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First, the three-dimensional equations for water motion and suspended sediment concentration together
with the so-called morphodynamic equilibrium condition, are scaled. Next, surface elevation, velocity and
sediment concentration are expanded in a small parameter € = Ay, /H, where Ay, is the mean amplitude

Keywords: of the M, tide and H is the mean water depth at the seaward side. This results in a system of equa-
Idealized model tions at each order in this small parameter. This ordering allows solving for the vertical structure of the
Morphodynamic equilibrium velocity and suspended sediment concentration, independently of the horizontal dimension. After obtain-
Estuarine turbidity maxima ing these vertical structures, the horizontal dependencies of the physical variables follow from solving a

Ems estuary two-dimensional elliptic partial differential equation for the surface elevation. The availability of fine sed-

iments in the estuary follows from a two-dimensional elliptic partial differential equation which results
from requiring the system to be in morphodynamic equilibrium, and prescribing the total amount of
easily erodible sediments available in the estuary. These elliptic equations for the surface elevation and
sediment availability are solved numerically using the finite element method with cubic polynomials as
basis functions. As a first application, the model is applied to the Ems estuary using a simplified geometry
and bathymetric profiles characteristic for the years 1980 and 2005. The availability of fine sediments and
location of maximum concentration are investigated for different lateral depth profiles. In the first exper-
iment, a uniform lateral depth is considered. In this case, both the sediment availability and suspended
sediment concentration are, as expected, uniform in the lateral direction. In 1980, the sediment is mainly
trapped near the entrance, while in 2005, the sediment is mostly trapped in the freshwater zone. In the
next experiment, the lateral bathymetry is varied parabolically while keeping the mean depth unchanged.
In this case, the fine sediment is mainly found at the shallow sides, but the maximum sediment concen-
tration is found in the deeper channel where the bed shear stress is much larger than on the shoals. As
a final experiment, a more realistic (but smoothed) geometry and bathymetry for the Ems estuary are
considered, showing the possibilities of applying the newly developed model to complex geometries and

bathymetries.
© 2017 Elsevier Ltd. All rights reserved.
1. Introduction ward and seaward regions. These regions are called estuarine tur-
bidity maxima (ETM). A good understanding of the ETM dynam-
In most estuaries, regions are observed with elevated sus- ics is important for many reasons (for a detailed discussion, see
pended sediment concentration compared with the adjacent land- Jay et al., 2015). First, the presence of an ETM can have a strong

influence on the ecological functioning of an estuary, as it can re-

sult in limited light conditions or anoxia (Talke et al., 2009b). Fur-
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efforts to keep the estuary accessible and the navigation lanes at
their regular depths. Finally, ETM dynamics is shown to be sensi-
tive to changes in bathymetry, geometry and external forcing con-
ditions (de Jonge et al., 2014), which (if not well understood) can
result in a deterioration of the system as a whole.

To better understand and assess the effects of natural or anthro-
pogenic changes on ETM dynamics, different types of models are
being applied (Murray, 2003). For example, state-of-the-art three
dimensional process-based models are applied to simulate ETM dy-
namics (Weilbeer, 2008; van Maren et al.,, 2015) and changes in
ETM dynamics due to human interventions. However, these mod-
els are computationally expensive and the mechanisms resulting in
the observed dynamics are difficult to analyse (Schuttelaars et al.,
2013).

Alternatively, process-based idealized models are specifically
designed to and aimed towards studying the mechanisms result-
ing in the formation of ETMs and assessing their sensitivity to
parameters. Since these models focus on a specific phenomenon,
some processes are not or only parametrically taken into ac-
count. Furthermore, geometry and bathymetry are often simpli-
fied. Huijts et al. (2006) used an idealized modelling approach
to study the trapping of fine sediments in the lateral direction.
Talke et al. (2009a) and Chernetsky et al. (2010) focused on the
sediment transport in the longitudinal direction, using a width-
averaged model. However, Geyer et al. (1998) and Kim and Voul-
garis (2008) pointed out that the lateral water motion and sus-
pended sediment dynamics affect the processes in the longitudinal
direction and vice-versa. Therefore, to understand the ETM dynam-
ics and the underlying dominant trapping mechanisms (see for ex-
ample Jay et al,, 2015 for an overview of possible mechanisms), it
is necessary to study both the lateral and longitudinal processes si-
multaneously. Clearly, this requires a three-dimensional modelling
approach.

For the water motion, three-dimensional idealized models have
been developed and analysed in detail (Winant, 2007; 2008; Ens-
ing et al., 2015; Kumar et al., 2016), but for the sediment transport
and trapping of fine sediments, three-dimensional idealized mod-
els are still missing. Therefore, the aim of this paper is to develop
a three-dimensional idealized model for water motion and sedi-
ment dynamics in an estuary of arbitrary shape and bathymetry,
including the Coriolis effect. This allows for a systematic study of
the sediment trapping mechanisms in a tidally-dominated estuar-
ies. The physical parameters are allowed to vary in the horizontal
plane. The three-dimensional model is solved using an asymptotic
expansion technique. This results in analytic solutions of the verti-
cal profiles of the velocity and suspended sediment concentration.
These solutions still depend on the (gradients of the) surface ele-
vation. The surface elevation itself follows from a two-dimensional
elliptic partial differential equation which is solved numerically us-
ing the finite element method. The condition of morphodynamic
equilibrium is prescribed to govern the availability of fine sedi-
ments in the estuary.

As a first example, the new model is applied to the Ems es-
tuary using simplified geometric and bathymetric profiles charac-
teristic for 1980 and 2005. The location of maximum trapping of
sediments for both years is investigated. The influence of lateral
bathymetry is investigated by first keeping the depth in the lateral
direction uniform. Next, the lateral bathymetric profile is varied
parabolically while keeping the width-averaged depth unchanged.
The results are qualitatively compared with observations and the
influence of lateral depth variations is discussed. As a final exam-
ple, we use the (smoothed) observed bathymetry and geometry of
the Ems in 2005 to obtain the trapping location of the fine sedi-
ments.

The structure of the paper is as follows. The philosophy of ide-
alized modelling and step by step overview of model development

are presented in Section 2. The model equations of water motion
and suspended sediment concentration and the condition of mor-
phodynamic equilibrium are presented in Section 3. This section
also presents the scaling and perturbation analyses which results
in a system of equations at each order for the water motion and
the suspended sediment concentration. The leading-order system
for the water motion is solved in Section 4, the first-order system
in Section 5. Similarly, the leading-order and first-order systems for
suspended sediment concentrations are solved in Sections 6 and 7,
respectively. The equation for sediment availability governing the
distribution of fine sediments in the estuary is solved in Section 8.
Section 9 gives a short description of the numerical solution proce-
dure for the two-dimensional elliptic partial differential equations
obtained for both the surface elevation and sediment availability
with a special discussion on the accuracy of the resulting solu-
tions. Next, this model is applied to the Ems estuary in Section 10.
Finally, conclusions are presented in section 11.

2. Idealized model - model philosophy

The main research question will be answered by developing a
so-called idealized, process-based model. Idealized models focus on
specific phenomena (here ETM formation), neglecting or simpli-
fying processes that are not essential for the phenomenon under
study. In this paper, we focus on developing such a model for a
tidally dominated, well-mixed estuary. It is assumed that the sus-
pended sediment concentrations do not influence the water mo-
tion significantly, and that the water motion is mainly driven by a
prescribed M, tide at the seaward side.

In constructing this idealized model, ten steps can be identified.
These steps are visualized in Fig. 1; the precise sections where the
individual steps are discussed in detail, are indicated in this figure
as well. Below, the main steps are summarized:

1. Derive the model equations, and define the geometry and
bathymetry of interest.

2. Make the physical variables (such as surface elevation, water
depth, etc.) dimensionless by introducing typical scales; subse-
quently use this to make the governing equations dimension-
less. Since all dimensionless physical variables are order one,
the relative importance of each term in any of the equations is
measured by the magnitude of the dimensionless number, mul-
tiplying the dimensionless group of physical variables. These
magnitudes can be calculated explicitly after choosing scales
that are representative for the estuary/class of estuaries under
consideration.

3. Verify that one of the dimensionless numbers is the ratio of
the M, surface elevation averaged over the entrance (Ay,) and
the mean water depth H at the seaward boundary. This ratio,
denoted by €, is much smaller than one. Next, all other dimen-
sionless numbers are related to €.

4, Expand the physical variables in the small parameter €. These
asymptotic expansions are introduced in the dimensionless
equations, and terms of equal order in € are collected. Since
only terms of equal order in € can balance, this results in a
system of equations at each order in €.

5. Construct the solutions for the leading-order water motion, i.e.,
at order €. Since the leading-order water motion is only driven
by the M, tidal signal at the seaward boundary, it only consists
of an M, constituent.

6. Derive the first-order water motion using the leading-order wa-
ter motion, i.e., €!. It is found that the temporal variations of
the first order water motion consist of a residual and an M,
contribution.

7. Calculate the leading-order concentration using the leading-
order water motion. Concerning its temporal behaviour, a resid-
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Fig. 1. Flow chart showing the steps involved in the development of the idealized model.
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Fig. 2. Three-dimensional sketch of an estuary with arbitrary geometric and bathy-
metric profiles. The bathymetric profile is shown on a grayscale. The seaward side
(denoted by 9s$2) is shown in magenta colour ( ) and the river bound-
ary (denoted by dz€2) in cyan colour ( ). The other boundaries (denoted
by 9¢2) are assumed to be closed walls. The surface of the estuary is discretized
using linear triangles in order to compute the surface elevation with the finite el-
ement method. The nodes on the seaward boundary (where elevation amplitude
is prescribed) are indicated by blue diamonds (0) and on rest of the boundaries
(nodes where the surface elevation has to be computed) by red diamonds (). At
each node in the triangulization of the surface, the vertical profile of the velocity
field can be computed analytically using partial derivatives of the surface elevation
as shown by yellow dashed lines ( ). The velocity at the surface is depicted

by green arrows (—)) and, in the rest of the water column, by yellow arrows

( ). This figure has been taken from Kumar et al. (2016). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

ual contribution and contributions with multiples of the M,
tidal frequency are obtained.

8. The first-order suspended sediment concentration is obtained
using information of both the leading- and first-order velocity
fields, and the leading-order concentration. The temporal varia-
tions of the first-order concentration consist of a residual con-
tribution and contributions with multiples of the M, tidal fre-
quency.

9. Calculate the leading-order, tidally averaged suspended sedi-
ment transport. It consists of three contributions:

e advective transport due to correlations between the leading-
order velocity and first-order concentration. Only the cor-
relation between the leading-order velocity and the M,
component of the first-order concentration results in a net
transport.

advective transport due to correlations between the first-
order velocity and leading-order concentration. Both the
residual concentration, advected by the residual velocity,
and the correlation between the first-order M, velocity and
the M, component of the leading-order concentration result
in a net transport.

diffusive transport due to spatial gradients in the residual
concentration field.

