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0. Introduction

In 1990 we contributed a paper to the book Open problems in Topology, [107], titled Open problems on βω

([77]).
Through the years some of these problems were solved, some were shown to be related to other problems, 

and some are still unsolved. In the first years after the publication of the book there were regular updates 
on the problems in the journal Topology and its Applications; in 2004 these were collated and extended in 
a comprehensive status report, [112], by Elliott Pearl.

The COVID-19 pandemic provided a good opportunity to go through our original paper again and 
provide a new update of the status of the problems as well as to collect and formulate new questions on the 
fascinating object that is βN.

Many of the comments below incorporate information from Elliott Pearl’s update mentioned above, but 
there have, of course, been many developments in the years since.

The numbering of the problems is different from that in the first paper because we have moved some 
questions around and combined related questions into more comprehensive problems. We have made no 
attempt to separate the solved problems from the unsolved ones. We wanted to keep related problems 
together and even though we consider a problem solved the reader may disagree and be inspired to investigate 
variations or strengthenings of the answers.

We should also mention the book Open problems in Topology II [113], edited by Elliot Pearl, that contains 
many more problems in topology, and in particular a paper by Peter Nyikos, Čech-Stone remainders of 
discrete spaces, that, as the title indicates, deals with problems on βκ for arbitrary infinite cardinals κ.

1. Preliminaries

The main objects of study in this paper are the space βN and its subspace N∗.
For a quick overview of their properties we refer to Chapter D-18 of [80]; the paper [104] offers a more 

comprehensive treatment. Here we collect some of the basic facts about our spaces in order to fix some 
notation that will be used throughout the paper.

To begin: βN is the set of ultrafilters on the set N of natural numbers, endowed with the topology 
generated by the base {A : A ⊆ N}, where A denotes the set of ultrafilters that contain A. The readily 
established equality βN \ A = N \A confirms what the notation A suggests: the set A is open and closed, 
and also equal to the closure of A in βN.

We identify an element n of N with the ultrafilter {A : n ∈ A} and thus consider N to be a subset of βN. 
The complement βN \N is the set of free ultrafilters on N and is denoted N∗; we extend this notation to all 
subsets of N and write A∗ = A \A whenever A ⊆ N.

A map ϕ from N to itself induces a map βϕ from βN to itself: βϕ(u) is the ultrafilter generated by {ϕ[A] :
A ∈ u}.

2. Autohomeomorphisms

The autohomeomorphisms of βN correspond to the permutations of N and are, as such, not very inter-
esting topologically. The autohomeomorphisms of N∗ offer more challenges.

In what follows Aut denotes the autohomeomorphism group of N∗, and Triv denotes the subgroup of 
trivial autohomeomorphisms. Here a trivial autohomeomorphism is one with an ‘easy’ description: an au-
tohomeomorphism h of N∗ is trivial if there are co-finite subsets A and B of N and a bijection ϕ : A → B

such that h = ϕ∗, where ϕ∗ denotes the restriction of βϕ to N∗.
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1. Can Triv be a proper normal subgroup of Aut, and if yes what is (or can be) the structure of the fac-
tor group Aut/Triv; and if no what is (or can be) [Triv : Aut]?
Comments: A very concrete first step would be to investigate what can one say about an autohomeomor-
phism h that satisfies h−1 ◦ Triv ◦ h = Triv.

A related question: what is the minimum number of autohomeomorphisms necessary to add to Triv to 
get a generating set for Aut?

Of course that number is 0 when Aut = Triv, but can it be non-zero and finite?

If h ∈ Aut then I(h) denotes the family of subsets of ω on which h is trivial, that is, A ∈ I(h) iff there is 
a function h′ : A → ω such that h(B∗) = h′[B]∗ whenever B ⊆ A.

If I(h) contains an infinite set then h is somewhere trivial, otherwise h is totally non-trivial.
The ideal I(h) determines an open set Oh: the union 

⋃
{A∗ : A ∈ I(h)}; its complement Fh is closed and 

could be said to be the set of points of N∗ where h is truly non-trivial.

2. Does the existence of a (totally) non-trivial automorphism imply that Aut is simple?
Comments: This question asks more than the opposite of question 1; a yes answer here would imply a no 
answer there, but a negative answer there could go together with a negative answer here.

3. Is it consistent with MA + ¬CH that a totally non-trivial automorphism exists?
Comments: The answer yes. This was established by Shelah and Steprāns in [136]. Consistency is the best 
one can hope for: in [134] Shelah and Steprāns proved that PFA implies all autohomeomorphisms of N∗

are trivial; they also indicated how the implicit large cardinal assumption can be avoided and use ♦ on ω2
to capture and eliminate any potential non-trivial autohomeomorphisms in a countable support iteration 
of length ω2. Though not stated explicitly by the authors it is clear that one can modify the iteration so 
as to obtain a model that satisfies MAℵ1 as well. In [145] Veličković showed that the conjunction of MAℵ1

and OCA implies that all autohomeomorphisms are trivial.

4. Is it consistent to have a non-trivial automorphism, while for every h ∈ Aut the ideal I(h) is the inter-
section of finitely many prime ideals?
Comments: In topological terms: can one have non-trivial autohomeomorphisms but only very mild ones; 
the set of points where an autohomeomorphism is truly non-trivial is always finite.

5. Is every ideal I(h) a P -ideal?
Comments: This was asked explicitly in [134, Question 2] in case every autohomeomorphism is somewhere 
trivial, after it was shown that PFA implies a yes answer. However, as mentioned above, PFA implies that 
all autohomeomorphisms are trivial, so that I(h) is, in fact, always an improper ideal.

Of course this question only makes sense in case I(h) is not equal to the ideal of finite sets. Also, if 
every autohomeomorphism is somewhere trivial then every I(h) is a tall ideal and hence the set of points 
of non-triviality is nowhere dense.

Without the additional condition that every autohomeomorphism is somewhere trivial the answer is 
consistently negative. The Continuum Hypothesis lets one construct an autohomeomorphism h that is 
trivial, in fact the identity, on the members of a partition A of ω into infinite sets, and so that there is 
a point u on the boundary of 

⋃
{A∗ : A ∈ A} such that h is not trivial on each neighborhood of u. This 

implies there is no B ∈ I(h) such that A ⊆ B for all A ∈ A.

6. If every automorphism is somewhere trivial, is then every automorphism trivial?
Comments: This is undecidable.

Shelah proved the consistency of “all autohomeomorphisms are trivial”, see [127]. Shelah and Steprāns 
proved the consistency with MAℵ1 of “every autohomeomorphism is somewhere trivial, yet there is a non-
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trivial autohomeomorphism” in [135]; as noted above they proved in [136] that MA does not imply that all 
autohomeomorphisms are somewhere trivial.

Given a cardinal κ call an autohomeomorphism h weakly κ-trivial if the set {p : p �≡RK h(p)} has 
cardinality less than κ. Here p ≡RK q means that p and q have the same type, i.e., q = π∗(p) for some 
permutation π of N.

7. For what cardinals κ is it consistent to have that all autohomeomorphisms are weakly κ-trivial?
Comments: Since a trivial autohomeomorphism is weakly 1-trivial we see that κ = 1 is a possibility. And 
of course the candidates are less than or equal to 2c.

8. If h is weakly 1-trivial is h then trivial?
Comments: This is a uniformization question: if for every p ∈ N∗ there is a permutation πp such that 
h(p) = π∗

p(p) is there then one (almost) permutation π of N∗ such that h(p) = π∗(p) for all p?

9. (MA + ¬CH) if p and q are Pc-points is there an h in Aut such that h(p) = q?
Comments: This is undecidable.

Shelah and Steprāns proved the consistency of MA + ¬CH with “all autohomeomorphisms are trivial” 
in [134]; in this model there are c many autohomeomorphisms and 2c many Pc-points.

Steprāns proved the consistency of a positive answer in [141].

In the investigations into the previous question the following equivalence relation was used: p ≡ q means 
that there are two partitions {An : n ∈ ω} and {Bn : n ∈ ω} of N into finite sets such that

(∀P ∈ p)(∃Q ∈ q)(∀n)
(
|P ∩An| = |Q ∩Bn|

)

The following question was left open.

