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Summary

Mangroves trap sediment and are the first coastal defence line for many coastal areas. Unfortunately, man-
grove coasts worldwide are eroding due to deforestation, exposing local communities to flood hazards. In
Demak, Indonesia, a Building with Nature approach was chosen to counteract erosion by rehabilitating man-
groves. Permeable dams were built on the foreshore to attenuate waves and restore the sediment balance.
The dams have increased the bed level locally and mangroves expand after construction. However, juvenile
mangroves did not survive due to subsidence rates in the area. A new project called MuMaCo (Mussels as
Mangrove facilitators for Coastal defence) is launched to integrate mussel aquaculture into the mangrove
rehabilitation project in Demak. Mussels increase the roughness and diameter of the bamboo poles, which
could increase their wave attenuation capacity. Moreover, mussel culture gives the local communities an eco-
nomic incentive to sustain the structures. The effect of bamboo structures on waves and currents depends on
the hydrodynamic forces acting on the poles, and such processes could be affected by the presence of mus-
sels. This thesis describes and quantifies how mussels’ growth influences the forces acting on bamboo poles.
Small-scale experiments are performed in the wave flume of the Delft University of Technology on a scale of
1:3 and 1:6. The physical model consists of two 3D-printed semi-circular cylindrical shells with realistic mus-
sel growth. The shells are mounted around vertical aluminium cylinders with screws. The model is based
on an existing model from literature and improves it by using a mussel shape, distribution and orientation.
Three different models are designed, namely a mussel with a marketable size for a scale of 1:6 (’Standard mus-
sel’) and a marketable size for a scale of 1:3 (’Large mussel’) and a half-grown size for 1:3 (’Medium Mussel’).
The physical models were used for experiments with steady flow and waves. The steady flow experiments
cover a range of Reynolds (Re) numbers between 103 and 104 to seek the drag coefficient crisis. Single mussel
covered cylinders for both scales are compared to smooth cylinders and cylinders with an equivalent diame-
ter. For the wave experiments, cnoidal waves with Keulegan-Carpenter (KC ) numbers ranging from 3 to 113
that correspond with measured waves in Demak are chosen. Moreover, only mussel covered cylinders are
compared to a smooth cylinder for a scale of 1:6. Fenton theory is used to define the paddle motion of the
wave generator to create cnoidal waves. During the experiments, the flow velocity, force, and surface eleva-
tion are measured, and the drag and inertia coefficients are obtained with the help of the Morison equation.
The drag coefficient shows a clear relationship with the Reynolds numbers for steady flow. The drag coeffi-
cient exponentially decrease for Re < 2000 and stabilizes for Re>2000. Although the drag coefficients display
the same qualitative behaviour as in other studies in the literature, the drag coefficients of the smooth cylin-
der are more than 40 % larger than in the literature. This is probably due to large variations in the offset of
the velocity meters (EMS) during the experiments. The large mussels show higher drag coefficients than the
smooth cylinder. There is no clear difference between the medium mussel, standard mussel, and smooth
cylinder. Also, the graphs of the drag coefficients do not show any evidence of the drag crisis. For the wave
experiments, the drag coefficients show good correspondence to other studies in the literature, but the iner-
tia coefficients are a factor two larger than expected for smooth cylinders. Treating the peak and trough of
the cnoidal wave as individual sinusoidal waves shows similar results and suggest that cnoidal waves can be
represented by KC numbers, as it is done for linear waves. The best fit to the literature values was found by
solving the Morison equation with the measured force with the depth-integrated velocity squared and accel-
eration from the Fenton theory. This suggests that the results of the wave experiments have been uncertain
due to inaccuracies in the EMS recordings. All three methods show no difference between the smooth and
mussel covered cylinders. This thesis presents a method to schematize mussels for laboratory experiments
and provides a qualitative comparison of the forces acting on poles with and without mussels. For future
experiments, it is recommended to use a scale of 1:3 because it showed significant differences between the
smooth and mussel covered cylinder. Moreover, more than one type of sensor should be used to measure the
velocity, as the inaccuracies in the results are likely to stem from the EMF recordings. Defining the changes
in the drag coefficient with and without mussels would enable quantifying how much extra wave dissipa-
tion is provided by mussels. This would be helpful to study the economic feasibility of integrating mussel
aquaculture in structures for mangrove restoration.
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Nomenclature

Difference between the target and the measured wave conditions [-]

fv Vortex shedding frequency [Hz]

v Kinematic viscosity [Pa*s]

ϵ Relative error [-]

ηW G Surface elevation measured by the wave gauge [m]

∂u
∂t Flow acceleration[ m/s2]

λ Wavelength [m]

F f Friction force [N]

F p Pressure force [N]

URMS Root means square velocity [m/s]

U Mean velocity [m/s]

φ Location along the perimeter [rad]

ρw Density of water [kg/m3]

τ0 Wall shear stress [N/m2]

A Cross-sectional Area [m2]
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1
Introduction

1.1. Problem indication
Since 2013, a public-private partnership coordinated by EcoShape has been working on rehabilitating the
coast at Demak (Wilms et al., 2019). Demak is a district on the northern coast of Java consisting of muddy
shores. Mangroves largely covered the coastal region of the district by the 1800s, but they were almost defor-
ested for shrimp farming during the 20th century. Mangrove forests provide coastal protection due to their
ability to attenuate waves and trap sediment (van Wesenbeeck et al., 2015), illustrated in Figure 1.1. However,
in combination with subsidence rates up to 16 cm/year due to groundwater extraction, mangrove loss has
resulted in severe erosion (Winterwerp et al., 2020). Besides the conversion to ponds and land subsidence,
erosion is also caused by river canalization, coastal infrastructure construction, and the use of mangroves for
timber. Unfortunately, Demak is not an isolated case, and mangroves-coasts all over the world are eroding
due to deforestation. With climate change and rising sea levels, protecting the coastal areas from natural
hazards becomes increasingly important (Wilms et al., 2019).

Mangroves have been planted in areas where natural forests have been either removed or damaged, but
these effects have not always been successful. Planting efforts failed due to not correctly understanding the
system and using inappropriate species and sites (Lewis, 2001; Primavera and Esteban, 2008). The lessons
learned are that successful rehabilitation of mangroves is a combination of understanding the ecological
system, patience and persistence, and involvement of the local communities (Winterwerp et al., 2020). In-
volvement of the local communities is vital as socio-economic incentives from activities such as aquacul-
ture threaten the forest. In addition, by restoring the mangroves, there will be an inevitable loss of intensive
aquacultures (Winterwerp et al., 2005). Therefore, it is vital to have an alternative that does not harm the
mangroves to ensure them long-term and give the local community an economic incentive to sustain them
(van Wesenbeeck et al., 2015).
In Demak, a Building with Nature approach was chosen for the muddy coasts to counteract erosion, re-
habilitating the mangroves instead of constructing conventional hard structures. Mangrove deforestation
disturbed the sediment balance, causing steeper slopes on the foreshore. Permeable dams of bamboo and
brushwood were constructed to restore this balance (Winterwerp et al., 2020). The dams attenuated wave
energy while also allowing the sediment influx by the tide. Hence, creating milder slopes and giving man-
groves a calm environment to naturally expand. The pilot structures, built in 2013, showed a significant bed
level rise and expansion of the mangroves after the construction. Unfortunately, juvenile mangroves did not
survive, likely due to the high subsidence rates of the area. Despite this, permeable dams were applied to
more locations (Winterwerp et al., 2020).

Recent research by Gijón Mancheño et al. (2021a) found that rows of bamboo could be used as an al-
ternative to the brushwood. The conventional brushwood dams could be replaced by vertical poles, which
resemble the bamboo poles used for mussel aquaculture (NWO et al., 2017). Subsequently, a new project
called MuMaCo (Mussels as Mangrove facilitators for Coastal defence) was launched in Demak, integrating
mussel aquaculture into the mangrove rehabilitation project. Mussel aquaculture is a mangrove-friendly al-
ternative to shrimp farming, because it does not need building ponds, and it can take place in shallow marine
areas (Rejeki et al., 2021). The green Asian mussels, Perna Viridis, have already been grown at vertical poles
in Demak, and it is thus chosen as the species to be locally produced. The expectation is that the added
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2 1. Introduction

roughness and diameter of the mussels will increase the wave dissipation. The proposed structures consist
of vertical piles with a diameter of 15 cm and the poles will have a 25-30 cm diameter when covered. This will
be the first coastal defence line, as it is needed to be combined with other structures.

The waves in Demak are non-linear waves and fall in a cnoidal regime (Haage, 2018, Jansen, 2019). Waves
can be grouped in oscillatory flow regimes by the Keulegan-Carpenter (KC ) number. For drag dominated
waves (KC > 30) waves, the drag crisis can decrease the effect of mussel growth for specific Reynolds (Re)
numbers (Sumer and Fredsoe, 1997). This is not beneficial for the wave damping properties of the structures.
Therefore, research is required on which Re numbers are in the drag crisis, as this is not yet done for mussel
roughness.

The effect of mussels on poles is not as explored as mussels on longlines (Gieschen et al., 2021; Landmann
et al., 2019) and the seabed (Donker et al., 2013). It was confirmed that for seabed with mussels, the increase
of roughness indeed increases wave attenuation (Donker et al., 2013). Little is known regarding the wave
damping properties of mussel covered vertical poles. To facilitate the design of the structures, this study aims
to quantify the interaction between the poles and waves.

Figure 1.1: Coastal protection services offered by a mangrove forest consist of wave attenuation, soil reinforcement and sediment trap-
ping. (Gijón Mancheño et al., 2021b)

1.2. Objective and research questions
The objective of this thesis is to investigate the effect of mussel growth on wave attenuation by vertical poles.
The main research question of the thesis is:

How does the growth of the mussel, Perna Viridis, on vertical bamboo poles affect the physical pro-
cesses driving wave dissipation for different wave conditions?

Furthermore, the sub research questions are:

1. How can mussels in small-scale experiments be schematized?

2. What is the effect of mussels on the hydrodynamic forces of a vertical pole in a current?

3. Is the drag crisis likely to be relevant for poles with mussels in the field?

4. What is the effect of mussel on the hydrodynamic forces of a vertical pole in waves?

5. Can the drag coefficient of cnoidal waves be linked to the Keulegan-Carpenter number, as it is done for
the linear waves?

1.3. Research approach and thesis outline
With the complex geometry of mussel covered poles subjected to currents and waves in shallow conditions,
there is a need for experimental data to validate numerical models eventually. Therefore, it is chosen to
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produce data for currents and waves in a laboratory test using down-scaled models of the poles. Experiments
for single cylinders and mussel-covered cylinder are performed in the Hydraulic Engineering laboratory of
the Delft University Technology.

This thesis consists of a literature study and an experimental study. Chapter 2 describes the theoretical
background and the relevant literature for this thesis. It discusses the physical processes driving wave dissi-
pation and performed research on the effect of mussels growth. Next, in chapter 3, the design of the physical
model is presented and the laboratory experiments for the steady flow and waves are discussed. Each com-
ponent of the physical model is explained and it is shown how the physical model is constructed. The second
part of chapter 3 describes how the data is processed. Then chapter 4 shows the results of the experiments.
Lastly, chapter 5 and 6 present the discussion, conclusion and recommendation.

Figure 1.2: Visual overview of the report. The pink boxes represent the chapter where a sub-research question is answered. SRQ 1 is
answered in chapter 3. In chapter 4, sub-research question (SRQ) 2 and 3 are answered. Consequently, chapter 4 answers 4 and 5.

.



2
Theoretical background

This chapter describes the fundamentals of the interaction between a single vertical cylinder and its surround-
ing flow. Firstly, the flow and hydrodynamic forces acting on a cylinder in a steady flow are explained. Next,
the same is done for the cylinder in an oscillatory flow. Hereafter, the effect of roughness elements on the flow
and forces is discussed. This is followed by a section reflecting the mussels as roughness elements. At last, all
of the information gathered is applied to the situation in Demak. The section below describes the behaviour of
smooth cylinder, unless when indicated otherwise.

2.1. Steady flow around a cylinder
The presence of a cylinder in a current results in the formation of a boundary layer along the surface of the
cylinder. Through this layer, the flow velocity reduces from its undisturbed value to zero at the solid surface.
The flow characteristics at the boundary layer depend on the cylinder diameter and the flow velocity. This
dependency is usually represented using the dimensionless Reynolds numbers:

Re =U D/v (2.1)

Where U is the flow velocity, D is the diameter and v is the kinematic viscosity. Re represents the ratio of
inertial forces to viscous forces. The viscous force is the resistance of molecules on the surface of the cylinder
sticking to each other, while the kinetic force is the force due to the momentum of the flow. The viscous
forces are dominant for low Reynolds numbers, affecting a large area around the cylinder. However, when the
Reynolds number increases, the inertial forces become dominant. The viscous layer becomes thinner and
the boundary layer that develops along the perimeter tends to detach forming a turbulent wake.

Figure 2.1: The top view of the flow around a cylinder explains the boundary layer separation (Groh, 2016)

.

The development of the boundary layer is essential for vortex-shedding, and the process is described in
the figure2.1.

As the flow approaches the cylinder, it is stopped at the stagnation point, where it results in a locally
increased pressure. The Bernoulli equations state that the pressure decreases when the fluid accelerates.
Fluids flow are generally driven by a negative pressure gradient. At the side of the cylinder, the velocity is at

4



2.1. Steady flow around a cylinder 5

its maximum, and the flow slows down again, creating a positive pressure gradient, and the velocity gradient
reacts adversely. For circular cylinder at Re <5, the flow can overcome the negative velocity gradient and
follows the cylinder’s shape. However, the velocity gradient becomes so large for higher Reynolds numbers
that the flow velocity at a point (the separation point) becomes zero. Beyond this point, the flow separates,
and a re-circulation region is formed. For Re > 5, the vorticity in the boundary layer transforms the shear
layer into a vortex at both sides of the cylinder. This happens on both sides of the cylinder. For Re >40, the
vortices become unstable and interact with each other and start shedding.

Figure 2.2: Regimes of flow around a smooth, circular cylinder in a steady current (Sumer and Fredsoe, 1997)

Figure 2.2 displays the different regimes for cylinders with the corresponding numbers and terminology.
The shifting of the separation point to the rear side of the cylinder occurs when the boundary layer turns
turbulent for 3.0∗105<Re<3.5∗105. As a result, the vortices will interact over a smaller distance, producing a
smaller wake. The next section explains the consequence of this shift on the forces.

The vortex shedding frequency can also be used to characterise the flow regime, and it is expressed using
the Strouhall number:

St = fvD

U
(2.2)

Where St is the Strouhall number [-] and fv is the vortex shedding frequency in Hz. In figure 2.3, the influence
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of a smaller wake can be seen as the Strouhall number jumps from 0.2 to 0.45 with the Reynolds number
increasing above 3x105.

Figure 2.3: Regimes of flow around a smooth, circular cylinder in a steady current (Sumer and Fredsoe, 1997). Measurements from
Williamson (1989), Roshko (1960) and Schewe (1983).

Lastly, the same flow regimes can occur at different Reynolds numbers. This depends on whether the
cylinder has a rough or smooth surface or if the incoming flow is already turbulent upstream from the cylin-
der. Moreover, the shape of the emergence of an object has a significant influence on the hydrodynamics of
the flow.
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In the thesis, experiments are aimed to be in the sub-critical regime (i.e. for 300 < Re < 3∗105, see figure
2.2), as these are the conditions experienced by the structures in Demak. Thus the wake is fully turbulent, but
the boundary remains laminar, and the position of the separation point will be between the front and rear
sides of the cylinder. Therefore the wake will be relatively large.

2.2. Forces on a cylinder in a steady flow
The most important forces that act on a cylinder in a steady flow are the lift force and the drag force. The
lift force is defined as the force perpendicular to the mean flow direction and points sidewards for vertical
cylinders submerged in a horizontal flow. The lift force is generated in case there is a steady flow gradient.
The drag force acts in the direction of the flow, and it is a combination of the form drag due to the pressure,
and the friction drag, due to the wall shear stress. This is described with the following equation:

Fd = F p +F f =
∫ 2π

0
pcos(φ)r0dφ+

∫ 2π

0
τ0si n(φ)r0dφ (2.3)

Where F p is the pressure force, F f is the friction force, r0 the radius of the cylinder, φ the location along the
perimeter and τ0 the wall shear stress. The equation 2.3 makes it clear that the drag force changes along the
perimeter and that the force due to pressure and shear has a phase difference of 90 degrees. However, the
friction is often neglected for Re > 104 because it is a small part of the total drag force.