10. Impose the condition of morphodynamic equilibrium to obtain
the spatial distribution of easily erodible sediments.

In the following sections (see Fig. 1), these steps will be ex-
ecuted to develop a model for sediment trapping in a tidally-
dominated estuary.

3. Model formulation
3.1. Model domain

An estuary of arbitrary shape (geometry) and depth profile
(bathymetry) is considered (Fig. 2). A Cartesian coordinate system
is used, with x, y denoting the horizontal coordinates, and z the
vertical coordinate, pointing in the upward direction. Importantly,

x or ¥y need not represent the along-channel or cross-channel co-
ordinate. The undisturbed water level is denoted by z= 0 and the
surface elevation by z = n(x,y, t), where t is time. The undisturbed
bed level denoted by z = —h(x, y), is assumed to be prescribed and
independent of time on the time scale under consideration. Bound-
aries where the surface elevation is prescribed are called seaward
boundaries (denoted by d5S2), if river discharge is prescribed, they
are called river boundaries (denoted by 0€2). The closed bound-
aries are denoted by d9.S2.

3.2. Water motion

The water motion is governed by the three-dimensional shallow
water equations, including the Coriolis effect. Conservation of mass
and momentum (using the Boussinesq approximation and hydro-
static balance) is expressed as (Cushman-Roisin and Beckers, 2011;
Vreugdenhil, 1994)

du dv  Iow
m—i_@-i_&:()’ (13)
%-i- 8—u+v@+w%—fv
at dax ay 0z
_on g ("9p,, @ Jdu
——ga—% i ﬁdz +& v& s (]b)
81)Jruav+v8v+wav+fu
ot ﬁ dy 0z
op - av
B By /00/ ¥ (A 82) (1c)

The unknown variable u = (u, v, w) denotes the components of
the velocity field in x, y and z directions, respectively. The mean
density is denoted by po and the dynamic density by p(x, y)
which is assumed to be a prescribed function of the horizontal
coordinates x and y only, i.e., the estuary is assumed to be well-
mixed. Furthermore, time variations in p are neglected. The verti-
cal eddy viscosity coefficient is denoted by Ay(x, y) and is assumed
to be a prescribed function of x and y only, thus uniform in z and
time-invariant. Note that horizontal viscous effects are neglected
in Eq. (1), see Winant (2007) for a detailed discussion. The pa-
rameter f is the Coriolis parameter, given by f = 2€sin@, where
2 =7.292 x 1075 rad s~! is the angular frequency of the Earth’s
rotation, and 6 the latitude which is assumed to be uniform over
the domain (f-plane approximation).

To obtain a well-posed problem for the water motion, appro-
priate boundary conditions have to be prescribed. At the seaward
boundary (952), the system is forced with a combination of a pre-
scribed semi-diurnal lunar (M,) tide and its first overtide (My),

¢m,), forall (x,y) in 3sQ
(2a)

where Ay, (x,y) and Ay, (x,y) are the (possibly) spatially varying
amplitudes of the surface elevation of the M, and M, tidal con-
stituents at the seaward boundary. The phases of the M, and M,
tides at the seaward side are denoted by ¢, (x,y) and ¢y, (x, ),
respectively. The M, tidal constituent is assumed to be the domi-
nant one, i.e., Ay, < Ay,. The parameter w = 277 /T denotes the an-
gular frequency of the M, tide with period T = 12.42 h. At the
river boundary (9x2), a time-independent river discharge Q (m?
s~ 1) is prescribed,

/)Q (/_Zuh‘ﬁ dz)ds:—Q, (2b)

n= AMZ cos(a)t — ¢M2) +AM4 (Zwt —
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Fig. 3. The map of the Ems estuary (Chernetsky et al., 2010).
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Fig. 4. Bathymetry of the Ems estuary for the years 1980 and 2005 assuming laterally uniform conditions. The units in the colourbar are m. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Sediment availability (dimensionless) in the channel for the years 1980 (top left) and 2005 (top right). The tidally-averaged suspended sediment concentration at the
surface for the years 1980 (bottom left) and 2005 (bottom right). The units in the colourbar are mg 1-!. The grey dots show the location of the maxima of the quantity being
plotted. Note that the total amount of easily erodible sediment @y, is chosen in such a way that the maximum concentration at the surface for 1980 is 400 mg I-! and for
2005 is 1000 mg 1-'. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The bathymetry of the Ems estuary for the years 1980 and 2005 varying parabolically in the lateral direction. The units in the colourbar are m. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Sediment availability and sediment concentration for 1980 with laterally varying bed profile. The top left panel shows the sediment availability (dimensionless) and
top right panel, the sediment concentration (mg 1-') at the surface. The black and chocolate lines pass through the location of maximum concentration at the surface in the
x and y directions, respectively. The grey dot indicates the location of the maximum of the quantity being plotted. The bottom left panel shows the cross-sectional profile of
the sediment concentration along the black line and the bottom right panel, along the chocolate line. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

where u;, = (u, v) denotes the horizontal velocity and i, the hori-
zontal unit normal vector pointing outwards. The outer integral in
Eq. (2b) denotes the line integral over the river boundary. Impor-
tantly, —Q is the total inflow of fresh water over one river bound-
ary. If there is more than one river inlet (shown in cyan colour
in Fig. 2), appropriate river discharges Q are assigned to
each one. Since we are focussing on tidally dominated systems,
the river discharge is assumed to be small compared with the tidal
discharge (see Section 3.5). At the closed boundaries (d£2), a no-
transport condition is imposed,

]
/ u,-idz=0, forall (x,y) in 0cL2. (20)
—h

It is not possible to require the flux to vanish at each point in the
vertical at the boundary. This is a consequence of neglecting the
horizontal viscous effects, by which the horizontal viscous bound-
ary layer is not resolved. Following Winant (2007), this is accept-
able since the thickness of this boundary layer is negligible com-
pared with the horizontal length scale we are focusing on (length
scale of the order of the length of the estuary).

At the free surface z = 1, kinematic and dynamic boundary con-
ditions are imposed,

(2d)
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ou
A\,a—zh =0, at z=n, (2e)

where 0, = (0,0) is the two-dimensional horizontal null vector.
At the bottom z = —h, the non-permeability condition (kinematic)
and the dynamic boundary condition are prescribed,

oh oh
w:—ua—va—y, at z=—h, (2f)
A%—E—su at z=-h (2g)
\4 Z _,00_ h» - 5 g

where s(x, y) is the so-called stress parameter which follows from
the linearization of the bed shear stress (see Zimmerman, 1992).
If s — 0, this formulation reduces to the free-slip condition,
for s — oo to the no-slip condition. It is important to point
out that by adopting this simplification, the constant stress layer
near the bed where the viscosity goes to zero, is neglected, see
Schramkowski et al. (2002) for details. Here, we have assumed that
both the bottom slopes and the surface elevation slopes are much
smaller than 1, i.e,, [Vh|, |Vn| « 1.

3.3. Suspended sediment concentration

The suspended sediment concentration is modelled by a three-
dimensional advection-diffusion equation

%+V~F=O, (3)

with F=F; + Fs + F;, the sediment flux that consists of three dif-
ferent contributions: the advective flux Fg, the settling flux Fs and
the diffusive flux F;. These fluxes are given by

F, = cu,
F, = —(0,0, cws),

ac  dc ,, dc
Fj = | Ky . Kh—. K — ),
d ( h ax’ h 8_}/ v 82)
where ws denotes the settling velocity, and Ky(x, y) and Ky(x, y)
the horizontal and vertical diffusivities, respectively. The vertical

diffusivity Ky is assumed to be equal to the vertical eddy viscosity
Ay. Using these expressions, Eq. (3) becomes

adc 0 ac a ac
Fra + aX(cu _Kh8x> + ay(cv—Khay)
] ac
+32<C(W_WS)_KV82> =0. (4)

At the free surface z = n and the bottom z = —h, the outward nor-
mal component of the sum of the settling and diffusive fluxes is
required to be equal to a specified erosion-deposition flux of vol-
ume concentration S-, i.e.,

—~(Fs+Fy) -fi=S,, (5)

where ii is the unit normal vector pointing outwards.
At the free surface, using [Vn| < 1, i = (—nx, =1y, 1), and S, =
0 results in

—Kncxnx — Kpeyny + wse+ Kyc, =0 at z=n. (6a)

At the bottom, using |Vh| « 1, fi= (~hx, —hy, —1), and S, =
E — D, where E = wsC,e¢ is the erosion and D = wscy, the deposi-
tion. Here c,¢ is a reference concentration and ¢y is the actual
concentration at the bottom, i.e., cg = c|,__;. The bottom bound-
ary condition thus becomes

—Kncxhy — Kncyhy — KyC; = WsCrep, at z= —h, (6b)

with the reference concentration c¢ given as

05| Tp|
ref ,Oog,ds . (6¢c)
Here |7,| denotes the absolute value of the bed shear stress and
a(x, y) represents the availability of fine sediments at location (x,
y). Note that a(x, y) is a spatially varying coefficient parameter-
izing the ease with which fine sediments can be eroded and the
amount of easily erodible fine sediments available at location (x, y)
(Friedrichs et al., 1998; Chernetsky et al., 2010; Huijts et al., 2006).
The sediment density is denoted by ps, g = g(0s — p)/po is the re-
duced gravity, and ds(x, y) is the grain size of the sediments.

It should be noted that in Eq. (4) the horizontal diffusivities
are retained. However, to be consistent with the solution proce-
dure for the hydrodynamic equations, the boundary layers for the
suspended sediments will also not be resolved and the horizon-
tal diffusivities will only play a role in the morphodynamic equi-
librium condition (see Section 3.4) . Hence Eq. (4), together with
the boundary conditions given by Eq. (6) complete the system of
equations governing the suspended sediment concentration in the
estuary for given availability a(x, y).

3.4. Condition of morphodynamic equilibrium

We consider a state of the system in which tidally averaged ero-
sion and deposition balance each other:

(D—E) =0, (7

where () denotes a tidally-averaged quantity (see
Van Rijn, 1993 for more details). This condition is termed as
the morphodynamic equilibrium condition (Chernetsky et al.,
2010; Huijts et al., 2006; Friedrichs et al., 1998).