10. Is ≡ different from ≡RK in ZFC?

11. Are the autohomeomorphisms of N∗ induced by the shift map σ : n �→ n +1 and by its inverse conjugate?
Comments: Recently Will Brian showed that the answer to this question is affirmative assuming CH, see [20].

See [19,41] for earlier results. Under CH the autohomeomorphism group of N∗ is simple, yet it has the 
maximum possible number of conjugacy classes: 2c. This suggests questions about the number and nature 
of conjugacy classes of this group, in ZFC or under various familiar extra set-theoretical assumptions, see 
also [79].

12. Does N∗ have a universal autohomeomorphism?
Comments: This is a question with many possible variations. The definition of universality that we adopt 
here is as follows: f : N∗ → N∗ is universal if for every closed subspace F of N∗ and every autohomeomor-
phism g of F there is an embedding e : F → N∗ such that g = e−1 ◦ (f ↾ e[F ]) ◦ e.

One can ask whether there is a universal autohomeomorphism at all, whether the shift σ is universal 
(for autohomeomorphisms without fixed points), whether there is a universal autohomeomorphism just for 
autohomeomorphisms without fixed points.

The authors have shown that there is a universal autohomeomorphism of N∗ under CH and that there is 
no trivial universal autohomeomorphism. See [78].

We also note that N has a universal permutation: take a permutation of N that has infinitely many n-
cycles, for every n, and infinitely many infinite cycles (copies of Z with the shift). Every other permutation 
of N can be embedded into this one.



K.P. Hart, J. van Mill / Topology and its Applications 364 (2025) 109092 5
3. Subspaces

13. For what p are N∗ \ {p} and βN \ {p} non-normal?
Comments: Originally this question had the word ‘equivalently’ after the ‘and’ (in parentheses). Since 
N∗ \ {p} is closed in βN \ {p} there is an implication between the non-normality of these spaces but we do 
not know whether that implication is reversible. Thus this question may actually be two separate ones.

Under CH the answer is, in both cases, “for every point”, see [32,105,118,147]. There are some results for 
some special types of points, see, e.g., Błaszczyk and Szymański [16], Gryzlov [73], and Logunev [96], but a 
general answer is wanting.

14. Is it consistent that there is a non-butterfly point in N∗?
Comments: We call p a butterfly point if there are disjoint sets A and B such that p is the only common 
accumulation point of A and B, that is: Ad ∩Bd = {p}.

The points used by Błaszczyk and Szymański [16] in their (partial) answer to the previous question are 
easy-to-describe butterfly points. Let X = {xn : n ∈ ω} be a discrete subset of N∗, let A = clX \ X and 
take p ∈ A. Let {Bn : n ∈ ω} be a partition of N such that Bn ∈ xn for all n and let q be the ultrafilter 
{Q : p ∈ cl{xn : n ∈ Q}}. The set B =

⋂
Q∈q

(⋃
{Bn : n ∈ Q}

)∗ is closed and {q} = Ad ∩Bd. Thus butterfly 
points exist.

By contrast, in [14] Bešlagić and Van Douwen showed that it is consistent with all consistent cardinal 
arithmetic that all points of N∗ are butterfly points.

15. Is it consistent that N∗ \ {p} is C∗-embedded in N∗ for some but not all p ∈ N∗?
Comments: The answer is yes: in [50] Alan Dow showed that in the Miller model N∗ \ {p} is C∗-embedded 
iff p is not a P -point. There are P -points in the Miller model: every ground-model P -point generates a 
P -point in the extension.

16. What spaces can be embedded in βω?
Comments: This is a very general question and a definitive answer looks out of reach for now, even for 
closed subspaces.

The Continuum Hypothesis implies that the closed subspaces of βω are exactly the compact zero-
dimensional F -spaces; in fact, these are also exactly the closed P -sets in N∗. The implication does not 
reverse: in [53] it is shown that every compact zero-dimensional F -space is a (closed) subspace of N∗ in any 
model obtained by adding ℵ2 many Cohen reals to a model of CH.

Dow and Vermeer proved in [60] that it is consistent that the σ-algebra of Borel sets of the unit interval 
is not the quotient of any complete Boolean algebra. By Stone duality, this yields a compact basically 
disconnected space, hence a compact zero-dimensional F -space, of weight c that cannot be embedded into 
any extremally disconnected space, in particular not into βN.

Some ZFC results are available. For instance: if X is a compact space of countable cellularity that 
is a continuous image of N∗ then its projective cover E(X) can be embedded in N∗ as a c-OK set (a 
weakening of the notion of a P -set). This was proved by van Mill in [103] and applies to all separable 
compact extremally disconnected spaces as well as to the projective covers of Suslin lines and of Bell’s ccc 
non-separable remainder [10].

Van Douwen proved in unpublished work that every P -space of weight c (or less) can be embedded into βN. 
In fact he proved that for every infinite cardinal κ every P -space of weight 2κ can be embedded in βκ. The 
argument was sketched and extended in [58] and we summarize it here for the reader’s convenience.

Let X be a P -space of weight 2κ and embed it into the Cantor cube C = 22κ of weight 2κ. Next consider 
the projective cover π : E(C) → C of this cube. The Cantor cube is a group under coordinatewise addition 
modulo 2, so for every p ∈ C the map λp : x �→ x + p is a homeomorphism; this homeomorphism lifts to a 
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homeomorphism Λp : E(C) → E(C) with the property that π ◦Λp = λp ◦ π. Now take one point u0 ∈ E(C)
that maps to the neutral element 0 of C and consider the subspace X ′ = {Λp(u0) : p ∈ X} of E(C). Using 
the fact that regular open sets in C are, up to permutation of the coordinates, of the form U × 2I where 
U is regular open in the Cantor set 2ω and I = 2κ \ ω, one shows that π is actually a homeomorphism 
from X ′ to X. Finally then, as π is irreducible and C has density κ, the density of E(C) is equal to κ as well. 
Therefore there is a continuous surjection f : βκ → E(C) and one can take a closed subset F of βκ such 
that f ↾F is irreducible and onto. As E(C) is extremally disconnected this restriction is a homeomorphism 
and we find our copy of X in F .

The extension in [58] delivers more but at a cost: one embeds βX in a suitable Cantor cube, possibly of 
a larger weight than that of X itself. What this delivers is that the copy of X in βλ (where λ may be larger 
than the κ above) is C∗-embedded.

Thus we get the general statement that every P -space can be C∗-embedded in a compact extremally 
disconnected space.

This argument also shows that 2ℵ0 = 2ℵ1 implies that βω1 embeds into βN. For βω1 embeds into the 
Cantor cube 22ω1 , which under our assumption is the same as 2c. The latter is a continuous image of βN and 
an irreducible preimage of βω1 will be homeomorphic to βω1. If 2ℵ0 < 2ℵ1 then βω1 can not be embedded 
into N∗ because its weight, which is 2ℵ1 , is larger than that of N∗.

17. Describe the closed P -sets of N∗. 
Comments: This has a quite definitive answer under CH: every compact zero-dimensional F -space of weight 
c can be embedded in N∗ as a P -set. What we are looking for are properties that can be established in ZFC, 
or provably can not. For example: one cannot prove in ZFC that there is a P -set homeomorphic to N∗ itself, 
see [87], or that there is a P -set that satisfies the ccc, see [69].

One can ask if cellularity less than c is at all possible.
There are various nowhere dense closed P -sets that one can write down explicitly. To give two familiar 

examples, among many, we consider the density ideal Id and the summable ideal IΣ. The first is defined by

I ∈ Id iff lim
n→∞

1
n
|A ∩ n| = 0

and the second as

I ∈ IΣ iff
∑

n∈A

1
n

converges.

These ideals have been studied widely but we would like to know: what are the topological properties of 
the nowhere dense closed P -sets

Fd = N∗ \
⋃

{A∗ : A ∈ Id} and FΣ = N∗ \
⋃

{A∗ : A ∈ IΣ}

Rudin established in [120] that Fd contains no P -points and even that no countable set of P -points accu-
mulates at a point of Fd. Indeed let u be a P -point and observe first that for every n there is an in < n such 
that Un = {m ∈ N : m ≡ in (mod n)} belongs to u. Because u is a P -point there is then a U ∈ u such that 
U ⊆∗ Un for all n. But this implies U ∈ Id, so u /∈ Fd. Because Fd is a P -set this implies that no countable 
set of P -points has accumulation points in Fd.

