

Delft University of Technology

Enhanced spatio-temporal electric load forecasts using less data with active deep learning

Aryandoust, Arsam; Patt, Anthony; Pfenninger, Stefan

DOI
10.1038/s42256-022-00552-x
Publication date
2022
Document Version
Final published version
Published in
Nature Machine Intelligence

Citation (APA)
Aryandoust, A., Patt, A., & Pfenninger, S. (2022). Enhanced spatio-temporal electric load forecasts using
less data with active deep learning. Nature Machine Intelligence, 4(11), 977-991.
https://doi.org/10.1038/s42256-022-00552-x

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s42256-022-00552-x
https://doi.org/10.1038/s42256-022-00552-x

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 977

nature machine intelligence

https://doi.org/10.1038/s42256-022-00552-xArticle

Enhanced spatio-temporal electric load
forecasts using less data with active deep
learning

Arsam Aryandoust   1 , Anthony Patt1 & Stefan Pfenninger1,2

An effective way to mitigate climate change is to electrify most of our energy
demand and supply the necessary electricity from renewable wind and
solar power plants. Spatio-temporal predictions of electric load become
increasingly important for planning this transition, while deep learning
prediction models provide increasingly accurate predictions for it. The
data that are used for training deep learning models, however, are usually
collected at random using a passive learning approach. This naturally results
in a large demand for data and associated costs for sensors such as smart
meters, posing a large barrier for electric utilities when decarbonizing their
grids. Here we investigate whether electric utilities can use active learning
to collect a more informative subset of data by leveraging additional
computation for better distributing smart meters. We predict ground-truth
electric load profiles for single buildings using only remotely sensed data
from aerial imagery of these buildings and meteorological conditions in
the area of these buildings at different times. We find that active learning
can enable 26–81% more accurate predictions using 29–46% less data at the
price of 4–11 times more computation compared with passive learning.

An effective way to mitigate climate change is to electrify our energy
sectors and supply their electricity from renewable wind and solar,
which are highly fluctuating and uncertain sources of energy1–3. Plan-
ning and operating electricity grids under these uncertainties increas-
ingly requires fine-grained and accurate predictions of electric load
across very short to long time windows4,5. Among the different types
of electric load forecasts that are performed6,7, spatio-temporal pre-
dictions have gained increasing importance8–10. They predict load for
times and places for which we do not have detailed information about
electric load profiles in our grids, and operate these as black boxes11.

While remotely sensed data such as meteorological condi-
tions or satellite imagery are increasingly easy to access for making
spatio-temporal predictions12,13, ground-truth electric load data remain
difficult and expensive to collect14. One reason for this is that electric
utilities can be limited in the number of physical sensors such as smart
meters that they can place to collect load data owing to technical,

financial and social barriers15,16. Another reason is that utilities can
further be limited in the amount of data they can query from each meter
in real time by constraints such as data communication band widths
and privacy concerns of consumers, which is known as the velocity
constraint of data17,18.

Figure 1 shows the state of global smart meter adoption. In regions
of the world with medium to high adoption of smart meters, we want
to know when to query data from which meter so as to best utilize
our measured data for making accurate predictions of load without
exceeding our data velocity constraints. In regions of the world with
a yet low adoption of smart meters, we further want to know where to
install new meters first so as to make the best possible predictions of
load for the parts of our grids that remain unmeasured.

Artificial intelligence (AI) and machine learning (ML) are increas-
ingly used to tackle such climate change-related prediction prob-
lems19,20. For example, AI is used in 90% of recently proposed load

Received: 8 December 2020

Accepted: 28 September 2022

Published online: 15 November 2022

 Check for updates

1Climate Policy Lab, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland. 2Faculty of
Technology, Policy and Management (TPM), Delft University of Technology, Delft, the Netherlands.  e-mail: arsama@ethz.ch

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-022-00552-x
http://orcid.org/0000-0002-4377-1935
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-022-00552-x&domain=pdf
mailto:arsama@ethz.ch

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 978

Article https://doi.org/10.1038/s42256-022-00552-x

useful data only and reduce our overall demand for data and sensors.
Supplementary Note 1 provides more detail on how AI, ML and DL
encompass each other and how active learning has emerged to solve
problems associated with passive learning.

Although the advantage of active deep learning (ADL) over pas-
sive deep learning (PDL) is well studied across many theoretical use
cases and domains, its application for solving important real-world
problems such as collecting data for spatio-temporal predictions of
electric load remains poorly explored. As one of the first applications of

forecasting algorithms, where deep learning (DL) models make up
the largest share with 28% (ref. 7). The default method of choice for
training these DL models is passive learning. In passive learning, the
data used for training a prediction model are collected at random
from a large pool of candidate data points, which naturally results in a
large demand for data and sensors in remote sensing applications. In
contrast, an increasingly emerging approach, known as active learning,
leverages additional computation to assess the information content of
data points before collecting these, such that we can collect the most

b c

a

d

Adoption (%)

Africa

Asia

Latin America

Europe

60

100

80

20

40 8

6

4

2

0

8

10

6

4

2

0

30

20

10

0
0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100

0

25

20

15

10

5

N
um

be
r c

ou
nt

rie
s

N
um

be
r c

ou
nt

rie
s

Smart meter adoption (%) Smart meter adoption (%)

40

0

Fig. 1 | The current state of global smart meter adoption. a–c, Smart meter adoption worldwide (a) and in Europe (b) and Asia (c). A diverging colour spectrum is
chosen to better contrast the difference between neighbours. d, The distribution of adoption by country for Africa, Latin America, Asia and Europe.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 979

Article https://doi.org/10.1038/s42256-022-00552-x

ADL in a related problem domain, Kuo et al. reduced the computational
complexity of predicting electricity prices by sampling a smaller, more
informative subset of training data from a large pool of candidate data
points using Gaussian processes21. Wang et al. increased their model
accuracy for time series predictions of electric load compared with
existing DL models by using a selector–predictor framework in which
the selector samples a subset of similar and correlating load segments
from the past to be used as training data by a distinct and continuously
updated predictor that consists of an ensemble of DL models22. Zhang
et al. reduced their dataset bias and thus also their overall generaliza-
tion errors for time series predictions of electric load by sampling a
training subset from a candidate data pool of past consumption data
that is more representative of the entire data population based on
reducing an expected error metric23.

Here, we investigate (1) how a dataset of the same size picked
using ADL impacts the informativeness of training data and gener-
alization performance compared with when using PDL, (2) how much
data and how many sensors we can save when using ADL while making
as accurate predictions as when using PDL, (3) how much additional
computation is required when using ADL as compared with when
using PDL and (4) how the sequence of training data picked with ADL
impacts the generalization performance. In the following, we provide
an overview of our prediction task and ADL method, before presenting
and discussing our results.

Prediction task and ADL method
Predictions of electric load at different spatio-temporal resolutions are
useful for planning and operating active distribution grids that will not
only consume but also produce electricity through the integration of
higher shares of wind and solar power throughout our energy transi-
tion24,25. Here, we exemplarily perform spatio-temporal predictions of
load at the scale of entire buildings. This allows utilities to study how
load profiles change when electrifying additional energy demands such
as heating and mobility, how much of a building’s electricity demand
can be covered from roof-top and nearby wind and solar power, and
how large resulting residual loads and bi-directional power flows in
active distribution grids can be.

Given the aerial image of a building, the meteorological condi-
tions in the region of that building and a time stamp as our features,
we want to predict the electric load profile of a building for the next
24 h in 15 min steps as our labels. Our features (inputs) are all remotely
sensed and assumed to be available for every building and point in time
at no cost. For every new load profile (output or label) that we collect,
we experience some cost and are constrained in the total number of
profiles that we can collect by some budget nbudget. We start with a
prediction model that has learnt this relationship for a few buildings
and times. Our goal is to collect further ground-truth data, that is, the
electric load profiles at different times and buildings, so as to make the
best possible predictions for buildings and times for which we do not
have load profiles available, without exceeding nbudget. Supplementary
Note 2 explains the implications of choosing our data in this constel-
lation in more detail. We run experiments on two different datasets:
one containing load profiles from 100, and one from 400 residen-
tial, commercial and industrial buildings in Switzerland with diverse
sizes, shapes, occupancy and consumption. For each experiment,
we randomly select load profiles from 800 (for the dataset with 100
buildings) and 200 (for the dataset with 400 buildings) time stamps in
2014 to create a candidate data pool that is of about the same size for
each dataset. Figure 2 shows the modular DL model which contains a
novel architecture that we propose for solving this task. We call this a
spatio-temporal embedding network.

