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a b s t r a c t 

We develop a three-dimensional idealized model that is specifically aimed at gaining insight in the phys- 

ical mechanisms resulting in the formation of estuarine turbidity maxima in tidally dominated estuaries. 

First, the three-dimensional equations for water motion and suspended sediment concentration together 

with the so-called morphodynamic equilibrium condition, are scaled. Next, surface elevation, velocity and 

sediment concentration are expanded in a small parameter ε = Ā M 2 /H, where Ā M 2 is the mean amplitude 

of the M 2 tide and H is the mean water depth at the seaward side. This results in a system of equa- 

tions at each order in this small parameter. This ordering allows solving for the vertical structure of the 

velocity and suspended sediment concentration, independently of the horizontal dimension. After obtain- 

ing these vertical structures, the horizontal dependencies of the physical variables follow from solving a 

two-dimensional elliptic partial differential equation for the surface elevation. The availability of fine sed- 

iments in the estuary follows from a two-dimensional elliptic partial differential equation which results 

from requiring the system to be in morphodynamic equilibrium, and prescribing the total amount of 

easily erodible sediments available in the estuary. These elliptic equations for the surface elevation and 

sediment availability are solved numerically using the finite element method with cubic polynomials as 

basis functions. As a first application, the model is applied to the Ems estuary using a simplified geometry 

and bathymetric profiles characteristic for the years 1980 and 2005. The availability of fine sediments and 

location of maximum concentration are investigated for different lateral depth profiles. In the first exper- 

iment, a uniform lateral depth is considered. In this case, both the sediment availability and suspended 

sediment concentration are, as expected, uniform in the lateral direction. In 1980, the sediment is mainly 

trapped near the entrance, while in 2005, the sediment is mostly trapped in the freshwater zone. In the 

next experiment, the lateral bathymetry is varied parabolically while keeping the mean depth unchanged. 

In this case, the fine sediment is mainly found at the shallow sides, but the maximum sediment concen- 

tration is found in the deeper channel where the bed shear stress is much larger than on the shoals. As 

a final experiment, a more realistic (but smoothed) geometry and bathymetry for the Ems estuary are 

considered, showing the possibilities of applying the newly developed model to complex geometries and 

bathymetries. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In most estuaries, regions are observed with elevated sus-

ended sediment concentration compared with the adjacent land-
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ard and seaward regions. These regions are called estuarine tur-

idity maxima (ETM). A good understanding of the ETM dynam-

cs is important for many reasons (for a detailed discussion, see

ay et al., 2015 ). First, the presence of an ETM can have a strong

nfluence on the ecological functioning of an estuary, as it can re-

ult in limited light conditions or anoxia ( Talke et al., 2009b ). Fur-

hermore, at the location of the ETM, there is often a considerable

eposition of fine sediments, which results in enhanced dredging
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effort s to keep the estuary accessible and the navigation lanes at

their regular depths. Finally, ETM dynamics is shown to be sensi-

tive to changes in bathymetry, geometry and external forcing con-

ditions ( de Jonge et al., 2014 ), which (if not well understood) can

result in a deterioration of the system as a whole. 

To better understand and assess the effects of natural or anthro-

pogenic changes on ETM dynamics, different types of models are

being applied ( Murray, 2003 ). For example, state-of-the-art three

dimensional process-based models are applied to simulate ETM dy-

namics ( Weilbeer, 2008; van Maren et al., 2015 ) and changes in

ETM dynamics due to human interventions. However, these mod-

els are computationally expensive and the mechanisms resulting in

the observed dynamics are difficult to analyse ( Schuttelaars et al.,

2013 ). 

Alternatively, process-based idealized models are specifically

designed to and aimed towards studying the mechanisms result-

ing in the formation of ETMs and assessing their sensitivity to

parameters. Since these models focus on a specific phenomenon,

some processes are not or only parametrically taken into ac-

count. Furthermore, geometry and bathymetry are often simpli-

fied. Huijts et al. (2006) used an idealized modelling approach

to study the trapping of fine sediments in the lateral direction.

Talke et al. (2009a ) and Chernetsky et al. (2010) focused on the

sediment transport in the longitudinal direction, using a width-

averaged model. However, Geyer et al. (1998) and Kim and Voul-

garis (2008) pointed out that the lateral water motion and sus-

pended sediment dynamics affect the processes in the longitudinal

direction and vice-versa. Therefore, to understand the ETM dynam-

ics and the underlying dominant trapping mechanisms (see for ex-

ample Jay et al., 2015 for an overview of possible mechanisms), it

is necessary to study both the lateral and longitudinal processes si-

multaneously. Clearly, this requires a three-dimensional modelling

approach. 

For the water motion, three-dimensional idealized models have

been developed and analysed in detail ( Winant, 20 07; 20 08; Ens-

ing et al., 2015; Kumar et al., 2016 ), but for the sediment transport

and trapping of fine sediments, three-dimensional idealized mod-

els are still missing. Therefore, the aim of this paper is to develop

a three-dimensional idealized model for water motion and sedi-

ment dynamics in an estuary of arbitrary shape and bathymetry,

including the Coriolis effect. This allows for a systematic study of

the sediment trapping mechanisms in a tidally-dominated estuar-

ies. The physical parameters are allowed to vary in the horizontal

plane. The three-dimensional model is solved using an asymptotic

expansion technique. This results in analytic solutions of the verti-

cal profiles of the velocity and suspended sediment concentration.

These solutions still depend on the (gradients of the) surface ele-

vation. The surface elevation itself follows from a two-dimensional

elliptic partial differential equation which is solved numerically us-

ing the finite element method. The condition of morphodynamic

equilibrium is prescribed to govern the availability of fine sedi-

ments in the estuary. 

As a first example, the new model is applied to the Ems es-

tuary using simplified geometric and bathymetric profiles charac-

teristic for 1980 and 2005. The location of maximum trapping of

sediments for both years is investigated. The influence of lateral

bathymetry is investigated by first keeping the depth in the lateral

direction uniform. Next, the lateral bathymetric profile is varied

parabolically while keeping the width-averaged depth unchanged.

The results are qualitatively compared with observations and the

influence of lateral depth variations is discussed. As a final exam-

ple, we use the (smoothed) observed bathymetry and geometry of

the Ems in 2005 to obtain the trapping location of the fine sedi-

ments. 

The structure of the paper is as follows. The philosophy of ide-

alized modelling and step by step overview of model development
re presented in Section 2 . The model equations of water motion

nd suspended sediment concentration and the condition of mor-

hodynamic equilibrium are presented in Section 3 . This section

lso presents the scaling and perturbation analyses which results

n a system of equations at each order for the water motion and

he suspended sediment concentration. The leading-order system

or the water motion is solved in Section 4 , the first-order system

n Section 5 . Similarly, the leading-order and first-order systems for

uspended sediment concentrations are solved in Sections 6 and 7 ,

espectively. The equation for sediment availability governing the

istribution of fine sediments in the estuary is solved in Section 8 .

ection 9 gives a short description of the numerical solution proce-

ure for the two-dimensional elliptic partial differential equations

btained for both the surface elevation and sediment availability

ith a special discussion on the accuracy of the resulting solu-

ions. Next, this model is applied to the Ems estuary in Section 10 .

inally, conclusions are presented in section 11 . 

. Idealized model - model philosophy 

The main research question will be answered by developing a

o-called idealized, process-based model . Idealized models focus on

pecific phenomena (here ETM formation), neglecting or simpli-

ying processes that are not essential for the phenomenon under

tudy. In this paper, we focus on developing such a model for a

idally dominated, well-mixed estuary. It is assumed that the sus-

ended sediment concentrations do not influence the water mo-

ion significantly, and that the water motion is mainly driven by a

rescribed M 2 tide at the seaward side. 

In constructing this idealized model, ten steps can be identified.

hese steps are visualized in Fig. 1 ; the precise sections where the

ndividual steps are discussed in detail, are indicated in this figure

s well. Below, the main steps are summarized: 

1. Derive the model equations, and define the geometry and

bathymetry of interest. 

2. Make the physical variables (such as surface elevation, water

depth, etc.) dimensionless by introducing typical scales; subse-

quently use this to make the governing equations dimension-

less. Since all dimensionless physical variables are order one,

the relative importance of each term in any of the equations is

measured by the magnitude of the dimensionless number, mul-

tiplying the dimensionless group of physical variables. These

magnitudes can be calculated explicitly after choosing scales

that are representative for the estuary/class of estuaries under

consideration. 

3. Verify that one of the dimensionless numbers is the ratio of

the M 2 surface elevation averaged over the entrance ( A M 2 
) and

the mean water depth H at the seaward boundary. This ratio,

denoted by ε, is much smaller than one. Next, all other dimen-

sionless numbers are related to ε. 

4. Expand the physical variables in the small parameter ε. These

asymptotic expansions are introduced in the dimensionless

equations, and terms of equal order in ε are collected. Since

only terms of equal order in ε can balance, this results in a

system of equations at each order in ε. 

5. Construct the solutions for the leading-order water motion, i.e.,

at order ε0 . Since the leading-order water motion is only driven

by the M 2 tidal signal at the seaward boundary, it only consists

of an M 2 constituent. 

6. Derive the first-order water motion using the leading-order wa-

ter motion, i.e., ε1 . It is found that the temporal variations of

the first order water motion consist of a residual and an M 4 

contribution. 

7. Calculate the leading-order concentration using the leading-

order water motion. Concerning its temporal behaviour, a resid-
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Fig. 1. Flow chart showing the steps involved in the development of the idealized model. 
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Fig. 2. Three-dimensional sketch of an estuary with arbitrary geometric and bathy- 

metric profiles. The bathymetric profile is shown on a grayscale. The seaward side 

(denoted by ∂ S �) is shown in magenta colour ( ) and the river bound- 

ary (denoted by ∂ R �) in cyan colour ( ). The other boundaries (denoted 

by ∂ C �) are assumed to be closed walls. The surface of the estuary is discretized 

using linear triangles in order to compute the surface elevation with the finite el- 

ement method. The nodes on the seaward boundary (where elevation amplitude 

is prescribed) are indicated by blue diamonds ( ) and on rest of the boundaries 

(nodes where the surface elevation has to be computed) by red diamonds ( ). At 

each node in the triangulization of the surface, the vertical profile of the velocity 

field can be computed analytically using partial derivatives of the surface elevation 

as shown by yellow dashed lines ( ). The velocity at the surface is depicted 

by green arrows ( ) and, in the rest of the water column, by yellow arrows 

( ). This figure has been taken from Kumar et al. (2016) . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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ual contribution and contributions with multiples of the M 4 

tidal frequency are obtained. 

8. The first-order suspended sediment concentration is obtained

using information of both the leading- and first-order velocity

fields, and the leading-order concentration. The temporal varia-

tions of the first-order concentration consist of a residual con-

tribution and contributions with multiples of the M 2 tidal fre-

quency. 

9. Calculate the leading-order, tidally averaged suspended sedi-

ment transport. It consists of three contributions: 

• advective transport due to correlations between the leading-

order velocity and first-order concentration. Only the cor-

relation between the leading-order velocity and the M 2 

component of the first-order concentration results in a net

transport. 
• advective transport due to correlations between the first-

order velocity and leading-order concentration. Both the

residual concentration, advected by the residual velocity,

and the correlation between the first-order M 4 velocity and

the M 4 component of the leading-order concentration result

in a net transport. 
• diffusive transport due to spatial gradients in the residual

concentration field. 

0. Impose the condition of morphodynamic equilibrium to obtain

the spatial distribution of easily erodible sediments. 

In the following sections (see Fig. 1 ), these steps will be ex-

ecuted to develop a model for sediment trapping in a tidally-

dominated estuary. 

3. Model formulation 

3.1. Model domain 

An estuary of arbitrary shape (geometry) and depth profile

(bathymetry) is considered ( Fig. 2 ). A Cartesian coordinate system

is used, with x, y denoting the horizontal coordinates, and z the

vertical coordinate, pointing in the upward direction. Importantly,
 or y need not represent the along-channel or cross-channel co-

rdinate. The undisturbed water level is denoted by z = 0 and the

urface elevation by z = η(x, y, t) , where t is time. The undisturbed

ed level denoted by z = −h (x, y ) , is assumed to be prescribed and

ndependent of time on the time scale under consideration. Bound-

ries where the surface elevation is prescribed are called seaward

oundaries (denoted by ∂ S �), if river discharge is prescribed, they

re called river boundaries (denoted by ∂ R �). The closed bound-

ries are denoted by ∂ C �. 

