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a b s t r a c t

A good weight initialization is crucial to accelerate the convergence of the weights in a neural
network. However, training a neural network is still time-consuming, despite recent advances in
weight initialization approaches. In this paper, we propose a mathematical framework for the weight
initialization in the last layer of a neural network. We first derive analytically a tight constraint on
the weights that accelerates the convergence of the weights during the back-propagation algorithm.
We then use linear regression and Lagrange multipliers to analytically derive the optimal initial
weights and initial bias of the last layer, that minimize the initial training loss given the derived
tight constraint. We also show that the restrictive assumption of traditional weight initialization
algorithms that the expected value of the weights is zero is redundant for our approach. We first
apply our proposed weight initialization approach to a Convolutional Neural Network that predicts the
Remaining Useful Life of aircraft engines. The initial training and validation loss are relatively small,
the weights do not get stuck in a local optimum, and the convergence of the weights is accelerated.
We compare our approach with several benchmark strategies. Compared to the best performing state-
of-the-art initialization strategy (Kaiming initialization), our approach needs 34% less epochs to reach
the same validation loss. We also apply our approach to ResNets for the CIFAR-100 dataset, combined
with transfer learning. Here, the initial accuracy is already at least 53%. This gives a faster weight
convergence and a higher test accuracy than the benchmark strategies.

© 2023 Published by Elsevier Ltd.
1. Introduction

Neural networks have become increasingly popular in the last
ew decades, with applications in a wide range of domains (Li, Liu,
ang, Peng, & Zhou, 2021), such as image classification (Pan et al.,
022), time series prediction (Martínez, Charte, Frías, & Martínez-
odríguez, 2022), object detection (Zhao, Zheng, Xu, & Wu, 2019)
nd natural language processing (Roh, Park, Kim, Oh, & Lee, 2021).
he weights of these neural networks are usually optimized using
radient descent, until the weights converge such that the loss
s close to a minimum (Vasilev, 2019). In the last years, many
mprovements have been proposed to accelerate the convergence
f the weights as, for instance, improved optimizers (Kingma
Ba, 2014; Xie, Pu, & Wang, 2023), good weight initialization

trategies (Glorot & Bengio, 2010; He, Zhang, Ren, & Sun, 2015)
nd the use of specialized hardware such as GPUs. However,
raining an accurate neural network is still computationally inten-
ive, consumes a large amount of energy and takes a long time.
his is especially problematic for deep neural networks trained

∗ Corresponding author.
E-mail address: i.i.depater@tudelft.nl (I. de Pater).
ttps://doi.org/10.1016/j.neunet.2023.07.035
893-6080/© 2023 Published by Elsevier Ltd.
with large data sets. Methods that accelerate the convergence of
the weights in a neural network are therefore still needed.

One way to speed up the training of a neural network is a good
weight initialization method. Most papers on weight initialization
focus on initializing the weights such that the convergence of
the weights during the back-propagation algorithm is accelerated.
Here, the goal is to mitigate the vanishing or exploding gradient
problem, and to prevent that the weights get stuck in a local
optimum (Narkhede, Bartakke, & Sutaone, 2022). This is also the
aim of the most popular approaches for weights initialization,
namely ‘‘Xavier’’ (Glorot & Bengio, 2010) and ‘‘Kaiming’’ initial-
ization (He et al., 2015). In Glorot and Bengio (2010), it is shown
that the variance of both the forward-propagated outputs and the
backward-propagated gradients should be equal for all layers in
the neural network after the weight initialization to prevent the
vanishing/exploding gradient problem. From this requirement,
the required variance of the weights is derived for each layer.
In Glorot and Bengio (2010), this required variance is derived for
a neural network with the sigmoid or tanh activation function,
while in He et al. (2015), this required variance is derived for a
neural network with the ReLU activation function. In both papers,
the weights are then randomly chosen from a distribution, such

https://doi.org/10.1016/j.neunet.2023.07.035
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.07.035&domain=pdf
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s uniform or normal, with a mean of zero and the required
ariance. These weight initialization strategies are very successful
hen training deep neural networks. In this paper, we therefore
lso consider the requirement that the variance of the outputs
nd gradients of each layer of the neural network are equal after
he weight initialization.

Other studies on weight initialization use the characteristics
f the training data instead. In Saxe, McClelland, and Ganguli
2013), the weights are initialized with the orthogonal projection
f the input correlation matrix using the singular value decom-
osition. In Mishkin and Matas (2015), this method is extended
y using layer sequential unit variance: Random weights are
irst orthonormalized, and then the variance of the output of
ach layer is normalized to one. In Adam, Karras, Magoulas, and
rahatis (2014), the weights are sampled from an interval that is
etermined based on the characteristics of the data. In this paper,
e also use the characteristics of the training data to initialize the
eights.
Overall, most existing studies on weight initialization do not

onsider the initial loss (Glorot & Bengio, 2010; He et al., 2015;
ishkin & Matas, 2015; Saxe et al., 2013). Due to the random
tarting point of the weights, however, many updating steps
nd thus many epochs might be necessary to achieve conver-
ence. In contrast, there are few studies that focus on finding
nitial weights that minimize the initial training loss, i.e., on
eights close to an optimum, instead. For example, in Aguirre
nd Fuentes (2019) and Yam, Chow, and Leung (1997) linear
egression is used to initialize the weights of the last layer, the
uthors of Chumachenko, Iosifidis, and Gabbouj (2022) use linear
iscriminant analysis to initialize the weights such that the differ-
nce between classes is maximized and in Yam and Chow (1995),
he initial training loss is minimized using the singular value
ecomposition. However, these studies in turn do not consider
he convergence of the weights when initializing the weights of
he last layer. To address this, we propose a weight initialization
trategy that combines both goals: we initialize the weights and
ias of the last layer of a neural network such that (i) the weight
onvergence during the back-propagation algorithm is acceler-
ted and (ii) given that the weight convergence is accelerated, we
nitialize the weights close to an optimum point by minimizing
he initial training loss.

Our approach is inspired by techniques from the field of neu-
al networks with random weights (NNRW), such as extreme
earning machines. In NNRW, the weights are optimized without
radient descent or other iterative methods (Cao, Wang, Ming,
Gao, 2018). Instead, the weights of the first layers of the

eural network are randomly chosen. The weights of the last
ayer are then optimized with the objective to minimize the loss
unction using, for instance, Ridge regression (Cao et al., 2018),
he matrix inverse (Kim, 2021) or inequality constrained least-
quares (Fernández-Navarro, Riccardi, & Carloni, 2014). Inspired
y NNRW, we optimize the initial weights and the initial bias of
he last layer of the neural network using a regression model.

However, in contrast with NNRWs, we further optimize the
eights with the back-propagation algorithm. To also mitigate
he vanishing/exploding gradient problem, we analytically de-
ive a novel tight constraint on the weights of the last layer
o ensure that the variance of the output/gradients of the last
ayer is equal to the variance of the output/gradients of the other
ayers (Glorot & Bengio, 2010). This novel tight constraint holds
ithout assuming that the mean of the weights and bias is zero,
s commonly done in most weight initialization strategies. Given
his constraint, we next derive analytically the optimal initial
eights and bias of the last layer, i.e., the weights and bias that
ive the lowest initial training loss, using Lagrange. We derive

his constraint, and the corresponding optimal initial weights and

580
bias, for neural networks that solve a regression problem and that
use a specific activation function.

We first apply our proposed approach to predict the Remain-
ing Useful Life (RUL) of aircraft engines using a Convolutional
Neural Network, i.e., a regression problem. Compared to the ran-
dom Xavier weight initialization method (Glorot & Bengio, 2010),
the weights indeed start at point that gives a relatively small
initial training and validation loss: The initial validation loss is 2.4
times smaller with our approach. Moreover, the weights quickly
converge further from this small initial training loss, due to the
novel constraint derived on the weights. Last, the weights do
not get stuck in a local optimum with our approach. Overall, the
training of the neural network is therefore much faster when
using our approach: The smallest validation loss obtained after
198 epochs following Xavier (Glorot & Bengio, 2010), is already
obtained after 49 epochs with our approach. We thus need 75%
epochs less to reach the same result. The best benchmark strategy
is Kaiming weight initialization (He et al., 2015). Here, the initial
validation loss is 2.4 times smaller with our approach as well.
Moreover, the minimum validation loss reached after 148 epochs
using Kaiming initialization, is already reached after 97 epochs
with our approach, i.e., we need 34% less epochs to reach the
same validation loss. We also show that with the new initializa-
tion technique, we can relax the assumption that the mean of the
weights is zero (as assumed in Glorot and Bengio (2010) and He
et al. (2015)). Last, we find that only a small part of the training
set can be used to initialize the weights. This makes the weight
initialization 42 times faster, while the weights converge at the
same rate.

We next adjust our approach so that it can be applied to
neural networks that solve classification problems as well, with
any type of activation function. We then illustrate our approach
using ResNet-18 and ResNet-34 (He, Zhang, Ren, & Sun, 2016) to
classify the images in the CIFAR-100 dataset (Krizhevsky et al.,
2009). When training ResNet-18 and ResNet-34 from scratch, we
achieve a slightly faster convergence of the weights. However,
we obtain the best results when combining our approach with
transfer learning: Combined with transfer learning, the initial
accuracy of the validation set after applying our approach is
already 53% and 55% for ResNet-18 and ResNet-34 respectively.
This leads to a faster convergence of the weights: Using ResNet-
18 and the best benchmark method (LeCun initialization (LeCun,
Bottou, Orr, & Müller, 2012)), the highest validation accuracy of
81.32% is obtained after 49 epochs. Using our approach, the same
accuracy is already obtained after just 13 epochs. Similarly, for
ResNet-34, the highest validation accuracy of 84.18% is obtained
after 50 epochs using LeCun initialization, while it is already
obtained after 14 epochs with our approach.

