatch. We also give the conditions
under which the proposed decoder achieves a zero error performance. Further, an ML
decoding criterion is presented for such channels with Gaussian noise and offset. A con-
catenated coding scheme is proposed in the case of Gaussian noise and offset mismatch.
A decoding algorithm for concatenated codes is also proposed. Simulation results verify
the algorithm’s effectiveness in combatting against offset mismatch.

Chapter 4 takes a different look, and models the offset mismatch as a signal depen-
dent parameter. We investigate an ML decoding criterion for the situation that the noise
and the offset are uniformly distributed. A zero error performance is achieved when the
standard deviations of the noise and the offset are small enough. Later, an ML decod-
ing criterion is derived for such channels to improve and strengthen the resilience to
Gaussian noise and signal dependent offset. For codebooks consisting of the union of
constant weight sets, it shows that significant complexity reductions can be obtained.

The attention of Chapter 5 is put on a channel model in which the retrieved data is
corrupted by Gaussian noise, gain, and offset mismatch. A general framework of maxi-
mum likelihood decoding criteria for such channels is summarized. We give geometric
interpretations of gain and offset and show that certain known criteria appear as special
cases of our general setting.

Chapter 6 considers an even more complicated channel model, where data is trans-
mitted over noisy channels with unknown gain and varying offset mismatch. A mini-
mum Pearson distance detection is used in cooperation with a difference operator, which
offers immunity to such mismatch. Novel pair-constrained codes are proposed for such
a decoding scheme, where cardinality and redundancy of these codes are derived. A
simple systematic encoding algorithm of pair-constrained codes is presented, and its re-
dundancy is analyzed for memoryless uniform sources. Simulation results are given for
the proposed scheme when the channel is corrupted with additive white Gaussian noise.

Finally, we summarize this thesis and give our recommendations on future research
in Chapter 7.



2
BASIC CONCEPTS AND METHODS

In Galois Fields, full of flowers
primitive elements dance for hours

climbing sequentially through the trees
and shouting occasional parities.

S.B. Weinsteine

This chapter aims to review the basic definitions relating to error-correcting codes and
standardize some notation. We then give a brief description of the channel model that
will be dealt with and used in this work. Finally, we discuss the fundamental decoding
techniques and the main results established in the prior art, explaining how the various
techniques perform.

2.1. BASIC CONCEPTS

2.1.1. BASIC DEFINITIONS FOR CODES
In order to avoid introducing too much formalism and notation this early on, we only

discuss the most fundamental definitions. We will defer a formal treatment of further
definitions until they are needed.

BLOCK CODES

For an integer q ≥ 2, let [q] = {0,1, . . . , q −1}.

- A block code S is a subset of [q]n , which is the n-dimensional vector space over the
alphabet [q].

- The integer q is referred to as the alphabet size of the code, or alternatively we say
that S is the q-ary code. We say S is a binary code when q = 2; if q = 3, then it is
called ternary block code.

11
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- The elements of S are called the codewords in S. The length of every codeword, n,
is called codeword length.

The number of codewords, also called the cardinality or size of the code, is denoted by
|S|. The code rate of a q-ary code S of size |S|, denoted rS(n), is defined to be the normal-
ized quantity

rS (n) =
logq |S|

n
. (2.1)

The code rate determines the amount of redundancy. Since the cardinality of a q-ary
code S is at most qn , the code rate is a real number between 0 and 1. The closer it is to 1,
the less redundantly the data is encoded by the block code.

It is convenient to view a code S ⊆ [q]n of size |S| as a function where messages u
generated by the source are one-to-one mapped to codewords x ∈ S. Often we will take
|S| to be a power of q , that is |S| = qk , where k is the dimension of the code. Note that the
dimension k is at most n. In this way, an error-correcting code offers a method to add
some redundancy to a q-ary message vector u of length k and encode it into a longer
vector, or called a codeword, x of length n.

HAMMING DISTANCE OF CODE

Hamming distance is a notion in a formal mathematical sense that captures how
close-by two vectors u and v are. Given any two vectors u,v ∈ [q]n of the same length,
where u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn), the Hamming distance is defined as the
number of coordinates where these two vectors differ, that is,

dH (u,v) = |{i : ui 6= vi }| . (2.2)

The weight, denoted as w(u), of a vector u is the Hamming distance between this vector
and the all-zero vector 0.

Now, we introduce more operations related to the Hamming distance in the binary
case. A binary block code is a subset of [2]n , where [2] is the field containing only two
elements 0 and 1. The following modulo-2 addition and multiplication on this field are
defined:

⊕ 0 1
0 0 1
1 1 0

¯ 0 1
0 0 0
1 0 1

The number of coordinaties that equal 1 in a binary vector u is the weight w(u) of u:

w(u) = |i |ui = 1 | .

The Hamming distance between two binary vectors u and v is equal to the weight of
modulo-2 addition of u and v, that is, dH (u,v) = w(u⊕v). It is also equal to

dH (u,v) =
n∑

i=1
|ui − vi | . (2.3)
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The minimum Hamming distance (or simply distance) of a code S, denoted d(S), is the
minimum Hamming distance between any two distinct codewords of S. Formally,

d(S) = min{dH (u,v) : u,v ∈ S,u 6= v}. (2.4)

We represent a q-ary block code of length n, dimension k, and minimum Hamming
distance d , as an (n,k,d)q code. The distance parameter can be omitted, and an (n,k)q

code refers to a q-ary code of length n and dimension k. We will often omit the alphabet
size subscript if it is clear from the context.

LINEAR CODES

Let q be a prime power. We denote a finite field with q elements by F(q) or GF (q)
interchangeably. We assume, when necessary, that the field GF (q) can be identified with
[q] in some canonical way.

If a block code S of length n is a linear subspace of (GF (q))n , then S is called a linear
(n,k) block code. In other words, an (n,k) block code is linear if

– component-wise addition of two codewords is another codeword, i.e., if x1,x2 ∈ S,
then a1x1 +a2x2 ∈ S for any a1 and a2 from GF (q).

Clearly, a linear code over GF (q) has qk elements, where k is the dimension of the
code, and so the code rate is rS (n) = k/n. For linear codes, the all-zero vector is always a
codeword. Thus the minimum Hamming distance of a linear code equals the minimum
weight of all codewords except the all-zero codeword.

Any (n,k) linear code S satisfies the following properties. The full proof can be found
in any standard linear algebra textbook.

1. There exists v1, . . . ,vk ∈ S called basis elements, which need not be unique, such
that every x ∈ S can be expressed as x = a1v1+a2v2+. . .+ak vk ∈ S, where ai ∈GF (q)
for 1 ≤ i ≤ k. In other words, there exists a full rank k ×n matrix G , also known as a
generator matrix, with entries from GF (q) such that every x ∈ S,

x = (a1, a2, . . . , ak ) ·G , (2.5)

where G = (v1,v2, . . . ,vk )T .

2. There exists a full rank (n−k)×n matrix H (called a parity check matrix) such that
HxT = 0 for every x ∈ S.

3. G and H are orthogonal, that is, G ·H T = 0.

The above properties give two alternate ways to specify an (n,k) linear code S. It can be
generated by its k ×n generator matrix G and also characterized by an (n −k)×n parity
check matrix H . Encoding is a process by which a message x ∈ (GF (q))k is encoded into
its corresponding codeword by multiplying it with the generator matrix of the code.

COMMONLY USED NOTATION

Much of the notation we use is standard. Throughout the thesis, both log x and lg x
will denote the logarithm of x to the base 2. We denote the natural logarithm of x by ln x.
For bases other than 2 and e, we explicitly include the base in the notation. For example,
the logarithm of x to the base q will be denoted by logq x.

For a real number x, bxc will denote the largest integer at most x, and dxe will denote
the smallest integer at least x. R denotes the set of real numbers.



2

14 2. BASIC CONCEPTS AND METHODS

2.1.2. SOME CODE FAMILIES

We describe some code families that will be studied in this work. Several of these will
also be used as building blocks for the new code constructions that we present.

SINGLE PARITY CHECK CODES

Parity check is a simple way to add redundancy bits so that even if some of the infor-
mation is lost or corrupted, it will still be possible to detect or even recover the message
at the receiver. One example is a single parity check code [63]. Formally, an (n,n − 1)
single parity check code, denoted by Sp , with q = 2, is defined as follows. Starting with
a block of n −1 information bits (x1, x2, . . . , xn−1), we can combine them so that a single
extra bit checks whether there is an error in the information bits. The n-th bit is chosen
such that (

n∑
i=1

xi

)
mod 2 = a, (2.6)

where a ∈ {0,1} is a pre-set integer. For instance, we can choose the n-th bit so that the
parity of the entire block is 0, that is, the number of ‘1’s in n bits is even. Then if an odd
number of errors occurs during the transmission, the receiver will detect the error since
the parity has changed. The code size equals

∣∣Sp
∣∣= 2n−1 and the rate of the single parity

check code is 1− 1/n. Single parity check code is a simple example of error-detecting
codes.

HAMMING CODES

The class of Hamming codes [64] is one of the oldest families of binary error-correcting
codes. Hamming codes extend the idea of parity checks in two perspectives: (1) it allows
for more than a single parity check bit, and (2) the parity checks depend on various sub-
sets of the information bits. Formally, Hamming codes are most commonly defined from
the parity check matrix.

The parity check matrix H has the property that for every codeword x, xH T = 0. If
the sum of any two columns is another column, then other than the all-zero codeword,
the weight of x in order to satisfy this equation is at least 3. Hence, the Hamming dis-
tance of the code is at least equal to 3. Denote the number of the rows in H by m ≥ 2.
The maximum number of columns satisfying the requirements is 2m −1. The H matrix
with this maximum number of columns leads to an (2m − 1,2m − 1−m,3) code, called
a Hamming code, denoted by H m . A generator matrix G can be easily derived from H .
Thus the code length of Hamming code is n = 2m−1 and the dimension is k = 2m−1−m.
Hamming codes with the minimum distance of 3 are the simplest of a class of algebraic
error-correcting codes that can correct one error or detect two errors in a block of bits.

To show an example Hamming code, we consider a binary code of block length 7. All
operations will be done modulo 2. Arrange the set of all nonzero binary vectors of length
3 in columns to form a matrix:

H =
1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

 . (2.7)
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From the properties of linear spaces, it also produces the 4-by-7 generator matrix G that
corresponds to the parity-check matrix H .

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 . (2.8)

The set of codewords therefore forms a linear subspace of dimension 4 in the vector
space of length 7. These 24 codewords are

0000000 0110100 1101000 1011100
1010001 1100101 0111001 0001101
1110010 1000110 0011010 0101110
0100011 0010111 1001011 1111111

Looking at the codewords, we notice that other than the all-zero codeword, the mini-
mum number of ‘1’s in any codeword is 3. This number is called the minimum weight of
the code. The encoding is explicit so that the first n −k bits in each codeword are parity
check bits, and the last k bits represent the message. Such a code is called a systematic
code. The above code is called a (7,4,3) Hamming code, denoted as H3, i.e., n = 7, k = 4,
and d = 3.

2.2. CHANNEL MODEL
We consider transmitting a codeword x = (x1, x2, . . . , xn) from a code S ⊆ [q]n . In this

work, we focus on the situation that the received vector may not only be hampered by
noise v = (v1, v2, . . . , vn), but also by offset mismatch. Hence, the received symbols read

ri = xi + vi +b, (2.9)

for i = 1, . . . ,n, where b represents an unknown offset mismatch. We assume that the
offset mismatch is constant within one codeword block length and may vary block by
block, i.e.,

r = x+v+b1, (2.10)

where 1 is the all-one vector. Values of the offset mismatch are unknown to both the
sender and the receiver.

This model (2.10) as our most primary and straightforward assumption of the chan-
nel mismatch is investigated in Chapter 3. However, our research is not limited to only
one situation. Other models of the channel mismatch are included based on this block-
wise model. The signal-dependent offsets, bx, are investigated in Chapter 4, and later
Chapter 5 discusses the channels with gain and offset mismatch, where the gain is pre-
sented by a parameter a. We also consider the gain and slowly varying offset model in
Chapter 6, where an unknown slope, c, of varying offset is introduced. The various forms
of the channel mismatch provide different ways to externalize physical distortions in
practical systems, but they are not limited only by those shown in this work.
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The receiver would like to pick a codeword from the code that he believes is trans-
mitted based on some criteria. Various traditional methods will be introduced in the
following sections. Before that, we define a useful statistics function, Q-function, which
will be used in the error performance analysis of detection schemes.

The Q-function is a convenient way to express right-tail probabilities for normal
(Gaussian) random variables. For x ∈ R, Q(x) is defined as the probability that a stan-
dard normal random variable (zero mean, unit variance) will obtain a value larger than
x, that is,

Q(x) = 1p
2π

∫ ∞

x
e−

t2
2 d t .

If we have a normally distributed variable X ∼N (µ,σ2), i.e., X has a probability density
function

f (x) = 1

σ
p

2π
e−

(x−µ)2

2σ2 ,

the probability that X > x is

P(X > x) =Q
( x −µ

σ

)
. (2.11)

CHANNEL RAW BIT ERROR RATE (BER)
Here we show the asymmetric or unidirectional errors caused by the offset mismatch

by analyzing the channel raw bit error rate (BER). Consider transmitting a codeword x,
from a binary code S ⊆ [2]n through a channel as shown in (2.10). We derive the raw BER
theoretically for such a channel. The symbols of the received vector, ri , can be straight-
forwardly quantized to a hard decision bit, xd

i ∈ {0,1}, with a conventional fixed threshold

detection. The threshold function is denoted by xd
i =ϑ(ri ), where a threshold Vm is used

such that

ϑ(ri ) =
{

1 if ri ≥Vm ,
0 otherwise.

In the following, we will show the influence of offset mismatch on the bit error per-
formance of the channel hard detected bits xd

i threshold detection. The BER Pb of xd
i is

computed as

Pb =Pr(xi = 0)Pr(xd
i 6= xi |xi = 0 )+Pr(xi = 1)Pr(xd

i 6= xi |xi = 1 )

=Pr(xi = 0)Pr(ri ≥Vm |xi = 0 )+Pr(xi = 1)Pr(ri <Vm |xi = 1 ).

Assuming independent and uniformly distributed channel inputs, we thus have

Pb =1

2
Pr(ri ≥Vm |xi = 0 )+ 1

2
Pr(ri <Vm |xi = 1 )

=1

2

∞∫
Vm

1p
2πσ

e−
(r−0−b)2

2σ2 dr + 1

2

Vm∫
−∞

1p
2πσ

e−
(r−1−b)2

2σ2 dr

=1

2
Q

(
Vm −b

σ

)
+ 1

2

(
1−Q

(
Vm −1−b

σ

))
. (2.12)
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In Figure 2.1, we have drawn the probability (2.12) assuming a threshold Vm = 0.5 as
a function of signal to noise ratio (SNR). The SNR is defined by

SN R(dB) =−20log10σ. (2.13)

The offset mismatch reduces system reliability, and the greater offset values cause the
larger error probabilities Pb . Moreover, it has a higher chance of occurring 0 → 1 error
than 1 → 0 error when the values of offset are positive, as we have shown in Figure 2.2;
chance of occurring 1 → 0 error is higher than 0 → 1 error when the values of offset
are negative. That is to say, offset mismatch causes asymmetric errors or unidirectional
errors.

0 5 10 15

SNR (dB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
b

b=0.3

b=0.2

b=0.1

b=0

Figure 2.1: Channel raw BER Pb as a function of SNR assuming different values of the offset b.

In a channel with only Gaussian noise, the probabilities of occurring 0 → 1 error and
1 → 0 error are the same, called symmetric errors. Then the channel raw BER is

P g
b = 1

2

[
Q

(
Vm

σ

)
+Q

(
1−Vm

σ

)]
,

which can be obtained by letting b = 0 in (2.12) and Q(−x) = 1−Q(x) for x > 0. Note that
the raw BER of channels with offset mismatch is always larger than a channel with only
Gaussian noise, i.e., Pb ≥ P g

b .

2.3. MINIMUM EUCLIDEAN DISTANCE BASED DETECTION (MED)
A well-known decoding criterion upon receipt of the vector r is to choose a codeword

that minimizes the (squared) Euclidean distance between the received vector r and the
candidate codeword x̂. Minimum Euclidean distance based detection (MED) is known
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Figure 2.2: Probabilities of 0 → 1 and 1 → 0 errors as a function of SNR assuming different values of the offset
b, where Pe(0 → 1) and Pe(1 → 0) correspond to Pr(ri ≥Vm

∣∣xi = 0 ) and Pr(ri <Vm
∣∣xi = 1 ), respectively.

to be optimal with regard to handling Gaussian noise without offset mismatch. That is,
we assume that the channel (2.10) is ideally matched, i.e., b = 0, so the received vector
after transmitting a codeword x is

r = x+v, (2.14)

where the noise vector v = (v1, v2, . . . , vn) is such that the vi are identically independently
distributed (i.i.d.) Gaussian random variables with zero mean and variance σ2, i.e., vi ∼
N (0,σ2). The probability density function of v is

n∏
i=1

1

σ
p

2π
e−v2

i /(2σ2). (2.15)

The squared Euclidean distance between u and v in Rn is defined by

δE (u,v) =
n∑

i=1
(ui − vi )2. (2.16)

Upon receipt of a vector r, the receiver decides that the codeword xo was sent if (2.16)
attains its least value for x̂ = xo , that is

xo = argmin
x̂∈S

δE (r, x̂). (2.17)

We consider four codewords x1, x2, x3, and x4 in Figure 2.3. Points in the Euclidean space
are separated into four subsets by surfaces being perpendicular to the line segments
formed by each pair of codewords. Each subset contains only one codeword, thus if a
received vector belongs to a certain subset, MED will decode it as the codeword within
this subset.
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Figure 2.3: Graphic illustration of minimum Euclidean distance based detection of four codewords.

2.3.1. PERFORMANCE ANALYSIS
We now examine the theoretical word error rate upper bound of block codes in the

minimum Euclidean distance based detection scheme. Word error rate (WER) is defined
as the ratio of the number of incorrectly decoded words to the number of words trans-
mitted. The receiver uses the Euclidean distance (2.17) for the evaluation of the received
word, where we assume that x ∈ S is sent, and received as r = x+v. The Euclidean detec-
tor errs if there is at least one codeword x̂ 6= x, x̂ ∈ S, such that

δE (r, x̂) < δE (r,x)

or
δE (r, x̂)−δE (r,x) < 0. (2.18)

Using the definition of the squared Euclidean distance (2.16), the left side of (2.18) is

δE (r, x̂)−δE (r,x) =
n∑

i=1
(ri − x̂i )2 −

n∑
i=1

(ri −xi )2

=
n∑

i=1
(xi + vi − x̂i )2 −

n∑
i=1

vi
2

=
n∑

i=1
(xi − x̂i )2 +2

n∑
i=1

(xi − x̂i )vi ,

where the second equality follows from (2.14). The left side of (2.18) is a stochastic vari-
able with distribution N (αE ,βEσ

2), whereαE =∑n
i=1 (xi − x̂i )2 andβE = 4

∑n
i=1 (xi − x̂i )2.

Thus, the probability that δE (r, x̂) < δE (r,x) equals

P(δE (r, x̂) < δE (r,x)) =Q

(
αE√
βEσ

)
=Q

(√
δE (x, x̂)

2σ

)
. (2.19)

WER over all coded sequences can be upper bounded by using a union bound type
of argument. If MED is used as the decoding criterion, then it is well known that

W ER ≤ 1

|S|
∑
x∈S

∑
x̂∈S,x6=x̂

Q

(√
δE (x, x̂)

2σ

)
. (2.20)
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Define the squared of the minimum Euclidean distance between any possible pair of
codewords in S by

δE ,mi n = min
x,x̂∈S,x6=x̂

δE (x, x̂). (2.21)

Then, for asymptotically small standard deviations of the noise, i.e., for σ¿ 1, the WER
is upper bounded by

W ER ≤ Ne ×Q

(√
δE ,mi n

2σ

)
, (2.22)

where Ne is the average number of pairs of codewords at minimum Euclidean distance
δE ,mi n .

2.4. MINIMUM PEARSON DISTANCE BASED DETECTION (MPD)
We start by introducing some notation. For any vector u = (u1,u2, . . . ,un) ∈Rn , let

ū = 1

n

n∑
i=1

ui

denote the average symbol value, let

σu =
√

n∑
i=1

(ui − ū)2

denote the unnormalized symbol standard deviation, and let

‖u‖ =
√

n∑
i=1

|ui |2

denote the (Euclidean) norm. We write 〈u,v〉 for the standard inner product (the dot
product) of two vectors u and v, i.e.,

〈u,v〉 =
n∑

i=1
ui vi = ‖u‖‖v‖cosθ,

where θ is the angle between u and v. Note that 〈u,u〉 = ‖u‖2.
The error performance of the traditional MED scheme degrades in the case that there

exists a channel mismatch. Luckily, Immink and Weber [49] showed that detectors that
use the Pearson distance offer immunity to offset and/or gain mismatch. The Pearson
distance between two vectors u and v is defined as

δP (u,v) = 1−ρu,v, (2.23)

where

ρu,v =

n∑
i=1

(ui − ū)(vi − v̄)

σuσv
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is the well-known Pearson correlation coefficient. As the Pearson correlation coefficient
lies in the interval [−1,1], the Pearson distance 0 ≤ δp (u,v) ≤ 2. Pearson correlation co-
efficient ρu,v = 1 indicates a perfect positive relationship, ρu,v = −1 indicates a perfect
negative relationship, and a ρu,v = 0 indicates that no relationship exists. Thus the Pear-
son distance of two strongly related vectors is close to 2, and its value decreases when
the relationship goes weaker.

It is assumed that a randomly chosen codeword x ∈ S is sent, and the received vector
is given by

r = a(x+v)+b1, (2.24)

where the scaling factor, a 6= 1, a > 0, is called gain, and b 6= 0 is an offset.
In Figure 2.4, we show an example of the channel model (2.24) when there is no gain

mismatch, i.e., a = 1. Assume transmitting the codeword x1, the received vector (red dot)
is corrupted by the noise (blue dash line) and distorted by the offset mismatch (red dash
line). The MED will incorrectly decode the received vector into the codeword x3 since
the received vector is within the subset where x3 is. In the next section, a detector based
on the modified Pearson distance is shown to decode the received vector in this example
successfully.

3
x

4
x

2
x

1
x

b
1

r x v 1

Figure 2.4: Graphic illustration of channel model (2.24) of four codewords.

An MPD chooses a codeword minimizing the Pearson distance between the received
vector r and candidate codeword x̂ ∈ S, that is,

xo = argmin
x̂∈S

δP (r, x̂). (2.25)

An essential property of the Pearson distance is that it is invariant under separate changes
in location and scale in the two variables. That is, we may transform r to a+br and trans-
form x̂ to c +d x̂, where a, b, c, and d are constants with b,d > 0, without changing the
correlation coefficient, that is,

δP (r, x̂) = δP (a +br,c +d x̂). (2.26)

Clearly, this property ensures that the detection outcome based on the Pearson dis-
tance (2.23) is intrinsically resistant to offset and gain mismatch.
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An equivalent of the Pearson distance measure is

δP (r, x̂) =1−ρr,x̂

=1−

n∑
i=1

(ri − r̄)(xi − ¯̂x)

σrσx̂

≡−

n∑
i=1

ri (xi − ¯̂x)

σx̂
+

r̄
n∑

i=1
(xi − ¯̂x)

σx̂

=−

n∑
i=1

ri (xi − ¯̂x)

σx̂
,

where the third equality has removed an irrelevant term in the minimization process and
the last equation follows from ¯̂x = 1

n

∑n
i=1 x̂i .

2.4.1. PEARSON CODES
The use of MPD requires that the code satisfies certain conditions since an MPD can-

not distinguish between the words x̂ and c1x̂+ c21, c1,c2 ∈ R, c1 > 0. It is further imme-
diate, see (2.23), that the Pearson distance is undefined for codewords x with σx = 0,
for example, the all-one vector. Thus some codewords must be taken from a codebook
S ⊆ [q]n that guarantees unambiguous detection, which type of codes are named Pear-
son codes.

The Pearson code introduced by Immink and Weber is defined as a set of codewords
that can be uniquely decoded by an MPD. Let S be a codebook of chosen codewords
x = (x1, x2, . . . , xn) over the alphabet [q], q ≥ 2. Thus the codewords in a Pearson code
must have these two properties:

• Property 1: If x ∈ S then c1x+ c21 ∉ S for all c1,c2 ∈R with (c1,c2) 6= (1,0) and c1 > 0.

• Property 2: x = (c,c, . . . ,c) ∉ S for all c ∈R.

One example of Pearson codes called T -constrained codes [49], and the optimal Pearson
codes [51] will be included in this subsection.