.2. Water motion 

The water motion is governed by the three-dimensional shallow

ater equations, including the Coriolis effect. Conservation of mass

nd momentum (using the Boussinesq approximation and hydro-

tatic balance) is expressed as ( Cushman-Roisin and Beckers, 2011;

reugdenhil, 1994 ) 

∂u 

∂x 
+ 

∂v 
∂y 

+ 

∂w 

∂z 
= 0 , (1a)

∂u 

∂t 
+ u 

∂u 

∂x 
+ v 

∂u 

∂y 
+ w 

∂u 

∂z 
− f v 

= −g 
∂η

∂x 
− g 

ρ0 

∫ η

z 

∂ρ

∂x 
d z ′ + 

∂ 

∂z 

(
A v 

∂u 

∂z 

)
, (1b)

∂v 
∂t 

+ u 

∂v 
∂x 

+ v 
∂v 
∂y 

+ w 

∂v 
∂z 

+ f u 

= −g 
∂η

∂y 
− g 

ρ0 

∫ η

z 

∂ρ

∂y 
d z ′ + 

∂ 

∂z 

(
A v 

∂v 
∂z 

)
. (1c)

The unknown variable u = (u, v , w ) denotes the components of

he velocity field in x, y and z directions, respectively. The mean

ensity is denoted by ρ0 and the dynamic density by ρ( x, y )

hich is assumed to be a prescribed function of the horizontal

oordinates x and y only, i.e., the estuary is assumed to be well-

ixed. Furthermore, time variations in ρ are neglected. The verti-

al eddy viscosity coefficient is denoted by A v ( x, y ) and is assumed

o be a prescribed function of x and y only, thus uniform in z and

ime-invariant. Note that horizontal viscous effects are neglected

n Eq. (1) , see Winant (2007) for a detailed discussion. The pa-

ameter f is the Coriolis parameter, given by f = 2 ̃  � sin θ, where
˜ = 7 . 292 × 10 −5 rad s −1 is the angular frequency of the Earth’s

otation, and θ the latitude which is assumed to be uniform over

he domain ( f -plane approximation). 

To obtain a well-posed problem for the water motion, appro-

riate boundary conditions have to be prescribed. At the seaward

oundary ( ∂ S �), the system is forced with a combination of a pre-

cribed semi-diurnal lunar ( M 2 ) tide and its first overtide ( M 4 ), 

= A M 2 
cos (ωt − φM 2 

) + A M 4 
(2 ωt − φM 4 

) , for all (x, y ) in ∂ S �, 

(2a)

here A M 2 
(x, y ) and A M 4 

(x, y ) are the (possibly) spatially varying

mplitudes of the surface elevation of the M 2 and M 4 tidal con-

tituents at the seaward boundary. The phases of the M 2 and M 4 

ides at the seaward side are denoted by φM 2 
(x, y ) and φM 4 

(x, y ) ,

espectively. The M 2 tidal constituent is assumed to be the domi-

ant one, i.e., A M 4 
< A M 2 

. The parameter ω = 2 π/T denotes the an-

ular frequency of the M 2 tide with period T = 12.42 h. At the

iver boundary ( ∂ R �), a time-independent river discharge Q (m 

3 

 

−1 ) is prescribed, 

 

∂ R �

(∫ η

−h 

u h · ˆ n d z 

)
d s = −Q, (2b)
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Fig. 3. The map of the Ems estuary ( Chernetsky et al., 2010 ). 

Fig. 4. Bathymetry of the Ems estuary for the years 1980 and 2005 assuming laterally uniform conditions. The units in the colourbar are m. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Sediment availability (dimensionless) in the channel for the years 1980 ( top left ) and 2005 ( top right ). The tidally-averaged suspended sediment concentration at the 

surface for the years 1980 ( bottom left ) and 2005 ( bottom right ). The units in the colourbar are mg l −1 . The grey dots show the location of the maxima of the quantity being 

plotted. Note that the total amount of easily erodible sediment a total is chosen in such a way that the maximum concentration at the surface for 1980 is 400 mg l −1 and for 

2005 is 1000 mg l −1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. The bathymetry of the Ems estuary for the years 1980 and 2005 varying parabolically in the lateral direction. The units in the colourbar are m. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Sediment availability and sediment concentration for 1980 with laterally varying bed profile. The top left panel shows the sediment availability (dimensionless) and 

top right panel , the sediment concentration (mg l −1 ) at the surface. The black and chocolate lines pass through the location of maximum concentration at the surface in the 

x and y directions, respectively. The grey dot indicates the location of the maximum of the quantity being plotted. The bottom left panel shows the cross-sectional profile of 

the sediment concentration along the black line and the bottom right panel , along the chocolate line. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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where u h = (u, v ) denotes the horizontal velocity and ˆ n , the hori-

zontal unit normal vector pointing outwards. The outer integral in

Eq. (2b) denotes the line integral over the river boundary. Impor-

tantly, −Q is the total inflow of fresh water over one river bound-

ary. If there is more than one river inlet (shown in cyan colour

in Fig. 2 ), appropriate river discharges Q are assigned to

each one. Since we are focussing on tidally dominated systems,

the river discharge is assumed to be small compared with the tidal

discharge (see Section 3.5 ). At the closed boundaries ( ∂ C �), a no-

transport condition is imposed, ∫ η

−h 

u h · ˆ n d z = 0 , for all (x, y ) in ∂ C �. (2c)
t is not possible to require the flux to vanish at each point in the

ertical at the boundary. This is a consequence of neglecting the

orizontal viscous effects, by which the horizontal viscous bound-

ry layer is not resolved. Following Winant (2007) , this is accept-

ble since the thickness of this boundary layer is negligible com-

ared with the horizontal length scale we are focusing on (length

cale of the order of the length of the estuary). 

At the free surface z = η, kinematic and dynamic boundary con-

itions are imposed, 

 = 

∂η

∂t 
+ u 

∂η

∂x 
+ v 

∂η

∂y 
, at z = η, (2d)
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c  

d  

a

ε

H  

s  

a  
 v 
∂ u h 

∂z 
= 0 h , at z = η, (2e) 

here 0 h = (0 , 0) is the two-dimensional horizontal null vector.

t the bottom z = −h, the non-permeability condition (kinematic)

nd the dynamic boundary condition are prescribed, 

 = −u 

∂h 

∂x 
− v 

∂h 

∂y 
, at z = −h, (2f) 

 v 
∂ u h 

∂z 
= 

τb 

ρ0 

= s u h , at z = −h, (2g) 

here s ( x, y ) is the so-called stress parameter which follows from

he linearization of the bed shear stress (see Zimmerman, 1992 ).

f s → 0, this formulation reduces to the free-slip condition,

or s → ∞ to the no-slip condition. It is important to point

ut that by adopting this simplification, the constant stress layer

ear the bed where the viscosity goes to zero, is neglected, see

chramkowski et al. (2002) for details. Here, we have assumed that

oth the bottom slopes and the surface elevation slopes are much

maller than 1, i.e., | ∇h |, | ∇η| � 1 . 

.3. Suspended sediment concentration 

The suspended sediment concentration is modelled by a three-

imensional advection-diffusion equation 

∂c 

∂t 
+ ∇ · F = 0 , (3) 

ith F = F a + F s + F d , the sediment flux that consists of three dif-

erent contributions: the advective flux F a , the settling flux F s and

he diffusive flux F d . These fluxes are given by 

F a = c u , 

F s = −(0 , 0 , cw s ) , 

 d = −
(

K h 

∂c 

∂x 
, K h 

∂c 

∂y 
, K v 

∂c 

∂z 

)
, 

here w s denotes the settling velocity, and K h ( x, y ) and K v ( x, y )

he horizontal and vertical diffusivities, respectively. The vertical

iffusivity K v is assumed to be equal to the vertical eddy viscosity

 v . Using these expressions, Eq. (3) becomes 

∂c 

∂t 
+ 

∂ 

∂x 

(
cu − K h 

∂c 

∂x 

)
+ 

∂ 

∂y 

(
cv − K h 

∂c 

∂y 

)

+ 

∂ 

∂z 

(
c(w − w s ) − K v 

∂c 

∂z 

)
= 0 . (4) 

t the free surface z = η and the bottom z = −h, the outward nor-

al component of the sum of the settling and diffusive fluxes is

equired to be equal to a specified erosion-deposition flux of vol-

me concentration S ∗ , i.e., 

(F s + F d ) · ˆ n = S ∗, (5) 

here ˆ n is the unit normal vector pointing outwards. 

At the free surface, using | ∇η| � 1, ˆ n = (−ηx , −ηy , 1) , and S ∗ =
 results in 

K h c x ηx − K h c y ηy + w s c + K v c z = 0 at z = η. (6a) 

At the bottom, using | ∇h | � 1, ˆ n = (−h x , −h y , −1) , and S ∗ =
 − D, where E = w s c ref is the erosion and D = w s c 0 , the deposi-

ion. Here c ref is a reference concentration and c 0 is the actual

oncentration at the bottom, i.e., c 0 = c| z= −h . The bottom bound-

ry condition thus becomes 

K h c x h x − K h c y h y − K v c z = w s c ref , at z = −h, (6b) 

r  
ith the reference concentration c ref given as 

 ref = 

ρs a | τb | 
ρ0 g ′ d s 

. (6c) 

ere | τb | denotes the absolute value of the bed shear stress and

 ( x, y ) represents the availability of fine sediments at location ( x,

 ). Note that a ( x, y ) is a spatially varying coefficient parameter-

zing the ease with which fine sediments can be eroded and the

mount of easily erodible fine sediments available at location ( x, y )

 Friedrichs et al., 1998; Chernetsky et al., 2010; Huijts et al., 2006 ).

he sediment density is denoted by ρs , g 
′ = g(ρs − ρ) / ρ0 is the re-

uced gravity, and d s ( x, y ) is the grain size of the sediments. 

It should be noted that in Eq. (4) the horizontal diffusivities

re retained. However, to be consistent with the solution proce-

ure for the hydrodynamic equations, the boundary layers for the

uspended sediments will also not be resolved and the horizon-

al diffusivities will only play a role in the morphodynamic equi-

ibrium condition (see Section 3.4 ) . Hence Eq. (4) , together with

he boundary conditions given by Eq. (6) complete the system of

quations governing the suspended sediment concentration in the

stuary for given availability a ( x, y ). 

.4. Condition of morphodynamic equilibrium 

We consider a state of the system in which tidally averaged ero-

ion and deposition balance each other: 

 

D − E 〉 = 0 , (7) 

here 〈·〉 denotes a tidally-averaged quantity (see

an Rijn, 1993 for more details). This condition is termed as

he morphodynamic equilibrium condition ( Chernetsky et al.,

010; Huijts et al., 2006; Friedrichs et al., 1998 ). 

Integrating the sediment concentration equation over the wa-

er column (from z = −h to z = η) and using the boundary condi-

ions for water motion and suspended sediment concentration at

he free surface and at the bottom results in 

∂ 

∂t 

∫ η

−h 

c d z + 

∂ 

∂x 

∫ η

−h 

(
cu − K h 

∂c 

∂x 

)
d z 

+ 

∂ 

∂y 

∫ η

−h 

(
cv − K h 

∂c 

∂y 

)
d z + D − E = 0 . 

veraging the above equation over the tidal period, using Eq. (7) ,

e find that the condition of morphodynamic equilibrium requires

hat 

∂ 

∂x 

∫ η

−h 

(
cu − K h 

∂c 

∂x 

)
d z + 

∂ 

∂y 

∫ η

−h 

(
cv − K h 

∂c 

∂y 

)
d z 

〉
= 0 . (8) 

his condition together with the requirement that there is no

idally averaged sediment transport through the boundaries, can

nly be satisfied if the easily erodible fine sediment has a specific

patial distribution, i.e., Eq. (8) is effectively a condition for a ( x, y ).

.5. Scaling and perturbation analyses 

Next, the equations for the water motion, suspended sediment

oncentration and morphodynamic equilibrium are scaled by intro-

ucing dimensionless variables. This results in the identification of

 small parameter ε defined as 

= Ā M 2 
/H � 1 . 

ere, Ā M 2 
is the mean elevation amplitude of the M 2 tide at the

eaward boundary and H the mean depth at the seaward bound-

ry. The order of magnitude of all other dimensionless numbers is

elated to this parameter ε, thus indicating the relative importance
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of each contribution. Next, the unknown physical variables are ex-

panded in this small parameter (see Nayfeh, 2007 for details about

perturbation methods). These asymptotic expansions are inserted

in the dimensionless system of equations and terms of equal order

in ε are collected. This results in systems of equations at each or-

der in ε (see Appendix A for a detailed description of the scaling

and perturbation analyses). 

In the following sections, we present the systems of equations

in their dimensional form and the solution procedure used to solve

the leading-order ( ε0 ) and first-order ( ε1 ) system of equations for

the water motion ( Sections 4 and 5 ) and the suspended sediment

concentration ( Sections 6 and 7 ). Finally, the sediment availabil-

ity a ( x, y ) is obtained by solving the condition of morphodynamic

equilibrium which is encountered only at second order ( ε2 ). 

For clarification, let us now introduce the notation convention.

In φmn , where φ is any of the unknown physical variables, i.e.,

φ = { η, u , c} , the first superscript m denotes the order in ε of that

contribution and the second superscript n its tidal frequency. For

example, η02 denotes the leading-order ( ε0 ) M 2 surface elevation

and u 

14 denotes the first-order ( ε1 ) M 4 velocity vector. 

4. Leading-order water motion 

The leading-order system of equations for the water motion

reads 

u 

0 
x + v 0 y + w 

0 
z = 0 , (9a)

u 

0 
t − f v 0 = −gη0 

x + (A v u 

0 
z ) z , (9b)

v 0 t + f u 

0 = −gη0 
y + (A v v 0 z ) z , (9c)

with boundary conditions at the free surface 

ρ0 A v ( u 

0 
h ) z = 0 h , and w 

0 = η0 
t , at z = 0 . 

Note that, as a result of the scaling procedure, this boundary con-

dition is prescribed at z = 0 (see Appendix A for details). At the

bottom z = −h, we require that 

A v ( u 

0 
h ) z = s u 

0 
h , and w 

0 = −u 

0 h x − v 0 h y , at z = −h. 