Equation 2.3 can be rewritten into equation 2.4, and with this step, the empirical non-dimensional drag
coefficient is obtained.

C d = F d
1
2ρw AU 2

(2.4)

Where A is the cross-sectional area of a cylinder and ρw the density of water. The drag coefficient is a function
of the Reynolds number, as shown in figure 2.4. The drag coefficient decreases with the increasing Reynolds
number, until it stabilizes at a value of Cd =1 for Re = 1000. However, a sudden dip in the drag coefficient for
3.5∗105 < Re < 1.5∗106 is noticed. The sudden dip is the drag coefficient crisis and corresponds with the
earlier mentioned shifting of the separation point. The flow restores for higher Reynolds numbers, and the
wake slowly increases. This increases the drag coefficient. This critical moment covers a small region but has
a large effect on the resistance of a vertical pole in the flow.

Figure 2.4: Drag coefficient for a smooth cylinder as a function of Reynolds number (Sumer and Fredsoe, 1997)

The drag coefficient can thus be obtained using equation 2.4 with force and velocity measurements. Con-
sequently, multiple researchers fitted empirical functions through their experimentally found drag coeffi-
cients. Several empirical equations for a single smooth cylinder for Re<105 are summarized in the table 2.1.
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Table 2.1: Empirical relationships between the drag coefficient and the Reynolds number for smooth vertical cylinders.

Author equation for Cd

White, (1994) Cd = 1+10.0Re−
2
3

Munson et al.(1994 Cd = 5.93p
(Re)

+1.17

Ameryoun et al.(1994) Cd = 0.7152+ −2.9∗10−4

k
Re +4.12∗10−4

2.3. Forces on a cylinder in oscillatory motion
The force in the in-line direction of an oscillatory motion is often described with the Morison equation.
For a stationary cylinder in oscillatory flow, the total force has two additional components associated with
the flow acceleration. These are the hydrodynamic-mass force and the Froude-Krylov force, whereby the
hydrodynamic-mass force represents the force experienced by the cylinder to accelerate the surrounding
fluid (Sumer and Fredsoe, 1997). Additionally, the Froude Krylov is an extra force due to the pressure gradient
coming from the acceleration. The total force can thus be described as (Morison et al., 1950):

F = 1

2
ρCd DU |U |+ρCm A

∂U

∂t
+ρA

∂u

∂t
(2.5)

where F is the in-line force, Cm is the hydrodynamic mass coefficient, ∂u
∂t is the flow acceleration and the

additional forces are in the same order as named before.
The total in-line force can rewrite into the following often-used equation:

F =
∫ η

−h
(

1

2
ρCd DU |U |+ρCM

πD2

4

∂U

∂t
d z) (2.6)

Where h is the water depth, η is the surface elevation, CM = Cm +1 is the inertia coefficient and the z the
height over the water column. The hydrodynamic-mass and Froude-Krylov components are grouped using
the inertia coefficient.

From equation 2.6 and figure 2.5, it can be seen that the inertia and drag forces are not in phase. However,
the phase difference between the velocity and the force will vary depending on the wave conditions, and
on the relative magnitude of the inertia and drag components. For many researchers, the aim is to see the
maximum force on a cylinder to estimate the stability of structures.

In literature, it can be seen that there is a large scatter in determining the coefficients (Wolfram and
Naghipour, 1999, Journée and Massie, 2001). Wolfram discussed different methods to determine the Cd and
CM . By comparing eight methods based on time-domain and frequency domain techniques, he suggests
to use the least square method was the best (Wolfram and Naghipour, 1999). With this method, the coeffi-
cients were determined on the principle that the mean-squared difference between the measured data and
the Morison equation is as small as possible.

2.4. Flow around a cylinder in oscillatory flow
In wave, the wake development depends on how long the wave excursion is compared to the cylinder’s size.
The Keulegan-Carpenter number (KC number) groups oscillatory flow regimes similar to the Reynolds num-
ber. However, although KC influences the flow regimes in wave flows, the forces acting on the cylinder also
remain dependent on Re. The KC number is described as:

KC = UmTw

D
(2.7)

Um is the maximum velocity and Tw is the wave period. The KC number describes the ratio of drag and
acceleration forces assuming that the acceleration is U /T . For low KC numbers, the orbital motion of water
is small compared to the diameter, and inertial effects are more important than the drag component of the
force. However, for high KC numbers, the orbital excursion is much larger than the cylinder diameter, and
the drag forces dominate the total force. The flow regimes also depend on the Reynolds number, so the KC
regimes are not fixed.
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Figure 2.5: The total force in oscillatory flow (Sumer and Fredsoe, 1997)

More vortices are shed for higher KC numbers. In oscillatory flows, the flow reverses and vortices are shed
every half cycle. The first regime is called the single pair regime, and it sheds in the direction perpendicular
to the flow. Every following regime has an extra pair of vortices. Thus, naturally, the second regime is called
the double-pair regime. However, it now sheds only a 45-degree angle to the flow direction. Subsequently,
the next regime is the three-pair regime and so on. Thus, the higher the KC number, the more vortices the
flow shed.

This thesis investigates with a broad range of KC numbers 3− 113, to capture the complete transition
between inertia and drag dominated conditions. This should give more information on how the drag coeffi-
cients also behave in the drag dominated regimes.

2.5. The effect of roughness elements
Roughness elements on the surface of the cylinder affect the flow regime and, consequently, the forces on the
cylinder. In figure 2.6, a smooth cylinder is compared to a rough cylinder for a steady flow. Higher roughness
results in more significant drag coefficients and a shift of the drag coefficient crisis towards lower Reynolds
numbers. The added roughness causes an earlier transition to a turbulent boundary layer and a smaller
angular location of the separation. Therefore, the wake is also more extensive than for a smooth cylinder, so
the dip in the drag coefficient is less deep.

For the oscillatory motion, CM does not increase with increasing roughness. Sarpkaya (1977) concluded
from comparing different research that not at every Reynolds number, the effect of roughness can be seen
on the drag and flow characteristics. Moreover, the drag coefficient for oscillatory motion is higher than for
steady flow (Marty et al., 2021; Sarpkaya, 1977).
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Figure 2.6: The drag coefficient for a smooth and rough cylinder as a function of Reynolds number. Measurements by Wieselberger for
40 < Re < 50x105 and Schewe (1983) for Re > 105. The graph is of Schlichting (1955)

In literature, larger roughness elements than in figure 2.4 can be seen in marine growth applied to offshore
structures (Ameryoun et al., 2019; Marty et al., 2021; Page and Hubbard, 1987). Natural roughness elements
can be schematized in different ways. For example, Wolfram and Naghipour schematized marine growth as
pyramids. Marty et al. (2021) used a more realistic model. An interesting simplification they used for their
realistic modelling is that the lower part of the mussel can be modelled as a closed surface, as the mussels
create a compact superimposed layer (Marty et al., 2021). Moreover, they concluded that most hydrodynam-
ical tests over-simplify the shape of marine growth, and when it is more realistic, the exact shape is not well
documented. Therefore, they insist that future research precisely document the relative roughness, shape,
organization, and areal density.

Figure 2.7: Simplification for realistic modelling of mussels by Marty et al., 2021. K represents the height of the roughness element, S the
height of the mussel and l the width of the mussel. The numbers are typical dimensions of the research of Marty et al., 2021
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Table 2.2 summarizes the drag coefficient from the literature.

Author Marty et al., 2021 Marty et al., 2021 Wolfram and Naghipour, 1999 Wolfram and Naghipour, 1999 Nath, 1982
Flow Steady flow Waves Waves Waves Waves
Roughness shape Realistic Realistic Pyramids Pyramids Cones
Relative roughness 0.091 and 0.136 0.091 and 0.136 0.038 0.038 0.1
Conditions 104 <Re< 3∗105 KC = 3 KC = 0.2-17.5 KC = 0.4-37.9 KC=5 and KC = 12
Cd 1.05 and 1.2 1.3 and 2.1 1.88 1.95 Unknown
CM N/A 1.4 and 1 2.08 1.91 2.8 and 2.5

Table 2.2: Drag and inertia coefficients for marine growth from literature

In summary, roughness causes a larger drag coefficient for an oscillation motion. However, the previous
studies covered relative roughness which were much smaller compared to the situation of Demak or cov-
ered limited KC range. Thus, the effect of growing mussels on the bamboo poles cannot solely be predicted
based on the conditions stated in the literature. Therefore, experiments are needed with the accurate relative
roughness, namely of the green Asian mussel on bamboo poles, for a large range of KC numbers.

2.6. Waves and wave conditions in Demak
Alferink (2022), showed that the data of Wave Watch II agrees with offshore measurements collected by a buoy
in Demak. Here, the Wave Watch III measurements are propagated with shoaling and refraction until a water
depth of 1.5 m, in order to estimate the flow characteristics at the potential location of a structured with mus-
sels. The buoy is located 5.5 km from the coast at a water depth of 12 meters. The waves are propagated to the
water depth at the structures using shoaling and breaking. Figure 2.8 shows the significant wave heights at the
structure during ten years. The breaking of the waves limits the wave height. Therefore, the most significant
wave height will be 1.2 meters at a water depth of 1.5 m. It becomes clear that the most extreme wave heights
can be seen from November until April. This coincides with the rainy season, monsoon, between December
and April on the north side of Java. Figure 2.9 shows the Reynolds numbers that are seen in the area. They
range from zero to 20 000. Lastly, figure 2.11 shows the kd number, which is the wave number times the water
depth. The kd numbers define the different water regions. It becomes clear that the numbers vary around
0.5 and 2. This means that the waves are in an intermediate regime.

In figure 2.13 the KC numbers are plotted with the wave theories. Figure 2.12 makes clear that the waves
are primarily situated in a regime with cnoidal waves.
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Figure 2.8: Hm0 over ten years at the structures in Demak. Data of
Wave Watch III.

Figure 2.9: The Reynolds numbers over ten years at the structures in
Demak. Data of Wave Watch III.

Figure 2.10: The kd numbers over ten years at the structures in De-
mak. Data of Wave Watch III.

Figure 2.11: The wave direction in degrees over ten years at the struc-
tures in Demak. Data of Wave Watch III.
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Figure 2.12: Overview of validity region of the wave
theories (Le Méhauté, 1976)

Figure 2.13: The overview of the wave theories with the
propagated wave conditions in Demak.

2.7. Cnoidal waves
Cnoidal waves are characterized by sharp wave crests and shallow troughs. Therefore, the waves are non-
linear and can not be approached with linear wave theory. Theories by Stokes (1847), Dean (1965) and Ko-
rteweg and the Vries (KdV) (1895) deal with non-harmonic waves. Theories by Stokes and Dean approximated
these waves by adding high-order harmonics to a harmonic wave in successive and simultaneously order, re-
spectively, including corrections dependent on the wave steepness. However, these theories are only applica-
ble in deeper waters. Moreover, Fourier approximations methods, used by Dean, to approach the wave shape
require computationally-expensive matrix techniques (Fenton, 1999). The Kortweg and the Vries, also called
the cnoidal theory, is applicable for waves in shallow water. It is similar to the previous theories, however the
basis of the KdV theory is a cnoidal wave and the corrections are applied to account for finite-depth effects
(Holthuijsen, 2007). Stokes, Dean and cnoidal wave theories are thus not accurate for all waves. Fenton re-
viewed the existing theories and found an approach that was applicable over a wide range of waves. Instead
of expressing the series for velocity in terms of relative wave height, it was expressed in terms of shallowness
(Fenton, 1999) and the approach used a fifth order solution.

The Ursell number classifies how non-linear a wave is and is expressed with the following equation:

UUrsell = Hλ2/h3 (2.8)

Where H is the wave height and λ is the wavelength.
The Ursell number also gives conditions as to which theory is applicable for the wave. For example, if

NUr sel l > 26 the cnoidal theory is best applicable and for NUr sel l < 10 the theory of Stokes (Holthuijsen, 2007).



3
Methodology

An experimental study was done on how the growth of the mussel, Perna Viridis, on vertical bamboo poles
affects physical processes that influence wave dissipation for various wave conditions. Single smooth cylin-
ders were compared to various single cylinders covered with 3D-printed semi-circular shells with mussels for a
steady flow and waves. The laboratory set-up and data processing are described below.

3.1. Physical model
Each component of the physical model is discussed in this section. First, the laboratory model was scaled
so that the physical processes in the field and the experiments are comparable. The scaling followed the
rules presented in Section 3.1.1. Next, the construction of the physical model and its implementation in the
flume is shown in Section 3.1.2. Then, the concept of representing the mussels using semi-circular shells is
introduced. In the subsequent paragraphs, the details on the dimensions of the shells are elaborated on. At
last, the final design is presented.

3.1.1. Scaling
To reconstruct the situation in the field in the flume, the physical model needs to be scaled. The scaling
principle prescribes that the dimensionless Froude number should be the same in the field and in the flume.

F r = u√
g L

(3.1)

Where g is gravitational acceleration and L is the characteristic length.
With the help of a factor n, the ratio between the length of the prototype (p) and the model (m), the time,

velocity and force can be scaled. This is done according to the following equations:

p
n = tp

tm
(3.2)

p
n = up

um
(3.3) n3 = Fp

Fm
(3.4)

The effect of the growth of mussels on vertical poles is studied for a steady flow and waves. The exper-
imental program for waves covers a broad range of KC numbers ranging from inertia to drag-dominated
conditions, always remaining in the turbulent flow regime inside the cylinder wake as stated in section 2.4).
For the high KC number, the Re number decreases. The Re number is directly proportional to the length,
whereas the KC number is inversely proportional to it. This means that very high diameters result in turbu-
lent conditions (high Re numbers) but may fall in the inertial range (low KC numbers). The bamboo poles
have a diameter of 15 cm in the field. After iterations and considering all relevant aspects, it was decided
to apply a scale of 1:6. Since the smallest mussels with the 1:6 scale were too small to be printed (as they
were below the minimum resolution of the 3D printer), a 1:3 scale was also applied to investigate the effect of
different mussel sizes.
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3.1.2. The base of the physical model

Figure 3.1: Overview of the cylinders used during the experiments with a 2, 2.5, 4 and 5 cm diameter. The cylinders with a scaling of 1:6
are included the red rectangle and with the scaling of 1:3 in the yellow rectangle. The part of the cylinder covered by mussel rings are
depicted with green squares.

The starting point of the physical model is a smooth single vertical cylinder with a length of 76 cm that is
rigidly fixed at the top. The cylinder mimics a bamboo pole without mussel growth as part of the proposed
aquaculture. It also is a base for the semi-circular cylindrical shells that simulate mussel growth. Therefore,
different cylinders account for smooth cylinders and as a base for mussel growth. The different diameters are
displayed in figure 3.1, from left to right in ascending order. For scale 1:6, cylinder 1 (with mussel growth)
is compared to cylinder 2 (smooth) and also to cylinder 3a (smooth). The latter has the same frontal area
as cylinder 1 and is added to verify the effect of roughness elements on the drag coefficient. For scale 1:3,
cylinder 3b is the base of the two sizes of mussels and is compared to the cylinder without mussels (cylinder
4). The equivalent diameter is not considered during the 1:3 scale experiments. Regarding the material, all
cylinders are made from aluminium except for cylinder 4. Cylinder 4 is made of PVC due to economic reasons.

3.1.3. Construction around the cylinder
The cylinder is rigidly fixed at the top to a force transducer, which is attached to a wooden construction (figure
3.2a). This contrasts with the field conditions, where the bamboo poles are drilled into the ground. The field
conditions could have been emulated using a false bed. However, this concept could not be implemented
as the force transducer was not water-resistant and the false bottom could have disturbed the flow. To avoid
modifying the flow conditions with the artificial bed, the force transducer was attached to the top rather than
at the base of the cylinder. Unfortunately, the 2.5 cm diameter cylinder vibrated heavily back and forth when
the velocity increased during the experiments. Therefore, the construction was adjusted by fixing the 2.5 cm
diameter cylinder rigidly at a lower point where the force was measured. This is depicted in figure 3.2b.

3.1.4. Realistic modelling of mussel growth
Semi-circular cylindrical shells (rings) with roughness elements are designed to model mussel growth. The
mussels are schematised by an impermeable layer (layer 2 in figure 3.4) and an outer roughness (layer 1 in
figure 3.4). Layer 2 is assumed impermeable since, in nature, the lower part of the mussels is so closely packed
that the flow can be considered negligible (Marty et al., 2021). The rings consist of a third inner layer, which
is added to make them rigid and re-use cylinders of previous experiments in the laboratory.