T -CONSTRAINED CODES

For an integer T , 1 ≤ T ≤ q , the T -constrained code consists of q-ary n-length code-
words where T reference symbols must appear at least once in a codeword. Denote a set
of T -constrained codes as ST . The cardinality of T -constrained codes equals

|ST | =
T∑

i=0
(−1)i

(
T

T − i

)
(q − i )n ,n ≥ T. (2.27)

We present two example sets of T -constrained codes: a binary 1-constrained code, de-
noted by S1 and a binary 2-constrained code, denoted by S2. The set S1 has binary code-
words where the symbol ‘0’ appears at least once, and the set S2 contains binary code-
words where both the symbols ‘0’ and ‘1’ appear at least once. The size of |S1| and |S2|,
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respectively, equal

|S1| = 2n −1 (2.28)

and

|S2| = 2n −2. (2.29)

S2 contains all sequences with all-one and all-zero codewords excluded, and S1 contains
all sequences with all-one codewords excluded. The 2-constrained code S2 is a Pearson
code as it satisfies Properties 1 and 2. Here we define the modified block code as the reg-
ular block code with all-one and all-zero codewords removed. The 1-constrained code
S1, excluding the all-one codeword, is not a Pearson code but can be used in minimum
modified Pearson distance detection, which will be discussed in the next section.

OPTIMAL PEARSON CODES

A Pearson code with maximum possible size given the alphabet size q and length n is
said to be optimal. Let m(x) and M(x) denote the smallest and largest value, respectively,
among xi ,1 ≤ i ≤ n of x = (x1, x2, . . . , xn). Furthermore, in case x is not the all-zero word,
let GC D(x) denote the greatest common divisor of the xi . For any n, q ≥ 2, all sequences
x in an optimal Pearson code, denoted by Pq,n , satisfy the following properties:

• m(x) = 0;

• M(x) > 0;

• GC D(x) = 1.

It is evident that the binary 2-constrained code S2 of size 2n −2 is the optimal Pearson
code. However, for q > 3, the 2-constrained sets such that reference symbols ‘0’ and ‘1’
appear at least once are not optimal Pearson codes when n > 2.

The cardinality (number) of a q-ary optimal Pearson code of length n equals

∣∣Pq,n
∣∣= q−1∑

d=1
µ(d)

((⌊
q −1

d

⌋
+1

)n

−
⌊

q −1

d

⌋n

−1

)
, (2.30)

where µ(d) is the Mobius function. For a positive integer d , µ(d) is defined to be 0 if d
is divisible by the square of a prime, otherwise µ(d) = (−1)k where k is the number of
(distinct) prime divisors of d .

2.4.2. PERFORMANCE ANALYSIS

We will now examine the error performance of the Pearson distance based detection
scheme. The receiver uses the Pearson distance (2.23) for the evaluation of the received
word, where we assume that x ∈ S2 is sent, and received as r = x+ v. S2 is a codebook
wherein both the two symbols ‘0’ and ‘1’ appear at least once. The receiver errs if there
is at least one codeword x̂ 6= x, x̂ ∈ S2, such that

δP (r, x̂) < δP (r,x). (2.31)
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After some manipulation of (2.23), we may use an equivalent of the Pearson distance
measure and obtain

−
n∑

i=1
ri (

x̂i − ¯̂x

σx̂
) <−

n∑
i=1

ri (
xi − x̄

σx
).

We substitute ri = xi + vi , and obtain

n∑
i=1

(xi + vi )(mi −m̂i ) < 0, (2.32)

where

mi = xi − x̄

σx

and

m̂i = x̂i − ¯̂x

σx̂
.

The left-hand side of inequality (2.32) is a stochastic variable with distribution N (αP ,βPσ
2),

where

αP =
n∑

i=1
xi (mi −m̂i )

and

βP =
n∑

i=1
(mi −m̂i )2.

Since
n∑

i=1
mi =

n∑
i=1

m̂i = 0,

we have

αP =
n∑

i=1
xi (mi −m̂i ) =

n∑
i=1

(xi + x̄)(mi −m̂i )

=
n∑

i=1
(xi + x̄)( xi−x̄

σx
− x̂i− ¯̂x

σx̂
) =σx(1−ρx,x̂).

(2.33)

In a similar fashion, we find
βP = 2(1−ρx,x̂). (2.34)

Define the square of the distance, d 2
P (x, x̂), between the codewords x and x̂ by

d 2
P (x, x̂) = 4α2

P

βP
= 2σ2

x (1−ρx,x̂). (2.35)

The WER over all coded sequences x is, due to the union bound, bounded from above by

W ER < 1

|S2|
∑

x∈S2

∑
x6=x̂

Q

(
dP (x, x̂)

2σ

)
. (2.36)

Then, for asymptotically large signal-to-noise-ratio’s, i.e. forσ¿ 1, the word error rate is
over-bounded by

W ER < NP Q

(
dmin,P

2σ

)
, (2.37)
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where NP is the average number of nearest neighbors at minimum distance

d 2
min,P = min

x,x̂∈S2,x6=x̂
d 2

P (x, x̂) (2.38)

for every codeword.

2.5. MINIMUM MODIFIED PEARSON DISTANCE BASED DETEC-
TION (MMPD)

As shown in [49], a simpler Pearson distance-based criterion leading to the same
result in the minimization process reads

δ′P (r, x̂) =
n∑

i=1
(ri − x̂i + ¯̂x)

2
, (2.39)

if there is no gain mismatch, a = 1 , in channel model (2.24). That is,

r = x+v+b1, (2.40)

where the offset mismatch is constant within one codeword length and may vary word
by word. We can calculate the δ′p distance to an arbitrary codeword x̂ in the code as

δ′P (r, x̂) =
n∑

i=1
(xi + vi +b − x̂i + ¯̂x)

2

=
n∑

i=1
(xi + vi − x̂i + ¯̂x)

2 +2b
n∑

i=1
(xi + vi − x̂i + ¯̂x)+b2

=
n∑

i=1
(xi + vi − x̂i + ¯̂x)

2 +2b
n∑

i=1
(xi + vi )+b2. (2.41)

Note that the last two parts in (2.41) are independent of the choice of x̂. So it is shown
that the MMPD is intrinsically resistant to the channel offset b1.

After some manipulation of (2.39), we may write down an equivalent of the modified
Pearson distance measure, namely

n∑
i=1

((ri − r̄)− (xi − ¯̂x))2. (2.42)

The equivalence of (2.42) follows from

n∑
i=1

((ri − r̄)− (xi − ¯̂x))2 =
n∑

i=1
(ri − (xi − ¯̂x))2 −

n∑
i=1

2r̄(ri − (xi − ¯̂x))+nr̄2

=
n∑

i=1
(ri − (xi − ¯̂x))2 −nr̄2

≡ δ′P (r, x̂),

where the second equation follows from ¯̂x = 1
n

∑n
i=1 x̂i , and in the last equivalence we

have ignored an irrelevant term nr̄2 in the minimization process. Note that δ′P can
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not distinguish two candidate codewords with the same normalized values by defini-
tion (2.39).

Our example of four codewords is illustrated for MMPD in Figure 2.5. Actually, an
interpretation of MMPD from (2.42) is that the vectors in Rn are mapped to vectors in
the hyperplane {y ∈Rn : ȳ = 0} by orthogonal projection

1− 1
n − 1

n · · · − 1
n

− 1
n 1− 1

n · · · − 1
n

...
...

. . .
...

− 1
n − 1

n · · · 1− 1
n

 ,

i.e., in the direction 1, and that the squared Euclidean distance between these projec-
tions is calculated. As a consequence, the transmitted codeword x1 is successfully de-
coded by MMPD, since its projection is the closest to the projection of the received vec-
tor.

3
x

4
x

2
x

1
x

o

r

Figure 2.5: Graphic illustration of the minimum modified Pearson distance based detection of four codewords.

2.5.1. PERFORMANCE ANALYSIS
We will now examine the error performance of the modified Pearson distance based

detection scheme. The receiver uses the modified Pearson distance (2.39) for the evalu-
ation of the received word, where we assume that x ∈ S1 is sent, and received as r = x+v.
S1 is a codebook wherein the symbol ‘0’ appears at least once. Note that S1 is not a Pear-
son code, but it is feasible enough to the MMPD. The receiver errs if there is at least one
codeword x̂ 6= x, x̂ ∈ S1, such that

δ′P (r, x̂) < δ′P (r,x). (2.43)

Define e = x− x̂ and ē = x̄ − ¯̂x, so that

2
n∑

i=1
vi (ei − ē)+

n∑
i=1

(ei − ē)2 < 0. (2.44)
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The left-hand side of inequality (2.44) is a stochastic variable with distribution N (αMP ,βMPσ
2),

where

αMP =
n∑

i=1
(ei − ē)2

and

βMP = 4
n∑

i=1
(ei − ē)2.

We define the square of the distance, d 2
MP (x, x̂), between the codewords x and x̂ by

d 2
MP (x, x̂) = 4α2

MP

βMP
=

n∑
i=1

(ei − ē)2. (2.45)

The word error rate (WER) over all coded sequences x is, due to the union bound, bounded
from above by

W ER < 1

|S1|
∑

x∈S1

∑
x6=x̂

Q

(
dMP (x, x̂)

2σ

)
. (2.46)

Then, for asymptotically large signal-to-noise-ratios, i.e. for σ¿ 1, the word error rate is
upper-bounded by

W ER < NMP Q

(
dmin,MP

2σ

)
, (2.47)

where NMP is the average number of nearest neighbors at minimum distance

d 2
min,MP = min

x,x̂∈S1,x6=x̂
d 2

MP (x, x̂) = min
e6=0

n∑
i=1

(ei − ē)2 (2.48)

for every codeword.
As we introduced, MED and MPD are two ideal methods for channels with additive

white Gaussian noise and gain and/or offset mismatch, respectively. We compare these
two schemes for channel model (2.10), r = a(x+v)+b1, considering both noise and offset
mismatch with the same code. Because Pearson detection is dedicated to Pearson code,
we use the modified (7,4,3) Hamming code. The modified (7,4,3) Hamming code is the
Hamming code H3 with all-zero and all-one codewords excluded.

We first show the WER theoretical upper bounds and simulation curves of MED and
MPD in Figure 2.6. Simulation curves are obtained for the ideally matched channels with
only Gaussian noise. Each result is the average value after 10,000 times simulation. The
error performances are computed by upper bounds (2.22) and (2.37).

Two factors of a codebook play crucial roles in detectors’ performance. One is the
minimum distance, and another is the number of nearest neighbors at this distance.
Though the former is of utmost importance to the WER performance, the latter could
also play an important role. For modified (7,4,3) Hamming code, the average number
of nearest neighbors NE is 6, and the minimum squared distance d 2

min,E is 3. We can see
that the computer simulation (red line with diamonds) matches theoretical computation
(red dashed line) very well. For MPD, the average number of nearest neighbors NP is 6,
and the minimum squared distance d 2

min,P is 2.86. The simulation results (blue line with
asterisks) match the upper bound (blue dashed line) in high SNR.
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Figure 2.6: Theoretical upper bounds and simulated word error rate (WER) as a function of signal to noise ratio
(SNR) for the modified (7,4,3) Hamming code. The theoretical performances are computed by upper bounds
(2.22) and (2.37), and simulation curves are obtained for the ideally matched channels (a = 1,b = 0) with only
Gaussian noise.

Figure 2.7 shows the computer simulation comparison of MPD and MED in the ide-
ally matched case and the situation with a = 1.1 and b = 0.3. Results show that the MED
outperforms the MPD in the ideally matched case. The reason is that the minimum Eu-
clidean squared distance d 2

min,E of the modified (7,4,3) Hamming code is larger than its

minimum Pearson squared distance d 2
min,P with the same average number of nearest

neighbors. When there is the gain and offset mismatch, we see that the performance of
MED drops dramatically, while the performance of MPD almost stays the same. It sup-
ports our argument on the intrinsic immunity of MPD to the gain and offset mismatch.
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Figure 2.7: Simulated word error rate (WER) as a function of signal to noise ratio (SNR) for the modified (7,4,3)
Hamming code in the ideally matched case (a = 1,b = 0) and the situation with a = 1.1 and b = 0.3.
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R. Fisher

In storage and communication systems, noise is not the only disturbance during data
transmission. Sometimes the error performance can also be seriously degraded by offset
mismatch. In this chapter, we focus on noisy channels with unknown offset mismatch,
where an offset is in the all-one direction, i.e., b1. The maximum likelihood (ML) decod-
ing strategy for such channels is considered in two situations, where both noise and offset
mismatch are: (1) bounded; and (2) Gaussian distributed.

Firstly, we present an ML criterion when assuming bounded noise and offset. In particular,
for Euclidean distance-based decoding, modified Pearson distance-based decoding, and
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ML decoding, bounds are determined on the magnitudes of the noise and offset intervals,
leading to a word error rate equal to zero.

Secondly, for Gaussian distributed noise and offset, the ML criterion is shown to be a
weighted average of the well-known Euclidean and Pearson norms, where the weighting
coefficients depend on the ratio of the noise and offset variances. Based on this work, we
further propose a concatenated scheme and its corresponding decoding algorithm in case
of Gaussian noise and offset mismatch. Simulation results demonstrate the effectiveness
of the proposed codes and the error correction ability of the decoding algorithm in the
presence of both noise and offset mismatch.

3.1. INTRODUCTION
It is usually found that noise, which leads to unpredictable stochastic errors, is a crit-

ical issue for data transmission and storage systems. However, that also other physical
factors may hamper the reliability of the stored data. For example, in Flash memories,
the number of electrons of a cell decreases with time, and some cells become defective
over time [9]. In the digital optical recording, fingerprints and scratches on the surface
of discs result in offset variations of the retrieved signal [65].

In this chapter, a simple and basic model of the offset mismatch is considered. We
assume that the unknown offset mismatch is constant within one codeword block length
and may vary block by block. That is,

r = x+v+b1, (3.1)

where x = (x1, ..., xn) is the transmitted codeword from a codebook S ⊆ Rn , and a uni-
form distribution is assumed, i.e., all codewords are equally likely to be transmitted.
v = (v1, ..., vn) is the noise vector, where vi are identically independently distributed with
mean 0 and standard deviationσ, and r is the received vector. We denote the probability
density function of the noise vector as χ(v). We can also assume that b has a specified
probability density function ζ with mean µ and variance β2. Since a receiver can sub-
tract µ1 from r in case the expected offset value µ is not equal to zero, we may assume
µ= 0 without loss of generality.

There are usually two approaches to address the physical-related offset issues. One
approach uses pilot sequences to estimate the unknown channel offset [27], which is
often considered too expensive concerning redundancy. Other approaches are error-
correcting techniques. Up to now, various coding techniques have been applied to alle-
viate the detection in case of channel mismatch, specifically rank modulation [32], bal-
anced codes [34], and composition check codes [38]. These methods are often consid-
ered too expensive in terms of redundancy and complexity.

The so-called maximum likelihood (ML) principle says that the decoder should de-
code a word r as a codeword xo that has the maximum likelihood to r. A minimum
Euclidean distance based detection (MED) is an ML decoder for channels with Gaussian
noise. Since the retrieved data value has been offset in channels, the MED will be bi-
ased or grossly inaccurate. Immink and Weber [49] showed that detectors minimizing
the modified Pearson distance (MMPD) have immunity to offset mismatch. The MMPD
is an ML decoder when there exists the offset but not the noise in a channel. Further, in
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[56] and [62] a decoder was proposed based on minimizing a weighted sum of Euclidean
and Pearson distances, which is proved to be optimal for channels with Gaussian noise
and offset mismatch.

This chapter explores decoding criteria for channels with bounded noise and bounded
offset mismatch. Specifically, we consider MED, MMPD, and ML decoding. Most impor-
tantly, we investigate, for each of these decoders, under which constraints zero Word
Error Rate (WER) performance can be achieved.

In addition, for Gaussian distributed noise and offset mismatch, we derive the ML
criterion considering successive channel outputs, which includes the results in [56, 62]
as its particular case. A concatenated coding scheme is proposed in the case of Gaussian
noise and offset mismatch. A novel decoding algorithm for the concatenated scheme is
proposed, aiming to exploit its error correction potential better. The concatenation is
between a Reed-Solomon (RS) code and a certain coset of a block code proposed in [66].
The modified Pearson distance detection is used to decode the inner code. Its output
will be given to a two-stage hybrid decoding algorithm for the outer RS code. Simulation
results show that a considerable coding gain is achieved with an even higher code rate
compared with non-concatenated codes.

The remainder of this chapter is organized as follows. We explore an ML decoding
criterion for channels with bounded noise and offset mismatch in Section 3.2. Condi-
tions to achieve zero WER for MED, MMPD, and ML detectors are derived in Section
3.2.3. In Section 3.3, the ML decoding method is investigated when the noise and off-
set are Gaussian distributed. Further, a concatenated coding scheme and its decoding
algorithm are proposed in Section 3.4 for channels with Gaussian noise and offset. Sim-
ulation results for each situation are given, confirming the results.

3.2. MAXIMUM LIKELIHOOD DECODING FOR CHANNELS WITH

BOUNDED NOISE AND OFFSET

An increasing number of studies focus on an essential class of non-Gaussian stochas-
tic processes: bounded noise, which is motivated by the fact that the Gaussian stochastic
process is an inadequate mathematical model of the physical world because it is un-
bounded [67, 68]. Moreover, in many relevant cases, especially in Flash memory, the
impact of parameters (such as charge leakage) on the retrieved data value should not be
arbitrarily large. Consequently, not taking into account the bounded nature of stochastic
variations may lead to impracticable model-based inferences.

In this section, we explore ML decoding criterion for channels (3.1) with bounded
noise and offset mismatch. Most importantly, we investigate, for MED, MMPD, and ML
decoders, under which constraints zero WER performance can be achieved. We should
stress that zero WER performance is achieved without assumptions of specific distri-
butions for the bounded noise and offset. If more information is available about these
distributions, other decoding methods might be appropriate. For example, with the as-
sumption of uniformly distributed noise and offset, subtraction can be used naturally
instead of integral in the decoding as shown in Subsection 3.2.2.
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3.2.1. DECODING CRITERION
The values vi in the noise vector v = (v1, v2, . . . , vn) are independently and identically

distributed with probability density function φ, leading to a probability density func-
tion χ(v) = Πn

i=1φ(vi ) for v. We assume that the noise values are restricted to a certain
range. More specifically,φ only takes non-zero values on an interval (−σ,σ), whereσ> 0.
Hence, −σ< vi <σ for all i . For a codeword x̂ = (x̂1, . . . , x̂n) ∈ S, we define its noise envi-
ronment as

Ux̂ = {u = (u1, . . . ,un) ∈Rn : x̂i −σ< ui < x̂i +σ}. (3.2)

For the offset b, we assume that it has a probability density function ζ, which only
takes non-zero values on an interval (γ,η). Hence, γ < b < η. Since the receiver can
subtract η+γ

2 1 from r if the offset range is not symmetric around zero, we may assume
without loss of generality that the offset is within the range (−β,β), where β= (η−γ)/2,
which we will do throughout the rest of this section. We define

Lr = {r− t1 : t ∈ (−β,β)} (3.3)

for a vector r ∈Rn .
In order to achieve ML decoding, we need to choose the codeword of maximum

likelihood given the received vector. Assuming all codewords are equally likely, this is
equivalent to maximizing the probability density value of the received vector r given the
candidate codeword x̂. With (3.1), we should thus maximize

ψ(r− x̂) =
∫ ∞

−∞
χ(r− x̂−b1)ζ(b)db (3.4)

over all candidate codewords x̂, where χ and ζ are the probability density functions of
the noise and offset, respectively. χ and ζ can be any distribution as long as they are
restricted to the indicated intervals. In Subsection 3.2.2, we will show the results assum-
ing specific distributions. Because both φ and ζ are bounded between a minimum and
a maximum, the integral range of (3.4) is the intersection of the line segment Lr to the
noise environment Ux̂ of a codeword x̂. Thus ML decoding is equivalent to choosing
codeword x̂ which has the largest integral value over the intersection interval.

Note from (3.2) and (3.3) that a point r− t1 of Lr is in Ux̂ if and only if t satisfies{
ri − x̂i −σ< t < ri − x̂i +σ,∀i = 1, . . . ,n,

−β< t <β.
(3.5)

From this observation, we find that (3.4) equals{ ∫ t0(r,x̂)
t1(r,x̂) χ(r− x̂−b1)ζ(b)db if t0(r, x̂) > t1(r, x̂),

0 otherwise,
(3.6)

where
t0(r, x̂) = min

(
{ri − x̂i +σ |i = 1, ...,n }∪ {β}

)
,

t1(r, x̂) = max
(
{ri − x̂i −σ |i = 1, ...,n }∪ {−β}

)
.

(3.7)

t0(r, x̂) and t1(r, x̂) represent the maximum and the minimum values of a point in in-
tersecting line segment, respectively. If there is an intersection, it corresponds to the
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parametric interval t1(r, x̂) < t0(r, x̂). Note that ψ(r− x̂) is immediately set to 0 without
further computation if t1(r, x̂) > t0(r, x̂). For instance, when the noise and the offset are
uniformly distributed, the ML decoding is maximizing the length of the intersection be-
tween the line segment Lr and the noise environment Ux̂ given the candidate codeword
x̂.

3.2.2. CASE STUDIES
Here, we consider several noise and offset distributions. Simulated WER results are

shown for the (3,2) parity check code

S∗ = {(0,0,0), (1,1,0), (1,0,1), (0,1,1)} (3.8)

in combination with different decoders. This simple codebook is used to demonstrate
some important WER characteristics. Code book construction as such is referred to [54].

UNIFORM NOISE AND OFFSET

The uniform distribution is the most-commonly used for bounded random vari-
ables. Let the probability density function of a random variable which is uniformly
distributed on the interval (τ1,τ2) be denoted by U (τ1,τ2). The uniform distribution
U (τ1,τ2) has probability density function

U (x) =
{ 1

τ2−τ1
if τ1 < x < τ2,

0 otherwise.
(3.9)

Hence, for the noise we assume vi ∼U (−σ,σ) and for the offset b ∼U (−β,β).
Because of the uniform nature of both φ and ζ, ML criterion (3.6) is tantamount to

choosing a codeword x̂ for which the noise environment Ux̂ has the largest intersection
with the line segment Lr. Therefore, define the intersection distance, ISD(r, x̂), between
r and x̂ as the length of the intersection between the noise environment Ux̂ and the line
segment Lr. The most likely candidate codeword xo for a received vector has the largest
intersection distance, that is

xo = argmax
x̂∈S

ISD(r, x̂). (3.10)

We can express the intersection distance between r and x̂ as

ISD(r, x̂) =
√

n(max{t0(r, x̂)− t1(r, x̂),0})2. (3.11)

Note that maximizing ISD(r, x̂) is equivalent to maximizing a simplified measure

ISD′(r, x̂) = max{t0(r, x̂)− t1(r, x̂),0}, (3.12)

i.e., choosing the codeword x̂ for which the part of the line segment Lr that is within Ux̂

is largest.
Simulated WER results for the (3,2) parity check code and various values of σ and β

are shown in Figures 3.1-3.3 for MED, MMPD, and ML decoders, respectively.
In Figure 3.1, we observe that the performance of the MED gets worse with increasing

values of σ and/or β. In Figure 3.2, the curves for different values of β overlap because
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Figure 3.1: Simulated WER of Euclidean distance based decoding for codebook S∗ on channels with uniform
noise vi ∼U (−σ,σ) and uniform offset b ∼U (−β,β).
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Figure 3.2: Simulated WER of Pearson distance based decoding for codebook S∗ on channels with uniform
noise vi ∼U (−σ,σ) and uniform offset b ∼U (−β,β).
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Figure 3.3: Simulated WER of ML decoding for codebook S∗ on channels with uniform noise vi ∼ U (−σ,σ)
and uniform offset b ∼U (−β,β).

of the MMPD’s intrinsic immunity to offset mismatch. In Figure 3.3, we can observe that
the performance of the MED is close to ML performance whenβ= 0.15 The performance
of the MMPD is close to ML performance when β= 0.30.

Most interestingly, for MED, WER approaches zero if σ≤ 1/2−β, while for MMPD, it
happens whenσ< 1/4. WER approaches zero for the ML decoding ifσ≤ 1/4 orσ≤ 1/2−
β, i.e., σ≤ max{1/4,1/2−β}. Indeed, we observe in Figure 3.3 a zero WER for σ≤ 0.35 if
β= 0.15, for σ≤ 0.30 if β= 0.20, and for σ≤ 0.25 if β= 0.25 or β= 0.30. We will show in
Section 3.2.3 that, for all decoders under consideration, a WER of zero is achieved if the
magnitudes of the noise and offset intervals satisfy certain conditions.

UNIFORM NOISE AND VARIOUS OFFSET DISTRIBUTIONS

Here, we consider uniform noise again, but various options for the offset distribu-
tion. In particular, vi ∼U (−0.3,0.3), while the offset is (i) uniform, i.e., b ∼U (−β,β), as
in the previous case, (ii) triangular, i.e., b ∼ T (−β,0,β), as specified next, or (iii) Gaus-
sian with mean zero and variance β2, i.e., b ∼ N (0,β2). The last option is included for
comparison purposes. The triangular distribution T (−β,0,β) has probability density
function

T (x) =
{ 1

β (1− 1
β
|x|) if −β< x <β,

0 otherwise.
(3.13)

In Figures 3.4-3.6 we present WER results for the example code S∗ for the three offset
options under consideration. For a fair comparison, we present the WER as a function
of the standard deviation of the offset.

