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SRME and estimation of primaries by sparse inversion: a hybrid approach 
G. Lopez* and D.J. Verschuur, Delft University of Technology, Delft, The Netherlands 
 
Summary 
 
Recently, a new approach to multiple removal has been 
introduced: estimation of primaries by sparse inversion 
(EPSI). Although based on the same relationship between 
primaries and multiples as in surface-related multiple 
elimination (SRME), it involves quite a different process. 
Instead of the traditional prediction and subtraction of 
multiples, in EPSI the unknown primaries are the 
parameters of a large-scale inversion process. The 
downside is its long calculation times, involving the 
equivalent of about 100-200 SRME processes. For 
improving the accuracy and efficiency in multiple removal 
a hybrid SRME+EPSI is proposed, which makes use of the 
strongest points of both SRME and EPSI methodologies. It 
appears that the final result is better than either the SRME 
or the EPSI algorithm alone and where the calculation time 
is limited to the equivalent of 10-20 SRME processes. 
 
Introduction 
 
With the introduction of surface-related multiple 
elimination (SRME) (Berkhout, 1982; Verschuur et al., 
1992; Berkhout and Verschuur, 1997; Weglein et al., 1997; 
Biersteker, 2001), a complete new approach to multiple 
removal was developed: the multiples could be predicted 
without any prior knowledge of the subsurface. All of the 
required information was embedded in the seismic data, 
because of the physical relationship between primaries and 
multiples. However, there also limitations to the SRME 
approach. First, the adaptive subtraction is usually based on 
minimum energy, which is not always a good assumption 
(see e.g. Nekut and Verschuur, 1998). Second, it needs the 
reconstruction of missing offsets.  Especially in the case of 
shallow water, the reconstruction of the near offsets is not 
trivial, whereas it has a large impact on the quality of the 
predicted multiples (Verschuur, 2006). 
 
Therefore, recently a new approach to multiple removal 
was developed by van Groenestijn and Verschuur (2009a): 
estimation of primaries by sparse inversion (EPSI). The 
main difference with SRME is that the two-stage 
processing method, being prediction and adaptive 
subtraction, is replaced by a full waveform inversion 
process: the primary reflection events are the unknowns in 
this algorithm and are parameterized in a suitable way. In 
van Groenestijn and Verschuur (2009a) the adopted 
parameterization consists of band-limited spikes and an 
effective source wavelet. Baardman et al. (2010) discussed 
a refinement, where the wavelet was made time-variant in 
order to include the change of the observed seismic wavelet 
in case of complex propagation effects (fine layering, 

dispersion) and absorption. Lin and Herrmann (2009, 2011) 
redefined EPSI in the curvelet domain. Savels et al. (2011) 
have shown various applications to complex synthetic and 
field datasets. 
 
One of the main advantages of the EPSI method is that the 
adaptive subtraction, involved in SRME, is avoided. 
Instead, in EPSI the full input data is explained, being the 
sum of the estimated primaries and their associated surface 
multiples. The new objective function – the difference 
between the input data and the estimated primaries plus 
their multiples - will truly go to zero. Furthermore, missing 
data can be estimated together with the primaries, such that 
the method has great virtue in the situation of shallow water 
(van Groenestijn and Verschuur, 2009b). 
 
Even when EPSI presents several advantages over 
traditional SRME, its difficulty to pick up deep low-
impedance reflectors and its computational time cost are 
limitations in the current EPSI algorithm. These problems 
are not present in SRME, where results can be obtained 
fast, and whose output presents all the desired reflection 
structures, even for the deepest interfaces in models. 
 
For overcoming this issues a hybrid SRME-EPSI approach 
is proposed, in which the primaries resulting from a quick 
and coarse EPSI algorithm (we will call it ‘greedy EPSI’) 
will serve as initial primary guess for the SRME iterations.  
In addition, multiple subtraction can be done in such a way 
that the original primaries found in the greedy-EPSI 
process are conserved. This prevents distortion of the 
primaries already found by EPSI. 
 