There are certain similarities between the two sets and N∗ itself. Consider the map f : N → N, defined 
by f(n) = k iff k! < n ≤ (k + 1)!. It is an elementary exercise to show that

lim sup
n→∞

1
n
|f←[X] ∩ n| = 1 en

∑

←

1
n

= ∞

n∈f [X]
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whenever X is an infinite subset of N. This implies that βf maps both Fd and FΣ onto N∗ and it allows for 
the lifting of many combinatorial structures on N∗ to these sets. It is clear that the restriction of βf to N∗

is an open map onto N∗ itself, whether its restrictions to Fd and FΣ are open as well is less clear.

18. Which compact zero-dimensional F -spaces admit an open map onto N∗?
Comments: This question is related to Van Douwen’s paper [40], where open maps are used to transfer 
information from N∗ to other remainders. As a special case one can investigate whether the sets Fd and FΣ

from the Question 17 admit open maps onto N∗ (if the map βf given there does not already give open 
maps).

19. Is there a nowhere dense copy of N∗ in N∗ that is a c-OK-set in N∗?
Comments: Alan Dow showed in [52] that there a nowhere dense copy of N∗ that is not of the form clD\D
for some countable and discrete subset D of N∗. This was later improved by Dow and van Mill in [59] to 
a nowhere dense copy that is a weak P -set. In light of the comments for question 17 the present question 
asks for the best that we can get in ZFC. Most likely the answer to this question will require a new idea as 
the constructions in the papers cited above produce sets that are definitely not c-OK in N∗.

20. Is every subspace of N∗ strongly zero-dimensional?
Comments: It is clear that every subspace is zero-dimensional and that closed subspaces are even strongly 
zero-dimensional, but for general subspaces this question is quite open. Until recently it was not even known 
whether there was an example of a zero-dimensional F -space that is not strongly zero-dimensional, see [56].

If the answer is negative then a secondary question suggests itself immediately: is there an upper bound 
to the covering dimension of subspaces of N∗?

21. Is every nowhere dense subset of N∗ a c-set?
Comments: In general a set A is called a κ-set if there is a pairwise disjoint family O of open sets of 
cardinality κ and such that A ⊆

⋂
{clO : O ∈ O}.

That the answer is positive is called by some “The c-set conjecture”. In [139] Simon proved that this 
question is the same as “Is there a maximal nowhere dense subset in N∗?”. The questions are the same in 
that the answer “no” to one is equivalent to the answer “yes” to the other: Every nowhere dense set in N∗

is a c-set if and only if every nowhere dense set in N∗ is a nowhere dense subset of another nowhere dense 
set (this is the order that we are considering).

There is a purely combinatorial reformulation of this question, denoted RPC(ω) in [4]: if A is an infinite 
maximal almost disjoint family then I+(A) has an almost disjoint refinement. Here, I+(A) is the family of 
sets not in the ideal I(A) generated by A and the finite sets and an almost disjoint refinement is an almost 
disjoint family B with a map X �→ BX from I+(A) to B such that BX ⊆∗ X for all X.

Finally, we should mention that the answer is positive for one-point sets: all points of N∗ are c-points, 
see [5].

22. Does there exist a completely separable maximal almost disjoint family?
Comments: This question is related to Question 21 because by [4, Theorem 4.19] a positive answer to that 
question implies the existence of an abundance of completely separable maximal almost disjoint families; 
where a maximal almost disjoint family A is completely separable if it is itself an almost disjoint refinement 
of I+(A).

Whether completely separable maximal almost disjoint families exist is a problem first raised by Erdős 
and Shelah in [64].

Currently the best result is due to Shelah who showed in [130] that the answer is positive if c < ℵω and 
that a negative solution would imply consistency of the existence of large cardinals.
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It is not (yet) clear whether this question and Question 21 are equivalent. Thus far constructions of 
completely separable maximal almost disjoint families (in some model or another) could always be adapted 
to prove RPC(ω), but there is currently no proof of RPC(ω) from the mere existence of such a family.

23. Describe the retracts of βN and N∗, as well as their absolute retracts.
Comments: A retract of βN is necessarily a closed separable extremally disconnected subspace. It is known 
that a compact separable extremally disconnected can be embedded as a retract of βN. If X is such a space 
then there is a continuous surjection f : βN → X and if K is such that f ↾K is irreducible then f ↾K is a 
homeomorphism to X and (f ↾K)−1 ◦ f is a retraction of βN onto K.

Shapiro [123] and Simon [138] have shown independently and by quite different means that not every 
closed separable subset of βN is a retract. This gives rise to the notion of an absolute retract of βN: a 
(sub)space that is a retract irrespective of how it is embedded.

Bella, Błaszczyk and Szymański proved in [13] that if X is compact, extremally disconnected, without 
isolated points and of π-weight ℵ1 or less then X is an absolute retract for extremally disconnected spaces 
iff X is the absolute of one of the following three spaces: the Cantor set, the Cantor cube ω12, or the sum 
of these two spaces. This shows that under CH there are very few absolute retracts of βN.

We have less information about the retracts of N∗, absolute or not. Of course if a subset of N∗ is a retract 
of βN then it is a retract of N∗ as well. We do not know whether the converse is true, for separable closed 
subsets of course.

We do know that non-trivial zero-sets are not retracts. Such a set is of the form Z = N∗ \
⋃

n∈ω A∗
n, 

where the An are infinite and pairwise disjoint subsets of N. We write C =
⋃

n∈ω A∗
n. Now the closure of C

is a P -set in N∗, it is the union of C and the boundary of Z, and if we take one point un ∈ A∗
n for each n

then K = cl{xn : n ∈ ω} is a copy of βN and K∗ = K \ {xn : n ∈ ω} is a P -set in the boundary of Z and 
hence in Z. If we now take assume r : N∗ → Z is a retraction then r ↾ K∗ is the identity and for all but 
finitely many n we must have r(xn) ∈ K∗. But this would imply that K∗ is separable, a contradiction.

In addition the closure of a non-trivial (not itself closed) cozero-set may, under CH ([110]), or may not, 
in the ℵ2 Cohen model ([47, Theorem 4.5]), be a retract of N∗.

4. Individual ultrafilters

24. Is there a model in which there are no P -points and no Q-points? 
Comments: The Continuum Hypothesis implies that both kinds of points exist. If c = ℵ2 then at least one 
kind exists; this depends on the value of d. If d = c then P -points exist, in fact Ketonen showed in [90] that 
then every filter of cardinality less than c can be extended to a P -point. In the present case, if d < c then 
d = ℵ1 and then the result of Coplakova and Vojtáš from [33] applies to show that there are Q-points; this 
relies on the fact that the Novák number of N∗ is at least ℵ2, see [3].

The current methods for creating models without P -points involve iterations with countable supports and 
these invariably produce models where c = ℵ2, and hence these will contain Q-points. A recent exception 
is [30], where models without P -points and arbitrarily large continuum are constructed. However d = ℵ1 in 
these models, hence these contain Q-points as well.

25. Is there a model in which there is a rapid ultrafilter but in which there is no Q-point?
Comments: In [119] it was shown that the existence of a countable non-discrete extremally disconnected 
group implies the existence of rapid ultrafilters.

26. What are the possible compactifications of spaces of the form N ∪ {p} for p ∈ N∗?
Comments: Of course for every p we have β(N ∪ {p}) = βN. There are points where this phenomenon 
persists: Dow and Zhou showed that is f : βN → c2 is continuous and onto and K ⊂ N∗ is a closed set such 
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that f ↾K is irreducible and onto then for every point in K every compactification of N ∪ {p} contains a 
copy of βN, see [62].

Other examples of spaces of the form N ∪ {x}, where x is the only non-isolated point, for which every 
compactification contains βN were constructed by Van Douwen and Przymusiński in [45].

The case of scattered compactifications has received considerable interest.
In [122] Semadeni asked whether N ∪ {p} always has a scattered compactification.
In [121] Ryll-Nardzewski and Telgarsky proved that the answer is yes if p is a P -point and the Continuum 

Hypothesis holds; the compactification is a version of the compactification γN of Franklin-Rajagopalan 
from [70], where γN \ N is a copy of the ordinal ω1 + 1 and p corresponds to the point ω1.