Integrating the sediment concentration equation over the wa-
ter column (from z = —h to z= 1) and using the boundary condi-
tions for water motion and suspended sediment concentration at
the free surface and at the bottom results in

a (7 a [ ac
&ﬁhcdz+$f7h (cu—Khax>dz

a [ ac
45 cv— Ky |dz+D—-E =0.
8y/h< hay)

Averaging the above equation over the tidal period, using Eq. (7),
we find that the condition of morphodynamic equilibrium requires
that

a [ ac a [ ac
<8X /;h (Cu—Khax>dZ+ @[h (CU—Khay)dZ>=0. (8)

This condition together with the requirement that there is no
tidally averaged sediment transport through the boundaries, can
only be satisfied if the easily erodible fine sediment has a specific
spatial distribution, i.e., Eq. (8) is effectively a condition for a(x, y).

3.5. Scaling and perturbation analyses

Next, the equations for the water motion, suspended sediment
concentration and morphodynamic equilibrium are scaled by intro-
ducing dimensionless variables. This results in the identification of
a small parameter € defined as

€ =Ay,/H < 1.

Here, AM2 is the mean elevation amplitude of the M, tide at the
seaward boundary and H the mean depth at the seaward bound-
ary. The order of magnitude of all other dimensionless numbers is
related to this parameter €, thus indicating the relative importance
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of each contribution. Next, the unknown physical variables are ex-
panded in this small parameter (see Nayfeh, 2007 for details about
perturbation methods). These asymptotic expansions are inserted
in the dimensionless system of equations and terms of equal order
in € are collected. This results in systems of equations at each or-
der in € (see Appendix A for a detailed description of the scaling
and perturbation analyses).

In the following sections, we present the systems of equations
in their dimensional form and the solution procedure used to solve
the leading-order (€9) and first-order (e!) system of equations for
the water motion (Sections 4 and 5) and the suspended sediment
concentration (Sections 6 and 7). Finally, the sediment availabil-
ity a(x, y) is obtained by solving the condition of morphodynamic
equilibrium which is encountered only at second order (€2).

For clarification, let us now introduce the notation convention.
In ™, where ¢ is any of the unknown physical variables, i.e.,
¢ = {n,u,c}, the first superscript m denotes the order in € of that
contribution and the second superscript n its tidal frequency. For
example, n%2 denotes the leading-order (¢°) M, surface elevation
and u' denotes the first-order (¢') M, velocity vector.

4. Leading-order water motion

The leading-order system of equations for the water motion
reads

ug + 1) +w? =0, (9a)
u? -fi’= —gﬂf? + (Avu,(z))la (9b)
v+ fu® = —gn) + (A1), (9¢)

with boundary conditions at the free surface
PoAv(u)); =0y, and w° =n?, at z=0.

Note that, as a result of the scaling procedure, this boundary con-
dition is prescribed at z=0 (see Appendix A for details). At the
bottom z = —h, we require that

AWd), =su), and w® = —u®h, —1v°hy, at z=-h.

The water motion at leading-order is only forced by the M, tidal
constituent at the seaward boundary,

n° = Aw, cos(wt — ¢y,) for all (x,y) in ds<2,

while the transport through the other boundaries vanishes
0

/ u?.Adz=0, forall (x.y) in 8 or 8.
—h

As already pointed out in Section 3.2, it is assumed that the
river inflow gives a contribution only at O(¢) and hence does not
appear in the leading order system of equations. The solution of
this system of equations describes the propagation of a tidal wave
in a homogeneous fluid (no density effects) in an estuary with an
arbitrary geometry and bathymetry. Here, only a brief outline of
the solution method is presented.

To solve the leading-order water motion (see Kumar et al,
2016 for details), we write

(novuo) =91{(N°2,U02)ei“’t}, (10)

where % stands for the real part of a complex variable, and N°? and
U% = (U2, 92 WO2) are spatially varying complex amplitudes of
the surface elevation and the velocity field, respectively. The ver-
tical structure of the leading-order velocity field can be obtained
analytically using Eqs. (9b) and (9c); it is proportional to the first-

and second-order partial derivatives of the leading-order surface
elevation.

The surface elevation N2 and its partial derivatives are
obtained by integrating the leading-order continuity equation
(Eqg. (9a)) over the water column. Using the appropriate boundary
conditions, a two-dimensional elliptic partial differential equation
for the leading-order surface elevation N2 is obtained. This equa-
tion is solved numerically using the finite element method (see
Section 9 for details).

5. First-order water motion

The first-order system of equations for the water motion
reads

Uy + vy, +w) =0, (11a)
uf + B — fu' = —gni + F + (Avu})z. (11b)
v+ Fi+ ful = —gn) + Fle + (A}):, (11¢)

where {F}., Fy.} denote the advective terms and {F%., F.}, the forc-
ing due to density gradients. The different forcing terms are de-
fined in Table 1. At the seaward boundary, an external My tide (Fgr)

is prescribed

n' = F, forall (x,y) in 9s9. (11d)
At the river boundary, a river discharge density Q' is prescribed,
Fp=-0Q',

0
/hu}] i dz+FI2 = R, for all (x.y) in 9g2. (11e)

The total river discharge Q is distributed over the river boundary
by requiring that

Q ds=Q.

%2

(11f)

The contribution FT"’RSE is the transport through the boundary due
to the correlation between the leading-order surface elevation and
the velocity. At the closed boundary €2, the total transport must
vanish which implies that the first-order transport must balance
the transport due to the correlation between the leading-order sur-

face elevation and the velocity,

0
/ ul fdz4+Ej} =0, forall (x,y)in acQ.
—h

At the free surface, the first-order stress must balance the stress
due to the leading-order solution, denoted by Fys, evaluated at z =
0.

(11g)

poAv(up), = —Fys, at z=0. (11h)

The forcing in the interior due to the correlation between the
leading-order surface elevation and velocity, denoted by FT%F, ap-
pears in the kinematic boundary condition as

w' =1/ + Ff. at z=0. (11i)

For the boundary conditions at the bottom, no new forcing terms
are obtained, i.e.,

Avu)); =sul, and w' = —u'hy —v'hy, at z=—h. (11j)

Since the leading-order flow is known, the system of equa-
tions for the first-order water motion and its boundary conditions
are linear in the unknown surface elevation 1! and velocity field
u! = (u!, v, wl). As a result, this equation can be solved for each
forcing term F individually.
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Table 1

Various forcing terms appearing in the first-order system of equations for the water mo-
tion (Eq. (11)). The value of n denotes the frequency M, of the forcing terms.

Name Mathematical expression

Abbreviation n

Externally prescribed

Gravitational circulation %z(px, Py) (B ) 0
External My Awm, cosRwt — ¢u,) Fer 4
River discharge —-Q’ Frp 0
Internally generated

Advection u® @), + 192 @®?), + w2 @),  (F.. Ep) 04
No-stress oAU |0 Fys 04
Tidal return flow V- (n°ud?)|—o FT%F 04

1°%u®) - iy,009.0 Ejg
The forcing terms F can be divided into two categories: exter- Table 2

nally prescribed and internally generated. Table 1 gives a full list
of all forcing terms for the first-order water motion. The exter-
nally prescribed forcing terms are those prescribed explicitly, e.g.,
the external M, tide, time-independent river discharge and den-
sity gradients. The internally generated forcing terms are gener-
ated by the non-linear interaction of the leading-order flow vari-
ables (advection, no-stress and tidal return flow). It is important
to note that the forcing terms due to the non-linear interactions
of leading-order water motion are either time-independent or are
forcing terms with an M, periodicity. Therefore, both externally
prescribed and internally generated forcing terms can be written
as

F = st{F'"e"#"}, (12)

where n =0 or 4 depending on the forcing term (see Table 1 for
values of n). This allows us to write the solution of the first-order
water motion as

(' ') = R{N'" UM ),

where the terms with the superscript 10 (n = 0) denote first-order
My components and those with a superscript 14 (n = 4), first-order
M, components. Here N'" and U'" = (U!",vI", W1n) are the spa-
tially varying complex amplitudes of the first-order surface eleva-
tion and velocity field, respectively. The first-order system for nth
tidal frequency thus becomes

U+ V" + W, =0, (13a)
M 1y pxin 1n n . px10 1n

UM+ B — VI = Ny 4 R o+ (AU ")z, (13b)
nia)vm prin 1n NIn 4 210 4 (A pin ]
2 + e + fU" = gl y +Fee + (Ay z )z. (13c)

In a similar way, the boundary conditions can be expressed in
terms of the complex amplitudes. This introduces new terms FT%F]”
and FngFZ']” which denote the nth frequency component of FT%F and
EJSE. respectively.

To solve for the complex amplitudes N'" and U', rotating flow

variables are introduced:
rt=U"+iv" and r"=U"—iv'" (14)

Combining Eqs. (13b) and (13c), the equations for the rotating flow
variables 1" and r2" are obtained:

g

r}”;z - ((x}')zr}" = A—VCJ-NM +F,3Cr_’j +FG18j, for j=1,2, (15a)
together with the boundary conditions

PoAVT|t =Ry at z=0, (15b)
PoAVT|y = post]", at z=—h. (15¢)

Forcing terms appearing in the equa-
tions for rotating variables.

Notation Definition
10 F10 1 (px10 | py.10
(Fcr Foca)  —a (B il
3 .
ESVES) & (B! iR
i pl An y spydn
(B Bigy) R iR

In Eq. (15a), the operators £; are defined by £ = dx +idy, and
Ly = 0x — idy, and oc;.’ by

[.nw+2f [.nw—2f
af = IT, and of = lZiAv’ n=0,4.

For n=4, of and o are related to the cyclonic and anticyclonic

e associated with the My

tidal constituent (Soulsby, 1983; Souza, 2013). Similarly, for n =0,
the parameters are related to the time-independent boundary layer
thickness. The forcing terms in the equations for rotating variables
are linear combinations of the forcing terms in the original equa-
tions; see Table 2.

The equations for the rotating flow variables can be solved an-
alytically,

r]]‘n(xvy’ Z) = C(Jl}1 (vav Z)[’]N]n + fl)(;l (X’yv Z), J = la 21
with

boundary layer thickness &1 =

scosh(a’z
Cay (%..2) = (©52) 1}

g
(ozj.‘)ZAV |:a37AV sinh(a?h) +s cosh(a;?h)
Expressions for f,» depend on the forcing term under considera-
J
tion. Integrating these expressions over the depth gives

0
[ 503.2) 42 =y LN+ By (xy). =12

where

g . ssinh(a?h) ol
(a;?)3A\, a;’AV smh(oe]'.’h) +5s cosh(a?h) 1
Using Eq. (14), the depth-dependent and depth-integrated horizon-

tal velocities can be obtained in terms of the gradients of the sur-
face elevation and known forcing terms as

U V") = (dy, —dp)Ng" + (da. )N + (fi™. f37). (16)

Cop (%, y) =

/_i(Ul", V") dz = (D1, =Dy)N;" + (D2, D)Ny" + ('™, ™),

(17)
where
(dIn, fin, pin Flny
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1
= E[(Ca{’v fa’{vca{’s Fa;‘) + (Ca’z’v fag‘,ca’z’v Fag)}
(d%n’ zln’ D%n’ len)
i
= E[(Cot’l” *fa?v Ca;’v *Fa?) - (Cagv *fa;v Cag: *Fag)}

To obtain the surface elevation, the first-order continuity equa-
tion is integrated over the water column (from z= —h to z=0).
Together with the boundary conditions at z= —h and z =0, this
gives

a [ o [0 niw

i U]n d 7‘/ V1n d 7N1n FQ,ln —=0.