In general, note that the WER of MMPD has the same constant value for all cases
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Figure 3.4: Simulated WER for codebook S∗ on channels with uniform noise vi ∼ U (−0.3,0.3) and uniform
offset b ∼U (−β,β).
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Figure 3.5: Simulated WER for codebook S∗ on channels with uniform noise vi ∼ U (−0.3,0.3) and triangular
offset b ∼T (−β,0,β).
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Figure 3.6: Simulated WER for codebook S∗ on channels with uniform noise vi ∼ U (−0.3,0.3) and Gaussian
offset b ∼N (0,β2).

since it does not depend on the offset, i.e., it is entirely determined by the noise bound-
ary σ= 0.3. It is close to ML performance in case of large standard deviations. The per-
formance of MED is close to ML performance for small standard deviations. For medium
standard deviations, ML decoding outperforms both MED and MMPD in all three cases.

We also observe in Figure 3.4 that the WERs of MED and ML decoders approach zero
if the standard deviation β/

p
3 of the uniform offset distribution is at most 0.12, and in

Figure 3.5 that the WER approaches zero if the standard deviation β/
p

6 of the triangular
offset distribution is at most 0.08. On the other hand, we see in Figure 3.6 that for Gaus-
sian offset, zero WER can only be achieved by extremely small noise, as expected, due to
the unbounded nature of the Gaussian distribution. In the following subsection, we will
analyze the zero WER constraints for different detectors.

3.2.3. ZERO ERROR ANALYSIS
This subsection shows that, for all decoders under consideration, a WER of zero is

achieved if the magnitudes of the noise and offset intervals satisfy certain conditions.

MINIMUM EUCLIDEAN DISTANCE BASED DETECTION

The Euclidean decoder can achieve zero WER for channels with bounded noise and
offset when σ+β is sufficiently small, as shown in the following result.

Theorem 1. If the noise and offset are restricted to the intervals (−σ,σ) and
(−β,β

)
, re-

spectively, with

σ+β≤ min
s,c∈S,s6=c


n∑

i=1
(si − ci )2

2
n∑

i=1
|si − ci |

 , (3.14)
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then the Euclidean decoder achieves a WER equal to zero.

Proof. Assume that x ∈ S is sent and r = x+ v+b1 is received. Then, for all codewords
x̂ 6= x, it holds that

δE (r, x̂)−δE (r,x)

=
n∑

i=1
(ri − x̂i )2 −

n∑
i=1

(ri −xi )2

=
n∑

i=1
(ri −xi − x̂i +xi )2 −

n∑
i=1

(ri −xi )2

=
n∑

i=1
(x̂i −xi )2 −2

n∑
i=1

(x̂i −xi )(ri −xi )

=
n∑

i=1
(x̂i −xi )2 −2

n∑
i=1

(x̂i −xi )(vi +b)

≥ 2(σ+β)
n∑

i=1
|x̂i −xi |−2

n∑
i=1

|x̂i −xi | |vi +b|

= 2
n∑

i=1
|x̂i −xi | (σ+β−|vi +b|)

> 0,

where the fourth equality follows from ri = xi + vi +b, the first inequality follows from
(3.14) and the last inequality from the fact that |vi +b| ≤ |vi |+|b| <σ+β for all i . Hence,
if decoding is based on minimizing the Euclidean distance, the transmitted codeword is
always chosen as the decoding result, leading to a WER equal to zero.

MINIMUM MODIFIED PEARSON DISTANCE BASED DETECTION

Since modified Pearson distance based decoding features its immunity to offset mis-
match, zero WER performance only requires a limited value of σ, shown in the following
theorem.

Theorem 2. If the noise and offset are restricted to the intervals (−σ,σ) and
(−β,β

)
, re-

spectively, with

σ< min
s,c∈S,s6=c


n∑

i=1
(si − s̄− ci + c̄)2

n−1
n 4

n∑
i=1

|si − s̄− ci + c̄|

 , (3.15)

then the Pearson decoder achieves a WER equal to zero.

Proof. Assume that x ∈ S is sent, and r = x+v+b1 is received. Then, for all codewords
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x̂ 6= x, it holds that

δ′P (r, x̂)−δ′P (r,x)

=
n∑

i=1
(ri − x̂i + ¯̂x)2 −

n∑
i=1

(ri −xi + x̄)2

=
n∑

i=1
(ri − x̂i + ¯̂x− r̄)2 −

n∑
i=1

(ri −xi + x̄− r̄)2

=
n∑

i=1
(xi − x̄− x̂i + ¯̂x)2

+
n∑

i=1
2(xi − x̄− x̂i + ¯̂x)(ri −xi + x̄− r̄)

=
n∑

i=1
(xi − x̄− x̂i + ¯̂x)2 +

n∑
i=1

2(xi − x̄− x̂i + ¯̂x)(vi − v̄)

> n−1
n 4σ

n∑
i=1

∣∣xi − x̄− x̂i + ¯̂x
∣∣
−

n∑
i=1

2
∣∣xi − x̄− x̂i + ¯̂x

∣∣ |vi − v̄|

=
n∑

i=1

∣∣xi − x̄− x̂i + ¯̂x
∣∣ ( n−1

n 4σ−2 |vi − v̄|)
≥ 0,

(3.16)

where the fourth equality follows by substituting ri = xi + vi + b and r̄ = x̄+ v̄+ b, the
first inequality from (3.15), and the last inequality from the fact that |vi − v̄| < n−1

n 2σ
for all i . Hence, if decoding is based on minimizing the modified Pearson distance, the
transmitted codeword is always chosen as the decoding result, leading to a WER equal
to zero.

MAXIMUM LIKELIHOOD DECODING

Finally, we show that zero WER for ML decoding is achieved ifσ orσ+β is sufficiently
small.

Theorem 3. If the noise and offset are restricted to the intervals (−σ,σ) and
(−β,β

)
, re-

spectively, with

σ≤ min
s,c∈S,s6=c

 max
1≤i , j≤n

{(si − ci )− (s j − c j )}

4

 (3.17)

or

σ+β≤ min
s,c∈S,s6=c

 max
i=1,...,n

(|si − ci |)
2

 (3.18)

then the ML decoder achieves a WER equal to zero.

Proof. Assume that x ∈ S is sent and r = x+v+b1 is received. We will show that if (3.17)
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or (3.18) holds, then ψ(r− x̂) = 0 for all codewords x̂ 6= x. First of all, note that

t0(r, x̂)− t1(r, x̂)
= min

(
{ri − x̂i +σ |i = 1, . . . ,n }∪ {β}

)
−max

(
{ri − x̂i −σ |i = 1, . . . ,n }∪ {−β}

)
= min

(
{ri − x̂i +σ |i = 1, . . . ,n }∪ {β}

)
+min

(
{−(ri − x̂i )+σ |i = 1, . . . ,n }∪ {β}

)
= min({2β}∪ { min

i=1,...,n
{−|ri − x̂i |}+σ+β}

∪{ min
1≤i , j≤n

{(ri − x̂i )− (r j − x̂ j )}+2σ}).

(3.19)

Next, we will show that if (3.17) or (3.18) holds, this expression is negative whenever x̂ 6= x.
If (3.17) holds, then

min
1≤i , j≤n

{(ri − x̂i )− (r j − x̂ j )}+2σ

= min
1≤i , j≤n

{(ri − x̂i )− (r j − x̂ j )}−2σ+4σ

< min
1≤i , j≤n

{(ri − x̂i )− (r j − x̂ j )− (vi − v j )}+4σ

= min
1≤i , j≤n

{[(ri − x̂i )− (r j − x̂ j )]

−[(ri −xi −b)− (r j −x j −b)]}+4σ
= min

1≤i , j≤n
{(xi − x̂i )− (x j − x̂ j )}+4σ

=− max
1≤i , j≤n

{(x̂i −xi )− (x̂ j −x j )}+4σ

≤ 0.

(3.20)

where the first inequality follows from the fact that vi − v j ≤ |vi |+ |v j | < 2σ and the sec-
ond inequality from (3.17).

If (3.18) holds, then

min
i=1,...,n

{−|ri − x̂i |}+σ+β
= min

i=1,...,n
{−|ri − x̂i |}−σ−β+2(σ+β)

< min
i=1,...,n

{−|ri − x̂i |− |vi +b|}+2(σ+β)

= min
i=1,...,n

{−|ri − x̂i |− |ri −xi |}+2(σ+β)

≤ min
i=1,...,n

{−|xi − x̂i |}+2(σ+β)

=− max
i=1,...,n

{|xi − x̂i |}+2(σ+β)

≤ 0,

(3.21)

where the first inequality follows from the fact that |vi +b| ≤ |vi |+|b| <σ+β and the last
inequality from (3.18).

Combining (3.19), (3.20), and (3.21) with (3.4) and (3.6), we find that indeedψ(r−x̂) =
0 for all codewords x̂ 6= x, while the probability density value of the received vector r given
the transmitted codeword x is larger than 0, i.e.,ψ(r−x) > 0. This implies that if decoding
is based on maximizing (3.6), the transmitted codeword is always chosen as the decoding
result, leading to a WER equal to zero.
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For the codebook S∗, the bound on σ+β for an MED in (3.14) is 1/2, the bound on
σ for an MMPD in (3.15) is 3/16, and the bounds on σ and σ+β for an ML decoder in
(3.17) and (3.18) are 1/4 and 1/2, respectively.

Considering Figures 3.1-3.3, results from Theorems 1-3 are confirmed. The zero WER
of MMPD is indeed achieved if σ < 3/16. However, the shown results suggest that this
may not be the best upper bound for the code under consideration. In addition, for
σ = 0.3 and the example code S∗, Theorems 1 and 3 give that, for both MED and ML
decoding, the WER is equal to zero if the offset is restricted to the interval (−β,β) with
β≤ 0.5−0.3 = 0.2. This confirms the results from Figures 3.4-3.5: for uniform offset, the
zero WER is achieved if standard deviation 0.2/

p
3 ≈ 0.12; for triangular offset, the zero

WER is achieved if standard deviation 0.2/
p

6 ≈ 0.08.

3.3. MAXIMUM LIKELIHOOD DECODING FOR CHANNELS WITH

GAUSSIAN NOISE AND OFFSET
This section focus on the situation where the noise and the offset mismatch are Gaus-

sian distributed. In ML decoding, the receiver would like to pick from the codebook a
codeword most like the received vector and output it. This gives the codeword that has
the highest likelihood of being the one that was actually transmitted. In order to achieve
ML decoding, one needs to maximize

ψ(r− x̂) =
∫ ∞

−∞
χ(r− x̂−b1)ζ(b)db (3.22)

over all candidate codewords. It is a convolution of the probability density functions of
the noise and the offset. We will investigate the ML criterion for channel model (3.1)
considering channel outputs with the length of one word and several words. In both
cases, the noise and offset are assumed to be independent of each other. The offset is
constant within a codeword length n, and its value may vary for the next block.

An ML decoding method of one-word length n is derived in [62], for which we will
present the result but not give the proof. Later, simulations of two linear codes are
demonstrated for this case. The noise samples vi are normally distributed with mean
0 and standard deviation σ. Thus the probability density function χ(v) of the noise vec-
tor v follows the multi-dimensional Gaussian distribution as shown in Equation (2.15).
We also assume that the channel offset b follows a Gaussian distribution with zero mean
and variance β2, that is,

ζ(b) = 1

β
p

2π
e
− b2

2β2 .

Let λ denote the ratio of the noise and offset variances, i.e., λ = σ2/β2. Theorem 3
in [62] shows that in case the noise and the offset are assumed to be normally distributed,
ML decoding is achieved by minimizing

λ

n +λδE (r, x̂)+ n

n +λδ
′
P (r, x̂), (3.23)

where δE (r, x̂) is the Euclidean distance defined in Equation (2.16) and δ′P (r, x̂) is the
modified Pearson distance defined in Equation (2.39). Next, we will use (3.23) as the
decoding criterion in simulations of two codes.
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The findings in Table 3.1 is the simulated WER results for the (3,2) parity check code,
S∗ of length 3 and size 4, in combination with different decoders and various choices for
the noise and offset standard deviations.

Table 3.1: Simulated word error rate (WER) results of MED, MMPD, and ML decoding with (3,2) parity check
code for channels with Gaussian noise and offset.

σ β (2.16) (2.39) (3.23)

(Euclidean) (Pearson) MLGauss

0.2 1 0.318 0.031 0.030

0.2 0.2 0.026 0.031 0.009

0.3 0.2 0.064 0.130 0.054

0.3 0.01 0.025 0.130 0.025
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Figure 3.7: Simulated word error rate (WER) versus the standard deviation of the noise of MED, MMPD, and
ML detectors for (3,2) parity check code when the standard deviation of the offset β= 0.2.

Furthermore, performances of these detectors as a function of standard deviations
of the noise and offset are shown in the Figures 3.7 and 3.8. In Figure 3.7, the standard
deviation of the noise σ is set from 0.1 to 0.6, where the standard deviation of the offset
β is fixed at 0.2. In Figure 3.8, the WER results with the offset standard deviation β from
0.1 to 0.6 has been pictured, in which the standard deviation of noise σ is fixed at 0.2.

Note that in the case neither the noise nor the offset is strongly dominating the other,
the ML decoder is clearly outperforming both MED and MMPD. The performance of
MMPD is unchangeable with β as we expected. What’s more, when the offset standard
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Figure 3.8: Simulated word error rate (WER) versus the standard deviation of the offset of MED, MMPD, and
ML detectors for (3,2) parity check code when the standard deviation of the noise σ= 0.2.

deviation equals the noise standard deviation, i.e., σ=β, the weight of MED and MMPD
are 1/(n +1) and n/(n +1) respectively in the ML decoder. The criterion tends more and
more towards the offset-resistant Pearson distance when n is increasing. The reason
for this is that the standard deviation per dimension is σ/

p
n for the noise, while it is

constant at β for the offset.
The findings in Table 3.2 is the simulated WER results for the modified (7,4,3) Ham-

ming code of size 14, presented in Section 2.1.2, in combination with different detectors
and various choices for the noise and offset standard deviations.

Table 3.2: Simulated word error rate (WER) results of MED, MMPD, and ML decoding with modified (7,4,3)
Hamming code for channels with Gaussian noise and offset.

σ β (2.16) (2.39) (3.23)

(Euclidean) (Pearson) MLGauss

0.3 1 0.187 0.014 0.014

0.3 0.2 0.019 0.014 0.013

0.4 0.2 0.098 0.093 0.090

0.4 0.01 0.085 0.093 0.085

The performances of MED, MMPD, and ML detector with different standard devia-
tions of noise are shown in the Figures 3.9 and 3.10. Figure 3.9 pictures the WER versus
the standard deviation of the noiseσ from 0.2 to 0.6, where the standard deviation of the



3

46 3. NOISY CHANNELS WITH UNKNOWN OFFSET MISMATCH

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-3

10
-2

10
-1

W
E

R

MED

MMPD

ML

Figure 3.9: Simulated word error rate (WER) versus the standard deviation of the noise of MED, MMPD, and
ML detectors for modified (7,4,3) Hamming code when the standard deviation of the offset β= 0.2.
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Figure 3.10: Simulated word error rate (WER) versus the standard deviation of the offset of MED, MMPD, and
ML detectors for modified (7,4,3) Hamming code when the standard deviation of the noise σ= 0.4.

offset β is fixed at 0.2. As we can see, performances of MMPD and ML are highly close
for a small value of the standard deviation of the noise, while MED is worse than both
of them. However, both MED and MMPD show similar performance as ML for large val-
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ues of the standard deviation of the noise. It is clear that with the increase of standard
deviation of the noise, the MED performs only slightly better than MMPD.

In addition, the performances of MED, MMPD, and ML detector with different stan-
dard deviations of offset are shown in Figure 3.10. Here, the standard deviation of the
noise is set at 0.4 because, in this case, we can get the enlarged view of both MED and
MMPD dominant areas. The performance of MMPD is unchangeable with β as we ex-
pected, while WER of MED increases with β and ML detector outperforms both MED
and MMPD.

Now, we explore a criterion to achieve ML decoding for several successive channel
outputs together. This theoretical work serves as the basis for the design of concate-
nated coding schemes presented in Section 3.4. Specifically, this model assumes that a
received sequence, r, of length N = l ×n spans l blocks of length n for a positive integer
l > 1.

Based on the channel model, we define a total distortion of length N as

d = v+b,

where v is the noise vector of length N with i.i.d. Gaussian noise samples, and

b = (b11n ,b21n , . . . ,bl 1n)

is the offset vector with i.i.d. Gaussian offset samples, bi ∼ N (0,β2), i = 1, . . . , l , which
are constant within each block of length n. Denote the probability density function of b
as γ(b). Then the probability density function of d is given by

ψ(d) =
∫ ∞

−∞
φ(d−b)γ(b)db. (3.24)

An ML decoder will choose a codeword maximizing the probability density function
(3.24), that is,

argmax
x̂∈S

ψ(d).

In the situation of zero-mean Gaussian noise and offset, d has a multivariate Gaus-
sian distribution with mean vector 0 and covariance matrix Σ. Since the noise is inde-
pendent of the offset, Σ is an N ×N matrix partitioned by

Σ=


An 0 · · · 0

0
. . .

...
... An 0
0 · · · 0 An

 , (3.25)

where An is an n×n matrix with all entries on the main diagonal equal to σ2 +β2 and all
other entries equal to β2. Thus, the probability density function of d is

ψ(d) = exp(−dΣ−1dT/2)√
(2π)N detΣ

, (3.26)
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where Σ−1 is the inverse matrix of Σ and detΣ is the determinant of Σ.

The determinant and the inverse matrix of An are

detAn =σ2(n−1)(σ2 +nβ2) (3.27)

and

A−1
n = 1

σ2

(
In − β2

σ2 +nβ2 1n×n

)
, (3.28)

where In is an n ×n identity matrix and 1n×n is an n ×n all-one matrix. An is a non-
singular matrix since detAn 6= 0. Thus, we have that

detΣ= detAl
n (3.29)

and

Σ−1 =


A−1

n 0 · · · 0

0
. . .

...
... A−1

n 0
0 · · · 0 A−1

n

 . (3.30)

Since the logarithm function is strictly increasing on the positive real numbers and
ψ is a positive function, ML decoding can also be achieved by maximizing the logarithm
of (3.26), i.e.,

lnψ(d) =−N

2
ln(2π)− 1

2
ln(detΣ)− 1

2
dΣ−1dT,

rather than maximizing (3.26) itself. By inverting the sign and ignoring irrelevant terms,
we find that maximizing lnψ(d) is equivalent to minimizing

lndetAl
n+

N∑
i=1

N∑
j=1

di


A−1

n 0 · · · 0

0
. . .

...
... A−1

n 0
0 · · · 0 A−1

n


i j

d j , (3.31)

where di is the i -th term in the vector d. By applying (3.27), the first term of (3.31) is

lndetAl
n = l ln(σ2(n−1)(σ2 +nβ2)). (3.32)

The term (3.32) is irrelevant to the optimization process (independent of x̂). For any
vector u of length N , denote its segments of length n as u(k), k = 1, . . . , l . The second
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term of (3.31) is

N∑
i=1

N∑
j=1

di


A−1

n 0 · · · 0

0
. . .

...
... A−1

n 0
0 · · · 0 A−1

n


i j

d j

= 1

σ2

[
n∑

i=1
(di )2 − β2

σ2 +nβ2 n2(r(1) − x̂(1))2

]

+ 1

σ2

[
2n∑

i=n+1
(di )2 − β2

σ2 +nβ2 n2(r(2) − x̂(2))2

]
. . .

+ 1

σ2

[
N∑

i=(l−1)n+1
(di )2 − β2

σ2 +nβ2 n2(r(l ) − x̂(l ))2

]
,

where the average value of the segment u(k) is defined by

u(k) = 1

n

kn∑
i=(k−1)n+1

ui , (3.33)

for k = 1, . . . , l . Substituting

n(r(k) − x̂(k))2 = δE (r(k), x̂(k))−δ′P (r(k), x̂(k)),

which follows from definitions of Euclidean distance (2.16) and modified Pearson dis-
tance (2.39), gives that the ML decoding criterion is to minimize

l∑
k=1

[
λ

n +λδE (r(k), x̂(k))+ n

n +λδ
′
P (r(k), x̂(k))

]
, (3.34)

over all candidate codewords x̂ ∈ S, whereλ=σ2/β2. ML decoding criterion is intuitively
separated into weighted combinations of Euclidean distance and modified Pearson dis-
tance for each segment. The ML criterion for one word length, i.e., Equation (3.23), can
be obtained by letting l = 1 in (3.34).

3.4. DECODING OF CONCATENATED CODES FOR CHANNELS WITH

GAUSSIAN NOISE AND OFFSET
This section proposes a concatenated coding scheme for channels with Gaussian dis-

tributed noise and offset mismatch. A novel decoding algorithm for the concatenated
codes is proposed to exploit its error correction potential better. The simulation results
show that the proposed scheme achieves considerable coding gain compared with the
non-concatenated codes with an even higher code rate over noisy channels with offset
mismatch.
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3.4.1. RS-COSET CODES
For the noisy channels with unknown offset, we design a concatenated code. A Reed-

Solomon (RS) code [69] and a certain coset of a binary block code proposed in [66] are
used as outer and inner codes, respectively. The two codes are chosen according to a rule
that the inner code is of a short length. In such a way, an exhaustive search of MMPD
is for relatively small codes, and the outer code’s decoding algorithm can make up for
errors decoding the inner code. We call coset codes and RS codes together as RS-Coset
codes.

The encoder block diagram of RS-Coset codes is shown by Figure 3.11. RS-Coset
code is composed of Sa inner coset codes defined over GF (2), or alphabet [2] = {0,1},
and RS outer code defined over GF (2m), where m is a positive integer. RS codes are
non-binary codes, which may be defined over any finite field GF (q). However, since
most modern applications use binary data, RS codes over GF (2m) are of great interest. A
block interleaver between the inner and outer encoders is not considered, which will be
investigated with iterative decoding algorithms in further research.

RS Coset
u c x

Figure 3.11: Block diagram of the RS-Coset code.

For (n2,k2,d2) RS code n2, k2 and d2 represent the length of a codeword, number of
information symbols, and the minimum Hamming distance, respectively. The message
vector of an (n2,k2,d2) RS code can be written as

u = (u1,u2, . . . ,uk2 ) ∈ Fk2
q , (3.35)

where n2 = 2m −1, or a polynomial

u(x) = u1 +u2x + . . .+uk2 xk2−1.

RS codes of length n2 have generator polynomials g (x) = (x−α)(x−α2) . . . (x−αn2−k2 ) or
a generator matrix

Gr =


1 1 · · · 1
1 α · · · α(n2−1)

...
...

. . .
...

1 αk2−1 · · · α(k2−1)(n2−1)

 ,

where α is a primitive element of Fq . The RS codeword is generated by

c = u ·Gr = (c1,c2, . . . ,cn2 ) ∈ Fn2
q . (3.36)

Because all codeword polynomials c(x) have g (x) as a factor, every c(x) has all the roots
of g (x) as its roots and has a parity check matrix

Hr =


1 α · · · αn2−1

1 α2 · · · α2(n2−1)

...
...

. . .
...

1 αn2−k2 · · · α(n2−k2)(n2−1)
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such that cHT
r = 0. After the RS codeword has been generated, it will be converted into a

binary coded bit sequence to form the input to the inner encoder, i.e.,

c′ = c ′1,c ′2, . . . ,c ′n2m . (3.37)

Binary block codes proposed in [66] work well with the modified Pearson distance
based decoding criterion (2.39), which guarantees immunity to channel offset mismatch.
Note that for any binary linear block code S containing the all-one vector, the minimum
δ′P distance is zero since δ′P (0,1) = 0.

It is shown that the minimum δ′P distance significantly increases by using a well-
chosen coset of S rather than S itself [66]. Assume that the generator matrix of a block
(n1,k1,d1) code S is Gs . We first cluster the binary coded bit sequence c′ into groups
each of k1 bits, and then encode each group of k1 bits with the generator matrix Gs . This
results in codewords each of n1 bits. The inner binary block codes proposed in [66] – the
coset of codes Sa – is obtained by

Sa = {v+a |v ∈ S }, (3.38)

where a is any binary vector of length n1 with weight bd1
2 c, dd1

2 e, n1 −bd1
2 c, or n1 −dd1

2 e.
Codeword length and dimension of Sa is still n1 and k1, respectively. Information can
also be uniquely mapped to its codewords by using the generator matrix Gs followed by
a simple shift operation.

With the above mentioned input, the inner codeword is

x = (x1, x2, . . . , xn1 ) ∈ Fn1
2 . (3.39)

Length, dimension, and code rate of RS-Coset code are the products of the correspond-
ing parameters of the inner and outer code. Note that variable rates of the concatenated
codes can be realized by puncturing the output of the inner code.