The remainder of this paper is structured as follows. We first
introduce our proposed weight initialization methodology for
neural networks in Section 2. We apply this methodology to a
case study with a regression problem in Section 3, and compare
the performance of our method with other benchmark strategies
in Section 4. We also analyze our weight initialization procedure
when only a part (10%) of the training set is used in Section 4.3,
and we add an extra assumption on the mean of the weights in
Section 4.4. Last, we apply our approach to classification neural
networks, namely ResNet-18 and ResNet-34, in Section 5. We
then discuss the conclusions, the limitations of this research
and future research directions in Section 6. The Python code
for the proposed weight initialization procedure is included in

supplementary appendix.
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Fig. 1. Schematic overview of the last layer of the assumed neural network for
a training sample i ∈ S.

. Methodology – Weight initialization in the last layer of the
eural network

In Section 2.1 we discuss the layout of the considered neu-
al network. We derive the constraints on the weights in the
ast layer in Section 2.2, and we integrate these constraints in
he linear regression problem using the Lagrange multiplier in
ection 2.3. We summarize the full weight initialization proce-
ure in Section 2.4. The Python code for the weight initialization
rocedure in Pytorch is included in supplementary appendix.

.1. Neural network for a regression problem

We use a neural network with L layers to solve a regression
roblem, i.e., the true label of each sample is one numerical
alue. Let S be the training set for the neural network, with N

training samples. The true label of a training sample i ∈ S is
denoted by yi, and the vector with all true labels is denoted by
y = [y1, y2, . . . , yN ]. We assume that the activation function f (·)
used throughout the neural network has a unit derivative at 0,
i.e., f ′(0) = 1. For example, this could be the hyperbolic tangent
activation function tanh. Moreover, we assume that the last layer
L of this neural network is a fully connected layer. This is often the
case for neural networks that solve a regression problem, e.g., Kim
et al. (2020), Vural, Ilhan, Yilmaz, Ergüt, and Kozat (2021) and Yan
(2012). A schematic overview of this last layer is in Fig. 1.

Let yL−1
= [yL−1

1 , yL−1
2 , . . . , yL−1

m ] be the matrix with the output
of the (L − 1)th layer, with m the number of output nodes. Here,
yL−1
j = [yL−1

1,j , yL−1
2,j , . . . , yL−1

N,j ]
T is the vector with the output of the

jth node of the (L − 1)th layer for all training samples i ∈ S, and
T denotes the transpose. Then, xL = f (yL−1) = [xL1, x

L
2, . . . , x

L
m]

is the matrix with the activated input of layer L. Here, xLj =

[xL1,j, x
L
2,j, . . . , x

L
N,j]

T is the vector with the jth hidden input state
of layer L for all training samples i ∈ S. Last, the weights of
layer L are denoted by wL

= [wL
1, w

L
2, . . . , w

L
m], while bL denotes

the bias. The output yLi of layer L for training sample i is then
yLi =

∑m
j=1 wL

j x
L
i,j + bL.

We assume that the considered neural network applies a lin-
ear activation function to the output, i.e., the output yLi of the last
layer directly is the estimated label ŷi of training sample i. This
linear activation function is also often applied in neural networks
that solve a regression problem, e.g., Kim et al. (2020), Vural et al.
(2021) and Yan (2012). The vector with estimated labels for the
training set S is denoted by ŷ = yL = [yL1, y

L
2, . . . , y

L
N ]. The

objective of the regression task is to minimize the loss function.
As loss function, we take the squared error:

Loss =

∑(
yi − ŷi

)2
. (1)
i∈S

581
In this paper, we randomly initialize the weights of the first L−
1 layers from a normal distribution following Glorot and Bengio
(2010) (i.e., Xavier initialization). Given these random weights,
the aim of this study is to initialize the weights wL and bias bL

of the last layer such that the loss is minimized. We therefore
perform one forward pass with all training samples in S, and
obtain the hidden input states xL of layer L. Now, the weights
wL and bias bL that minimize the loss function can easily be
obtained with the least squares solution of a linear regression of
the actual labels y on the hidden states xL. The objective of this
inear regression is:

inbL,wL

∑
i∈S

(
yi − ŷi

)2
= minbL,wL

j ,j=1,2,...,m

∑
i∈S

⎛⎝yi −

⎛⎝ m∑
j=1

wL
j x

L
i,j + bL

⎞⎠⎞⎠2

. (2)

However, initializing the weights in this way might cause
the gradients to vanish or explode during the back-propagation
algorithm. This in turn hinders the convergence of the weights. To
avoid the vanishing or exploding gradient problem, the authors
of Glorot and Bengio (2010) found that the variance of the outputs
and gradients of each layer in the neural network should be equal
after weight initialization. In the next sections, we rewrite this
requirement in a constraint on the weights of the last layer, and
integrate this constraint in the linear regression problem.

2.2. Constraints on the weights of the last layer of the neural net-
work

To avoid the vanishing or the exploding gradient problem, the
variance (Var) of (i) the forward-propagated output and (ii) the
backward-propagated gradients of each layer should be equal. For
the last layer L, this means that Glorot and Bengio (2010):

Var
(
ŷ
)

= Var
(
xL
)

(3)

Var
(

∂Loss
∂yL

)
= Var

(
∂Loss
∂yL−1

)
, (4)

where ŷ, xL, ∂Loss
∂yL

and ∂Loss
∂yL−1 represent the random variable of any

element in ŷ, xL, ∂Loss
∂yL and ∂Loss

∂yL−1 respectively (He et al., 2015).
In Glorot and Bengio (2010), these two requirements are used
to derive the desired variance for the weights in each layer. The
authors assume in this derivation that the initial weights are
independent and identically distributed random variables. The
weights are then randomly sampled from a distribution, usually
normal or uniform, with mean zero and the desired variance. This
strategy is commonly called ‘‘Xavier initialization’’.

In this study, we cannot directly use the same derivation as
in Glorot and Bengio (2010), since we do not assume that the
mean of the weights is zero. Moreover, regarding the weights
as independent and identically distributed random variables, as
in Glorot and Bengio (2010), becomes problematic for the con-
sidered approach. We therefore use the two requirements to
derive a constraint on the weights in the last layer using the
rules of the variance of a linear function instead. An advantage
of this method is that less assumptions are made, and that it
suits a linear regression approach more naturally. To verify our
approach, we show in Appendix C how the same constraints can
be derived using the same derivation as in Glorot and Bengio
(2010).
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equirement 1 : Var
(
ŷ
)

= Var
(
xL
)

As in Glorot and Bengio (2010) and He et al. (2015), we assume
that the hidden states in xL are independently and identically
distributed. Specifically, the variance of xLj , representing a ran-
dom variable of any element in xLj , is equal for all nodes j ∈

{1, 2, . . . ,m}. This assumption from Glorot and Bengio (2010)
still holds, since these hidden states come from the randomly
initialized weights. In contrast with Glorot and Bengio (2010) and
He et al. (2015), however, we treat the initialized weights and the
initialized bias of the last layer as constant numbers instead of
random variables, i.e., given the initialized bias and weights, we
assume that the variance of ŷ comes from the variance of xL only.
This interpretation fits a linear regression approach well, since
the weights are not sampled from a distribution. Since we impose
that ŷ = yL, it follows that Heij et al. (2004):

Var(ŷ) = Var

⎛⎝bL +

m∑
j=1

wL
j x

L
j

⎞⎠ (5)

=

m∑
j=1

(
wL

j

)2
Var

(
xL
)

The first requirement states that Var
(
ŷ
)

= Var
(
xL
)
. This gives

the following constraint on the sum of the squared weights:
m∑
j=1

(
wL

j

)2
= 1 (6)

In Glorot and Bengio (2010), it is assumed that the expected value
of the weights is zero. If we would also assume that the mean of
the weights is zero, then Eq. (6) states that the empirical variance
of the weights should equal 1

m (i.e., 1
m

∑m
j=1

(
wL

j

)2
=

1
m ). This is

then the same as the constraint on the variance of the weights in
Eq. (10) in Glorot and Bengio (2010). However, we do not use that
the mean of the weights is zero in our derivation. In this study, we
therefore first consider the case where the mean of the weight is
not restricted. In Section 4.4, we instead follow (Glorot & Bengio,
2010; He et al., 2015) and assume that the mean of the weights
is zero.

Requirement 2 : Var
(

∂Loss
∂yL

)
= Var

(
∂Loss
∂yL−1

)
The second requirement states that the variance of the gra-

ients is equal throughout the neural network. To derive a con-
traint on the weights from this requirement, we first write out
∂Loss
∂yL−1

j
of one hidden state j, j ∈ {1, 2, . . . ,m}:

∂Loss
∂yL−1

j

=
∂Loss
∂yL

∂yL

∂xL
∂xL

∂yL−1
j

=
∂Loss
∂yL

wL
j f

′
(
yL−1
j

)
, (7)

ith f ′(·) the derivative of the considered activation function.
s in Glorot and Bengio (2010), we assume that this activation
unction has a unit derivative at 0 (see Section 2.1). Since the
eight initialization in all layers before layer L is still random,
e follow (Glorot & Bengio, 2010) and assume that yL−1

j ≈ 0, and
thus that f ′(yL−1

j ) ≈ 1. This gives:

∂Loss
∂yL−1

j

≈
∂Loss
∂yL

wL
j (8)

Using this, we derive the variance:

Var

(
∂Loss

L−1

)
= Var

(
∂Loss
∂yL

wL
j

)
=
(
wL

j

)2
Var

(
∂Loss
∂yL

)
, (9)
∂yj
582
where ∂Loss
∂yL−1

j
represent the random variable of any element in

∂Loss
∂yL−1

j
. We are, however, interested in the variance of ∂Loss

∂yL−1 for the

andom variable of any element in ∂Loss
∂yL−1 , over all hidden states j.

Since wL
j usually does not equal wL

i if i ̸= j, we cannot assume
that the variance of ∂Loss

∂yL−1
j

is the same for all j ∈ {1, 2, . . . ,m}.