The water motion at leading-order is only forced by the M 2 tidal

constituent at the seaward boundary, 

η0 = A M 2 
cos (ωt − φM 2 

) for all (x, y ) in ∂ S �, 

while the transport through the other boundaries vanishes ∫ 0 

−h 

u 

0 
h · ˆ n d z = 0 , for all (x, y ) in ∂ R � or ∂ C �. 

As already pointed out in Section 3.2 , it is assumed that the

river inflow gives a contribution only at O(ε) and hence does not

appear in the leading order system of equations. The solution of

this system of equations describes the propagation of a tidal wave

in a homogeneous fluid (no density effects) in an estuary with an

arbitrary geometry and bathymetry. Here, only a brief outline of

the solution method is presented. 

To solve the leading-order water motion (see Kumar et al.,

2016 for details), we write 

(η0 , u 

0 ) = 
{ (N 

02 , U 

02 ) e iωt } , (10)

where 
 stands for the real part of a complex variable, and N 

02 and

 

02 = (U 

02 , V 02 , W 

02 ) are spatially varying complex amplitudes of

the surface elevation and the velocity field, respectively. The ver-

tical structure of the leading-order velocity field can be obtained

analytically using Eqs. (9b) and (9c) ; it is proportional to the first-
nd second-order partial derivatives of the leading-order surface

levation. 

The surface elevation N 

02 and its partial derivatives are

btained by integrating the leading-order continuity equation

 Eq. (9a) ) over the water column. Using the appropriate boundary

onditions, a two-dimensional elliptic partial differential equation

or the leading-order surface elevation N 

02 is obtained. This equa-

ion is solved numerically using the finite element method (see

ection 9 for details). 

. First-order water motion 

The first-order system of equations for the water motion

eads 

 

1 
x + v 1 y + w 

1 
z = 0 , (11a)

 

1 
t + F x AC − f v 1 = −gη1 

x + F x GC + (A v u 

1 
z ) z , (11b)

 

1 
t + F y 

AC 
+ f u 

1 = −gη1 
y + F y 

GC 
+ (A v v 1 z ) z , (11c)

here { F x 
AC 

, F 
y 

AC 
} denote the advective terms and { F x 

GC 
, F 

y 
GC 

} , the forc-

ng due to density gradients. The different forcing terms are de-

ned in Table 1 . At the seaward boundary, an external M 4 tide ( F EF )

s prescribed 

1 = F EF , for all (x, y ) in ∂ S �. (11d)

t the river boundary, a river discharge density Q 

′ is prescribed,

 RD = −Q 

′ , 
 0 

−h 

u 

1 
h · ˆ n d z + F ∂�

T RF = F RD , for all (x, y ) in ∂ R �. (11e)

he total river discharge Q is distributed over the river boundary

y requiring that 
 

∂ R �
Q 

′ d s = Q . (11f)

he contribution F ∂�
T RF 

is the transport through the boundary due

o the correlation between the leading-order surface elevation and

he velocity. At the closed boundary ∂ C �, the total transport must

anish which implies that the first-order transport must balance

he transport due to the correlation between the leading-order sur-

ace elevation and the velocity, 
 0 

−h 

u 

1 
h · ˆ n d z + F ∂�

T RF = 0 , for all (x, y ) in ∂ C �. (11g)

t the free surface, the first-order stress must balance the stress

ue to the leading-order solution, denoted by F NS , evaluated at z =
 . 

0 A v ( u 

1 
h ) z = −F NS , at z = 0 . (11h)

he forcing in the interior due to the correlation between the

eading-order surface elevation and velocity, denoted by F �
T RF 

, ap-

ears in the kinematic boundary condition as 

 

1 = η1 
t + F �T RF , at z = 0 . (11i)

or the boundary conditions at the bottom, no new forcing terms

re obtained, i.e., 

 v ( u 

1 
h ) z = s u 

1 
h , and w 

1 = −u 

1 h x − v 1 h y , at z = −h. (11j)

Since the leading-order flow is known, the system of equa-

ions for the first-order water motion and its boundary conditions

re linear in the unknown surface elevation η1 and velocity field

 

1 = (u 1 , v 1 , w 

1 ) . As a result, this equation can be solved for each

orcing term F individually. 
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Table 1 

Various forcing terms appearing in the first-order system of equations for the water mo- 

tion ( Eq. (11) ). The value of n denotes the frequency M n of the forcing terms. 

Name Mathematical expression Abbreviation n 

Externally prescribed 

Gravitational circulation g 
ρ0 

z(ρx , ρy ) (F x GC , F 
y 

GC 
) 0 

External M 4 A M 4 cos (2 ωt − φM 4 ) F EF 4 

River discharge −Q ′ F RD 0 

Internally generated 

Advection u 02 ( u 02 
h 

) x + v 02 ( u 02 
h 

) y + w 

02 ( u 02 
h 

) z (F x 
AC 

, F y 
AC 

) 0,4 

No-stress ρ0 A v η02 u 02 
zz | z=0 F NS 0,4 

Tidal return flow ∇ · (η0 u 02 
h 

) | z=0 F �TRF 0,4 

(η02 u 02 
h 

) · ˆ n | ∂ R �∪ ∂ C � F ∂�
TRF 

 

n  

o  

n  

t  

s  

a  

a  

t  

o  

f  

p  

a

F

w  

v  

w

w  

M  

M  

t  

t  

t

U

 

t

a  

F

 

v

r

C  

v

r

t

ρ

ρ

Table 2 

Forcing terms appearing in the equa- 

tions for rotating variables. 

Notation Definition 

(F 10 
GC, 1 , F 

10 
GC, 2 ) − 1 

A v 
(F x, 10 

GC 
± iF y, 10 

GC 
) 

(F 1 n 
AC, 1 

, F 1 n 
AC, 2 

) 1 
A v 

(F x, 1 n 
AC 

± iF y, 1 n 
AC 

) 

(F 1 n NS, 1 , F 
1 n 

NS, 2 ) F x, 1 n 
NS 

± iF y, 1 n 
NS 

 

L

α

F  

b

t  

t  

t  

a  

t

 

a

r

w

c

E  

t∫
w

C

U  

t  

f

∫

w

The forcing terms F can be divided into two categories: exter-

ally prescribed and internally generated . Table 1 gives a full list

f all forcing terms for the first-order water motion. The exter-

ally prescribed forcing terms are those prescribed explicitly, e.g.,

he external M 4 tide, time-independent river discharge and den-

ity gradients. The internally generated forcing terms are gener-

ted by the non-linear interaction of the leading-order flow vari-

bles (advection, no-stress and tidal return flow). It is important

o note that the forcing terms due to the non-linear interactions

f leading-order water motion are either time-independent or are

orcing terms with an M 4 periodicity. Therefore, both externally

rescribed and internally generated forcing terms can be written

s 

 = 
{ F 1 n e niωt 
2 } , (12) 

here n = 0 or 4 depending on the forcing term (see Table 1 for

alues of n ). This allows us to write the solution of the first-order

ater motion as 

(η1 n , u 

1 n ) = 
{ (N 

1 n , U 

1 n ) e 
niωt 

2 } , 
here the terms with the superscript 10 (n = 0) denote first-order

 0 components and those with a superscript 14 ( n = 4 ), first-order

 4 components. Here N 

1 n and U 

1 n = (U 

1 n , V 1 n , W 

1 n ) are the spa-

ially varying complex amplitudes of the first-order surface eleva-

ion and velocity field, respectively. The first-order system for n th

idal frequency thus becomes 

 

1 n 
x + V 

1 n 
y + W 

1 n 
z = 0 , (13a) 

niω 

2 

U 

1 n + F x, 1 n 
AC 

− fV 

1 n = −gN 

1 n 
x + F x, 10 

GC 
+ (A v U 

1 n 
z ) z , (13b) 

niω 

2 

V 

1 n + F y, 1 n 
AC 

+ fU 

1 n = −gN 

1 n 
y + F y, 10 

GC 
+ (A v V 

1 n 
z ) z . (13c) 

In a similar way, the boundary conditions can be expressed in

erms of the complex amplitudes. This introduces new terms F �, 1 n 
T RF 

nd F ∂�, 1 n 
T RF 

which denote the n th frequency component of F �T RF and

 

∂�
T RF 

, respectively. 

To solve for the complex amplitudes N 

1 n and U 

1 n , rotating flow

ariables are introduced: 

 

1 n 
1 = U 

1 n + iV 

1 n , and r 1 n 2 = U 

1 n − iV 

1 n . (14) 

ombining Eqs. (13b) and (13c) , the equations for the rotating flow

ariables r 1 n 
1 

and r 2 n 
2 

are obtained: 

 

1 n 
j,zz − (αn 

j ) 
2 r 1 n j = 

g 

A v 
L j N 

1 n + F 1 n AC, j + F 10 
GC, j , for j = 1 , 2 , (15a) 

ogether with the boundary conditions 

0 A v r 
1 n 
j,z = F 1 n NS, j , at z = 0 , (15b) 

0 A v r 
1 n 
j,z = ρ0 sr 1 n j , at z = −h. (15c) 
In Eq. (15a) , the operators L j are defined by L 1 = ∂ x + i∂ y , and

 2 = ∂ x − i∂ y , and αn 
j 

by 

n 
1 = 

√ 

i 
nω + 2 f 

2 A v 
, and αn 

2 = 

√ 

i 
nω − 2 f 

2 A v 
, n = 0 , 4 . 

or n = 4 , αn 
1 

and αn 
2 

are related to the cyclonic and anticyclonic

oundary layer thickness δ± = 

√ 

2 A v 
nω/ 2 ± f 

associated with the M 4 

idal constituent ( Soulsby, 1983; Souza, 2013 ). Similarly, for n = 0 ,

he parameters are related to the time-independent boundary layer

hickness. The forcing terms in the equations for rotating variables

re linear combinations of the forcing terms in the original equa-

ions; see Table 2 . 

The equations for the rotating flow variables can be solved an-

lytically, 

 

1 n 
j (x, y, z) = c αn 

j 
(x, y, z) L j N 

1 n + f αn 
j 
(x, y, z) , j = 1 , 2 , 

ith 

 αn 
j 
(x, y, z) = 

g 

(αn 
j 
) 2 A v 

[
s cosh (αn 

j 
z) 

αn 
j 
A v sinh (αn 

j 
h ) + s cosh (αn 

j 
h ) 

− 1 

]
. 

xpressions for f αn 
j 

depend on the forcing term under considera-

ion. Integrating these expressions over the depth gives 
 0 

−h 

r n j (x, y, z ′ ) d z ′ = C αn 
j 
(x, y ) L j N 

1 n + F αn 
j 
(x, y ) , j = 1 , 2 , 

here 

 αn 
j 
(x, y ) = 

g 

(αn 
j 
) 3 A v 

[
s sinh (αn 

j 
h ) 

αn 
j 
A v sinh (αn 

j 
h ) + s cosh (αn 

j 
h ) 

− αn 
j h 

]
. 

sing Eq. (14) , the depth-dependent and depth-integrated horizon-

al velocities can be obtained in terms of the gradients of the sur-

ace elevation and known forcing terms as 

(U 

1 n , V 

1 n ) = (d 1 , −d 2 ) N 

1 n 
x + (d 2 , d 1 ) N 

1 n 
y + ( f 1 n 1 , f 1 n 2 ) , (16) 

 0 

−h 

(U 

1 n , V 

1 n ) d z = (D 1 , −D 2 ) N 

1 n 
x + (D 2 , D 1 ) N 

1 n 
y + (F 1 n 1 , F 1 n 2 ) , 

(17) 

here 

(d 1 n 1 , f 
1 n 
1 , D 

1 n 
1 , F 

1 n 
1 ) 
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8  
= 

1 

2 

[
(c αn 

1 
, f αn 

1 
, C αn 

1 
, F αn 

1 
) + (c αn 

2 
, f αn 

2 
, C αn 

2 
, F αn 

2 
) 
]
, 

(d 1 n 2 , f 
1 n 
2 , D 

1 n 
2 , F 

1 n 
2 ) 

= 

i 

2 

[
(c αn 

1 
, − f αn 

1 
, C αn 

1 
, −F αn 

1 
) − (c αn 

2 
, − f αn 

2 
, C αn 

2 
, −F αn 

2 
) 
]
. 

To obtain the surface elevation, the first-order continuity equa-

tion is integrated over the water column (from z = −h to z = 0 ).

Together with the boundary conditions at z = −h and z = 0 , this

gives 

∂ 

∂x 

∫ 0 

−h 

U 

1 n d z + 

∂ 

∂y 

∫ 0 

−h 

V 

1 n d z + 

niω 

2 

N 

1 n + F �, 1 n 
T RF 

= 0 . 

Inserting the expressions for depth-integrated horizontal velocity

given by Eq. (16) in the above equation gives a second-order ellip-

tic partial differential equation for the surface elevation N 

1 n 

∇ ·
(
D 

1 n ∇N 

1 n + F 1 n 
)

+ 

niω 

2 

N 

1 n + F �, 1 n 
T RF 

= 0 , (18a)

where 

D 

1 n = 

(
D 

1 n 
1 D 

1 n 
2 

−D 

1 n 
2 D 

1 n 
1 

)
, and F 1 n = 

(
F 1 n 1 

F 1 n 2 

)
. 