3.4.2. DECODING ALGORITHM FOR CONCATENATED CODING SCHEME
The block diagram of the proposed decoding algorithm is shown by Figure 3.12. The

MMPD detection is used to decode the inner coset code Sa, which guarantees immunity
to channel offset mismatch. Its output will be given to a two-stage hybrid decoding al-
gorithm for the outer RS code. The first stage of decoding carries out an algebraic HDD
algorithm, such as the Berlekamp-Massey algorithm (BMA), to the outer RS code. If the
HDD declares a successful decoding, the algorithm outputs the decoded codeword and
terminates the decoding process. Otherwise, the decoding is continued with the second
stage of decoding, using the reduced test-pattern Chase algorithm. The reliability infor-
mation used in the Chase algorithm is obtained from a subtraction between the received
vector and an estimated offset, where a dynamic threshold estimation [57] is explored.

DECODING COSET CODE USING MODIFIED PEARSON DISTANCE DECODER

Consider transmitting a codeword x over a Gaussian noisy channel with offset mis-
match (3.1), i.e., r = x+v+b1. When the receiver uses a fixed threshold detection, based
on a binary symmetric channel model, the elements of r are quantized to 0’s and 1’s.
Its reliability faces severe degradation as the offset mismatch introduces asymmetric or
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Figure 3.12: Block diagram of the decoding algorithm.

unidirectional errors. Better results are expected when the real received signal is passed
directly to a modified Pearson distance based decoder (2.39).

A Pearson decoder chooses a codeword minimizing the modified Pearson distance
between the received vector and candidate codewords from the coset codes, i.e.,

xo = argmin
x̂∈Sa

δ′P (r, x̂).

Subsequently we find an estimate of the offset [57], denoted by b̂, by averaging (3.1),
or

b̂ = 1

n1

n1∑
i=1

(ri −xo,i ) = r̄− ωo

n1
, (3.40)

where ωo is the weight of xo .
In the case of passing the analog received signal, the inner decoder will generate the

information reliability y from r based on a posteriori log-likelihood-ratio (LLR) of each
bit input. The received symbol ri has a Gaussian probability density function which is
offset by a parameter, b. Denote the LLR of the bit xi by L(xi ). Assuming independent
and uniformly distributed channel inputs, we thus have

L(xi ) = ln
Pr

(
yi |xi = 1

)
Pr

(
yi |xi = 0

) + ln
Pr(xi = 1)

Pr(xi = 0)

= ln

1p
2πσ

e−
(ri −1−b)2

2σ2

1p
2πσ

e−
(ri −0−b)2

2σ2

= (ri −b)2

2σ2 − (ri −1−b)2

2σ2

= 1

σ2

(
ri −b − 1

2

)
.

Considering a stationary channel, we can normalize the LLR with respect to a constant
1/σ2.

Thus, the reliability of the component ri is defined using the absolute value of re-
scaled retrieved vector by subtracting the estimated offset, b̂, so that

yi =
∣∣∣∣ri − b̂ − 1

2

∣∣∣∣= ∣∣∣∣ri −
(

r̄− ωo

n1

)
− 1

2

∣∣∣∣ , (3.41)

for i = 1, . . . ,n1.
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HYBRID DECODING OF RS CODES

There are several existing algorithms for decoding RS codes that provide better per-
formances than the HDD. However, the large alphabet size of the RS code precludes the
use of ML decoders due to the very high computational complexity. The Chase algo-
rithm is a soft input decoding algorithm for linear block code with lower computational
complexity than the ML algorithm. Furthermore, Chase decoding can be implemented
efficiently in a parallel manner, and the decoder has no iterations. In order to further
reduce the decoding latency while still retaining a similar performance gain, a simple
but effective two-stage hybrid decoding algorithm [70] is adopted here for decoding RS
codes.

Stage 1 : Berlekamp-Massey Algorithm (BMA) Decoding of the outer code is realized
first by BMA [71, 72]. By reading out each output information bit of the inner decoder
and converting binary sequences into the 2m-ary expression

xo 7→ co ,

we can obtain a hard decision for each RS coded symbol. First-stage of decoding carries
out the BMA to co . For a (n2,k2,d2) RS code, BMA can correct errors of length up to

t0 = bn2 −k2

2
c.

If more than t0 errors occur, one of two cases can happen. Either the BMA decoder de-
clares decoding failure or finds an incorrect codeword different from the transmitted
one. We say the BMA decoding successful whenever BMA finds a codeword within the
Hamming sphere of radius t0 around the received vector. If the BMA declares a success-
ful decoding, it outputs the decoded message uo , and terminates the decoding process.
Otherwise, the decoding is continued with the second stage of decoding, using the Chase
decoder optimized for the noisy channel with unknown offset.

Stage 2 : Chase Algorithm We implement Chase algorithm [58] to decode RS codes in
the second stage. Note that it is unnecessary to transfer LLR at bit level of the coset code
to LLR at byte level of RS since the Chase algorithm is based on binary data sequence.
During Chase decoding, the hard-decision decoding operation that is applied to each
test pattern is computationally expensive. A test pattern reduced Chase algorithm [73],
which eliminates the unnecessary hard-decision decoding operations, is adopted. The
Chase algorithm in the second stage can be described as follows:

1. Convert co into a binary sequence c′o and determine the positions of p least reli-
able binary bits of c′o .

2. Form test patterns TP for P = 1, . . . ,2p by forming all possible binary combinations
over these p least reliable positions.

3. Take a new test pattern from the set of test patterns TP obtained from Step 2. Check
whether a stored set of candidate patterns E is empty. If yes, go to Step 4. Oth-
erwise, compute Hamming distances between the current test pattern and each
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stored candidate pattern in E. If all the Hamming distances are greater than t ,
where t is the number of errors that can be corrected by the code, go to Step 4.
Otherwise, go to Step 3.

4. Decode the 2m-ary expression of the current test pattern using an algebraic de-
coder and store the successfully decoded codeword into E. Go back to Step 3 until
all test patterns in TP have been processed.

5. Estimate the most likely transmitted sequence from the reduced set of candidate
patterns E.

We now explain more details of the above algorithm. For the first step of Chase de-
coding, the p least reliable bits in the binary outputs of the inner decoder, c′o , are iden-
tified. The reliability information of the channel detected bits needs to be obtained in
order to determine p least reliable positions. We assume that the data bits are trans-
mitted with an equal probability, and the p least reliable bits are obtained based on the
information reliability y given by (3.41). The smaller the magnitude of the LLR, the less
reliable the inner decoder output bit, and vice versa.

Furthermore, all 2p binary permutations that have ‘1’s in these p positions and ‘0’s
elsewhere, are modulo-2 added to c′o in order to form the test patterns TP . Note that
if the Hamming distance between the current test pattern and a candidate pattern is
not greater than t , decoding the current test pattern will lead to the candidate pattern.
Hence, the corresponding HDD operation is redundant and can be skipped.

After decoding the test patterns, in order to select the most likely candidate pattern
in E, we adopt the ML decision rule of (3.34) derived for the noisy channel with unknown
offset. From the previous subsection, we have that the offset varies each block of length
k1 within the binary version of RS codewords of length n2m. Denote l ′ = n2m/k1. There-
fore, the ML metric for the Chase decoder for the noisy channels with unknown offset is
given by

l ′∑
k=1

[
λ

k1 +λ
δE (r(k), x̂(k))+ k1

k1 +λ
δ′P (r(k), x̂(k))

]
, (3.42)

and the codeword with the minimum (3.42) is chosen as the decoded codeword.

3.4.3. PERFORMANCE EVALUATION
We evaluate an example concatenated code, which implements (7,3,5) RS code as

the outer code and the coset of binary (6,3,3) code as the inner code. Binary (6,3,3) code
is a shortened version of (7,4,3) Hamming code and a coset vector a = (1,0,0,0,0,0) is
considered. These 23 codewords are

100000 111011 010110
101110 000011 011000
110101 001101

The outer code is the (7,3,5) RS code, which is over GF (23) = GF (8). The resulting
concatenated code is thus a binary (42,9,15) code. Hence, the code rate is 9/42 = 0.21.
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In the encoding process, 9 information bits are transformed into 3 symbols from
GF (8), which are encoded using the RS code. These 9 information bits are encoded to
21 bits grouped in a 7-symbols RS codeword. The 7 resulting symbols are each consid-
ered as binary 3-tuples. Each 3-bits of the coded binary RS sequences is encoded using
the shortened Hamming code and shifted with the coset vector a. The final result is a
(3+4)× (3+3) = 42 bit string.

The received string of 42 bits is first parsed into 7 strings of 6 bits, which are decoded
according to a criterion of minimizing modified Pearson distance. The resulting 7 binary
3-tuples are considered as symbols from GF (8), which are collected into a vector to be
decoded by the hybrid decoding of RS codes. This leads to three symbols from GF (8),
which can be transformed into 3 bits each, so 9 bits in total.

In Figure 3.13, we show bit error rate (BER) performances of RS-Coset codes versus
SNR (dB) over channels with Gaussian noise and offset mismatch. We also assume that
standard deviations of the offset are β = 0.3 (red curves) and β = 0.5 (blue curves). Let
us first compare the performance of the inner soft-decision decoders based on two cri-
teria, specifically MED and MMPD. The MED detection has worse performance when
the offset is larger, while the scheme using MMPD remains the same for any offset as we
expected. We conclude that the MMPD detection is immune to the offset mismatch and
achieves considerable performance improvements, particularly when the offset is large
compared to the noise.

We also observe that with the Hamming coset code as inner code instead of Ham-
ming code itself, the simulated results of the concatenated scheme have been improved.
The MMPD of the shortened Hamming code (6,3,3) and its coset code is the same. How-
ever, the average number of neighbors with the minimum distance has decreased after
introducing the coset of code. In addition, the introduction of the coset increases the
MED detection’s resistance to the offset mismatch. Thus, the performances of both MED
and MMPD detection have improved by using the coset of block codes as proved in [66].

BER performance of the variable number of least reliable bits in Chase decoding is
depicted in Figure 3.14. For the Chase algorithm, the number of test positions is set to
be from 2 to 6. The results show that more performance enhancement can be achieved
if we select more test positions in the Chase decoding algorithm. For example, the per-
formance with 2 test positions has been increased by 0.5 dB compared to when 6 test
positions are used. However, better performance comes at the price of higher complex-
ity.

Figure 3.15 compares the proposed concatenated scheme with the Hamming coset
code and uncoded scheme. Simulation is carried out over channels with β = 0.5. The
number of the test positions is 2 for all the concatenated schemes in the simulations. The
Hamming coset code is decoded using the MMPD scheme. By referring to the channel
raw BER illustrated by Curve Uncoded, the proposed concatenated scheme achieves a
significant gain in BER over a wide range of SNR. Furthermore, compared with the Ham-
ming coset code, it can be observed that at BER = 10−4, the gain of the concatenated
scheme corresponds to the decrease of the system required SNR from around 9 dB (cor-
responding to the HM(6,3)) to 5 dB (corresponding to the HM(6,3)+RS(7,3)). Thus, we
achieve more than 4 dB SNR improvement of achieving a BER = 10−4 with the proposed
RS-Coset codes.
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Figure 3.13: BER performances of (7,3,5) RS code concatenated with shortened (6,3,3) Hamming code or its
coset, with the inner soft decision decoder based on two criteria – MED and MMPD – over channels with
Gaussian noise and offset, where standard deviations of the offset are β= 0.5 (blue) and 0.3 (red).
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Figure 3.14: BER performances of RS-Coset codes with the different number of test positions under noisy
channels with unknown offset mismatch.
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Figure 3.15: BER performances of (7,3,5) RS code concatenated with coset shortened Hamming (6,3,3), Ham-
ming (6,3,3) coset code, and uncoded case over channels with Gaussian noise and offset, where the standard
deviation of the offset is β= 0.5.
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Figure 3.16: BER performances of different coding schemes over channels with Gaussian noise and offset,
where the standard deviation of the offset is β= 0.5.
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Our example code has a code rate of 0.21, which is lower than the non-concatenated
scheme. We have two other concatenation schemes with higher code rates: first, coset
shortened Hamming (12,8) concatenated with (255,191) RS with a code rate of 0.499; and
second, coset shortened Hamming (12,8) concatenated with (255,239) RS with a code
rate of 0.62. Observe from Figure 3.16, the concatenation codes with a higher rate are
shown to have worse BER performance. However, the concatenated scheme with a code
rate of 0.62 still performs better than the Hamming coset code, which has a code rate
of 0.5. Moreover, (255,127) RS code is simulated under the same channel condition,
whose code rate is 0.5. We can see that the offset mismatch seriously distorts its per-
formance without the help of the inner MMPD decoder. The simulation results show
the considerable coding gain compared with the non-concatenated codes with an even
higher code rate over noisy channels with offset mismatch. Thus, we conclude that the
RS-Coset codes with the proposed decoding scheme can achieve significant coding gain
and maintain immunity to offset mismatch.

3.5. CONCLUSION
Our attention is on the noisy channels with the offset mismatch in the all-one direc-

tion in this chapter. We have derived an ML criterion for channels with bounded noise
and offset mismatch. In particular, it has been shown that the WER for MED, MMPD, and
ML decoders is equal to zero if the noise and offset ranges satisfy certain conditions. Fur-
ther, a combination of weighted MED and MMPD is shown to be the ML decoding for
channels with Gaussian noise and offset. We have proposed a decoding algorithm for
concatenated codes in channels with Gaussian noise and offset mismatch. Simulation
results demonstrate that the proposed decoding scheme can achieve significant coding
gain and maintain immunity to offset mismatch.
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DEPENDENT OFFSET MISMATCH

In the previous chapter, maximum likelihood (ML) decision criteria have already been de-
veloped for noisy channels suffering from signal independent offset. In this chapter, such
ML criteria are considered for the case of signals suffering from noise and signal dependent
offset. The signal dependency of the offset signifies that it may differ for distinct signal lev-
els. For instance, the offset experienced by the zeroes in a transmitted codeword is not
necessarily the same as the offset for the ones.

An ML decision criterion is derived, assuming uniform distributions for both the noise
and the signal dependent offset. In particular, for the proposed ML decoder, bounds are
determined on the standard deviations of the noise and the offset, leading to a word error
rate equal to zero. Simulation results are presented, confirming the findings.

Secondly, we consider Gaussian distributions for both the noise and the signal dependent
offset. Besides the ML criterion itself, an option to reduce the complexity is also considered.
Further, a brief performance analysis is provided, validating the superiority of the newly
developed ML decoder over classical decoders based on the Euclidean or Pearson distances.

The material in this chapter has appeared in

• Section 4.2

R. Bu, J. H. Weber and K. A. S. Immink, "Maximum Likelihood Decoding for Channels with Uniform
Noise and Signal Dependent Offset", Proc. of IEEE International Symposium on Information Theory,
August, 2020.

• Section 4.3

R. Bu, J. H. Weber and K. A. S. Immink, "Maximum Likelihood Decoding for Channels With Gaussian
Noise and Signal Dependent Offset", IEEE Transactions on Communications, vol. 69, pp. 85-93, Sep.,
2020.
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4.1. INTRODUCTION
In the last chapter, we assume that the offset is independent of the signal levels. Here,

we look at a different model of the offset mismatch, where it is assumed to be a signal
dependent parameter. For instance, b0 is the offset for the ‘0’ signal level, and b1 is the
offset for the ‘1’ signal level in the binary case. The signal dependent offset model is
appropriate in many scenarios. For example, the binary input user data is stored as the
two resistance states of a spin-torque transfer magnetic random access memory (STT-
MRAM) cell [70]. A signal dependent offset model is reasonable when process variation
causes an asymmetric distribution of both the low and high resistance states. The model
is also appropriate for modeling the retention of multilevel-cell phase-change memory,
which is adversely affected by resistance states dependent drift and noise [74]. More-
over, degradation of the data reliability can be modeled as a signal dependent offset
model, for the situation that with the increase of temperature, the low signal level hardly
changes, while the high signal level decreases, leading to a drift of the high signal level to
the low signal level [75]. Cai et al. [76] have proposed and analyzed a k-means clustering
technique as a detection method for channels where the signal dependent offsets are
assumed to be uncorrelated stochastic variables with a uniform probability distribution.

We consider transmitting a codeword x = (x1, x2, . . . , xn) from a codebook S ⊆ [q]n ,
where [q] is a q-ary alphabet. With every signal level j ∈ [q] we associate an offset value
b j . The transmitted symbols xi are distorted by additive noise vi and by signal depen-
dent offsets bxi . In other words, the received symbols read

ri = xi + vi +bxi , (4.1)

for i = 1, . . . ,n. The offset bxi equals b j , where j ∈ [q], depending on the value of xi . Let

bx = (bx1 ,bx2 , . . . ,bxn )

denote the offset vector when x is transmitted. For example, bx = (b0,b1,b0,b1) if x =
(0,1,0,1). All values of offset, b j , j ∈ [q], which neither the transmitter nor the receiver
knows, may vary from one transmitted codeword to the next one, but they do not vary
within a codeword length of n. The received vector when a codeword x is transmitted is

r = x+v+bx, (4.2)

where v = (v1, v2, . . . , vn) is the noise vector.
The uniform distribution and the Gaussian distribution are two classical probability

distributions of stochastic processes used to model real-world noise and offset phenom-
ena. Which of the two is the most appropriate depends on the situation under consider-
ation.

This chapter first studies an ML decoding criterion for channels with uniform noise
and signal dependent offset. In particular, for the proposed ML decoder, bounds are
determined on the standard deviations of the noise and the offset, which lead to a word
error rate equal to zero.

Secondly, the situation of Gaussian noise and signal dependent offset is discussed,
where the correlation between different offset random variables is considered. In this
case, we show that an ML criterion in the prior art can be derived as a special case of our
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decoding criterion obtained by letting offsets be identically fully correlated distributed.
Further, an option to effectively reduce the complexity is considered for uncorrelated
offsets.

The remainder of the chapter is organized as follows. In Section 4.2, we present an
ML decoding criterion for channels with uniform noise and signal dependent offset. A
zero WER is shown to be achievable if the standard deviations of the noise and offset sat-
isfy certain conditions in Subsection 4.2.2. We present, in Section 4.3, the ML decoding
criterion for such channels, where the noise and signal dependent offset are Gaussian
distributed. Furthermore, in Subsection 4.3.1, we focus on a special case when the off-
sets are identical, followed by a complexity discussion in Subsection 4.3.2. Conclusion
in Section 4.4 terminates the chapter.

4.2. MAXIMUM LIKELIHOOD DECODING FOR CHANNELS WITH

UNIFORM NOISE AND SIGNAL DEPENDENT OFFSET
This section presents an ML decoding criterion for channels where noise and signal

dependent offsets are uniformly distributed. A consequence of having bounded noise
and offset is that a zero word error rate (WER) is achievable under certain constraints. A
major result of this work is that we provide sufficient conditions on the standard devi-
ations of the noise and offset in combination with the code properties to guarantee the
zero WER.

For the noise vector v = (v1, . . . , vn), we assume that the vi are independently uni-
formly distributed with mean 0 and varianceσ2. Hence, the probability density function
of each vi , i = 1,2, . . . ,n, is

υ(vi ) =


1

2
p

3σ
, −p3σ< vi <

p
3σ,

0, otherwise,
(4.3)

leading to a probability density function χ(v) =∏n
i=1υ(vi ) for v.

We assume that the b j are independently uniformly distributed with mean 0 and
standard deviations β j . The probability density function of each b j , j ∈ [q]. is

ζ(b j ) =


1

2
p

3β j
, −p3β j < b j <

p
3β j ,

0, otherwise.

(4.4)

Note that the offset values, b j , j ∈ [q], may vary from codeword to codeword, but that for
each j , it is fixed within a codeword of length n. Like the noise values, the offset values
are unknown to both the receiver and the transmitter.

4.2.1. DECODING CRITERION

For j ∈ [q], let X̂ ( j ) denote the index set indicating the positions in x for which the
symbol value equals j . For example, in case q = 2,

X̂ (0) = {1,3} and X̂ (1) = {2,4}
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when x = (0,1,0,1).
For the received vector r and a candidate codeword x̂ ∈ S, we define

u j (r, x̂) = min
(
{ri − x̂i +

p
3σ

∣∣i ∈ X̂ ( j ) }∪ {
p

3β j }
)

,
l j (r, x̂) = max

(
{ri − x̂i −

p
3σ

∣∣i ∈ X̂ ( j ) }∪ {−p3β j }
)

,

for j ∈ [q]. These parameters correspond to upper and lower bounds on the possible
values of b j for x̂ when r is received. Further, let

m j (r, x̂) = max{u j (r, x̂), l j (r, x̂)},

and

I j (r, x̂) = max{u j (r, x̂)− l j (r, x̂),0}

for j ∈ [q]. Next, we present a decoding criterion and show that it is ML for the channel
under consideration.

Theorem 4. If the noise and the offsets in (4.2) have probability density functions as (4.3)
and (4.4), respectively, then ML decoding is achieved by maximizing

q−1∏
j=0

I j (r, x̂) (4.5)

over all codewords x̂ ∈ S.

Proof. If a vector r is received, ML decoding must determine a codeword x̂ ∈ S maximiz-
ing P(r |x̂ ), that is, the probability that r is received, given x̂ is sent. This satisfies

P(r |x̂ ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
χ(r− x̂−bx̂)

q−1∏
j=0

(
ζ(b j )db j

)

= 1

(2
p

3σ)n

q−1∏
j=0

 m j (r,x̂)∫
l j (r,x̂)

1

2
p

3β j
db j


=

∏q−1
j=0 I j (r, x̂)

(2
p

3σ)n(2
p

3)q ∏q−1
j=0 β j

. (4.6)

The first equality is due to the channel model (4.2). The second equality follows from the
probability density functions (4.3) and (4.4). The third equality follows from the obser-
vation that

m j (r,x̂)∫
l j (r,x̂)

db j = m j (r, x̂)− l j (r, x̂) = I j (r, x̂)

for all j . Since the denominator in (4.6) is a constant term for all candidate codewords,
we can ignore it during the maximization process, which gives (4.5).

The bounded nature of the noise and the offset has interesting consequences with
respect to the WER of the ML decoder, as will be further explored in the following sub-
section.
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4.2.2. ZERO ERROR ANALYSIS

Most interestingly, for the ML decoder based on (4.5), a word error rate (WER) of
zero is achieved if the standard deviations of the noise and the offset satisfy certain con-
ditions. This is shown in the following theorem.

Theorem 5. If the noise and the offsets in (4.2) have probability density functions as (4.3)
and (4.4), respectively, with

σ≤ min
s,c∈S
s6=c

 max
i∈{1,...,n}

{|ci − si |−
p

3(βci +βsi )}

2
p

3

 (4.7)

or

σ≤ min
s,c∈S
s6=c


max
j∈[q]

{
max

i ,k∈c( j )
{sk − si −

p
3(βsk +βsi )}

}
4
p

3

 , (4.8)

then the ML decoder achieves a WER equal to zero.

Proof. Assume that x ∈ S is sent and r = x+v+bx is received. We will show that if (4.7) or
(4.8) holds, then P(r |x̂ ) = 0 for all codewords x̂ 6= x. First of all, note that

u j (r, x̂)− l j (r, x̂)

=min
(
{ri − x̂i +

p
3σ

∣∣∣i ∈ X̂ ( j ) }∪ {
p

3β j }
)

−max
(
{ri − x̂i −

p
3σ

∣∣∣i ∈ X̂ ( j ) }∪ {−p3β j }
)

=min
(
{ri − x̂i +

p
3σ

∣∣∣i ∈ X̂ ( j ) }∪ {
p

3β j }
)

+min
(
{−(ri − x̂i )+p

3σ
∣∣∣i ∈ X̂ ( j ) }∪ {

p
3β j }

)
=min

(
{2
p

3β j }∪ { min
i∈X̂ ( j )

{−|ri − x̂i |+
p

3σ+p
3β j }}

∪{ min
i ,k∈X̂ ( j )

{(ri − x̂i )− (rk − x̂k )+2
p

3σ}}

)
,

=min

(
{2
p

3β j }∪ { min
i∈X̂ ( j )

{−|ri − x̂i |+
p

3σ+p
3β j }}

∪{ min
i ,k∈X̂ ( j )

{ri − rk +2
p

3σ}}

)
,

(4.9)

for j ∈ [q].
Next, we show that if (4.7) or (4.8) holds, (4.9) will be negative for some j whenever

x̂ 6= x. Note that the final expression in (4.9) contains a union of three terms, where the
first term is always positive sinceβ j is positive. We show that the second term is negative
for some j if (4.7) holds and that the third term is negative for some j if (4.8) holds.
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For each x̂ ∈ S, x̂ 6= x, let j0 be a symbol from [q] such that a position i0 in X̂ ( j0) ⊆
{1, . . . ,n} maximizes the expression |xi − x̂i |−

p
3(βxi +βx̂i ). That is,

i0 = arg max
i∈{1,...,n}

{
|xi − x̂i |−

p
3(βxi +βx̂i )

}
,

j0 = x̂i0 .