In each iteration of the ADL algorithm that we apply, we query
a batch of candidate data points. First, we encode the features of
candidate data points into an embedded vector space using our
spatio-temporal embedding network (Fig. 2) that is trained on initially

available random data points. We then cluster candidate data points
based on their vector distances from each other in this encoded space,
with the number of clusters being equal to our query batch size. Next,
we calculate the distance of the vector of each encoded data point to
its cluster centre and query one data point per cluster based on these
distances. We test our ADL method for randomized, minimized, maxi-
mized and averaged distances of embedded data points to their cluster
centres in every queried data batch. We refer to these as our ADL vari-
ants. A number of alternative active learning methods exist that we can
apply to our data selection task. Supplementary Note 3 describes these
in further detail and explains the advantage and potential disadvantage
of using the active learning method we propose over existing ones.

Figure 3 visualizes the difference between data queries with each
of our ADL variants. In a first variant, we randomly select data points
from each embedded cluster of candidates (Fig. 3a). In a second vari-
ant, we query candidate data points whose embedded feature vectors
are furthest away from their cluster centres (Fig. 3b). We expect to
be more uncertain about these points, as they are more likely to be
true members of another cluster. We likely explore the data that are
close to our decision boundaries, if not outliers, and expect a larger
surprise or learning experience from querying labels for these data
points. In a third variant, we query labels of data points that are close
to their cluster centres, which we expect to be more representative of
their clusters and respectively our entire data population (Fig. 3c). In
a fourth variant, we query data points that have the largest distance to
the average of distances to cluster centres among all points of the same
cluster, which results in a combination of queries changing between
uncertain and representative data points (Fig. 3d). Each of these ADL
variants tries to select a subset of data points from the candidate data
pool with a different policy that is more informative compared with
when selecting these uniformly at random using PDL. The distance of
candidate data points to their cluster centres in an embedded vector
space is a new metric of informativeness that we propose. We call it the
embedding uncertainty.

We evaluate the performance of our ADL and PDL algorithms for
spatial, temporal and spatio-temporal predictions compared with a
random forest (RF) benchmark as a common reference. In this context,
temporal predictions mean that we predict load profiles for buildings
in which a smart meter is placed, but for a time period into the past or
future for which we do not have measured data available. This allows
us to compare the prediction performance against a distribution shift
of our data in time only. Spatial predictions mean that we predict load
profiles for buildings in which a smart meter is not placed but for a time
period in which we have load profiles available for other buildings. This
allows us to compare the prediction performance against a distribution
shift of our data in space only. Spatio-temporal predictions are the most
difficult problem of predicting load profiles for times and buildings
for which we do not have any load profiles available at all. This allows
us to compare the prediction performance against a distribution shift
of our data in both time and space. We refer to these as the different
prediction types that we evaluate.

For each prediction type that we evaluate, we further distinguish
between the type of features that we can encode for querying candidate
data points. We distinguish between features that are variant in time
xt (time stamp), space xs (building image) and both time and space xst
(meteorological data), as well as the entire feature vector xt,s which is
concatenated from these three vectors. As the predicted output of our
network ŷt,s represents a vector, that is, the electric consumption of a
building for the next 24 h in 15 min steps (96 values), we can also use
this vector as an embedding of our entire feature vector xt,s. In a further
test, we hypothetically use our true labels yt,s for querying candidate
data points in order to see how our proposed metric and ADL variants
perform with knowledge about the true distances or similarities of
labels that we try to otherwise infer from our features only. We refer to
these as our ADL variables.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 980

Article https://doi.org/10.1038/s42256-022-00552-x

13:30:00
23-03-2023

ANN

ANN

(deep) ANN

ŷt,s

ANN/CNN/RNN/CRNN ANN/CNN

Xt Xst

Xt,s

Dt Dst

Nt Nst

Xs

Ds

Ns

Nx

0 20 40 60 80

Time (×15-min steps)

0

1

2

3

4

5

6

7

C
on

su
m

pt
io

n
(k

W
h)

True
Predicted

Dy

Fig. 2 | Overview of the spatio-temporal embedding network architecture.
The structure is based on densely connected neural network (ANN),
convolutional neural network (CNN), recurrent neural network (RNN) and
convolutional and recurrent neural network (CRNN) architectures. The inputs

or features in this prediction task consist of a time stamp, an aerial image of a
building and nine meteorological conditions from the region of that building at
a given time and place. The output or label is the electric consumption of that
building at that given time for the next 24 h in 15-min steps (96 values).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 981

Article https://doi.org/10.1038/s42256-022-00552-x

In all experiments, we remove queried data from the candidate
data pool at a rate of δ ∈ [0, 1], and test this for the two extreme cases
of δ = 0 and δ = 1. Removing all queried data from the candidate pool
(δ = 1) forces us to exploit our entire data budget and allows us to
test how the same number of new data points picked with ADL impacts
the prediction accuracy compared with when using PDL, and answer
our first research question. Keeping all queried data in the candidate
pool (δ = 0) allows our ADL and PDL algorithms to query a multiset
from our candidate pool and achieve data and sensor savings. This
lets us test how much data and how many sensors we can save with
ADL while making as accurate a prediction as when using PDL, and
answer our second research question. We further subsample the
candidate data pool, reduce the number of clusters in the candidate
data pool and query candidates by their spatial coordinate embedding
only to evaluate how our computational complexity can be decreased,
to better answer our third research question. Our fourth research
question is answered by randomizing the sequence of our ADL
sample set and comparing the results against our original sampling
sequences.

Results
When removing queried data from our candidate data pool such that
our entire data budget is used (δ = 1), our prediction accuracy increases
up to 36–74%, using 4–8 times more computation, with ADL compared
with when using PDL. When keeping queried data points in the candi-
date data pool instead (δ = 0), our demand for data reduces by up to
29–46% while achieving up to 26–81% higher prediction accuracy using
4–11 times more computation. Our demand for sensors can be reduced
by up to 24% with an increase in prediction accuracy of up to 35%.

Table 1 presents the numerical results for each prediction type, ADL
variable and ADL variant on a dataset with 400 buildings. Supplemen-
tary Table 1 further contains the numerical results for the experiments
on a dataset with 100 buildings. We can observe a correlation between
the leveraged computation and the increased prediction accuracy and
data savings. Figure 4 shows the training and validation losses for the
main experiments that we run to answer research questions 1 and 2.
Figure 5 contains only the validation losses for the additional experi-
ments that we run to answer research questions 3 and 4. In the following,
we describe each experiment and their key observations in detail.

a b

c d

Cluster centre

Queried candidate
Embedded candidate

Fig. 3 | Overview of ADL variants. a–d, The plot shows exemplary data points
embedded into a two-dimensional vector space for visualization. The entries
of the embedded data vectors are represented on each axes. Dots of the same
colour represent embedded data points that are classified into the same cluster.