3.1.5. Mussel characteristics in Demak
To finish the design, the mussel dimensions had to be determined. Little information was available on the
average dimensions of the green Asian mussels (Perna Viridis) that grow in Demak. A mussel length of 5 cm
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(a) Cylinder fixed at the top (b) Cylinder fixed halfway

Figure 3.2: Two structures to make the cylinder rigidly fixed. Figure (A) was used for all cylinders except for the smooth cylinder with a
diameter of 2.5 cm.

Figure 3.3: Outline of the green Asian mussel. Region 1 is schematised as a roughness element, and region 2 is an impermeable layer.

Figure 3.4: The final design consists of (1) Roughness elements (2) Impermeable layer (3) Extra thickness. The 3D model is made in
Fusion360 by Flip Colin

.

was assumed, based on the target size for commercial purposes. Next, the width, the thickness and the height
of region 1 (in figure 3.3) were estimated by studying the proportion using six images. The numbers of the
schematisation used are presented in the table 3.1.

Table 3.1: The average dimension of the green Asian mussel

Scale Width [cm] Thickness [cm] Height of region 1 [cm]
1:1 (field) 2.4 1.5 2.8
1:3 0.8 0.5 0.93
1:6 0.4 0.25 0.47
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After that, the complete shape of the mussels was obtained from a 3D model in Sketchfab. The model
replicated an image already used to determine the average dimensions. Eventually, it was scaled to the aver-
age dimensions for the 1:3 and 1:6 scales for the final designs.

Next, the spatial distribution and orientation of the mussels were obtained by digitising images of mussel
poles from the field. Similar to research by Marty et al. (2021), the mussels were drawn as lines and thereby,
the major axis of inclination was derived for each mussel. It was concluded that 52 % of the time, the mussels
have a 45 °or 90 °difference with their neighbour and the rest of the time, the mussels have an average of ±10
°difference. Moreover, the inclination was influenced by neighbouring mussels. These three aspects were
incorporated in a Python script and randomly generated into a staggered pattern. Figure 3.5 illustrates the
process, and details are provided in the Appendix A.
In summary, the roughness elements were defined by the average dimensions, the realistic shape and the
pattern.

Figure 3.5: Process of obtaining the spatial distribution and orientation of the mussels with the help of images from the field.

3.1.6. Final design of the physical model
With the information of the previous section, the final designs for the 1:6 and 1:3 scale mussels are made. The
ring with a scale of 1:6 for the mussels is referred to as the "standard’ mussel ring. The two designs for 1:3
scaled mussels study the difference between a marketable mussel (5 cm in the field) and a not fully grown
mussel (2.5 cm in the field). From now on they are named, named ’Large-sized mussels’ and ’Medium-sized
mussels’ respectively. Each ring has a height of 24 cm, and the cylinder needs three rings stacked to fully cover
a cylinder. The dimensions of the designs are summarised in the table 3.2.

Table 3.2: The details on the final design of the mussel rings. The relative roughness (e) is calculated by dividing the roughness height by
2*superimposed layer + 2* extra layer thickness + the inner diameter.

Standard mussel Large sized mussels Medium sized mussels
Scale 1:6 1:3 1:3
Roughness height (1) 0.36 cm 0.73 cm 0.36 cm
Superimposed layer (2) 0.47 cm 0.93 cm 0.47 cm
Extra layer thickness (3) 0.25 cm 0.5 cm 0.5 cm
Distance between mussels 0.4 cm 0.8 cm 0.4 cm
Inner Diameter 2.0 cm 4.0 cm 4.0 cm
Relative roughness (k/D) 0.10 0.10 0.06

The final design was a 3D model in Fusion360 by Flip Colin. First, the mussel rings were printed with a 3D
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printer and multiplied with resin casting. The 3D printed model was used to cast a silicone mould, and with
Polyurethane, the rings were reproduced. This technique saved time and expense, as the 3D printer requires
2-3 days to print each (complete) ring. At last, the rings are attached with four screws around the cylinder.

Figure 3.6: Overview of the physical model process with the help of a 3D model and resin casting.
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Further information and impressions on the mussels’ design aspects are in appendix A.

3.2. Laboratory experiments
This section discusses the general wave flume properties, followed by the instrument set-up for data collec-
tion, the program and a description of the experiments done to answer the objectives.

3.2.1. General wave flume properties
The experiments were conducted in the wave flume of Delft University of Technology, which has a length of
40 m, a width of 0.80 m and a maximum water depth of 1.0 m. The outline of the flume is depicted in figure
3.7. A wave generator with reflection compensation (1) is placed at one side of the flume and a wave absorber
(2) at the opposite end. The flume can be filled and drained by the inlets and outlets (3 and 4) on each side.
During the experiments, the inlets and outlets remained closed. Metal plates with holes (5a and 5b) cover the
openings to the inlet and outlets (3a,3b,4a,4b) and ensure that water depth is the same everywhere. Moreover,
the metal plates (5a and 5b) prevent large objects from floating through the pipe system.

The wave flume was transformed in order to reproduce steady flow conditions. For this purpose, the wave
absorber and the metal plates were removed (5a and 5b). Otherwise, metal plate 5a would experience a large
upward force from the incoming force and metal plate 5b would disturb the outflow. In addition, a weir in
front of opening B was placed, providing the flume’s desired water depth. Lastly, the steady flow was created
by opening the inlet at the start of the flume (3a) and the outlets at the end flume (4b).

Figure 3.7: The outline of the wave flume:(1) Wave generator,(2) Wave absorber, (3ab) Inlets, (4ab) Outlets and (5ab) Metal plates

.

3.2.2. Data collection
The free surface elevation, the force acting on a cylinder, and flow velocities over depth are measured for
every test. This is done with the following instruments:

1. The wave gauges(WG) record the free surface elevation. The wave gauge consists of two parallel stain-
less steel rods that measure the conductivity of water, which depends on the water level. Therefore, the
output signal is in voltage and converted to the free surface elevation in meters with the calibration co-
efficient. These instruments were developed by Deltares and had an accuracy of 0.5 %(Deltares, 2021).
The location of the wave gauges is depicted in Section 3.2.4.

The wave gauge measures the incoming wave amplitude and reflected wave amplitude.

2. The electromagnetic velocity meters (EMF) record the velocity of the fluid and consist of two parallel
rods that measure voltage. The output is in volts and is converted to the flow velocity in m/s using the
calibration factors provided by Deltares.

The EMF measures the undisturbed velocity, which is used together with the force measurements to
determine the drag coefficient. the EMF is placed at 5 levels above the bed to create a velocity profile.
The EMF can not measure too close to the bed of the flume because the bed would disturb the electro-
magnetic field. Thus, the lowest point it could measure is z = 4 cm. This instrument has an accuracy of
0.5 %(Deltares, 2021).
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3. The force transducer (FT) is used to measure the drag force on the cylinder.

The force transducer is calibrated with a Newton meter. The calibration constant is the difference in
force divided by the output voltage. The AL10 C3SH 5e from Scaime is implemented with an amplifier
of 1000.

More details on the instruments are included in the Appendix B.

3.2.3. Experimental program
The experimental set-up starts by testing all cylinders (with and without mussels) in a steady flow. The exper-
iments cover Reynolds numbers between 1000 and 10 000 to study how mussels affect the drag crisis and the
magnitude of the drag coefficient of the poles.

The various Re numbers are obtained by adjusting the flow velocity in the flume. In doing so, the water
depth is set to 0.4 meters. Hence, the required velocity required a balance between the height of the weir and
the opening of the inlet. The test was repeated five times per velocity for 3 minute intervals. Each time, the
position of the EMF was changed over the depth to obtain the velocity profile. The EMF measured the velocity
at z = 0.04 m, z = 0.05 m, z= 0.10 m, z=0.20 m and z = 0.30 m. When the data was collected at all elevations,
the height of the weir was adjusted to obtain a new flow velocity. After a 5-minute period of flow adjustment,
force and velocity measurements were collected. This process was done for all flow conditions. Table 3.3
gives the experimental program of the steady flow. The outer diameter (Do was used as characteristic length
scale for Re to determine the flow velocity to be reached. The outer diameter is determined as the sum of the
thickness of layers 1, 2 and 3 for the mussels.

Table 3.3: A rough estimation of the flow velocity that needs to be reached to obtain Re = 103-104 is calculated with the outer diameter.
The steady flow is generated by manually adjusting a pump and it is not possible to set the flow to a certain velocity. Therefore a rough
estimation was made to create a range of flow velocities.

Cylinder Do [cm] (Estimated) U [m/s]
1. Smooth cylinder 2.5 0.04 - 0.4
2. Standard Mussels 4.16 0.024 - 0.24
3. Equivalent Diameter 4 0.025 - 0.25
4. Smooth cylinder 5 0.02 - 0.2
5. Medium sized mussels 6.66 0.015 - 0.15
6. Large sized mussels 8.32 0.012 - 0.12
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In the second part, the experiments are executed for various wave conditions. The waves cover a region of
KC numbers from 3 to 113. Two situations are tested, the cylinder with a diameter of 2.5 cm and the standard
mussels. To investigate the effect of the mussels, the wave height is scaled to obtain similar KC numbers for
the smooth cylinder and the cylinder with mussels. This is done according to the following equation:

aw,2 = aw,1
D1

D2
(3.5)

Where aw is the wave amplitude, D is the diameter of the cylinder, the subscript 1 represents the wave ampli-
tude and diameter for a situation without mussels, and the subscript 2 for a situation with mussels. Given the
wave amplitude and diameter for a smooth cylinder as input, the wave amplitude that would give the same
KC number for a cylinder with mussels is calculated with equation 3.5.

The tests were repeated six times per wave condition, varying the height of the EMF between the tests to
obtain the velocity profile. The water depth was 0.50 meters, and the velocity was measured at z = 0.04 m, z
= 0.05 m, z = 0.10 m, z = 0.20 m, z = 0.30 m and z = 0.40 m. Also, a 3-minute waiting time between the tests
was included to ensure that the water was still before starting a new experiment. The complete experimental
program of the waves is shown in table 3.4.

Cylinder H [m] Tw [s] h [m] KC number[-]
1.Smooth cylinder 0.04 1 0.5 5.2
2.Smooth cylinder 0.04 2 0.5 7.7
3.Smooth cylinder 0.04 3 0.5 11.0
4.Smooth cylinder 0.13 1.5 0.5 20.3
5.Smooth cylinder 0.13 2 0.5 25.2
6.Smooth cylinder 0.13 3 0.5 35.9
7.Smooth cylinder 0.13 4 0.5 47.1
8.Smooth cylinder 0.13 5 0.5 58.4
9.Smooth cylinder 0.13 6 0.5 69.75

10.Smooth cylinder 0.13 7 0.5 81.2
11.Standard mussel 0.066 1 0.5 5.2
12.Standard mussel 0.066 2 0.5 7.7
13.Standard mussel 0.066 3 0.5 11.0
14.Standard mussel 0.2163 1.5 0.5 20.3
15.Standard mussel 0.2163 2 0.5 25.2
16.Standard mussel 0.2163 3 0.5 35.9
17.Standard mussel 0.2163 4 0.5 47.1
18.Standard mussel 0.2163 5 0.5 58.4
19.Standard mussel 0.2163 6 0.5 69.75
20.Standard mussel 0.2163 7 0.5 81.2

Table 3.4: The tested wave conditions

3.2.4. Wave generation
The waves were created by defining the paddle motion using the script in Appendix C. The script is based
on method of Goring (1978), which states that velocity of the wave paddle should be the same as the depth
integrated velocity of the particles under the wave. The equation is as follows:

d X

d t
=Ud a(X , t ) (3.6)

Where X is the location of the wave paddle and Ud a is the depth averaged velocity. van Wiechen (2020)
showed that the Fenton theory predicts the celerity, surface elevation and the orbital velocities better than
the Korteweg-de Vries theory. Therefore, the script used the Fenton theory to obtain the paddle motion. First,
the script created cnoidal waves with small bumps in the troughs. This was caused by the Stokes drift of the
paddle motion. This was removed by subtracting the mean Stokes drift from the instantaneous velocities.
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3.2.5. Set-up wave flume
In figures 3.8 and 3.9, the set-up of the physical model and the instruments in the flume is shown for the
steady flow and wave experiments. The model was located at the end of the flume, since for the studied
Reynolds numbers the turbulent boundary layer is fully developed at a distance of x = 33 m from the start of
the flume (Appendix D). Contrary to the steady flow, the wave experiments were placed as close to the wave
generator as possible. This was done to prevent interference between the incoming waves and the reflected
waves from the back of the flume. Resulting from this the available time is the time a wave takes to reach the
wave absorber and back to the model.

Figure 3.8: The set-up of the flume for the steady flow experiments

Figure 3.9: The set-up of the flume for the oscillatory flow experiments
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3.3. Data processing of the steady flow
This section explains how the data was processed.

3.3.1. General outline for the steady flow
Figure 3.11 shows the flowchart for the data processing of the steady flow experiments. The first step was to
remove the offset of the instruments in still water. The offset of each sensor was determined by recording the
signal in still water, before the pump was started. After that, the output of the instruments was transformed
from voltage to the physical units using the calibration factor of each sensor. Next, the outliers were removed
with the interquartile range. The time series of different experiments had small variations in the total dura-
tion, and an interval of 3 minutes was selected for further analysis. The depth-ine velocity was determined by
combining the results collected at elevations of z = 0.04 m, z = 0.05 m, z = 0.10 m, z = 0.20 m and z = 0.30 m
from the bed. For each elevation, the mean velocity was calculated using an averaging interval equal to d t =
5 s. Averaging between d t = 5 - 2000 was also evaluated, but it had a negligible effect on the mean values (see
Appendix E). Then, the depth-integrated velocity squared was determined by integrating the velocity mea-
surements over the vertical. Since there were only five points velocity points, and they did not have an equal
separation over the water depth, the depth-integrated velocity squared was approached by discretisation and
weighing factors that accounted for the relative distance between points, as shown in figure 3.11. Lastly, the
drag coefficients were then obtained using Equation 2.3 with the measured mean force, the measured water
depth, the (equivalent) diameter and the depth-integrated velocity squared.
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Figure 3.10: The flow chart for the data processing of the wave experiments. With u the velocity, F the force and h is the water depth.

3.4. Data processing for the waves
This section explains how the raw data was processed for the wave experiments. It followed a similar proce-
dure as the steady flow data processing. However, the phase shifting of all the measurements to the location
of the cylinder was added.

3.4.1. General outline for the waves
Figure 3.11 shows the flowchart for the data processing of the wave experiments.
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Figure 3.11: The flow chart for the data processing of the wave experiments, since surface elevation, forces and velocities were measured
at different positions along the flume. With η representing the surface elevation, u the velocity, and F the force.

The processing started with transforming the output of the instruments to the correct unit with the help
of calibration factors and equations. Then, the offset was removed from the signal. The offset was calculated
as the average value over the first 5 seconds of the data when the water is still. Next, the large cylinder oscil-
lations were removed by applying a low-pass filter, further explained in section 3.4.2. The third step was to
phase shift all the measurements to the location of the cylinder. This was further explained in section 3.4.3.
Next, the time window for analysis was selected, considering the part of the time series where the waves were
fully developed, but wave reflection from the absorber had not yet reached the sensors. Therefore, the time
window varies from 1 wave to 4 wave periods, depending on the wave conditions. Once the signals were fil-
tered, and the period for analysis was selected, the depth integrated velocity squared and the depth integrated
acceleration were calculated for each time step. Since the measurements did not fully cover the water depth,
the velocity and acceleration were extrapolated at the bottom (z=0 m) and at the water surface (z=0.5 m). The
drag and inertia coefficient were then obtained by applying Equation 2.6, using two different methods, a least
square fit and the maximum likelihood method.

3.4.2. Low pass filter
A low-pass filter with a cut off frequency was applied to the signals of the ηW G s, UE MF s and FF T . The filter
was used to remove the oscillations due to the eigenfrequency of the cylinder in the force data and removed
the noise. The same filter conditions were used for all of the wave conditions. Therefore, the cut-off frequency
was based on the wave conditions with the most significant disturbance in the signal. This was the case for
the wave with a wave height of 13 cm and a period of 7 seconds (H013T7). Figure 3.12 presents the magnitude
spectrum and the chosen cut off frequency as a vertical dotted line at f = 0.05 Hz. Multiple wave conditions
were checked to see if the value did not suppress essential frequencies. This was not the case, as shown in
figures 3.13 and 3.14.

The effect of the low-pass filter was significant for the force signal of H013T7, but very small for the other



26 3. Methodology

Figure 3.12: The magnitude spectrum of
wave height of 13 cm and period of 7 sec-
onds (H013T7). The vertical line represents
the cut off frequency of 0.05 Hz.