Note that this j0 is not necessarily the same for each x̂. If (4.7) holds, then we have

min
i∈X̂ ( j0)

{−|ri − x̂i |+
p

3σ+p
3β j }

= min
i∈X̂ ( j0)

{−|ri − x̂i |−
p

3σ−p
3βxi +

p
3(2σ+βxi +β j )}

< min
i∈X̂ ( j0)

{−|ri − x̂i |−
∣∣vi +bxi

∣∣+p
3(2σ+βxi +β j )}

= min
i∈X̂ ( j0)

{−|ri − x̂i |− |ri −xi |+
p

3(2σ+βxi +β j )}

≤ min
i∈X̂ ( j0)

{−|xi − x̂i |+
p

3(2σ+βxi +β j )}

=− max
i∈X̂ ( j0)

{|xi − x̂i |−
p

3(βxi +βx̂i )}+2
p

3σ

=− max
i∈{1,...,n}

{|xi − x̂i |−
p

3(βxi +βx̂i )}+2
p

3σ

≤ 0.

The first inequality follows from the fact that |vi +bxi | ≤ |vi | + |bxi | <
p

3σ+p
3βxi , the

second inequality from the triangular inequality, and the last inequality from (4.7). Thus
the second term of (4.9) is negative for some j whenever x̂ 6= x if (4.7) holds.

Similarly, for each x̂ ∈ S, x̂ 6= x, let j1 be a symbol from [q] such that

j1 = argmax
j∈[q]

{
max

i ,k∈X̂ ( j )
{xk −xi −

p
3(βxk +βxi )}

}
.

If (4.8) holds, then we have

min
i ,k∈X̂ ( j1)

{ri − rk +2
p

3σ}

< min
i ,k∈X̂ ( j1)

{ri − rk − (vi − vk )}+4
p

3σ

= min
i ,k∈X̂ ( j1)

{xi −xk +bxi −bxk }+4
p

3σ

< min
i ,k∈X̂ ( j1)

{xi −xk +
p

3(βxi +βxk )}+4
p

3σ

=− max
i ,k∈X̂ ( j1)

{xk −xi −
p

3(βxi +βxk )}+4
p

3σ

=−max
j∈[q]

{
max

i ,k∈X̂ ( j )
{xk −xi −

p
3(βxi +βxk )}

}
+4

p
3σ

≤ 0.
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The first inequality follows because vi − vk ≤ |vi | + |vk | < 2
p

3σ, the second inequality
follows because bxi −bxk ≤ ∣∣bxi

∣∣+ ∣∣bxk

∣∣<p
3(βxi +βxk ), and the last one from (4.8).

In conclusion, we have for any codeword x̂ 6= x that I j (r, x̂) = 0 for some j if (4.7) or
(4.8) holds. Hence,

q−1∏
j=0

I j (r, x̂) =P(r |x̂ ) = 0

for all codewords x̂ 6= x, while
q−1∏
j=0

I j (r,x) > 0.

Hence, the transmitted codeword is always the outcome of the decoding procedure max-
imizing (4.5), and thus ML decoding achieves a WER equal to zero.

Next, we give a sufficient condition to achieve zero WER for the ML decoder in the
binary case, i.e., q = 2.

Corollary 6. If the noise and the offsets have probability density functions as (4.3) and (4.4),
respectively, with

2σ+β0 +β1 ≤ 1p
3

, (4.10)

then the ML decoder achieves a WER equal to zero for a binary codebook.

Proof. In the binary case, the expression |ci − si |−
p

3(βci +βsi ) in (4.7) has one of three
values depending on ci and si , i.e.,

|ci − si |−
p

3(βci +βsi ) =


−2

p
3β0, if (ci , si ) = (0,0);

−2
p

3β1, if (ci , si ) = (1,1);

1−p
3(β0 +β1), otherwise.

(4.11)

Since β0 and β1 are both positive, −2
p

3β0 and −2
p

3β1 are both negative, and thus
if (4.10) holds then it immediately follows from the fact that σ is positive as well that

1−p
3(β0 +β1) > 0.

For any codewords s and c 6= s, there exists at least one position, k, such that ck 6= sk ,
and then we have |ck − sk | = 1 and βck +βsk = β0 +β1. In conclusion, if (4.10) holds,
maximizing (4.11) over i ∈ {1, . . . ,n} outputs 1−p

3(β0+β1) as its maximum value for any
codewords s and c 6= s. Hence, according to Theorem 5, the ML decoder achieves a WER
equal to zero when (4.10) holds.

Theorem 5 has important implications for developing zero WER codes for channels
suffering from uniform noise and signal dependent offset. Code design for these chan-
nels is beyond the scope of this work, but in the next subsection, we provide a perfor-
mance analysis for a simple example code to show the advantage of the ML decoding
technique compared to the MED and MMPD decoders. Also, it will be illustrated that
a zero WER indeed appears in cases that the standard deviations of the noise and the
offsets are sufficiently small.
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4.2.3. PERFORMANCE EVALUATION
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Figure 4.1: WER versus the standard deviationσ of the uniform noise for S∗ in combination with MED, MMPD,
and ML decoders, when the standard deviations of the uniform offsets are β0 = 0.2, β1 = 0.15.
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Figure 4.2: WER versus the standard deviationσ of the uniform noise for S∗ in combination with ML decoding,
with different values of the uniform offset standard deviations β0, β1.

Simulated WER results as a function ofσ are shown in Fig. 4.1 for a binary code – (3,2)
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parity check code S∗ of length 3 and size 4, in combination with MED, MMPD, and ML
decoders. The standard deviations of the signal dependent offsets are set to β0 = 0.2 and
β1 = 0.15. We observe that the performance of each of the three decoders declines with
increasing values of σ. The MMPD decoder has the worst performance among these
three. The performance of the proposed ML decoder is better than for the MED and
MMPD decoders.

Simulation results for S∗ with various values of β0 and β1 are shown in Fig. 4.2. The
results from Fig. 4.2 confirm Corollary 6. Zero WER of the ML decoder is indeed achieved
if 2σ+β0 +β1 ≤ 1/

p
3 ≈ 0.58. We can also observe this in Fig. 4.1, where for the ML de-

coder, zero WER is achieved when the value ofσ is less than (1/
p

3−0.20−0.15)/2 ≈ 0.11.
So far, we have studied an ML decoding criterion for channels with uniform noise

and signal dependent offset. The situation of Gaussian noise and signal dependent offset
is discussed in the next section.

4.3. MAXIMUM LIKELIHOOD DECODING FOR CHANNELS WITH

GAUSSIAN NOISE AND SIGNAL DEPENDENT OFFSET
This section is still concerned with the situation that the offset is a signal depen-

dent parameter. We assume that both the noise and the offset are Gaussian distributed.
Consider transmitting a codeword x from a binary code S ⊆ [2]n , where [2] is the binary
alphabet. We pursue the binary alphabet here as it is enough to demonstrate some im-
portant results. The extension of this channel model to a q-ary alphabet can be explored
similarly as manifested for the binary case in this section.

The noise samples vi are i.i.d. Gaussian random variables with zero mean and vari-
ance σ2, i.e., vi ∼ N (0,σ2). Throughout the transmitted codeword, the noise is inde-
pendent of the offsets. Note that the noise value varies from symbol to symbol, while the
offsets b0 and b1 are assumed to be constant for all ‘0’ and ‘1’ symbols within a code-
word, respectively. We assume that the offsets, b0 and b1, are Gaussian distributed with
mean 0 and variances β2

0 and β2
1, respectively. The probability density functions of b0

and b1 are

ζ(bi ) = 1

βi
p

2π
e−b2

i /(2β2
i ), (4.12)

where i = 0,1. The correlation between b0 and b1 is

ρ = cov(b0,b1)

β0β1
,

where cov(b0,b1) is the covariance of b0 and b1. The correlation is bounded by −1 ≤ ρ ≤
1. We have ρ = 0 when b0 and b1 are uncorrelated, ρ = 1 when they are fully correlated,
and ρ =−1 when they are completely anti-correlated.

Based on the channel model (4.2), we define the total distortion as

dx = v+bx = r−x.

Then the probability density function of dx is given by

ψ(dx) =
∫ ∞

−∞

∫ ∞

−∞
φ(dx −bx)ζ(b0)ζ(b1)db0 db1. (4.13)
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An ML decoder will choose a codeword maximizing the probability density function
(4.13), that is,

argmax
x̂∈S

ψ(dx̂).

In the situation of zero-mean Gaussian noise samples and signal dependent offset, dx̂

has a multivariate Gaussian distribution with mean vector 0 and covariance matrix Σx̂.
Since the noise is independent of the offsets and the correlation coefficient between the
offset values is ρ, Σx̂ is an n ×n matrix with the (i , j )th entry specified by

Σx̂(i , j ) =



β2
0 if i 6= j , i , j ∈ X̂ (0),

β2
1 if i 6= j , i , j ∈ X̂ (1),

σ2 +β2
0 if i = j ∈ X̂ (0),

σ2 +β2
1 if i = j ∈ X̂ (1),

ρβ0β1 otherwise,

(4.14)

where X̂ (1) and X̂ (0) are index sets, indicating the positions of the ones and zeroes in x̂,
respectively. Thus, the probability density function of dx̂ is

ψ(dx̂) = exp(−dx̂Σ
−1
x̂ dT

x̂ /2)√
(2π)n(detΣx̂)

, (4.15)

where Σ−1
x̂ is the inverse matrix of Σx̂ and detΣx̂ is the determinant of Σx̂.

Before working out this expression, we first introduce some further notations. Let
ω denote the weight of x̂, i.e., the size of set X̂ (1). Clearly, the size of set X̂ (0) is n −ω.
According to X̂ (1) and X̂ (0), we can cluster symbols of the received vector. Specifically,
symbols of the received vector at positions where the values of x̂i are 0 are grouped in
one category, and the rest of the symbols form another category. We focus on the average
values of these two categories and define two quantities, namely, the average value of
received symbols in the ‘1’ positions of x̂, i.e.,

r(1) = 1

ω

∑
i∈X̂ (1)

ri , (4.16)

and the average value of received symbols in the ‘0’ positions of x̂, i.e.,

r(0) = 1

n −ω
∑

i∈X̂ (0)

ri . (4.17)

Finally, λ0 and λ1 are the ratios of noise variance to offset variances, i.e.,

λ0 =σ2/β2
0, (4.18)

λ1 =σ2/β2
1. (4.19)

When the channels suffer from the signal dependent offsets, the positions of the ze-
roes and the ones in a candidate codeword x̂ are critical factors for the ML decoding. The
weight of the codeword is a critical issue as well. Attention is drawn to these factors in
the following theorem, where we present the ML decoding criterion for channels with
Gaussian noise and signal dependent offsets.
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Theorem 7. In the case that the i.i.d. noise vi ∼ N (0,σ2), the offsets b0 ∼ N (0,β2
0),

b1 ∼ N (0,β2
1), and the correlation between b0 and b1 is ρ, ML decoding is achieved by

minimizing

lnη+ 1

σ2

[
δE (r, x̂)− λ0 + (1−ρ2)(n −ω)

η
ω2(r(1) −1)2

− λ1 + (1−ρ2)ω

η
(n −ω)2r(0)2

(4.20)

− 2ρ
√
λ0λ1

η
ω(n −ω)(r(1) −1)r(0)

]
,

over all candidate codewords x̂ ∈ S, where η=λ1λ0 +ωλ0 + (n −ω)λ1 +ω(n −ω)(1−ρ2).

Before proving this theorem, an example of the covariance matrix (4.14) is given here.

Example 8. Consider a candidate codeword x̂ = (1,0,0,1) and a received vector r. Then

dx̂ = r− x̂ = (r1 −1,r2,r3,r4 −1).

For this example codeword, we have X̂ (1) = {1,4} and X̂ (0) = {2,3}. Thus, based on (4.14),
the covariance matrix of dx̂ is

Σx̂ =


σ2 +β2

1 ρβ0β1 ρβ0β1 β2
1

ρβ0β1 σ2 +β2
0 β2

0 ρβ0β1

ρβ0β1 β2
0 σ2 +β2

0 ρβ0β1

β2
1 ρβ0β1 ρβ0β1 σ2 +β2

1

 . (4.21)

Further, the average value of received symbols in the ‘1’ positions is

r(1) = (r1 + r4)/2

and the average value of received symbols in the ‘0’ positions is

r(0) = (r2 + r3)/2.

Thus the ML measurement for x̂ = (1,0,0,1) according to Theorem 7 is

lnη+ 1

σ2

[
δE (r, x̂)− λ0 +2(1−ρ2)

η
(r1 + r4 −2)2

− λ1 +2(1−ρ2)

η
(r2 + r3)2

−2ρ
√
λ0λ1

η
(r1 + r4 −2)(r2 + r3)

]
,

where η=λ1λ0 +2λ0 +2λ1 +4(1−ρ2).
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We may assume without loss of generality that x̂ is rearranged such that x̂1 ≥ x̂2 ≥ . . . ≥
x̂n , as long as r and thus dx̂ = r− x̂ are rearranged according to the same permutation as
x̂. Throughout the rest of this section, we will do so since it allows a more convenient
representation of the covariance matrix. In the example as just presented, one possible
permutation of x̂ is

(x̂1, x̂4, x̂2, x̂3) = (1,1,0,0).

Then the corresponding representation of dx̂ is

(r1 −1,r4 −1,r2,r3),

and its covariance matrix yields

Σx̂ =


σ2 +β2

1 β2
1 ρβ0β1 ρβ0β1

β2
1 σ2 +β2

1 ρβ0β1 ρβ0β1

ρβ0β1 ρβ0β1 σ2 +β2
0 β2

0
ρβ0β1 ρβ0β1 β2

0 σ2 +β2
0

 . (4.22)

Proof of Theorem 7. We start the evaluation of (4.15) by considering the covariance ma-
trix Σx̂ given in (4.14). Since the entries of this matrix are assigned values according to
two index sets X̂ (1) and X̂ (0), each Σx̂ is interpreted being subdivided into four blocks,
that is,

Σx̂ =
[

A B
C D

]
,

where A is an ω×ω matrix with all entries on the main diagonal equal to σ2 +β2
1 and

all other entries equal to β2
1, D is an (n −ω)× (n −ω) matrix with all entries on the main

diagonal equal to σ2 +β2
0 and all other entries equal to β2

0, and B, C are matrices of sizes
ω× (n −ω) and (n −ω)×ω, respectively, with all entries equal to ρβ0β1. An example of
such a block structure can be found in (4.22).

If A and D−CA−1B are non-singular, then the inverse and determinant of Σx̂ are [77,
pp. 107-108] [

A B
C D

]−1

=
[

A−1+A−1BX−1CA−1 −A−1BX−1

−X−1CA−1 X−1

]
, (4.23)

and

det

[
A B
C D

]
= (detA)(detX), (4.24)

where X = D−CA−1B. We first show that A and X are non-singular matrices, and then
use the above formulas to calculate the inverse matrix and determinant of Σx̂.

The determinant and the inverse matrix of A are

detA =σ2(ω−1)(σ2 +ωβ2
1)

and

A−1 =


s t · · · t

t s
...

...
. . . t

t · · · t s

 ,
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where s = σ2+(ω−1)β2
1

σ2(σ2+ωβ2
1)

and t = −β2
1

σ2(σ2+ωβ2
1)

. A is a non-singular matrix since detA 6= 0.

Next, we investigate the matrix X. After simple calculations, X can be written down
as

X =


σ2 +γ γ · · · γ

γ σ2 +γ ...
...

. . . γ

γ · · · γ σ2 +γ

 ,

where γ= λ1+(1−ρ2)ω
λ1+ω β2

0. The determinant of X is

detX = σ2(n−ω−1)β2
0η

λ1 +ω
,

where η= λ0λ1 +ωλ0 + (n −ω)λ1 +ω(n −ω)(1−ρ2). The matrix X is singular only when
η= 0. However, λ0λ1 > 0 implies that η> 0 which means that X is a non-singular matrix.
Then the inverse matrix of X is

X−1 =


g h · · · h

h g
...

...
. . . h

h · · · h g

 ,

where g = σ2+(n−ω−1)γ
σ2(σ2+(n−ω)γ)

and h = −γ
σ2(σ2+(n−ω)γ)

.

Since A and X are non-singular, we use (4.23) and (4.24) to calculate the determinant

and the inverse matrix of Σx̂. Let γ′ be λ0+(n−ω)(1−ρ2)
λ0+(n−ω) β2

1. Then we have

A−1 +A−1BX−1CA−1 =


g ′ h′ · · · h′

h′ g ′ ...
...

. . . h′
h′ · · · h′ g ′

 ,

where g ′ = σ2+(ω−1)γ′
σ2(σ2+ωγ′) and h′ = −γ′

σ2(σ2+ωγ′) . We also have that

−A−1BX−1 and −X−1CA−1

are two matrices of sizesω×(n−ω) and (n−ω)×ω, respectively, with all entries equal to

−ρ
β0β1η

.

Since the logarithm function is strictly increasing on the positive real numbers and
ψ is a positive function, ML decoding can also be achieved by maximizing the logarithm
of (4.15), i.e.,

lnψ(dx̂) =−n

2
ln(2π)− 1

2
ln(detΣx̂)− 1

2
dx̂Σ

−1
x̂ dT

x̂ ,
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rather than maximizing (4.15) itself. By inverting the sign and ignoring irrelevant terms,
we find that maximizing lnψ(dx̂) is equivalent to minimizing

ln

(
det

[
A B
C D

])
+

n∑
i=1

n∑
j=1

di

[
A B
C D

]−1

i j
d j , (4.25)

where di is the i -th term in the vector dx̂. By applying (4.24), the first part of (4.25) is

ln

(
det

[
A B
C D

])
= ln((detA)(detX))

= lnη+ ln(σ2(n−2)β2
1β

2
0). (4.26)

By ignoring the last term, that is irrelevant to the optimization process (independent
of x̂), we have that minimizing (4.26) is equivalent to minimizing lnη. The second part
of (4.25) is more complicated, but we can use g −h = g ′−h′ = 1/σ2 to simplify several

terms. Since the average value of the firstω symbols of dx̂ is r(1)−1 and the average value

of the other symbols is r(0), we have

n∑
i=1

n∑
j=1

di

[
A B
C D

]−1

i j
d j

=
[

(g ′−h′)
ω∑

i=1
(di )2 +h′ω2(r(1) −1)2

]

+
[

(g −h)
n∑

i=ω+1
(di )2 +h(n −ω)2(r(0))2

]

− 2ρ

β0β1η

ω∑
i=1

n∑
j=ω+1

di d j

= 1

σ2

[
δE (r, x̂)− λ0 + (1−ρ2)(n −ω)

η
ω2(r(1) −1)2

− λ1 + (1−ρ2)ω

η
(n −ω)2r(0)

2

−2ρ
√
λ0λ1

η
ω(n −ω)(r(1) −1)r(0)

]
.

(4.27)

Finally, combining (4.26) and (4.27), we can conclude that maximizing ψ(dx̂) is equiva-
lent to minimizing (4.20), as required.

Next, we take a look at a special case where the offsets are identical.

4.3.1. SPECIAL CASE STUDY

We consider a special situation of (4.2), where b0 and b1 are identical, i.e., b0 = b1 = b.
This signal independent offset b is still assumed to be Gaussian distributed with zero
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mean and variance β2. By definitions (4.18) and (4.19), the ratio of the noise and the
offset variances is identical, i.e., λ0 =λ1 =λ=σ2/β2. The received vector is given by

r = x+v+b1. (4.28)

In Section 3.3, an ML decoding criterion for channel model (4.28) is given. Here, we
present this criterion in the following corollary and show that it appears as a special case
of the result in Theorem 7.

Corollary 9. In the case of i.i.d. noise vi ∼N (0,σ2) and offset b ∼N (0,β2), an ML decod-
ing criterion for channel model (4.28) is achieved by minimizing a weighted combination
of the Euclidean distance (2.16) and the modified Pearson distance (2.39), i.e.,

λ

n +λδE (r, x̂)+ n

n +λδ
′
P (r, x̂), (4.29)

over all candidate codewords x̂.

Proof. Since the offset values for transmitted zeroes and ones are both equal to b, an ML
criterion for (4.28) can be derived from Theorem 7 by substituting ρ = 1 and λ0 =λ1 =λ,
which gives that the expression to be minimized is

lnη+ 1

σ2

[
δE (r, x̂)− λω2

η
(r(1) −1)2 − λ(n −ω)2

η
r(0)

2

−2λω(n −ω)

η
(r(1) −1)r(0)

]

= lnη+ 1

σ2

[
δE (r, x̂)− (ω(r(1) −1)+ (n −ω)r(0))2

λ+n

]

= lnη+ 1

σ2

[
δE (r, x̂)− n2

λ+n
(r̄− ¯̂x)2

]
,

where η=λ2 +nλ. Ignoring the irrelevant term lnη and dividing by 1/σ2 gives δE (r, x̂)−
n2

λ+n (r̄− ¯̂x)2. Substituting n(r̄− ¯̂x)2 = δE (r, x̂)−δ′P (r, x̂)+nr̄2, which follows from (2.16) and
(2.39), and ignoring the irrelevant term −n2r̄2/(λ+n), gives (4.29).

Recall that the Euclidean decoder (2.16) is ML in the situation that there is no offset,
while the modified Pearson decoder (2.39) is ML when signals suffer from the identi-
cal offset. Here, the ML decoding is shown to be a balanced combination of these two
criteria. In the offset dominant regime, i.e., βÀσ and thus λ being very small, (4.29) es-
sentially reduces to the modified Pearson criterion from (2.25). On the other hand, in the
noise dominant regime, i.e., β¿σ and thus λ being very large, (4.29) essentially reduces
to the Euclidean criterion (2.16) [62].

4.3.2. COMPLEXITY REDUCTION
Minimization of (4.20) by an exhaustive search over all candidate codewords x̂ ∈ S

may be too complex for large codebooks. In [49], it has been shown that the number of
computations in order to minimize (2.25) can be significantly reduced by considering a
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structured codebook, which is the union of a number of constant composition codes,
and applying Slepian’s algorithm [37]. Such complexity reductions can be explored for
the setting under consideration here as well. Below we will describe an example for a
particular case of channel model (4.2). Similar results can also be obtained for the gen-
eral case, but the corresponding formulas are more complicated and less readable.

We assume that the offsets b0 and b1 are identically distributed with zero means and
variances β2, In addition, we assume that they are uncorrelated random variables, i.e.,
ρ = 0. By setting λ0 =λ1 =λ and ρ = 0 in Theorem 7, the ML decoding criterion for such
a situation is thus established by minimizing

δML(r, x̂) = ln(λ+ω)+ ln(λ+n −ω) (4.30)

+ 1

σ2

[
δE (r, x̂)− ω2

λ+ω (r(1) −1)2 − (n −ω)2

λ+n −ωr(0)
2
]

,

where ω is the weight of the candidate codeword x̂.

Let Sω denote the set as

Sω = {x ∈ [2]n :
n∑

i=1
xi =ω},ω= 0, . . . ,n.

Note that each of these Sω contains all the vectors of length n and a particular weight ω.
The codebook S under consideration is the union of |V | of such sets, i.e.,

S = ⋃
ω∈V

Sω,

where the index set V ⊆ {0, . . . ,n}. Note that the index set V is of size at most n +1.

By working out (2.16), (4.16), and (4.17), we obtain

δE (r, x̂) =
n∑

i=1
(ri − x̂i )2 =

n∑
i=1

r 2
i +n ¯̂x−2

n∑
i=1

ri x̂i ,

r(1) =
∑n

i=1 ri x̂i

n ¯̂x
,

and

r(0) = nr̄−∑n
i=1 ri x̂i

n −n ¯̂x
,

where the first equation is the squared Euclidean distance between r and x̂, and the sec-
ond and the third equations are the average value of received symbols in the positions
where x̂ has ones and zeroes, respectively.

Now, we first investigate the minimization of (4.30) over all candidate codewords x̂ ∈
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Sω for a fixed value of ω ∈V . For any x̂ in Sω we have

δML(r, x̂)

= ln(λ+ω)+ ln(λ+n −ω)+ 1

σ2

[
n∑

i=1
r 2

i +ω−2
n∑

i=1
ri x̂i

− ω2

λ+ω
(∑n

i=1 ri x̂i

ω
−1

)2

− (n −ω)2

λ+n −ω
(

nr̄−∑n
i=1 ri x̂i

n −ω
)2]

,

= ln(λ+ω)+ ln(λ+n −ω)+ 1

σ2

[
n∑

i=1
r 2

i +ω−d(r, x̂)

]
, (4.31)

where

d(r, x̂) =
(

1

λ+ω + 1

λ+n −ω
)(

n∑
i=1

ri x̂i

)2

+ (4.32)(
2λ

λ+ω − 2nr̄

λ+n −ω
) n∑

i=1
ri x̂i + ω2

λ+ω + n2r̄2

λ+n −ω .

Since ML decoding is a minimization process of (4.31), we may ignore irrelevant terms
and delete scaling constants. Note that ω equals the number of ones in x̂ and thus, it
does not depend on the specific positions of ones in x̂. The only degree of freedom the
decoder has for minimizing (4.31) is permuting the symbols in x̂ to maximize d(r, x̂).
Hence, for the value of ω under consideration, the ML decoding result is

xo,ω = argmax
x̂∈Sω

d(r, x̂).