Variants when randomizing (a), maximizing (b), minimizing (c) and averaging
(d) the embedding uncertainty of a queried data batch in one iteration of our
algorithm (in d, only one point is queried per cluster).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 982

Article https://doi.org/10.1038/s42256-022-00552-x

Table 1 | Numerical results for each prediction type, ADL variable and ADL variant with experiments on the dataset with 400
buildings

Removing queried data (δ = 1) Keeping queried data (δ = 0)

Prediction type Variable Variant Compute Data Sensors Accuracy Compute Data Sensors Accuracy

Spatial xst rnd dc,st 3.2× 100% 100% 43% 3.3× 70% 100% 33%

min dc,st 3.3× 100% 100% 46% 3.4× 57% 99% 24%

max dc,st 3.3× 100% 95% 22% 3.4× 27% 55% 0%

avg dc,st 3.4× 100% 95% 26% 3.4× 28% 54% 20%

xt,s rnd dc,(t, s) 3.9× 100% 100% 75% 4.1× 75% 100% 68%

min dc,(t, s) 4.1× 100% 100% 71% 4.2× 75% 100% 56%

max dc,(t, s) 4.2× 100% 100% 73% 4.2× 54% 91% 59%

avg dc,(t, s) 4.3× 100% 100% 79% 4.4× 62% 100% 64%

ŷt,s rnd dc,(t, s) 4.4× 100% 100% 86% 5.0× 48% 97% 80%

min dc,(t, s) 4.6× 100% 99% 83% 5.0× 50% 95% 80%

max dc,(t, s) 4.5× 100% 100% 70% 4.9× 34% 76% 71%

avg dc,(t, s) 4.8× 100% 98% 75% 4.7× 41% 92% 79%

yt,s rnd dc,(t, s) 4.3× 100% 98% 87% 4.6× 42% 92% 63%

min dc,(t, s) 4.1× 100% 96% 86% 4.8× 28% 64% 47%

max dc,(t, s) 4.3× 100% 95% 85% 4.8× 23% 55% 10%

avg dc,(t, s) 4.2× 100% 94% 85% 4.7× 27% 66% 37%

PDL benchmark 1.0× 100% 100% 50% 1.0× 80% 100% 36%

Temporal xst rnd dc,st 3.2× 100% 0% 12% 4.7× 76% 0% 15%

min dc,st 3.3× 100% 0% 6% 4.8× 53% 0% 0%

max dc,st 3.2× 100% 0% 0% 4.7× 33% 0% 0%

avg dc,st 3.3× 100% 0% 0% 5.1× 38% 0% 0%

xt,s rnd dc,(t, s) 3.4× 100% 0% 29% 6.8× 75% 0% 25%

min dc,(t, s) 4.0× 100% 0% 39% 7.0× 70% 0% 31%

max dc,(t, s) 3.9× 100% 0% 32% 6.9× 55% 0% 16%

avg dc,(t, s) 3.8× 100% 0% 34% 6.8× 63% 0% 28%

ŷt,s rnd dc,(t, s) 4.0× 100% 0% 81% 6.8× 51% 0% 49%

min dc,(t, s) 4.0× 100% 0% 81% 6.8× 52% 0% 46%

max dc,(t, s) 4.2× 100% 0% 83% 7.3× 40% 0% 38%

avg dc,(t, s) 4.2× 100% 0% 83% 7.0× 44% 0% 44%

yt,s rnd dc,(t, s) 4.1× 100% 0% 77% 7.4× 45% 0% 22%

min dc,(t, s) 3.9× 100% 0% 73% 7.2× 33% 0% 3%

max dc,(t, s) 3.9× 100% 0% 78% 7.1× 26% 0% 0%

avg dc,(t, s) 4.3× 100% 0% 73% 7.3× 31% 0% 0%

PDL benchmark 1.0× 100% 0% 9% 1.0× 80% 0% 9%

Spatio-temporal xst rnd dc,st 5.5× 100% 100% 34% 6.7× 70% 100% 42%

min dc,st 5.5× 100% 100% 36% 6.9× 63% 100% 43%

max dc,st 5.7× 100% 97% 16% 6.9× 35% 75% 8%

avg dc,st 5.6× 100% 98% 21% 7.0× 31% 62% 4%

xt,s rnd dc,(t, s) 7.1× 100% 100% 63% 9.0× 77% 100% 57%

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 983

Article https://doi.org/10.1038/s42256-022-00552-x

Training and validation losses when removing all
queried data (δ = 1)
We validate predictions on unqueried data points during training and
remove all queried data points from the candidate data pool (Fig. 4a,b).
Training (Fig. 4a) and validation (Fig. 4b) losses are visualized for all
ADL variants of an exemplar ADL variable compared with PDL (dashed
blue line). With each newly queried batch, we can observe that training
losses leap up (Fig. 4a) while validation losses drop (Fig. 4b). We can
further observe that a correlation exists between the magnitude of
leaps in training loss and drops in validation loss, which are generally
larger for ADL than for PDL. Large leaps in training loss indicate that
we query data points that are diverse and ‘hard to fit to’. We implicitly
regularize our prediction model by not overfitting to ‘easy to learn’
patterns in the queried data batch, which lets us generalize better on
our unqueried data population.

Training and validation losses when keeping all
queried data (δ = 0)
Next, we validate predictions on unqueried data points during training
and keep queried data points in the candidate data pool (Fig. 4c,d).
Training (Fig. 4c) and validation (Fig. 4d) losses are visualized for all
ADL variants of an exemplar ADL variable compared with PDL (dashed
blue line). Unlike in the case of removing all queried candidates, training
losses converge to a value that is higher than for PDL (Fig. 4c). The gap
between ADL and PDL validation losses (Fig. 4d) is smaller compared
with when removing queried data from the candidate data pool. This
indicates a stronger weight regularization as compared with when
removing queried data. We achieve data savings at simultaneously
higher prediction accuracy.

Validation losses against queried and unqueried
candidates
We validate the prediction accuracy for queried and unqueried data
(Fig. 4e–h) to see how introducing a sampling bias through values of
0 < δ ≤ 1 impacts the prediction accuracy on our entire data popula-
tion. With δ = 1 (Fig. 4e,f), we create a tendency to forget previously

learnt information upon learning new information, which results in
better predictions on remaining candidates and less accurate pre-
dictions on already queried candidates. This is seen from the lower
testing losses compared with δ = 0 and an increase of validation losses
towards the final iterations. With δ = 0 (Fig. 4g,h), our model remains
resilient against such tendencies. We observe higher testing losses on
yet unqueried candidates. We conclude that values of δ → 1 implicitly
cause ‘catastrophic inference’ or ‘forgetting’ upon learning new infor-
mation, which increases the prediction accuracy on our unqueried
data population, while values of δ → 0 allow ‘incremental learning’ with
better predictions on the total data population.

Computational complexity
We reduce the candidate pool size, number of clusters or number of
embedded coordinates to achieve faster computation (Fig. 5a–f).
Subsampling the candidate pool (Fig. 5a,b) and reducing the number
of clusters in the pool (Fig. 5c,d) by up to 75% both reduce our com-
putational complexity by a factor of 2–3 times with only a slight or no
decrease in prediction accuracy and data savings, but with a higher
‘regret’. When querying candidates by their embedded spatial coordi-
nates (Fig. 5e,f), we observe only 10–90% additional computation com-
pared with PDL. When removing queried data from the candidate pool
(Fig. 5e), we can achieve about a 20% increase in prediction accuracy
using the same amount of data, with about half the number of sensors.
When keeping queried data in the candidate pool (Fig. 5f), we query
too few data points and sensors to make better predictions than PDL.

Importance of ADL query sequence
We compare validation losses during ADL with the case in which we
randomize the sequence of queries with the same (multi)set of data dur-
ing training (Fig. 5g,h). With δ = 1 (Fig. 5g), the original ADL sequences
converge faster to their final generalization errors than when querying
the same data in a random sequence. With δ = 0 (Fig. 5h), our predic-
tion model mostly remains invariant towards the query sequence of
candidates. We therefore observe that values of δ → 1 achieve a lower
online learning ‘regret’ than values of δ → 0.

Removing queried data (δ = 1) Keeping queried data (δ = 0)

Prediction type Variable Variant Compute Data Sensors Accuracy Compute Data Sensors Accuracy

min dc,(t, s) 7.2× 100% 100% 49% 8.7× 74% 100% 60%

max dc,(t, s) 7.0× 100% 100% 67% 9.4× 59% 100% 49%

avg dc,(t, s) 7.1× 100% 100% 71% 9.3× 65% 100% 50%

ŷt,s rnd dc,(t, s) 8.5× 100% 100% 88% 10.7× 46% 100% 73%

min dc,(t, s) 8.5× 100% 100% 87% 10.6× 49% 100% 71%

max dc,(t, s) 8.3× 100% 100% 88% 10.5× 40% 97% 68%

avg dc,(t, s) 8.2× 100% 100% 88% 10.2× 40% 100% 69%

yt,s rnd dc,(t, s) 7.8× 100% 100% 85% 10.3× 36% 98% 59%

min dc,(t, s) 8.1× 100% 96% 79% 10.3× 27% 73% 10%

max dc,(t, s) 7.6× 100% 91% 84% 10.2× 23% 49% 0%

avg dc,(t, s) 7.9× 100% 95% 82% 10.3× 26% 66% 0%

PDL benchmark 1.0× 100% 100% 40% 1.0× 80% 100% 43%

The ‘compute’ columns present the factor for additional computation performed. The ‘data’ columns present what percentage of the data budget was used. The ‘sensors’ columns state what
percentage of sensors was used from the new sensors initially available in the candidate data pool. The ‘accuracy’ is calculated as 1−min (1, PDL loss

RF loss
) and 1−min (1, ADL loss

RF loss
). The variants

represent data queries with random (rnd), minimized (min), maximized (max) and average (avg) embedding uncertainty.