Figure 3.13: The magnitude spectrum of
wave height of 4 cm and period of 1 second
(H004T1). The vertical line represents the
cut off frequency of 0.05 Hz.

Figure 3.14: The magnitude spectrum of
wave height of 21.6 cm and period of 7 sec-
onds (H0216T 7). The vertical line repre-
sents the cut off frequency of 0.05 Hz.

signals and wave conditions. This was because there is no disturbance by the eigenfrequency of the cylinder
for H004T1 and H0216T7, confirmed by figures 3.13 and 3.14 and the percentages in table 3.5.

Wave Cutoff [Hz] Variance loss FT [%] Variance loss EMF [%] Variance loss WG [%]
H013T7 0.05 7.37 0.0002 0.0002
H004T1 0.05 0.04 0.0180 0.009
H0216T7 0.05 0.005 0.0013 0.001

Table 3.5: The effect of the cut-off frequency on the variance for the different instruments and different wave conditions.

The low pass filter was chosen after discussing five filters in appendix F.

3.4.3. Calculation of the phase velocity
The measurements of the surface elevation, flow velocity and forces were collected at different locations along
the flume. In order to refer all measurements to the location of the cylinder, the time series of the different
instruments were shifted in time according to:

δt = d

Cg
(3.7)

Where d is the distance between two sensors and Cg is the group celerity. The group celerity was calculated
by determining the time shift between the signals of wave gauges 1, 2, 3 and 4.

Figure 3.15: Each of the four wave gauges measured
the surface elevation. Whereby, wave gauge four was
positioned the closest to the wave generator

Figure 3.16: The aligned surface elevation measured
by each of the four wave gauges
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Results

This chapter discusses the results of the experimental program. First, in section 4.1 the derivation of the
equivalent diameter for the mussel covered cylinder is shown. Then, in section 4.2, the steady flow results are
presented. Next, the results of the wave experiments are shown in section 4.3.

4.1. General
4.1.1. Equivalent Diameter
The equivalent diameter (Deq ) of the mussel covered cylinders is determined by projecting the 3D model
of the mussel covered cylinder on a 2D plane and dividing the projected area by the cylinder height. The
projected area is derived by transforming a 2D image into a binary image, as seen in figures 4.1 and 4.2. The
percentage of black pixels in the image can be calculated by counting the black and white pixels. Then, the
percentage of black pixels is used to derive the area of the cylinder in the image. Eventually, with the help
of scaling, the surface area of the mussel covered is determined for the actual size. Lastly, the equivalent
diameter is derived by dividing the area by the height of the shell (24 cm).

Figure 4.1: Image of the standard mussel covered cylinder Figure 4.2: Binary image for MATLAB

For the standard mussel, the derivation results are presented in table 4.1. The physical model consists of
two shells with each a different pattern. Therefore, the two sides of the model are compared and from the
table it becomes clear that the difference is negligible.

Table 4.1: Determination of equivalent diameter for the standard mussel

Ring side Number of white pixels Number of black pixels Abl ackpi xel s De q
1 40658 198768 95.804 cm2 3.99 cm
2 40829 200736 95.943 cm3 4.0 cm

The same is done for the medium sized and large sized models, and the results are in table 4.2. The
equivalent diameters are used to determine to drag coefficient for the mussel covered cylinders.

27
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Mussel version Deq

Standard mussel 4 cm
Medium sized mussel 6.5 cm
Large sized mussel 8 cm

Table 4.2: The equivalent diameters of the three mussel covered cylinders

4.2. Results of the steady flow experiments
This section describes the results of the steady flow experiments, where cylinders with and without mussels
were exposed to a fully developed flow. Section 4.2.1 presents a measured velocity profile and compares
different methods to obtain the depth-integrated velocity. The result of the drag coefficient for smooth and
mussel cylinders are shown in section 4.2.2.

4.2.1. Velocity profile
Figure 4.3 presents a 5-points velocity profile and a 13-points velocity profile, constructed as in figure 3.11,
for the same steady flow condition, which corresponded to a target depth-integrated velocity of U = 0.09 m/s.
The values of 13-points velocity profile were measured during one of the experiments. The error bars show
the variability in the velocity and the velocity has a mean relative variation of 6%. An exponential function
is fitted to the 13 velocity points profile from the bed to the surface level. The depth-integrated velocities of
the fitted function and the 13-points velocity profile are compared to the depth-integrated velocity 5-points
velocity profile, as the latter is the number of velocity points measured during the experiments.

Figure 4.3: Comparison of a 5-points velocity profile (blue crosses) to a 13-points velocity profile (orange dots). The variability in the
velocity signal is depicted with error bars at each point. An exponential function is fitted to the data points of the 13-points velocity
profile (dashed green line)

The comparison of the depth-integrated velocities is presented in table 4.3. First, the 5-points velocity
profile is compared to the 13-point velocity profile and the fitted function of the 13-points velocity profile.
The latter is assumed to accurately represent the velocity profile because it includes the velocity at the bed
and the surface. Therefore, it aims to derive a similar depth-integrated velocity of the fitted function with the
5-point velocity profile. Next, the velocities are derived with two methods: the mean of the values (equation
4.1) and the square root of the mean of the values (equation 4.2).

U =
∑

U d z

Lshel l
(4.1) URMS =

√√√√∑
U 2d z

Lshel l
(4.2)

Consequently, the same equations are used for U 2 and U 2
RMS . In figure 4.3. It becomes clear that the root

mean square (RMS) approaches the velocity of the function the best for the velocity profiles. Moreover, the
difference between the 5 and 13 points’ velocity profiles is negligible. Therefore, the 5 points velocity profile
is considered sufficient to derive the depth-integrated velocity accurately.
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Velocity profile U [m/s] URMS [m/s] U
2

[(m/s)2] U 2
RMS [(m/s)2]

∫
ud z[m/s]

∫
u2d z[(m/s)2]

5 - points 0.079 0.089 0.006 0.008 - -
13 - points 0.089 0.088 0.008 0.008 - -
Fitted function - - - - 0.086 0.008

Table 4.3: The depth-integrated velocity and velocity squared are presented for the velocity profiles and the fitted functions. The mean

depth-integrated velocity (U ) and velocity squared (U 2) are compared to the square root of the mean of the values (URMS and U 2
RMS ) to

approach the
∫

ud z[m/s] and
∫

u2d z[(m/s)2] of the fitted function.

4.2.2. Drag coefficients
Figure 4.4 shows the results of the steady flow experiments. First, figures 4.4a, 4.4c and 4.4e compare a smooth
cylinder with the standard mussel cylinder and a cylinder with an equivalent diameter for a scale of 1:6. Fig-
ures 4.4b, 4.4d and 4.4f compare a smooth cylinder to the medium and large mussel cylinder for a scale of 1:3.
Next, the obtained drag coefficients are plotted with values from the literature and with fitting lines adjusted
to the present experiments, as seen in figures 4.4c, 4.4d, 4.4e and 4.4f.

The measured drag coefficients a form distinct line when plotted against the Reynolds numbers (figure
4.4. However, the fitted curves do not correspond with Cd -Re relationships for smooth cylinder from the lit-
erature such as White (2006) and Munson et al. (1994). Instead of approaching a drag coefficient of 1 and 1.17
for Re>8000, the smooth cylinders approach drag coefficients of 1.49 and 1.74. Moreover, the drag coefficient
of the literature increases exponentially for Re < 200 as seen in figure 2.4. This phenomenon can already be
seen for Re < 2000 for the experiments. Standards mussels have a small effect on the drag coefficient for the
scale of 1:6. However, an evident difference is noticeable between the smooth cylinder and the larger mus-
sels. This is also shown in table 4.4. For Re = 6000, the drag coefficient increases to 51 % for the large mussel
but only 20% for the standard mussel. The largest differences between the mussels and the smooth cylinder
for both scales can be seen for Re = 3000 - 6000. For Re>6000, these differences decrease. It is important
to notice is that for Re = 6000 - 8000, the drag coefficients of the medium mussels are smaller than for the
smooth cylinder.

Re [-] Cd ,S1:6[−] Cd ,ES1:6[−] Cd ,SM [−] Cd ,S1:3[−] Cd ,M M [−] Cd ,LM [−]
4000 2.32 2.67 2.81 2.85 3.12 4.74
6000 1.88 2.09 2.25 2.25 2.08 3.40
8000 1.68 1.75 1.98 1.72 1.81 2.00
10000 1.63 1.63 1.86 1.93 1.43 2.33

Table 4.4: The values of the drag coefficients of the fitted lines for the tested cylinders. S1:6 is the smooth cylinder for a scale of 1:6, ES1:6
is the smooth cylinder with an equivalent diameter as S1:6, SM is the Standard Mussel, S1:3 is the smooth cylinder for a scale of 1:3, MM
is the half-grown mussel, and LM is the fully grown mussel.

The fitted lines in figures 4.4e and 4.4f used the CD -Re relationship by White (2006) as model function.
Table 4.5 summarizes the parameters for the fitted functions.

Cylinder a b c
Smooth cylinder 1.49 5109246 1.88
Equivalent diameter 0.932 6662 0.99
Standard mussel 1.41 44795 1.22
Smooth cylinder 1.74 9304875 1.92
Medium mussels 0.92 1138329 1.59
Large mussels 0.69 14566 0.98

Table 4.5: The parameters a, b and c for the fitted function based on the model function by White (2006): Cd = a+b*Rec .
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(a) The measured force plotted with the velocity for experiments
with the scale of 1:6

(b) The measured force plotted with the velocity for experiments
with a scale of 1:3

(c) The drag coefficient was plotted against the Re for experiments
with 1:6 with literature

.

(d) The drag coefficient was plotted against the Re for experiments
with 1:3 with literature

.

(e) The drag coefficient was plotted against the Re for experiments
with 1:6 with the fitted lines

.

(f) The drag coefficient is plotted against the Re for experiments with
1:3 with fitted lines

.

Figure 4.4: The results for the two sets of the steady flow experiments, namely scales of 1:6 and 1:3. Figures 4.4a and 4.4b plot the
measured force against the measured depth-integrated velocity. Figures 4.4c and 4.4d show the obtained drag coefficient plotted with
fitting lines for smooth single cylinder by Munson et al. (1994) (dashed dark blue line) and White (1994) (dashed light blue line. Figures
4.4f and 4.4e present the lines that are fitted to the measured data points.

4.2.3. Summary of the results of the steady flow experiments
• A vertical profile for the velocity and velocity squared, consisting of measurements at five elevations, are

sufficient to approach the depth-integrated velocity and velocity squared. They are best approached
with the Root Mean Square method.

• The measured drag coefficients show an increase in drag coefficients for large mussels compared to a
smooth cylinder. For Re = 6000, the drag coefficient is increased by approximately 50 %. However, the
standard and the medium-sized mussel have a small to negligible effect on drag coefficients.

4.3. Results of the wave experiments
This section describes the results of the wave experiments, where cylinders with and without mussels were
exposed to wave action. Figure 4.5 shows an overview of the data analysis and in the order in which the results
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are presented. Surface elevation, velocity and force measurements are compared for two wave conditions,
one corresponding with inertial conditions (KC = 3) and one with drag-dominated conditions (KC = 113).
The steps followed in the data analysis are shown for those two wave conditions. First, the measured and
expected wave heights and periods are compared in section 4.3.1. Then, Fenton wave theory (1985) is used to
estimate the surface elevation and flow velocities for the wave conditions of table 3.4. Next, the estimates from
Fenton are compared with the measured signals in section 4.3.1 for the surface elevation, and in section 4.3.2
for flow velocities and accelerations. Lastly, section 4.3.4, presents the drag and inertia coefficients derived
from the measurements with the Morison equation (2.6). The equation is solved by three different methods.
Force signals calculated with the obtained coefficients and measured force signals are shown to evaluate the
quality of the fit of the coefficients.

Figure 4.5: An overview of the analysis of the wave experiments. This is also the order in which the results are presented.

The measurements of the following wave conditions are not included in the results due to incorrect mea-
surement by the force transducer: H013T15, H013T4 and H013T5. This may be caused by the cylinders touch-
ing the bed of the flume. The graphs of the surface elevation, depth integrated velocity squared (U |U |), depth
integrated acceleration and drag and inertia coefficient are presented in appendix G for every wave run.

4.3.1. Surface elevation
Figure 4.6 displays the surface elevation of H = 0.04 m and Tw = 1 s (H004T1) and H = 0.13 m and Tw = 7
s (H004T1). It shows that the measured and predicted wave signals have the same period but some differ-
ences in wave amplitude. The relative errors oscillated between -13 % and 19%, and the largest inconsistency
corresponded to wave condition H066T2, as seen in figure 4.7. The reason for this inconsistency is unclear.
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Predicted wave 2 shows the surface elevation estimated by the Fenton theory with the measured wave height
as input instead of the input of table 3.4. This enables a fair comparison between the measured and expected
waves and shows that the Fenton theory correlates well with the measured surface elevations for both wave
conditions.

(a) The wave condition with a wave height of 0.04 m and a period of
1 second (H004T1).

(b) The wave condition with a wave height of 0.13 m and a period of
7 seconds (H013T7).

Figure 4.6: The measured (solid blue line) and the predicted (dashed orange line) surface elevations are plotted for the two wave condi-
tions. The black line represents the y = 0 axis. The dashed green line is the predicted surface elevation with the measured wave height
as input and is called predicted wave 2. Predicted wave 2 is used for the results.

Figure 4.7: Relative error ϵ= d H/H for different wave conditions, where d H is the difference between the target and the measured wave
condition, and H is the target wave condition.
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4.3.2. Vertical velocity and acceleration profile
The surface elevation time series are shown in figure 4.8 for H004T1 and H013T7. In addition, the vertical
velocity and acceleration profiles for both wave conditions are presented for t/T = 1/8 and t/T = 3/8, where
t indicates the relative time with respect to the wave period Tw , as shown in figure 4.8a and 4.8b. Showing
the profiles at multiple relative times validates the fit of the fitted function and the non-linear extrapolation
function.

(a) The wave condition with a wave height of 0.04 m and a period of
1 second (H004T1).

(b) The wave condition with a wave height of 0.13 m and a period of
7 seconds (H013T7).

Figure 4.8: The surface elevation of the measured wave for two wave conditions. The dashed lines show at which relative time with
respect to the wave period T the velocity profiles are shown in figure 4.9

Figure 4.9 presents the vertical velocity and acceleration profiles for both wave conditions at t/T = 1/8
and t/T = 3/8. The profiles of the fitted function and the non-linear extrapolation show similar values for the
velocity and acceleration. The equations of the fitted function and the non-linear extrapolation are included
in appendix H. However, they are underestimated compared to the Fenton theory, except for the vertical
velocity profiles of figure 4.9c and 4.9g. The largest underestimations of velocity and acceleration are seen at
the surface level. For example, the acceleration of the Fenton theory is 1.65 times larger than the acceleration
of the extrapolated profile at the surface level for wave condition H004T1 (4.9d).
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(a) Vertical velocity profile at t/T = 1/8 for H004T1 (b) Vertical acceleration profile at t/T = 1/8 for H004T1

(c) Vertical velocity profile at t/T = 3/8 for H004T1 (d) Vertical acceleration profile at t/T = 3/8 for H004T1

(e) Vertical velocity profile at t/T = 1/8 for H013T7 (f) Vertical acceleration profile at t/T = 1/8 for H013T7

(g) Vertical velocity profile at t/T = 3/8 for H013T7 (h) Vertical acceleration profile at t/T = 3/8 for H013T7

Figure 4.9: The vertical velocity and accelerations profiles at t/T = 1/8 and t/T = 3/8 of figures 4.8a and 4.8b. The points represent the
mean measured velocity at z = 0.04 m, z = 0.05 m, z = 0.10 m, z = 0.20 m, z = 0.30 m and z = 0.40 m. The vertical velocity profile constructed
with fitting a function through the points is presented with a pink dashed line called the fitted function. The vertical velocity profile
constructed with non-linear extrapolation is presented with a grey dashed line called scaled. More information on the extrapolation of
the profiles is included in appendix H. Lastly, the vertical velocity profile from Fenton is presented as a yellow dashed line.
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4.3.3. Depth integrated velocity squared and acceleration.
The drag and inertia coefficients are derived from the Morison equation (2.6) with the help of the depth-
integrated velocity squared (U |U |), depth-integrated acceleration and the surface elevation. The depth-
integrated velocity and acceleration are obtained by integrating the fitting function over the depth and ap-
plying a discretized approximation based on the relative vertical distance between points. It must be noted
that the figures show the depth-integrated velocity squared instead of the depth-integrated velocity. Figure
4.10 of the depth-integrated squared velocity and acceleration confirms the observation in section 4.3.2: the
extrapolated and fitted function lines show similar values for the depth-integrated velocity squared and the
acceleration, but their values are respectively 65 % and 45 % of the Fenton Theory.