Note from (4.32) that d(r, x̂) can be regarded as a quadratic function of
∑n

i=1 ri x̂i . Since
the graph of the quadratic function is a convex parabola, the maximum value of (4.32)
occurs when

∑n
i=1 ri x̂i is minimal or maximal among all x̂ ∈ Sω. However, which of these

two options leads to the maximum value is not apparent from the expression. Therefore,
both the maximum and the minimum values of

∑n
i=1 ri x̂i are considered. Slepian [37]

showed that the value of
∑n

i=1 ri x̂i can be maximized by matching the largest symbol of r
with the largest symbol of x̂, the second largest symbol of r with the second largest sym-
bol of x̂, etc. On the other hand, the value of

∑n
i=1 ri x̂i can be minimized by matching

the largest symbol of r with the smallest symbol of x̂, the second largest symbol of r with
the second smallest symbol of x̂, etc. Hence, only two codewords from Sω under consid-
eration need to be evaluated. The n symbols of the received word, r, are sorted, largest
to smallest, in the same way as taught in Slepian’s prior art. For every ω ∈V , decide xo,ω

by maximizing the values of d(r, x̂ ∈ Sω) over two candidate codewords, (1, . . . ,1︸ ︷︷ ︸
ω

,0, . . . ,0)

and (0, . . . ,0,1, . . . ,1︸ ︷︷ ︸
ω

) for a fixed ω.

For the complete codebook S, ML decoding of the received vector, r, can thus be
accomplished by finding xo,ω as described above for all ω ∈ V , and then minimizing
δML(r,xo,ω) over the |V | candidates, i.e.,

xo = argmin
ω∈V

δML(r,xo,ω).



4

76 4. NOISY CHANNELS WITH SIGNAL DEPENDENT OFFSET MISMATCH

The number of codewords to be evaluated in minimizing (4.30) is |S|, which is im-
practical for larger S, since it tends to grow exponentially with n. By using the method
presented in this section, the number of words that need to be evaluated is reduced to
only 2 |V |, i.e., twice the number of constant composition codes that constitute the code-
book S. The index set V is of size at most n+1. Thus, the number of evaluations grows at
most linearly with n. For large codebooks, this is a significant reduction compared to an
exhaustive search among all the candidate codewords. It should be mentioned that in
order to apply this method, the received vector needs to be sorted, and the resulting ML
codeword needs to be inversely permuted accordingly. However, sorting is well known
to have only moderate computational complexity in terms of the length of the vector n,
e.g., O(n logn) symbol swaps. We can thus conclude that the overall complexity is still
considerably lower than for an exhaustive search.

4.3.3. PERFORMANCE EVALUATION
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Figure 4.3: Simulated word error rate (WER) versus signal to noise ratio (SNR) of S∗ for channels with Gaussian
noise and signal dependent offsets, that have standard deviations β0 = 0.2, β1 = 0.3, and correlation ρ = 0.75.

In this section, we investigate the word error rate (WER) performance of three de-
coders, namely, Euclidean distance based decoding (2.16) (MED), modified Pearson dis-
tance based decoding (2.39) (MMPD), and ML decoding (4.20). Simulated WER results
are shown for the (3,2) parity check code S∗. This simple codebook suffices to demon-
strate some important WER characteristics of the proposed method (4.20) in comparison
with the traditional methods (2.16) and (2.39).

WER VERSUS SIGNAL TO NOISE RATIO (SNR)
Figures 4.3 and 4.4 show the word error rate results of simulations for a range of noise

levels. In both Figs. 4.3 and 4.4, each point was the result of 10,000 trials. The signal de-
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Figure 4.4: Simulated word error rate (WER) versus signal to noise ratio (SNR) of S∗ for channels with Gaussian
noise and signal dependent offsets, that have standard deviations β0 = 0.2, β1 = 0.3, and correlation ρ = 0.15.
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Figure 4.5: Simulated word error rate (WER) versus ρ of S∗ for channels with Gaussian noise and signal depen-
dent offsets, that standard deviations β0 = 0.2, β1 = 0.3, and signal to noise ratio is 12 dB.

pendent offsets b0 and b1 have zero means and standard deviationsβ0 = 0.2 andβ1 = 0.3,
respectively. The correlation ρ between b0 and b1 is set to be 0.75 in Fig. 4.3 and 0.15 in
Fig. 4.4. It can be observed from these figures that the performance of Euclidean distance
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Figure 4.6: Simulated word error rate (WER) versus ρ of S∗ for channels with Gaussian noise and signal depen-
dent offsets, that have standard deviations β0 = 0.2, β1 = 0.3, and signal to noise ratio is 17 dB.

based decoding is close to ML decoding when the value of SNR is small, for both ρ = 0.75
and ρ = 0.15. For high correlation, Pearson distance based decoding outperforms Eu-
clidean distance based decoding at large SNR values, see Fig. 4.3 for ρ = 0.75. However,
for low correlation, the performance of Pearson distance based decoding is worse than
that of Euclidean distance based decoding, as illustrated in Fig. 4.4 for ρ = 0.15. ML de-
coding is always better than both of them, as expected. By comparing the two figures, it
can be seen that the offset correlation, ρ, plays a crucial role in the WER performances.
The following subsection is concerned with WER versus ρ.

WER VERSUS CORRELATION BETWEEN OFFSETS

The simulation results for a range of ρ values are shown in Figures 4.5 and 4.6. Each
point was the result of 10,000 trials, in the situation that the signal dependent offsets
b0 and b1 are still assumed to have zero means and standard deviations β0 = 0.2 and
β1 = 0.3, respectively. Here, SNR is set to be 12 dB in Fig. 4.5 and 17 dB in Fig. 4.6.

WERs of all three decoding criteria decrease when ρ increases from -1 to 1. Note
that the value of ρ has only little effect on the performance of Euclidean distance based
decoding but that it has a high impact on the results of Pearson distance based decod-
ing and ML decoding, especially when SNR is equal to 17 dB. The WER of ML decoding
is always better than that of the other two decoders, as expected. These results are in
accordance with our earlier observations, which showed that Pearson distance based
decoding outperforms Euclidean distance based decoding when ρ is close to 1 and SNR
is large, and that the ML decoding surpasses both of them.
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4.4. CONCLUSION
In this chapter, we have studied channels that are not only distorted by Gaussian

noise but also by another substantial channel impairment, signal dependent offset. We
have investigated a maximum likelihood (ML) decoding criterion for the situation that
the noise and the offset are uniformly distributed. We have also shown that the ML de-
coder can achieve a zero WER when the standard deviations of the noise and the offset
are small enough. Later, an ML decoding criterion has been derived for such channels
to improve and strengthen the resilience to Gaussian noise and signal dependent offset.
We have shown that a previous result on ML decoding in the case that the offsets are
identical, i.e., signal independent, appears as a special case of our proposed criterion.
For codebooks consisting of the union of constant weight sets, it has been shown that
significant complexity reductions can be obtained.





5
NOISY CHANNELS WITH GAIN AND

OFFSET MISMATCH

We have considered decoding techniques for noisy channels with offset mismatch previ-
ously. In this chapter, we put our attention on a more complicated channel model in
which the retrieved data is corrupted by Gaussian noise, gain, and offset mismatch. The
intervals from which the gain and offset values are taken are known, but there are no fur-
ther assumptions on the distributions on these intervals. We derive maximum likelihood
(ML) decoding methods for such channels based on finding a codeword with the closest
Euclidean distance to a specified set defined by the received vector and the gain and offset
parameters. We provide geometric interpretations of gain and offset and show that certain
known criteria appear as special cases of our general setting.

5.1. INTRODUCTION
We use the same channel model as mentioned in [49]: besides the noise, which varies

from symbol to symbol, a multiplicative factor a and an additive term b specify the gain
and offset mismatch, respectively, which are assumed to be constant within one code-
word length but may be different for the next one. Specifically, consider transmitting a
codeword x = (x1, x2, . . . , xn) from a codebook S over the q-ary alphabet [q], q ≥ 2, where
n is a positive integer. The transmitted symbols xi are distorted by additive noise vi , by a
factor a > 0, called gain/scaling, and by an additive term b, called offset, i.e., the received
symbols ri read

ri = a(xi + vi )+b,

The material in this chapter has appeared in

• R. Bu and J. H. Weber, "Maximum Likelihood Decoding for Multi-Level Cell Memories with Scaling and
Offset Mismatch", Proc. of IEEE International Conference on Communications (ICC), Shanghai, China,
May, 2019.
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for i = 1, . . . ,n. The parameters vi ∈ R are zero-mean i.i.d. Gaussian noise samples with
variance of σ2 ∈R, that is, the noise vector v has multivariant Gaussian distribution χ(v)
as Equation (2.15). The gain and offset (unknown to both the sender and the receiver)
may slowly vary over time due to various factors in multi-level cells. So we assume they
may differ from codeword to codeword, but do not vary within a codeword. The received
vector when a codeword x is transmitted is

r = a(x+v)+b1, (5.1)

where 1 = (1,1, . . . ,1) is the real all-one vector of length n.
There are many examples of channels with offset and gain mismatch. Reading errors

in Flash memories may originate from cell drift in aging devices [11]. In the digital optical
recording, fingerprints and scratches on the surface of discs result in offset variations
of the retrieved signal [65]. For direct conversion receivers, the local oscillator is the
primary source of dc-offset [78]. In wireless communication channels, path loss will
result in unknown gain, fading, of the channel [79]. The offset may arise as baseline
wander in the low frequencies of baseband transmission channels [80].

The well-known MED will decode the received vector r and output a codeword that
minimizing the (squared) Euclidean distance (2.16). Applying (5.1) to the (squared) Eu-
clidean distance gives

δE (r, x̂) =
n∑

i=1
[a(xi + vi )+b − x̂i ]2

=−2
n∑

i=1
x ′

i x̂i +
n∑

i=1
(x ′

i +b)2 −2b
n∑

i=1
x̂i +

n∑
i=1

x̂2
i , (5.2)

where x ′
i = a(xi + vi ). Gain and offset mismatch have a significant bearing on the er-

ror performance of MED as x̂ related terms are dependent on a and b. In the prior
art, constrained codes, specifically, dc/dc2−bal anced codes, are considered to counter
the effects of gain and offset mismatch [36]. By definition, all codewords x in a dc/dc2-
balanced code satisfy that the symbol sum∑n

i=1 xi = a1

and symbol energy ∑n
i=1 x2

i = a2,

are prescribed, where a1 and a2 are two positive integers selected by the code designer.
It is clear that in the case where all codewords satisfy the symbol sum and energy con-
straints, the (squared) Euclidean distance (2.16) is equivalent to

δE (r, x̂) ≡−∑n
i=1(xi + vi )x̂i .

Thus the MED of dc/dc2-balanced codes is immune to channel mismatch. The notion
of dynamic thresholds based on balanced codes is introduced in [33] for the reading
of binary sequences. The generalization of applying dynamic thresholds for multi-level
cell memories is explored in [35]. The generating function is used to enumerating the
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dc/dc2-balanced codes in [45]. Encoding/decoding of balanced codes has attracted a
considerable amount of research and engineering attention [46, 47].

Immink and Weber [49] advocate the use of Pearson distance based decoding instead
of traditional Euclidean distance based decoding in situations that require resistance
towards gain and/or offset mismatch. Section 2.4 has introduced the minimum Pearson
distance based detection in detail. Since the offset b changes the mean of a vector, it
seems reasonable to consider normalized vectors x̂− ¯̂x1 and r− r̄1 rather than x̂ and r.
On the other hand, scaling a vector of mean zero by a only changes its standard deviation
by a factor of a. So it seems reasonable to scale the normalized vectors so that they have
a standard deviation of 1. It is not difficult to see that this is the Pearson correlation
coefficient ρr,x̂.

This chapter aims to generalize maximum likelihood (ML) decoding for channels
with Gaussian noise and gain and offset mismatch. The main contribution of this chap-
ter is two-fold. Firstly, we derive an ML decoding criterion for channels with Gaussian
noise and also suffering from the gain a and the offset b, which are known to be within
specific ranges, specifically 0 < a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2. The ML decoding criterion
will also be illustrated with geometric interpretations. Secondly, the proposed ML cri-
terion provides a general framework, including the gain-only case and the offset-only
case. Some known criteria [62] [61] are shown to be special cases of this framework for
particular a1, a2, b1, and b2 settings.

This chapter is organized as follows. In Section 5.2, we start by providing how to
achieve ML decoding for this channel. We continue in Section 5.3 considering several
special cases, which relate to known results in this area. We wrap up the paper with
some comments and ideas for future work in Section 5.5.

5.2. MAXIMUM LIKELIHOOD DECODING
A maximum likelihood (ML) decoding will conclude that x̂ is the most likely code-

word transmitted if the codeword x̂ maximizes the likelihood P(r |x̂ ), that is, the proba-
bility that r is received, given x̂ is sent. From (5.1), we know v = (r−b1)/a− x̂ when a and
b are fixed, and since a is nonzero, the likelihood P(r |x̂ ) is

χ((r−b1)/a − x̂).

Here, we consider the situation that the gain and the offset take their values within
specific ranges, specifically 0 < a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2, but do not make any fur-
ther assumptions on the distributions on these intervals. Thus, in order to achieve ML
decoding, the criterion to maximize among all candidate codewords x̂ is

max
0<a1≤a≤a2,b1≤b≤b2

χ((r−b1)/a − x̂). (5.3)

Since the logarithm function is strictly increasing on the positive real numbers and
χ is a positive function, an equivalent formulation of the problem is to find x̂ ∈ S that
maximizes

max
0<a1≤a≤a2,b1≤b≤b2

lnχ((r−b1)/a − x̂).
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Since
lnχ((r−b1)/a − x̂) =−n ln(σ

p
2π)

− 1

2σ2

n∑
i=1

((ri −b)/a − x̂i )2 (5.4)

has a component −n ln(σ
p

2π) that is independent of x̂ and r, and since 1
2σ2 is a positive

constant, a maximum likelihood decoder finds a codeword x̂ that minimizes

min
0<a1≤a≤a2,b1≤b≤b2

n∑
i=1

((ri −b)/a − x̂i )2,

i.e., it minimizes the squared Euclidean distance between the candidate codeword x̂ and
the points in

U = {(r−b1)/a|0 < a1 ≤ a ≤ a2,b1 ≤ b ≤ b2},

which is a subset of the subspace

U ′ = {cr+d1|c,d ∈R}

in Rn .
The squared Euclidean distance between a vector x̂ and the set U is defined as

δE (U , x̂) =
n∑

i=1
(pi − x̂i )2,

where p = (p1, p2, . . . , pn) is the point in U that is closest to x̂. The most likely candidate
codeword xo for a received vector has the smallest δE (U , x̂), that is

xo = argmin
x̂∈S

δE (U , x̂). (5.5)

Hence, x̂ ∈ S closest to U is chosen as the ML decoder output.
In order to calculate δE (U , x̂) for a codeword x̂, we first find the point in U ′ that is

closest to x̂ and then check if this point is in U . Applying the first derivative test gives
that the closest point in U ′ to x̂ is p0 = c0r+d01 with

c0 =
〈r, x̂〉−nr̄ ¯̂x

〈r,r〉−nr̄2

and

d0 =
〈r,r〉 ¯̂x−〈r, x̂〉 r̄

〈r,r〉−nr̄2 .

In Figure 5.1, we depict the subset U in gray when a1 < 1 < a2 and b1 < 0 < b2. Four
vertices A, B, C, D are also shown in the picture:

A = (r−b11)/a1,

B = (r−b21)/a1,

C = (r−b21)/a2,
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Figure 5.1: Subdivision of U ′ = {cr+d1|c,d ∈R}.

D = (r−b11)/a2.

Perpendicular lines (blue dash) in U ′ to sides of U through vertices are pictured in Fig-
ure 5.1. These perpendicular lines and the sides of U separate U ′ into 9 subsets, namely,
R1,R2, . . . ,R9. For instance, the perpendicular lines to side BC and BC itself form the
boundaries of R5. We use the notation R9 in Figure 5.1 for the subset U for clerical con-
venience.

Theorem 10. If p0 is in the subset Ri , i = 1, . . . ,9, then the closest point in U to x̂ is

p =



〈r−b11, x̂〉
‖r−b11‖2 (r−b11) if i = 1,

〈r−b21, x̂〉
‖r−b21‖2 (r−b21) if i = 5,

(r− (r̄−a1 ¯̂x)1)/a1 if i = 3,

(r− (r̄−a2 ¯̂x)1)/a2 if i = 7,

A if i = 2,

B if i = 4,

C if i = 6,

D if i = 8,

p0 if i = 9.

(5.6)

The ML decoding criterion is minimizing δE (p, x̂) among all candidate codewords.
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Proof. If p0 is in the subset R1, maximizing (5.3) is equivalent to minimizing the smallest
squared Euclidean distance from the codeword x̂ to the line segment

AD = {(r−b11)/a|0 < a1 ≤ a ≤ a2},

which is shown in Figure 5.1. Let θ be the angle between x̂ and r−b11. The point on AD
closest to x̂ is p =α(r−b11) with

α= (‖x̂‖cosθ)/‖r−b11‖ = 〈r−b11, x̂〉/‖r−b11‖2.

Similarly, when p0 is in the subset R5, the point on BC = {(r− b21)/a|0 < a1 ≤ a ≤ a2}
closest to x̂ is p =α(r−b21) with

α= 〈r−b21, x̂〉/‖r−b21‖2.

If p0 is in the subset R3, the point p ∈U that is closest to x̂ must be on the line segment

AB = {(r−b1)/a1|b1 ≤ b ≤ b2},

which is shown in Figure 5.1. The point on AB that is closest to x̂ is p = (r−β1)/a1, with
β= r̄−a1 ¯̂x, which follows from the first derivative test. The proof is similar when p0 is in
the subset R7, with the line segment CD taking the role of AB.

If p0 is in the subset R2, then the closest point in U to x̂ is the vertex A = (r−b11)/a1,
as can be observed from Figure 5.1. Similar results are found for the situations that p0 is
in the subset R4, R6, and R8, where the closest point in U to x̂ is B, C, and D, respectively.

Obviously, the closest point in U to x̂ is p0 itself when p0 is in the subset R9 =U .

5.3. SPECIAL CASES
Several special values of a1, a2, b1 and b2 are considered, leading to typical cases

for maximizing (5.3); these include the gain-only and offset-only cases. Not only ML
decoding criteria are discussed, but also conventional decoding criteria as introduced in
Chapter 2.

5.3.1. GAIN-ONLY CASE
In the gain-only case, i.e., b = 0, we simply have

r = a(x+v),

where the gain, a, is unknown to both sender and receiver.
In Theorem 2 of [62], the following ML criterion was presented for the case that there

is bounded gain (0 < a1 ≤ a ≤ a2) and no offset mismatch (b = 0):

La1,a2 (r, x̂) =


δE (r/a1, x̂) if 〈r, x̂〉 > 〈r,r〉/a1,
δE (r/a2, x̂) if 〈r, x̂〉 < 〈r,r〉/a2,

‖x̂‖2 −
( 〈r,x̂〉
‖r‖

)2
otherwise.

(5.7)
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This result can also be found from the general framework presented in the previous sec-
tion by setting b1 = b2 = 0 in Theorem 10. Note that this gives indeed that p = r/a1 if
p0 ∈ R2 ∪R3 ∪R4, which corresponds to the situation that

‖x̂‖cosϕ

‖r‖ = 〈r, x̂〉
〈r,r〉 > 1/a1,

where ϕ is the angle between x̂ and r. Similarly, note that p = r/a2 if p0 ∈ R6 ∪R7 ∪R8,
which corresponds to the situation that

‖x̂‖cosϕ

‖r‖ = 〈r, x̂〉
〈r,r〉 < 1/a2.

Finally, note that p = 〈r,x̂〉
‖r‖2 r if p0 ∈ R1 ∪R5 ∪R9, which corresponds to the ‘otherwise’ case

in (5.7), and that

δE (p, x̂) = δE

( 〈r, x̂〉
‖r‖2 r, x̂

)
= ‖x̂‖2 −

( 〈r, x̂〉
‖r‖

)2

.

In Figure 5.2, we draw the three cases in (5.7), where the subset {r/a |0 < a1 ≤ a ≤ a2 }
is a line segment in the direction of r. The circle points are the closest points on this line
segment to x̂.

o

r

x̂

(a) 〈r, x̂〉 > 〈r,r〉/a1

o

r

x̂

(b) 〈r, x̂〉 < 〈r,r〉/a2

o

r

x̂

(c) otherwise

Figure 5.2: The distance of a candidate codeword x̂ to the subset {r/a |0 < a1 ≤ a ≤ a2 }: three cases in (5.7)
assuming a1 < 1 < a2.

Next, we consider the situation that a1 → 0 and a2 → ∞, i.e., the only knowledge
on the gain a is that it is a positive number, without further limitations. The subset
{r/a |a ∈R, a > 0 } is a ray from the origin in the direction of r. In this case, it follows
from the above that ML decoding can be achieved by minimizing

La(r, x̂) =
{

‖x̂‖2 −
( 〈r,x̂〉
‖r‖

)2
if 〈r,x̂〉

〈r,r〉 > 0,

‖x̂‖2 otherwise.
(5.8)

One reason for this choice is that it behaves well with respect to an affine gain function
(a > 0), since

La(r, x̂) = La(r/a, x̂).

That is, scaling a vector r by a does not change the angle ϕ between x̂ and r.
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(a) r̄− ¯̂x < b1
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(b) r̄− ¯̂x > b2
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ˆ ˆx x1

r r1

(c) otherwise

Figure 5.3: The distance of a candidate codeword x̂ to the line segment {r−b1 |b1 ≤ b ≤ b2 }: two cases in (5.9)
assuming b1 < 0 < b2.

5.3.2. OFFSET-ONLY CASE
In the offset-only case, i.e., a = 1, we simply have

r = x+v+b1,

where the offset b is unknown to both sender and receiver.
In Theorem 1 of [62], the following ML criterion was presented for the case that a = 1

and b1 ≤ b ≤ b2:

Lb1,b2 (r, x̂) =


δE (r−b11, x̂) if r̄− ¯̂x < b1,
δE (r−b21, x̂) if r̄− ¯̂x > b2,
δE (r− (r̄− ¯̂x)1, x̂) otherwise.

(5.9)

This result also follows from the general setting presented in the previous section, by
substituting a1 = a2 = 1. Note that the first case in (5.9) corresponds to the situation that
p0 ∈ R1∪R2∪R8, the second case to p0 ∈ R4∪R5∪R6, and the last case to p0 ∈ R3∪R7∪R9.

We illustrate the first two situations of Lb1,b2 (r, x̂) in Figure 5.3(a) and 5.3(b), the
last one in Figure 5.3(c), where {r−b1 |b1 ≤ b ≤ b2 } is shown by a line segment passing
through r with direction 1. The point in {r−b1 |b1 ≤ b ≤ b2 } that is closest to x̂ is r−b11
or r−b21 for the situations in Figure 5.3(a) and 5.3(b). For the ‘otherwise’ case in (5.9),
we consider in Figure 5.3(c) the normalized vectors x̂− ¯̂x1 and r− r̄1 rather than x̂ and r.

By letting b1 →−∞ and b2 →∞, we obtain from (5.9) that the criterion

Lb(r, x̂) = δE (r− (r̄− ¯̂x)1, x̂)

=
n∑

i=1
(ri − x̂i + ¯̂x)

2 −nr̄2

= δ′P (r, x̂)−nr̄2,

when there is no knowledge at all of the magnitude of the offset [62]. Noting that the
last term nr̄2 is irrelevant in the minimization process, we conclude that the modified
Pearson criterion δ′P (r, x̂) achieves ML decoding in this case.
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5.3.3. UNBOUNDED GAIN AND OFFSET CASE
In this subsection, an ML decoding criterion derived by Blackburn [61] for the situ-

ation when both the gain a and the offset b are unbounded (a1 → 0, a2 →∞, b1 →−∞,
b2 →∞) is reconsidered as a special case of the results presented in Section 5.2. In [61],
Blackburn shows that an ML decoder chooses a codeword x̂ minimizing

lr(x̂) =
{
σ2

x̂(1−ρ2
r,x̂) when ρr,x̂ > 0,

σ2
x̂ otherwise.

(5.10)

His argument was that when the gain factor a and the offset term b are fully un-
known, except for the sign of a, then maximizing (5.3) is equivalent to minimizing the
smallest squared Euclidean distance from the codeword x̂ to the subset

U+ = {(r−b1)/a|a,b ∈R, a > 0},

which is a half-subspace of U ′ ⊂Rn . Note that when a1 → 0, a2 →∞, b1 →−∞, b2 →∞,
our U is indeed equal to Blackburn’s set U+. Note that p0 = c0r+d01 is either in R9 =U =
U+ or in R7. By (2.4), c0 and d0 can be rewritten as

c0 =
ρr,x̂σx̂

σr
(5.11)

and
d0 = ¯̂x− c0r̄. (5.12)

In case p0 ∈ R9, which happens if and only if ρr,x̂ > 0, then Theorem 10 says p = p0 =
c0r+d01. Note that

δE (c0r+d01, x̂)

=
n∑

i=1
[c0ri +d0 − x̂i ]2

=
n∑

i=1

[
c0(ri − r̄)− (x̂i − ¯̂x)

]2

=
n∑

i=1

[
c2

0 (ri − r̄)2 −2c0(ri − r̄)(x̂i − ¯̂x)+ (x̂i − ¯̂x)
2
]

=c2
0σ

2
r −2c0ρr,x̂σrσx̂ +σ2

x̂

=
(
ρr,x̂σx̂

σr

)2

σ2
r −2

(
ρr,x̂σx̂

σr

)
ρr,x̂σx̂σr +σ2

x̂

=σ2
x̂(1−ρ2

r,x̂),

which is indeed the same as in (5.10) when ρr,x̂ > 0.
In case p0 ∈ R7, then Theorem 10 says p = ¯̂x1 since a2 →∞. Hence,

δE (p, x̂) = δE (¯̂x1, x̂) =σ2
x̂.