Instead, we use that the variance of ∂Loss
∂yL−1 is the variance of

a mixture distribution of all random variables ∂Loss
∂yL−1

j
, for j ∈

{1, 2, . . . ,m}. The variance of m mixture distributions, where
each distribution has weight 1

m , mean µj = E[
∂Loss
∂yL−1

j
], and variance

wL
j )

2Var
(

∂Loss
∂yL

)
, and where the total mean is µ = E[

∂Loss
∂yL−1 ],

quals (Frühwirth-Schnatter & Frèuhwirth-Schnatter, 2006):
m

j=1

1
m

((
wL

j

)2
Var

(
∂Loss
∂yL

)
+ µ2

j

)
− µ2

he expected value µj of ∂Loss
∂yL−1

j
is:[

∂Loss
∂yL−1

j

]
= E

[
∂Loss
∂yL

wL
j

]
(10)

= E
[
−2(y − ŷ)wL

j

]
= −2wL

j

(
E[y] − E[ŷ]

)
.

ere, y represent the random variable of any element in y. In
ection 2.3, we show that the expected value E[ŷ], given the
ptimal bias and weights in the last layer, equals 1

N

∑
i∈S yi =

[y]. The expected value µj of ∂Loss
∂yL−1

j
is thus zero, and the total

ean µ is zero as well. This gives:

ar
(

∂Loss
∂yL−1

)
=

m∑
j=1

1
m

(wL
j )

2Var
(

∂Loss
∂yL

)
(11)

e therefore derive the constraint that:

1
m

m∑
j=1

(
wL

j

)2
= 1. (12)

If we would also assume that the mean of the weights is zero,
then Eq. (12) states that the empirical variance of the weights
should equal 1. This is then the same as the constraint on the
variance of the weights in Eq. (11) of Glorot and Bengio (2010).

Final constraint. As in Glorot and Bengio (2010), we derive two
different, conflicting constraints on the weights. As a compromise,
we therefore average the two constraints (Glorot & Bengio, 2010):

m∑
j=1

(
wL

j

)2
=

1 + m
2

(13)

2.3. Lagrange relaxation of the constrained linear regression problem

To initialize the weights in the last layer, we thus solve the
following constrained linear regression problem:

minbL,wL
j ,j=1,2,...,m

∑
i∈S

⎛⎝yi − bL −

m∑
j=1

wL
j x

L
i,j

⎞⎠2

(14)

such that
m∑
j=1

(
wL

j

)2
=

1 + m
2

.
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his constrained regression problem can be solved exactly using
he Lagrange multiplier. The Lagrange function L(λ, bL, wL

j , j =

, 2, . . . ,m) is:

(
λ, bL, wL

j , j = 1, 2, . . . ,m
)

=

∑
i∈S

⎛⎝yi − bL −

m∑
j=1

wL
j x

L
i,j

⎞⎠2

+ λ

⎛⎝ m∑
j=1

(
wL

j

)2
−

1 + m
2

⎞⎠ . (15)

his minimization problem is similar to the minimization prob-
em in Ridge linear regression (Hastie, Tibshirani, Friedman, &
riedman, 2009). In Ridge regression, however, the value of the
agrange multiplier λ is often chosen directly by the user instead.
The derivation of the solution of the Lagrange function in

erms of λ, wL and bL is well-known (see Hastie et al., 2009).
e therefore only give the final solution here. For completeness,
e give the full derivation of this solution in Appendix A. In
ppendix A, we first use the singular value decomposition of the
entered hidden state to derive the optimal value for λ. Given this
alue for λ, the optimal value of the weights is (see Appendix A):

L
=

((
xc
)T xc + λI

)−1 (
xc
)T yc, (16)

ith yc a N × 1 vector with the centered true label of all training
amples in S, and xc a N × m matrix with the centered hidden
tates for each training sample and each input node. Here, for one
ample i ∈ S, we define the jth centered hidden state as:
c
i,j = xLi,j − x̄Lj , (17)

ith x̄Lj the mean value of the jth hidden state over all training
amples i ∈ S, i.e., x̄Lj =

1
N

∑
i∈S x

L
i,j. The centered true label of a

ample i is:

c
i = yi −

1
N

∑
i∈S

yi. (18)

ast, given these weights, the optimal value of the bias is (see
ppendix A):

L
=

1
N

∑
i∈S

yi −
m∑
j=1

wL
j x̄

L
j . (19)

Note that with this value for bL, the expected value of ∂Loss
∂yL−1

j
in

Eq. (10) is zero since E[ŷ] = E[y]:

E[ŷ] = E

⎡⎣bL +

m∑
j=1

wL
j x

L
j

⎤⎦ (20)

= E

⎡⎣ 1
N

∑
i∈S

yi −
m∑
j=1

wL
j x̄

L
j +

m∑
j=1

wL
j x

L
j

⎤⎦
=

1
N

∑
i∈S

yi −
m∑
j=1

wL
j x̄

L
j +

m∑
j=1

wL
j E[xLj ]

=
1
N

∑
i∈S

yi

= E[y],

where we use that E[xLj ] =
1
N

∑
i∈S x

L
i,j = x̄Lj .

2.4. Procedure for the weight initialization of a neural network

To initialize the weights of the neural network, we follow the
steps below:
 w
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1. Randomly initialize the weights of the first L − 1 layers
using Xavier initialization: Sample the weights from an
uniform or normal distribution with a mean of zero and
the variance as derived in Glorot and Bengio (2010).

2. Perform one forward pass to compute the hidden states xLi,j
for all j ∈ {1, 2, . . . ,m}, i ∈ S.

3. Solve the constrained minimization problem in Eq. (14):

(a) Center the hidden input states xLi,j following Eq. (17)
and center the true labels yi following Eq. (18).

(b) Calculate the optimal value of the Lagrange multi-
plier λ using the singular value decomposition of the
centered input values xc (see Appendix A).

(c) Initialize the weights of the last layer as in Eq. (16).
(d) Initialize the bias of the last layer as in Eq. (19).

The Python code for the weight initialization procedure with
PyTorch is given in supplementary appendix.

2.5. Assuming the weights must have zero mean

In Xavier (Glorot & Bengio, 2010) and Kaiming (He et al.,
2015) initialization, it is assumed that the expected value of the
initialized weights is zero. Most studies therefore initialize the
weights from a normal or uniform distribution with a mean of
zero. To analyze the potential benefits of this restriction for our
approach, we also impose here that the mean of the weights is
zero. With this assumption, the final constraint on the sum of the
squared weights in Eq. (13) becomes a constraint on the empirical
variance of the weights instead. This is the same as the constraint
on the variance of the weights in Eq. (12) of Glorot and Bengio
(2010).

With this extra assumption, our constrained linear regression
problem becomes:

minbL,wL
j ,j=1,2,...,m

∑
i∈S

⎛⎝yi − bL −

m∑
j=1

wL
j x

L
i,j

⎞⎠2

(21)

such that
m∑
j=1

(
wL

j

)2
=

1 + m
2

,

m∑
j=1

wL
j = 0,

ith the Lagrange function, L(λ1, λ2, bL, wL
j , j = 1, . . . ,m):

(
λ1, λ2, bL, wL

j , j = 1, . . . ,m
)

=

∑
i∈S

⎛⎝yi − bL −

m∑
j=1

wL
j x

L
i,j

⎞⎠2

+ λ1

⎛⎝ m∑
j=1

(
wL

j

)2
−

1 + m
2

⎞⎠+ λ2

m∑
j=1

wL
j . (22)

We solve this Lagrange function for λ1, λ2, wL and bL in Ap-
endix B. We first derive the optimal value of λ1 and λ2 using the
ingular value decomposition of xc . Given these optimal values for
1 and λ2, we derive the following optimal value for the weights:

L
=

((
xc
)T xc + λ1I

)−1
((

xc
)T yc −

1
2
λ21

)
, (23)

ith xc and yc as defined before in Eq. (17) and (18). Given these
eights, the bias is calculated as in Eq. (19).
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Fig. 2. A schematic example of a data sample Z that is used as input to the
NN.

. Case study for regression problems

We apply our proposed methodology to predict the Remaining
seful Life (RUL, time left until failure) of aircraft engines in the
-MAPSS dataset (Saxena & Goebel, 2008). This dataset contains
imulated sensor measurements of aircraft turbofan engines. In
otal, the measurements of 21 sensors around the engine are
onsidered, such as the pressure at the High Pressure Combustor
r the physical fan speed of an engine. For each sensor, one mea-
urement per engine per flight is simulated by the NASA Com-
ercial Modular Aero-Propulsion System Simulation (C-MAPSS)
imulator. Over time, the health of each engine degrades. This
egradation is captured by the sensor measurements. Our goal
s to develop a model that uses these sensor measurements to
redict the RUL of the engines in the C-MAPPS dataset. The
-MAPPS dataset is widely used in literature to develop RUL
rediction models, with 250 papers published on this dataset (de
ater & Mitici, 2022; Lee & Mitici, 2023; Vollert & Theissler, 2021).
ore information on this dataset can be found in Ramasso and
axena (2014).
In this paper, we consider subset FD001 of the C-MAPSS

ataset. The training set of FD001 contains 100 engines. For each
ngine, the sensor measurements are simulated for each flight
rom the installation of this engine until failure. Subset FD001
lso contains a test set with 100 test engines. For each test engine,
he sensor measurements are terminated somewhere before the
ailure of the engine. The goal is to predict the RUL of the test
ngine at this point.
We use a Convolutional Neural Network (CNN) to predict

he RUL. Seven of the 21 sensors in the C-MAPSS dataset have
onstant measurements over time. We thus use the remaining

= 14 sensors as input to the CNN. We first normalize the mea-
urements of these 14 sensors using min–max normalization (Li,
ing, & Sun, 2018). After a flight g of an engine, we then use a
ata sample Z with these normalized sensor measurements of the
ast P flights as input to the CNN, i.e.,:

= [zg−P , zg−P+1, . . . , zg ], (24)

here P is the window size, and zk are the normalized sensor
measurements of flight k:

zk = [ẑk1, ẑk2, . . . , ẑkM ], (25)

ith ẑkh the normalized sensor measurement of sensor h and
light k. Fig. 2 shows an example of such an input sample Z. The
rue label of this data sample is the RUL of the considered engine
fter flight g .
The considered CNN has been proposed in de Pater, Reijns,

nd Mitici (2022) and Li et al. (2018). This CNN consists of 5
onvolutional layers. The first 4 convolutional layers each have
0 one-dimensional kernels of size 10 × 1. The last convolutional
ayer has one one-dimensional kernel of size 3 × 1. Same padding
s applied to all convolutional layers. After the 5 convolutional
 i
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ayers, two fully connected layers are added. The first fully con-
ected layer has 100 nodes as output, and uses a dropout rate of
.5. The last connected layer uses these m = 100 nodes as input,
nd outputs the RUL prediction. This CNN has 45.372 parameters.
ll layers use the tanh activation function, except the last layer,
hich uses a linear activation function. Last, following de Pater
t al. (2022) and Li et al. (2018), we use the common piece-wise
inear RUL target function, where we aim to predict a RUL of 125
lights when the actual RUL is larger than 125 flights.