Bx/,h z + 3y ) z+ = + Egr

Inserting the expressions for depth-integrated horizontal velocity

given by Eq. (16) in the above equation gives a second-order ellip-
tic partial differential equation for the surface elevation N1"

V- (DUYN' ) + DN R = 0, (18a)
where
D]n D]n I:ln

o= (% 2F) e v (51)
The associated horizontal boundary conditions read:
N'" =} for all (x,y) in 352, (18b)
(Dlnlen + F]n) 'ﬁ+F7?R§lEJn — Rl[())’

for all (x,y) in 0gS2, (18c)

N a0,1

(DanNln + F]n) -fi +FTRF' n_ 0,

for all (x,y) in 0cL2. (18d)

Since this equation for the surface elevation is a linear equation,
it can be solved for each forcing term separately (i.e., each forcing
term is studied individually by putting all other forcing terms to
zero), thus resulting in explicit expressions for the first-order ve-
locity due to each forcing term separately. The elliptic equation for
N'" has to be solved numerically, for details see Section 9.

The first-order horizontal velocity ull1 can be written as sum of

My and M, tidal constituents,
ul =ul +ul’, (19a)

which can be further expressed as a sum of various constituents of
the first-order water motion, i.e.,

10 _ 410 10 10 10 10

Uy = Uy e+ Uy pp + Up ac + Up s + Up 7ges (19b)
14 _ 14 14 14 14

Uy = Uy pp + Uy e + Wy g + Uy g (19¢)

See Table 1 for an explanation of abbreviations in Eq. (19). The
first-order vertical velocity W™ can be obtained by integrating the
first-order continuity equation in the vertical direction from z’' =
—h to Z = z (see Kumar et al., 2016 for a detailed explanation).

6. Leading-order suspended sediment concentration

The leading-order equation for the suspended sediment concen-
tration is given by

C? - (chg)z — (wsc®), = 0. (20a)
The boundary condition at the free surface reads
Ky +wc® =0, at z=0, (20b)

and at the bottom

Ws Ps
K,c? s
VCZ * apOg/ds

|Tpl° =0, at z=—h. (20¢)

Here |7,|° denotes the leading-order component of the abso-
lute value of the bed shear stress. From Eq. (20), it follows that the
leading-order suspended sediment concentration is solely driven
by |7,|°. Since the bed shear stress is written as the sum of a resid-
ual component and components with frequencies that are even
multiples of the M, frequency, the leading-order suspended sed-
iment concentration can also be written as

=4 %4 .

Even though Eq. (20) can be solved for any tidal constituent, only
% and % are required to compute the leading-order residual
transport (see Appendix B). To stress that the suspended sediment
concentrations are linear in the unknown sediment availability a(x,
y), we can write

@ = e = g% 4 qg% 4 . (21)

Here, #9020 044 and 9 are the My, M, and total leading-order sus-
pended sediment concentrations obtained with a = 1. The super-
script a indicates that these concentrations are proportional to a.

7. First-order suspended sediment concentration

The equation for the first-order suspended sediment
concentrationc! is given by
o +EL — (Kuch)z — (wsch), =0, (22a)

where F. = u%c? +1°¢) +wOc? expresses advection of the leading-
order concentration by the leading-order velocity. At the surface,
the first-order boundary condition reads

wsc! +Kycl = Ff, at z=0, (22b)
where F§ = —ng [WSC(Z) +KVC92] is the first-order correction to the
balance between the leading-order settling and deposition fluxes
(due to the fact that this flux is calculated at z =0, instead of z =
n, see also Appendix A). At the bottom, the boundary condition
reads

Ws Os
pOg, ds

Here |7p|! denotes the first-order component of the absolute
value of the bed shear stress.

The first-order suspended sediment concentration is the result
of three different forcing terms, the advection of the leading-order
concentration by the leading-order velocity (Ff.), the surface con-
tribution (F) and the first-order bed shear stress (Fg). Since the
equation is linear, the resulting first-order concentration can be
solved for each forcing individually.

At this point, it is important to remember that our aim is to get
the main contributions to the first-order residual sediment trans-
port (see Section 2). The only first-order residual sediment trans-
port that depends on the first-order suspended sediment concen-
tration c!, is due to the tidally-averaged advection of c! by the
leading-order velocities u®. Since the leading-order velocity only
consists of an M, tidal constituent, only the M, constituent of the
first-order suspended sediment concentration c! has to be calcu-
lated to get the residual suspended sediment transport due to the
first-order suspended sediment concentrations. (see Sections 2 and
8). Therefore, in the following only the construction of the M, first
order concentration will be discussed in detail.

Kyl +a |Tp|' =0, at z=—h. (22¢)
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7.1. Contribution due to advection

The equation governing the first-order suspended sediment
concentration, resulting from the interaction of leading-order ve-
locity and concentration, is given by

Cher + E = (KyChe )z — (Ws€he)z = 0, (23a)
with homogeneous boundary conditions

WsChe + KiChe, =0, at z=0, (23b)
Kije, =0, at z=—h. (23c)

Since Fg. contains the gradients of the leading-order suspended
sediment concentration, using Eq. (21), F;- can be written as a sum
of contributions proportional to a, ax and ay, i.e.,

Fi = aFg + axF + ayFy!

0 (24)

where FZ =000 + #0010 + 8000, Ff = @000, and F! = %0,
Since the leading-order flow consists only of an M, tidal con-
stituent, we only need the My and M, tidal constituents of the
leading-order concentration ¢® to get the M, tidal component of
Eg-.

Denoting the M, solution of c}. as c}2, we find that (see
Appendix B for details)

12 _ ,x12a ~12a ~12ay
Cht = a5E + a2 + ayCoc”, (25)

Fl2a 120 F120y i i
where 7 Cac s and ¢,-” are the solutions proportional to g, ax
and ay, respectively.

7.2. Contribution due to first-order bed shear stress

Analogous to the case of leading-order suspended sediment
concentration, the first-order component of the absolute value of
the bed sear stress |t,|! can be decomposed in a Fourier series
using frequencies that are multiples of the M, tidal frequency. To
get the dominant residual transport component, we are only inter-
ested in the M, component |t,|'? of the first-order component of
the absolute value of the bed shear stress |z|!.

The resulting suspended sediment concentration c}é follows
from the equation,

C};ﬁt - (chg;g,z)z - (Wsc};ﬁ)z =0,
with the boundary conditions,
wicgs +Kocjz, =0, at z=0,

w
Kuck, +a 0

|Tp|? =0, at z=—h,

where |t,|'2 denotes the M, component of |t|!. Similar to the
leading-order suspended sediment concentration, we can define

=z
Note that |7},|'2 depends on the first-order velocity which itself is
a sum of various contributions, for each of which we can compute
the resulting suspended sediment concentration cg. In Table 3, a
list of all these components is given.

7.3. Contribution due to forcing at the surface

The last contribution is the result of the inhomogeneous con-
tribution in the boundary condition at the surface (Eq. 22b). Using
the leading-order concentration equation, we can rewrite this sur-
face boundary condition as

K= —UO[WSCE +KVC2z] =-n°,

Table 3

Various components of the first-order velocity
(first column) and (corresponding) first-order
concentration due to the bed shear stress
(second column).

1 1 12
uy uy components Cgs components

LS e
o CEsrp
e B8 acto
iy CEEnst0
wl B8 TRF10
wt o wl CEEr
uyc 88 acia
U Chinsia
we R TRFI4
— 020,
— _an™e%.

This inhomogeneous term 19c% results in both M, and Mg contri-
butions. The resulting solution for the M, component of the first-
order suspended sediment concentration due to the surface forcing
can be written as,

12 _ ,~12a
Cg™ =acg™.

7.4. Summary of the first-order concentration

The M, constituent of the first-order suspended sediment con-
centration is a sum of three components,

12 _ 12, 2, 12
€% =Cpc+Cgs+Cs

~ ~ ~ ~ ~12a
= a (E + 2+ TP +ay G2 +ay &

c12a c12ax Elzay

— a'(f]z” + aX512aX + ayleay.

It means that the first-order suspended sediment concentration
consists of parts proportional to a, ax and ay. It is important to
note that proportionality of the suspended sediment concentration
to ay and ay is solely due to the advective component.

8. Condition of morphodynamic equilibrium

The leading-order morphodynamic equilibrium follows from in-
serting the asymptotic expansions of the horizontal velocities and
concentrations in Eq. (8) and reads

V. (D*Va+aT) =0,

where

D, + T f o Txa
a_ h M, M, =
D ( T&? Dx, +TA¥ZY ,and T Tva |-

Here D, is the contribution due to the horizontal diffusivity and
Xa Xdy Tya, yay . .
the terms TMZX, TM2 , TMZX, and TM2 are generated by the interaction

of M, velocity and M, advective concentration.

T*¢ and T* denote the leading-order tidally-averaged sediment
transport in the x and y directions, respectively. The transport T*? is
a sum of various terms (see Appendix C for detailed expressions)

(26b)

where T denotes the transport due to the interaction of the

0
My velocity and My concentration. Remember that the My veloc-
ity itself consists of various contributions (Table 3), for each of

(26a)

Xa _ Txa xa xa Xa Xa
™= M, + TMz + TM4 + Lurface T Tdiff’



12 M. Kumar et al./Ocean Modelling 113 (2017) 1-21

Table 4

Decomposition of various transport terms T,\’,‘,‘;,
Ty, and Tj into subcomponents. A similar
decomposition can be made for the transport
terms in the lateral direction.