The associated horizontal boundary conditions read: 

N 

1 n = F 14 
EF , for all (x, y ) in ∂ S �, (18b)

(D 

1 n ∇N 

1 n + F 1 n ) · ˆ n + F ∂�, 1 n 
T RF 

= F 10 
RD , 

for all (x, y ) in ∂ R �, (18c)

(D 

1 n ∇N 

1 n + F 1 n ) · ˆ n + F ∂�, 1 n 
T RF 

= 0 , 

for all (x, y ) in ∂ C �. (18d)

Since this equation for the surface elevation is a linear equation,

it can be solved for each forcing term separately (i.e., each forcing

term is studied individually by putting all other forcing terms to

zero), thus resulting in explicit expressions for the first-order ve-

locity due to each forcing term separately. The elliptic equation for

N 

1 n has to be solved numerically, for details see Section 9 . 

The first-order horizontal velocity u 

1 
h 

can be written as sum of

M 0 and M 4 tidal constituents, 

u 

1 
h = u 

10 
h + u 

14 
h , (19a)

which can be further expressed as a sum of various constituents of

the first-order water motion, i.e., 

u 

10 
h = u 

10 
h ,GC + u 

10 
h ,RD + u 

10 
h ,AC + u 

10 
h ,NS + u 

10 
h ,T RF , (19b)

u 

14 
h = u 

14 
h ,EF + u 

14 
h ,AC + u 

14 
h ,NS + u 

14 
h ,T RF . (19c)

See Table 1 for an explanation of abbreviations in Eq. (19) . The

first-order vertical velocity W 

1 n can be obtained by integrating the

first-order continuity equation in the vertical direction from z ′ =
−h to z ′ = z (see Kumar et al., 2016 for a detailed explanation). 

6. Leading-order suspended sediment concentration 

The leading-order equation for the suspended sediment concen-

tration is given by 

c 0 t − (K v c 
0 
z ) z − (w s c 

0 ) z = 0 . (20a)

The boundary condition at the free surface reads 

K v c 
0 
z + w s c 

0 = 0 , at z = 0 , (20b)
 o
nd at the bottom 

 v c 
0 
z + a 

w s ρs 

ρ0 g ′ d s 
| τb | 0 = 0 , at z = −h. (20c)

Here | τb | 
0 denotes the leading-order component of the abso-

ute value of the bed shear stress. From Eq. (20) , it follows that the

eading-order suspended sediment concentration is solely driven

y | τb | 
0 . Since the bed shear stress is written as the sum of a resid-

al component and components with frequencies that are even

ultiples of the M 2 frequency, the leading-order suspended sed-

ment concentration can also be written as 

 

0 = c 00 + c 04 + . . . 

ven though Eq. (20) can be solved for any tidal constituent, only

 

00 and c 04 are required to compute the leading-order residual

ransport (see Appendix B ). To stress that the suspended sediment

oncentrations are linear in the unknown sediment availability a ( x,

 ), we can write 

 

0 = a ̃  c 0 a = a ̃  c 00 a + a ̃  c 04 a + . . . (21)

ere, ˜ c 00 a , ˜ c 04 a and ˜ c 0 a are the M 0 , M 4 and total leading-order sus-

ended sediment concentrations obtained with a = 1 . The super-

cript a indicates that these concentrations are proportional to a . 

. First-order suspended sediment concentration 

The equation for the first-order suspended sediment

oncentration c 1 is given by 

 

1 
t + F c AC − (K v c 

1 
z ) z − (w s c 

1 ) z = 0 , (22a)

here F c 
AC 

= u 0 c 0 x + v 0 c 0 y + w 

0 c 0 z expresses advection of the leading-

rder concentration by the leading-order velocity. At the surface,

he first-order boundary condition reads 

 s c 
1 + K v c 

1 
z = F c S , at z = 0 , (22b)

here F c 
S 

= −η0 

[
w s c 

0 
z + K v c 

0 
zz 

]
is the first-order correction to the

alance between the leading-order settling and deposition fluxes

due to the fact that this flux is calculated at z = 0 , instead of z =
, see also Appendix A ). At the bottom, the boundary condition

eads 

 v c 
1 
z + a 

w s ρs 

ρ0 g ′ d s 
| τb | 1 = 0 , at z = −h. (22c)

Here | τb | 
1 denotes the first-order component of the absolute

alue of the bed shear stress. 

The first-order suspended sediment concentration is the result

f three different forcing terms, the advection of the leading-order

oncentration by the leading-order velocity ( F c 
AC 

), the surface con-

ribution ( F c 
S 

) and the first-order bed shear stress ( F c 
BS 

). Since the

quation is linear, the resulting first-order concentration can be

olved for each forcing individually. 

At this point, it is important to remember that our aim is to get

he main contributions to the first-order residual sediment trans-

ort (see Section 2 ). The only first-order residual sediment trans-

ort that depends on the first-order suspended sediment concen-

ration c 1 , is due to the tidally-averaged advection of c 1 by the

eading-order velocities u 

0 . Since the leading-order velocity only

onsists of an M 2 tidal constituent, only the M 2 constituent of the

rst-order suspended sediment concentration c 1 has to be calcu-

ated to get the residual suspended sediment transport due to the

rst-order suspended sediment concentrations. (see Sections 2 and

 ). Therefore, in the following only the construction of the M 2 first

rder concentration will be discussed in detail. 
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Table 3 

Various components of the first-order velocity 

( first column ) and (corresponding) first-order 

concentration due to the bed shear stress 

( second column ). 

u 1 
h 

u 1 
h 

components c 12 
BS components 

u 10 
h 

u 10 
h , GC 

c 12 
BS,GC 

u 10 
h , RD 

c 12 
BS,RD 

u 10 
h , AC 

c 12 
BS,AC10 

u 10 
h , NS 

c 12 
BS,NS10 

u 10 
h , TRF 

c 12 
BS,TRF10 

u 14 
h 

u 10 
h , EF 

c 12 
BS,EF 

u 14 
h , AC 

c 12 
BS,AC14 

u 14 
h , NS 

c 12 
BS,NS14 

u 14 
h , TRF 

c 12 
BS,TRF14 

T  

b  

o  

c

c

7

 

c

c

I  

c  

n  

t

8

 

s  

c

∇
w

D

H  

t  

o

 

t  

a

T

w  

M  

i  
.1. Contribution due to advection 

The equation governing the first-order suspended sediment

oncentration, resulting from the interaction of leading-order ve-

ocity and concentration, is given by 

 

1 
AC,t + F c AC − (K v c 

1 
AC,z ) z − (w s c 

1 
AC ) z = 0 , (23a) 

ith homogeneous boundary conditions 

 s c 
1 
AC + K v c 

1 
AC,z = 0 , at z = 0 , (23b) 

 v c 
1 
AC,z = 0 , at z = −h. (23c) 

Since F c 
AC 

contains the gradients of the leading-order suspended

ediment concentration, using Eq. (21) , F c 
AC 

can be written as a sum

f contributions proportional to a, a x and a y , i.e., 

 

c 
AC = aF a AC + a x F 

a x 
AC 

+ a y F 
a y 

AC 
, (24) 

here F a 
AC 

= ˜ c 0 a x u 0 + ̃  c 0 a y v 0 + ̃  c 0 a z w 

0 , F a x 
AC 

= ˜ c 0 a u 0 , and F 
a y 

AC 
= ˜ c 0 a v 0 .

ince the leading-order flow consists only of an M 2 tidal con-

tituent, we only need the M 0 and M 4 tidal constituents of the

eading-order concentration c 0 to get the M 2 tidal component of

 

c 
AC 

. 

Denoting the M 2 solution of c 1 
AC 

as c 12 
AC 

, we find that (see

ppendix B for details) 

 

12 
AC = a ̃  c 12 a 

AC + a x ̃  c 12 a x 
AC 

+ a y ̃  c 
12 a y 
AC 

, (25) 

here ˜ c 12 a 
AC 

, ̃  c 12 a x 
AC 

, and ˜ c 
12 a y 
AC 

are the solutions proportional to a, a x 
nd a y , respectively. 

.2. Contribution due to first-order bed shear stress 

Analogous to the case of leading-order suspended sediment

oncentration, the first-order component of the absolute value of

he bed sear stress | τb | 
1 can be decomposed in a Fourier series

sing frequencies that are multiples of the M 2 tidal frequency. To

et the dominant residual transport component, we are only inter-

sted in the M 2 component | τb | 
12 of the first-order component of

he absolute value of the bed shear stress | τb | 
1 . 

The resulting suspended sediment concentration c 12 
BS 

follows

rom the equation, 

 

12 
BS,t − (K v c 

12 
BS,z ) z − (w s c 

12 
BS ) z = 0 , 

ith the boundary conditions, 

 s c 
12 
BS + K v c 

12 
BS,z = 0 , at z = 0 , 

 v c 
12 
BS,z + a 

w s ρs 

ρ0 g ′ d s 
| τb | 12 = 0 , at z = −h, 

here | τb | 
12 denotes the M 2 component of | τb | 

1 . Similar to the

eading-order suspended sediment concentration, we can define 

 

12 
BS = a ̃  c 12 a 

BS . 

ote that | τb | 
12 depends on the first-order velocity which itself is

 sum of various contributions, for each of which we can compute

he resulting suspended sediment concentration c 12 
BS 

. In Table 3 , a

ist of all these components is given. 

.3. Contribution due to forcing at the surface 

The last contribution is the result of the inhomogeneous con-

ribution in the boundary condition at the surface ( Eq. 22b ). Using

he leading-order concentration equation, we can rewrite this sur-

ace boundary condition as 

 

c 
S = −η0 

[
w s c 

0 
z + K v c 

0 
zz 

]
= −η0 c 0 t , 
= −η02 c 04 
t , 

= −aη02 ˜ c 04 a 
t . 

his inhomogeneous term η0 c 04 results in both M 2 and M 6 contri-

utions. The resulting solution for the M 2 component of the first-

rder suspended sediment concentration due to the surface forcing

an be written as, 

 

12 
S = a ̃  c 12 a 

S . 

.4. Summary of the first-order concentration 

The M 2 constituent of the first-order suspended sediment con-

entration is a sum of three components, 

 

12 = c 12 
AC + c 12 

BS + c 12 
S 

= a ( ̃  c 12 a 
AC + 

˜ c 12 a 
BS + 

˜ c 12 a 
S ) ︸ ︷︷ ︸ 

˜ c 12 a 

+ a x ˜ c 12 a x 
AC ︸︷︷︸ 
˜ c 12 a x 

+ a y ˜ c 
12 a y 
AC ︸︷︷︸ 
˜ c 12 a y 

= a ̃  c 12 a + a x ̃  c 12 a x + a y ̃  c 12 a y . 

t means that the first-order suspended sediment concentration

onsists of parts proportional to a, a x and a y . It is important to

ote that proportionality of the suspended sediment concentration

o a x and a y is solely due to the advective component. 

. Condition of morphodynamic equilibrium 

The leading-order morphodynamic equilibrium follows from in-

erting the asymptotic expansions of the horizontal velocities and

oncentrations in Eq. (8) and reads 

 · (D 

a ∇a + a T ) = 0 , (26a) 

here 

 

a = 

(
D K h + T xa x 

M 2 
T 

xa y 
M 2 

T ya x 
M 2 

D K h + T 
ya y 

M 2 

)
, and T = 

(
T xa 

T ya 

)
. 

ere D K h 
is the contribution due to the horizontal diffusivity and

he terms T xa x 
M 2 

, T 
xa y 

M 2 
, T 

ya x 
M 2 

, and T 
ya y 

M 2 
are generated by the interaction

f M 2 velocity and M 2 advective concentration. 

T xa and T ya denote the leading-order tidally-averaged sediment

ransport in the x and y directions, respectively. The transport T xa is

 sum of various terms (see Appendix C for detailed expressions) 

 

xa = T xa 
M 0 

+ T xa 
M 2 

+ T xa 
M 4 

+ T xa 
surface + T xa 

diff, (26b) 

here T xa 
M 0 

denotes the transport due to the interaction of the

 0 velocity and M 0 concentration. Remember that the M 0 veloc-

ty itself consists of various contributions ( Table 3 ), for each of
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Table 4 

Decomposition of various transport terms T xa 
M 0 

, 

T xa 
M 2 

, and T xa 
M 4 

into subcomponents. A similar 

decomposition can be made for the transport 

terms in the lateral direction. 