We split the engines in the training set in 80 engines for
raining the neural network, and 20 engines for the validation.
oreover, we use a window size of P = 30 in Eq. (24). With

his window size, we create N = 13890 data samples for the
raining set S, and 3841 data samples for the validation set. The
eights are further optimized using the Adam optimizer (Kingma
Ba, 2014), with a batch size of 512 samples, 200 epochs and a

earning rate of 0.001. The considered loss function is the (Mean)
quared Error (as in Eq. (1)). When estimating the RUL of the test
ngines in the given test set, we use the weights of the neural
etwork that give the lowest validation loss.

. Results – Convergence of the weights for regression prob-
ems

.1. Benchmark strategies

In this section, we compare the convergence of the weights
f the neural network for several weight initialization strategies.
e refer to our proposed approach to initialize the weights of

he last layer, that combines linear regression with Lagrange, as
he ‘‘Lagrangian LR’’ strategy. To avoid the vanishing/exploding
radient problem, we impose a constraint on the weights in the
roposed strategy. To evaluate the effectiveness of this constraint,
e also initialize the weights and biases following our proposed
trategy, but without any constraint on the weights of the last
ayer in Eq. (14). Instead, we initialize the weights and bias of the
ast layer with the least squares solution of the linear regression
f the true label yi on the estimated label ŷi = bL +

∑m
j=1 wL

j x
L
i,j

see Eq. (2)). We refer to this benchmark strategy as ‘‘LR’’ (Lin-
ar Regression). As other benchmark strategies, we use Xavier
nitialization (Glorot & Bengio, 2010) in all layers, including the
ast layer, Kaiming initialization (He et al., 2015), LeCun initial-
zation (LeCun et al., 2012), Yilmaz & Poli initialization (Yilmaz &
oli, 2022) and orthogonal initialization (Saxe et al., 2013).

.2. Training of the neural network under different weight initializa-
ion strategies

Fig. 3 shows the Root Mean Squared Error (RMSE) of the
raining and validation set after each epoch for the considered
trategies. Table 1 shows the corresponding minimum value of
he RMSE of the training and validation set after various number
f epochs. We implement the neural network in Python with
ytorch, and train the neural network on a computer with 4 Intel
ore i7 CPU cores. With this computer, it takes 32 s to calculate
he singular value decomposition of xc , and it takes less than 1 s
o find an optimal value of λ. In total, the weight initialization
f the last layer with the proposed approach takes 35 s. Training
he neural network for one epoch takes on average 10 s. Thus,
nitializing the weights with the proposed approach takes the
ame time as training the neural network for roughly 4 epochs.
After the initialization of the weights using the proposed La-

rangian LR approach, the RMSE of the training set is only 39.0
ith and without dropout, while the RMSE of the validation
et is only 38.9. The training data is thus not overfitted when

nitializing the weights with the proposed approach. The weights
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Fig. 3. RMSE of the training and validation set after each epoch, for the proposed strategy and the benchmark strategies.
Table 1
The minimum (Min.) RMSE obtained after a various number of epochs for the training (Train.) and validation (Valid.) set, for the proposed strategy and the benchmark
strategies. The RMSE of the test set is calculated with the weights that give the lowest validation loss. The lowest RMSE is denoted in bold.
Initialization Min. Number of epochs Test

strategy RMSE 1 10 25 50 75 100 125 150 175 200 RMSE

Proposed strategy

Lagrangian Train. 27.2 15.3 14.3 13.3 12.5 11.5 11.0 10.6 10.2 9.9 12.5LR (Proposed) Valid. 21.4 14.0 13.2 12.5 12.1 11.7 11.6 11.5 11.4 11.4
Benchmark strategies

Xavier Train. 82.1 61.4 45.5 41.8 41.8 41.8 41.8 23.0 14.0 13.0 13.0(Glorot & Bengio, 2010) Valid. 80.6 61.8 46.0 42.1 42.0 42.0 42.0 21.4 13.2 12.6
LR – Linear Train. 40.9 18.3 17.0 16.3 15.9 14.8 14.2 13.9 13.9 13.7 13.2Regression Valid. 21.3 16.7 15.8 14.8 14.8 14.0 13.5 13.4 13.1 13.0
Kaiming Train. 82.5 60.5 37.6 19.2 13.7 12.2 11.6 11.1 10.7 10.4 12.7(He et al., 2015) Valid. 80.6 60.8 38.0 19.3 13.9 12.1 11.9 11.7 11.7 11.7
LeCun Train. 86.2 65.0 47.0 41.8 41.8 41.8 41.8 41.8 41.8 16.9 14.2(LeCun et al., 2012) Valid. 85.1 65.4 47.6 42.1 42.0 42.0 42.0 42.0 42.0 15.3
Orthogonal Train. 84.0 63.3 46.3 41.8 41.8 41.8 41.8 16.8 13.2 12.2 12.6(Saxe et al., 2013) Valid. 82.9 63.7 46.8 42.0 42.0 42.0 42.0 15.8 12.2 11.6
Yilmaz Train. 82.7 62.3 45.8 41.8 17.2 14.3 13.5 12.8 12.3 12.0 12.5& Poli (Yilmaz & Poli, 2022) Valid. 81.6 62.7 46.4 42.1 16.9 13.7 12.8 12.3 12.1 11.9
of the neural network subsequently quickly convergence during
the back-propagation algorithm. The lowest validation RMSE of
11.4 is therefore obtained after 152 epochs, after which the
validation RMSE does not decrease any further, and even slightly
increases. At this point, the weights of the neural network have
thus converged. Using the weights that give the lowest validation
loss, the RMSE obtained in the test set is only 12.5. Overall, the
weights of the neural network thus start at a good point with
the considered approach, i.e., with a small initial training and
validation loss, and quickly converge during the back-propagation
algorithm.

When we initialize the weights of the last layer following the
avier strategy as well, the RMSE of the training set is 90.5 with
nd without dropout, while the RMSE of the validation set is
2.0. The weights of the neural network thus start at a worse
oint compared to the proposed strategy: The initial validation
oss is 2.4 times larger. During the back-propagation algorithm,
he weights initially quickly converge, until the weights of the
eural network get stuck in a local optimum at epoch 46, when
he RMSE of the training set is 41.8. At epoch 147, the neural
etwork escapes the local optimum and the weights of the neural
etwork then quickly further converge, obtaining a minimum
alidation RMSE of 12.6 after 198 epochs, with a correspond-
ng test RMSE of 13.0. In contrast, our proposed LR Lagrangian
trategy already obtains a validation RMSE of 12.6 after only
585
49 epochs. Thus, we need 75% less epochs to reach the same
validation loss when using the LR Lagrangian strategy. Comparing
the Xavier initialization (Glorot & Bengio, 2010) to the Lagrangian
LR strategy proposed in this paper, we conclude that by using the
LR Lagrangian strategy (i) the initial starting point of the weights
provide a lower training and validation loss, (ii) we avoid getting
stuck in a local minimum, and (iii) we obtain a quicker converge
of the weights.

With the LR strategy, the RMSE of the training set after the
weight initialization is 48.3 with and 20.8 without dropout, while
the RMSE of the validation set is 19.0. Moreover, the weights of
the neural network quickly converge during the first few epochs,
leading to a considerable decrease in the RMSE of the training and
validation set. However, this convergence is slow compared to the
convergence of the weights with the proposed strategy: After 200
epochs, the validation RMSE is 11.4 with the proposed strategy,
while it still is 13.0 with the LR strategy. The results with the LR
strategy are therefore even worse than with Xavier initialization,
where a lower loss for both the training and the validation set
is obtained within 200 epochs. It is thus important to not only
focus on initializing the weights close to an optimum, but also
on initializing the weights such that the vanishing/exploding
gradient problem is mitigated.
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Table 2
The minimum RMSE obtained after various number of epochs for the training (Train.) and validation (Valid.) set using our proposed strategy. Here, we report the
results when using the full training set to initialize the weights, and the results of the 10-fold cross validation, where only 10% of the training set is used for weight
initialization in each validation split. For the 10-fold cross validation, we report the mean, minimum (min) and maximum (max) value of the minimum RMSE over
the 10 performed validation splits.

Number of epochs

1 10 25 50 100 150 200

10% of the training data set
used for weight initialization
with 10-fold cross validation

Mean RMSE Train. 27.2 15.4 14.3 13.3 11.6 10.5 9.9
Valid. 21.4 14.0 13.3 12.5 11.7 11.5 11.5

Min RMSE Train. 27.1 15.2 14.1 13.3 11.5 10.5 9.8
Valid. 21.0 13.9 13.1 12.5 11.6 11.4 11.3

Max RMSE Train. 27.4 15.5 14.4 13.3 11.6 10.6 10.0
Valid. 21.7 14.3 13.4 12.6 11.8 11.6 11.6

Full training set used for
weight initialization RMSE Train. 27.2 15.3 14.3 13.3 11.5 10.6 9.9

Valid. 21.4 14.0 13.2 12.5 11.7 11.5 11.4
d
a
l
n
i
w
W
l
d
s
b
l
n
n
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The initial loss of the other three benchmark strategies is large,
ith a validation RMSE around 90 after the weight initializa-
ion. Moreover, just as with the Xavier initialization strategy, the
eural network gets stuck in a local optimum with the Lecun (Le-
un et al., 2012), orthogonal (Saxe et al., 2013) and Yilmaz &
oli (Yilmaz & Poli, 2022) initialization strategies. However, in
he end, the neural network converges to a similar final train-
ng, validation and test accuracy for all considered benchmark
trategies: Yilmax & Poli initialization even has the same final test
ccuracy. The best performing benchmark strategy is the Kaiming
eight initialization (He et al., 2015). For this strategy, the initial
MSE of the training set is 90.4 with and without dropout, while
he initial validation RMSE is 91.8. The initial validation RMSE
s thus 2.4 times larger than with the proposed strategy. Using
aiming initialization, however, the weights quickly converge to
n optimum without getting stuck in a local optimum. After 148
pochs, the minimum validation RMSE of 11.7 is already reached.
owever, this validation RMSE is already reached after 97 epochs
ith the proposed approach, i.e., we need 34% less epochs to
each the same validation loss.