Velocity Concentration Transport
T
ul® ug o Tits e
ugh Tiio.kD
g T ac
uy Tit.ns
u'}'?(F TI\’;I{;,TRF
T
u% & Tt
& Tk s
& e Tty 8s.cc
v Tty Bs.00
R aco Ty Bs.ac10
ElligNS]O TI\);IZ.BS.NS]O
5 rar10 T3ty as.7RF10
ik T, s F
CHacua Tty Bs.Ac14
CEE nsta Tty Bs.ns1a
5 rrr1a Tty s 7RF14
U
ut o ug o T er
up Tiac
ugs Titins
Uk T rr

which we can compute Tm (see Table 4 for a full list of all sub-
components). T,@‘; is the transport due to the correlation between
the M, velocity and M, concentration. Again, the M, concentra-
tion consists of various contributions (Table 3), implying that TK;,‘;
can be computed for each contribution. Similarly, T,\’jl‘jl is gener-

ated by the interaction of M4 velocity and M4 concentration. Once
again, the M, velocity is a sum of various components as listed
in Table 4 which allows us to decompose it into further sub-
components. Table 4 lists all the subcomponents of T’“(’) , T)\)fri and

'Xa Xa 1 1 1
TM4. The component T2, . is the transport due to the interaction

of M, surface elevation, M, velocity and the leading-order con-
centration at the surface and T} is the diffusive transport (see
Appendix C for expressions). A similar decomposition can be made
for the transport in the y-direction 7°.

To solve Eq. (26a) for the sediment availability, we require that

the transport vanishes at the boundary,

(DVa+aT) -fi =0, on 95U QU Q. (26¢)

The equation for sediment availability a together with the no-
transport condition (Neumann type boundary condition) above
does not give a unique solution for the sediment availability a.
Therefore, an extra condition is imposed, namely the total amount
of sediment available for erosion ay, in the estuary is pre-
scribed,

// a d2 = Groral-
Q

Eq. 26 has to be solved numerically for general domains. Here,
we use the finite element method which is described in the next
section.

(26d)

9. Numerical solution

In Sections 4 and 5, it was shown that the leading-order and
first-order water motion could be expressed in terms of the gra-
dients of the surface elevation. The surface elevation itself follows
from a two-dimensional elliptic partial differential equation. Sim-
ilarly, the sediment availability (Section 8) follows from an ellip-
tic differential equation (Eq. (26a)). Since the geometry and the
bathymetry of the estuary are arbitrary and the parameters can
be arbitrary functions of the horizontal coordinates, these equa-
tions have to be solved numerically. Here, we discuss the solution
method used, the finite element method (FEM) approach, and the
accuracy of the numerical solution.

To solve the equations using the FEM approach, the domain 2
is discretized using linear triangles. The discretized domain is de-
noted as QE’ with h the mean of the length of all the element
edges in the discretized domain. The solution N is approximated
as

N@& y) ~ Ny (x,y) = ) Nij(x.y), (27)
j=1

where N; is the finite element approximation of N. The total num-
ber of grid points (also called nodal points) is denoted by n, N;
are the amplitudes at nodal points j, and ¢; are the basis func-
tions such that ¢; is zero at all nodal points except node j. Here,
polynomials functions are chosen as basis functions. Inserting the
approximation of N given by Eq. (27) in the weak formulation of
the partial differential equation for the surface elevation gives a
linear system of equations which can be solved for the unknown
amplitudes N; (see Kumar et al., 2016 for details).

In Kumar et al. (2016), three methods namely; DD-method, ZZ-
method and mixed-method, were discussed to compute the first-
and second-order partial derivatives of the surface elevation. It was
shown that for the leading-order flow, the mixed-method which is
a hybrid of DD-method and ZZ-method, works the best. However,
partial derivatives of the leading-order flow are needed to compute
the first-order water motion and the sediment availability, which is
not possible with the mixed method. Therefore, we adopt the DD-
method throughout the model to compute the partial derivatives
of any order. Using the DD-method, the partial derivatives of N can
be approximated by directly differentiating N; as

aa+bN anrle~1 n 3a+b¢j
~ = N: ,
9xadyb  Qxedyb o T 9xadyb

where a and b are the orders of differentiation in the x and y di-
rections, respectively.

The accuracy of the finite element approximation Nj and its
partial derivatives depends on the degree of basis polynomials. In
general, if polynomials of degree q are used, the numerical solu-
tion converges with rate g+ 1, the first-order partial derivatives
with rate g and the second order partial derivatives with rate
q—1 (see Gockenbach, 2006). Indeed, for the leading-order wa-
ter motion, Kumar et al. (2016) has shown that using basis func-
tions of order qg, the surface elevation converges with rate qg + 1,
the first-order partial derivatives with qg and second-order partial
derivatives with rate gy — 1. Hence, the leading-order horizontal
velocity (proportional to the first-order partial derivatives of the
leading-order water motion) and vertical velocity (proportional to
the second-order partial derivatives of the leading-order surface el-
evation) converge with rate qg and qg — 1, respectively.

In Sections 5-7, it was shown that to compute the first-order
water motion and suspended sediment concentration, not only the
leading-order flow components but their partial derivatives are re-
quired as these partial derivatives appear in the forcing terms for
the first-order flow and first-order sediment concentration. For the
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Table 5

The accuracy of the various
components of the model
when polynomials of degree
q for the leading-order wa-
ter motion and polynomials
of degree at least ¢ —1 for
the first-order water mo-
tion and sediment availabil-
ity, are used as basis func-

tions.
Component  Accuracy
n° q+1
W ou q
w0 qg-1
n' q-1
u) q-2
® q
c! q-2
a q-—2

first-order horizontal water motion to be q; accurate, the forcing
terms must at least be q; accurate as well. Hence, it follows that
go must be at least equal to or larger than q; + 1, i.e., the degree
of basis polynomials used to solve the leading-order water motion
must be at least one higher than those used in the first-order wa-
ter motion.

Table 5 lists the accuracy of different components of the model
if polynomials of degree q are used as basis functions for the
leading-order water motion and polynomials of degree q—1 are
used as basis functions for the other components (i.e., first-order
water surface elevation and sediment availability). If we take q = 3,
i.e,, third degree polynomials as basis functions for the leading-
order water motion and quadratic polynomials as basis functions
for rest of the components, it follows from Table 5 that the sedi-
ment availability converges with rate 1.

10. Application to the Ems estuary

In this section, our new three-dimensional semi-idealized
model is applied to investigate the spatial distribution of concen-
tration and sediment availability in the Ems estuary under the
condition of morphodynamic equilibrium. The Ems estuary is situ-
ated on the border of the Netherlands and Germany and has gone
through various anthropogenic changes in the last few decades.
Due to these interventions, the water motion and the sediment dy-
namics have changed significantly (de Jonge et al., 2014).

The Ems estuary is located between the island of Borkum in the
North Sea and the weir at Herbrum and has a total length of ap-
proximately 100 km. In this paper, we only focus on the upper
part of the Ems estuary, starting from Knock (Fig. 3). The length L
of the estuary from Knock to Herbrum is approximately 63.7 km.
Following Chernetsky et al. (2010), the geometry of the Ems es-
tuary can be approximated as funnel-shaped with x and y denot-
ing the along-channel and cross-channel coordinates, respectively.
The along-channel coordinate varies from x = 0 at the seaward side
to x = L at the river side. The lateral coordinate y varies between
y = —B(x) and y = B(x), with B(x) given by

B(x) = Bye /.

Here, 2By is the total width at the seaward side and L, is the e-
folding length scale. The estuary is assumed to be well-mixed and
the dynamic density p is assumed to vary as

P = po[1+ B 5],

Table 6
Parameters for the years 1980 and 2005 for the
Ems estuary (de Jonge et al., 2014).

Parameter ~ 1980-value 2005-value
L 63.7 km

Ly 30 km

By 335 m

H 10 m

g 9.8 m s2

f 134 x 104 57!

0] 1.4x10~4 51

0o 1020 kg m—3

Ps 2650 kg m—3

B 7.6 x 1074 psu~!

Awm, 143 m 135 m

Aw, 025 m 019 m

) -170.9° —174.6°

Ay, 0.0184 m? s-! 0.0135 m? s~!
So 0.1421 m s~! 0.0108 m s~!
Q 80 m3 5!

Ws 1.0 x10~3 m s!

K 100 m? s!

Grotal 582 m? 2710.8 m?

where §(x) is the prescribed tidally- and depth-averaged salin-
ity distribution obtained from Talke et al. (2009b) and 8 = 7.6 x
104 psu~! is a coefficient that relates salinity to density.

In this paper, two years (1980 and 2005) are studied. Fol-
lowing de Jonge et al. (2014), the bathymetric profiles for the
years 1980 and 2005 are fitted with a fourth degree polynomial
in the along-channel direction using observational data. Following
Friedrichs and Hamrick (1996) and Schramkowski et al. (2002), the
coefficient of vertical mixing Ay and the stress parameter s are pa-
rameterized as

h
(S’AV) = (SOsAVO)ﬁ'

Here Ay and sq are the reference eddy viscosity and stress param-
eter, and H is the mean depth at the seaward side. The system is
forced with a combination of M, and M, tides at the seaward side
(x=0),

n = Am, cos(wt) + Am, cosQwt — @),

where Ay, and Ay, are the elevation amplitudes defined in
Section 3.2 and ¢ = ¢y, — 2¢yy, is the relative phase between the
M, and M, tidal constituents. In 1980, the mean tidal range at
Knock was approximately 3.1 m with a relative phase of —171.9°.
The tidal range in 2005 was 3.2 m with a relative phase of —174.6°
(see Chernetsky et al., 2010 for details). A constant river discharge
of Q = 80 m3 s~! is prescribed at the river boundary (x =L). A
river discharge density Q' satisfying Eq. (11f) is defined as

_Q
ZB|X=L.

Table 6 gives a list of all parameters used for the years 1980 and
2005 such that the observed M, water motion is well-reproduced
by the model (see Kumar et al., 2016 for a discussion). Using these
parameters, Table 7 lists the order of magnitude of various dimen-
sionless parameters for the Ems estuary. Table 7 shows that the
Ems estuary is tidally-dominated and river discharge gives a first-
order contribution.

Q=

10.1. Laterally uniform bathymetry

The width-averaged bed profile of the Ems estuary for the
years 1980 and 2005, used in de Jonge et al. (2014), are extended
uniformly in the lateral direction (Fig. 4) to be used in the 3D
semi-idealized model. The domain is discretized using approxi-
mately 100,000 nodes. A realistic value of the Coriolis parameter
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Fig. 8. Sediment availability and sediment concentration for 2005 with laterally varying bed profile. The top left panel shows the sediment availability (dimensionless) and
top right panel, the sediment concentration (mg 1-') at the surface. The black and chocolate lines pass through the location of maximum concentration at the surface in the
x and y directions, respectively. The grey dot indicates the location of the maximum of the quantity being plotted. The bottom left panel shows the cross-sectional profile of
the sediment concentration along the black line and the bottom right panel, along the chocolate line. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Table 7
Order of magnitude of dimensionless parameters for the
Ems estuary.