In [86] Jayachandran and Rajagopalan constructed a scattered compactification of N ∪ {p}, where p is a 
P -point limit of a sequence of P -points.

Solomon, Telgarski, and Malykhin, in [140], [143], and [97], respectively, exhibited points p in N∗ such 
that N ∪ {p} has no scattered compactification.

Malykhin’s paper and the paper [144] by Telgarsky contain investigations of the structure of the (com-
plementary) sets S and NS of points for which N ∪{p} does and does not have a scattered compactification 
respectively. The set NS is quite rich: it contains the closures of all of its countable subsets and it is upward 
closed in the Rudin-Frolík order.

This richness foreshadowed a later result of Malykhin’s from [98,99]: in the Cohen model it is the case 
that for every point p ∈ N∗ every compactification of N ∪ {p} contains a copy of βN; in particular NS = N∗

in this model.

27. Is there p ∈ Q∗
d such that B = {A ∈ p : A is closed and nowhere dense in Q and without isolated points}

is a base for p?
Comments: To eliminate possible confusion: we wrote p ∈ Q∗

d to emphasize that we are asking for an 
ultrafilter on the countable set of rationals (with the discrete topology), and Q in the description of B to 
emphasize that we want a base for the ultrafilter that is closely connected to the topological structure of 
the space of rationals.

One could ask the question in the opposite direction: is there a point x in βQ \Q (the space of rationals) 
that, when considered as an ultrafilter of closed sets has a base consisting of closed nowhere dense copies 
of Q and that also generates a real ultrafilter on the set Q.

A third way of looking at this question is to consider β Id : βQd → βQ, where Id is the identity map 
and look for points in βQ \Q with one-point preimages. Such points are easily found in the closure of N for 
example, but we want a point whose elements are topologically as rich as possible.

These ultrafilters were dubbed ‘gruff ultrafilters’ by Van Douwen. This question is still open but there 
are many consistent positive answers:

• Van Douwen [43]: from MAcountable,
• Coplakova and Hart [34]: from b = c,
• Ciesielski and Pawlikowski [31]: from a version of the Covering Property Axiom (hence in the Sacks 

model),
• Millán [109]: from the same assumption a Q-point with this property,
• Fernández-Bretón and Hrušák [66]: from a parametrized ♦-principle, from d = c, and in the random real 

model; a correction in [67] points out that in the third case one needs to add ℵ1 many Cohen reals first.

28. Is there a p ∈ N∗ such that whenever 〈xn : n ∈ ω〉 is a sequence in Q there is an A ∈ p such that 
{ xn : n ∈ A } is nowhere dense?
Comments: Such ultrafilters are called nowhere dense. A P -point is nowhere dense: it will have a member A
such that {xn : n ∈ A} converges to a point or is closed and discrete. On the other hand, in [126] Shelah 
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showed that it is consistent that there are no nowhere dense ultrafilters. In [15] it is shown that a nowhere 
dense ultrafilter exists iff there is a σ-centered partial order that does not add a Cohen real.

Research into this type of problem was initiated by Baumgartner in [8]: the general situation involves a 
set S and a notion of smallness on S, usually expressed in terms of ideals. One then calls an ultrafilter u
on N small if for every map f : N → S there is a member of u whose image under f is small.

29. Is there an ultrafilter u such that for every map f : N → N there is a member U of u such that f [U ] has 
density zero?
Comments: This is a special case of the general problem mentioned in the comments above. We mention it 
here because it is related to some special cases of Problem 34, which deals with permutations, rather than 
arbitrary maps.

30. Is there in ZFC an ultrafilter that is Sacks-indestructible?
Comments: This question is inspired by the many proofs that ultrafilters of small character may exist. 
Sacks forcing preserves selective ultrafilters, P -points and many ultrafilters constructed from these. Those 
ultrafilters need not exist of course, so the question becomes if there are ultrafilters that are preserved by 
this partial order.

5. Dynamics, algebra, and number theory

31. Is there a point in N∗ that is not an element of any maximal orbit closure?
Comments: In this problem we consider the integers Z rather than N and the shift map σ, defined by 
σ(n) = n + 1. The orbit of u ∈ N∗ is the set {σ(u) : n ∈ Z} and its closure Cu is the orbit closure of u.

32. Is there an infinite strictly increasing sequence of orbit closures?
Comments: This problem is related to the previous problem: if there is no increasing sequence of orbit 
closures then the family of orbit closures is well-founded under reverse inclusion and every point is in some 
maximal orbit closure. A negative answer to this question, and hence to Question 31, was given recently by 
Zelenyuk in [150].

33. Is there a p ∈ N∗ such that for every pair of commuting continuous maps f, g : ω2 → ω2 there is an 
x ∈ ω2 such that p-lim fn(x) = p-lim gn(x) = x?
Comments: This question is related in two ways to Birkhoff’s multiple recurrence theorem, which states 
that commuting continuous self-maps of the Cantor set have common recurrent points. Using ultrafilters 
one can state this theorem as: for every pair of commuting continuous maps f, g : ω2 → ω2 there are p ∈ N∗

and x ∈ ω2 such that p-lim fn(x) = p-lim gn(x) = x.
So the first connection to our question is clear: is there one single ultrafilter that works for all pairs.
The second connection is the question whether the theorem holds for the Cantor cube c2?
If it does then the answer to our question is positive. To see this note first that there are c many pairs 

of commuting self-maps of ω2, enumerated these as {〈fα, gα〉 : α < c}. These determine one pair 〈f, g〉 of 
commuting self maps of c2: write c2 as c×ω2, and let f =

∏
α<c

fα and g =
∏

α<c
gα. The maps f and g

commute and if x ∈ c×ω2 is a common recurrent point then p-lim fn(x) = p-lim gn(x) = x for some p ∈ N∗. 
But then also p-lim fn

α (xα) = p-lim gnα(xα) = xα for all α.

34. For what nowhere dense sets A ⊆ N∗ do we have 
⋃

π∈SN
π∗[A] �= N∗?

Comments: Here SN denotes the permutation group of N.
It is consistent to assume that this happens for all nowhere dense sets. In [3] Balcar, Pelant and Simon 

studied n, the Novák number of N∗, defined as the smallest number of nowhere dense sets needed to 
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cover N∗. The inequality c < n is consistent and yields the consistency of “for all nowhere dense sets”; it 
follows from CH (because n ≥ ℵ2), but is also consistent with other values of c.

The inequality n ≤ c is also consistent and that case there is not such an easy way out and it becomes 
an interesting project to investigate whether the permutations of individual nowhere sets do, or do not, 
cover N∗ in ZFC.

Permuting a singleton will not yield a cover, as |N∗| = 2c.
Less obvious is Gryzlov’s result from [74] that the permutations of the set Fd from Question 17 do not 

form a cover. This was improved by Flašková in [65]: the permutations of the larger set FΣ do not cover N∗

either.
There is another natural nowhere dense subset of N∗ the permutations of which may, or may not, cover N∗. 

Identify N with N × N and for k ∈ N and f : N → N write U(f, k) = {〈m, n〉 : m ≥ k and n ≥ f(m)}. The 
set B =

⋂
f,k U(f, k)∗ is nowhere dense and it is well known then 

⋃
π∈SN

π[B] consists of all non P -points 
of N∗. Hence the permutations of B cover N∗ iff there are no P -points.

35. For what nowhere dense sets A ⊆ N∗ do we have 
⋃
{h[A] : h ∈ Aut} �= N∗?

Comments: This question is more difficult than the previous one.
For example, singleton sets still do not provide covers in ZFC, but the easy counting argument is replaced 

by the non-trivial fact that N∗ is not homogeneous.
We have no information about the sets Fd and FΣ in this context, except for the general fact that 

under CH the space N∗ cannot be covered by nowhere dense P -sets, see [93]. Also, in [2] it was shown that 
it is consistent that N∗ can be covered by nowhere dense P -sets, and the principle NCF (Near Coherence 
of Filters) implies that N∗ is even the union of a chain of nowhere dense P -sets, see [151], but the sets in 
these covers are unrelated to the sets Fd and FΣ. It is also unclear whether any one of the individual sets 
in these families will produce a cover when moved around by the members of Aut.