.3. Results – initialization of the weights with only a part of the
raining set

Calculating the singular value decomposition of large training
ets is time-consuming. For large training sets, it might therefore
e beneficial to initialize the weights with only a part of the
raining set instead. In this section, we therefore analyze the
onvergence of the weights if we only employ 10% of the training
et to initialize the weights of the last layer. Here, we use 10-
old cross validation by splitting the training set randomly in 10
on-overlapping subsets. For each validation split, we use one
ubset to initialize the weights of the neural network. We then
ubsequently train the neural network with the full training set.
The singular value decomposition with 10% of the training set

akes on average only 0.41 s, while initializing the weights takes
n average only 0.83 s. This is 42 times faster than when consid-
ring the full dataset (see Section 4). Table 2 shows the mean,
inimum and maximum value of the minimum RMSE of the
alidation and training set after a various number of epochs. Here,
he mean, minimum and maximum are taken over the results
f the 10 validation splits. We also show the minimum RMSE of
he validation and training set when considering the full training
et to initialize the weights. The mean training and validation
MSE from the cross-validation is very close to the training and
alidation RMSE when using the full training set for the weight
nitialization (a maximum of 0.1 difference). Moreover, after the
irst 10 epochs, the minimum training and validation RMSE are
lose together for all 10 validation splits (a maximum of 0.3
ifference after the first 10 epochs). For the considered dataset,
he results are therefore very similar when using only 10% of the
586
training dataset or the full dataset to initialize the weights, while
initializing the weights with only 10% of the training set is 42
times faster.

4.4. Results with a mean weight of zero

In this section we analyze the benefits of assuming that the
mean of the weights has to be zero. Fig. 4 shows the RMSE of the
training and validation set after each epoch for the proposed ap-
proach (Lagrangian LR – Square), and for the proposed approach
with the additional restriction that the mean of the weights is
zero (Lagrangian LR – Mean and variance, see Section 2.5). The
RMSE of the training and validation set is nearly equal for both
strategies. For our approach, there is thus no additional benefit in
assuming that the mean of the weights is zero for the last layer, in
contrast with the Xavier (Glorot & Bengio, 2010) and Kaiming (He
et al., 2015) weight initialization strategies.

5. Results for classification problems

The focus of this paper is on neural networks that solve a
regression problem. For completeness, we apply in this Section
a variant of our method to neural networks for classification
problems. Neural networks that solve a classification problem
have a different activation function in the last layer, a different
loss function and often a different activation function throughout
the neural network than considered in the methodology in Sec-
tion 2. Thus, we cannot directly employ the mathematical deriva-
tions from Section 2 to these neural networks as well. Instead,
we adjust our methodology for classification neural networks as
follows.

We first introduce the notation for the last layer of a classifi-
cation neural network. An overview of this notation is in Fig. 5.
Let yi ∈ {1, 2, . . . , n} be the true label for a sample i ∈ S. Here, n
enotes the number of classes. We assume that the last layer L of
classification neural network still is a fully connected layer. This
ayer still hasm input nodes, but now has n, instead of one, output
odes. As before, let xLi denote the vector with the activated
nput of layer L for sample i ∈ S. Here, xLi = [xLi,1, x

L
i,2, . . . , x

L
i,m],

ith xLi,j the jth hidden input state of layer L for sample i. Let
L
= [wL

1,w
L
2, . . . ,w

L
n] denote the matrix with the weights of the

ast layer L. Here, wL
h = [wL

1,h, w
L
2,h, . . . , w

L
m,h] (h ∈ {1, 2, . . . , n})

enotes the weights connecting the hidden input state xLi of a
ample i to the hth output node of this last layer L. Similarly, let
L

= [bL1, . . . , b
L
n] denote the vector with the biases of the last

ayer L, where bLh denotes the bias belonging to the hth output
ode of layer L. For a sample i, the value yLi,h of this hth output
ode is calculated as yLi,h =

∑m
j=1 wL

j,hx
L
i,j + bLh. The total output of

ayer L for a sample i is denoted by yL = [yL , yL , . . . , yL ].
i i,1 i,2 i,n
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Fig. 4. The RMSE of the training set after each epoch, for the proposed strategy with only a restriction on the sum of the squared weights (Lagrangian LR – Square),
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Fig. 5. Schematic overview of the last layer of assumed neural network for
classification problems for a training sample i ∈ S.

We use the Softmax activation function to convert the output
values yLi to probabilities. The estimated probability p̂i,h that
sample i belongs to class h is:

p̂i,h =
exp (yLi,h)∑n
g=1 exp (yLi,g )

(26)

he loss of these estimated probabilities is calculated by the cross
ntropy:

oss = −

∑
i∈S

n∑
h=1

I (yi = h) log (p̂i,h), (27)

here I (yi = h) is 1 if yi = h, and zero otherwise. Last, we assign
each sample i to the class h with the largest estimated probability
p̂i,h. Let ŷi denote the class to which sample i is assigned. From
this, we calculate the accuracy:

Accuracy = 100 ·

∑
i∈S I

(
yi = ŷi

)
N

(28)

As before, we initialize the weights of the first L − 1 layers
of the neural network randomly, using several weight initial-
ization methods. The aim is now to find the weights WL and
he bias bL of the last layer L such that the cross entropy loss
is minimized. However, we again want to prevent the explod-
ing/vanishing gradient problem. With a logistic regression, we
do not know analytically the optimal value of the sum of the
squared weights. We also do not know how to analytically derive
a value for λ given such a sum. However, we can still apply Ridge
logistic regression with a randomly chosen λ to regularize the
587
weights. In Ridge logistic regression, we minimize the following
function (Hastie et al., 2009):

min
WL,bL

= −

∑
i∈S

n∑
h=1

I (yi = h) log (p̂i,h) + λ

⎛⎝ n∑
h=1

m∑
j=1

(
wL

j,h

)2⎞⎠ .

(29)

his is very similar to the Lagrangian function in Eq. (15). The
ain difference is that we now consider another loss function and

hat we choose λ ourselves. Future research should be conducted
o derive a good value for λ (either empirically or analytically) in
lassification problems. To initialize the weights in the last layer L,
e thus perform a forward pass to obtain the hidden input states
L
i for all samples i ∈ S. We then use the Ridge logistic regression

of the actual labels yi on the hidden states xLi (for all samples
i ∈ S) to find the weights WL and the biases bL that minimize
the loss given λ.

5.1. Implementation - CIFAR-100 dataset

We test the above approach on the images of the CIFAR-100
dataset (Krizhevsky et al., 2009). Each image in this dataset has
a size of 32 by 32 pixels, and belongs to one out of a hundred
classes, such as ‘‘bicycle’’ or ‘‘camel’’. The objective is to correctly
classify the images. The dataset is divided into 10.000 test images,
and 50.000 training images. We further divide the training images
into 45.000 images for training the neural network, and 5.000
images for validation. We preprocess the data by scaling the input
images using z-score standardization. Moreover, to prevent over-
fitting, we apply Random Augmentation (Cubuk, Zoph, Shlens, &
Le, 2020) on the 45.000 training images, with 3 operations of a
magnitude of 15.

With this training images, we train two well-known neural
networks to classify the images, namely ResNet-18 and ResNet-
34 (He et al., 2016). These neural networks are both variants on
the general ResNet developed in He et al. (2016). ResNet-18 is the
smallest variant, with 18 layers and over 11 million parameters,
while ResNet-34 is a larger variant with 34 layers and over 21
million parameters. The last layer of both neural networks is a
single fully connected layer, to which we apply our approach.
ResNets are initially developed for the ImageNet dataset, which
has relatively large images. In He et al. (2016), all images in this
dataset are cropped to have a size of 224 by 224 pixels. Following
this, we therefore resize the images in the CIFAR-100 dataset to
a size of 224 to 224 pixels as well, using bilinear interpolation.
We train both neural networks for 100 epochs using stochastic
gradient descent with a momentum of 0.9, a batch size of 256 and
weight decay of 1−4, to prevent overfitting. The initial learning
rate is 0.01, and is multiplied by 0.1 after every 25 epochs.
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Table 3
The maximum accuracy (max. acc.) in percent obtained after a various number of epochs for the training (Train.) and validation (Valid.) set. Here, we consider several
weight initialization strategies, with two different ways to initialize the weights in the last layer; According to the considered weight initialization strategy, or with
the proposed strategy of Ridge logistic regression (Proposed). The accuracy of the test set is calculated with the weights that give the lowest validation loss. The
highest accuracy per weight initialization strategy is denoted in bold.
Weight Initialization Max. Number of epochs Test

initialization last layer acc. (%) 0 10 25 50 75 100 acc. (%)

ResNet-18 (He et al., 2016)

Kaiming He et al. (2015) Train 1.01 22.44 45.59 55.38 56.93 57.14 62.20(original) Valid. 1.00 30.42 49.98 61.30 62.16 62.20
(He et al., 2015) Proposed Train 3.72 24.82 46.64 56.92 58.28 58.64 63.47Valid. 9.34 34.72 52.26 62.46 63.30 63.30

Glorot and Bengio (2010) Train. 1.01 27.73 51.46 63.90 66.13 66.13 67.24Xavier Valid. 1.00 38.83 54.66 66.10 67.14 67.14
(Glorot & Bengio, 2010) Proposed Train. 3.73 31.14 52.84 65.38 66.82 67.36 67.83Valid. 5.43 39.00 55.58 67.46 68.20 68.32