Velocity Concentration Transport 

T xa 
M 0 

u 10 u 10 
GC 

˜ c 00 T xa 
M 0 ,GC 

u 10 
RD T xa 

M 0 ,RD 

u 10 
AC 

T xa 
M 0 ,AC 

u 10 
NS T xa 

M 0 ,NS 

u 10 
TRF T xa 

M 0 ,TRF 

T xa 
M 2 

u 02 ˜ c 12 
AC T xa 

M 2 ,AC 

˜ c 12 
S T xa 

M 2 ,S 

˜ c 12 
BS 

˜ c 12 
BS,GC T xa 

M 2 ,BS,GC 

˜ c 12 
BS,RD T xa 

M 2 ,BS,RD 

˜ c 12 
BS,AC10 T xa 

M 2 ,BS,AC10 

˜ c 12 
BS,NS10 T xa 

M 2 ,BS,NS10 

˜ c 12 
BS,TRF10 T xa 

M 2 ,BS,TRF10 

˜ c 12 
BS,EF T xa 

M 2 ,BS,EF 

˜ c 12 
BS,AC14 T xa 

M 2 ,BS,AC14 

˜ c 12 
BS,NS14 T xa 

M 2 ,BS,NS14 

˜ c 12 
BS,TRF14 T xa 

M 2 ,BS,TRF14 

T xa 
M 4 

u 14 u 14 
EF 

˜ c 04 T xa 
M 4 ,EF 

u 14 
AC T xa 

M 4 ,AC 

u 14 
NS T xa 

M 4 ,NS 

u 14 
TRF T xa 

M 4 ,TRF 
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f  

i  

t  

b  

b  

t  

m  

a

i  

n  

e  

a

N  

w  

b

a  

t  

p  

a  

t  

l  

a

 

m  

a  

s  

a  

p  

t  

n  

m  

o  

b

w  

r

 

p  

g  

t  

w  

q  

t  

t  

t  

d  

v  

l  

t  

e

 

w  

l  

q  

t  
which we can compute T xa 
M 0 

(see Table 4 for a full list of all sub-

components). T xa 
M 2 

is the transport due to the correlation between

the M 2 velocity and M 2 concentration. Again, the M 2 concentra-

tion consists of various contributions ( Table 3 ), implying that T xa 
M 2 

can be computed for each contribution. Similarly, T xa 
M 4 

is gener-

ated by the interaction of M 4 velocity and M 4 concentration. Once

again, the M 4 velocity is a sum of various components as listed

in Table 4 which allows us to decompose it into further sub-

components. Table 4 lists all the subcomponents of T xa 
M 0 

, T xa 
M 2 

, and

T xa 
M 4 

. The component T xa 
surface 

is the transport due to the interaction

of M 2 surface elevation, M 2 velocity and the leading-order con-

centration at the surface and T xa 
diff

is the diffusive transport (see

Appendix C for expressions). A similar decomposition can be made

for the transport in the y -direction T ya . 

To solve Eq. (26a) for the sediment availability, we require that

the transport vanishes at the boundary, 

(D 

a ∇a + a T ) · ˆ n = 0 , on ∂ S � ∪ ∂ R � ∪ ∂ C �. (26c)

The equation for sediment availability a together with the no-

transport condition (Neumann type boundary condition) above

does not give a unique solution for the sediment availability a .

Therefore, an extra condition is imposed, namely the total amount

of sediment available for erosion a total in the estuary is pre-

scribed, ∫ ∫ 
�

a d� = a total . (26d)

Eq. 26 has to be solved numerically for general domains. Here,

we use the finite element method which is described in the next

section. 
. Numerical solution 

In Sections 4 and 5 , it was shown that the leading-order and

rst-order water motion could be expressed in terms of the gra-

ients of the surface elevation. The surface elevation itself follows

rom a two-dimensional elliptic partial differential equation. Sim-

larly, the sediment availability ( Section 8 ) follows from an ellip-

ic differential equation ( Eq. (26a) ). Since the geometry and the

athymetry of the estuary are arbitrary and the parameters can

e arbitrary functions of the horizontal coordinates, these equa-

ions have to be solved numerically. Here, we discuss the solution

ethod used, the finite element method (FEM) approach, and the

ccuracy of the numerical solution. 

To solve the equations using the FEM approach, the domain �

s discretized using linear triangles. The discretized domain is de-

oted as �˜ h 
, with 

˜ h the mean of the length of all the element

dges in the discretized domain. The solution N is approximated

s 

(x, y ) ≈ N ˜ h 
(x, y ) = 

n ∑ 

j=1 

N j φ j (x, y ) , (27)

here N ˜ h 
is the finite element approximation of N . The total num-

er of grid points (also called nodal points) is denoted by n, N j 

re the amplitudes at nodal points j , and φj are the basis func-

ions such that φj is zero at all nodal points except node j . Here,

olynomials functions are chosen as basis functions. Inserting the

pproximation of N given by Eq. (27) in the weak formulation of

he partial differential equation for the surface elevation gives a

inear system of equations which can be solved for the unknown

mplitudes N j (see Kumar et al., 2016 for details). 

In Kumar et al. (2016) , three methods namely; DD-method, ZZ-

ethod and mixed-method, were discussed to compute the first-

nd second-order partial derivatives of the surface elevation. It was

hown that for the leading-order flow, the mixed-method which is

 hybrid of DD-method and ZZ-method, works the best. However,

artial derivatives of the leading-order flow are needed to compute

he first-order water motion and the sediment availability, which is

ot possible with the mixed method. Therefore, we adopt the DD-

ethod throughout the model to compute the partial derivatives

f any order. Using the DD-method, the partial derivatives of N can

e approximated by directly differentiating N ˜ h 
as 

∂ a + b N 

∂ x a ∂ y b 
≈ ∂ a + b N ˜ h 

∂ x a ∂ y b 
= 

n ∑ 

j=1 

N j 

∂ a + b φ j 

∂ x a ∂ y b 
, 

here a and b are the orders of differentiation in the x and y di-

ections, respectively. 

The accuracy of the finite element approximation N ˜ h 
and its

artial derivatives depends on the degree of basis polynomials. In

eneral, if polynomials of degree q are used, the numerical solu-

ion converges with rate q + 1 , the first-order partial derivatives

ith rate q and the second order partial derivatives with rate

 − 1 (see Gockenbach, 2006 ). Indeed, for the leading-order wa-

er motion, Kumar et al. (2016) has shown that using basis func-

ions of order q 0 , the surface elevation converges with rate q 0 + 1 ,

he first-order partial derivatives with q 0 and second-order partial

erivatives with rate q 0 − 1 . Hence, the leading-order horizontal

elocity (proportional to the first-order partial derivatives of the

eading-order water motion) and vertical velocity (proportional to

he second-order partial derivatives of the leading-order surface el-

vation) converge with rate q 0 and q 0 − 1 , respectively. 

In Sections 5 –7 , it was shown that to compute the first-order

ater motion and suspended sediment concentration, not only the

eading-order flow components but their partial derivatives are re-

uired as these partial derivatives appear in the forcing terms for

he first-order flow and first-order sediment concentration. For the
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Table 5 

The accuracy of the various 

components of the model 

when polynomials of degree 

q for the leading-order wa- 

ter motion and polynomials 

of degree at least q − 1 for 

the first-order water mo- 

tion and sediment availabil- 

ity, are used as basis func- 

tions. 

Component Accuracy 

η0 q + 1 

u 0 u 0 
h 

q 

w 

0 q − 1 

η1 q − 1 

u 1 
h 

q − 2 

c 0 q 

c 1 q − 2 

a q − 2 

fi  

t  

q  

o  

m  

t

 

i  

l  

u  

w  

i  

o  

f  

m

1

 

m  

t  

c  
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f  
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ρ

Table 6 

Parameters for the years 1980 and 2005 for the 

Ems estuary ( de Jonge et al., 2014 ). 

Parameter 1980-value 2005-value 

L 63.7 km 

L b 30 km 

B 0 335 m 

H 10 m 

g 9.8 m s −2 

f 1 . 34 × 10 −4 s −1 

ω 1.4 ×10 −4 s −1 

ρ0 1020 kg m 

−3 

ρs 2650 kg m 

−3 

β 7 . 6 × 10 −4 psu −1 

A M 2 1.43 m 1.35 m 

A M 4 0.25 m 0.19 m 

φ −170.9 ° −174.6 °
A v 0 0.0184 m 

2 s −1 0.0135 m 

2 s −1 

s 0 0.1421 m s −1 0.0108 m s −1 

Q 80 m 

3 s −1 

w s 1.0 ×10 −3 m s −1 

K h 100 m 

2 s −1 

a total 582 m 

2 2710.8 m 

2 

w  

i

1

 

l  

y  

i  

F  

c  

r

H  

e  

f  

(

η

w  

S  

M  

K  

T

(  

o  

r

Q

T  

2  

b  

p  

s  

E  

o

1

 

y  

u  

s  
rst-order horizontal water motion to be q 1 accurate, the forcing

erms must at least be q 1 accurate as well. Hence, it follows that

 0 must be at least equal to or larger than q 1 + 1 , i.e., the degree

f basis polynomials used to solve the leading-order water motion

ust be at least one higher than those used in the first-order wa-

er motion. 

Table 5 lists the accuracy of different components of the model

f polynomials of degree q are used as basis functions for the

eading-order water motion and polynomials of degree q − 1 are

sed as basis functions for the other components (i.e., first-order

ater surface elevation and sediment availability). If we take q = 3 ,

.e., third degree polynomials as basis functions for the leading-

rder water motion and quadratic polynomials as basis functions

or rest of the components, it follows from Table 5 that the sedi-

ent availability converges with rate 1. 

0. Application to the Ems estuary 

In this section, our new three-dimensional semi-idealized

odel is applied to investigate the spatial distribution of concen-

ration and sediment availability in the Ems estuary under the

ondition of morphodynamic equilibrium. The Ems estuary is situ-

ted on the border of the Netherlands and Germany and has gone

hrough various anthropogenic changes in the last few decades.

ue to these interventions, the water motion and the sediment dy-

amics have changed significantly ( de Jonge et al., 2014 ). 

The Ems estuary is located between the island of Borkum in the

orth Sea and the weir at Herbrum and has a total length of ap-

roximately 100 km. In this paper, we only focus on the upper

art of the Ems estuary, starting from Knock ( Fig. 3 ). The length L

f the estuary from Knock to Herbrum is approximately 63.7 km.

ollowing Chernetsky et al. (2010) , the geometry of the Ems es-

uary can be approximated as funnel-shaped with x and y denot-

ng the along-channel and cross-channel coordinates, respectively.

he along-channel coordinate varies from x = 0 at the seaward side

o x = L at the river side. The lateral coordinate y varies between

 = −B (x ) and y = B (x ) , with B ( x ) given by 

 (x ) = B 0 e 
−x/L b . 

ere, 2 B 0 is the total width at the seaward side and L b is the e -

olding length scale. The estuary is assumed to be well-mixed and

he dynamic density ρ is assumed to vary as 

= ρ0 [ 1 + β ˜ s (x ) ] , 
m  
here ˜ s (x ) is the prescribed tidally- and depth-averaged salin-

ty distribution obtained from Talke et al. (2009b ) and β = 7 . 6 ×
0 −4 psu 

−1 is a coefficient that relates salinity to density. 

In this paper, two years (1980 and 2005) are studied. Fol-

owing de Jonge et al. (2014) , the bathymetric profiles for the

ears 1980 and 2005 are fitted with a fourth degree polynomial

n the along-channel direction using observational data. Following

riedrichs and Hamrick (1996) and Schramkowski et al. (2002) , the

oefficient of vertical mixing A v and the stress parameter s are pa-

ameterized as 

(s, A v ) = (s 0 , A v 0 ) 
h 

H 

. 

ere A v 0 and s 0 are the reference eddy viscosity and stress param-

ter, and H is the mean depth at the seaward side. The system is

orced with a combination of M 2 and M 4 tides at the seaward side

 x = 0 ), 

= A M 2 
cos (ωt) + A M 4 

cos (2 ωt − φ) , 

here A M 2 
and A M 4 

are the elevation amplitudes defined in

ection 3.2 and φ = φM 4 
− 2 φM 2 

is the relative phase between the

 2 and M 4 tidal constituents. In 1980, the mean tidal range at

nock was approximately 3.1 m with a relative phase of −171.9 °.
he tidal range in 2005 was 3.2 m with a relative phase of −174.6 °
see Chernetsky et al., 2010 for details). A constant river discharge

f Q = 80 m 

3 s −1 is prescribed at the river boundary ( x = L ). A

iver discharge density Q 

′ satisfying Eq. (11f) is defined as 

 

′ = 

Q 

2 B | x = L . 
able 6 gives a list of all parameters used for the years 1980 and

005 such that the observed M 2 water motion is well-reproduced

y the model (see Kumar et al., 2016 for a discussion). Using these

arameters, Table 7 lists the order of magnitude of various dimen-

ionless parameters for the Ems estuary. Table 7 shows that the

ms estuary is tidally-dominated and river discharge gives a first-

rder contribution. 

0.1. Laterally uniform bathymetry 

The width-averaged bed profile of the Ems estuary for the

ears 1980 and 2005, used in de Jonge et al. (2014) , are extended

niformly in the lateral direction ( Fig. 4 ) to be used in the 3D

emi-idealized model. The domain is discretized using approxi-

ately 10 0,0 0 0 nodes. A realistic value of the Coriolis parameter



14 M. Kumar et al. / Ocean Modelling 113 (2017) 1–21 

Fig. 8. Sediment availability and sediment concentration for 2005 with laterally varying bed profile. The top left panel shows the sediment availability (dimensionless) and 

top right panel , the sediment concentration (mg l −1 ) at the surface. The black and chocolate lines pass through the location of maximum concentration at the surface in the 

x and y directions, respectively. The grey dot indicates the location of the maximum of the quantity being plotted. The bottom left panel shows the cross-sectional profile of 

the sediment concentration along the black line and the bottom right panel , along the chocolate line. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 7 

Order of magnitude of dimensionless parameters for the 

Ems estuary. 

Dimensionless parameter 1980 2005 Order 

Ā M 2 /H = ε 0.14 0.13 O(ε) 

U / ωL 0.1 O(ε) 

Ā M 4 / ̄A M 2 0.17 0.14 O(ε) 

gH / ω 

2 L 2 1.22 O(1) 

U d / U 0.1 O(ε) 

A v 0 / ωH 2 1.31 0.96 O(1) 

Q/ ̄Q 0.1 O(ε) 

w s / ωH 0.71 O(1) 
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1  
f = 1 . 34 × 10 −4 s −1 , corresponding to the Ems estuary, is used.