Table 1 (continued) | Numerical results for each prediction type, ADL variable and ADL variant with experiments on the
dataset with 400 buildings

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 984

Article https://doi.org/10.1038/s42256-022-00552-x

a b

c d

e f

g h

6

L2
 lo

ss
L2

 lo
ss

L2
 lo

ss
L2

 lo
ss

5

4

3

2

1

0

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175

0 25 50 75 100

Epoch Epoch
125 150 175 200 0 25 50 75 100 125 150 175 200

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

7

1.50

1.25

1.00

0.75

0.50

0.25

0

1.75

0.9

0.8

0.7

0.6

0.5

0.4

0.2

0.3

1.0

2.5

2.0

1.5

1.0

0

0.5

3.0

2.5

2.0

1.5

1.0

0

0.5

3.0

1.8

1.6

1.4

1.2

0.6

0.4

0.8

1.0

2.0

6

5

4

2

3

0

1

7

6

5

4

2

3

0

1

7

ADL with random dc
ADL with minimized dc

ADL with average dc

PDL baseline

ADL with maximized dc

ADL with random dc
ADL with minimized dc

ADL with average dc

PDL baseline

ADL with maximized dc

ADL with random dc
ADL with minimized dc

ADL with average dc

PDL baseline

ADL with maximized dc

ADL with random dc
ADL with minimized dc

ADL with average dc

PDL baseline

ADL with maximized dc

ADL with random dc

PDL baseline

ADL with minimized dc

ADL with average dc

ADL with maximized dc

ADL with random dc

PDL baseline

ADL with minimized dc

ADL with average dc

ADL with maximized dc

ADL with random dc

PDL baseline

ADL with minimized dc

ADL with average dc

ADL with maximized dc

ADL with random dc

PDL baseline

ADL with minimized dc

ADL with average dc

ADL with maximized dc

Fig. 4 | Exemplar results for spatio-temporal predictions and ADL variable ŷt,s. a–h, Training losses (a,c,e,g) and validation losses (b,d,f,h) against remaining
candidates with δ = 1 (a,b) or δ = 0 (c,d) and against entire data population with δ = 1 (e,f) or δ = 0 (g,h).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 985

Article https://doi.org/10.1038/s42256-022-00552-x

a b

c d

e f

g h

L2
 lo

ss
L2

 lo
ss

L2
 lo

ss
L2

 lo
ss

1.75

1.50

1.25

1.00

0.25

0

0.50

0.75

2.00

1.75

1.50

1.25

1.00

0.25

0

0.50

0.75

2.00

1.75

1.50

1.25

1.00

0.25

0.50

0.75

2.00

0 25 50 75 100 125 150 175

0 25 50 75 100 125 150 175

0 20 40 60 80 100 120 140 160

0 20 40 60 80 100 120 140 160

1.0

0.8

0.6

0.4

0

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

160

0.2

1.2

1.0

0.8

0.6

0.4

0

0.2

1.2

1.0

0.8

0.6

0.4

0

0.2

1.2

1.4

1.0

0.4

1.2

0.8

0.6

0.2

1.6

0 25 50 75 100 125 150 175 200

0 25 50 75 100

Epoch Epoch
125 150

5

4

3

2

0

1

ADL with 25% of candidates
PDL baseline

ADL with 50% of candidates

ADL with 100% of candidates
ADL with 75% of candidates

ADL with 25% of candidates
PDL baseline

ADL with 50% of candidates

ADL with 100% of candidates
ADL with 75% of candidates

ADL with 25% of clusters
PDL baseline

ADL with 50% of clusters

ADL with 100% of clusters
ADL with 75% of clusters

ADL with 25% of clusters
PDL baseline

ADL with 50% of clusters

ADL with 100% of clusters
ADL with 75% of clusters

ADL with maximized dc

PDL baseline

ADL with average dc

Original sequence
Random sequence

Original sequence
Random sequence

ADL with maximized dc

PDL baseline

ADL with average dc

Fig. 5 | Exemplar results for reducing computational time and testing query sequence. a–h, Reductions achieved by subsampling candidate data (a,b), reducing
the number of clusters (c,d), querying candidates on the basis of spatial coordinate embedding (e,f), and evaluating the sequence importance of queries (g,h),
showing only validation losses with δ = 1 (a,c,e,g) or δ = 0 (b,d,f,h).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 986

Article https://doi.org/10.1038/s42256-022-00552-x

Discussion
We investigate (1) how a dataset of the same size picked with ADL
impacts the informativeness of training data and generalization per-
formance compared with when using PDL, (2) how much data and how
many sensors we can save when using ADL while making as accurate
predictions as when using PDL, (3) how much additional computation
we require when using ADL as compared with when using PDL and (4)
whether the sequence of training data picked with ADL has an impact
on the generalization performance, for predicting electric load profiles
of single buildings in time and space. Surprisingly, we find that we can
achieve an even higher prediction accuracy with significantly less data
when leveraging additional computation for selecting a more informa-
tive data subset with ADL.

We increase the prediction accuracy by up to 36–74% when using
our entire data budget (question 1). Our demand for data reduces by
up to 29–46% while achieving an up to 26–81% higher prediction
accuracy, and our demand for smart meters can be reduced by up
to 24% with an up to 35% higher prediction accuracy (question 2).
We achieve these improvements at the cost of about 4–11 times
more computation for assessing the informativeness of each can-
didate data point. We can reduce this complexity by a factor of
2–3 by subsampling our candidate pool or reducing the number
of clusters, at the price of a higher online learning regret. When
querying candidates by the embedding of spatial coordinates, we
still achieve about 20% accuracy improvements over PDL, but with
only 10% more computation (question 3). We find that the sequence
in which data are selected for ADL is further meaningful. Training
models with data selected in a sequence picked by our ADL method
creates a lower online learning regret compared with when
randomizing the sequence of the same set of data during training
(question 4).

Our findings can have important implications for the clean energy
transition and for mitigating climate change. We show that electric
utilities around the world can use ADL instead of PDL to make more
accurate predictions of load by distributing new smart meters and
streaming their data more effectively. For the general reliability and
applicability of our findings, our proposed ADL method must be tested
on a larger variety of datasets and prediction tasks and be compared
against alternative ADL methods. Further research can explore how
contrastive learning26 and domain adaptation27–29 can further reduce
data and sensor demand while increasing prediction accuracy before
applying ADL, and how ADL can be used for spatio-temporal predic-
tions with graph neural networks30 to better consider distribution
shifts in space–time.

Methods
The spatio-temporal prediction problem
Given a map of the Earth, we want to predict some value of interest
yt,s ∈ ℝDy of dimension Dy ∈ ℤ+ in time t ∈ ℕ and space s ∈ ℝ2 such that
s = (lat, long), with lat ∈ [−90, 90] and long ∈ [−180, 180]. The ranges
of the variables lat and long refer to the possible values of geographic
latitudinal and longitudinal coordinates. Hereby, the starting point in
time and the accuracy in both time and space are application dependent
and can be chosen arbitrarily. The set of all yt,s, hereafter called labels,
is referred to as 𝒴𝒴. Each label is hence a vector

yt,s =
⎛
⎜
⎜
⎝

yt,s,1

⋮

yt,s,Dy

⎞
⎟
⎟
⎠

.

Given the features xt,s ∈ ℝDx of dimension Dx ∈ ℤ+ for each label, we want
to predict labels for particular points of interest in time and space. We
refer to the set of all features as 𝒳𝒳. Each label hence has a corresponding
feature vector

xt,s =
⎛
⎜
⎜
⎝

xt,s,1

⋮

xt,s,Dx

⎞
⎟
⎟
⎠

.