LeCun et al. (2012) Train. 1.01 28.51 51.71 63.83 65.67 66.00 67.06LeCun Valid. 1.22 37.26 53.44 66.52 67.68 67.84
(LeCun et al., 2012) Proposed Train. 3.72 31.06 52.65 65.01 66.75 67.09 67.47Valid. 9.34 40.26 55.94 67.02 68.08 68.32

Saxe et al. (2013) Train. 1.05 28.13 51.87 64.17 66.14 66.42 67.50Orthogonal Valid. 1.12 34.32 55.44 66.08 67.06 67.08
(Saxe et al., 2013) Proposed Train. 4.30 30.82 53.13 65.29 66.94 67.43 67.20Valid. 5.96 37.30 56.48 67.04 68.04 68.04
Yilmax Yilmaz and Poli (2022) Train 1.03 3.00 10.00 12.94 13.35 13.48 21.33& Poli Valid. 1.12 5.40 13.80 20.54 21.12 21.12
(Yilmaz & Poli, 2022) Proposed Train. 2.05 3.54 11.38 14.62 14.89 15.16 22.79Valid. 4.12 5.58 17.80 22.76 22.96 23.02

ResNet-34 (He et al., 2016)

Kaiming He et al. (2015) Train. 0.94 24.23 51.59 65.04 67.62 67.90 66.04(original) Valid. 0.86 33.18 54.42 65.00 65.66 65.66
(He et al., 2015) Proposed Train. 2.79 28.50 54.00 68.64 70.42 70.90 67.23Valid. 7.22 38.76 56.24 66.14 67.12 67.26

Glorot and Bengio (2010) Train. 0.94 30.38 56.87 72.77 75.53 76.00 69.52Xavier Valid. 0.86 37.94 57.70 69.28 70.16 70.16
(Glorot & Bengio, 2010) Proposed Train. 2.78 34.37 58.93 75.65 77.88 78.73 69.84Valid. 7.20 40.96 59.64 69.62 70.38 70.38

LeCun et al. (2012) Train. 0.94 31.38 57.45 73.25 75.80 76.09 68.56LeCun Valid. 0.86 38.38 60.14 69.46 70.22 70.26
(LeCun et al., 2012) Proposed Train. 2.79 34.30 58.96 75.53 77.69 78.04 69.86Valid. 7.22 40.42 60.56 70.16 70.42 70.50

Saxe et al. (2013) Train. 1.00 31.23 57.85 74.12 76.71 77.35 69.13Orthogonal Valid. 1.02 39.08 59.54 69.40 70.06 70.24
(Saxe et al., 2013) Proposed Train. 2.37 34.95 59.12 76.19 78.13 78.66 69.99Valid. 6.84 40.60 58.12 69.42 70.34 70.38
Yilmax Yilmaz and Poli (2022) Train 0.95 2.71 8.10 11.51 12.16 12.34 19.02& Poli Valid. 0.92 4.64 11.32 17.86 18.70 18.70
(Yilmaz & Poli, 2022) Proposed Train. 1.82 3.01 8.58 12.55 13.24 13.36 20.25Valid. 3.02 4.96 13.10 19.28 19.68 19.76
We implement the logistic regression with Ridge using the
cikit-learn package (Pedregosa et al., 2011), with the ‘‘lbfgs’’
olver. This solver applies a quasi-Newton method (Hastie et al.,
009) to optimize the weights of the logistic regression. We select
from {1, 10, 100, 1000, 10000}. Specifically, we first calculate

he sum of the squared weights in the last layer L when we ini-
tialize all weights of the neural network with Xavier initialization.
Let the value of this sum be denoted by α. We then select the
smallest value of λ ∈ {1, 10, 100, 1000, 10000} for which the sum
f the squared weights in the last layer is equal to or smaller than
his value α. For both ResNet-18 and ResNet-34, this procedure
ives λ = 1000. Last, we perform the logistic regression on all
raining images without any random augmentation. With this, it
akes between 105 and 143 s to initialize the weights in the last
ayer with Ridge logistic regression for ResNet-18, and between
35 and 211 s for ResNet-34. Training the neural network for
ne epoch on 1 NVIDIA Tesla V100S GPU takes between 80 and
0 s for ResNet-18, and between 90 and 100 s for ResNet-34.
he logistic regression thus takes roughly as long as training the
eural network for two epochs.
588
Since we do not analytically derive the optimal value for λ,
we are not restricted to applying the proposed methodology
after Xavier weight initialization only. Instead, we initialize the
weights in the last layer with Ridge logistic regression in com-
bination with each benchmark weight initialization method. For
simplicity, we use the same value of λ for all weight initialization
methods.

5.2. Results – convergence of the weights for classification problems

Table 3 shows the maximum accuracy after training ResNet-18
and ResNet-34 for several number of epochs. The accuracy after
epoch 0 is the initial accuracy, i.e., the accuracy after the weight
initialization without any training of the neural network. The ini-
tial validation accuracy is between 4.12% and 9.34% for ResNet-18,
and between 3.02% and 7.22% for ResNet-34. This initial accuracy
is relatively small compared to the initial loss of the regression
problem, which is already halfway between the loss with random
weight initialization and the final obtained loss after training. This

might be because we consider a more complicated problem, with
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00 instead of only one possible output. Moreover, we consider
more complicated neural network: In the regression problem,

he neural network has 45.372 parameters, while ResNet-18 and
esNet-34 have over 11 million and 21 million parameters re-
pectively. With many more randomly initialized parameters, the
haracteristics of the input might have largely disappeared in the
idden state of the last layer for both ResNets, compared to the
egression problem. This also might be the reason that ResNet-34
as a lower initial validation accuracy than ResNet-18.
However, for both neural networks, the initial accuracy with

he proposed weight initialization method is still higher than
ithout, for all considered initialization methods. This leads to
slightly higher training and validation accuracy throughout the
raining process: For both ResNet-18 and ResNet-34 and with
ll initialization methods, the training and validation accuracy
s slightly higher when applying Ridge logistic regression to ini-
ialize the weights of the last layer. The only exception is the
alidation accuracy after 25 epochs with orthogonal initialization
or ResNet-34, which is higher when not using Ridge logistic
egression in the beginning. However, also in this case, applying
idge logistic regression gives a higher validation accuracy after
, 10, 50, and 100 epochs. With the proposed methodology, we
hus obtain a slightly faster convergence of the weights.

For all initialization methods, the final training and validation
ccuracy are slightly higher with the proposed methodology. The
est accuracy is also higher when the weights are initialized
ith Ridge logistic regression, except when we use orthogonal

nitialization in ResNet-18: In this case, the test accuracy is 67.50%
hen using the orthogonal initialization without Ridge logistic
egression, while it is 67.20% when using orthogonal initialization
ith Ridge logistic regression. The highest test accuracy of 67.83%

or ResNet-18 is obtained when combining Xavier initialization
ith our approach, while the highest test accuracy of 69.99% for
esNet-34 is obtained when combining orthogonal initialization
ith our approach.

.3. Results – combination of ridge logistic regression with transfer
earning

Classification neural networks are often trained using transfer
earning., i.e., the weights of the neural network are (partly)
nitialized with the weights from another neural network with
partly) the same structure, trained on another dataset (the source
ataset). The weights are then fine-tuned for the target dataset
sing a gradient descent method (Vasilev, 2019).
In this section, we test how our approach works performs

ombined with transfer learning. We therefore initialize all
eights, except the weights of the last layer, in ResNet-18 and
esNet-34 with the pre-trained weights of Torchvision in Pytorch.
hese weights are obtained by training the neural networks to
lassify the images in the ImageNet-1K dataset (Russakovsky
t al., 2015). This dataset contains 1000 classes, instead of 100.
ecause there are different classes in the ImageNet-1K dataset
nd in the CIFAR-100 dataset, we cannot initialize the weights
f the last layer with the weights from Torchvision. Instead,
e initialize the weights in the last layer with the proposed
ethodology (Ridge logistic regression), and with all benchmark
ethods. For the Ridge logistic regression, we use the same λ as

n Section 5.2. We then train the neural network for 50 epochs
sing stochastic gradient descent with a momentum of 0.9, a
atch size of 256 and a weight decay of 1−4. The initial learning

rate is still 0.01, but we now multiply this learning rate with 0.1
after 10 and 30 epochs.

The results are in Table 4. The initial validation accuracy after
epoch 0, i.e., without training the neural network, is already 53%
and 55% for ResNet-18 and ResNet-34 respectively. Because of
589
this, the weights converge fast to a (local) optimum: Throughout
the training process, both the training and the validation accu-
racy are higher with the proposed weight initialization method
than with the benchmark methods. For both ResNets, LeCun
initialization (LeCun et al., 2012) is the best benchmark method.
For ResNet-18, LeCun initialization obtains its highest validation
accuracy of 81.32% after 49 epochs, while we already obtain this
validation accuracy in 13 epochs. For ResNet-34, LeCun initial-
ization obtains its highest validation accuracy of 84.18% after 50
epochs, while we already obtain this validation accuracy after 14
epochs. Moreover, with the proposed methodology, we obtain
a higher final training, validation and test accuracy within 50
epochs than with all benchmark methods. The convergence of the
weights is thus accelerated by combining Ridge logistic regression
with transfer learning.

6. Conclusions

In this paper, we introduce a new initialization method for the
weights in the last layer of a neural network. We assume that
this neural network solves a regression problem and that it uses
an activation function that has a unit derivative of 1 at 0. Here
we focus both on (i) accelerating the convergence of the weights
during the back-propagation algorithm by mitigating the vanish-
ing/exploding gradient problem, and (ii) initializing the weights
close to an optimum point by minimizing the initial training loss.
To accelerate the convergence of the weights, we impose that the
variance of the outputs and the gradients of each layer in the
neural network should be equal after the weight initialization,
following Glorot and Bengio (2010). From this requirement, we
analytically derive a constraint on the weights in the last layer.
We then analytically derive the optimal weights and bias of the
last layer, i.e., the weights and bias that minimize the initial
training loss, while fulfilling this derived constraint using the
Lagrange function.