The total amount of easily erodible sediment in the estuary a total is

chosen in such a way that the maximum concentration at the sur-

face for 1980 and 2005 matches the observations, i.e., 400 mg l −1 

for 1980 and 10 0 0 mg l −1 for 2005 (from de Jonge et al. (2014) ). 

In Fig. 5 , top panel, the distribution of easily erodible sediment

in the Ems estuary is shown for the years 1980 and 2005. 

Since the bed profile is laterally uniform, the sediment avail-

ability is also uniform in the lateral direction. The easily erodi-

ble sediment is concentrated close to the seaward side, approxi-

mately 6 km into the estuary, for the year 1980. For the year 2005,

the easily erodible sediment is concentrated approximately 41 km

away from the entrance and is more widely spread in the estuary

than for 1980. 

Next, we look at the tidally-averaged suspended sediment con-

centration at the surface. From Fig. 5 , lower panel, it follows that

for 1980, the maximum sediment concentration is found closer
o the seaward side, approximately 7 km from the entrance and

or 2005, at approximately 38 km from the entrance. The loca-

ions of maximum concentration are consistent with those found

n Chernetsky et al. (2010) , i.e., the ETM is found close to the sea-

ard side for 1980 and more landward for 2005. Note that, be-

ause of the Coriolis parameter, the maximum availability of fine

ediments and the maximum sediment concentration at the sur-

ace for both the years, shown by grey dots in Fig. 5 , are found on

he northern sides than in the middle of the channel. 

0.2. Laterally varying bathymetry 

In this experiment, the bathymetric profile in the lateral direc-

ion is varied parabolically requiring that the width-averaged depth

emains the same as in the first experiment ( Fig. 6 ). This preserves

he mean depth of the channel in both the experiments. For both

ears, a total used in the previous experiment is used. 

From Figs. 7 (a) and 8 (a), it follows that the easily erodible sed-

ments are not distributed uniformly in the lateral direction: the

vailability is much higher on the shallow sides than in the deeper

hannel for both years. However, the along-channel location of

aximum availability is approximately the same as in the experi-

ent with laterally uniform bathymetry. The maximum availability

f fine sediments is higher for a laterally varying bed profile than

or a laterally uniform bed profile. 

For the year 1980, the maximum sediment concentration at

he surface is found at approximately 8 km from the entrance

 Fig. 7 (b)) compared with 38 km for the year 2005 ( Fig. 8 (b)). The

ocations of maximum concentration move slightly landward for

980 compared with the case with laterally uniform bed profile.
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Fig. 9. The scaled three–dimensional suspended sediment concentration (a), surface concentration (b) and sediment availability (c) for the Ems estuary. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

T  

t  

m  

u  

i  

d  

m  

i

 

o  

c  

c  

a  

a  

8  

a  

c  

v  

d  

s  

f  

c  

c

 

t  

m  

a  

c  

t  

i  

a  

s  

a

1

e  

o  

i  

r  

v  

(  

i  

i  

i  

s  

f  

p  
he maximum sediment concentrations are found in the middle of

he channel even though the sediment availability is lower in the

iddle than on the shoals. Note that, unlike the case with laterally

niform bed profile, the Coriolis parameter does not significantly

nfluence the location of the maximum concentration in the lateral

irection. This is because the influence of laterally varying bathy-

etric profile on the longitudinal processes is stronger than those

nduced by the Coriolis force. 

To illustrate the strength of the 3D model, the vertical profile

f the sediment concentration is plotted in the along-channel and

ross-channel directions passing through the location of maximum

oncentration at the surface. These locations are shown by black

nd chocolate lines in Fig. 7 (b) for 1980 and Fig. 8 (b) for 2005. The

long-channel profile of the sediment concentration ( Figs. 7 (c) and

 (c)) shows that the region of high concentration is much wider

t the bottom than at the surface. Moreover, the ETM in the along-

hannel direction is stronger and wider for 2005 than for 1980. The

ertical profile of the sediment concentration in the cross-channel

irection for 1980 and 2005 ( Figs. 7 (d) and 8 (d)) depicts similar

tructure. Also, for both years, the maximum concentrations are

ound in the deepest parts of the channel, with maximum con-

entration at the bottom being almost two times the maximum

oncentration at the surface ( Figs. 7 (d) and 8 (d)). 

Using a realistic (but smoothed) bathymetry and geometry for

he Ems estuary in 2005, the trapping of fine sediments is still

a  
ainly observed at the landward side of the estuary (see Fig. 9 (a),

nd (b) in which only the (scaled) surface suspended sediment

oncentrations is shown), which qualitatively agrees with observa-

ions ( de Jonge et al., 2014 ). In Fig. 9 (c), the sediment availability

n morphodynamic equilibrium is shown. Note that high sediment

vailability is not only found at locations where the suspended

ediment concentrations are high, but also where tidal velocities

re small (such as in the tributary). 

1. Conclusions 

A three-dimensional process-based semi-idealized model for 

stuarine turbidity maxima (ETM) in an estuary with arbitrary ge-

metry and bathymetry has been developed. The water motion

s driven by prescribed tidal forcing at the seaward side, and a

iver discharge at the river boundary. Furthermore, the horizontally

arying, time- and depth-independent density field is prescribed

using, for example, observational data). The vertical eddy viscos-

ty and diffusivity are assumed to be vertically constant and time-

ndependent. Horizontal viscous effects are neglected. The result-

ng three-dimensional equations for water motion and suspended

ediment concentration are scaled using typical scales, appropriate

or the system under consideration. The physical variables are ex-

anded in the small parameter ε which is the ratio of the mean

mplitude of the M surface elevation and the mean water depth
2 
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at the seaward boundary. This leads to a system of equations at

each order of ε for the water motion and the suspended sedi-

ment concentration. Using rotating variables, the vertical profile of

the velocity and the suspended sediment concentration can be ob-

tained analytically in terms of the gradients of the surface eleva-

tion. To obtain the surface elevation at each order in ε, the conti-

nuity equation is integrated over the water column. This results in

a two-dimensional elliptic partial differential equation for the sur-

face elevation at that order. Using the concentrations and horizon-

tal velocities, the horizontal sediment transport is calculated. The

sediment still depends on the unknown sediment availability. By

requiring the condition of morphodynamic equilibrium, an elliptic

equation for the unknown sediment availability is obtained. These

elliptic equations for the sediment availability and the surface ele-

vation are solved numerically using the finite element method. In

choosing the order of elements used for each order, special care is

taken that the convergence rate of the numerical scheme used to

calculate the sediment availability is at least of order one. 

To test the model, we applied it to the Ems estuary with pa-

rameter values representative for years 1980 and 2005. The width

is assumed to be exponentially convergent. The bathymetry in the

longitudinal direction is taken from measurements and is approx-

imated with a polynomial of degree four. In the first experiment,

the bathymery is assumed to be uniform in the lateral direction.

Focusing on the year 1980, the estuarine turbidity maximum (ETM)

is found close to the seaward side. For the year 2005, the ETM is

found far into the freshwater zone, approximately 38 km away

from the entrance. This behaviour has been observed as well, in-

dicating that the three-dimensional model is able to qualitatively

reproduce the observed ETM behaviour in the Ems estuary. As a

first indication of the importance of the lateral variations, the bed

profile in the lateral direction is varied parabolically. For both 1980

and 2005 cases, the location of ETM remains approximately the

same. However, the highest concentration is found in the middle

of the channel even though most of the easily erodible sediment

is found at the sides. This clearly demonstrates the importance of

using a 3D model to compare the influence of lateral dynamics

on the longitudinal processes. In this paper, we have mainly fo-

cused on the mathematical method used in the development of

the model. In a forthcoming paper, the influence of bathymetric

changes on each transport component will be discussed in detail,

extending the sensitivity study of Schuttelaars et al. (2013) by in-

cluding lateral depth variations. The idealized model developed in

this paper is specifically aimed at studying estuaries in morpho-

dynamic equilibrium, i.e., estuaries in which there are no conver-

gences or divergences of sediment transport. To accommodate for

the possibility of either a tidally-averaged import or export of sed-

iment (due to, for example, the spring-neap cycle or human inter-

ventions), the condition of morphodynamic equilibrium has to be

relaxed by allowing the sediment availability to vary on the long

time scale, a model extension that is currently under investigation.
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Appendix A. Scaling and perturbation analyses 

A.1. Scaling analyses 

To make the equations dimensionless, typical scales of the vari-

ous quantities have to be introduced. The time t is made dimen-

sionless using the frequency of the M tidal constituent. In this
2 
aper, we focus on phenomena that vary on the estuarine length

cale. Thus, as a length scale, the length L of the estuary is used.

s a vertical length scale, the mean water depth H at the seaward

ide is used, defined as 

 = 

1 

Len ( ∂ S �) 

∫ 
∂ S �

h d s, (A.1)

here Len( ∂ S �) denotes of the length of the seaward boundary.

he local water depth h is also scaled with this parameter H . The

ypical scales for the surface elevation η, the vertical eddy viscos-

ty A v and the vertical diffusivity K v by Ā , Ā v and K̄ v , respectively,

efined as 

( ̄A , Ā v , K̄ v ) = 

1 

Len ( ∂ S �) 

∫ 
∂ S �

(A M 2 
, A v , K v ) d s. (A.2)

he horizontal diffusivity K h is assumed to be spatially uniform

nd constant in time. 

The cross-sectionally averaged continuity equation is used to

btain a typical scale for the horizontal velocity U = 

Ā ωL 
H . The typi-

al scale W for the vertical velocity w follows from the assumption

hat all the terms in the three-dimensional continuity equation are

f the same order of magnitude, i.e., U/L = V/L = W/H, implying

hat W = HU /L . Note that U is the dominant scale of the horizon-

al velocity in the tidally dominated estuaries. The typical magni-

ude for the density gradients ρx and ρy is denoted by ρH . The

iver discharge Q is made dimensionless by comparing it with the

ypical tidal discharge Q̄ , defined as 

¯
 = U Len (∂ R �) H, (A.3)

here Len( ∂ R �) denotes the length of the river boundary. 

Finally, the variables used for the concentration equation and

he condition for morphodynamic equilibrium are scaled. First, the

ediment availability is scaled by the mean amount of sediment

vailable in the estuary for erosion: 

¯
 = 

1 

Ar (�) 

∫ ∫ 
�

a d�, (A.4)

here Ar( �) denotes the total surface area of the estuary. Using

his scale, and requiring that there is an approximate balance be-

ween erosion and deposition, it follows that a typical scale for the

ediment concentration is given by 

 = 

ρs s ̄a U 

g ′ d s 
. (A.5)

he settling velocity w s is scaled with w̄ s = ωH, i.e., the dimen-

ionless settling velocity w 

∗
s is the ratio of the tidal time scale and

he deposition time scale. We define the parameter ε as the ratio

f the mean elevation amplitude and the mean water depth at the

eaward side, i.e., 

= Ā /H. (A.6)

Using the dimensionless variables listed in Table A.8 , the shal-

ow water equations in the dimensionless form read, 

 

∗
x ∗ + v ∗y ∗ + w 

∗
z ∗ = 0 , 

u 

∗
t ∗ + ε(u 

∗u 

∗
x ∗ + v ∗u 

∗
y ∗ + w 

∗u 

∗
z ∗ ) − f ∗v ∗

= −
(

L g 

L 

)2 

η∗
x ∗ − U d 

U 

(εη∗ − z ∗) ρ∗
x + 

1 

2 

S 2 v (A 

∗
v u 

∗
z ∗ ) z ∗ , 

v ∗t ∗ + ε(u 

∗v ∗x ∗ + v ∗v ∗y ∗ + w 

∗v ∗z ∗ ) + f ∗u 

∗

= −
(

L g 

L 

)2 

η∗
y ∗ − U d 

U 

(εη∗ − z ∗) ρ∗
y + 

1 

2 

S 2 v (A 

∗
v v ∗z ∗ ) z ∗ . 

ere L g is, apart from a factor 2 π , the wavelength of the friction-

ess tidal wave, the vertical Stokes number S v = 

√ 

2 Ā v / ωH 

2 is the

atio of the frictional depth and the wavelength, and U d = 

gHρH 
ρ0 ω 

is

he scale for density driven residual circulation. 
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Table A.8 

Non-dimensionalization of various physical quantities. 