We can further classify the single entries of xt,s as space, time and space–
time variant features. Features that are constant in time t but variant
in space s are referred to as space-variant features xs ∈ ℝDs of dimension
Ds ∈ ℕ such that Ds ≤ Dx:

xs =
⎛
⎜
⎜
⎝

xt,s,1

⋮

xt,s,Ds

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

xt+ ̂t,s,1

⋮

xt+ ̂t,s,Ds

⎞
⎟
⎟
⎠

∀ ̂t ∈ ℤ ∶ 0 ≤ t + ̂t.

Features that are constant in space s but variant in time t are referred
to as time-variant features xt ∈ ℝDt of dimension Dt ∈ ℕ such that Dt ≤ Dx:

xt =
⎛
⎜
⎜
⎝

xt,s,Ds+1

⋮

xt,s,Ds+Dt

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

xt,s+ŝ,Ds+1

⋮

xt,s+ŝ,Ds+Dt

⎞
⎟
⎟
⎠

∀ŝ ∈ ℝ2 ∶ lat + ̂lat ∈ [−90,90] ∧ long + ̂long ∈ [−180, 180]

.

Features that are variant in both time t and space s are referred to as
space–time variant features xst ∈ ℝDst of dimension Dst ∈ ℕ such that
Dst ≤ Dx:

xst =
⎛
⎜
⎜
⎝

xt,s,Ds+Dt+1

⋮

xt,s,Ds+Dt+Dst

⎞
⎟
⎟
⎠

≠
⎛
⎜
⎜
⎝

xt+ ̂t,s+ŝ,Ds+Dt+1

⋮

xt+ ̂t,s+ŝ,Ds+Dt+Dst

⎞
⎟
⎟
⎠

∀ ̂t ∈ ℤ, ŝ ∈ ℝ2 ∶ 0 ≤ t + ̂t ∧ lat + ̂lat ∈ [−90,90] ∧ long + ̂long ∈ [−180, 180]

.

For the above to be valid, it further has to hold that

Ds + Dt + Dst = Dx

and

xt,s = concat(xt,xs,xst).

We can further distinguish the type of predictions that we make in the
same fashion. Let 𝒴𝒴avail ⊂ 𝒴𝒴 be a subset of all labels that are available to
us, that is, the ground-truth values that we have already measured.
Then, for a given point s in space, if we use any knowledge about yt1 ,s
such that t1 is represented in elements of 𝒴𝒴avail to make predictions about
any yt2 ,s such that t2 is not represented by elements of 𝒴𝒴avail, we call this
a temporal prediction. Similarly, for a given point t in time, if we use
any knowledge about yt,s1 such that s1 is represented by elements of 𝒴𝒴avail
to make predictions about any yt,s2 such that s2 is not represented by
elements of 𝒴𝒴avail, we call this a spatial prediction. If we make predictions
about any yt,s such that (t, s) is not represented by elements of 𝒴𝒴avail, we
call this a spatio-temporal prediction.

Furthermore, let 𝒳𝒳avail be the set of features that are comple ment
to each element of 𝒴𝒴avail. Then, we let 𝒟𝒟 = (𝒳𝒳, 𝒴𝒴) be the dataset
that consists of all feature–label pairs that exist and let
𝒟𝒟avail = (𝒳𝒳avail, 𝒴𝒴avail) ⊂ 𝒟𝒟 be a subset that is available to us.

Spatio-temporal embedding networks
Assuming that our dataset 𝒟𝒟avail is representative for all values of inter-
est yt,s, that is, that samples from 𝒟𝒟avail are identically and independently
distributed with some probability distribution P(xt,s, yt,s), allows us
to learn a functional relationship f ∶ 𝒳𝒳 𝒳 𝒴𝒴 using gradient descent
algorithms. Our goal is then to generalize as well as possible on data

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 987

Article https://doi.org/10.1038/s42256-022-00552-x

points that are not in 𝒟𝒟avail. That is, we want to perform well on spatial,
temporal and spatio-temporal prediction tasks. In practice, however,
this is often an invalid assumption as our data distribution P(xt,s, yt,s)
can be variant across both space and time. To use the prediction power
of DL models and the efficiency of stochastic gradient descent algo-
rithms for training these, we have to design a learning method that is
able to tackle such distribution shifts. Here, we consider modular neural
network prediction models. For each individual application and its
feature types, a large variety of architectures can be sensible. The
architectures that we consider require a multi-input structure with at
least one separate input for each feature type xt, xs and xst, and at least
one being available for the given prediction task.

Figure 2 shows the general architecture of this type that we introduce
as a spatio-temporal embedding network. Modules of this embedding
network can be used to shape encoders that embed features into a vector
space of arbitrary dimension. The last layer of each encoder is referred
to as an embedding layer. Let N(e) ∈ ℤ+ with (e) ∈ {t, s, st, x} be the dimen-
sion of the vectors into which xt,s can be embedded, that is, the number
of nodes of each embedding layer, and 𝒰𝒰(i) be the sets of all embedded
vectors in their respective vector spaces with (i) ∈ {time, space, space–
time, joint}. With the proposed network architecture, we can then define
the prediction model fNN and its feature encoders enc(i) as functions

fNN ∶ 𝒳𝒳 𝒳 𝒴𝒴

enc(i) ∶ 𝒳𝒳 𝒳 𝒰𝒰(i)

The data selection problem
Given 𝒟𝒟avail, there usually exists a much larger set of data points that are
not available to us. We refer to these as the candidate features 𝒳𝒳cand and
their complement labels 𝒴𝒴cand which together shape the set of candidate
data points 𝒟𝒟cand = (𝒳𝒳cand, 𝒴𝒴cand). Our goal is to choose the most informa-
tive subset of labels 𝒴𝒴choice(∗) from the large pool of candidate labels 𝒴𝒴cand
such that our overall generalization error decreases the most, without
exceeding a given number of labels, which we refer to as our data budget
nbudget. During the data selection process, we assume that we have com-
plete access to all existing features 𝒳𝒳, the available labels 𝒴𝒴avail, but not
to any labels from 𝒴𝒴cand. It hence has to hold that

(𝒟𝒟avail ∪ 𝒟𝒟cand) ⊆ 𝒟𝒟,

𝒟𝒟avail ∩ 𝒟𝒟cand = ∅,

𝒴𝒴choice(∗) ⊂ 𝒴𝒴cand.

The subset of labels that we eventually query without prior information
about their values is likely to deviate from the optimal subset 𝒴𝒴choice(∗).
We refer to the actually queried subset of labels with 𝒴𝒴choice. The fea-
ture–label pairs of queried data points are respectively referred to as
𝒟𝒟choice = (𝒳𝒳choice, 𝒴𝒴choice). One way to query labels is to do so one by one.
Another, computationally more efficient way to do this is to use batches
of data queries, particularly because we also train our neural network
models with batches of data points between each ADL iteration. We
define the batch size, or number of labels, that are queried in each step
of an ADL process as nbatch ∈ ℤ+ and the total number of data selection
steps as niter ∈ ℤ+. It hence has to hold that

niternbatch ≤ nbudget.

Embedded feature vectors
Given any of the encoders enc(i) that fNN incorporates, we can encode
each feature vector xt,s, and single parts of it (xt, xs or xst), into their

embedded vector spaces. We expect the distances of these vectors to
each other to become increasingly meaningful in the context of our
overarching prediction task as we train the actual prediction model
fNN (refs. 31–35). As our encoders are modules of our prediction model,
they are automatically trained each time we apply backpropagation on
fNN through stochastic gradient descent. Mutual information between
parts of our feature vector can propagate back into each encoder, such
that encoded parts of our feature vector can preserve information
about all features. As a result, our method becomes sparse. For every
feature vector xt,s and (i) ∈ {time, space, space–time, joint}, we can write

∀xt,s =
⎛
⎜
⎜
⎝

xt

xs

xst

⎞
⎟
⎟
⎠

∈ 𝒳𝒳𝒳𝒳x̂(j) = enc(i)(x(j))}(j)={(t,s),t,s,st}.

We refer to predicted labels of data points as

ŷt,s = fNN(xt,s).