(a) Depth-integrated U |U | for H004T1 (b) Depth-integrated acceleration for H004T1

(c) Depth-integrated U |U | for H013T7

.
(d) Depth-integrated acceleration for H013T7

Figure 4.10: The depth-integrated velocity squared and acceleration is plotted over time for both wave conditions. The solid blue line
shows the measured data, the dashed yellow line presents the line constructed with fitting a function through the points, the dashed
green line shows the line based on the non-linear extrapolation and the dashed red line presents the Fenton theory.
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4.3.4. The drag and inertia coefficients
The last step of figure 4.5 is to solve the Morison equation (2.6) with the measured force, (equivalent) di-
ameter, the depth-integrated U |U | and the depth integrated acceleration. The drag and inertia coefficients
are derived using two different methods, namely the Least Squared method and the Maximum Likelihood
method. This is to see if the method of solving has any influence on the results. The coefficients of the Least
Squared method are obtained using different functions in Python: the Least Squared Method function and
the function Curvefit. For each function, drag and inertia coefficients were derived using (1) the measured
signals and (2) the signals estimated using Fenton. Figure 4.11 shows the results of the derivations for the
wave conditions H004T1 and H013T7. The velocity was measured at six points over the height during the
experiments. Therefore, six signals of the force are measured for every wave condition. The box plots show
the variability of the six force signals. The derivation method does not seem to impact the results for drag and
inertia coefficients significantly. However, the Maximum Likelihood for H013T7 shows more considerable
variability than the Least Squared Methods, as seen in figure 4.11d. Also, the force coefficients are smaller
when using signals estimated with Fenton than when using the measurements as input. This difference is
likely due to underestimating the depth-integrated velocity and acceleration.

(a) Drag coefficients for wave condition H004T1

.
(b) Inertia coefficients for wave condition H004T1

(c) Drag coefficients for wave condition H013T7

.
(d) Inertia coefficients for wave condition H013T7

Figure 4.11: Drag and inertia coefficients are plotted for three different approach methods, namely the Least Squared Method with
python function np.linalg.lstq, the Least Squared Method with the fitted function and the Maximum Likelihood. Moreover, the obtained
coefficients by using the Fenton theory are depicted. The variability of the box plots is due to the variability in the force signals. The
velocity was measured at six points over the height during the experiments. Therefore, six signals of the force are measured for every
wave condition.

Figures 4.12a and 4.12b show the fitted and measured force signals for wave conditions H004T1. All fitting
methods agree with the measured signals except for a time interval just after the wave crest, where fitted
forces exceed the measurements.

Figure 4.13 shows the results of the drag and inertia coefficients in three different ways. The first two
figures (4.13a and 4.13b) present the coefficients fitted to time series with a length of 1 to 4 wave periods. The
coefficients reveal significant differences compared to the literature, especially for the inertia coefficient of
wave conditions H004T1, as shown in figure 4.13b. Figures 4.13c and 4.13d depict the results when the peak
and trough of the wave are seen as two individual waves with their own period and wave amplitudes. The peak
of the wave is defined as the area between a zero-up crossing and a zero-down crossing. Consequently, the
trough of the wave is the area between a zero-down crossing and a zero-up crossing. For example, the peak
of H013T7 has a much smaller period than the full wave, Tw = 1.67 s instead of 7 s. The decrease in period is
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(a) Force signal for wave condition H004T1). (b) Force signal for wave condition H013T7

Figure 4.12: The measured force signal (solid blue line) is presented with the force signal calculated with the obtained coefficients by the
Least Squared Methods (dashed orange and dashed green line) and the Maximum likelihood (dashed red line). Moreover, the signal is
compared to the Fenton theory (dashed grey line), solved with the Least squared method.

also reflected in the range of KC values. The coefficients reach only KC = 85, and most of the coefficients are
located between KC = 5- 50 when the peak and the trough are separated. The drag and inertia coefficients
show large variability and do not correspond with the literature. Lastly, figures 4.13e and 4.13f show the results
when the parameters of the Fenton theory are used with the measured force. The Fenton theory best fits both
the drag and inertia coefficients. However, not all the methods can be assumed to be reliable as the relative
differences between the measured values are significant.

4.3.5. Summary of results of the wave results
• The vertical velocity and acceleration profile are underestimated compared to the Fenton theory. The

largest difference in velocity/acceleration is seen at the surface level. Consequently, the depth-integrated
velocity squared (U |U |) and acceleration are 35 % and 55% lower than the values of the Fenton theory.

• The drag and inertia coefficients are derived by solving the Morison equation. Results are shown for
three different methods; 1) solving for the measured force, velocity and surface elevation, 2) solving
for cnoidal waves that are split into two sinusoidal waves and 3) solving with the measured force and
the velocity and surface elevation by the Fenton theory. The drag and inertia coefficients show large
variability and CM s do not correspond with the literature. The best fit to literature was found for method
3.
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(a) Drag coefficients obtained for the full wave

.
(b) Inertia coefficients obtained for the full wave

(c) Drag coefficients for separated peak and trough of the waves

.
(d) Inertia coefficients for separated peak and trough of the waves

(e) Drag coefficients for the derivation with the variables of the Fen-
ton Theory

(f) Inertia coefficients for the derivation with the variables of the
Fenton theory

Figure 4.13: The results are plotted together with data points of Obasaju et al.(1988), Graham(1980) and Keulegan and Carpenter (1958).
Moreover, a line was plotted to fit the measurements (dashed black line). The variability of the data points is due to the variability in the
force measurements.
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Discussion

This chapter reflects on the physical model, experiments’ set-up, and the results. First, the physical modelling
of the mussels is discussed in section 5.1. Next, section 5.2 elaborates on the outcome of the steady flow
experiments and the derived drag coefficients. Lastly, section 5.3 discusses the performance of the wave
experiments and the results of the drag and inertia coefficients.

5.1. Physical Model
This section discusses the physical model and its limitations.

5.1.1. Mussel schematization
The mussel schematization presented in this study is less idealized than other studies from the literature,
which used geometric shapes such as pyramids to represent mussels (Wolfram and Naghipour, 1999). Marty
et al. (2021) also used physical models that emulated the mussel shapes observed, but their distribution fol-
lowed a fixed pattern around the cylinder. In section 3.1.5, the images of mussel poles were analyzed to in-
vestigate the spatial distribution and orientation of the mussels in the field. It was observed that the mussels
have a 45°or 90°difference with their neighbour for 52 % of the time and the rest of the time, the mussels have
an average ±10 °difference. Moreover, the inclination of the mussel was influenced by neighbouring mussels.
These three aspects were incorporated into a script and verified with different images of mussel poles. The
presented method could be useful for future studies, however, more images should be analyzed to evaluate
the generality of the observed patterns. Laboratory experiments should also compare homogeneously placed
mussels and exact replicas of mussels to test how important it is to consider an accurate representation.
The physical model may also have limitations related to the derivation of the equivalent diameter, the uni-
form roughness height, and the fit of the mussel ring. Firstly, the equivalent diameter of the mussel cylinder
is calculated by projecting the 3D model of the cylinder covered by mussels on a 2D plane and dividing the
projected area by the cylinder height (section 4.1.1). However, the projected area includes the area of the
mussels behind the first row of mussels . This suggests that the equivalent diameter is overestimated, and the
drag coefficient is subsequently underestimated. Further research must be done on how to determine the
equivalent diameter. Secondly, there is no variability in the roughness height of the mussels per ring. This is
different from nature, where each mussel does not grow at the same rate at every height over the depth. This
variability was investigated by Marty et al. (2021), where the mussels on a line having heights varying between
1.5 cm to 3 cm. Laboratory experiments should evaluate whether the variability in mussel height can be sim-
plified by using a representative mussel size all over the cylinder. Lastly, the rings are attached to the cylinder
with four screws. The rings of the standard and medium mussels had a perfect fit for the cylinders, but the
large mussel rings did not fully close at the back of the cylinder. This leads to a larger equivalent diameter
and thus an underestimation of the drag coefficient. An improvement on the ring for the larger mussels can
be made by decreasing layer 3 so that the ring is less rigid and can be easier formed to the cylinder.

5.2. Measurements of the steady flow
This section describes the discussion on the measurements of the steady flow experiments. Firstly, in section
5.2.1 the difference between literature and the measurements is discussed. Next in the section 5.2.2, 5.2.3 and
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5.2.4 the potential factors that can be the cause of any discrepancies are considered.

5.2.1. Measured drag coefficients
For steady flow experiments, two situations were tested. The first set of tests analyzed the forces on a smooth
cylinder, the standard mussel and a cylinder with an equivalent diameter that represented the size of the stan-
dard mussels (section 3.2.3). A second set of experiments compared the smooth cylinder with the medium
mussels and the large mussels. For the smooth cylinder, the measured drag coefficients followed a clear rela-
tionship as a function of Re. Drag coefficients decreased and converged to a constant value with increasing
Re. However, the literature shows that drag coefficients for smooth cylinders converge to a value of 1, whereas
the present measurements tend to have larger values of 1.49 and 1.74 (table 4.5) (White, 2006;Munson et al.,
1994). Moreover, measured drag values increase for Re<3000, whereas in the literature drag-enhancement
due to viscous processes is observed for Re<10 (Sumer and Fredsoe, 1997). Considering a qualitative compar-
ison between smooth cylinders and cylinders with mussels, the experiments show that the drag coefficient
increases up to 66% when large-sized mussels are present on a cylinder. Such large differences between the
smooth and mussel-covered cylinders are not found for the first set, while testing the same roughness height
for a different scale. This finding suggests that the mussels with a roughness height of 0.36 cm (standard
mussel and medium sized mussel) do not increase the drag coefficient compared to the smooth cylinders.
A possible explanation for this might be that the physical model should have been scaled with the scaling
length of the mussel instead of the diameter. By recalculating the Re numbers for the tested velocities with
Rex = k∗U/v, it shows Rex numbers between 86.4 and 864 for the standard mussel. For such Re numbers the
drag coefficient increases rapidly, as seen figure 2.4. However, this hypothesis would not explain the high Cd s
of the smooth cylinders. Therefore, this qualitative comparison should be reevaluated with new experiments
where the Cd -Re relationships of the single smooth cylinder agree with those of the literature. Moreover, new
experiments should include a physical model scaled to the dimension of the mussel instead of the diameter.
The differences between the drag measurements of this thesis and the literature may be due to inaccuracy in
the velocity and force measurements. The performance of the EMF and force transducer and the steps done
to assess their well functioning and accuracy are discussed below.

5.2.2. EMF performance during the steady flow experiments
The EMF height was changed between tests to record the velocity profile at five elevations over the water col-
umn. A higher vertical resolution was analysed in separate tests, where the velocity was recorded at 13 heights
from the bottom. Depth-integrated velocities coincided with the values derived from 5 vertical points, sug-
gesting that the vertical resolution for the velocity measurements was sufficient. The EMF sensor showed
oscillations in the test, but these were addressed by earthing the sensors, keeping them submerged at night
and cleaning them with alcohol. Moreover, the wave gauge next to the EMF interfered with the sensor; thus, it
was turned off. This decreased the oscillation to a level that corresponds to reading accuracy but did not com-
pletely solve the problems. Therefore, the sensor offset was also analyzed, in case it was introducing an error
in the measurements. Figure 5.1 shows the offset change on October 29 by comparing offset measurements
collected in the morning, at noon, and the end of the day. The morning offset falls in the reading accuracy
of 0.01 m/s, but this is not the case for the offset at noon and the end of the day. The changes in the EMF
offset throughout the day may thus be a source of inaccuracy in the measurements because the step size of
the steady flow experiments is in the same order of magnitude as the offset. Therefore, the offset of the EMF
was measured every day at the start and the end of the day. The offset at noon was measured when the EMF
showed significant oscillations during the morning. The cause and solution for these changes are unknown
and should be further investigated by the manufacturer.

5.2.3. Performance of the force transducer during the steady flow experiments
The initial force transducer caused oscillation in the cylinder in the x and y-direction. Therefore, it was opted
to use a more stiff force transducer. However, the new force transducer had a 0 - 98.1 N range, while the
highest force had a value of 7 N. This means that the force transducer only used 7 % of the sensor range. An
option was to use a larger amplification factor. However, this was not chosen because this would also increase
the noise in the signal. Uncertainties appear in the measurements for waves with a wave height of 0.04 m.
The force transducer showed a cascading signal due to limited discretization resolution, as seen in figure 5.2.
This was solved by plotting a sinus function through the points, though this is not the exact measured signal.
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(a) The offset in the morning (b) The offset at noon (c) The offset at the end of day

Figure 5.1: The EMF’s velocity signal in still water at five different heights over the water depth. The signal is used as the offset for the
velocity. This signal was measured on 29/10/2021. (a) presents the signal in the morning, (b) presents the signal at noon, and (c) presents
the signal at the end of the day

Figure 5.2: A comparison of the original output signal of the force (orange line) with the fitted sinus function (blue line).

5.2.4. Determination of the flow velocity
The differences between the drag measurements of this thesis and the literature may be due to inaccuracy in
the velocity and force measurements. The performance of the EMF and force transducer, and the steps done
to assess their well functioning and accuracy are discussed below.

In the experiments of the steady flow (section 3.2.3), the aim was to test the drag forces on cylinders
for currents that would result in Reynolds numbers between Re = 103 − 104. However, the steady flow was
generated by manually adjusting a pump that did not provide discharge reading. During the data processing,
it became clear that some velocities were higher than expected. This resulted in results that were not evenly
distributed. One concern is that for the comparison of the scale 1:3, the smooth cylinder and medium mussel
cylinder do not reach Re = 104. This gives an incomplete comparison with the large mussel cylinder.

5.3. Measurements on waves
This section describes the measurements of the wave experiments.

5.3.1. Observations of the drag and inertia coefficient
Measured drag and inertia coefficient were obtained in several ways. The best agreement with the litera-
ture was obtained when the measured forces were fitted with velocities estimated using Fenton, rather than
with the measured velocities. When the recorded velocities and accelerations were used, the drag coefficient
seemed to fall in the range of previous findings by Obasaju et al. (1988), Graham (1980) and Keulegan and
Carpenter (1958). However, the inertia coefficients are higher than expected from the findings by the same
authors. As mentioned in the literature review, Nath (1982) did find CM values of 2.8 and 2.5 for cones with
similar relative roughness as the standard and large mussels. However, the largest inertia coefficients are
seen for KC >20 and not for KC= 5 and 12. Higher CM values were reported by Theophanatos and Wolfram
(1989), who show values of CM = 2.24-2.59 for macro-roughened cylinders with a k/d of 0.098. However, they
state that inertia forces measured are not fully representative of those obtained in wave and planar oscillatory
flows since the returning wake effects are not present (Theophanatos and Wolfram, 1989). Surprisingly, Marty
et al. ( 2021) found inertia coefficients of 1.4 and 1 for KC = 3 in their experiments, while also using a realistic
model instead of cones or pyramids. They suggested that a realistic shape for mussels appears to change the
inertia coefficient drastically. That finding is contrary to the results of this study which did not found a drastic
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decrease in the inertia coefficients for KC numbers around 3.
The data processing also evaluated whether the fact that waves were cnoidal (and thus had asymmetric sur-
face elevations and velocities) was affecting the drag coefficient by comparing the fitting of the coefficients
over (1) a full wave period, (2) the trough of the wave, and (3) the crest of the wave. One concern could be
that a cnoidal wave, a highly non-linear wave, could not be represented with a single KC number, as the drag
and inertia coefficient could vary during the wave cycle. Namely, the definition of the KC number is based on
a single velocity magnitude, under the assumption that the wave-driven velocities are sinusoidal. However,
figures 4.13c and 4.13d did not show a better fit for the literature. It must be noted that studies by Sarpkaya
(1986), Keulegan and Carpenter (1958) investigated horizontal cylinders underwater with simple sinusoidal
currents. The mismatch with the literature, when using measurements, can also be due to underperformance
of the EMF (see section 4.3.3). Other potential factors could be related to underestimating the velocity profile,
the eigenfrequency of the smooth cylinder, and the wave’s phase velocity.

Firstly, the underestimation of the velocity profile is discussed. Figure 4.9 shows the vertical velocity and
acceleration profile. It can be concluded that the profiles are underestimated compared to the Fenton the-
ory. The differences between the measured and the literature are even more evident in figure 4.10, which
depicts the depth-integrated velocity squared and acceleration. Figures 4.13e and 4.13f show the results if
the depth-integrated velocity squared and acceleration of Fenton theory are used with the measured force
measurements. These results seem to agree better with literature values for the drag and inertia coefficients.
However, still, a large spread of data points can be seen.