Physical quantity (Symbol) Typical scale Symbol Dimensionless quantity 

Domain 

Time ( t ) M 2 frequency ω t ∗ = ωt

Horizontal coordinates ( x, y ) Estuarine length L (x ∗, y ∗) = (x, y ) /L 

Domain ( �) Estuarine length L �∗ = �/L 

Vertical coordinate ( z ) Mean depth H z ∗ = z/H

Water depth ( h ) Mean depth H h ∗ = h/H

Water motion 

Coriolis ( f ) M 2 frequency ω f ∗ = f/ω

Surface elevation ( η) Eq. (A.2) Ā η∗ = η/ ̄A 

Horizontal velocity ( U, V ) Follows from cross-sectionally averaged continuity equation U = 

Ā ωL 
H 

(u ∗, v ∗) = (u, v ) /U

Vertical velocity ( W ) Follows from three-dimensional continuity equation W = 

H 
L 

U w 

∗ = w/W 

Eddy viscosity ( A v ) Eq. (A.2) Ā v A ∗v = A v / ̄A v 
External forcing (A M 2 , A M 4 ) Eq. (A.2) Ā (A ∗M 2 , A 

∗
M 4 

) = (A M 2 , A M 4 ) / ̄A 

River discharge ( Q ) Eq. (A.3) Q̄ Q ∗ = Q/ ̄Q 

Density gradients ( ρx , ρy ) Typical magnitude ρH (ρ∗
x , ρ

∗
y ) = (ρx , ρy ) /ρH 

Sediment concentration 

Sediment availability ( a ) Eq. (A.4) ā a ∗ = a/ ̄a 

Sediment concentration ( c ) Eq. (A.5) C c ∗ = c/C

Vertical diffusivity ( K v ) Eq. (A.2) K̄ v K ∗v = K v / ̄K v 
Settling velocity ( w s ) Typical scale w̄ s w 

∗
s = w s / ̄w s 

 

c

η

w  

a  

a∫

w∫
A

w

a

w

t  

r

c

S  

b  

f

−

a

−

Table A.9 

Order of various dimensionless pa- 

rameters appearing in the dimen- 

sionless equations for water mo- 

tion, suspended sediment concentra- 

tion and the condition of morphody- 

namic equilibrium. Refer to Table A.8 

for definition of these parameters. 

Dimensionless variables Order 

f ∗ O(1) 

U/ ωL = ε O(ε) 

L / L g O(1) 

U d / U O(ε) 

A ∗M 2 O(1) 

A ∗M 4 O(ε) 

Q ∗ O(ε) 

S v O(1) 

sH / ̄A v O(1) 

w 

∗
s O(1) 

K h / ωL 2 O(ε2 ) 

 

l〈

A

 

p

ε

U  

u

ψ

N  

t  

e  
The boundary condition at the seaward side ( Eq. (2a) ) be-

omes 

∗ = A 

∗
M 2 

cos (t ∗ − φM 2 
) + A 

∗
M 4 

cos (2 t ∗ − φM 4 
) , 

for all (x ∗, y ∗) in ∂ S �
∗, (A.7a) 

here �∗ denotes the domain in the dimensionless coordinates

nd A 

∗
M 2 

and A 

∗
M 4 

are defined in Table A.8 . At the riverine bound-

ry, we find 

 

∂ R �

(∫ εη∗

−h ∗
u 

∗
h · ˆ n d z ∗

)
d s ∗ = Q 

∗, (A.7b) 

here Q 

∗ is defined in Eq. (A.4) . At the lateral walls, we have 

 εη∗

−h ∗
u 

∗
h · ˆ n d z ∗ = 0 , for all (x ∗, y ∗) in ∂ L �

∗, (A.7c) 

t the free surface z ∗ = εη∗, the boundary conditions become, 

 

∗ = η∗
t ∗ + ε(u 

∗η∗
x ∗ + v ∗η∗

y ∗ ) , and A 

∗
v ( u 

∗
h ) z ∗ = 0 h , (A.7d) 

nd at the bottom z ∗ = −h ∗, they read 

 

∗ = −u 

∗h 

∗
x ∗ − v ∗h 

∗
y ∗ and A 

∗
v ( u 

∗
h ) z ∗ = 

sH 

Ā v 

u 

∗
h . (A.7e) 

The three-dimensional advection-diffusion equation governing 

he suspended sediment concentration in dimensionless form

eads, 

 

∗
t ∗ + ε[ (c ∗u 

∗) x ∗ + (c ∗v ∗) y ∗ + (c ∗w 

∗) z ∗ ] − K h 

ωL 2 

[
c ∗x ∗x ∗ + c ∗y ∗y ∗

]
− K̄ v 

ωH 

2 
(K 

∗
v c 

∗
z ∗ ) z ∗ − w 

∗
s c 

∗
z ∗ = 0 . (A.8) 

ince we assume that K v = A v , it follows that K̄ v / ωH 

2 = 

1 
2 S 

2 
v . The

oundary condition for suspended sediment concentration at the

ree surface reads 

ε
K h 

ωL 2 

[
c ∗x ∗η

∗
x ∗ + c ∗y ∗η

∗
y ∗
]

+ w 

∗
s c 

∗ + 

K̄ v 

ωH 

2 
K 

∗
v c 

∗
z ∗ = 0 , at z ∗ = εη∗, 

(A.9a) 

nd at the bottom 

K h 

ωL 2 
(c ∗x ∗ h 

∗
x ∗ + c ∗y ∗ h 

∗
y ∗ ) −

K̄ v 

ωH 

2 
K 

∗
v c 

∗
z ∗

= w 

∗
s a 

∗
√ 

u 

∗2 + v ∗2 , at z ∗ = −h 

∗. (A.9b) 

m  
The condition of morphodynamic equilibrium in the dimension-

ess form becomes, 

 

∂ 

∂x ∗

εη∗∫ 
−h ∗

(
εc ∗u 

∗− K h 

ωL 2 
c ∗x ∗

)
d z ∗ + 

∂ 

∂y ∗

εη∗∫ 
−h ∗

(
εc ∗v ∗− K h 

ωL 2 
c ∗y ∗

)
d z ∗

〉 

= 0 . 

(A.10) 

.2. Perturbation analyses 

For the estuaries under consideration, the typical elevation am-

litude is much smaller than the typical water depth, 

= 

Ā 

H 

� 1 . (A.11) 

sing this information, we can asymptotically expand the vector of

nknown physical variables ψ 

∗ = (η∗, u ∗, v ∗, w 

∗, c ∗) as 

 

∗ = ψ 

0 ∗ + εψ 

1 ∗ + ε2 ψ 

2 ∗ + . . . . (A.12) 

ext, the asymptotic expansion is substituted in the scaled equa-

ions and the dimensionless coefficients appearing in these scaled

quations are related to different orders in ε. A full list of these di-

ensionless coefficients is given in Table A.9 . In the following, we
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are going to derive the differential problems for the water motion

and suspended sediment concentration, at subsequent orders in ε. 

With the assumption that ε � 1, the boundary conditions and

integrals evaluated at z ∗ = εη∗ can be simplified. For boundary

conditions at river boundary and lateral walls, the integrals from

z ∗ = −h ∗ to z ∗ = εη∗ can be split into two integrals with limits

ranging from z ∗ = −h ∗ to z ∗ = 0 and from z ∗ = 0 to z ∗ = εη∗. By

using the Taylor expansion of u ∗ and v ∗ around z ∗ = 0 in the lat-

ter integral, the boundary conditions at the river side and lateral

boundaries reduce to ∫ 
∂ R �∗

[∫ 0 

−h ∗
u 

∗
h · ˆ n d z ∗ + εη∗u 

∗
h | z ∗=0 · ˆ n 

]
d s ∗ + O(ε2 ) = −Q 

∗. 

(A.13)

∫ 0 

−h ∗
u 

∗
h · ˆ n d z ∗ + εη∗u 

∗
h | z ∗=0 · ˆ n + O(ε2 ) = 0 , 

for all (x ∗, y ∗) in ∂ C �
∗, (A.14)

where O(ε2 ) denotes all the terms of the order two or more. Us-

ing the same approach, the dimensionless dynamic and kinematic

boundary conditions at the free surface z ∗ = εη∗ can be rewritten

as 

w 

∗ + εη∗w 

∗
z ∗ + O(ε2 ) = η∗

t ∗ + ε(u 

∗η∗
x + v ∗η∗

y ) + O(ε2 ) , at z ∗ = 0

(A.15)

A 

∗
v ( u 

∗
h ) z ∗ + εA 

∗
v η

∗( u 

∗
h ) z ∗z ∗ + O(ε2 ) = 0 h , at z ∗ = 0 . (A.16)

The boundary condition for the suspended sediment concentration

at the free surface becomes, 

−ε
K h 

ωL 2 
[ c ∗ + εη∗c ∗z ∗ + O(ε2 )] x ∗η

∗
x ∗

−ε
K h 

ωL 2 
[ c ∗ + εη∗c ∗z ∗ + O(ε2 )] y ∗η

∗
y ∗

+ w 

∗
s [ c 

∗ + εη∗c ∗z ∗ + O(ε2 )] + 

K̄ v 

ωH 

2 
K 

∗
v [ c 

∗
z ∗

+ εη∗c ∗z ∗z ∗ + O(ε2 )] , at z ∗ = 0 . (A.17)

Next, the asymptotic expansion of unknown physical variables

given by Eq. (A.12) is substituted into the governing equations for

water motion, suspended sediment concentration and the condi-

tion of morphodynamic equilibrium. Using Table A.9 , dimension-

less systems of equations are found at different orders of ε by col-

lecting terms of equal order. 

Leading-order water motion. The leading-order ( ε0 ) system of

equations for water motion in the dimensionless form is given by 

u 

0 ∗
x ∗ + v 0 ∗y ∗ + w 

0 ∗
z ∗ = 0 , 

u 

0 ∗
t ∗ − f ∗v 0 ∗ = −

(
L g 

L 

)2 

η0 ∗
x ∗ + 

1 

2 

S 2 v ( ̄A v u 

0 ∗
z ∗ ) z ∗ , 

v 0 ∗t ∗ + f ∗u 

0 ∗ = −
(

L g 

L 

)2 

η0 ∗
y ∗ + 

1 

2 

S 2 v ( ̄A v v 0 ∗z ∗ ) z ∗ , 

together with boundary conditions 

A 

∗
v ( u 

0 ∗
h 

) z ∗ = 0 h , and w 

0 ∗ = η0 ∗
t , at z ∗ = 0 , 

A 

∗
v ( u 

0 ∗
h 

) z ∗ = 

Hs 

Ā v 
u 

0 ∗
h 

, and w 

0 ∗ = −u 

0 ∗h 

∗
x ∗ − v 0 ∗h 

∗
y ∗ , at z ∗ = −h 

∗, 
η0 ∗ = A 

∗
M 2 

cos (t ∗) for all (x ∗, y ∗) in ∂ S �
∗, ∫ 

∂ R �∗

(∫ 0 
−h ∗ u 

0 ∗
h 

· ˆ n d z ∗
)

d s ∗ = 0 , ∫ 0 
−h ∗ u 

0 ∗
h 

· ˆ n d z ∗ = 0 , for all (x ∗, y ∗) in ∂ C �
∗. 
fi

irst-order water motion. The first-order ( ε1 ) system of equations

or the water motion is given by 

 

1 ∗
x ∗ + v 1 ∗y ∗ + w 

1 ∗
z ∗ = 0 , 

u 

1 ∗
t ∗ + u 

0 ∗u 

0 ∗
x ∗ + v 0 ∗u 

0 ∗
y ∗ + w 

0 ∗u 

0 ∗
z ∗ − f ∗v 1 ∗

= −
(

L g 

L 

)2 

η1 ∗
x ∗ + 

U d 

U 

z ∗ρ∗
x 

+ 

1 

2 

S 2 v ( ̄A v u 

1 ∗
z ∗ ) z ∗ , 

v 1 ∗t ∗ + u 

0 ∗v 0 ∗x ∗ + v 0 ∗v 0 ∗y ∗ + w 

0 ∗v 0 ∗z ∗ + f ∗u 

1 ∗

= −
(

L g 

L 

)2 

η1 ∗
y ∗ + 

U d 

U 

z ∗ρ∗
y 

+ 

1 

2 

S 2 v ( ̄A v u 

1 ∗
z ∗ ) z ∗ , 

ith boundary conditions 

( u 

1 ∗
h ) z ∗ = −η0 ∗( u 

0 ∗
h ) z ∗z ∗ , 

w 

1 ∗ = η1 ∗
t − (η0 ∗w 

0 ∗
z ∗ − u 

0 ∗η0 ∗
x ∗ − v 0 ∗η0 ∗

y ∗ ) at z ∗ = 0 , 

A 

∗
v ( u 

1 ∗
h ) z ∗ = 

Hs 

Ā v 

u 

1 ∗
h , 

and w 

1 ∗ = −u 

1 ∗h 

∗
x ∗ − v 1 ∗h 

∗
y ∗ at z ∗ = −h 

∗, 

η1 ∗ = A 

∗
M 4 

cos (2 t ∗ − φ) for all (x ∗, y ∗) in ∂ S �
∗, ∫ 

∂ R �∗

[∫ 0 

−h ∗
u 

1 ∗
h · ˆ n d z ∗ + η0 ∗u 

0 ∗
h | z ∗=0 · ˆ n 

]
d s ∗ = −Q 

∗, 

∫ 0 

−h ∗
u 

1 ∗
h · ˆ n d z ∗ + η∗

0 u 

0 ∗
h | z ∗=0 · ˆ n = 0 , for all (x ∗, y ∗) in ∂ C �

∗. 

eading-order suspended sediment concentration. The leading-order

 ε0 ) system of equations for the suspended sediment concentration

s given by 

 

0 ∗
t ∗ − K̄ v 

ωH 

2 

(
K 

∗
v c 

0 ∗
z ∗

)
z ∗

− (w 

∗
s c 

0 ∗) z ∗ = 0 , 

ith boundary conditions 

− K̄ v 

ωH 

2 
K 

∗
v c 

0 ∗
z ∗ = w 

∗
s c 

0 ∗, at z ∗ = 0 , 

K̄ v 

ωH 

2 
K 

∗
v c 

0 ∗
z ∗ = w 

∗
s a 

∗| u 

0 ∗
h | , at z ∗ = −h 

∗. 

he above equation shows that the leading-order suspended sedi-

ent concentration is solely governed by the absolute value of the

eading-order horizontal velocity. 