Clusters of embedded feature vectors
Given a set of vectors of the same dimension, we can calculate clusters
based on the distances of these vectors to each other using algorithms
such as K-means or affinity propagation. To execute most clustering
algorithms, we need to determine the number of desired clusters or
a minimum distance of members beforehand. To avoid assumptions
regarding common distances in the embedded vector spaces, we only
consider clustering methods that require a definition of the number
of clusters beforehand. We refer to the number of clusters that we
set for performing any of these clustering methods with nclusters. For a
clustering of embedded vectors to be valid, it hence has to hold that

nclusters < |𝒰𝒰(i)|,

and for data queries to be sensible furthermore that

nclusters ≪ |𝒰𝒰(i)|.

After clustering the elements of any embedded vector set 𝒰𝒰(i) with
(i) ∈ {time, space, space–time, joint}, we get a first set of vectors c(i)l
which describe the centre of each cluster with l = 1…nclusters, and a set of
values m(i)

k which describe the cluster membership identifiers (IDs)
through an integer number for each clustered data point with

k = 1...|𝒰𝒰(i)|.

Embedding uncertainty: distance of features to cluster
centres
The distance between any two vectors of the same dimension can be
calculated using inner products through, for example, kernel functions
or other distance measures such as the cosine similarity. Using any of
these measures, we can calculate the distance dc,(j) of every embedded
vector x̂(j) to its corresponding cluster centre c(i)

m(i)
k

 with

(i) ∈ {time, space, space–time, joint}, (j) ∈ {t, s, st, (t, s)} and k = 1, ..., |𝒰𝒰(i)|
being the element ID that corresponds to the point (t, s). We use this
distance as a metric of uncertainty, called the embedding uncertainty
of our ADL method. Alternatively, we can also use a Gaussian mixture
model to cluster embedded feature vectors and express uncertainties
in a single step.

The distance metric we use for both clustering candidates and
computing their embedding uncertainty depends on both the embed-
ding dimensions that we choose and the ratio between our query batch
size and the size of our candidate dataset. With larger embedding

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 988

Article https://doi.org/10.1038/s42256-022-00552-x

dimensions, the volume and as a result also the sparsity of our vector
space increase quickly. This requires an increasing candidate data vol-
ume compared with the number of data points we choose in each ADL
iteration to make informative queries. Further, the relative contrast,
that is, the maximum distance between embedded vectors, becomes
smaller in higher dimensions, which must be accounted for with higher
numerical accuracy. We can, for instance, assume that fractional dis-
tance metrics increase the relative contrast of our embedding space
and therefore lead to more stable data queries.

Batch ADL algorithm
Given our spatio-temporal embedding network and our embedding
uncertainty dc,(j), we create a pool-based ADL method that queries a
batch of labels yt,s ∈ 𝒴𝒴cand from the candidate data pool in each iteration.
Algorithm 1 provides the pseudo-code for this method, which we go
through in more detail next.

Starting with a DL model fNN that is trained on randomly chosen
initial data (step 1), we can choose which feature type and correspond-
ing encoder we want to use for querying candidate data points
(step 2). Given some data budget nbudget and a maximum number of
iterations niter, we create a data counter cbudget and an iteration counter
citer that we set to zero and leave the set of queried data points empty
before performing ADL (step 3). We start our ADL iterations by encod-
ing each candidate data point (step 4.1). If the set of candidate data
points is too large for this to be computationally feasible, we can sample
a subset of candidate data points at random. Next, we cluster all embed-
ded feature vectors with the number of clusters being equal to the
number of candidates that we want to query (step 4.2). We can instead
reduce the number of clusters and query more than one point per
cluster to reduce the computational complexity. We then compute the
distances to their respective cluster centres (step 4.3). We can then
pick the most informative data point from each cluster using one of
our ADL variants (step 4.4). The chosen subset of data points is then
used for training our prediction model fNN (step 4.5). Here, arbitrary
techniques such as weight regularization, early stopping and adaptive
learning rates can be used to enhance training. Next, we remove queried
data points from the candidate data pool at a rate δ ∈ ℝ with 0 ≤ δ ≤ 1
(step 4.6). Here, the rate δ is the probability with which we remove a
queried data point. A value of δ = 1 means that all queried data points
are removed, while a value of δ = 0 means that all queried data points
are kept. Before we continue with the next iteration, we update the set
of queried candidates (step 4.7) and increment our data point counter
by the number of newly queried labels among the chosen data points
(step 4.8) and our iteration counter by one (step 4.9).

We can highlight two major differences from existing ADL meth-
ods. First, we remove queried data points from the candidate dataset at
some rate δ. This allows us to re-use data points so as to explicitly reduce
(δ → 1) or increase (δ → 0) a bias towards already queried data points.
Second, we set the number of clusters of our candidates equal to the
batch size of data points that we want to query in each iteration. This
allows us to implicitly sample more points by building more clusters
where data points are densely populated, hence having a sufficiently
representative sample of our entire data population. Simultaneously,
this allows us to cope with imbalanced data as we also create clusters
where data are located in isolation and are available in small amounts
in the encoded space.

The memory and time complexity of our algorithm depend on the
size of the candidate data pool |𝒟𝒟cand|. They can hence be reduced at
the cost of less informative data queries by down-sampling the candi-
date data pool, or by querying more than one data point per cluster in
each iteration. Another useful heuristic is to query candidates on the
basis of embedded coordinates in time through the ADL variable xt or
in space through the ADL variable xs. This reduces the number of can-
didates in the embedded vector space by a factor equal to the respective
complementary coordinate as compared with using any other ADL

variable that encodes features into unique coordinates in space–time.
The time complexity of our algorithm further depends on the method
we use to cluster embedded feature vectors (step 4.2), the method we
use to compute the distance of candidate data to cluster centres (step
4.3) and the complexity of training our DL model (step 4.5). For most
prediction tasks, it is realistic to assume that the complexity of step 4.5
is smaller than that of steps 4.2 and 4.3. If we, for instance, use the
K-means++ algorithm to cluster embedded feature vectors and calcu-
late the Manhattan distance between embedded vectors and their
cluster centre, it holds that

𝒪𝒪 (|𝒟𝒟cand|N(e)log (N(e))) < 𝒪𝒪 (|𝒟𝒟cand|N(e)nbatch)) .

The computational complexity of our algorithm then breaks down to
that of our clustering method (step 4.2), if we further make the realistic
assumption that

log(N(e)) ≪ nbatch.

Algorithm 1. A pseudo-code of the proposed batch ADL method.

Datasets
We are given the electric consumption measurements of 100 and
400 buildings in Switzerland in 15 min steps from local distribution
system operators. Using the geographic coordinates of these buildings,
we further collect aerial imagery of each building with a resolution
of 25 cm per pixel36. We then cluster all buildings that are in a distance
of at most 1 km to each other. For each cluster of buildings, we calcu-
late the cluster centres and collect a total of nine meteorological time
series measurements from reanalysis data for each of these clusters
with 1 h accuracy37,38. The meteorological values that we use consist of
air density in kg m−3, cloud cover, precipitation in mm h−1, ground-level
solar irradiance in W m−2, top of atmosphere solar irradiance W m−2,
air temperature in °C, snowfall in mm h−1, snow mass in kg m−2 and
wind speed.

We predict the next 24 h of electricity consumption. For each of the
nine meteorological conditions, we consider a historical time window
of 24 h at the same time which results in a dimension of 216 (nine times
24) for space-time variant features. Time stamps are ordinal encoded
and contain information about the month, day, hour and quarter-hour
in which the corresponding electricity consumption of a building
occurs. We encode each element of our time stamps separately,
which gives us a time-variant feature dimension of four. Images of
buildings are processed using histograms of their pixel values with
100 bins for each image channel (red, green and blue) which results
in a dimension of 300. We use histograms instead of original images
in order to preserve the privacy of our data sources and experimen-
tally find that 100 bins preserve sufficient information from the

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 989

Article https://doi.org/10.1038/s42256-022-00552-x

original images. These choices can, however, be improved through
hyperparameter optimization. We can hence set the dimensions of
the feature and label vectors to

Dt = 4,

Ds = 300,

Dst = 216,

Dx = Dt + Ds + Dst = 520,

Dy = 96.