We apply this initialization strategy to a CNN that predicts
the RUL of aircraft engines. Our proposed strategy initializes
the weights such that the initial training and validation loss
are relatively small. Moreover, the proposed strategy prevents
the weights of the CNN to get stuck in a local optimum. The
weights therefore converge very fast. The minimum validation
loss obtained with Xavier initialization (Glorot & Bengio, 2010)
after 198 epochs is already obtained after only 49 epochs with
our approach. Moreover, compared to the best benchmark strat-
egy (Kaiming initialization (He et al., 2015)), we need 34% less
epochs to reach the same validation loss. To further analyze our
proposed methodology, we also show that it is sufficient for the
considered data set to use only a part of the training set for the
weight initialization. Moreover, we show that with our proposed
initialization approach, it is not necessary to assume that the
mean of the weights is zero, as in Glorot and Bengio (2010) and
He et al. (2015).

Last, we adjust our proposed methodology to apply it to a
neural network with any type of activation function that solves
a classification problem, by using logistic regression with Ridge
regularization. We apply this to ResNet-18 and ResNet-34 (He
et al., 2016), and classify the images in the CIFAR-100 dataset
(Krizhevsky et al., 2009). When training ResNet from scratch,
we obtain a slightly higher initial accuracy and a slightly faster
convergence of the weights with our approach. However, our
approach works best when combined with transfer learning. In
this case, the initial validation accuracy is already 53% and 55%
for ResNet-18 and ResNet-34 respectively. This leads to a faster
weight convergence and a higher test accuracy than with the
benchmark methods.
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Table 4
The maximum accuracy (max. acc.) in percent obtained after a various number of epochs for the training (Train.) and validation (Valid.) set when using transfer
learning. For the weights in the last layer, we consider several benchmark weight initialization strategies and the proposed strategy of Ridge logistic regression
(Proposed). The accuracy of the test set is calculated with the weights that give the lowest validation loss. The highest accuracy is denoted in bold.
Weight initialization Max Number of epochs Test

last layer acc. (%) 0 10 20 30 40 50 acc. (%)

ResNet-18 (He et al., 2016)

Proposed Train. 20.70 73.04 81.59 83.46 84.27 84.76 81.76Valid. 53.68 78.24 81.86 81.86 81.86 81.86
Kaiming Train. 1.01 70.55 79.34 81.50 82.43 82.93 80.25(He et al., 2015) Valid. 1.16 75.98 80.84 80.84 81.06 81.06
Xavier Train. 1.02 70.96 79.71 81.92 83.00 83.27 79.97(Glorot & Bengio, 2010) Valid. 0.98 76.02 80.52 80.74 80.80 80.98
LeCun Train. 0.95 71.38 80.00 82.04 83.14 83.50 80.54(LeCun et al., 2012) Valid. 1.38 76.48 80.86 81.06 81.24 81.32
Orthogonal Train. 1.06 71.54 80.22 82.09 82.99 83.51 80.92(Saxe et al., 2013) Valid. 1.20 76.48 80.88 81.28 81.36 81.44
Yilmax & Poli Train. 0.94 61.79 72.56 75.62 77.00 77.56 78.28(Yilmaz & Poli, 2022) Valid. 1.36 71.16 77.60 77.94 78.06 78.32

ResNet-34 (He et al., 2016)

Proposed Train. 22.04 78.67 88.07 90.09 90.93 90.96 84.57Valid. 55.12 80.60 84.86 85.24 85.24 85.28
Kaiming Train. 0.86 71.63 83.81 86.24 87.37 87.76 82.34(He et al., 2015) Valid. 0.94 76.56 83.04 83.04 83.26 83.26
Xavier Train. 0.86 73.27 85.16 86.99 88.39 88.59 82.91(Glorot & Bengio, 2010) Valid. 0.94 77.62 82.78 82.78 82.98 82.98
LeCun Train. 0.86 76.51 87.12 88.96 90.13 90.38 83.03(LeCun et al., 2012) Valid. 0.94 78.14 83.54 84.12 84.12 84.18
Orthogonal Train. 0.90 76.73 87.36 89.03 90.02 90.34 83.10(Saxe et al., 2013) Valid. 0.88 78.22 83.98 83.98 84.06 84.10
Yilmax & Poli Train. 0.87 64.42 78.36 81.97 83.56 83.86 80.35(Yilmaz & Poli, 2022) Valid. 0.94 73.12 79.64 80.66 80.66 80.66
A

e
2
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Limitations and future research

In this paper, we consider a specific type of problem (i.e.,
egression problem), with a specific type of neural network (i.e.,
pecific type of activation function). Many problems in machine
earning, however, do not satisfy these assumptions: They either
o not solve a regression problem and/or use other activation
unctions. For future research, we therefore plan to extend both
he mathematical analysis and the experiments to other types of
roblems, neural networks and datasets. Specifically, we would
ike to consider other activation functions, and to empirically find
good value for λ instead of analytically.
Moreover, we have also discussed applying the considered

methodology to classification neural networks with any type
of activation function. Here, we choose the value of the La-
grangian multiplier λ ourselves. Future work could develop the
approach for these classification neural networks further. We
find it particularly interesting to determine a good value for λ,
ither analytically or empirically, and to further research the
ombination of the proposed approach with transfer learning.
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Appendix A. Solution of the minimization problem (Eq. (14) )
for λ

In this Appendix, we solve the constrained linear regression
problem of Eq. (14) to find the optimal value of λ following Hastie
et al. (2009). The Lagrange function L(λ, bL, wL

j , j = 1, 2, . . . ,m)
of the minimization problem is:

L
(
λ, bL, wL

j , j = 1, 2, . . . ,m
)

=

∑
i∈S

⎛⎝yi − bL −

m∑
j=1

wL
j x

L
i,j

⎞⎠2

+ λ

⎛⎝ m∑
j=1

(
wL

j

)2
−

1 + m
2

⎞⎠ . (30)

.0.1. Scaling of the inputs
The solution of this constrained minimization problem is not

quivalent to scaling the inputs or the outputs (Hastie et al.,
009). Following Hastie et al. (2009), we therefore first normalize
he variables:(

λ, bL, wL
j , j = 1, 2, . . . ,m

)
(31)

=

∑
i∈S

⎛⎝yi − bL −

m∑
j=1

wL
j x̄

L
j +

m∑
j=1

wL
j x̄

L
j −

m∑
j=1

wL
j x

L
i,j

⎞⎠2

+ λ

⎛⎝ m∑
j=1

(
wL

j

)2
−

1 + m
2

⎞⎠
=

∑
i∈S

⎛⎝yi − bL −

m∑
j=1

wL
j x̄

L
j −

m∑
j=1

wL
j

(
xLi,j − x̄Lj

)⎞⎠2

+ λ

⎛⎝ m∑(
wL

j

)2
−

1 + m
2

⎞⎠ ,
j=1
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ith x̄Lj the mean value of the jth hidden state over all training
amples i ∈ S, i.e., x̄Lj =

1
N

∑
i∈S x

L
i,j. We define the centered weight

wc
j and the centered bias bc as:

wc
j = wL

j , (32)

bc = bL +

m∑
j=1

wL
j x̄

L
j . (33)

We then obtain that:

L
(
λ, bL, wL

j , j = 1, 2, . . . ,m
)

= L
(
λ, bc, wc

j , j = 1, 2, . . . ,m
)

(34)

=

∑
i∈S

⎛⎝yi − bc −

m∑
j=1

wc
j

(
xLi,j − x̄Lj

)⎞⎠2

+ λ

⎛⎝ m∑
j=1

(wc
j )

2
−

1 + m
2

⎞⎠ .

Following Hastie et al. (2009), we first analyze the optimal value
of bc . The derivative of the loss with respect to bc is:

∂

∂bc
L
(
λ, bc, wc

j , j = 1, 2, . . . ,m
)

= −2
∑
i∈S

⎛⎝yi − bc −

m∑
j=1

wc
j

(
xLi,j − x̄Lj

)⎞⎠ (35)

o find the optimum, we set this derivative equal to zero:

i∈S

(
yi − bc

)
−

∑
i∈S

m∑
j=1

wc
j

(
xLi,j − x̄Lj

)
= 0 (36)

First, let us analyze
∑

i∈S
∑m

j=1 wc
j

(
xLi,j − x̄Lj

)
:

∑
i∈S

m∑
j=1

wc
j

(
xLi,j − x̄Lj

)
=

m∑
j=1

∑
i∈S

wc
j x

L
i,j −

m∑
j=1

∑
i∈S

wc
j x̄

L
j (37)

=

m∑
j=1

wc
j Nx̄Lj −

m∑
j=1

Nwc
j x̄

L
j

= 0.

Using this in Eq. (36) gives the optimal value for bc (Hastie et al.,
2009):

bc =
1
N

∑
i∈S

yi. (38)

e therefore center the input and output values of the linear
egression as:
c
i,j = xLi,j − x̄Lj , (39)

c
i = yi −

1
N

∑
i∈S

yi. (40)

his gives the following Lagrange function:(
λ, bc, wc

j , j = 1, 2, . . . ,m
)

= L
(
λ, wc

j , j = 1, 2, . . . ,m
)

(41)

=

∑
i∈S

⎛⎝yci −

m∑
j=1

wc
j x

c
i,j

⎞⎠2

+ λ

⎛⎝ m∑
j=1

(
wc

j

)2
−

1 + m
2

⎞⎠ .
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In matrix form, this is:

L
(
λ,wc)

=
(
yc − xcwc)T (yc − xcwc)

+ λ

((
wc)T (wc ) −

1 + m
2

)
,

(42)

with yc a N × 1 vector with the centered true label of all training
samples in S, wc a m× 1 vector with the centered weights of the
last layer L, and xc a N×m matrix with the centered hidden states
for each training sample and each input node.