Review of the theory of SRME and EPSI 
 
In the detail-hiding operator notation for 2D data 
(Berkhout, 1982) a bold quantity represents a pre-stack data 
volume for one frequency; columns represent 
monochromatic shot records and rows represent 
monochromatic common receiver gathers. With the use of 
this notation we can express the upgoing data at the 
surface, P, as: 
 

P = X0S + X0R∩P,   (1) 
 

where the primary impulse responses, X0, multiplied with 
the source properties, S, equal the primaries: P0 = X0S. 
Note that what is called ‘primaries’ in this paper actually 
refers to all events that did not reflect at the surface, which 
also includes internal multiples. The matrix multiplication 
of X0 with the reflection operator at the surface, R∩, and the 
total data results in the surface multiples, M = X0R∩P. 
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From equation 1 it can be derived that surface multiples can 
be predicted by a multidimensional convolution of the 
primaries with the data: 
 

M = P0AP,    (2) 
 
where A = S−1R∩ is the surface operator. Iterative SRME 
(Berkhout and Verschuur, 1997) estimates the primaries 
according to: 
 

P0,i+1 = P − Ai+1P0,iP,   (3) 
 
where i represents the iteration number. Usually, A is 
replaced by an angle-independent approximation A(ω)I and 
the iterations are initiated by P0,1 = P. Since there are more 
unknowns, P0,i+1 and Ai+1, than knows, P, in equation 3 an 
extra constraint is needed. Typically it is assumed that the 
primaries have minimum energy (the L2 norm). This 
constraint is used when Ai+1 is estimated as a filter that 
matches the predicted multiples, Mi = P0,iP, to the inpuit 
data in the time domain, resulting in the new primary 
estimation, P0,i+1 (Verschuur and Berkhout, 1997). The 
minimum energy norm often leads to a satisfactory 
subtraction result, but does not work properly in all cases 
(see e.g. Nekut and Verschuur, 1998). Guitton and 
Verschuur (2004) and van Groenestijn and Verschuur 
(2008) have shown that other minimization norms, like the 
L1 norm or a sparseness norm, can lead to different, and 
sometimes better, subtraction results. 
 
To describe the EPSI algorithm (van Groenestijn and 
Verschuur, 2009a) we should again consider equation 1. If 
we take S(ω) = S(ω)I (meaning assuming a constant source 
wavelet for all shots) and we assume the surface reflectivity 
to be a scalar R∩ (being approximately -1) we get: 
 

P = X0S + X0R∩P.    (4) 
 
Through full waveform inversion we try to estimate the 
unknown, multidimensional primary impulse response X0 
and source wavelet S such that the primaries X0S together 
with the surface multiples X0R∩P can explain the total 
upgoing data P. The unknown dataset X0 is parameterized 
in the time domain with spikes. The difference between the 
total upgoing data P and the estimated primaries and 
multiples, X0S + X0R∩P, is the residual V: 
 

V = P − X0S − X0R∩P .  (5) 
 
The EPSI algorithm drives the residual V to zero. This is 
done in an iterative way where the primary impulse 
response data volume X0 is built up slowly during the 
iteration process in the time domain. In this way the 
adaptive subtraction is avoided and interference between 
primaries and multiples is better handled. 

Analysis of SRME and EPSI in shallow water 
 
It is common knowledge that the effectiveness of the 
SRME process is limited for shallow water if the water 
bottom reflectivity is strong. Usually, in this case a 
combination with predictive deconvolution and/or 
parabolic Radon multiple removal is adopted (Verschuur, 
2006). The main reason is that SRME requires all offsets 
available up to zero offset. The more shallow the water, the 
more difficult the process of interpolating the near offsets 
becomes, because this is usually based on NMO-corrected 
data, yielding strong stretching artifacts for the shallow 
events. 
 
In the EPSI process, the reconstruction of the near offsets 
has been included in the inversion process, such that 
actually the near offsets are interpolated based on the 
multiples that are present in the data. NMO-correction is 
not involved here (van Groenestijn and Verschuur, 2009a). 
 
In the following examples, the effects of shallow water on 
SRME and EPSI are demonstrated. Two different models 
are used for synthetic data generation, the only difference 
between the models being the sea floor depth (around 200m 
for the deep model, and 90 m for the shallow model). The 
two models are depicted in figures 1 and 2. 
 

 
Fig 1. Shallow water model, with a water bottom around 90 m. 

 

 
Fig 2. Deep water model, with a water bottom around 200 m. 
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Fig 3. Input data, SRME primaries, and EPSI primaries for the 
shallow sea floor  model. 
 

 
Fig 4. Input data, SRME primaries, and EPSI primaries for the 
deep sea floor model. 
 