The answer for the set B remains the same because the union 
⋃
{h[B] : h ∈ Aut} consists of all non-P -

points.

6. Other

36. Are ω∗
0 and ω∗

1 ever homeomorphic?
Comments: This is known as the Katowice Problem, or rather the last remaining case of this problem. It 
was posed in full by Marian Turzański, when he was in Katowice (hence the name of the problem). The 
general question is: if κ and λ are infinite cardinals, endowed with the discrete topology, and the remainders 
κ∗ and λ∗ are homeomorphic must the cardinals κ and λ be equal?

Since the weight of κ∗ is equal to 2κ it is immediate that the Generalized Continuum Hypothesis implies 
a yes answer. In joint work Balcar and Frankiewicz established that the answer is actually positive without 
any additional assumptions, except possibly for the first two infinite cardinals. More precisely, see [1,68]: If 
〈κ, λ〉 �= 〈ℵ0, ℵ1〉 and κ < λ then the remainders κ∗ and λ∗ are not homeomorphic.

The paper [29] contains a list of the current known of consequences of ω∗
0 and ω∗

1 being homeomorphic; 
all but one of these can be made to hold in a single model of ZFC.

By Stone-duality the Katowice problem can be formulated algebraically: are the quotient (Boolean) 
algebras P(ω0)/fin and P(ω1)/fin ever isomorphic? In this form the question even makes sense in ZF: in 
models without non-trivial ultrafilters the spaces ω∗

0 and ω∗
1 are empty (and so trivially homeomorphic) but 

the structures of the algebras may still differ.

37. Is there consistently an uncountable cardinal κ such that ω∗ and U(κ) are homeomorphic?
Comments: This problem is part of the uniform version of the Katowice problem, Question 36. The full 
question asks whether for distinct infinite cardinals κ and λ spaces U(κ) and U(λ) of uniform ultrafilters 
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can be homeomorphic, or algebraically whether the quotient algebras P(κ)/[κ]<κ and P(λ)/[λ]<λ can be 
isomorphic. This is Question 47 in [44], where we also find the information that, in general, the algebra 
P(κ)/[κ]<κ has cardinality 2κ and is μ-complete for μ < cf κ but not cf κ-complete. Therefore we can 
concentrate on cases where 2κ = 2λ and cf κ = cf λ.

In [42] Van Douwen investigated the statements Sn:

if κ �= ℵn then P(κ)/[κ]<κ and P(ωn)/[ωn]<ℵn are not isomorphic.

Thus, our question is whether it is consistent that S0 is false. Van Douwen showed that there is at most 
one n for which Sn is false, but the proof offers no information on the location of that n (if any) as it simply 
establishes the implication “if m < n and Sm is false then Sn holds”.

38. What is the structure of the sequences 〈n((N∗)n) : n ∈ N〉 and 〈wn((N∗)n) : n ∈ N〉?
Comments: Here n and wn denote the Novaḱ and weak Novák numbers, defined as the minimum cardinality 
of a family of nowhere dense sets that covers the space, or has a dense union, respectively.

It is clear that if N is nowhere dense in a space X then N×Y is nowhere dense in the product X×Y . This 
shows that, in general, n(X × Y ) ≤ min{n(X), n(Y )} and likewise for wn. It follows that both sequences 
in our question are non-increasing and hence must become constant eventually.

One could ask when they do become constant. For wn this is undetermined: in [132] Shelah and Spinas 
showed that for every n there is a model in which wn((N∗)n) > wn((N∗)n+1). In particular wn(N∗) >
wn(N∗ × N∗) is possible, in [133] the latter inequality was shown to hold in the Mathias model.

For the Novák numbers of the finite powers nothing is known as yet.

39. What is the status of the statement that all Parovichenko spaces are co-absolute (with N∗)?
Comments: This question is related to Parovichenko’s theorem from [111], which states that under CH all 
Parovichenko spaces are homeomorphic to N∗. Of course Parovichenko spaces were named after this theorem 
was proved: they are compact, zero-dimensional F -spaces of weight c without isolated points in which every 
non-empty Gδ-set has non-empty interior. For the nonce we say that a space is of Parovichenko type if it 
satisfies the conditions above, except for possibly the weight restriction.

In [21] Broverman and Weiss proved that under CH all spaces of Parovichenko type of π-weight c are 
co-absolute (with N∗). They also established that if CH fails and c = 2<c then there is a Parovichenko space 
that is not co-absolute with N∗. They also proved that ω∗

0 and ω∗
1 are co-absolute or, in algebraic terms that 

the Boolean algebras P(ω0)/fin and P(ω1)/fin have isomorphic completions, which shows that completions 
do not have a direct effect on Question 36.

In [148] Williams also established the π-weight result and showed that N∗ is co-absolute with a linearly 
ordered space.

In [108] Van Mill and Williams improved the negative result of Broverman and Weiss: if our statement 
holds then not only do we have c < 2<c, but even c < 2ℵ1 .

In [46] Dow proved that the equality cf c = ℵ1 already implies that all Parovichenko spaces are co-absolute.
The definition of the absolute as the Stone space of the Boolean algebra of regular open sets makes sense 

for any compact space, so one may also seek co-absolutes of N∗ among spaces that are not zero-dimensional. 
In [32] Comfort and Negrepontis showed that under CH if X is locally compact and σ-compact, but not 
compact, and if 

∣∣C(X)
∣∣ = c then the set of P -points in X∗ is homeomorphic to the Gδ-modification of 

the ordered space 2ω1 ; Parovichenko had already established this fact for N∗ in [111]. This implies that 
for such spaces the remainders share a homeomorphic dense subspace and hence that all such remainders 
are co-absolute with N∗, still under CH of course. So, for example, under CH the spaces N∗ and H∗ are 
co-absolute.

In [51] Dow showed that in the Mathias model N∗ and H∗ are not co-absolute.
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40. Let X be a compact space that can be mapped onto N∗. Is X non-homogeneous?
Comments: Since N∗ maps onto βN, a space as in the question will also map onto βN. If the weight of X
is at most c then Theorem 4.1 (c) of [37] applies and we find that X is indeed non-homogeneous.

41. Is it consistent that every compact space contains either a convergent sequence or a copy of βN? 
Comments: Efimov asked in [63] whether every compact space contains either a convergent sequence or a 
copy of βN and a counterexample is now called a Efimov space. In [76] one finds a survey of the status of 
the problem in 2007; it lists various consistent Efimov spaces, which explains why the present formulation 
asks for a consistency result. We mention here some of the additional results that have been obtained in 
the meantime.

To begin there is a positive answer in [61] to Question 1 from [76]: Martin’s Axiom, or even the equality 
b = c, implies that there is a Efimov space.

In addition there has been progress on two related questions due to Juhász and Hušek. The latter asked 
whether every compact Hausdorff space contains either a convergent ω-sequence or a convergent ω1-sequence; 
Juhász’ question is stronger: must a compact Hausdorff space that does not contain a convergent ω1-sequence 
be first-countable? A counterexample to Hušek’s question would be a Efimov space because βN contains a 
convergent ω1-sequence. In [54] one finds a result that provides many models in which Juhász’ question, and 
hence that of Hušek’s, have a positive answer. One of these models satisfies b = c, hence Efimov’s question 
is strictly stronger than that of Hušek’s.

42. Is there a locally connected continuum such that every proper subcontinuum contains a copy of βN?
Comments: There are various continua that have the property that every proper subcontinuum contains a 
copy of βN: the remainders βRn\Rn all have this property for example. The reason is that they are F -spaces, 
hence the closure of every countable relatively discrete subset is a copy of βN. However, these remainders are 
not locally connected; indeed if a space X is not pseudocompact then one can use an unbounded continuous 
function to exhibit points in X∗ at which neither βX nor X∗ is locally connected, see [81].

In [106] we find a construction, from CH, of a locally connected continuum without non-trivial convergent 
sequences. This construction, an inverse limit in which all potential convergent sequences are destroyed, can 
be modified with some extra bookkeeping to yield a locally connected continuum in which every infinite 
subset contains a countable discrete subset whose closure is homeomorphic to βN, still under CH of course.

This leaves the question for a ZFC-example open but also suggest some further variations. The example 
has the property that some countable relatively discrete subsets have βN as their closures. One can ask 
whether one can ensure this for all countable relatively discrete subsets, or whether one can even make all 
countable subsets C∗-embedded. The reason for this is that a compact F -space cannot be locally connected, 
hence we would like to know how close to an F -space a locally connected continuum can be.