A.0.2. Solution of the Lagrange function using the singular value
decomposition

To solve the Lagrange function, we solve the system of equa-
tions:

∇wcL(λ,wc) = 0, (43)

∇λL(λ,wc) = 0, (44)

where 0 is a m × 1 vector with zeros. Given λ, we solve the
first gradient ∇wcL(λ,wc) = 0 with respect to wc . Solving this
radient gives the well-known solution of Ridge linear regres-
ion (Hastie et al., 2009):

∇wcL(λ,wc) = 0 (45)

− 2
(
xc
)T (yc − xcwc)

+ 2λwc
= 0

wc
=

((
xc
)T xc + λI

)−1 (
xc
)T yc,

with I a m × m identity matrix.
We then use the singular value decomposition to solve the

gradient with respect to λ as well. The singular value decompo-
sition of xc is (Poole, 2011):

xc = UDVT , (46)

where U is an orthogonal N × N matrix (so U−1
= UT ) and V

is an orthogonal m × m matrix (so V−1
= VT ). Moreover, D is

a N × m ‘‘diagonal’’ matrix, with the singular values s of xc on
the diagonal (Poole, 2011). Using this decomposition, the optimal
value for the centered weights wc becomes (Hastie et al., 2009):

wc
=

((
xc
)T xc + λI

)−1 (
xc
)T yc (47)

=
(
VDTDVT

+ λVVT )−1 (UDVT )T yc
=
(
V
(
DTD + λI

)
VT )−1 VDTUTyc

= V
(
DTD + λI

)−1 DTUTyc

The sum of the centered weights (wc)T wc thus becomes:(
wc)T wc

=

(
V
(
DTD + λI

)−1 DTUTyc
)T

V
(
DTD + λI

)−1 DTUTyc

(48)

=
(
yc
)T UD (DTD + λI

)−2 DTUTyc .

Let b = UTyc , a vector of size N × 1. Let pi denote the ith
element of a vector p, and let si be the ith singular value of xc .
Then, it follows that:(
wc)T wc

= bTD
(
DTD + λI

)−2 DTb (49)

=

m∑
j=1

b2j s
2
j

(s2j + λ)2
.

ow,
m∑ b2j s

2
j

(s2 + λ)2
=

1 + m
2

, (50)

j=1 j
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t
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w

T

hich can be solved numerically.

ppendix B. Solution of the minimization problem with a
ean weight of zero (Eq. (21) ) for λ

In this Appendix, we solve the constrained linear regression
roblem of Eq. (21) to find the optimal value of λ. The Lagrange
unction L(λ1, λ2, bL, wL

j , j = 1, 2, . . . ,m) of this problem is:

(
λ1, λ2, bL, wL

j , j = 1, . . . ,m
)

=

∑
i∈S

⎛⎝yi − bL −

m∑
j=1

wL
j x

L
i,j

⎞⎠2

+ λ1

⎛⎝ m∑
j=1

(
wL

j

)2
−

1 + m
2

⎞⎠+ λ2

m∑
j=1

wL
j . (51)

We scale the hidden states and true labels in the same way as in
Appendix A, Eq. (39) and (40):

L
(
λ1, λ2, bL, wL

j , j = 1, 2, . . . ,m
)

= L
(
λ1, λ2, w

c
j , j = 1, 2, . . . ,m

)
(52)

=

∑
i∈S

⎛⎝yci −

m∑
j=1

wc
j x

c
i,j

⎞⎠2

+ λ1

⎛⎝ m∑
j=1

(
wc

j

)2
−

1 + m
2

⎞⎠+ λ2

m∑
j=1

wc
j .

n matrix form, this normalized Lagrange function becomes:(
λ1, λ2,wc)

=
(
yc − xcwc)T (yc − xcwc)

+ λ1

((
wc)T wc

−
1 + m

2

)
+ λ21Twc, (53)

ith 1 a vector with ones of size m × 1.

B.0.1. Solution of the Lagrange function with a mean weight of zero
To solve the Lagrange function, we solve the system of equa-

tions:

∇wcL
(
λ1, λ2,wc)

= 0, (54)

∇λ1L
(
λ1, λ2,wc)

= 0 (55)

∇λ2L
(
λ1, λ2,wc)

= 0 (56)

iven λ1 and λ2, we solve the first gradient ∇wcL(λ1, λ2,wc) = 0
with respect to wc :

∇wcL
(
λ1, λ2,wc)

= 0 (57)

⇒ − 2
(
xc
)T (yc − xcwc)

+ 2λ1wc
+ λ21 = 0

⇒wc
=

((
xc
)T xc + λ1I

)−1
((

xc
)T yc −

1
2
λ21

)
.

We again use the singular value decomposition of xc (Eq. (46))
o solve the Lagrange function for λ1 and λ2. First, we rewrite the
ptimal value of wc :

c
=
(
VDTDVT

+ λ1VVT )−1
((

UDVT )T yc −
1
2
λ21

)
(58)

=

(
V
(
DTD + λ1I

)−1 VT
)(

VDTUTyc −
1
2
λ21

)
= V

(
DTD + λ1I

)−1 DTUTyc −
1
2
λ2V

(
DTD + λ1I

)−1 VT1.

We use this result to analyze ∇λ2L (λ1, λ2,wc) = 1Twc and to
find the optimal value of λ . Let vs be the sum of the jth column
2 j o

592
of V. It then follows that:

1Twc
= 1T

(
V
(
DTD + λ1I

)−1 DTUTyc −
1
2
λ2V

(
DTD + λ1I

)−1 VT1
)

=

m∑
j=1

sjvs
j bj

s2j + λ1
−

1
2
λ2

m∑
j=1

(vs
j )

2

s2j + λ1
.

This expression should equal zero (Eq. (55)):
m∑
j=1

sjvs
j bj

s2j + λ1
−

1
2
λ2

m∑
j=1

(vs
j )

2

s2j + λ1
= 0

⇒
1
2
λ2 =

∑m
j=1

sjvsj bj
s2j +λ1∑m

j=1
(vsj )

2

s2j +λ1

.

Using this result, we now analyze ∇λ1L (λ1, λ2,wc) = (wc)T

wc
−

1+m
2 . First, we derive that:(

wc)T
· wc

=

((
yc
)T UD (DTD + λ1I

)−1 VT

−
1
2
λ21TV

(
DTD + λ1I

)−1 VT
)

(59)(
V
(
DTD + λ1I

)−1 DTUTyc

−
1
2
λ2V

(
DTD + λ1I

)−1 VT1
)

=
(
yc
)T UD (DTD + λ1I

)−2 DTUTyc

− λ2
(
yc
)T UD (DTD + λ1I

)−2 VT1

+

(
1
2
λ2

)2

1TV
(
DTD + λ1I

)−2 VT1

=

m∑
j=1

b2j s
2
j(

s2j + λ1
)2 − λ2

m∑
j=1

bjsjvs
j(

s2j + λ1
)2

+ (
1
2
λ2)2

m∑
j=1

(
vs
j

)2(
s2j + λ1

)2
=

m∑
j=1

(
1
2λ2v

s
j − bjsj

s2j + λ1

)2

.

his expression should equal 1+m
2 , i.e.,:

m∑
j=1

(
1
2λ2v

s
j − bjsj

s2j + λ1

)2

=
1 + m

2
. (60)

Given the optimal value for 1
2λ2 in Eq. (59), we can solve this

numerically to find the optimal value for λ1. Using this, we can
directly calculate the optimal value for λ2 from Eq. (59).

Appendix C. Derivation of the constraints on the weights fol-
lowing Glorot and Bengio (2010)

In this Appendix, we derive the same constraints on the
weights as in Section 2.2. However, we now follow the same
derivation, with the same assumptions, as in Glorot and Bengio
(2010).

Requirement 1 : Var
(
ŷ
)

= Var
(
xL
)

We first derive the variance of yL in terms of the variance
f xL following Glorot and Bengio (2010). In contrast with our
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erivation, where we regarded each weight as a constant num-
er, we now regard each weight as a random variable. Let wL

epresent the random variable of any element in wL. Four key
ssumptions are made in the derivation in Glorot and Bengio
2010): (i) the hidden states xL are independent and identically
distributed, (ii) the weights wL

j , j = 1, 2, . . . ,m are independent
and identically distributed, (iii) the hidden states xL are indepen-
dent of the weights wL, and (iiii) E[xl] = 0, due to the considered
activation function. Note that only the first assumption is made
in our derivation as well. Then, it holds that:

Var
(
yL
)

= Var

⎛⎝bL +

m∑
j=1

wL
j x

L
j

⎞⎠ (61)

= m · Var
(
wLxL

)
= m

(
Var

(
wL)Var (xL)+ E

[
wL]2 Var (xL)

+Var
(
wL)E [xL]2)

= m
((

Var
(
wL)

+ E
[
wL]2)Var (xL))

= mE
[(

wL)2]Var (xL) .
Note that we deviate here from Glorot and Bengio (2010), since
we do not assume that the expected value of a weight is zero.
This gives:

mE
[(

wL)2]
= 1. (62)

We similarly derive that the sum of the squared weights equals
1 in Section 2.2.

Requirement 2 : Var
(

∂Loss
∂yL

)
= Var

(
∂Loss
∂yL−1

)
In Section 2.2 we derived that:

∂Loss
∂yL−1

j

≈
∂Loss
∂yL

wL
j .

We now additionally assume, following Glorot and Bengio (2010),
that the weights of the last layer and the gradient ∂Loss

∂yL
are

ndependent of each other, and that the variance of ∂Loss
∂yL−1

j
is the

ame for each node j ∈ {1, 2, . . . ,m}. This gives:

ar
(

∂Loss
∂yL−1

)
= Var

(
∂Loss
∂yL

wL
)

(63)

= Var
(
wL)Var(∂Loss

∂yL

)
+ E

[
wL]2 Var(∂Loss

∂yL

)
+ Var

(
wL)E[∂Loss

∂yL

]2
=

(
Var

(
wL)

+ E
[
wL]2)Var(∂Loss

∂yL

)
= E

[(
wL)2]Var(∂Loss

∂yL

)
.

t thus follows that:[(
wL)2]

= 1. (64)

We similarly derive that the sum of the squared weights is m in
Section 2.2.

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.neunet.2023.07.035.
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