Dimensionless parameter 1980 2005 Order

Aw,/H=¢ 0.14 013 0(e)
UlwL 01 O(€)
Aw, /A, 0.17 0.14 O(e)
gH|w?1 122 o)
UqlU 0.1 O(€)
AvolwH? 131 096 0(1)
Q/Q 0.1 O(€)
ws/wH 0.71 o)

f=134x10"* s7!, corresponding to the Ems estuary, is used.
The total amount of easily erodible sediment in the estuary d, is
chosen in such a way that the maximum concentration at the sur-
face for 1980 and 2005 matches the observations, i.e., 400 mg 1!
for 1980 and 1000 mg I-! for 2005 (from de Jonge et al. (2014)).

In Fig. 5, top panel, the distribution of easily erodible sediment
in the Ems estuary is shown for the years 1980 and 2005.

Since the bed profile is laterally uniform, the sediment avail-
ability is also uniform in the lateral direction. The easily erodi-
ble sediment is concentrated close to the seaward side, approxi-
mately 6 km into the estuary, for the year 1980. For the year 2005,
the easily erodible sediment is concentrated approximately 41 km
away from the entrance and is more widely spread in the estuary
than for 1980.

Next, we look at the tidally-averaged suspended sediment con-
centration at the surface. From Fig. 5, lower panel, it follows that
for 1980, the maximum sediment concentration is found closer

to the seaward side, approximately 7 km from the entrance and
for 2005, at approximately 38 km from the entrance. The loca-
tions of maximum concentration are consistent with those found
in Chernetsky et al. (2010), i.e., the ETM is found close to the sea-
ward side for 1980 and more landward for 2005. Note that, be-
cause of the Coriolis parameter, the maximum availability of fine
sediments and the maximum sediment concentration at the sur-
face for both the years, shown by grey dots in Fig. 5, are found on
the northern sides than in the middle of the channel.

10.2. Laterally varying bathymetry

In this experiment, the bathymetric profile in the lateral direc-
tion is varied parabolically requiring that the width-averaged depth
remains the same as in the first experiment (Fig. 6). This preserves
the mean depth of the channel in both the experiments. For both
years, Gy, used in the previous experiment is used.

From Figs. 7(a) and 8(a), it follows that the easily erodible sed-
iments are not distributed uniformly in the lateral direction: the
availability is much higher on the shallow sides than in the deeper
channel for both years. However, the along-channel location of
maximum availability is approximately the same as in the experi-
ment with laterally uniform bathymetry. The maximum availability
of fine sediments is higher for a laterally varying bed profile than
for a laterally uniform bed profile.

For the year 1980, the maximum sediment concentration at
the surface is found at approximately 8 km from the entrance
(Fig. 7(b)) compared with 38 km for the year 2005 (Fig. 8(b)). The
locations of maximum concentration move slightly landward for
1980 compared with the case with laterally uniform bed profile.
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Fig. 9. The scaled three-dimensional suspended sediment concentration (a), surface concentration (b) and sediment availability (c) for the Ems estuary. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The maximum sediment concentrations are found in the middle of
the channel even though the sediment availability is lower in the
middle than on the shoals. Note that, unlike the case with laterally
uniform bed profile, the Coriolis parameter does not significantly
influence the location of the maximum concentration in the lateral
direction. This is because the influence of laterally varying bathy-
metric profile on the longitudinal processes is stronger than those
induced by the Coriolis force.

To illustrate the strength of the 3D model, the vertical profile
of the sediment concentration is plotted in the along-channel and
cross-channel directions passing through the location of maximum
concentration at the surface. These locations are shown by black
and chocolate lines in Fig. 7(b) for 1980 and Fig. 8(b) for 2005. The
along-channel profile of the sediment concentration (Figs. 7(c) and
8(c)) shows that the region of high concentration is much wider
at the bottom than at the surface. Moreover, the ETM in the along-
channel direction is stronger and wider for 2005 than for 1980. The
vertical profile of the sediment concentration in the cross-channel
direction for 1980 and 2005 (Figs. 7(d) and 8(d)) depicts similar
structure. Also, for both years, the maximum concentrations are
found in the deepest parts of the channel, with maximum con-
centration at the bottom being almost two times the maximum
concentration at the surface (Figs. 7(d) and 8(d)).

Using a realistic (but smoothed) bathymetry and geometry for
the Ems estuary in 2005, the trapping of fine sediments is still

mainly observed at the landward side of the estuary (see Fig. 9(a),
and (b) in which only the (scaled) surface suspended sediment
concentrations is shown), which qualitatively agrees with observa-
tions (de Jonge et al., 2014). In Fig. 9(c), the sediment availability
in morphodynamic equilibrium is shown. Note that high sediment
availability is not only found at locations where the suspended
sediment concentrations are high, but also where tidal velocities
are small (such as in the tributary).

11. Conclusions

A three-dimensional process-based semi-idealized model for
estuarine turbidity maxima (ETM) in an estuary with arbitrary ge-
ometry and bathymetry has been developed. The water motion
is driven by prescribed tidal forcing at the seaward side, and a
river discharge at the river boundary. Furthermore, the horizontally
varying, time- and depth-independent density field is prescribed
(using, for example, observational data). The vertical eddy viscos-
ity and diffusivity are assumed to be vertically constant and time-
independent. Horizontal viscous effects are neglected. The result-
ing three-dimensional equations for water motion and suspended
sediment concentration are scaled using typical scales, appropriate
for the system under consideration. The physical variables are ex-
panded in the small parameter € which is the ratio of the mean
amplitude of the M, surface elevation and the mean water depth
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at the seaward boundary. This leads to a system of equations at
each order of € for the water motion and the suspended sedi-
ment concentration. Using rotating variables, the vertical profile of
the velocity and the suspended sediment concentration can be ob-
tained analytically in terms of the gradients of the surface eleva-
tion. To obtain the surface elevation at each order in €, the conti-
nuity equation is integrated over the water column. This results in
a two-dimensional elliptic partial differential equation for the sur-
face elevation at that order. Using the concentrations and horizon-
tal velocities, the horizontal sediment transport is calculated. The
sediment still depends on the unknown sediment availability. By
requiring the condition of morphodynamic equilibrium, an elliptic
equation for the unknown sediment availability is obtained. These
elliptic equations for the sediment availability and the surface ele-
vation are solved numerically using the finite element method. In
choosing the order of elements used for each order, special care is
taken that the convergence rate of the numerical scheme used to
calculate the sediment availability is at least of order one.

To test the model, we applied it to the Ems estuary with pa-
rameter values representative for years 1980 and 2005. The width
is assumed to be exponentially convergent. The bathymetry in the
longitudinal direction is taken from measurements and is approx-
imated with a polynomial of degree four. In the first experiment,
the bathymery is assumed to be uniform in the lateral direction.
Focusing on the year 1980, the estuarine turbidity maximum (ETM)
is found close to the seaward side. For the year 2005, the ETM is
found far into the freshwater zone, approximately 38 km away
from the entrance. This behaviour has been observed as well, in-
dicating that the three-dimensional model is able to qualitatively
reproduce the observed ETM behaviour in the Ems estuary. As a
first indication of the importance of the lateral variations, the bed
profile in the lateral direction is varied parabolically. For both 1980
and 2005 cases, the location of ETM remains approximately the
same. However, the highest concentration is found in the middle
of the channel even though most of the easily erodible sediment
is found at the sides. This clearly demonstrates the importance of
using a 3D model to compare the influence of lateral dynamics
on the longitudinal processes. In this paper, we have mainly fo-
cused on the mathematical method used in the development of
the model. In a forthcoming paper, the influence of bathymetric
changes on each transport component will be discussed in detail,
extending the sensitivity study of Schuttelaars et al. (2013) by in-
cluding lateral depth variations. The idealized model developed in
this paper is specifically aimed at studying estuaries in morpho-
dynamic equilibrium, i.e., estuaries in which there are no conver-
gences or divergences of sediment transport. To accommodate for
the possibility of either a tidally-averaged import or export of sed-
iment (due to, for example, the spring-neap cycle or human inter-
ventions), the condition of morphodynamic equilibrium has to be
relaxed by allowing the sediment availability to vary on the long
time scale, a model extension that is currently under investigation.
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Appendix A. Scaling and perturbation analyses
A.1. Scaling analyses

To make the equations dimensionless, typical scales of the vari-

ous quantities have to be introduced. The time t is made dimen-
sionless using the frequency of the M, tidal constituent. In this

paper, we focus on phenomena that vary on the estuarine length
scale. Thus, as a length scale, the length L of the estuary is used.
As a vertical length scale, the mean water depth H at the seaward
side is used, defined as

1
H= —
Len(85£2) Q2

where Len(ds$2) denotes of the length of the seaward boundary.
The local water depth h is also scaled with this parameter H. The
typical scales for the surface elevation 7, the vertical eddy viscos-
ity Ay and the vertical diffusivity Ky by A, Ay and Ky, respectively,
defined as

h ds, (A1)

(A Ay, K,) = (Am,, Av, Ky) ds. (A2)

1
Len(c‘)gSZ) s
The horizontal diffusivity K;, is assumed to be spatially uniform
and constant in time.

The cross-sectionally averaged continuity equation is used to
obtain a typical scale for the horizontal velocity U = 42L, The typi-
cal scale W for the vertical velocity w follows from the assumption
that all the terms in the three-dimensional continuity equation are
of the same order of magnitude, i.e., U/L =V/L=W/H, implying
that W = HU/L. Note that U is the dominant scale of the horizon-
tal velocity in the tidally dominated estuaries. The typical magni-
tude for the density gradients px and py is denoted by py. The
river discharge Q is made dimensionless by comparing it with the
typical tidal discharge Q, defined as

Q =U Len(3Q) H,

where Len(dz$2) denotes the length of the river boundary.