We would also like to know whether there is a natural example that answers our question; natural in the 
sense that one can simply write it down, as in “βN is a compact space without convergent sequences” and 
“H∗ is a continuum in which every proper subcontinuum contains a copy of βN”.

43. Is there an extremally disconnected normal locally compact space that is not paracompact?
Comments: The ordinal space ω1 is locally compact and normal, but not paracompact. There are, however, 
various additional assumptions that when added to local compactness and normality will ensure paracom-
pactness. Extremal disconnectedness may or may not be such an assumption: Kunen and Parsons showed 
in [94] that if κ is weakly compact then βκ \ U(κ) is normal and locally compact but not paracompact. As 
weak compactness is a large cardinal property the answer to this question can go many ways: a consistent 
counterexample, a real counterexample, or even an equiconsistency result involving a large cardinal.

The weaker property of basic disconnectedness does not work, as shown by Van Douwen’s example in [38]. 
In this paper Van Douwen attributes the present question to Grant Woods.
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44. Is every compact hereditarily paracompact space of weight at most c a continuous image of N∗? Is every 
hereditarily c.c.c. compact space a continuous image of N∗?
Comments: These questions are part of the general problem of identifying the continuous images of N∗. 
Przymusiński proved in [116] that all perfectly normal compact spaces are continuous images of N∗. One 
can therefore look for weakenings of perfect normality that still make the space an image of N∗. The present 
two properties are such weakenings and they have not been ruled out yet.

Another weakening, first-countability, was ruled out by Bell in [11]: the ℵ2-Cohen model contains a first-
countable compact space that is not a continuous image of N∗; this space is also hereditarily metacompact. 
In the same paper Bell showed that the compact ordered space 2ω1 (with the lexicographic order) is an 
image of N∗. Theorems 15 and 17 in Chapter 1 of [100] imply that every compact ordered space that is 
first-countable is a continuous image of the latter space, hence also of N∗.

In connection with the latter result we note that it is consistent with the negation of CH that all linear 
orders of cardinality c are embeddable into the Boolean algebra P(N)/fin, see [95]. By a combination of the 
Stone and Wallman dualities this implies that it is consistent with ¬CH that every compact ordered space 
of weight c is a continuous image of N∗.

This was later generalized in [9] to the consistency of Martin’s Axiom for σ-linked partial orders, the 
negation of CH, and the statement that all compact spaces of weight c are continuous images of N∗.

In both cases the proof constructs an embedding of a universal linear order or a universal Boolean algebra 
of cardinality c into P(N)/fin. This raises the question whether there is a universal compact space of weight c; 
one that maps onto all such spaces. The answer is negative, see [54, Section 6].

45. Is every compact space of weight at most ℵ1 a 1-soft remainder of ω?
Comments: A compactification γN of N is 1-soft if for every subset A of N with clA ∩ cl(N \A) �= ∅ there 
is an autohomeomorphism h of γN that is the identity on γN \ N and is such that {n ∈ A : h(n) /∈ A} is 
infinite.

See Question 351527 on MathOverFlow, [6], and also the papers [7] and [55] for related information.

46. Is there a universal compact space of weight ℵ1?
Comments: We mean universal in the mapping-onto sense; the dual question has the well-known an-
swer [0, 1]ω1 and Parovichenko’s theorem suggests that the answer might be positive. The answer is 
negative in the ℵ2-Cohen model but a good reference is hard to find. There are references to the result, 
[12,102,124,125], but no concrete proof.

However, the argument in [54, Section 6] can readily be adapted to provide an accessible proof. We apply 
Stone duality and show that in the model there is no Boolean algebra of cardinality ℵ1 in which every 
Boolean algebra of that cardinality can be embedded. Let Fn(ω2 × ω0, 2) denote the Cohen partial order 
and let G be a generic filter.

The main steps are: we can assume that the Boolean algebra is determined by a partial order ≺ on a 
subset of ω1. By the ccc of Fn(ω2 × ω0, 2) the order ≺ is a member of V [G ↾ α] for some α < ω2. Take the 
next ℵ1 many Cohen reals 〈cβ : β < ω1〉, defined by cβ(n) =

⋃
G(α + β, n). The union, T , of the binary 

tree 2<ω and the set {cβ : β < ω1} is a partially ordered set which, when turned upside-down generates a 
Boolean algebra B. Assume ϕ : T → ω1 is the restriction of an embedding of B into 〈ω1, ≺〉. There is a 
countable subset C of ω2 such that the restriction of ϕ to 2<ω belongs to V [G ↾ (α ∪ C)]. Now take β ∈ ω1

such that α + β /∈ C. Then cβ does not belong to V [G ↾ (α ∪ C)], yet it can be defined from the elements 
γ = ϕ(cβ) and ϕ ↾ 2<ω by the formula 

⋃
{s : γ ≺ ϕ(s)}.

47. Investigate ultrafilters as topological spaces.
Comments: This is a very general question, so let us discuss some specific ones that may be investigated. 
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An ultrafilter can be viewed as a subspace of the Cantor set ω2, if one identifies a subset of ω with its 
characteristic function.

Of course this makes ultrafilters separable metric spaces, and hence relatively well-behaved. But not too 
well-behaved: free ultrafilters are non-measurable and do not have the property of Baire.

To begin one can repeat many of the investigations into the Rudin-Keisler order using more general 
kinds of maps. We know p ≤RK q means that there is a map ϕ : N → N such that βϕ(q) = p. The map ϕ

determines a continuous map from ω2 to itself, so the following definition suggests itself at once: say p ≤c q

if there is a continuous map f : ω2 → ω2 such that f [q] = p.
One can ask whether p ≤c q and q ≤c p together imply that p ≡c q, which means that there is a home-

omorphism of ω2 that maps p to q. The structure of the partial order ≤c, minimal elements, incomparable 
elements, etc., would warrant investigation as well.

There is no reason to stop there of course: one can ask the same questions about Borel maps of any 
specific order, or of maps of arbitrary Baire classes.

One need not work with maps on ω2, though that may make life easier, one can investigate what it means 
for two ultrafilters to be homeomorphic, or what it means that one is a continuous image of the other. The 
methods of [49] may be of use in determining the possible sizes of sets of ultrafilters that are incomparable 
in this sense.

We note that an ultrafilter can be homeomorphic to at most c many other ultrafilters: if f : p → q

is a homeomorphism then Lavrentieff’s theorem implies that f can be extended to a homeomorphism of 
Gδ-subsets of ω2, and the number of such homeomorphisms is equal to c.

The paper [101] contains many results on the topology of ultrafilters.

48. Is it consistent that all free ultrafilters have the same Tukey type?
Comments: Isbell [85] raised the question of the number of Tukey types of ultrafilters on N and gave the 
obvious bounds 2 (trivial or not) and 2c. Tukey types of free ultrafilters were investigated by Dobrinen and 
Todorčević in [36] who gave a combinatorial characterization of ultrafilters that are Tukey-equivalent to the 
partial order of finite subsets of c: the ultrafilter U should contain a subfamily X of cardinality c such that 
for every infinite subfamily Y of X the intersection

⋂
Y does not belong to U .

Such ultrafilters exist see [85, Theorem 5.4]; they are the ultrafilters of character c constructed from an 
independent family of cardinality c, see also [114,115].

In [30, Announcement 9] Chodounský and Guzmán announce a result that comes close to the statement 
that all free ultrafilters have this property.

Added in proof : in [28] Cancino-Manríquez and Zapletal construct models where all free ultrafilters are 
Tukey equivalent to the partial order of finite subsets of c.

49. Is the space of minimal prime ideals of C(N∗) not basically disconnected?
Comments: For a commutative ring R we let mR denote the set of minimal prime ideals endowed with 
the hull-kernel topology. In [82,83] Henriksen and Jerison studied this space and asked whether mC(N∗) is 
basically disconnected.