This shows that Blackburn’s criterion (5.10) indeed appears as a special case of our gen-
eral setting.
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5.4. SIMULATION RESULTS
Thus far, we have discussed ML decoding for Gaussian noise channels with gain and

offset mismatch. We have mentioned that MED is ML decoding for Gaussian noise chan-
nels in Section 2.3, while the MPD (2.23) is optimal for channels with gain and offset mis-
match due to its intrinsic immunity to both gain and offset mismatch. In other words,
the Pearson distance is invariant to changes in translation and scale (up to a sign) in two
vectors, that is

δP (a +br, x̂) = 1−ρa+br,x̂ = 1−ρr,x̂ = δP (r, x̂).

10 11 12 13 14 15 16 17 18 19

SNR (dB) = -20log
10
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Figure 5.4: Word error rate (WER) against signal-to-noise ratio (SNR) when q = 4, n = 8, a = 1.07, and b = 0.07.

Figure 5.4 shows simulation results of MPD, MED, and ML decoding (5.10) when
q = 4 and n = 8. The word error rate (WER) of 10,000 trials is shown as a function of the
signal-to-noise ratio (SNR = −20log10σ). Results are given for 2-constrained codes [49,
51], while a = 1.07 and b = 0.07. The simulations indicate that for this case, Pearson dis-
tance based decoding has a comparable performance as ML decoding, while Euclidean
distance based decoding performs considerably worse.

5.5. CONCLUSION
This chapter has derived a maximum likelihood decoding criterion for channels with

Gaussian noise and gain and/or offset mismatch. The main result has been given in
Theorem 10 in Section 5.2. In our channel model, gain and offset are restricted to certain
ranges, 0 < a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2, which is a generalization of several prior art
settings. For instance, by letting a1 → 0, a2 →∞, b1 →−∞, b2 →∞, we obtain the same
ML decoding criterion (5.10) as proposed by Blackburn for the case of unbounded gain
and offset. We also provided geometric interpretations illustrating the main ideas.
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Gain and offset mismatch are essential issues in many systems, but not the only ones.
One could try to derive ML decoding criteria for the channel model in future work, in-
cluding dependent noise or inter-symbol interference.





6
NOISY CHANNELS WITH SLOWLY

VARYING OFFSET MISMATCH

In this chapter, we consider noisy data transmission channels with unknown gain and
varying offset mismatch. Minimum Pearson distance detection is used in cooperation
with a difference operator, which offers immunity to such mismatch. Pair-constrained
codes are proposed for unambiguous decoding, where, in each codeword, certain adjacent
symbol pairs must appear at least once. We investigate the cardinality and redundancy
of these codes. A simple systematic encoding algorithm of pair-constrained codes is pro-
posed, whose redundancy is analyzed for memoryless uniform sources. Lastly, we discuss
the error performance of the proposed scheme and provide options for future research.

6.1. INTRODUCTION
One can observe unknown gain and varying offset mismatch in many applications.

Flash memory is an example. In Flash memory, physical features like the device temper-
ature will result in rapid gain and offset variations of the retrieved signal. Memory cells
closer to hotter areas on the chip may lose their charge faster than cells closer to colder
areas. As a result, the retrieved signal is imposed on an unknown-time varying drift [81].
Another example is a fading and multi-path reception. The received power level may
vary rapidly, which results in a time-varying fading or dynamic dc-offset [82].

We consider noisy channels with unknown gain and varying offset mismatch. As-
sume transmitting a codeword x = (x1, x2, . . . , xn) from a codebook S ⊆ [q]n . The received
vector r = (r1,r2, . . . ,rn) is given by

r = a(x+v)+b1+ cs, (6.1)

The material in this chapter has appeared in

• R. Bu and J. H. Weber, "Minimum Pearson Distance Detection Using a Difference Operator in the Pres-
ence of Unknown Varying Offset", IEEE Communication Letters, vol. 23, pp. 1115-1118, July, 2019.
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where 1 = (1,1, . . . ,1) and s = (1,2, . . . ,n). The basic premises are that x is suffering from
(i) additive Gaussian noise v = (v1, v2, . . . , vn), where vi ∈ R are i.i.d. noise samples with
normal distribution N (0,σ2), where σ2 ∈R denotes the noise variance, (ii) an unknown
(positive) gain factor a, where a ∈ R, a > 0, and (iii) an unknown varying offset, b1+ cs,
where b,c ∈R.

MPD detection [49] is intrinsically resistant to the gain a and offset b, where a and
b may change from word to word but are constant for all transmitted symbols within a
codeword. Here, we consider the situation in which the offset varies linearly within a
codeword, where the slope of the offset, represented by the parameter c, is unknown. A
detection scheme for channels with gain and such varying offset is investigated in [59],
where, for the binary case, MPD detection is used in conjunction with mass-centered
codewords, in such a way that the system is insensitive to both gain and varying offset,
i.e., it is (a,b,c)-immune. However, this scheme is very expensive in terms of redun-
dancy.

We show that the combination of MPD and a difference operator is (a,b,c)-immune
as well. In addition, pair-constrained codes, where in each codeword certain adjacent
symbol pairs must appear at least once, are proposed to achieve unambiguous decod-
ing. The redundancy of pair-constrained codes is much lower than that of prior art
mass-centered codes, which makes the new decoding scheme an attractive alternative
for practical applications.

We start in Section 6.2 with a brief description of the prior art. Section 6.3 presents
the backbone of the paper, where it is shown how an MPD detector can be used together
with the difference operator. In Section 6.4, we introduce pair-constrained codes, and
we compute their cardinality and redundancy. A systematic encoding algorithm is pre-
sented. The word error rate (WER) of the new scheme in the presence of additive noise
is shown in Section 6.5. In Section 6.6, we discuss the results of this chapter and provide
options for future research.

6.2. PRIOR ART
Below we discuss two prior art detection schemes and relevant properties.
The received vector r can be decoded with the well-known MED (2.16), which out-

puts the codeword

xo = argmin
x̂∈S

δE (r, x̂). (6.2)

Applying (6.1) to the (squared) Euclidean distance gives

δE (r, x̂) =
n∑

i=1
[a(xi + vi )+b + ci − x̂i ]2

=
n∑

i=1
(x ′

i − x̂i )2 +
n∑

i=1
(b + ci )2 +2b

n∑
i=1

x ′
i +2c

n∑
i=1

i x ′
i −2b

n∑
i=1

x̂i −2c
n∑

i=1
i x̂i , (6.3)

where x ′
i = a(xi +vi ). The mismatch may significantly affect the evaluation of δE , which

can lead to a loss in noise margin or even a loss of the whole codeword. In the prior art,
constrained coding techniques have been sought to offer a cure to the reported loss of
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performance caused by channel mismatch. For example, in [44], second-order spectral-
null codes are proposed for the binary case, where xi takes value from the alphabet {0,1}.
By definition, all codewords x in a second-order spectral-null code have the property
that the symbol sum

n∑
i=1

xi = n

2
,

and
n∑

i=1
i xi = n(n +1)

4
.

After substituting the above conditions into (6.3), we see that it does not matter for the
outcome of the detection process (6.2) or detection performance if we scale or trans-
late the measurement with a constant independent of the variable x̂. Thus MED of
second-order spectral-null codes is intrinsically resistant to channel mismatch as it is
independent of the parameters a, b, and c. In that case, the detector is said to be (a,b,c)-
immune.

Let Nsn2 (n) denote the number of second-order spectral-null code codewords. It has
been found in [44] that Nsn2 (n) = 0 if n mod 4 6= 0, and for asymptotically large n the
number of second-order spectral-null codewords equals

Nsn2 (n) ' 4
p

3

π

2n

n2 , n mod 4 = 0. (6.4)

The redundancy, rsn2 (n), of second-order spectral-null codes is approximately

rsn2 (n) = n − log2 Nsn2 (n) ' 2log2 n −1.141,n À 1. (6.5)

Another example of constrained code techniques is advocated in [59] with a less
redundant option that also guarantees (a,b,c)-immunity. The Pearson distance offers
immunity to gain and non-varying offset mismatch [49], and an MPD decoder chooses
among all candidate codewords x̂ ∈ S the codeword xo whose Pearson distance to the
received vector r is smallest. However, if c is known to be zero in (6.1), using the MPD
only makes the error performance (a,b)-immune [49].

In case of varying offset, mass-centered codes in combination with the MPD detector
are advocated in [59] for the binary case, where the codebook Sm ⊆ [2]n is chosen such
that each codeword x ∈ Sm satisfies

n∑
i=1

(
i − n +1

2

)
xi = 0. (6.6)

An example of mass-centered codes with length of n = 5 is given in Table 6.1.

We show that with the employment of mass-centered codes, the error performance
of the MPD detector is insensitive to the parameter c, that is, (c)-immune. In the process
of minimization δP (r, x̂) the terms independent of x̂ is irrelevant. Applying (6.1) to the
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Table 6.1: Mass-centered codes, n = 5.

0 0 0 0 0
0 1 0 1 0
1 0 0 0 1
1 1 0 1 1
0 0 1 0 0
0 1 1 1 0
1 0 1 0 1
1 1 1 1 1

Pearson distance measure gives

δP (r, x̂) = 1− 1

σrσx̂

n∑
i=1

[a(xi + vi )+b + ci − r̄] (x̂i − ¯̂x)

= 1− 1

σrσx̂

[
a

n∑
i=1

(xi + vi )(x̂i − ¯̂x)+ (b − r̄)
n∑

i=1
(x̂i − ¯̂x)+ c

n∑
i=1

i (x̂i − ¯̂x)

]

= 1− a

σrσx̂

n∑
i=1

(xi + vi )(x̂i − ¯̂x). (6.7)

where the last equation follows that: i) the ‘b − r̄’-dependent term is zero since

n∑
i=1

(x̂i − ¯̂x) =
n∑

i=1
x̂i −n ¯̂x = 0;

and ii) the ‘c’-dependent term is zero as well since by definition (6.6), we have

n∑
i=1

i (x̂i − ¯̂x) =
n∑

i=1
i x̂i − n +1

2
n ¯̂x = 0,∀x̂ ∈ Sm .

The remaining term of (6.7) depends only on a gain factor a, but it is irrelevant as it
has no effect on the final choice of xo that minimizes δP (r, x̂). We conclude that the error
performance of an MPD used in conjunction with the codebook Sm of the center of mass
constrained codewords is (a,b,c)-immune.

Denote the cardinality of the binary mass-centered codes of length n as No(n). For
asymptotically large n, the redundancy of Sm is [59]

ro(n) = n − log2 No(n) ≈ 3

2
log2 n +α, (6.8)

where α= log2

p
π/24 ≈−1.467 for n odd and α≈−0.467 for n even. The redundancy of

mass-centered codes is smaller than that of second-order spectral-null codes.
The two prior art detection methods discussed above have drawbacks in their high

redundancy, and to alleviate the drawback, various alternatives are sought. In the next
section, we propose and investigate a novel detection method with much less redun-
dancy that also guarantees (a,b,c)-immunity.
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6.3. MPD DETECTION USING A DIFFERENCE OPERATOR
Define the difference operator of a vector u ∈Rn as

∆u = u2,n −u1,n−1, (6.9)

where ui , j = (ui ,ui+1, . . . ,u j ) for all 1 ≤ i ≤ j ≤ n.
For any codeword x ∈ S, we call∆x its difference codeword. The difference codebook,

∆S, is defined by ∆S = {∆x |x ∈ S }. This is a set of codewords of length n −1 over the al-
phabet Q = {−(q−1), . . . ,−1,0,1, . . . , q−1}. We will later show that as long as the codebook
S satisfies the pair constraints, the difference codebook∆S can be one-to-one generated
from S.

i
x

i
v

i
r

Gain and Varying 
Offset

Difference Operator Pearson Detector
ˆ
i
x

i
r

Figure 6.1: MPD detection using a difference operator.

We now show that the use of the difference operator will make Pearson distance
based detection (a,b,c)-immune, which is pictured in Figure 6.1. Upon receipt of a vec-
tor r, we find the difference vector ∆r and then the MPD detector chooses the member
in ∆S which has the smallest Pearson distance to ∆r, i.e.,

∆xo = argmin
∆x̂∈∆S

Lp (∆r,∆x̂), (6.10)

Note that applying the difference operator (6.9) on the received vector gives

∆r = r2,n − r1,n−1

= a(x2,n +v2,n)+b1+ cs2,n

−(a(x1,n−1 +v1,n−1)+b1+ cs1,n−1)
= a(x2,n −x1,n−1 +v2,n −v1,n−1)+ c1
= a(∆x+∆v)+ c1,

(6.11)

where each entry in ∆v has the normal distribution N (0,2σ2). In the process of dif-
ference operator (6.11) the (b,c)-relevant offset is reduced to only the c-relevant offset.
With c in the role of b, we can thus conclude that MPD detection in combination with
the difference operator provides (a,b,c)-immunity.

As investigated in [49] and [51] for the case of (a,b,0)-immunity, the codebook should
satisfy certain properties in order to allow the use of MPD detection and to prevent am-
biguous decoding options. For the case of (a,b,c)-immunity, a new class of codes with
the required properties will be presented in the next section.

6.4. PAIR-CONSTRAINED CODES
In order to work well with an MPD detector, the codebook should satisfy the follow-

ing two requirements [49, 51]: (i) it should not contain vectors u with σu = 0, since it fol-
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lows from Equation (2.4) that the Pearson distance is undefined for such u; (ii) the pres-
ence of a vector w in the codebook implies that all vectors c1w+ c21 with c1 > 0, c2 ∈ R,
and (c1,c2) 6= (1,0), should not appear in the codebook because of Equation (2.25). In our
case, these requirements must hold for ∆S since the MPD detector operates on the dif-
ference codebook. Furthermore, we have the apparent additional requirement that (iii)
the codebook should be designed in such a way that the difference operator is a one-
to-one map from S to ∆S. In conclusion, we have the following three properties to be
satisfied.

• Property 1: k1 ∉∆S for all k ∈R.

• Property 2: If ∆x ∈∆S, then c1∆x+ c21 ∉∆S for all c1,c2 ∈R with (c1,c2) 6= (1,0) and
c1 > 0.

• Property 3: ∆ : S →∆S is a bijection.

We propose a code satisfying these properties. Pair-constrained codes consist of q-
ary n-length codewords, where one or more reference adjacent symbol pairs (s, t ), s, t ∈
[q], must appear at least once, i.e., for each codeword w there is an i , 1 ≤ i ≤ n −1 such
that wi = s and wi+1 = t . In this work, we use a specific set of pair-constrained codes
denoted by Spc . The set Spc contains all the vectors where both the adjacent symbol
pairs (0, q−1) and (q−1,0) appear at least once, i.e., for each codeword w there are i and
j , 1 ≤ i , j ≤ n −1 such that wi = 0, wi+1 = q −1, w j = q −1, and w j+1 = 0. This ensures
that both the symbols ‘q −1’ and ‘−(q −1)’ appear at least once in each vector in ∆Spc .
This observation is key in showing that the proposed code satisfies the three properties
mentioned above, which we will do next.

An example of pair-constrained codes and its difference codebook is given in Ta-
ble 6.2. Binary codewords of length 5 are considered, where both the adjacent symbol
pairs (0,1) and (1,0) appear at least once. Then both symbols 1 and −1 appear at least
once in their corresponding difference codewords.

Proof. Property 1 follows immediately from the fact that each word in∆Spc contains the
symbols ‘q −1’ and ‘−(q −1)’.

Property 2 follows by a similar argument as used in [49] for so-called T -constrained
codes, which has been introduced in Section 2.4.1. We adapt the arguments here to our
setting for completeness. Suppose that both ∆x ∈ ∆Spc and c1∆x+ c21 ∈ ∆Spc for some
c1 and c2 as indicated in the property statement. Since c1 > 0, the fact that both vectors
contain the maximum symbol value ‘q −1’ implies that c1(q −1)+ c2 = q −1, while the
fact that both vectors contain the minimum symbol value ‘−(q −1)’ implies that −c1(q −
1)+ c2 = −q + 1. Solving these two equations, we find c1 = 1 and c2 = 0 as the unique
solution, which gives a contradiction and thus shows the result.

Property 3 easily follows by observing that for any u,w in any code S it holds that
∆u = ∆w ⇐⇒ u = w+ k1 for some k ∈ R. In case S = Spc , the fact that w contains the
minimum symbol value ‘0’ implies that if k > 0 then ui = wi + k > 0 ∀i , and if k < 0
then there exists a position j such that w j = 0 and u j = w j +k < 0. These observations
contradict that u ∈ Spc , which implies k = 0 and thus shows the bijective property for
Spc .
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Table 6.2: Pair-constrained codes and its difference codebook, n = 5.

0 0 0 1 0 0 0 1 -1
0 0 1 0 0 0 1 -1 0
0 0 1 0 1 0 1 -1 1
0 0 1 1 0 0 1 0 -1
0 1 0 0 0 1 -1 0 0
0 1 0 0 1 1 -1 0 1
0 1 0 1 0 1 -1 1 -1
0 1 0 1 1 1 -1 1 0
0 1 1 0 0 1 0 -1 0
0 1 1 0 1 1 0 -1 1
0 1 1 1 0 1 0 0 -1
1 0 0 0 1 -1 0 0 1
1 0 0 1 0 -1 0 1 -1
1 0 0 1 1 -1 0 1 0
1 0 1 0 0 -1 1 -1 0
1 0 1 0 1 -1 1 -1 1
1 0 1 1 0 -1 1 0 -1
1 0 1 1 1 -1 1 0 0
1 1 0 0 1 0 -1 0 1
1 1 0 1 0 0 -1 1 -1
1 1 0 1 1 0 -1 1 0
1 1 1 0 1 0 0 -1 1

It should be noted that not all pair-constrained codes are suitable to cooperate with
an MPD detector. For example, when choosing the pairs (1,2) and (2,3) rather than
(0, q −1) and (q −1,0), the resulting code does not satisfy Property 3 if q ≥ 5 and n ≥ 4,
since, e.g., both (0,1,2,3,3, . . . ,3) and (1,2,3,4,4 . . . ,4) have the same difference vector
(1,1,1,0,0, . . . ,0). Weber et al. [51] have studied optimal Pearson codes, which are the
largest codes contained in [q]n that can be correctly decoded in the zero-error case. The
pair-constrained property is not a necessary but sufficient condition of codes for the
MPD. Properties of optimal Pearson codes for the detection scheme with a difference
operator are interesting topics for further research.

6.4.1. CARDINALITY

The cardinality of Spc is denoted by N (n). For the binary case, q = 2, we simply find
that

N (n) = 2n −2n,

since Spc consists of all sequences in {0,1}n , except the sequences without or with only
one transition of the 0 → 1 or 1 → 0 type, i.e., (0, . . . ,0,1, . . . ,1), (1, . . . ,1,0, . . . ,0), (0, . . . ,0),
and (1, . . . ,1).

In general, we can calculate the number N (n) as follows. Consider the complement
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set Spc of Spc in [q]n , and let M(n) =
∣∣∣Spc

∣∣∣ denote the cardinality of this complement set.

We have
M(n) = |K2|+ |K3|− |K1|,

where
K1 = {x ∈ [q]n ∣∣(xi−1, xi ) ∉ {(0, q −1), (q −1,0)},∀i = 2, . . . ,n },

K2 = {x ∈ [q]n ∣∣(xi−1, xi ) 6= (0, q −1),∀i = 2, . . . ,n },

K3 = {x ∈ [q]n ∣∣(xi−1, xi ) 6= (q −1,0),∀i = 2, . . . ,n }.

Let an = |K1|. We consider the following partition of K1:

K ∗
1 = {x ∈ K1

∣∣xn ∈ {1, . . . , q −2} },

K ◦
1 = {x ∈ K1

∣∣xn ∈ {0, q −1} },

and let a∗
n = ∣∣K ∗

1

∣∣ and a◦
n = ∣∣K ◦

1

∣∣. If we add a symbol xn+1 to the end of x ∈ K ∗
1 , then xn+1

can be a random symbol from {0, . . . , q − 1}. While adding a symbol xn+1 to the end of
x ∈ K ◦

1 is different as xn+1 can be a random one from {1, . . . , q −2}, or the same symbol as
xn in order to avoid the undesired adjacent pairs. Then we have the recursive relations

a∗
n = (q −2)(a∗

n−1 +a◦
n−1)

and
a◦

n = 2a∗
n−1 +a◦

n−1,

from which it follows for all n ≥ 2 that

an = a∗
n +a◦

n
= (q −2)(a∗

n−1 +a◦
n−1)+2a∗

n−1 +a◦
n−1

= (q −1)(a∗
n−1 +a◦

n−1)+ (q −2)(a∗
n−2 +a◦

n−2)
= (q −1)an−1 + (q −2)an−2

(6.12)

with initial conditions a0 = 1 and a1 = q .
Let bn = |K2|. Similarly, consider the following non-empty partition of K2

K ∗
2 = {x ∈ K2

∣∣xn ∈ {1, . . . , q −1} },

K ◦
2 = {x ∈ K2 |xn = 0 },

and let b∗
n = ∣∣K ∗

2

∣∣ and b◦
n = ∣∣K ◦

2

∣∣. Thus we have the following recursive relations

b∗
n+1 = (q −1)b∗

n + (q −2)b◦
n

b◦
n+1 = b∗

n +b◦
n

from which it follows that

bn+1 = b∗
n+1 +b◦

n+1

= (q −1)b∗
n + (q −2)b◦

n +b∗
n +b◦

n

= q(b∗
n +b◦

n)−b◦
n

= qbn −bn−1, (6.13)
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Table 6.3: Codebook Sizes No (n)−2 and N (n).

n No(n)−2 N (n), q = 2 N (n), q = 3
4 2 8 12
5 6 22 54
6 6 52 214
7 18 114 790
8 16 240 2786
9 50 494 9516

10 46 1004 31746

with initial conditions b0 = 1 and b1 = q . The number of sequences in K3 follows the
same recurrence scheme as in K2.

Since N (n) = qn −M(n) and M(n) = |K2|+ |K3|− |K1| = 2bn −an , we have

N (n) = qn +an −2bn , (6.14)

from which we can derive the recursive relation

N (n) = (2q −1)N (n −1)− (q2 −2q +3)N (n −2)

−(q2 −3q +1)N (n −3)

+(q −2)N (n −4)+2qn−4 (6.15)

for all n ≥ 4, with initial conditions N (0) = 0, N (1) = 0, N (2) = 0, and N (3) = 2. Relation
(6.15) can be shown by replacing all N (i ), n − 4 ≤ i ≤ n, by q i + ai − 2bi , according to
(6.14), and then (repeatedly) applying (6.12) and (6.13) on the ai and bi , n −2 ≤ i ≤ n,
until expressions containing only an−4, an−3, bn−4, and bn−3 are left. The results for the
left-hand and right-hand sides are the same, which proves the claim.

Table 6.3 shows results of computations of N (n) for binary and ternary codes. Also,
for comparison purposes, it includes the sizes No(n) of the binary mass-centered codes
[59] mentioned in Section 6.2. It is easily verified that both the all-zero and all-one se-
quences are center-of-mass constrained. For unambiguous MPD detection, the all-zero
and all-one sequences should be excluded so that the number of available codewords
is No(n)−2. Note that the remaining binary mass-centered sequences are all in the bi-
nary pair-constrained code of the same length. However, this code contains many other
sequences as well, and therefore N (n) considerably exceeds No(n)−2 in the binary case.

6.4.2. REDUNDANCY
Since the redundancy of Spc is equal to

r (n) = n − logq N (n), (6.16)

it would be convenient for evaluation purposes to have an explicit expression for N (n)
rather than a recursive one. Here we will derive such an expression using generating
functions, which are described in, e.g., [83].
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We start by rewriting the recurrence (6.12) using the Kronecker delta symbol, such
that it is valid for all n ≥ 0 (assuming an = 0 for all n < 0):

an − (q −1)an−1 − (q −2)an−2 −δn0 −δn1 = 0. (6.17)

Let the ordinary generating function of an be denoted by A(z) = ∑∞
n=0 an zn . Then we

derive A(z) by multiplying (6.17) by zn and summing over n, which gives

∞∑
n=0

an zn − (q −1)
∞∑

n=0
an−1zn − (q −2)

∞∑
n=0

an−2zn −1− z = 0.

We can rewrite the above equation as

A(z)− (q −1)z A(z)− (q −2)z2 A(z) = 1+ z.