Secondly, the phase velocity may explain the spread of the data. As explained in section 3.4.3, the phase
velocity was calculated by determining the time shift between the signals of wave gauges 1, 2, 3 and 4. How-
ever, the phase velocity is not consistent over the length of the flume and has been increasing for most of the
experiments. This gives uncertainties in the time shift of the signals of different instruments. These phase
differences are minor for the wave conditions of H004T1 and H013T7, as seen in figure 4.10. However, for
wave condition H004T2, the phase difference is significant, and the inertia coefficient changes significantly
(figure 5.3). It could be speculated that this confirms that the largest uncertainty is in the velocity signals.

Another source of uncertainty is the eigenfrequency of the smooth cylinder for high KC numbers, which
can play a role in the results. Appendix F elaborates on the choice of the filter for the force signal. It aims
to dismiss the interference of the oscillations by the smooth cylinder. Therefore, the average value of the
oscillation is taken as default. However, the peak or trough of the oscillation could also be the real force
signal. This would result in a peak with a longer or a shorter period and thus affect the coefficients.

It remains unclear to which degree each factor attributed to the mismatch or whether this could be the
case at all. A cautious conclusion that can be made is that there is an insignificant difference between the
smooth and standard mussel provided the accuracy of the experimental method. This was already reflected
in the steady flow experiments. Moreover, more experiments with the designed physical models are required
to refute the results of Marty et al. (2021) and verify the results of this study. It is important that the velocity is
correctly measured and therefore it is needed to have multiple types of velocity meters.
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(a) The depth-integrated velocity squared signal (b) The depth-integrated acceleration signal

(c) The drag coefficients result for the four derivation
methods

.

(d) The inertia coefficients result for the four deriva-
tions methods

.

Figure 5.3: The signals of wave condition H004T2. The blue line presents the measured data, the dashed orange and green lines represent
the fitted function and non-linear extrapolation of the velocity profiles. The signals are compared with the Fenton theory (dashed red
line). The results of the coefficients are presented with box plots. The error bars indicate the variability in the force measurements.
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Conclusion and recommendations

6.1. Conclusion
The present research aims at describing and quantifying the effect of mussels on vertical poles in currents
and under waves.

6.1.1. Sub-questions
The following sub-questions are answered to support the main research question:

1. How can mussels in small-scale experiments be schematized?

The growth of Green Asian mussels on bamboo poles was schematized as mussel rings consisting of
three parts, namely roughness elements, an impermeable layer and an extra thickness. The mussel
rings were printed by a 3D printer and multiplied by resin casting. The present study improves on ex-
isting knowledge by using well-described model mussels with realistic shapes, orientation and distri-
bution. In contrast, previous studies assumed simplified shapes and uniformly arranged orientations.
This new way of realistic modelling should help predict the effect of the growth of mussels. However,
further study should assess the importance of the distribution by comparing it to a uniform distribu-
tion.

2. What is the effect of mussels on the hydrodynamic forces of a vertical pole in a current?

While this study did not exactly agree with the commonly found drag coefficients for smooth cylinders,
it partially substantiated mussels’ effect on the hydrodynamic forces of a vertical pole in a current.
The experiments have shown a significant relative difference between the drag coefficient of the large
mussels cylinder and the smooth cylinder. These findings show a 50-66 % increase for Re = 4000-6000
compared to the smooth cylinder. The differences in drag coefficients of the standard mussels and the
large mussels, despite having the same relative roughness, suggest that the roughness height of the
standard mussel is too small for investigating the effect of mussels. This could also be confirmed by
the results of the medium mussel cylinder, where the drag coefficient also has a negligible difference
from the smooth cylinder. Recalculating the Re numbers for the mussel size, instead of the diameter,
shows Re = 102 - 103, where the drag coefficient is higher than between Re = 103 −104. However, this
does not justify the high drag coefficient numbers of the smooth cylinder. Therefore, laboratory exper-
iments should be redone with models scaled to the size of the mussel and multiple types of velocity
instruments to establish this hypothesis. The inaccuracies in the results might also stem from EMS
recordings.

3. Is the drag crisis likely to be relevant for a bamboo pole with mussels in the field?

A hypothesis would be that the drag coefficient crisis for cylinders with mussels are located in the range
of Re = 103−104. For example, the drag coefficient crisis for k

D = 0.03 had a decrease of 0.5. Nevertheless,
the experiments did not detect any clear evidence of a drag crisis in this range of Re numbers. It is
unclear whether this means that the drag crisis became negligibly small due to an increase in relative
roughness or that the drag crisis takes place outside the Re values tested in this study. The results
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provide evidence that the drag coefficient for the tested wave conditions is not in a regime with a drag
crisis.

4. What is the influence of mussels on the hydrodynamic forces of a vertical pole in waves?

The findings on the influence of mussels on hydrodynamic forces on a vertical pole in waves are highly
uncertain. The drag coefficients shows good correspondence with the literature for smooth cylinders,
but the inertia coefficients do not. Moreover, no relative differences between the smooth and standard
mussel cylinders are found. The experiments with steady flow already showed this. The calculated drag
and inertia coefficients showed better agreement with literature when velocities estimated with Fenton
were used as an input value. This suggests that forces are correctly measured and that the inaccuracies
may stem from the EMS recordings. This study has shown similar increase in inertia coefficients as
for cones and pyramids, but has contradictory results to literature with similar realistic modeling. Fur-
ther work is needed regarding the inertia coefficients and the uncertainty due to underestimating the
velocity profile, the phase velocity or the distance between the instruments, and the cylinder’s eigen-
frequency.

5. Can the drag coefficient of cnoidal waves be linked to the Keulegan-Carpenter number, as it is done
for the linear waves?

Cnoidal waves are highly non-linear and behave differently than sinusoidal waves, which has been the
subject of extensive research. Parameters such as the KC , Cd and CM have been developed assuming
sinusoidal waves, where the positive and negative parts of the wave cycle have similar velocity mag-
nitude. The wave cycle of a cnoidal does not consist of a similar peak and trough but consists of high
and short peaks and long and shallow troughs. Therefore, in the data analysis waves were split into
two separate parts: waves and troughs. By fitting the drag and inertia coefficients separately for the
crest and the trough, the variability of Cd , CM , and KC of the wave cycle could be evaluated. Drag
and inertia coefficients had comparable values for the different parts of the wave cycle, suggesting that
the force coefficients of cnoidal waves can be linked to the KC numbers, as it is done for linear waves.
Nevertheless, it is recommended to do further research on this topic due to the uncertainties in the lab-
oratory measurements. Wave attenuation by cnoidal waves can be estimated by integrating the wave
flow velocities from Fenton theory, using drag coefficients measured in flume experiments.

6.1.2. Main research question
With the help of the sub-questions, the main research question can be answered:

How does the growth of the mussel, Perna Viridis, on vertical bamboo poles affect the physical pro-
cesses driving wave dissipation for different wave conditions?

This thesis has provided deeper insight into the effect of mussel growth with a k/D of 0.1 and 0.06
on vertical bamboo poles for a steady flow and a large range of wave conditions (KC = 3-113). For
currents, the drag coefficients with mussels increased 66% in the range of Re = 103 −104, whereas for
waves, the differences in drag coefficients were almost negligible. The presence of mussels increases
the diameter up to 63%, for the maximum mussel size expected in Demak. The relative difference be-
tween the smooth and the mussel cylinder and the increase of the diameter indicates the effect of wave
attenuation. The wave attenuation by cnoidal waves can be estimated by integrating the wave flow ve-
locities from Fenton theory, using drag coefficients measured in the flume experiments. Nevertheless,
it should be taken into account that the data analysis identified inaccuracies in the velocity measure-
ments, which may be influencing the previous results.

6.2. Recommendations
The most important recommendations for further research are:

1. Further experimental investigations with the physical model should be done using the 1:3 scale model.
This scale showed significant differences between the smooth and mussel cylinders. Moreover, a scale
model should be designed using the mussel size as scaling length. Measuring with two different devices
instead of one is recommended, due to reoccurring problems with the velocity signals,
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2. Further laboratory experiments should be done to verify the use of realistic modelling. The physical
model of this thesis should be compared to homogeneously placed mussels and mussel pole replicas
to quantify the difference in drag coefficients.

3. Numerical modelling should be done to assess the effect of mussel growth on wave attenuation. With
the drag coefficients measured for single cylinders in the flume experiments, the effect of a bamboo
pole field can be assessed. The longitudinal and transversal length between each bamboo pole must
be at least 5D , so the poles do not interact. By changing the field’s length, the water depth, and the
longitudinal and transversal distance, a bamboo field can be designed that satisfies the aim to attenuate
60 % of the wave energy for mangrove rehabilitation.

4. It should be investigated whether it is economically feasible to implement the bamboo field. Factors
that should be included are labour costs, material costs of the structures, sales price and transport
costs.



A
Mussel pattern

A.1. Dimensions
The dimensions are based on six images from the internet, as seen in A.1. A blue outline, based on mussel
number 1, is placed over the other five mussels. This was done to verify that green Asian mussels have similar
shapes. Moreover, the outline was used determine the height, width, thickness and height from the widest
point. The definitions of the measured parameters are shown in figure A.2.

(a) Mussel number 1 (b) Mussel number 2 (c) Mussel number 3

(d) Mussel number 4 (e) Mussel number 5 (f) Mussel number 6

Figure A.1: Six images of mussels. A blue outline of mussel number 1 is shown around the other five mussels to verify that the mussels
have similar shape.
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(a) Front view of the mussel. The outline gives an indi-
cation of where the height, width and height from the
widest point are measured.

(b) Side view of the mussel. The outline gives an indi-
cation of where the thickness is measured.

Figure A.2: The definitions of the measured parameters.

The values of the parameters of the six images are depicted in table A.1. The values are the dimensions
in the field. Next, the average dimensions are calculated for the design mussel. The height, width, thickness
and height from the widest point are 5 cm, 2.4 cm, 1.5 cm and 2.3 cm, respectively. The dimensions are scaled
down to a scale of 1:6 and 1:3, as shown in table 3.1.

Table A.1: Averaged dimensions in the field in cm

Number Height Max width Thickness Height from the widest point
1 5 2. 3 - 2.2
2 5 2.3 1.6 2.2
3 5 2.3 - 2.4
4 5 2.4 1.4 2.3
5 5 2.6 - 2.2
6 5 2.4 1.5 2.2
Average 5 2.4 1.5 2.3

A.2. Realistic shape
The shape of the design mussel is based on a realistic 3D model taken from the site Sketchfab. The impres-
sions of the 3D model can be seen in the figure A.3. The 3D model is scaled down to the desired dimension of
table 3.1.

(a) Front view of the mussel of the 3D
model.

(b) Side view of the mussel of the 3D
model.

(c) Side view 2 of the mussel of the 3D
model

Figure A.3: Three sides of the 3D model.

A.3. Mussel pattern
Images from the field were used to understand the natural position of the mussels and to recreate their pat-
tern. First, a red square was drawn to define a fixed area, as can be seen in figure A.4.
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(a) Image from the field. (b) Image from the field.
(c) Image from the internet
to verify the pattern.

Figure A.4: Three images from the field. The red box defines a fixed area, where the position of the mussel are investigated.

From the red square figure A.4, the angles are determined and placed in a grid. This can be seen in the
figure A.5. There were two option in the translation of figure A.4b to a grid. Therefore, figures A.5b and A.5c
are both based on figure A.4b.

(a) Pattern from A.4a (b) Pattern from A.4b (c) Pattern from A.4b (d) Pattern from A.4c

Figure A.5: Three sides of the 3D model.

Now that the patterns of the three images are simplified and established in grids, an analysis is done. The
following aspects were researched:

1. The averaged angle between the mussels, counted in the rows of the grid (deviation X)

2. The averaged angle between the mussels, estimated in the columns of the grid (deviation Y)

3. The number of mussels next to each other with the same angle (pairs)

4. The number of mussels that had an angle of 45 degrees or 90 degrees with its neighbour (in both direc-
tions) with a 10-degree range (# of angles).

From all this, it was concluded that the mussels have an average angle of 10 °difference from their neigh-
bour. Also, 51 % of the mussels have a 45°or 90°angle with their neighbour. The values are presented in table
A.2.
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Table A.2: Analysis of the simplified patterns. Version A is figure A.5a, version B is figure A.5b, version C is figure A.5c and version D is
figure A.5d

Version Deviation X [°] Deviation Y [°] Pairs [-] # of angles [-]
A 160/24 = 7 145/25 = 6 13 16/30 = 0.53
B 230/20 = 11.5 240/20 = 12 3 12/25 = 0.48
C 190/20 = 9.5 240/20 = 12 3 14/25 = 0.56
D 250/20 = 12.5 260/20 = 13 5 12/25 = 0.48
Average 10.125 10.75 4 77/150 = 0.51

A.4. Python Script
The Python script that is used to generate the mussel pattern is included. First, an empty matrix with the
size of 4 by 13 was constructed. Then random locations were determined for the 45 °or 90 °angle. Next, the
average of 10 °with their neighbouring mussels was included in the pattern.

1 from random import randint
2 import random
3 # step 1: empty matrix
4 a = 4 #rows
5 b = 13 #columns
6 factor = 0.51 #percentage of mussel that have 45 degree of 90 degree with their

neighbour
7 n = round(a*b*factor)
8 mussel_matrix = np.zeros((a,b)) #matrix for the mussel
9

10 #step 2: find random locations
11

12 array_1 = np.arange(0,a)
13 array_2 = np.arange(0,b)
14 comb_array = np.array(
15 np.meshgrid(array_1 , array_2)).T.reshape(-1, 2)
16 new_array = shuffle(comb_array , random_state = 0)
17

18 x = new_array.shape [0]
19 random_indices = np.random.choice(x, size=n, replace=False)
20 random_rows = new_array[random_indices , :]
21 #print(random_rows)
22 row1 = random_rows [:,0]
23 row2 = random_rows [:,1]
24

25 #step 3: include the random location in the empty matrix and give them an random angle
45 degree

26

27 for y in range(len(row1)):
28 mussel_matrix[row1[y], row2[y]] = random.randrange (45,271, 45)
29

30

31 # Step 4: start with a random point in [0,0]
32 mussel_matrix [0,0] = random.randrange (0 ,361 ,10)
33

34 #step 5: angle of the mussel depending on the neighbouring mussel + range of 10 degree
difference with the neighbour + value given by step 2 (can be 0, 45, 90)

35 #for the rows
36 for i in range(a-1):
37 mussel_matrix[i+1,0] = (mussel_matrix[i,0]+ random.randrange (-10,11, 10)+

mussel_matrix[i+1 ,0]) %360
38 # for the columns
39 for j in range(b-1):
40 mussel_matrix [0,j+1] = (random.randrange (-10,11,10) + mussel_matrix [0,j+1] +

mussel_matrix [0,j])%360
41

42 # step 6: fill the rest of the matrix with: the mean of the angle of the mussel above
and next to the mussel + range of 5 degree difference with the neighbour + value
given by step 2 (can be 0, 90, 270)

43 for i in range(a-1):
44 for j in range(b-1):
45 neighbour = (np.int(( mussel_matrix[i,j+1] + mussel_matrix[i+1,j])/2))%360
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46 mussel_matrix[i+1,j+1] = (5* round(neighbour /5) +random.randrange (-10,11,10) +
mussel_matrix[i+1,j+1]) %360

47

48 #step 7: Give an angle between -180 and 180 degree instead of between 0 and 360
49 k = mussel_matrix [0,:]
50 j = mussel_matrix [1,:]
51 e = mussel_matrix [2,:]
52 a = mussel_matrix [3,:]
53 for i in range(len(k)):
54 if k[i] >180:
55 k[i]= k[i]-360
56 if j[i] >180:
57 j[i]= j[i]-360
58 if e[i] >180:
59 e[i]= e[i]-360
60 if a[i] >180:
61 a[i]= a[i]-360

Listing A.1: Mussel pattern

A.5. Verification
The outcome of the Python script was check and and verified by using other sections of the previous used
images.

Figure A.6: Outcom of the python script
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B.1. Details on wave height meters

The wave height meter is developed for measurement of dynamically varying liquid levels, wave 
heights of water in particular. The wave height meter can be used as a standalone probe or combined 
with a control unit. The main difference when using a control unit is the ability to adjust the gain and 
zero shift of the output signal by means of dials. Furthermore, the control unit provides the probe with 
power. The output signal for the surface elevation is analogue for both the standalone version as the 
control unit. 