In the papers [57] and [48] various conditions were found that imply mC(N∗) is not basically disconnected. 
For example, MA implies that mC(N∗) is not even an F -space ([57]). In [48] it was shown that the equality 
cf[d]ℵ0 = d suffices to show that mC(N∗) is not basically disconnected. Failure of this equality entails the 
existence of inner models with measurable cardinals. The actual consequence, called Mel, of this equality 
that was used in the proof identifies N with Q and asks for a P -filter F on Q, and two countable disjoint 
dense subsets A and B of R \Q such that the closure in R of every member of F meets both A and B.

Thus, to show that mC(N∗) is not basically disconnected it suffices to show that Mel holds, or the 
following stronger, but possibly more manageable, statement: the ideal of nowhere dense subsets of Q can 
be extended to a P -ideal.



16 K.P. Hart, J. van Mill / Topology and its Applications 364 (2025) 109092
50. Is there a c.c.c. forcing extension of L in which there are no P -points?
Comments: The consistency of the nonexistence of P -points was proven by Shelah, see [149] and also [127, 
VI §4].

After this there have been various attempts to (dis)prove the existence of P -points in various standard 
models. Quite often the outcome was that ground model P -points remained ultrafilters and P -points in the 
extension.

A notable exception is the Silver model: in [30] we find a proof that iterating Silver forcing ω2 times with 
countable supports produces a model without P -points; the same holds for the countable support product of 
arbitrarily many copies of the partial order. This establishes the consistency of the nonexistence of P -points 
with arbitrarily large values of c.

A question that is still open is whether P -points exist in the random real model. If not then this would 
answer the present question positively. If there are P -points in this model then our question gains interest 
as it is as yet unknown whether c.c.c. forcing can be used to kill P -points.

51. What is the relationship between ultrafilters of small character (less than c) and P -points?
Comments: One of the first ultrafilters of small character can be found in [92, Exercise VII.A10]; it is a 
simple Pℵ1-point constructed by iterated forcing over a model of ¬CH. There are many more examples of 
ultrafilters of small character but their constructions seem to involve P -points in some form or another. A 
common method is to start with a model of CH and enlarge the continuum while preserving some ultrafilters; 
these will then have character ℵ1, which is smaller than c. Almost always these ‘indestructible’ ultrafilters 
are P -points (or stronger) and remain P -points in the extension. There are a few exceptions, see [75] for 
instance, but there the ultrafilters are built using P -points and these are preserved as well.

52. We let Spχ denote the set of characters of ultrafilters on N, the character spectrum of N. The general 
question is what one can say about this set.
Comments: We know that c ∈ Spχ, and that Spχ = {c} is possible.

In [128] Shelah showed the consistency of there being three cardinals κ, λ, and μ such that κ < λ < μ, 
and κ, μ ∈ Spχ and λ /∈ Spχ. The construction uses a c.c.c. forcing over a ground model in which the 
three cardinals are regular, λ is measurable, and there is another measurable cardinal below κ. In [129]
he extended this result by showing how to build, given two disjoint sets Θ1 and Θ2 of regular cardinals, 
a cardinal-preserving partial order that forces Θ1 to be a subset of Spχ and Θ2 to be disjoint from it; the 
construction requires Θ2 to consist of measurable cardinals. The same paper also contains models in which 
{n : ℵn ∈ Spχ} can be any subset of N, starting from infinitely many compact cardinals. This answers a 
question from [18], namely whether if there are ultrafilters of character ℵ1 and ℵ3 there must be one of 
character ℵ2, but at the cost of large cardinals.

This leaves open the question whether the conjunction of ℵ1, ℵ3 ∈ Spχ and ℵ2 /∈ Spχ can be proven 
consistent from the consistency of just ZFC. To be very specific we ask whether there is an ultrafilter of 
character ℵ2 in the model(s) of [92, Exercise VII.A10], where one starts with a model of c = ℵ3, and in the 
side-by-side Sacks model where c = ℵ3.

53. Is there consistently a point in N∗ whose π-character has countable cofinality?
Comments: The paper [18] contains a wealth of material on π-characters of ultrafilters, including a model 
with an ultrafilter of π-character ℵω.

Unlike the results on the character spectrum the results on the π-character spectrum do not require large 
cardinals.

54. Is it consistent that t(p, N∗) < χ(p) for some p ∈ N∗?
Comments: There are plenty of compact spaces with points where the tightness is smaller than the charac-
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ter; the one-point compactification of the any uncountable discrete space will do: the tightness at the point 
at infinity is countable, the character of the point is not.

Let us remark that no point of N∗ has countable tightness: certainly at P -points the tightness is un-
countable; if p is not a P -point then it lies on the boundary of a zero-set C and in the closure of its interior, 
but the closure of every countable subset of that interior is a subset of that interior. This implies that 
t(p, N∗) = χ(p) = c if CH holds, hence the question for a consistency result.

As an aside we mention that there are consistent examples of regular extremally disconnected spaces 
of countable tightness: in [146] and [72] one finds constructions of extremally disconnected S-spaces. The 
constructions use ♣ and that some extra assumption is necessary is shown in [142]: there are no extremally 
disconnected S-spaces if MA + ¬CH holds. Both [72] and [142] contain constructions of extremally discon-
nected S-spaces in βN.

55. If C(ω + 1, C) admits an incomplete norm then does C(βN, C) admit one too? 
Comments: This question is related to a conjecture/question of Kaplansky’s about algebra norms on the 
spaces C(X, C), with X compact. The question is whether every algebra norm is equivalent to the sup-
norm ‖·‖∞. The answer is positive if the norm is complete, hence the question became whether every 
algebra norm on C(X, C) is complete.

The book [35] surveys the solution to this problem: under CH every C(X, C) carries an incomplete algebra 
norm (Dales and Esterlé) and it is consistent that every algebra norm on every C(X, C) is complete (Solovay 
and Woodin).

The present question comes from the results that if C(βN, C) admits an incomplete norm then so does 
every C(X, C), and if some C(X, C) carries an incomplete norm then so does C(ω + 1, C). In short it asks 
whether all compact spaces are equivalent for Kaplansky’s conjecture.

The question can be translated into terms of individual ultrafilters and this leads to some interesting 
subquestions. A seminorm on an algebra is a function that satisfies all conditions of an algebra norm except 
for the condition that non-zero elements should have non-zero norm. An algebra is semi-normable if it 
carries a non-trivial seminorm.

For a point p of βN we let Ap denote the quotient algebra Mp/Ip, where Mp = {f ∈ C(βN, C) : f(p) = 0}, 
and Ip = {f ∈ C(βN, C) : (∃P ∈ p)(f ↾ P = 0)}. We also let c0 be the subalgebra of C(βN, C) of functions 
that vanish on N∗ and we let c0/p denote the quotient algebra c0/(c0 ∩ Ip).

Theorem 2.21 in [35] shows why we should be interested in these algebras: The algebra C(βN, C) admits 
an incomplete norm iff for some p the algebra Ap is seminormable, and C(ω + 1, C) admits an incomplete 
norm iff for some q the algebra c0/q is seminormable.

We see that if there is a p such that Ap is seminormable then there is a q such that c0/q is seminormable. 
The present question ask whether this implication can be reversed.

Further questions regarding these algebras suggest themselves: is it the case that the seminormability 
of Ap implies that of c0/p? In other words can we get q = p in the previous paragraph?

Also, what is the answer to the stronger version of our question: if c0/p is seminormable is Ap semi-
normable too?

We recommend [35, Chapters 1, 2 and 3] for more detailed information on this question.

56. (MA + ¬CH) Are there G and p (P -point, selective) such that p ⊆ I+
G

?
Comments: Here G denotes a Hausdorff-gap in ωω and IG is the ideal of sets over which G is filled.

S. Kamo [88] proved that if V is obtained from a model of CH by adding Cohen reals then in V an ideal 
is a gap-ideal iff it is ≤ ℵ1-generated. Also, CH implies that any nontrivial ideal is a gap-ideal.

The commentary in [112] mentions a further preprint by Kamo, [89], where it is shown that, under 
MA + ¬CH, for every Hausdorff gap G there are both selective ultrafilters and non-P -points consisting of 
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positive sets (with respect to the gap-ideal IG). Also under MA + ¬CH there is a selective non-Pℵ2-point 
that meets every gap-ideal.

Unfortunately we were unable to locate this preprint and verify these statements.