Hence, we have

A(z) = 1+ z

1− (q −1)z − (q −2)z2 . (6.18)

Similarly, we can rewrite (6.13) as

bn −qbn−1 +bn−2 −δn0 = 0, (6.19)

for all n ≥ 0 (assuming bn = 0 for all n < 0), which leads to the ordinary generating func-
tion of bn being

B(z) =
∞∑

n=0
bn zn = 1

1−qz + z2 . (6.20)

Next, we find the power series of A(z) and B(z) by applying Taylor’s theorem, in which
an and bn , respectively, appear as the coefficients of zn . This results in

an = (q +λ−1)n(λ+q +1)+ (q −λ−1)n(λ−q −1)

2n+1λ
, (6.21)

where

λ=
√

q2 +2q −7,

and
bn =Un(q/2), (6.22)

where

Un(x) = (x +
p

x2 −1)n+1 − (x −
p

x2 −1)n+1

2
p

x2 −1
is the Chebyshev polynomial of the second kind and Un(1) = n +1 [83]. Hence, combin-
ing with (6.14) leads to the explicit expression for N (n) given as

N (n) = qn −2Un(q/2)+ (q +λ−1)n(λ+q +1)+ (q −λ−1)n(λ−q −1)

2n+1λ
. (6.23)

For example, we find for q = 3 that

N (n) = 3n − (3+p
5)n+1 − (3−p

5)n+1

2n
p

5
+ 1

2
(1+p

2)n+1 + 1

2
(1−p

2)n+1,
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which confirms the values in the most right column of Table 6.3.
From (6.16) and the fact that logq (1+ x) ≈ x/ln q for small x, we obtain the approxi-

mate expression for the redundancy of Spc given as

r (n) ≈
[

2Un(q/2)

qn − (q +λ−1)n(λ+q +1)+ (q −λ−1)n(λ−q −1)

2n+1qnλ

]
/ln q. (6.24)
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Figure 6.2: Redundancy versus codeword length n: (i) ro (n) for q = 2; (ii) r (n) for q = 2,4,6,8.

Figure 6.2 shows the redundancy of Spc as a function of the codeword length n for
q = 2,4,6,8. As we can see, r (n) approaches 0 as the codeword length increases, and
the rate of convergence to 0 decreases as q grows. Also included in the figure is the
redundancy of binary mass-centered codes, ro(n) = n−log(No(n)−2), where No(n)−2 is
the number of binary mass-centered sequences of length n without the all-zero and all-
one words [59]. Note the significant difference between ro(n) and r (n) for q = 2. With the
increase of n, ro(n) =O(logn) has an upward trend, while r (n) experiences a downward
trend to 0. For example, ro(10) ≈ 4.5 is more than 100 times larger than r (10) ≈ 0.028. We
conclude that the redundancy of the proposed pair-constrained codes gives a significant
improvement compared to the corresponding mass-centered codes.

6.4.3. SYSTEMATIC CODING
Simple implementations of high-rate pair-constrained codes can be constructed with

slight modifications of a systematic method used in [54]. An extremely simple fixed-
length to fixed-length scheme is to fill the first n − 3 positions in the code sequence x
with information symbols and to reserve the last three symbols for reference purposes:
xn−2 = 0, xn−1 = q − 1, and xn = 0. Due to the fixed last 3 symbols, which act as ref-
erences, the redundancy of this method is 3, but it would preferably approach zero for
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large values of n. We propose a systematic variable-length to fixed-length scheme, Spc ,
for which the redundancy decreases in n. It is explained according to the flowchart in
Figure 6.3 and reads as follows.

1. Take n−3 information symbols from the q-ary source and set these as (x1, x2, . . . , xn−3).

2. If (xi−1, xi ) = (0, q −1) and (x j−1, x j ) = (q −1,0) for at least one 2 ≤ i , j ≤ n −3, then
choose xn−2, xn−1, and xn to be information symbols.

3. If (xi−1, xi ) = (0, q −1) for at least one 2 ≤ i ≤ n −3 and (x j−1, x j ) 6= (q −1,0),∀ j =
2, . . . ,n −3, then

• if xn−3 = q −1, then set xn−2 = 0 and choose xn−1 and xn to be information
symbols;

• otherwise, set xn−2 = q − 1, xn−1 = 0 and choose xn to be an information
symbol.

4. If (xi−1, xi ) = (q −1,0) for at least one 2 ≤ i ≤ n −3 and (x j−1, x j ) 6= (0, q −1),∀ j =
2, . . . ,n −3, then

• if xn−3 = 0, then set xn−2 = q −1 and choose xn−1 and xn to be information
symbols;

• otherwise, set xn−2 = 0, xn−1 = q − 1 and choose xn to be an information
symbol.

5. If (xi−1, xi ) ∉ {(q −1,0), (0, q −1)}, ∀i = 2, . . . ,n −3, then

• if xn−3 = 0, set xn−2 = q − 1, xn−1 = 0, and choose xn to be an information
symbol;

• elseif xn−3 = q−1, set xn−2 = 0, xn−1 = q−1, and choose xn to be an informa-
tion symbol;

• otherwise, set xn−2 = 0, xn−1 = q −1, and xn = 0.

Since any code sequence obtained this way contains at least one (q−1,0) and (0, q−1)
adjacent symbol pairs, the code sequence x is indeed in Spc and the information symbols
can be uniquely retrieved from x. Also, the n−2, n−1, or n information symbols can eas-
ily be retrieved from x. Since the number of information symbols may vary from code-
word to codeword, while the length of the codewords is fixed at n, this can be considered
a variable-length to fixed-length coding procedure. The redundancy of this scheme is
given in the following theorem.

Theorem 11. For a memoryless uniform q-ary source, the redundancy of coding scheme
Spc is

2Un−3(q/2)

qn−3 − (q +λ−1)n−3(λ+q +1)+ (q −λ−1)n−3(λ−q −1)

2n−2λqn−3

+2
(q −γ)n(γ−q +2)+ (q +γ)n(γ+q −2)

2n−2γqn−3 ,

where λ=
√

q2 +2q −7 and γ=
√

q2 −4.
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Figure 6.3: Flow chart of systematic variable-length to fixed-length coding scheme.
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Proof. The result can be obtained using parameters defined in Section 6.4.1, with the
observations that: (i) the an is the size of a set, K1, containing sequences of length n
without (0, q−1) and (q−1,0) adjacent pairs; and (ii) the bn −an indicates the number of
sequences of length n without one of these two adjacent pairs while another is included.
Note that superscripts, such as asterisk and circle, represent the numbers of sequences
in subsets of K1, K2, and K3. Section 6.4.1 has given their definitions in detail.

The probability that a code sequence x has three redundant symbols is

a∗
n−3

qn−3 , (6.25)

which is the probability of having an information sequence of length n−3 without (0, q−
1) and (q −1,0) adjacent pairs and xn−3 ∉ {0, q −1}.

Further, we calculate the probability that x has two redundant symbols, which con-
tains three situations as shown in Figure 6.3. The first part of it is

ao
n−3

qn−3 , (6.26)

which is the probability of having an information sequence of length n−3 without (0, q−
1) and (q −1,0) adjacent symbol pairs and xn−3 ∈ {0, q −1}. The second case of that x has
two redundant symbols, is when x is without (0, q −1) but at least one (q −1,0) and the
last symbol is not zero. We consider the following non-empty partition of the set K ◦

1 as

K ◦1
1 = {x ∈ K1 |xn = 0 },

K ◦2
1 = {x ∈ K1

∣∣xn = q −1 },

and let a◦1
n = ∣∣K ◦1

1

∣∣ and a◦2
n = ∣∣K ◦2

1

∣∣. Note that a◦
n = a◦1

n +a◦2
n . Then we have that

b∗
n−3 −a∗

n−3 −a◦2
n−3

qn−3 (6.27)

is the probability of having an information sequence of length n−3 without (0, q−1) but
at least one (q −1,0) and xn−3 6= 0. Similarly, for the last situation we have that

b∗
n−3 −a∗

n−3 −a◦1
n−3

qn−3 (6.28)

is the probability of having an information sequence of length n−3 without (q−1,0) but
at least one (0, q − 1) and xn−3 6= q − 1. Thus the probability that x has two redundant
symbols is

2b∗
n−3 −2a∗

n−3

qn−3 , (6.29)

which is the summation of (6.26), (6.27) and (6.28).
The probability that x has only a redundant symbol is

b◦
n−3 −a◦1

n−3

qn−3 + b◦
n−3 −a◦2

n−3

qn−3 , (6.30)
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which is the probability of having an information sequence of length n −3: i) (the first
term) without (0, q −1) but at least one (q −1,0) and xn−3 = 0, and ii) (the second term)
without (q −1,0) but at least one (0, q −1) and xn−3 = q −1. Hence, the redundancy is
summation of three times the term in (6.25), two times the term in (6.29), and the term
in (6.30), that is,

3
a∗

n−3

qn−3 +2
2b∗

n−3 −2a∗
n−3

qn−3 + b◦
n−3 −a◦1

n−3

qn−3 + b◦
n−3 −a◦2

n−3

qn−3

=4b∗
n−3 −a∗

n−3 +2b◦
n−3 −a◦

n−3

qn−3

=2bn−3 −an−3 +2b∗
n−3

qn−3 ,

where the first equation follows that a◦
n = a◦1

n +a◦2
n and the second equation follows that

an = a∗
n +a◦

n and bn = b∗
n +b◦

n . Note that b∗
n = ∣∣K ∗

2

∣∣, which has a recursive relation b∗
n+1 =

qb∗
n − b∗

n−1 with initial conditions b∗
0 = 1 and b∗

1 = q − 1. Using generating functions
which follows the same approach as (6.17)- (6.18) results in

b∗
n = (q −γ)n(γ−q +2)+ (q +γ)n(γ+q −2)

2n+1γ
, if q > 2, (6.31)

where γ =
√

q2 −4, and b∗
n = 1 if q = 2. With (6.21) and (6.22) we obtain the expression

stated in the theorem.

The redundancy of Spc as stated in Theorem 11 is a factor τ higher than the redun-
dancy as stated in Equation (6.24), where τ and the redundancy of Spc are pictured in
Figure 6.4. For the binary case q = 2, Spc encoding algorithm has a redundancy of 2n−4

2n−3 .
However, pair-constraint requires at most two redundant symbols as the last symbol in
binary sequences of length n −3 is either 0 or 1. We propose a less redundant algorithm
for the binary case whose redundant symbols are located at xn−1 and/or xn . It reads as
follows.

1. Take n−2 information symbols from the binary source and set these as (x1, x2, . . . , xn−2).

2. If (xi−1, xi ) = (0,1) and (x j−1, x j ) = (1,0) for at least one 2 ≤ i , j ≤ n−2, then choose
xn−1 and xn to be information symbols.

3. If (xi−1, xi ) = (0,1) for at least one 2 ≤ i ≤ n−2 and (x j−1, x j ) 6= (1,0),∀ j = 2, . . . ,n−2,
then set xn−1 = 0 and choose xn to be information symbols.

4. If (xi−1, xi ) = (1,0) for at least one 2 ≤ i ≤ n−2 and (x j−1, x j ) 6= (0,1),∀ j = 2, . . . ,n−2,
then xn−1 = 1 and choose xn to be an information symbol.

5. If (xi−1, xi ) ∉ {(1,0), (0,1)}, ∀i = 2, . . . ,n −2, then

• if xn−2 = 0, set xn−1 = 1 and xn = 0;

• otherwise, set xn−1 = 0 and xn = 1.
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Figure 6.4: The factor τ (solid lines) and the redundancy of Spc (dash lines) versus codeword length n.

It is easy to know that two sequences (all-zero and all-one sequences) of length n−2 have
two redundant symbols, and 2(n−3) sequences of length n−2 have a redundant symbol.
Thus the redundancy of this scheme is

2n −2

2n−2 , (6.32)

which is the summation of two times the probability of having an information sequence
of length n−2 with two redundant symbols and the probability of having an information
sequence of length n −2 with a redundant symbol.

6.5. NOISE CONSIDERATIONS
This section investigates the error performance of the proposed detection over chan-

nels with gain and varying offset mismatch. The receiver uses the Pearson distance for
the evaluation of the difference received word, where we assume that ∆x ∈ ∆S is sent,
and received vector is ∆r = ∆x+∆v. Note that we dropped the unknown parameters a,
b1, and cs since, as established above, the performance of MPD with a difference op-
erator is (a,b,c)-immune. The receiver errs if there is at least one codeword ∆x̂ 6= ∆x,
∆x̂ ∈∆S, such that

δP (∆r,∆x̂) < δP (∆r,∆x)

or

− 1

σ∆x̂

n−1∑
i=1

(∆xi +∆vi )(∆x̂i −∆x̂) <− 1

σ∆x

n−1∑
i=1

(∆xi +∆vi )(∆xi −∆x)
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or
n−1∑
i=1

(∆xi +∆vi )(ai − âi ) < 0, (6.33)

where

ai = ∆xi −∆x

σ∆x

and

âi = ∆x̂i −∆x̂

σ∆x̂
.

The distribution∆v has a multivariate Gaussian distribution with mean vector 0 and
(n −1)× (n −1) covariance matrix

2σ2 −σ2 0 0 . . . 0
−σ2 2σ2 −σ2 0 . . . 0

...
...

...
...

...
...

0 . . . 0 −σ2 2σ2 −σ2

0 . . . 0 0 −σ2 2σ2

 .

The left-hand side of (6.33) is a stochastic variable with distribution N (α1,β1), where

α1 =
n−1∑
i=1

∆xi (ai − âi )

and

β1 =
n−1∑
i=1

n−1∑
j=1

(ai − âi )(a j − â j )Σi j .

Since
∑n−1

i=1 ai =∑n−1
i=1 âi = 0, we have

α1 =σ∆x(1−ρ∆x,∆x̂) (6.34)

and

β1 = 2σ2 [
2(1−ρ∆x,∆x̂)−ζ(∆x,∆x)+ζ(∆x,∆x̂)+ζ(∆x̂,∆x)−ζ(∆x̂,∆x̂)

]
, (6.35)

where for two vectors u and v of length n,

ζ(u,v) = u1,n−1 ·v2,n + ūv1 + v̄un − (n +1)ūv̄

σuσv
.

Note that ζ(u,v) 6= ζ(v,u). We define the square of the distance between the vectors ∆x
and ∆x̂ by

d 2(∆x,∆x̂) = α2
1

β′
1

, (6.36)

where β′
1 = β1/(2σ2). The distance d 2(∆x,∆x̂) is not symmetric in the vector ∆x and

∆x̂, that is, in general d 2(∆x,∆x̂) 6= d 2(∆x̂,∆x). Since the probability that δP (∆r,∆x̂) <
δP (∆r,∆x) equals

Q

(
d(∆x,∆x̂)p

2σ

)
,
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the word error rate (WER) over all coded sequences ∆x is upperbounded by

WER < 1

|∆S|
∑

∆x∈∆S

∑
∆x̂6=∆x

Q

(
d(∆x,∆x̂)p

2σ

)
. (6.37)

At high signal-to-noise ratios, the WER is approximated by its dominant term

W ER ∼ Nd ×Q

(
∆dmi n

2σ

)
, (6.38)

where Nd is the average number of nearest neighboring codewords at minimum dis-
tance ∆dmi n , defining by

∆d 2
mi n = min

∆x,∆x̂∈∆S,∆x̂6=∆x
d 2(∆x,∆x̂). (6.39)
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Figure 6.5: Word error rate (WER) as a function of the signal-to-noise ratio (SNR = −20log10σ), for n = 7 and
q = 2 computed using upper bound (6.37), curve (a), and by using the approximation (6.38), curve (b). The
square marked line (c) shows simulated results of the proposed scheme with channel parameters a = 1.07,
b = 0.07, and c = 0.04.

Figure 6.5 shows WER results for n = 7 and q = 2, where we compared the WER upper
bound (6.37), its approximation (6.38), and simulated results of pair-constrained codes
using the proposed scheme. The channel parameters are a = 1.07, b = 0.07, and c = 0.04.

Figure 6.6 shows simulated WER results of a communication system using MED with
parameters n = 7 and q = 2 a) without mismatch, and b) with mismatch a = 1.07, b =
0.07, and c = 0.04. The proposed scheme that MPD is used with a difference operator is
also pictured in curve c). We may notice that the error performance is seriously affected
by the mismatch. The error performance of the proposed scheme where offers intrinsic
resistance to gain and varying offset mismatch at the cost of a reduced noise margin.
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Figure 6.6: Word error rate (WER) for n = 7 and q = 2, a) without channel mismatch, b) with channel mismatch
a = 1.07, b = 0.07, and c = 0.04 both using minimum Euclidean distance detection, and as a comparison c) for
the proposed scheme that MPD is used with a difference operator.

6.6. DISCUSSION
We have presented a scheme for channels with unknown gain and varying offset,

where minimum Pearson distance detection is used in conjunction with a difference
operator and pair-constrained codes. These codes have significantly less redundancy
compared to the previously proposed mass-centered codes, making the new scheme an
attractive alternative for practical applications. However, there are still some issues that
need to be addressed.

The introduction of the difference operator is very effective to deal with the unknown
varying offset, but it follows from the analysis in Section 6.5 that it doubles the noise
power. Hence, in the error analysis, this extra 3 dB loss should be taken into account, and
it makes the scheme less suitable for applications in which the noise is dominant over
the (varying) offset. An interesting topic for further research is investigating to which
extent the involvement of an error-correcting code in the scheme can help resolve this.

Another concern is the complexity of the proposed scheme. The use of the difference
operator demands extra subtractions. However, the major problem is that the minimiza-
tion operation (6.10) requires |∆S| computations, which is impractical for codes with
large cardinalities. In [49], it has been shown that the number of computations can be
significantly reduced by considering the codebook as the union of a number of constant
composition codes, which makes, at the expense of extra sorting operations, the num-
ber of options in the minimization equal to only the number of such subcodes. Similar
complexity reduction could be explored for the setting under consideration here as well.

The material in this chapter has appeared in IEEE Communications Letters [84].





7
CONCLUSION AND FUTURE WORK

All models are wrong, but some are useful.

George Box, 1978.

7.1. CONCLUSION
In this thesis, we have studied channels that are not only distorted by noise but also

by another important channel impairment, gain and/or offset mismatch. Focus is put on
four different models of gain and/or offset mismatch in Chapters 3 to 6. The main results
are summarized as follows:

• A basic model of noisy channels with offset mismatch is introduced in Chapter 3,
where an unknown offset is assumed to be in the all-one direction, that is, b1. This
model assumes that the offset mismatch is constant within one codeword block
length and may vary block by block.

Firstly, channels are considered for which both the noise and offset are bounded.
For such cases, Euclidean distance based decoding (MED), modified Pearson dis-
tance based decoding (MMPD), and Maximum Likelihood (ML) decoding are con-
sidered. In particular, for each of these decoders, bounds are determined on the
magnitudes of the noise and offset intervals, leading to a word error rate equal to
zero.

Secondly, for channels with Gaussian noise and offset, it is shown that an ML mea-
surement is a weighted average of Euclidean distance and Pearson distance. The
ML measurement tends towards the offset-resistant Pearson distance when the
codeword length n is increasing.

Thirdly, we propose a concatenated scheme and its corresponding decoding algo-
rithm with Gaussian noise and offset mismatch. The concatenation is between a
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Reed-Solomon (RS) code and a certain coset of a binary block code. The MMPD
detection is used to decode the inner code that guarantees immunity to channel
offset mismatch. Its output will be given to a two-stage hybrid decoding algorithm
for the outer RS code. Simulation results demonstrate that the proposed concate-
nated scheme can achieve significant coding gain and maintain immunity to offset
mismatch.

• Chapter 4 focuses on noisy channels with offset mismatch, where, most impor-
tantly, the offset is assumed to be signal dependent, i.e., bx. It means that the value
of the offset may differ for distinct signal levels rather than being the same for all
levels.

Firstly, an ML decision criterion is derived, assuming uniform distributions for
both the noise and the offset. In particular, for the proposed ML decoder, bounds
are determined on the standard deviations of the noise and the offset, which lead
to a word error rate equal to zero. For example, we assume that σ is the standard
deviation of the noise and β0 and β1 are the standard deviations of the offsets of
signal levels 0 and 1. With 2σ+β0 +β1 ≤ 1/

p
3, the ML decoder achieves a WER

equal to zero for a binary codebook.

Later, an ML criterion is considered for the case of signals suffering from Gaus-
sian noise and signal dependent offset, where the correlation between different
offset random variables is considered as well. We show that an ML criterion in the
prior art can be derived as a special case of our decoding criterion obtained by
letting offsets be identically fully correlated distributed. Besides the ML criterion
itself, an option to reduce the complexity for codebooks consisting of the union
of constant weight sets is also considered. We provide a brief performance anal-
ysis, confirming the superiority of the newly developed ML decoder over classical
decoders based on the Euclidean or Pearson distances.

• The attention of Chapter 5 is put on a channel model in which the retrieved data
is corrupted by Gaussian noise, gain a and offset mismatch b. A general frame-
work of ML decoding criteria for such channels is derived, where gain and offset
are restricted to certain ranges, 0 < a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2. We also show that
certain known criteria appear as special cases of this framework. For instance, by
letting a1 → 0, a2 →∞, b1 →−∞, b2 →∞, we obtain the same ML decoding crite-
rion (5.10) as proposed by Blackburn for the case of unbounded gain and offset.

In addition, we discuss geometric interpretations of the gain and offset mismatch.
Scaling a vector of mean 0 by gain a does not change the mean but scales the
standard deviation by a factor of a. The offset only changes the mean of a vector,
where it is reasonable to normalize vectors to eliminate the effect of offset. It is
not difficult to see that the Pearson distance provides such a measurement. Thus
a minimum Pearson distance detection is intrinsically immune to the gain a and
the offset b, i.e., (a,b)-immune.

• We consider channels with gain and slowly varying offset in Chapter 6, where
an unknown slope, c, of varying offset is introduced. We demonstrate that the
combination of minimum Pearson distance detection and a difference operator
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is (a,b,c)-immune. The codebook should satisfy certain properties to allow min-
imum Pearson distance detection and prevent ambiguous decoding options. A
new class of codes, pair-constrained codes, with the required properties, are pro-
posed for such decoding scheme. Pair-constrained codes consist of codewords,
where certain adjacent symbol pairs must appear at least once. When n increases,
the redundancy of these codes experiences a downward trend to 0. We can con-
clude that they have significantly less redundancy than the previously proposed
mass-centered codes, making the new scheme an attractive alternative for prac-
tical applications. In addition, we propose a systematic variable-length to fixed-
length encoding algorithm of pair-constrained codes, and its redundancy is ana-
lyzed for memoryless uniform sources.

7.2. FUTURE WORK
The thesis has investigated coding techniques for channels with various gain and/or

offset mismatch models. Analysis of gain and/or offset mismatch is complicated. There
are still many open questions and interesting research topics. Some recommendations
for future work are:

• In Chapter 3, we have discussed decoding criteria for channels with noise and off-
set mismatch, both of which are bounded. Zero word error rate performance is
achievable for various decoding criteria by different constraints on noise and off-
set characteristics. Investigations about how codebooks can be generated satis-
fying σ-bound and/or σ+β-bound will be of interest. Further, suppose σ, β are
fixed, it would be interesting to explore what rates can be achieved for different
decoding schemes satisfying zero WER conditions.

• We have presented a scheme for channels with unknown gain and varying off-
set in Chapter 6, where MPD is used in conjunction with a difference operator
and pair constrained codes. The introduction of the difference operator is very
effective in dealing with the unknown varying offset, but it has the drawback of
making the system more sensitive to noise. This penalty can also be physically
justified from (6.11) by noticing the doubling of the noise power. Hence, it makes
the scheme less suitable for applications in which the noise is dominant over the
(varying) offset. A topic for further research is investigating to what extent the in-
volvement of an error-correcting code in the scheme can help resolve this.

• There are also different techniques for solving the offset issues rather than pre-
sented in this thesis. Instead of eliminating the offset mismatch itself, a greater fo-
cus on the asymmetric or unidirectional errors caused by the offset could produce
some interesting findings. In noisy channels with offset mismatch, the message
has a much higher possibility of suffering asymmetric or unidirectional errors.
Thus, in certain applications, such as Flash memories, it can be modeled by an
asymmetric channel. A considerable amount of codes [85–87] has been designed
for use on asymmetric channels. Further studies regarding the role of distances
used on asymmetric channels would be worthwhile to extend into our case. We
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hope that these distances will provide tools to increase systems’ error-correction
ability to channel mismatch.

• It would be challenging to investigate the information-theoretic channel capac-
ity of noisy channels with gain and/or offset mismatch. Small-scale research has
emerged evaluating the capacity of channels with physical effects like voltage leak-
age, such as a multi-level flash memory with input-dependent additive Gaussian
noise [10], a binary asymmetric channel cascaded with a Gaussian mixture chan-
nel [70].

A difficulty of this topic arises because the offset mismatch is an additive and
block-wise distortion. Thus, its exact numerical results may be unsolvable, but
we may examine upper bounds on the capacity instead. The investigation could
start by first considering the offset, which is constant within a block, and then in-
clude other offset types. Many questions have been brought up in need of further
investigation.
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