Applications
The wave height meter is, amongst others, used for laboratory 
research in the fields of:
• wave penetration in harbours
• performance of breakwaters and dikes
• coastal protection
• load and stability of off-shore structures

Probe
The probe of the wave height meter is constructed of two 
parallel stainless steel rods, mounted underneath a small 
box. This box contains electronics for sensor excitation, signal 
detection, amplification and galvanic isolation. The rods act 
as the electrodes of an electric conduction meter. A platinum 
reference electrode is included to compensate the surface 
elevation measurement for the effect of varying electrical 
conductivity of the fluid. The analogue output signal is linearly 
proportional to the liquid level between the sensor rods.

Features
• fast dynamic response
• wide range 0.5 m, other ranges optional
• automatic compensation for conductivity variation
• high linearity
• easy installation
• analogue output indication on control unit

Wave height meter
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Instrument, Wave height meter, version 1.1

Technical specifications

Wave height electrodes • rods, stainless steel, type 316, 4 mm diameter
• electrode spacing 24.3 mm
• electrode length 590 mm (other lengths optional)

Reference electrode platinum

Other materials exposed to liquid PVC-U

Liquid medium • medium conductive liquids non-aggressive to mentioned 
materials

• minimum required conductivity 0.1 mS/cm
• sensitivity variation < 1 % for 0.1 to 2.0 mS/cm

Accuracy 0.5 % of measuring range, best straight line

Output 0.4 V/cm level variation (standard: -10 to +10 VDC for 
50 cm liquid level change)

Frequency response > 15 Hz

Dimensions incl. electronics 675 mm long (standard length)

Cable 25 m (optional up to 100 m)

Control unit
The control unit supplies the wave height meter with power and provides a way to adjust 
the wave height meter to the desired calibration. Four switch selectable ranges are 
available to adjust the gain of the output signal. The zero level is adjustable by a dial. 
One universal carrying case (UCC) can support two control units.

Features
• output indication
• switch selectable ranges
• adjustable zero level
• can be used with probes of various length

Technical specifications

Probes available standard probe 0.5 m range
special probe 1.0 m range
other lengths on request

Ranges 0.05, 0.1, 0.2, 0.5 m for standard probe
0.1, 0.2, 0.4, 1.0 m for special probe

Frequency response > 15 Hz

Output +/- 10 VDC 

Dimensions cassette standard eurostyle cassette

Several configurations can be built on request. One example is a setup where a number 
of wave height meters without control units are powered by one electronics box. For 
each wave height meter the analogue output signal is available on a BNC connector. 
Furthermore, there is the possibility to include data output over USB or Ethernet.

More information: instrumentation@deltares.nl

Control unit rear view

Control unit front view

probe

PO Box 177
2600 MH Delft, The Netherlands
T +31 (0)88 335 82 73
info@deltares.nl
www.deltares.nl

Deltares is an independent institute for applied research in 
the field of water, subsurface and infrastructure. Throughout 
the world, we work on smart solutions, innovations and 
applications for people, environment and society. 
Deltares is based in Delft and Utrecht.

(Deltares, 2022b)
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B.2. Details on electromagnetic velocity meter

The electromagnetic velocity meter measures bi-directional water velocity in two perpendicular 
directions. The measurement principle is based on conductive liquid moving through a magnetic 
field. The magnetic field is induced by electrical current in a small coil inside the body of the probe. 
Two pairs of diametrically opposed platinum electrodes sense the induced voltages produced by the 
flow past the probe. The probe has been designed in such a way that these voltages are proportional 
to the liquid velocity parallel to the plane of the electrodes.

Applications
Specific applications where the electromagnetic liquid velocity 
meter can be used include:
• laboratory research 
• engineering studies
• open channel stream gauging 
• slurries and sludge transport 
• environmental and hydrological measurements 
• sedimentation and filtration processes 
• flow monitoring under surge conditions 

Standard probes
There are two standard probes available. The E30 type probe 
is especially suitable for physical model studies and laboratory 
research due to its smaller probe size. The E40 type probe has 
a larger probe size and is therefore more robust. Furthermore, 
the E40 type probe can be fully submerged in liquid, as 
opposed to the E30 type probe. Next to these two standard 
probes, special probes (e.g. cranked) can be made to suit 
specific applications.
As described above, the probes measure the liquid velocity 
using a magnetic field beneath the probe. This magnetic field 
should not be disturbed. The probes have to be connected to 
a control unit. 

Features
• 0 - 2.5 m/s bi-axial four quadrant range
• towing tank calibration 
• < 10 mm/s per 24 hours zero stability
• ellipsoid type probes for high spatial resolution and minimum 

flow disturbance
• galvanic isolation between probe and output

version 1.1

Programmable electromagnetic liquid 

velocity meter
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Instrument, Programmable electromagnetic liquid velocity meter, version 1.1

Technical specifications

Materials exposed to liquid • stainless steel 316
• platinum
• PU finish 03-69554 Ral 9021 F9

Medium • liquids and suspensions, including slurries
• minimum required conductivity 0.2 mS/cm
• maximum temperature 40ºC (water)

Probe • electromagnetic, bi-axial, 4-quadrant
• E30 type: ellipsoid 11x33 mm, total length 1090 mm, immersion depth 850 mm
• E40 type: ellipsoid 14x40 mm, total length 500 mm, fully immersible (max. 30 m)
• special probes available on request (e.g. cranked probe)

Range up to 2.5 m/s (E40 type optional up to 5.0 m/s)

Accuracy +/- 0.01 m/s +/- 1 % of measured value

Tilt response error negligible for tilt angles < 10° if compensated for cosine response

Temperature influence • medium: < 1.0 mm/s per °C
• ambient: < 0.3 mm/s per °C

Conductivity influence < 0.02 % of reading per mS/cm

Cables 1. E30 type: 10 m (optional up to 100 m)
2. E40 type: 25 m (optional up to 100 m)

Control unit
The control unit for the electromagnetic liquid velocity meter can be used with different 
types of probes. Its various functions can be controlled by three keys on the front panel. 
The control unit is able to communicate in ASCII coded messages (text) via the RS-232c 
port with a PC, terminal, etcetera. Measurements can be programmed and data collected 
at distance from the control unit (data handling software is not included). 

Features
The following features can be selected from the control unit:
• Vx and Vy or magnitude and direction
• display in volts or m/s
• actual or average data, standard deviation of values measured
• continuous or single measurement
• averaging time 0.1 - 9999.9 s
• probe type
• baud rates from 1200 to 9600
• zero calibration
• synchronization to mains

Technical specifications

Range 0 to +/- 1.0 or +/- 2.5 m/s
optional 0 to +/- 2.0 or +/- 5.0 m/s

Output analog voltage 0 to +/- 10 V, range selected, short circuit proof
RS-232c port for data transfer to PC

Measuring period by menu, continuous or single period

Averaging time By menu, 0.1 - 9999.9 s

Dynamic response (70%) 7 Hz

Dimensions cassette standard eurostyle cassette

More information: instrumentation@deltares.nl

Control unit rear view

Control unit front view

E40 probe E30 probe

PO Box 177
2600 MH Delft, The Netherlands
T +31 (0)88 335 82 73
info@deltares.nl
www.deltares.nl

Deltares is an independent institute for applied research in 
the field of water, subsurface and infrastructure. Throughout 
the world, we work on smart solutions, innovations and 
applications for people, environment and society. 
Deltares is based in Delft and Utrecht.

(Deltares, 2022a)
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B.3. Details on force transducer
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 400778 LOAD CELL AL3 C3 SH 10e 3 kg 0.3 g R1

 400779 LOAD CELL AL5 C3 SH 10e 5 kg 0.5 g R1

 400780 LOAD CELL AL7 C3 SH 10e 7 kg 0.7 g R1

 400781 LOAD CELL AL10 C3 SH 10e 10 kg 1 g R1

 400782 LOAD CELL AL15 C3 SH 10e 15 kg 1.5 g R1

 400784 LOAD CELL AL30 C3 SH 10e 30 kg 3 g R1

  Option:

 850203 OPTIONAL PROTECTIVE COATING   R1

Dimensions en mm

Charge - Load

Face d'appui
Mounting surface

150

100

31

15

26

4 trous - holes M 6

20

25

2 
m

ax
.

19,05

3 
m

ax
.

AL
3 kg ... 30 kg

Load cell - Single point

• Aluminum construction, protection class IP65
• 3 000 d OIML R60 and 5 000 d NTEP approved
• Off-centered load compensated
• Low cost model for high volume production

Replaces: T-H 1040/1042, HBM SP4, RT 642, CAS BCA, (+ 14 mm spacer)

Signal at FS: 2 mV/V ±10 %
Combined error: ±0.017 %FS
Impedance (in/out): 410 Ω ±20 / 350 Ω ±5
Compensated temperature range: -10 ... +40°C
Platform size: up to 300 x 350 mm
Cable/length: 4 shielded wires / 1 m
Warranty: 1 year

+ Excit.: Red | + Sign.: Black | - Sign.: Blue | - Excit.: White

vmin.

(Scaime,
2014)
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B.4. Calibration of the force transducer
The calibration of the force transducer was repeated for four different heights, namely at z = 0.23 m, z = 0.345
m, z = 0.46 and z = 0.72 m. This resulted in the new formulas, which are shown in figures B.1, B.2, B.3 and B.4.

Figure B.1: Calibration formula measured at 23 cm
from the bed

Figure B.2: Calibration formula measured at 34.5 cm
from the bed

Figure B.3: Calibration formula measured at 46 cm
from the bed

Figure B.4: Calibration formula measured at 72 cm
from the bed



C
Wave paddle script for Cnoidal waves

The script that was used to generate the cnoidal waves is included. It determines the time series for the wave
paddle position. The input parameters are the wave height, water depth and wave period and the surface el-
evation and phase velocity are based on the Fenton theory. Moreover, a ramp-up and ramp-down is included
to slowly start and shut down the wave generator.

1 % wave paddle motion
2 clear all
3 close all
4

5 %% wave properties
6 H = 0.17; % Wave height [m]
7 h = 0.5; % Water depth [m]
8 T = 5.6; % Wave period [s]
9 omeg = 2.*pi./T;

10 EorS = ’Eulerian ’; % Either ’Stokes ’ or ’Eulerian ’ drift.
11 uEorS = 0; % Magnitude of the Stokes or Eulerian drifts
12 nsteps = 15;
13 g = 9.81;
14 N = 10; % number of harmonics
15

16 %% Integration characteristics
17 % definition of points for vertical velocity profile
18 % to calculate depth averaged velocity
19 dz = 0.01; % spacing for vertical integration
20 emfHeight = dz:dz:h; % height of each point from the bed
21 emfHeight = emfHeight ’;
22 numz = length(emfHeight);
23

24 % definition of time series
25 t1 = 0; %first point for time series
26 t2 = 30.*T; %last point for time series
27 numpoints = t2*25; % number of points time series
28 t = linspace(t1,t2 ,numpoints +1); % generated time series
29 dt = t(2)-t(1); % time step
30

31 %definition of ramp -up and ramp -down time
32 Tr = 5*T; %in this case , five times the wave period
33

34 %% generation of the wave with stream function theory
35 [eta , B, Q, c, k, R, uBar] = StreamFunctionCoefficientsPeriod(N,H,h,T,uEorS ,EorS ,nsteps

,g);
36

37 %% calculating the surface elevation and velocities
38 % Solving for the surface elevation coefficients
39 matrix = ones(N+1);
40

41 for i=0:N
42 matrix(i+1,1:end -1) = cos ((1:N) * i * pi / N);
43 end
44

59
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45 A = matrix\eta ’;
46

47 % Calculating surface elevation time series
48 etaT = zeros(size(t)) + A(end);
49 for j=1:N
50 etaT = etaT + A(j) * cos(- j * 2 * pi / T * t);
51 end
52

53 tim = 0;
54 numtim = length(etaT);
55

56 %% Calculating depth -averaged velocity
57 x_int (1) = 0; % turn -on this line to follow paddle motion
58

59 tim = t1;
60 for i = 1: numtim
61 tim = dt + tim;
62 f_up(i) = sin ((2*pi/Tr)*min(tim ,Tr/4)); % Ramp -up scaling factor
63

64 for j = numz :-1:1 % loop over the vertical coordinate
65 u(j,i) = omeg/k - uBar;
66 uLWT(j,i) = (H/2)*omeg*cosh(k*emfHeight(j,1))/sinh(k*h)*cos(-omeg*tim); %

Linear wave theory
67 for l = 1:N % adding the different harmonics
68 %u(j,i) = u(j,i)+B(l)*cosh(l*k*emfHeight(j,1))/cosh(l*k*h)*cos(-l*omeg*tim)

;
69

70 % to follow the paddle motion , use the line below
71 u(j,i) = u(j,i)+B(l)*cosh(l*k*emfHeight(j,1))/cosh(l*k*h)*cos(l.*k.*x_int(i

)-l*omeg*tim);
72

73 end
74 end
75

76 u_int(1,i) = trapz(u(:,i)).*dz./h; % depth -averaged velocity
77

78 % to follow the paddle motion , use the line below
79 x_int(i+1) = x_int(i) + u_int(1,i).*dt;
80 end
81

82 f_down = flip(f_up); % Ramp -down scaling factor
83

84 figure ,
85 subplot (4,1,1)
86 plot(t,etaT)
87 ylabel(’\eta [m]’)
88

89 subplot (4,1,2)
90 plot(t,u_int)
91 ylabel(’U_{da} [m/s]’)
92

93 %% calculating position paddle
94 X_paddle = cumtrapz(t,u_int);
95

96 subplot (4,1,3)
97 plot(t,X_paddle)
98 ylabel(’x_{paddle} (no spin -up) [m]’)
99

100 X_paddle = detrend(X_paddle);
101

102 %% multiplying the paddle position by the the ramp -up and ramp -down factors
103 X_paddle = X_paddle .*f_up.* f_down;
104

105 subplot (4,1,4)
106 plot(t,X_paddle)
107 ylabel(’x_{paddle} (spin -up) [m]’)

Listing C.1: Wave paddle



D
Location of the cylinder

For the steady flow experiments, the location of the cylinder over the length of the flume has to be determined.
There are three requirements for the location of the cylinder:

1. The required Reynolds numbers are reached.

2. The boundary layer must be turbulent in the flume.

3. The boundary layer must have the same thickness as the water level, h, in the flume.

D.1. Required Reynolds number
The aim of the steady flow experiments is to obtain the curve for the drag coefficient as a function of the
Reynolds number. From 4.11a, it assumed that the drag crisis for the roughness of the mussels will take place
between Re = 103−104. To achieve these numbers, a certain velocity must be reached. This is calculated with
the following equation:

u = Rev

D
(D.1)

Where u is the flow velocity, Re is the Reynolds number, v is the kinematic viscosity and D is the diameter. At
the same time, the Froude (F r ) number must also be smaller than 1 to have sub-critical flow.

F r = u√
g h

(D.2)

Where g is the gravitational acceleration and h is the water depth.
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D.2. Turbulent Boundary layer
The boundary layer starts laminar, and after a critical point, it turns turbulent, as shown in D.1. This transition
occurs at Reynolds numbers of 5∗105 −3∗106. The Reynolds number is now expressed as function of x and
describes the flow in the flume.

Rex = ux

v
(D.3)

where x is the distance from the beginning of the flume, and Rex is the Reynolds number as a function of x

Figure D.1: Development of the boundary layer over the distance, x (Munson et al., 1994)

D.3. Thickness of the boundary layer
As depicted in D.1, the growth of the boundary layer changes after the transition. For laminar flow, the layer
thickness can be described with the following formula:

δ= 5xp
Rex

(D.4)

Where δ is the boundary layer thickness.
The layer thickness changes for a turbulent flow to:

δ= 0.37x

Re
1
5
x

(D.5)

Therefore any point after the critical point, the boundary layer thickness can be described as:

δ= 5xp
Rex

+ 0.37(x −xc r )

Re
1
5
x

(D.6)

For the location of the model, the δ must be equal to the water level, h.



E
Averaging interval

Figure E.1 shows the difference in the mean velocity of various intervals to the mean velocity of d t = 1. The
differences for all intervals are negligibly small.

Figure E.1: The difference in mean velocity using multiple averaging intervals.
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F
Filters for the force data

Figure F.1 shows the raw data series of one of the force measurements. If we zoom in and look at figure F.2,
oscillations can be seen after the peak in the force. To remove the oscillations, a filter needs to be applied to
the raw time series.