Finally, the variables used for the concentration equation and
the condition for morphodynamic equilibrium are scaled. First, the
sediment availability is scaled by the mean amount of sediment
available in the estuary for erosion:

1
1= A fga de2,

where Ar(2) denotes the total surface area of the estuary. Using
this scale, and requiring that there is an approximate balance be-
tween erosion and deposition, it follows that a typical scale for the
sediment concentration is given by

(A3)

(A4)

pssal

gds
The settling velocity ws is scaled with ws = wH, i.e., the dimen-
sionless settling velocity w} is the ratio of the tidal time scale and
the deposition time scale. We define the parameter € as the ratio
of the mean elevation amplitude and the mean water depth at the
seaward side, i.e.,

€ =A/H. (A.6)

Using the dimensionless variables listed in Table A.8, the shal-
low water equations in the dimensionless form read,

C=

(A.5)

ug + vy +wy. =0,
up. + e (Uruy + ViU +wiug) - ot
Lg 2 * Ud * ” * 1 2 (kg
= —(f) Me = g €N =2)p; + 5 S Az )z,
VE + €UV + VTV WL + frut
L 2 * Ud * * * 1 2 [ psq gk
= _<Tg> ﬁy* - ﬁ(ﬂ? -z ),Oy + jsv(Avvz*)Z*'
Here Lg is, apart from a factor 2, the wavelength of the friction-
less tidal wave, the vertical Stokes number S, = v/2A,/wH? is the
ratio of the frictional depth and the wavelength, and U; = g:O—”Cg is
the scale for density driven residual circulation.
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Table A.8

Non-dimensionalization of various physical quantities.
Physical quantity (Symbol) Typical scale Symbol Dimensionless quantity
Domain
Time (t) M, frequency w t* = wt
Horizontal coordinates (x, y)  Estuarine length L x*,y*) = xy)/L
Domain (2) Estuarine length L Q= Q/L
Vertical coordinate (z) Mean depth H z*=z/H
Water depth (h) Mean depth H h* = h/H
Water motion
Coriolis (f) M, frequency 5} f*=flo
Surface elevation () Eq. (A2) A n* =n/A
Horizontal velocity (U, V) Follows from cross-sectionally averaged continuity equation U = % (u*,v*) = (u,v)/U
Vertical velocity (W) Follows from three-dimensional continuity equation W= %U w'=w/W
Eddy viscosity (Ay) Eq. (A.2) Ay Az = Ay/Ay
External forcing (Aw,,Au,) Eq. (A2) ,73 Aar, o An) = (A, A, ) /A
River discharge (Q) Eq. (A3) Q Q*=Q/Q
Density gradients (pox, 0y) Typical magnitude PH (0%, py) = (Px, Py)/ P1
Sediment concentration
Sediment availability (a) Eq. (A4) a a*=a/a
Sediment concentration (c) Eq. (A.5) C c*=c/C
Vertical diffusivity (Ky) Eq. (A.2) Ky K =Ky /K,
Settling velocity (ws) Typical scale Wy Wi = Ws/Ws

The boundary condition at the seaward side (Eq. (2a)) be- Table A.9

comes

n* = Ay, cos(t* — ¢, ) + Ay, COs2t* — du, ),
for all (x*,y*) in dsQ2*, (A.7a)

where Q* denotes the domain in the dimensionless coordinates
and Aj(/lz and Aj\‘/,4 are defined in Table A.8. At the riverine bound-
ary, we find

en*
/ (/ u; - dz*)ds* =Q*,
& \J-h

where Q* is defined in Eq. (A.4). At the lateral walls, we have

(A.7Db)

/:7 uj -0 dz* =0, forall (x*,y*) in 0,2*, (A.7¢)
At the free surface z* = en*, the boundary conditions become,

w* =g +eUng +v'ny), and Aj(up)z = O, (A.7d)
and at the bottom z* = —h*, they read

w* = —wh — vkl and A(u). = i_THu;;. (A7e)

vV

The three-dimensional advection-diffusion equation governing
the suspended sediment concentration in dimensionless form
reads,

G+ €[(C U + (CV )y + (CW*) ] — %[c}x* + Gy |
K

wH?

Since we assume that Ky = Ay, it follows that Ky,/wH? = 1S2. The

boundary condition for suspended sediment concentration at the
free surface reads

(Kich)p — Wik = 0. (A8)

K EE * * K % K * * *
—ew—zz[cx*nx* oy | +wict + a)PVIZ Kici =0, at z*=en*,
(A.9a)
and at the bottom
- hy. +¢.hy.) — QT;ZKV c
=wia*y/u*? + v+, at z* = —h*. (A.9Db)

Order of various dimensionless pa-
rameters appearing in the dimen-
sionless equations for water mo-
tion, suspended sediment concentra-
tion and the condition of morphody-
namic equilibrium. Refer to Table A.8
for definition of these parameters.

Dimensionless variables Order

f o)
U/wL =€ O(e)
LiLg o)
Ud/U O(G)
A, o)
Ay, O(e)
Q 0(€)
Sv o)
sH/Ay o)
wi o)
Ky JwL? 0(€?)

The condition of morphodynamic equilibrium in the dimension-
less form becomes,

* *

Fre /(ec u —mcxvdz + Ty /(ec v —mcy*)dz =0.

_h* _hi.(
(A10)

A.2. Perturbation analyses

For the estuaries under consideration, the typical elevation am-
plitude is much smaller than the typical water depth,

A
6=ﬁ<<1.

Using this information, we can asymptotically expand the vector of
unknown physical variables ¥* = (n*, u*, v*, w*, ¢*) as

v =y" ey YT+

Next, the asymptotic expansion is substituted in the scaled equa-
tions and the dimensionless coefficients appearing in these scaled
equations are related to different orders in €. A full list of these di-
mensionless coefficients is given in Table A.9. In the following, we

(A11)

(A12)
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are going to derive the differential problems for the water motion
and suspended sediment concentration, at subsequent orders in €.

With the assumption that € « 1, the boundary conditions and
integrals evaluated at z* = en* can be simplified. For boundary
conditions at river boundary and lateral walls, the integrals from
z* = —h* to z¥ = en* can be split into two integrals with limits
ranging from z* = —h* to z* =0 and from z* =0 to z* = en*. By
using the Taylor expansion of u* and v* around z* = 0 in the lat-
ter integral, the boundary conditions at the river side and lateral
boundaries reduce to

0
/ [/ uj - i dz* + en*uf; Z*O'ﬁ]d5*+o(€2)=—Q*.
RS2+ | J—h*

(A13)
0
/ u; - fi dz* + en'ul |, o - i+ O(e2) = 0,
_h=
for all (x*,y*) in 0c2*, (A14)

where O(e2) denotes all the terms of the order two or more. Us-
ing the same approach, the dimensionless dynamic and kinematic
boundary conditions at the free surface z* = en* can be rewritten
as

W+ en'wy. + 0(€?) = nf + (Ui +v'n)) + O(€?), at z2 =0
(A15)

AUz + €AS (U]) 7 + O(€?) = 0y, at z* = 0. (A16)

The boundary condition for the suspended sediment concentration
at the free surface becomes,
K
_e—h
wl?

Kh K * ok 2 *
—em[c +en . +0(e?)]ym;.

[ +enc; + 0(€2)]en;

I< * k
- ;12 K:[c.

+en*ch,. + 0(€?)], at z* =0.

+wict +entci + O(e))] +

(A17)

Next, the asymptotic expansion of unknown physical variables
given by Eq. (A.12) is substituted into the governing equations for
water motion, suspended sediment concentration and the condi-
tion of morphodynamic equilibrium. Using Table A.9, dimension-
less systems of equations are found at different orders of € by col-
lecting terms of equal order.

Leading-order water motion. The leading-order (e?) system of
equations for water motion in the dimensionless form is given by

udr + 1% +wlr =0,

0 #1,0% Lg20>s< 12'0*
up — = — 1) ESV(AVuZ* )z,
O f* 0% __ Lg 2 0 152 A O
v U = =) i+ S A
together with boundary conditions

A;(ul), =0y, and wo =p*, at z- =0,
As(uld), = g—fug*, and w% = —u%h;, —v%h;., at z*=—h*,
no* =4y, cos(t*) for all (x*,y*) in 0sQ2*,

g (f_oh*“g* i dz*)ds* =0,

ffh*ug* -fidz* =0, forall (x*,y*) in 9cQ2*.

First-order water motion. The first-order (¢!) system of equations
for the water motion is given by

U+ +wyr =0,

ulr + u®udr + v udr + woulds — fro
L\ 1. Uy
= _<T> nx** + Uz*p;
1., -
55y (Auttz)z,
T VA RS T S Th
Lg 2 1 Ud *
=—(F) wgze
1., -
+§S\2/ (Avu;** )2+,
with boundary conditions
(u;,* )Z* = _770* (ug* )Z*Z*a
f=f = (% wyr —u®ngr — vl at z =0,
Hs .,

Ar(ul), = =ul*,
Ay

and w' = —u'h;. —v'*h;. at z* = -h",

n' = Ay, cos(2t* — ¢) for all (x*,y*) in dsQ*,

0
f / ul* - dz" + n%ul|,_o -0 [ds* = —Q*,
R 2* —h*

0
1+ & 5 s 9205
/h*uh -0 dz" + nguy

»o-0 =0, forall (x*,y*)in 0cQ*.

Leading-order suspended sediment concentration. The leading-order
(€9) system of equations for the suspended sediment concentration
is given by

Ik IZ * Ik k %
% — a)IYI2 (K;e2r),. — (wic®™), =0,
with boundary conditions
K . o

L wic%, at z* =0,
w.

Ky
" wH?
The above equation shows that the leading-order suspended sedi-
ment concentration is solely governed by the absolute value of the
leading-order horizontal velocity.

s AO% a0k % | 940% * *
Kjc¥ = wia*lup*|, at z¥ = —h*.

First-order suspended sediment concentration. The first-order (e!)
system of equations for the suspended sediment concentration is
given by

k
1+ 0 0% 0 ~0x O ~0x % v * A1k * ~ 1%
Coe +UCpe +V Cy* +wrCcTZ — 3 (K\/Cz* )Z" — (WSC )z* =0,

with boundary conditions

K
a)IYIZ Ki[e + nocds ]+ wi[c"™ + n®c] =0 at z=0,

> 0% 91
R, ud - ujr
wH?

h
Note that the boundary condition at the bottom z* = —h* contains
the first-order horizontal velocity ullj*, which as we have seen in
the main text (Eq. (19)), can be written as a sum of various com-
ponents. It means that the first-order suspended sediment concen-
tration due to the bed shear stress can also be written as sum of
various components, one corresponding to each component of the
first-order horizontal velocity.
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Appendix B. Suspended sediment concentration

Leading-order suspended sediment concentration. The equation gov-
erning the leading-order suspended sediment concentration is
given by

— (wsc™), — (K, 9", =0, n=4m, where, m=0,1,2,...

such that,
I<vc +we® =0 at z=0,
I<Vc2”+a S’OS ‘Y‘{~0” "1-0 at z=-h,

where ﬂi{'rbo” *} is the nth order harmonics of the absolute
value of the leading-order bed shear stress |t,|°. Assuming cO" =
R{Coe gt }, the above equation becomes

niw
(KC2M), + wsCO" — Tc°" =0.
Since Ky := Ky(x, y) and K;, is constant, and using that the above
equation is a linear second-order ordinary differential equation in
the vertical coordinate z, it can be solved analytically in the vertical
for CO:

C(x,y,2) = A% (x, y)e"* + B™ (x, y)e™,

where ;1 and 5 are the roots of the quadratic polynomial equa-
tion: KyrZ + wsrp — %2 = 0, and A%(x,y) and B%(x,y) are given by

onWs + Kyl 2
ws + Ky’

Ws Os be’1
Pog’ dsKv

We can rewrite ¥ as

A0n=_

B =g

Ws + Ky 1
rn1e mth (W + KTy 2) — T2 20 (W + KT 1)

® = ad®,

where & is the solution of the leading-order suspended sediment
concentration with a = 1.