Training, validation and testing data
Given a number of data points that are available to us, we create train-
ing, validation and testing data for our hypothesis test. The training
data are used to fit our prediction model before performing ADL. The
validation data are used to avoid overfitting our model to the training
data through early stopping. The testing data are used as the candidate
data pool on which we perform ADL to train our prediction model.
We separate our testing data into spatial, temporal and spatio-temporal
prediction tests. We use 4.5% of our data for initial training, 4.5%
for validation and 91% for testing. We further split our testing data
such that 23% of them represent spatial predictions, another 23%
temporal predictions and 54% spatio-temporal predictions. In the fol-
lowing, we refer to training, validation and testing data with 𝒟𝒟train, 𝒟𝒟val
and 𝒟𝒟test.

Prediction model and feature encoders
We construct our DL model from multiple subnetworks. The network
which processes meteorological data consists of a one-dimensional
convolutional neural network layer with 16 filters. The networks which
process time stamp data and the histograms of building image pixels
each contain one densely connected hidden layer with 1,000 nodes.
The joint encoder concatenates the outputs of each of these networks
and adds another densely connected hidden layer with 1,000 nodes.
All embedding layers consist of 100 nodes. We experimentally find that
embedding dimensions of 10–100 work well for our candidate data size
and the distance metrics we use. The prediction model then takes the
output of the joint encoder and adds another layer of 1,000 densely
connected nodes before mapping the joint inputs to the desired out-
put with 96 densely connected nodes. Our model contains 10,744,600
trainable and 0 non-trainable parameters. These choices can, however,
be improved through neural architecture search. For the encoder
outputs of all (e) ∈ {t, s, st, x}, we can write

N(e) = 100.

Loss function
We use the mean squared error, also known as the L2 loss, between
predicted labels ŷt,s and true labels yt,s as our loss L(ŷt,s, yt,s). One can
equivalently use the mean absolute error, also known as the L1 loss, or
variations from these with minor impacts on the empirical results. In
each epoch of training and validation, as well as for each test, we cal-
culate the total loss function loss(𝒟𝒟(d)) as the average loss of all data
points in the respective datasets D(d), where (d) ∈ {train, val, test}. With
j = 1, ..., |𝒟𝒟(d)| being the jth element that corresponds to the point (t, s)

in 𝒟𝒟(d), we can write for all pairs of (ŷj, yj) ∈ 𝒟𝒟(d) that

L(ŷt,s, yt,s) =
∑Dy
k=1 (yt,s,k − ̂yt,s,k)

2

Dy

and

loss(𝒟𝒟(d)) =
∑|𝒟𝒟(d)|
j=1 L(ŷj, yj)
|𝒟𝒟(d)| .

Experiments
We assume our data budget to be 50% of the size of our candidate data
pool. That is, we want to choose the more informative half of candi-
date data points. We perform ten iterations of the above Algorithm 1
where we query 10% of our data budget in each iteration. We train our
prediction model for 30 epochs and use an early stopping patience of
10 epochs when training our prediction model on the initially available
data and in each iteration of Algorithm 1. We can write

nbudget = 0.5|𝒟𝒟cand|,

niter = 10,

nclusters = nbatch = 0.1nbudget = 0.05|𝒟𝒟cand|.

We use the K-means++ algorithm to cluster embedded feature vectors,
and the Laplacian kernel to calculate the distance between each embed-
ded feature vector and its cluster centre. Given the embedded vector
set 𝒰𝒰(i) with (i) ∈ {time, space, space–time, joint}, the vectors that
describe the centre of each cluster c(i)l with l = 1…nclusters and a cluster
membership number m(i)

k for each embedded feature k = 1...|𝒰𝒰(i)|, we
calculate the distance dc,(j) for every feature type (j) ∈ {t, s, st, (t, s)},
corresponding encoder outputs (e) ∈ {t, s, st, x} and point in time–space
(t, s) as

dc,(j) = exp
⎛
⎜⎜
⎝
−
||x̂(j) − c(i)

m(i)
k

||1

N(e)

⎞
⎟⎟
⎠
.

We test Algorithm 1 for every partial feature vector, and the entire
feature vector separately. Since our labels have a similar dimension
(Dy = 96) to our embedded features (N(e) = 100), we use the predicted
labels (ŷt,s) as our jointly embedded feature vectors (xt,s). We can also
design our joint feature encoder to contain all layers of our DL predic-
tion model except for the output layer. This is proposed in ref. 39 and
represents a special case of the method we propose. We also evaluate
a scenario in which we query candidate data points on the basis of the
distance of their true labels yt,s. We conduct our tests for the two cases
that we mainly distinguish: first, we remove each queried point from
the candidate data pool at the end of each ADL iteration (δ = 1); second,
we keep queried data points in the candidate pool throughout all ADL
iterations (δ = 0). We conduct additional experiments for reducing the
time complexity of Algorithm 1. We subsample our candidate data pool
to up to 25% or reduce the number of clusters to up to 25% of our queried
batch size in each iteration. Furthermore, we query candidates on the
basis of their embedded spatial features/coordinate only.

Compute environment
Each experiment is run with a dedicated graphical processing unit. We
further use two central processing units with 64 cores each, mainly for
calculating clusters in our candidate data pool in parallel. The compute
time for assessing the informativeness of each candidate data point can
hence be reduced when increasing the number of central processing
unit cores in each experiment.

Data availability
All of our data and results can be accessed on the Harvard Dataverse under
a CC0 1.0 license (https://doi.org/10.7910/DVN/3VYYET). For privacy

http://www.nature.com/natmachintell
https://doi.org/10.7910/DVN/3VYYET

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 990

Article https://doi.org/10.1038/s42256-022-00552-x

maintenance, we only provide load profiles that are sampled from the
original data and histograms of pixel values of building images, which
can be used to reproduce all the elements of our original experiments.

Code availability
All results, figures and tables can be reproduced using step-by-step
instructions in Jupyter notebook sessions that we provide in a public
Github repository (https://github.com/ArsamAryandoust/DataSelec-
tionMaps). We further maintain a Python package (https://pypi.org/
project/altility) and a Docker container (https://hub.docker.com/r/
aryandoustarsam/altility) implementation of our algorithm. All code
is available under an MIT license.

References
1. Patt, A. Transforming Energy – Solving Climate Change with

Technology Policy (Cambridge Univ. Press, 2015).
2. IPCC Special Report on Global Warming of 1.5 °C

(eds Masson-Delmotte, V. et al.) (WMO, 2018).
3. IPCC Climate Change 2021: The Physical Science Basis (eds

Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
4. Hahn, H., Meyer-Nieberg, S. & Pickl, S. Electric load forecasting

methods: tools for decision making. Eur. J. Oper. Res. https://doi.
org/10.1016/j.ejor.2009.01.062 (2009).

5. Soliman, A.-h. S. & Al-Kandari, A. M. Electric Load Forecasting
(Butterworth-Heinemann, 2010).

6. Alfares, H. K. & Nazeeruddin, M. Electric load forecasting:
literature survey and classification of methods. Int. J. Syst. Sci. 33,
23–24 (2002).

7. Kofi Nti, I., Teimeh, M., Nyarko-Boateng, O. & Adekoya, A. F.
Electricity load forecasting: a systematic review. J. Electr. Syst.
Inform. Technol. 7, 13 (2020).

8. Shi, J., Liu, Y. & Yu, N. Spatio-temporal modeling of electric loads.
IEEE https://doi.org/10.1109/NAPS.2017.8107311 (2017).

9. Tascikaraoglu, A. Evaluation of spatio-temporal forecasting
methods in various smart city applications. Renew. Sustain.
Energy Rev. 82, 424–435 (2018).

10. Severiano, C. A., Cândido de Lima eSilva, P., Cohen, M. W.
& Gadelha Guimarãesae, F. Evolving fuzzy time series for
spatio-temporal forecasting in renewable energy systems. Renew.
Energy 171, 764–783 (2021).

11. Willis, H. L. Spatial Electric Load Forecasting (Marcel Dekker,
2002).

12. Rolf, E. et al. A generalizable and accessible approach to machine
learning with global satellite imagery. Nat. Commun. 12, 4392
(2021).

13. Burke, M., Driscoll, A.Lobell, D. B. & Ermon, S. Using satellite
imagery to understand and promote sustainable development.
Science https://doi.org/10.1126/science.abe8628 (2021).