As we can see in figures 3 and 4, EPSI is able to pick more 
details in the primaries and its outputs look clearer than 
with SRME, the latter showing some residual multiples. As 
EPSI does not rely on adaptive subtraction, no multiple 
leakage is found in the estimated primaries. The difference 
becomes more dramatic in the shallow case, where surface 
multiples rely more on the missing near offsets. At the 
same time the near offset interpolation of the sea floor 
reflector is more confident in the EPSI result. 
 
Hybrid SRME and EPSI 
 
Even though EPSI presents significant advantages over 
SRME, there are still some issues about the current EPSI 
implementation that can be improved. One example is 
correctly finding deep, low-impedance reflections. Once 
EPSI starts, it picks up the most prominent reflections in 
reflection data and constructs the primary response by 
inversion. But if we have deep low-impedance reflectors in 
our model, the corresponding primary will be very low 
amplitude, meaning that EPSI – who tends to concentrate 
more on the stronger primaries – could have problems 

resolving such a weak reflection, especially if the algorithm 
has already converged to the first predominant primaries. 
Another issue about EPSI is the computational cost 
required to run it. One average EPSI iteration takes about 
two times an SRME process, and often tens of iterations are 
needed to cover the full data set. For large datasets this may 
become a serious limitation. 
 
In order to overcome these drawbacks, we introduce a 
hybrid version of SRME and EPSI such that the combined 
outcome would reinforce the weak points of each method. 
The idea is to use a fast version of EPSI (‘greedy EPSI’, 
shown in figures 5 and 6 for our two models, requiring only 
10 iterations) to extract the strongest primaries using large 
windows during iterations. Then this result – including its 
reconstructed near offsets - is introduced in SRME as initial 
primary guess, which can be improved during one or two 
SRME iterations. 
 
In order to avoid damaging the original primary estimation 
done by the greedy EPSI step, an additional constraint is 
added to SRME: multiple subtraction should be done in 
such a way that the original primaries already found in the 
greedy EPSI step are conserved. This will prevent multiple 
distorting the primaries during subtraction and reads: 
 

| P - A M0,i - P0,e |2 = minimum , (6) 
 
where P0,e are the primaries from the greedy EPSI process, 
M0,i are the SRME-predicted multiples, and A is the surface 
operator that is estimated. Note that A is again estimated as 
a short convolution filter in the time domain (Verschuur 
and Berkhout, 1997). 
 
In the following section we will see some examples of 
SRME, EPSI and the hybrid method, applied in the two 
synthetic models already described. This will allow 
comparison between the different methodologies. 
 

 
Fig 5. Input data, regular EPSI primaries and greedy EPSI 
primaries for the shallow sea floor model. Note that the greedy 
EPSI does not fully pick up all primaries. 
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Fig 6. Input data, regular EPSI primaries and greedy EPSI 
primaries for the deep sea floor model. 
 
Analysis of hybrid SRME-EPSI 
 
Figures 7 and 8 compare the regular EPSI and the hybrid 
SRME-EPSI primaries. As we can see from the figures, the 
hybrid method presents more information in the deeper part 
than EPSI, showing more details with better illumination. 
In the shallow part of data the results are quite similar. 
Nevertheless there is a great difference in computational 
efficiency between current EPSI and the hybrid model. 
Also note again that the hybrid SRME-EPSI result is much 
better than the standard SRME results that were shown in 
Figures 4 and 5. 
 

 
Fig 7. SRME primaries, EPSI primaries, and hybrid SRME-EPSI 
primaries for the shallow deep sea floor model. 

 

 
Fig 8. SRME primaries, EPSI primaries, and hybrid SRME-EPSI 
primaries for the deep sea floor model. 
 
Conclusions 
 
We have reviewed the EPSI method for primary estimation 
that has advantages over the traditional SRME method. In 
EPSI adaptive subtraction (which can produce distored 
primaries) is avoided, and replaced by a full waveform 
inversion process, in which the complete data is used to 
estimate the primaries, allowing near-offset reconstruction 
to be included in the process. This method, however, 
sometimes has difficulties to pick up the low-amplitude, 
deeper reflections, and requires much more computational 
power than SRME. 
 
In order to extract the best of each methodology in one 
single algorithm we propose a hybrid SRME-EPSI method, 
in which the initial primary estimation is done by a coarse 
and fast version of EPSI, and the subsequent refinement is 
done by SRME. Multiple leakage is avoided by including 
an additional ‘primary-saving’ constraint in the subtraction 
process. Some examples on synthetic data with shallow 
water demonstrate the advantages of the hybrid method. 
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