First-order suspended sediment concentration. The equation govern-
ing the first-order suspended sediment concentration ¢! is given
by

el +ES — (Ko, — (wsel), =0 (B.1a)
where F{. = uc? +19c9 + woc. At the surface, the boundary con-
dition reads

wse! + Kocl = Ff, at z=0, (B.1b)

where FE = —1o[wsc? + Ky, ]. At the bottom, the boundary condi-

tion reads

=0, at z=-h. (B.1c)

WsOs 1
Kol +a—=|t
vtz pOg/dsl bl
Here |7p|! denotes the first-order component of the absolute
value of the bed shear stress. Next, the first-order suspended sedi-
ment concentration is solved each forcing term individually.

Contribution due to advection. The forcing term Fg. appearing in
Eq. (B.1) is generated by the interaction of leading-order velocity
and the leading-order suspended sediment concentration can be
expressed as

Ec = aF + aEg + ayF,
where FZ = &00u0 4 #0910 + 224w, Fgx = @90, and F = &0 are
the components proportlonal to aq, ax, and ay, respectively. Since
we are interested in the M, constituent of the first-order concen-
tration, we can write

(B B B ea) = M (e figs e Ge )

Now, the governing equation becomes,

(KCiE )z + wiCpd, — iwCig = af* + axfy + ay fil. (B.2)
with boundary conditions
Kcj2, +wsC2 =0, at z=0,

Kicje,=0 at z=—h.
This equation can be solved analytically for Cj‘g for each forcing f
on the right hand side separately using the method of variation of
parameters, resulting in

= Ae'? 4 Be™* +

2(x,y,2) / [e2¢-2) _en=2)|f(Z) dZ,

—-n
where rq, 1, are the roots of the quadratic polynomial
K% + Wer —iw = 0,

and coefficients A and B are given as

Ao e / (Kory +wo)e ™ — (Ko £ ws)e ™2 70
ry =11 ) | ra(Kyry + we)ezh — 1y (Kyry + wg)e"ih
—h
B= _Allem-ron

2
The complete solution can be written as

G2 = all2 4 q,C12% 4 a,C12%,

where €129, €329 and C12 v are the solutions of the above equa-
tion for a_l ax =1 and ay =1, respectively. Note that when
computing the solution for a =1, ax and a, are set to zero. The
similar strategy holds when computing the solution for ay =1 (a =
0 and ay =0) and ay =1 (a =0 and ax = 0). The M, concentration
c}2 can thus be expressed as

~12,a ~12,ax ~12,a,
CAC_aCAC +axCe™ +ayCp
where,
~12.a 12 Ay x12.0y\  hpA12.a ~12.0, 12,ay it
(G Cpc ) = MG G G e )

Contribution due to first-order bed-shear stress. See the main text.

Contribution due to forcing at the surface. The M, component of the
surface boundary contribution Ff = —770[w5c§J +K\,c?z] can be ex-
pressed at 9i{affel®t}. Writing cl? = %{C}2el*t}, the equation gov-
erning the first-order sediment concentration due to forcing at the
surface reads

(WsCe?); + (K/C2), — iwC? = 0,

together with the boundary conditions,
KCE2 + wyCl?
K.,C$2

=afs, at z=0,

=0, at z=-h.

This equation can be solved analytically in the vertical as
C{? = Ae"? + Be'™?,

where rq, 1, are the roots of the polynomial K,r% + wsr —iw =0
and the coefficients A and B are given by

—a roriih fe
T (Ws + Koty )ent — ry (ws + Koty )er2h |7S°
B= _Allem-ron,
2
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Appendix C. Condition of morphodynamic equilibrium

The condition of morphodynamic equilibrium reads

a [ ac a [ ac
<8x /41 (cu _Kh8x>dz+ 3y [h (cv—Khay)dz> =0. (C1)
Using the dimensionless variables introduced in Eq. (A.8) of
Appendix A, the above equation becomes

a En* k9 gk l<h k *
<8x* /7’1* (ec u* — mcx*)dz

3 en* kg gk I<h 3 *
+BTI* /41* (ec v — mcy*)dz >: 0.

First, we will consider the first term in Eq. (C.2). The integral from
z* = —h* to z* = en* can be split into two integrals; one from z* =
—h* to z* = 0 and one from z* =0 to z* = en* as,

en* 0 en*
/ ctu* dz* =/ c*u* dz* +/ cku* dz*.
,hfx 7}1* 0

The asymptotic expansions of ¢* and u* can be used directly in the
first integral,

(C.2)

0 0
/ cu* dz* :/ [CO*uO* +€(C0*u]* +C1*u0*) +O(€2)] dZ*,
_h* _h

while for the second integral, ¢* and u* are first expanded around
z* = 0 using the Taylor series expansion and then asymptotic ex-
pansions of ¢* and u* are used,

en* en*
/ c*u* dz* =/ [(c*u*)
0 0

= e[n*(c‘*u*)

=0 +Z°(C'U*),

=0t .. .]dZ*,

n*z
z=0 + ET(C*u*)p

z+=0 + 0(62)]r

= en® OO |y + €2 [UO*CO*U1*|Z*:0 + 0% U,

(nO*)Z
2

0% ,,0%

+ n]*c u (CO*UO*)Z*

7—0 + Z*=0i| + 0(63).

Hence, we have

en* 0
< / cru* dz*> = / (co*u°*>dz*
_p _h*

+e [/O (co*ul* + cl*uo*) dz* + (no*co*u°*|z*=0)} + O(€?).
_hx

Since the leading order concentration itself consists of My and
M, contributions i.e., ¢® = c0%* 4 ¢04 and the leading-order wa-
ter motion is semi-diurnal (M), the leading-order contribution is
OO = c00%02+ 4 (04,02« The first term c®%*u%2* gives an M, sig-
nal and the second term c®*u%2* both an M, and Mg signal. When
averaged over the tidal period, these contributions vanish i.e., <
0002+ > = < O%02 > = 0, implying that (c®*u®)=0.

The first-order velocity u'* consists of an My and M, contribu-
tions, resulting in

ul* — (COO* +C04*)(u10* +ul4*)

— COO*UIO* + COO*ulll* +C04*u10* +CO4*U14*.

CO*

In the above expression, on the extreme right, the first term gives
an My contribution, the second and third terms both give M4 con-
tributions, and the fourth term gives an My and M, contribution.
When averaged over a tidal period, all contributions vanish except
the residual (Mp) ones, i.e., (cO*ul*) = c00+u10% 4 (c04=y14+).

The first-order suspended sediment concentration contains an
M, contribution ie.c!* = c12, resulting in (c"*u®) = (c12*u%2+). Us-
ing this information, it follows that

en*
/ cu* dz*
—h*
0
e / 00y 105 . (Ddey sy (120 024) iz
—h*

+(T}O*C0*UO* |Z*:O>] + 0(62)

Next, we will derive the leading-order contribution to the sec-
ond term in Eq. (C.2). Again, we split the integral in two parts:

en* 0 en*
k
/ c.dz* = / c.dz" + / c.dz.
,h* 7’1* 0

Using the same approach as above, we find that

en* 0 0
< / c;;dz*> = / (%)dz" + € [ / (cx)dz" + (n* (Co*lz*o)x*>]
_h* —h* ~h

+0O(€?).
In a similar way as above, we find that

% = 0% 4 % = () = %,

Cl*

=c = () =0,

T]O*CO* _ nOZ* (COO* + C04>~<) _ nOZ*COO* + 7”]02*(,'04* = <n0*C0*) —0.
—_—— ———

M, M+Mg

Hence the second term in Eq. (C.2) after averaging over a tidal pe-
riod becomes,

en* 0
/ c.dz* :/ c2%dz* + O(e?).
,h* 7h4<
Hence we obtain,
E?}* K gk I<h £ *
<8X* /_h* (ec u* — mcx*)dz >
0
_ EZax‘l:/ COO*HIO* + (C04*u14* +C12*u02*> dZ*
_h*

K 0
M)] - L a. /_ dz 4 0(E).

+ (T}O*CO*UO* (C3)

Repeating the same procedure for the third and fourth terms of
Eq. (C.2) gives,

en K,
a / (ec*v* - —cﬁ)dz*
< Y e wl2 Y
0
— 628}’* / COO*v]O* + <C04*U14* + ClZ*U02*> dZ* + (TIO*CO*UO*|Z*=O>
—h*

K . (O
3. / O0dz* 1 O(e?). (C4)
7hx

wl? v

Using Egs. (C.3) and (C4) in Eq. (C.2), collecting leading-order
terms and transforming back in to dimensional form gives,

ax (/Z [ulOCOO + <ul4CO4 + u02C12)]dZ + (U02U02C0|z=0)

0
—Ky / c,?odz>
—h

+3y <f 0 [119¢% + (v1c% + v2c™2)|dz + (02120 o)
—h
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(C.5)

0
—Kh/ c30d2> =0.
h

Next, using the relations,
(CO, COO, C04) — G(an, (::OOa’ 6040), and C12 — aéﬂla + aX612aX + ayEIZay’

and defining the following components:

0

0 0
(T8, T%) = f w0 dz (T T = / (™) dz.

0 0
XAy TYAx\ _ 02 ~12ay X0, Yayy 02 ~x12a,
(T, Ty = /h(uh o) dz,  (Ty TyY) = /41 (upe™>e) dz

0
Xa Tyay _ 14 x04a Xa ya _ [1102,,02x0a
( My> TM4) - ./;h (uh ¢ ) dZ, surface’ Tsurface) - (’7 uh C |Z=0>7

(Taite: Tais

0 0
i) = —Kn / (&%, &%) dz, Dy, = K, / 00a 4y

we can write the total horizontal sediment transport vector T =
(TX®, TY%) as

(T, 1) = (T, Ti) + (T To) + (G i) + (Tfaces Totetace)

(T Thi)- (C6)
Collecting terms that result from horizontal diffusivity explicitly,
together with advective contributions that exhibit diffusive be-
haviour, we can define a diffusivity matrix D for the sediment

availability a(x, y) as
Xa
Tsz ya )
DKh + Tsz

Dl — (DKh -;]T&Z"
Tit,
Using these results, the condition of morphodynamic equilib-
rium becomes an elliptic equation for the sediment availability a(x,
y) as

V.(D*Va+aT) =0.
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