Figure F.1: The full and raw time series of the force data
Figure F.2: The zoomed in and raw time series of the
force data

Five different filters are applied to the data and shown in figures F.3, F.5, F.4 and F.6. The filters are a
moving average, low frequency filter, the peaks, troughs and the zero-crossings of the oscillations. The step
size of the moving average is determined manually. The step size is constant and has a value of 14. This
suggests that these oscillation are due to the eigenfrequency of the cylinder. The low frequency filter has
frequency of 0.05 Hz. The peaks and troughs are determined by the find peaks function of Python. The zero-
crossing is determined by the time steps of the peak and troughs of the find peaks function. Eventually, the
low frequency filter was chosen to apply to the signals.
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Figure F.3: Overview of 5 ways to filter the time series
of the force data

Figure F.4: Filter based on the resonance of the cylin-
der

Figure F.5: 3 Filter based on the peaks, through and
zero-down crossing of the force data

Figure F.6: Comparison of the moving average filter,
low pass filter and the zero down crossing filter



G
Graphs of the waves

G.1. Smooth cylinder: H = 4 cm and T = 1 s

Figure G.1: The surface elevation for H = 4 cm and T =
1 sec. Figure G.2: The velocity for H = 4 cm and T = 1 sec

Figure G.3: The force on the cylinder with the fitted si-
nus function for H = 4 cm and T = 1 sec.

Figure G.4: Surface elevation, velocity and force plot-
ted together.

Figure G.5: The measured and calculated force. Figure G.6: Drag and inertia coefficients
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G.2. Smooth cylinder: H = 4 cm and T = 2 s 67

G.2. Smooth cylinder: H = 4 cm and T = 2 s

Figure G.7: The surface elevation for H = 4 cm and T =
2 sec.

Figure G.8: The velocity for H = 4 cm and T = 2 sec

Figure G.9: The force on the cylinder with the fitted si-
nus function for H = 4 cm and T = 2 sec.

Figure G.10: Surface elevation, velocity and force plot-
ted together.

Figure G.11: The measured and calculated force. Figure G.12: Drag and inertia coefficients



68 G. Graphs of the waves

G.3. Smooth cylinder: H = 4 cm and T = 3 s

Figure G.13: The surface elevation for H = 4 cm and T
= 3 sec.

Figure G.14: The velocity for H = 4 cm and T = 3 sec

Figure G.15: The force on the cylinder with the fitted
sinus function for H = 4 cm and T = 3 sec.

Figure G.16: Surface elevation, velocity and force plot-
ted together.

Figure G.17: The measured and calculated force. Figure G.18: Drag and inertia coefficients
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G.4. Smooth cylinder: H = 13 and T = 2 s

Figure G.19: The surface elevation for H = 13 cm and T
= 2 sec. Figure G.20: The velocity for H = 13 cm and T = 2 sec.

Figure G.21: The force on the cylinder with the fitted
sinus function for H = 13 cm and T = 2 sec.

Figure G.22: Surface elevation, velocity and force plot-
ted together.

Figure G.23: The measured and calculated force. Figure G.24: Drag and inertia coefficients



70 G. Graphs of the waves

G.5. Smooth cylinder: H = 13 cm and T = 3 s

Figure G.25: The surface elevation for H = 13 cm and T
= 3 sec. Figure G.26: The velocity for H = 13 cm and T = 3 sec

Figure G.27: The force on the cylinder with the fitted
sinus function for H = 13 cm and T = 3 sec.

Figure G.28: Surface elevation, velocity and force plot-
ted together.

Figure G.29: The measured and calculated force. Figure G.30: Drag and inertia coefficients



G.6. Smooth cylinder: H = 13 cm and T = 6 s 71

G.6. Smooth cylinder: H = 13 cm and T = 6 s

Figure G.31: The surface elevation for H = 13 cm and T
= 6 sec. Figure G.32: The velocity for H = 13 cm and T = 6 sec

Figure G.33: The force on the cylinder with the fitted
sinus function for H = 13 cm and T = 6 sec.

Figure G.34: Surface elevation, velocity and force plot-
ted together.

Figure G.35: The measured and calculated force. Figure G.36: Drag and inertia coefficients



72 G. Graphs of the waves

G.7. Smooth cylinder: H = 13 cm and T = 7 s

Figure G.37: The surface elevation for H = 13 cm and T
=7 sec. Figure G.38: The velocity for H = 13 cm and T = 7 sec

Figure G.39: The force on the cylinder with the fitted
sinus function for H = 13 cm and T = 7 sec.

Figure G.40: Surface elevation, velocity and force plot-
ted together.

Figure G.41: The measured and calculated force. Figure G.42: Drag and inertia coefficients
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G.8. Mussels: H = 6.66 cm and T = 1 s

Figure G.43: The surface elevation for H = 6.66 cm and
T = 1 sec.

Figure G.44: The velocity for H = 6.66 cm and T = 1 sec

Figure G.45: The force on the cylinder with the fitted
sinus function for H = 6.66 cm and T = 1 sec.

Figure G.46: Surface elevation, velocity and force plot-
ted together.

Figure G.47: The measured and calculated force. Figure G.48: Drag and inertia coefficients
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G.9. Mussels: H = 6.66 cm and T = 2 s

Figure G.49: The surface elevation for H = 6.66 cm and
T = 2 sec. Figure G.50: The velocity for H = 6.66 cm and T = 2 sec

Figure G.51: The force on the cylinder with the fitted
sinus function for H = 6.66 cm and T = 2 sec.

Figure G.52: Surface elevation, velocity and force plot-
ted together.

Figure G.53: The measured and calculated force. Figure G.54: Drag and inertia coefficients
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G.10. Mussels: H = 6.66 cm and T = 3 s

Figure G.55: The surface elevation for H = 6.66 cm and
T = 3 sec.

Figure G.56: The velocity for H = 6.66 cm and T = 3 sec.

Figure G.57: The force on the cylinder with the fitted
sinus function for H = 6.66 cm and T = 3 sec.

Figure G.58: Surface elevation, velocity and force plot-
ted together.

Figure G.59: The measured and calculated force. Figure G.60: Drag and inertia coefficients



76 G. Graphs of the waves

G.11. Mussels: H = 21.3 cm and T = 1.5 s

Figure G.61: The surface elevation for H = 21.3 cm and
T = 1.5 sec.

Figure G.62: The velocity for H = 21.3 cm and T = 1.5
sec.

Figure G.63: The force on the cylinder with the fitted
sinus function for H = 21.3 cm and T = 1.5 sec.

Figure G.64: Surface elevation, velocity and force plot-
ted together.

Figure G.65: The measured and calculated force. Figure G.66: Drag and inertia coefficients



G.12. Mussels: H = 21.3 cm and T = 2 s 77

G.12. Mussels: H = 21.3 cm and T = 2 s

Figure G.67: The surface elevation for H = 4 cm and T
= 1 sec. Figure G.68: The velocity for H = 4 cm and T = 1 sec

Figure G.69: The force on the cylinder with the fitted
sinus function for H = 4 cm and T = 1 sec.

Figure G.70: Surface elevation, velocity and force plot-
ted together.

Figure G.71: The measured and calculated force. Figure G.72: Drag and inertia coefficients



78 G. Graphs of the waves

G.13. Mussels: H = 21.3 cm and T = 3 s

Figure G.73: The surface elevation for H = 4 cm and T
= 1 sec. Figure G.74: The velocity for H = 4 cm and T = 1 sec

Figure G.75: The force on the cylinder with the fitted
sinus function for H = 4 cm and T = 1 sec.

Figure G.76: Surface elevation, velocity and force plot-
ted together.

Figure G.77: The measured and calculated force. Figure G.78: Drag and inertia coefficients



G.14. Mussels: H = 21.3 cm and T = 4 s 79

G.14. Mussels: H = 21.3 cm and T = 4 s

Figure G.79: The surface elevation for H = 21.3 cm and
T = 4 sec. Figure G.80: The velocity for H = 21.3 cm and T = 4 sec.

Figure G.81: The force on the cylinder with the fitted
sinus function for H = 21.3 cm and T = 4 sec.

Figure G.82: Surface elevation, velocity and force plot-
ted together.

Figure G.83: The measured and calculated force. Figure G.84: Drag and inertia coefficients



80 G. Graphs of the waves

G.15. Mussels: H = 21.3 cm and T = 5 s

Figure G.85: The surface elevation for H = 21.3 cm and
T = 5 sec. Figure G.86: The velocity for H = 21.3 and T = 5 sec

Figure G.87: The force on the cylinder with the fitted
sinus function for H = 21.3 and T = 5 sec.

Figure G.88: Surface elevation, velocity and force plot-
ted together.

Figure G.89: The measured and calculated force. Figure G.90: Drag and inertia coefficients



G.16. Mussels: H = 21.3 cm and T = 6 s 81

G.16. Mussels: H = 21.3 cm and T = 6 s

Figure G.91: The surface elevation for H = 4 cm T = 6
sec 85

Figure G.92: The velocity for H = 4 cm and T = 6 sec

Figure G.93: The force on the cylinder with the fitted
sinus function for H = 4 cm and T = 1 sec.

Figure G.94: Surface elevation, velocity and force plot-
ted together.

Figure G.95: The measured and calculated force. Figure G.96: Drag and inertia coefficients



82 G. Graphs of the waves

G.17. Mussels: H = 21.3 cm and T = 7 s

Figure G.97: The surface elevation for H = 4 cm and T
= 7 sec.

Figure G.98: The velocity for H = 4 cm and T = 7 sec

Figure G.99: The force on the cylinder with the fitted
sinus function for H = 4 cm and T = 1 sec.

Figure G.100: Surface elevation, velocity and force
plotted together.

Figure G.101: The measured and calculated force.
Figure G.102: Drag and inertia coefficients

G.18. Overview

Figure G.103: Drag coefficient Figure G.104: Inertia coefficient



H
Velocity and acceleration profile

The vertical velocity and acceleration profiles consist of data points at elevations of z = 0.04 m, z = 0.05 m, z
= 0.10 m, z = 0.20 m, z = 0.30 m and z = 0.40 from the bed. The profiles need to be extrapolated from the bed
to the surface level to have an accurate representation of the velocity and acceleration. This is done in two
ways, namely by calculating the the velocity and acceleration points at the bed and the surface level and by
fitting a line through the measured points.

H.1. Velocity and acceleration points at the bed and surface
The equations to calculate the velocity at the bed and surface level are as follows:

ubed = cosh(k ∗ z0)∗ u0.04

cosh(k ∗ z0.04
(H.1)

Where ubed is the velocity at the bed in m/s, k is the wave number and z is the surface elevation in m.

usur f ace = cosh(k ∗ z0.50)∗ u0.40

cosh(k ∗ z0.40
(H.2)

Where usur f ace is the velocity at the surface in m/s. The same equations are used for the acceleration. Only
the velocity at 0.04 m and 0.40 m are replaced by the acceleration at 0.04 m and 0.40 m

H.2. Fitted line
A line is fitted through the measured data points for the velocity and acceleration and extrapolates the data
from the bottom to the surface. The velocity data points uses equation H.3 as a basis for the velocity pro-
file. The acceleration data points uses equation H.4 as a basis for the acceleration profile. The variables are
determined with the best fit function of Python.

uz = cosh(k ∗ zE MF )∗a (H.3) az = a ∗ zE MF +b ∗ z2
E MF + c (H.4)

Where Uz is the velocity at the elevation z of the EMF, k is the wave number, zE MF is the elevation of the
EMF and a, b and c are variables that the function is fitted to.
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I
Script for Fenton

1 def disper(k,omega ,h):
2 g = 9.81
3 return omega **2-g*k*np.tanh(k*h)
4

5 def streamfunction1(x,n,H,d,T,uEorS ,EorS ,g):
6

7 js = np.arange(1,n+1,1)
8 F = np.zeros (5+2*n)
9

10 F[0] = x[3] - x[3+n] - H
11 F[1] = x[3] + x[3+n] + 2*np.sum(x[4:4+n-1])
12

13 if EorS == ’Euler ’:
14 F[2] = x[0] - uEorS + x[4+n]
15 elif EorS == ’Stokes ’:
16 F[2] = x[0] - uEorS + x[4+n] - x[1]/d
17 else:
18 print(’EorS must be either "Euler" or "Stokes ".’)
19

20 k = 2*np.pi/(x[0]*T)
21

22 for i in range(n+1):
23 psi = x[n+4]*x[3+i] + np.sum(x[n+5:2*n+5]/(js*k) * np.sinh(k*js*(x[3+i] + d))/

np.cosh(js*k*d)*np.cos(js*i*np.pi/n))
24

25 u = x[n+4] + np.sum(x[n+5:2*n+5]*np.cosh(k*js*(x[3+i] + d))/np.cosh(js*k*d)*np.
cos(js*i*np.pi/n))

26

27 w = np.sum(x[n+5:2*n+5]*np.sinh(k*js*(x[3+i] + d))/np.cosh(js*k*d)*np.sin(js*i*
np.pi/n))

28

29 F[3+i] = psi + x[1]
30 F[3+n+1+i] = g*x[3+i] + 0.5*(u**2+w**2) - x[2]
31

32 return F
33

34 def streamfunctioncoefficients1(n,H,d,T,uEorS ,EorS ,nsteps ,g):
35

36 #Initial parameters:
37

38 omega = 2*np.pi/T
39 k0 = fsolve(disper ,0.01 , args=(omega ,d))
40 L0 = 2*np.pi/k0
41 c0 = omega/k0
42

43 H0 = H
44 H = H0/nsteps
45

46 x0 =np.concatenate ((c0 , 0, g/(2*k0)*np.tanh(k0*d), H/2*np.cos(np.arange(0,n+1,1)*np
.pi/n), -c0 , g*H/2*T/L0, np.zeros(n-1)),axis=None)
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47 sol = root(streamfunction1 ,x0 , args=(n,H,d,T,uEorS ,EorS ,g), method=’lm’)
48 x_sol = sol.x
49

50 for i in range(nsteps -1):
51 H = (i+2)*H0/nsteps
52 x0 = x_sol
53 sol = root(streamfunction1 ,x0 , args=(n,H,d,T,uEorS ,EorS ,g), method=’lm’)
54 x_sol = sol.x
55

56 c = x_sol [0]
57 q = x_sol [1]
58 R = x_sol [2]
59 eta = x_sol [3:4+n]
60 B = x_sol [4+n:2*n+5]
61

62 return c,q,R, eta , B
63

64 def depthaveraged(T,H,t2,k_da):
65

66 N = 10
67 omeg = 2 * np.pi / T
68 c,q, R, eta , B = streamfunctioncoefficients1(N,H,0.5,T,0,’Euler ’,15, 9.81)
69

70 dz = 0.05
71 h = 0.5 +dz
72 emfHeight = np.arange(0, h, dz)
73 emfHeight=np.atleast_2d(emfHeight).T.conj()
74 numz = len(emfHeight)
75

76 t1 = 0
77 t2 = t2*T
78 numpoints = 100
79 t = np.linspace(t1 ,t2, numpoints +1)
80 dt = t[1]-t[0]
81

82 matrix = np.ones((N+1, N+1))
83 time = np.arange(0,N+1,1)
84

85

86 for j in range(N+1):
87 for i in range(N):
88 matrix[j,i] = np.cos((i+1) *j* np.pi/N)
89

90 eta=np.atleast_2d(eta).T.conj()
91 A, res , rnk , s = lstsq(matrix , eta)
92 etaT = np.ones(len(t))*A[10]
93

94 w = np.zeros(N)
95

96 tim = 0
97 numtim = len(etaT)
98

99 #calculating depth averaged velocity
100 emfHeight = np.arange(dz , h, dz)
101 emfHeight=np.atleast_2d(emfHeight).T.conj()
102

103 u = np.zeros((N,numtim))
104 time = np.zeros(numtim)
105 u_int = np.zeros(numtim)
106 for i in range(numtim):
107 tim = dt + tim
108 time[i] = tim
109

110 for j in range(9, -1, -1):
111 u[j,i] = omeg/k_da - c;
112

113 for l in range(N-1):
114 u[j,i] = u[j,i]+B[l+1]*np.cosh((l+1)*k_da*emfHeight[j,0])/np.cosh((

l+1)*k_da *0.5)*np.cos(-(l+1)*omeg*time[i]);
115

116 u_squared = u*abs(u)
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117 u_int[i] = np.trapz(u_squared [:,i])*dz/0.5
118

119 acceleration = np.zeros ((N, numtim))
120 acceleration_int = np.zeros(numtim)
121 for i in range(N):
122 acceleration[i,:]= np.gradient(u[i,:])/dt
123 for k in range(numtim):
124 acceleration_int[k] = np.trapz(acceleration [:,k])*dz/0.5
125

126

127 return u_int , acceleration_int , t

Listing I.1: Wave paddle
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