14. Melo, J. D. & Carreno, E. M. Data Issues in Spatial Electric Load
Forecasting (IEEE, 2014).

15. Milam, M. & Venayagamoorthy, G. K. Smart meter deployment:
US initiatives. IEEE https://doi.org/10.1109/ISGT.2014.6816507
(2014).

16. Sovacool, B. K., Hook, A., Sareen, S. & Geels, F. W. Global
sustainability, innovation and governance dynamics of national
smart electricity meter transitions. Glob. Environ. Change
https://doi.org/10.1016/j.gloenvcha.2021.102272 (2021).

17. Kezunovic, M., Xie, L. & Grijalva, S. The role of big data in
improving power system operation and protection. IEEE
https://doi.org/10.1109/IREP.2013.6629368 (2013).

18. Yu, N. et al. The role of big data in improving power system
operation and protection. IEEE https://doi.org/10.1109/ISGT.
2015.7131868 (2015).

19. Stein, A. L. Artificial intelligence and climate change. Yale J.
Regul. 37, 890–934 (2020).

20. Rolnick, D. et al. Tackling climate change with machine learning.
ACM Comput. Surv. https://doi.org/10.1145/3485128 (2022).

21. Kuo, P., Liang, D., Gao, L. & Lou, J. Probabilistic electricity price
forecasting with variational heteroscedastic Gaussian process
and active learning. Energy Convers. Manage. 89, 298–308 (2015).

22. Wang, Z., Zhao, B., Guo, H., Tang, L. & Peng, Y. Deep ensemble
learning model for short-term load forecasting within active
learning framework. Energies https://doi.org/10.3390/
en12203809 (2019).

23. Zhang, L. & Wen, J. Active learning strategy for high fidelity
short-term data-driven building energy forecasting. Energy Build.
https://doi.org/10.1016/j.enbuild.2021.111026 (2021).

24. Kuster, C., Rezgui, Y. & Mourshed, M. Electrical load forecasting
models: a critical systematic review. Sustain. Cities Soc. 35,
257–270 (2017).

25. Panamtash, H., Mahdavi, S., Dimitrovski, A. & Zhou, Q. Comparison
of Probabilistic Forecasts for Predictive Voltage Control
(North American Power Symposium, 2021).

26. Chen, T. et al. Big self-supervised models are strong
semi-supervised learners. In Proc. of the 34th Conference
on Advances in Neural Information Processing Systems
33 (eds Larochelle, H. et al.) 22243–22255 (NeurIPS, 2020).

27. Yue, X. et al. Prototypical cross-domain self-supervised learning
for few-shot unsupervised domain adaptation. In Proc. of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
13834–13844 (CVF, 2021).

28. Yang, W. et al. Class distribution alignment for adversarial domain
adaptation. Preprint at https://arxiv.org/abs/2004.09403 (2020).

29. Saito, K., Saenko, K. & Liu, M.-Y. COCO-FUNIT: few-shot
unsupervised image translation with a content conditioned style
encoder. In Proc. of 16th European Conference on Computer
Vision (eds Vedaldi, A. et al.) 382–398 (Springer, 2020).

30. Jain, A., Zamir, A. R., Savarese, S. & Saxena, A. Structural-RNN:
deep learning on spatio-temporal graphs. In 2016 IEEE Confe­
rence on Computer Vision and Pattern Recognition (IEEE, 2016).

31. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of
word representations in vector space. Preprint at https://arxiv.org/
abs/1301.3781 (2013).

32. Frome, A. et al. DeViSE: a deep visual-semantic embedding
model. In Proc. of the 26th Advances in Neural Information
Processing Systems 26 (eds Burges, C.J. et al.) 2121–2129
(NIPS, 2013).

33. Pennington, J., Socher, R. & Manning, C. D. GloVe: Global vectors
for word representation. In Proc. of the 2014 Conference on
Empirical Methods in Natural Language Processing (eds Moschitti,
A. et al.) 1532–1543 (ACL, 2014).

34. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: online learning of
social represenations. Preprint at https://arxiv.org/abs/1403.6652
(2014).

35. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training
of deep bidirectional transformers for language understanding.
Preprint at https://arxiv.org/abs/1810.04805 (2019).

36. GeoVITE – user-friendly geodata service. Swiss Federal Office of
Topography https://geovite.ethz.ch/ (2020).

37. Pfenninger, S. & Staffel, I. Long-term patterns of European PV
output using 30 years of validated hourly reanalysis and satellite
data. Energy 114, 1251–1265 (2016).

38. Staffel, I. & Pfenninger, S. Using bias-corected reanalysis to
simulate current and future wind power output. Energy 114,
1224–1239 (2016).

39. Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J. & Agarwal, A.
Deep batch active learning by diverse, uncertain gradient
lower bounds. In Proc. of International Conference on Learning
Representations https://openreview.net/forum?id=ryghZJBKPS
(2020).

http://www.nature.com/natmachintell
https://github.com/ArsamAryandoust/DataSelectionMaps
https://github.com/ArsamAryandoust/DataSelectionMaps
https://pypi.org/project/altility
https://pypi.org/project/altility
https://hub.docker.com/r/aryandoustarsam/altility
https://hub.docker.com/r/aryandoustarsam/altility
https://doi.org/10.1016/j.ejor.2009.01.062
https://doi.org/10.1016/j.ejor.2009.01.062
https://doi.org/10.1109/NAPS.2017.8107311
https://doi.org/10.1126/science.abe8628
https://doi.org/10.1109/ISGT.2014.6816507
https://doi.org/10.1016/j.gloenvcha.2021.102272
https://doi.org/10.1016/j.gloenvcha.2021.102272
https://doi.org/10.1109/IREP.2013.6629368
https://doi.org/10.1109/IREP.2013.6629368
https://doi.org/10.1109/ISGT.2015.7131868
https://doi.org/10.1109/ISGT.2015.7131868
https://doi.org/10.1145/3485128
https://doi.org/10.3390/en12203809
https://doi.org/10.3390/en12203809
https://doi.org/10.1016/j.enbuild.2021.111026
https://arxiv.org/abs/2004.09403
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1403.6652
https://arxiv.org/abs/1810.04805
https://geovite.ethz.ch/
https://openreview.net/forum?id=ryghZJBKPS

Nature Machine Intelligence | Volume 4 | November 2022 | 977–991 991

Article https://doi.org/10.1038/s42256-022-00552-x

Acknowledgements
We acknowledge funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no.
837089 (A.A., A.P. and S.P.), for the SENTINEL project.

Author contributions
A.A. conceptualized the research, designed and implemented all the
methods, conducted all the analyses and drafted the manuscript. S.P.
edited and revised the manuscript and reviewed the code. A.P. helped
in interpreting the data and supervised the creation of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1038/s42256-022-00552-x.

Correspondence and requests for materials should be addressed to
Arsam Aryandoust.

Peer review information Nature Machine Intelligence thanks Valentin
Robu and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving of
the accepted manuscript version of this article is solely governed
by the terms of such publishing agreement and applicable
law.

© The Author(s), under exclusive licence to Springer Nature Limited
2022

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-022-00552-x
http://www.nature.com/reprints

	Enhanced spatio-temporal electric load forecasts using less data with active deep learning

	Prediction task and ADL method

	Results

	Training and validation losses when removing all queried data (δ = 1)

	Training and validation losses when keeping all queried data (δ = 0)

	Validation losses against queried and unqueried candidates

	Computational complexity

	Importance of ADL query sequence

	Discussion

	Methods

	The spatio-temporal prediction problem

	Spatio-temporal embedding networks

	The data selection problem

	Embedded feature vectors

	Clusters of embedded feature vectors

	Embedding uncertainty: distance of features to cluster centres

	Batch ADL algorithm

	Datasets

	Training, validation and testing data

	Prediction model and feature encoders

	Loss function

	Experiments

	Compute environment

	Acknowledgements

	Fig. 1 The current state of global smart meter adoption.
	Fig. 2 Overview of the spatio-temporal embedding network architecture.
	Fig. 3 Overview of ADL variants.
	Fig. 4 Exemplar results for spatio-temporal predictions and ADL variable .
	Fig. 5 Exemplar results for reducing computational time and testing query sequence.
	Table 1 Numerical results for each prediction type, ADL variable and ADL variant with experiments on the dataset with 400 buildings.