7. Orders

57. Is there for every p ∈ N∗ a q ∈ N∗ such that p and q are ≤RK-incomparable?
Comments: This question has a long history; it is as old as the Rudin-Keisler order itself. In [91] Kunen 
constructed two points that are ≤RK-incomparable. In [131] Shelah and Rudin proved that there is a set 
of 2c incomparable points. In [137] Simon proved that these points may be taken to be ℵ1-OK. In [49] Dow 
showed that there are many more situations where such sets may be constructed.

However, none of these results shed light on the present question. Some partial results are available: in [84]
Hindman proved: if p is such that χ(r) = c whenever r ≤RK p then there is a point that is incomparable 
with p, so the answer to the present question is positive if all ultrafilters have character c. Furthermore if 
c is singular and χ(p) = c then again there is a point that is incomparable with p. The latter result was 
extended by Butkovičová in [27]: if κ < c is such that c < 2κ then for every ultrafilter of character c there 
are 2κ many ultrafilters incomparable with it. Note that these results all impose conditions on individual 
ultrafilters in order to find an incomparable point; only the condition “all ultrafilters have character c” 
answers this question directly.

In [127, XVIII §4] Shelah proved that it is consistent that up to permutation there is one P -point.

We recall the definition of the Rudin-Frolík order: we say p ≤RF q if there is an embedding f : βN → βN

such that f(p) = q. This is a preorder that induces a partial order on the types of ultrafilters. To see this 
note that p ≤RF q implies p ≤RK q: given f take a partition {An : n ∈ N} of N such that An ∈ f(n) for 
all n. The map g =

⋃
n(An × {n}) satisfies p = g(q) and shows p ≤RK q.

As usual p <RF q will mean p ≤RF q plus not-q ≤RF p, and this is readily seen to be equivalent to there 
being an embedding f : βN → N∗ such that f(p) = q.

The Rudin-Frolík order is tree-like: if p, q ≤RF r then p ≤RF q or q ≤RF p. And due to the relation 
with ≤RK we see at once that {p : p ≤RK q} always has cardinality at most c.

In many papers on the Rudin-Frolík order Frolík’s original notation is employed where one writes X =
f [N], and q = Σ(X, p) as well as p = Ω(X, q).

58. For what cardinals κ is there a strictly decreasing chain of copies of βN in N∗ with a one-point intersec-
tion? 
Comments: This question is related to decreasing chains in ≤RF. A decreasing sequence of copies of βN
determines and is determined by a sequence 〈Xα : α ∈ δ〉 of countable discrete subsets of N∗ with the 
property that Xα ⊆ clXβ \ Xβ whenever β ∈ α. Take a point p in the intersection of the sequence; then 
〈Ω(Xα, p) : α ∈ δ〉 is a decreasing ≤RF-chain.

To ensure that this chain does not have a lower bound one should make sure that p is not an accumulation 
point of a countable discrete subset of the intersection. Having a one-point intersection is certainly sufficient 
for this. In [39] Van Douwen showed that it is possible to have a chain of length c with a one-point 
intersection. In [22] and [26] we find constructions of decreasing ≤RF-chains of type ω and of type μ for 
uncountable μ < c respectively. The latter two constructions provide a point in the intersection of a suitable 
chain of copies of βN that is not an accumulation point of a countable discrete subset of that intersection.

We want to know when in these cases the intersection can be made to be a one-point set.

59. If κ ≤ c has uncountable cofinality and if 〈Xα : α < κ〉 is a strictly decreasing sequence of copies of βN
with intersection K, is there a point p in K that is not an accumulation point of any countable discrete 



K.P. Hart, J. van Mill / Topology and its Applications 364 (2025) 109092 19
subset of K?
Comments: This is related to Question 58: the chains of copies of βN in the positive results were chosen 
with care. We want to know if that care is necessary.

60. What are the possible lengths of unbounded RF-chains?
Comments: Since every point has at most c predecessors every chain has cardinality at most c+. In [22] we 
find a point with exactly ℵ0 many predecessors, with the order type of the set of negative integers.

Every unbounded chain will have cardinality at least c (this follows from results in [17, Theorem 2.9]
or [23]), so the cardinality of an unbounded chain is equal to either c or c+. In [24] and [25] Butkovičová 
constructed unbounded chains of order-type c+ and ω1 respectively.

What other order-type are possible? Can one prove that a chain or order-type c (or its cofinality) exists, 
irrespective of CH?

61. Is every finite partial order embeddable in the Rudin-Keisler order?
Comments: See MathOverFlow https://mathoverflow .net /questions /375365. To get a positive answer 
it suffices to embed every finite power set into this order. It is relatively easy to adapt the construction of 
two incomparable ultrafilters to yield an embedding of the power set of {0, 1} (see [152]), but an embedding 
of the power set of {0, 1, 2} already poses unexpected difficulties.

The analogous question for the Rudin-Frolík order has an easier answer. This order is tree-like in that 
the predecessors of a point are linearly ordered, and every point has 2c many successors. This implies that 
every finite rooted tree, and only those among the finite partial orders, can be embedded into this order.

8. Uncountable cardinals

62. Is there consistently an uncountable cardinal κ with p ∈ U(κ) such that χ(p) < 2κ?
Comments: It is well known that if κ is an infinite cardinal then there are 22κ many uniform ultrafilters 
on κ with character equal to 2κ, see [115].

It is also well known, and referred to in other questions, that it is consistent that there are ultrafilters 
on N of character less than c.

Of course the Generalized Continuum Hypothesis implies that every uniform ultrafilter on every κ has 
character 2κ, but we are not aware of any consistency result the other way for uncountable cardinals.

We formulate two special cases of our question:

• Is it consistent to have a uniform ultrafilter on ω1 of character ℵ2 (with ℵ2 < 2ℵ1 of course)?
• Is it consistent to have a measurable cardinal κ with a p ∈ U(κ) such that χ(p) < 2κ?

The first question simply looks at the smallest possible case and the second question asks, implicitly, if 
having a uniform ultrafilter of small character is actually a large-cardinal property of ℵ0.

There has been recent activity in this area; the paper [71] deals with the character spectrum of uncount-
able cardinals of countable cofinality, and in [117] one finds models with uκ < 2κ for κ = c and for κ = ℵω+1. 
These results use large cardinals in the ground model: the spectrum result uses a supercompact and many 
measurables; the results for c and ℵω+1 use a measurable and supercompact cardinal respectively.

63. Is it consistent to have cardinals κ < λ with points p ∈ U(κ) and q ∈ U(λ) such that χ(p) > χ(q)?
Comments: This is a follow-up question to Question 62: if uniform ultrafilters of small character are at all 
possible, how much variation can we achieve among various cardinals?

64. If κ is regular and uncountable, F is a countably complete uniform filter on κ then what is the cardinality 
of the closed set UF = {u ∈ U(κ) : F ⊆ u}?

https://mathoverflow.net/questions/375365
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Comments: In case κ is measurable one can use a measure ultrafilter to create filters F such that UF is 
finite or a copy of βλ, for any λ < κ.

For other cardinals the set UF will always be at least infinite and given the nature of βκ the cardinality 
will be closely related to numbers of the form 22λ for λ ≤ κ.

For the closed unbounded filter the answer is 22κ : using a family of κ many pairwise disjoint stationary 
sets and an independent family on κ of cardinality 2κ one can produce a map from UF onto the Cantor 
cube of weight 2κ.

65. Assume that κ is regular, that κ ⊆ X ⊆ βκ is such that [X]<κ = X and βXκ = X. Now if Y is a closed 
subspace of a power of X, is then also X a closed subspace of a power of Y ?
Comments: Some notation: [X]<κ denotes 

⋃
{clB : B ∈ [X]<κ}, and if κ ⊆ X ⊆ βκ then βXκ is the 

maximal subset of βκ such that every function from κ to X has a continuous extension from βXκ to X.

66. Are there κ and p ∈ U(κ) such that |Rp| > |Rp/ ≡ | = c?
Comments: Here Rp denotes the ultrapower of R by the ultrafilter p. The relation ≡ is that of Archimedean 
equivalence: a ≡ b means that there is an n ∈ N such that both |a| < |nb| and |b| < |na|.

67. Is there a C∗-embedded bi-Bernstein set in U(ω1)?

68. Are there open sets G1 and G2 in U(ω1)such that clG1 ∩ clG2 consists of exactly one point?
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