irst-order suspended sediment concentration. The first-order ( ε1 )

ystem of equations for the suspended sediment concentration is

iven by 

 

1 ∗
t ∗ + u 

0 ∗c 0 ∗x ∗ + v 0 ∗c 0 ∗y ∗ + w 

0 ∗c 0 ∗z ∗ − K̄ v 

ωH 

2 

(
K 

∗
v c 

1 ∗
z ∗

)
z ∗

− (w 

∗
s c 

1 ∗) z ∗ = 0 , 

ith boundary conditions 

K̄ v 

ωH 

2 
K 

∗
v 

[
c 1 ∗z ∗ + η∗

0 c 
0 ∗
z ∗z ∗

]
+ w 

∗
s 

[
c 1 ∗ + η0 ∗c 0 ∗z ∗

]
= 0 at z = 0 , 

K̄ v 

ωH 

2 
K 

∗
v c 

1 ∗
z ∗ + w 

∗
s a 

∗ u 

0 ∗
h 

· u 

1 ∗
h 

| u 

0 ∗
h 

| = 0 , at z ∗ = −h 

∗. 

ote that the boundary condition at the bottom z ∗ = −h ∗ contains

he first-order horizontal velocity u 

1 ∗
h 

, which as we have seen in

he main text ( Eq. (19) ), can be written as a sum of various com-

onents. It means that the first-order suspended sediment concen-

ration due to the bed shear stress can also be written as sum of

arious components, one corresponding to each component of the

rst-order horizontal velocity. 
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ppendix B. Suspended sediment concentration 

eading-order suspended sediment concentration. The equation gov-

rning the leading-order suspended sediment concentration is

iven by 

 

0 n 
t − (w s c 

0 n ) z − (K v c 
0 n 
z ) z = 0 , n = 4 m, where, m = 0 , 1 , 2 , . . . 

uch that, 

 v c 
0 n 
z + w s c 

0 n = 0 at z = 0 , 

 v c 
0 n 
z + a 

w s ρs 

ρ0 g ′ d s 

{ ˜ τb 

0 n 
e 

niωt 
2 } = 0 at z = −h , 

here 
{ ˜ τb 
0 n e 

niωt 
2 } is the n th order harmonics of the absolute

alue of the leading-order bed shear stress | τb | 
0 . Assuming c 0 n =

{ C 0 n e niωt 
2 } , the above equation becomes 

(K v C 
0 n 
z ) z + w s C 

0 n 
z − niω 

2 

C 0 n = 0 . 

ince K v := K v ( x, y ) and K h is constant, and using that the above

quation is a linear second-order ordinary differential equation in

he vertical coordinate z , it can be solved analytically in the vertical

or C 0 n : 

 

0 n (x, y, z) = A 

0 n (x, y ) e r n, 1 z + B 

0 n (x, y ) e r n, 2 z , 

here r n ,1 and r n ,2 are the roots of the quadratic polynomial equa-

ion: K v r 
2 
n + w s r n − niω 

2 = 0 , and A 

0 n ( x,y ) and B 0 n ( x,y ) are given by 

 

0 n = −B 

0 n w s + K v r n, 2 

w s + K v r n, 1 

, 

B 

0 n = a 
w s ρs ˜ τb 

0 n 

ρ0 g ′ d s K v 

[
w s + K v r n, 1 

r n, 1 e −r n, 1 h (w s + K v r n, 2 ) − r n, 2 e −r n, 2 h (w s + K v r n, 1 ) 

e can rewrite c 0 as 

 

0 = a ̃  c 0 , 

here ˜ c 0 is the solution of the leading-order suspended sediment

oncentration with a = 1 . 

irst-order suspended sediment concentration. The equation govern-

ng the first-order suspended sediment concentration c 1 is given

y 

 

1 
t + F c AC − (K v c 

1 
z ) z − (w s c 

1 ) z = 0 , (B.1a) 

here F c 
AC 

= u 0 c 0 x + v 0 c 0 y + w 

0 c 0 z . At the surface, the boundary con-

ition reads 

 s c 
1 + K v c 

1 
z = F c S , at z = 0 , (B.1b) 

here F c 
S 

= −η0 

[
w s c 

0 
z + K v c 

0 
zz 

]
. At the bottom, the boundary condi-

ion reads 

 v c 
1 
z + a 

w s ρs 

ρ0 g ′ d s 
| τb | 1 = 0 , at z = −h. (B.1c) 

Here | τb | 
1 denotes the first-order component of the absolute

alue of the bed shear stress. Next, the first-order suspended sedi-

ent concentration is solved each forcing term individually. 

ontribution due to advection. The forcing term F c 
AC 

appearing in

q. (B.1) is generated by the interaction of leading-order velocity

nd the leading-order suspended sediment concentration can be

xpressed as 

 

c 
AC = aF a AC + a x F 

a x 
AC 

+ a y F 
a y 

AC 
, 

here F a 
AC 

= ˜ c 0 a x u 0 + ̃  c 0 a y v 0 + ̃  c 0 a z w 

0 , F a x 
AC 

= ˜ c 0 a u 0 , and F 
a y 

AC 
= ˜ c 0 a v 0 are

he components proportional to a, a x , and a y , respectively. Since

e are interested in the M 2 constituent of the first-order concen-

ration, we can write 

(F a AC , F 
a x 

AC 
, F 

a y 
AC 

, c 12 
AC ) = 
{ ( f a AC , f 

a x 
AC 

, f 
a y 
AC 

, C 12 
AC ) e 

iωt } . 
ow, the governing equation becomes, 

(K v C 
12 
AC,z ) z + w s C 

12 
AC,z − iωC 12 

AC = a f c + a x f 
a x 
AC 

+ a y f 
a y 
AC 

, (B.2) 

ith boundary conditions 

 v c 
12 
AC,z + w s C 

12 
AC = 0 , at z = 0 , 

K v c 
12 
AC,z = 0 at z = −h. 

his equation can be solved analytically for C 12 
AC 

for each forcing f̃ 

n the right hand side separately using the method of variation of

arameters, resulting in 

 

12 
AC (x, y, z) = Ae r 1 z + Be r 2 z + 

1 

r 2 − r 1 

z ∫ 
−h 

[ e r 2 (z−z ′ ) − e r 1 (z−z ′ ) ] ̃  f (z ′ ) d z ′ ,

here r 1 , r 2 are the roots of the quadratic polynomial 

 v r 
2 + w s r − iω = 0 , 

nd coefficients A and B are given as 

 = − r 2 e 
−r 2 h 

r 2 − r 1 

0 ∫ 
−h 

[
(K v r 2 + w s ) e −r 2 z − (K v r 1 + w s ) e −r 1 z 

r 2 (K v r 1 + w s ) e −r 2 h − r 1 (K v r 2 + w s ) e −r 1 h 

]
˜ f (z) d z

B = −A 

r 1 
r 2 

e (r 2 −r 1 ) h . 

he complete solution can be written as 

 

12 
AC = a ̃  C 12 ,a 

AC 
+ a x ̃  C 12 ,a x 

AC 
+ a y ̃  C 

12 ,a y 
AC 

, 

here ˜ C 12 ,a 
AC 

, ˜ C 12 ,a x 
AC 

and 

˜ C 
12 ,a y 
AC 

are the solutions of the above equa-

ion for a = 1 , a x = 1 and a y = 1 , respectively. Note that when

omputing the solution for a = 1 , a x and a y are set to zero. The

imilar strategy holds when computing the solution for a x = 1 ( a =
 and a y = 0 ) and a y = 1 ( a = 0 and a x = 0 ). The M 2 concentration

 

12 
AC 

can thus be expressed as 

 

12 
AC = a ̃  c 12 ,a 

AC 
+ a x ̃  c 12 ,a x 

AC 
+ a y ̃  c 

12 ,a y 
AC 

, 

here, 

( ̃  c 12 ,a 
AC 

, ̃  c 12 ,a x 
AC 

, ̃  c 
12 ,a y 
AC 

) = 
{ ( ̃  C 12 ,a 
AC 

, ˜ C 12 ,a x 
AC 

, ˜ C 
12 ,a y 
AC 

) e iωt } . 

ontribution due to first-order bed-shear stress. See the main text. 

ontribution due to forcing at the surface. The M 2 component of the

urface boundary contribution F c 
S 

= −η0 
[
w s c 

0 
z + K v c 

0 
zz 

]
can be ex-

ressed at 
{ a f c 
S 

e iωt } . Writing c 12 
S 

= 
{ C 12 
S 

e iωt } , the equation gov-

rning the first-order sediment concentration due to forcing at the

urface reads 

(w s C 
12 
S ) z + (K v C 

12 
S,z ) z − iωC 12 

S = 0 , 

ogether with the boundary conditions, 

 v C 
12 
S,z + w s C 

12 
S = a f c S , at z = 0 , 

 v C 
12 
S,z = 0 , at z = −h. 

his equation can be solved analytically in the vertical as 

 

12 
S = Ae r 1 z + Be r 2 z , 

here r 1 , r 2 are the roots of the polynomial K v r 
2 + w s r − iω = 0

nd the coefficients A and B are given by 

 = a 

[
r 2 r 

r 1 h 

r 2 (w s + K v r 1 ) e r 1 h − r 1 (w s + K v r 2 ) e r 2 h 

]
f c S , 

B = −A 

r 1 
r 2 

e (r 2 −r 1 ) h . 
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Appendix C. Condition of morphodynamic equilibrium 

The condition of morphodynamic equilibrium reads 〈
∂ 

∂x 

∫ η

−h 

(
cu − K h 

∂c 

∂x 

)
d z + 

∂ 

∂y 

∫ η

−h 

(
cv − K h 

∂c 

∂y 

)
d z 

〉
= 0 . (C.1)

Using the dimensionless variables introduced in Eq. (A.8 ) of

Appendix A , the above equation becomes 〈
∂ 

∂x ∗

∫ εη∗

−h ∗

(
εc ∗u 

∗ − K h 

ωL 2 
c ∗x ∗

)
d z ∗

+ 

∂ 

∂y ∗

∫ εη∗

−h ∗

(
εc ∗v ∗ − K h 

ωL 2 
c ∗y ∗

)
d z ∗

〉
= 0 . (C.2)

First, we will consider the first term in Eq. (C.2) . The integral from

z ∗ = −h ∗ to z ∗ = εη∗ can be split into two integrals; one from z ∗ =
−h ∗ to z ∗ = 0 and one from z ∗ = 0 to z ∗ = εη∗ as, ∫ εη∗

−h ∗
c ∗u 

∗ d z ∗ = 

∫ 0 

−h ∗
c ∗u 

∗ d z ∗ + 

∫ εη∗

0 

c ∗u 

∗ d z ∗. 

The asymptotic expansions of c ∗ and u ∗ can be used directly in the

first integral, ∫ 0 

−h ∗
c ∗u 

∗ d z ∗ = 

∫ 0 

−h ∗

[
c 0 ∗u 

0 ∗ + ε(c 0 ∗u 

1 ∗ + c 1 ∗u 

0 ∗) + O(ε2 ) 
]

d z ∗, 

while for the second integral, c ∗ and u ∗ are first expanded around

z ∗ = 0 using the Taylor series expansion and then asymptotic ex-

pansions of c ∗ and u ∗ are used, ∫ εη∗

0 

c ∗u 

∗ d z ∗ = 

∫ εη∗

0 
[ (c ∗u 

∗) | z ∗=0 + z ∗(c ∗u 

∗) z ∗ | z ∗=0 + . . . ] d z ∗, 

= ε

[
η∗(c ∗u 

∗) | z ∗=0 + ε
η∗2 

2 

(c ∗u 

∗) z ∗ | z ∗=0 + O(ε2 ) 

]
, 

= εη0 ∗c 0 ∗u 

0 ∗| z ∗=0 + ε2 
[ 
η0 ∗c 0 ∗u 

1 ∗| z ∗=0 + η0 ∗c 1 ∗u 

0 ∗| z ∗=

+ η1 ∗c 0 ∗u 

0 ∗| z ∗=0 + 

(η0 ∗) 2 

2 

(c 0 ∗u 

0 ∗) z ∗ | z ∗=0 

] 
+ O(ε3 ) .

Hence, we have 〈∫ εη∗

−h ∗
c ∗u 

∗ d z ∗
〉

= 

∫ 0 

−h ∗

〈
c 0 ∗u 

0 ∗〉d z ∗

+ ε

[∫ 0 

−h ∗

〈
c 0 ∗u 

1 ∗ + c 1 ∗u 

0 ∗〉 d z ∗ + 

〈
η0 ∗c 0 ∗u 

0 ∗| z ∗=0 

〉]
+ O(ε2 ) . 

Since the leading order concentration itself consists of M 0 and

M 4 contributions i.e., c 0 ∗ = c 00 ∗ + c 04 ∗, and the leading-order wa-

ter motion is semi-diurnal ( M 2 ), the leading-order contribution is

c 0 ∗u 0 ∗ = c 00 ∗u 02 ∗ + c 04 ∗u 02 ∗. The first term c 00 ∗u 02 ∗ gives an M 2 sig-

nal and the second term c 04 ∗u 02 ∗ both an M 2 and M 6 signal. When

averaged over the tidal period, these contributions vanish i.e., <

c 00 ∗u 02 ∗ > = < c 04 ∗u 02 ∗ > = 0, implying that 
〈
c 0 ∗u 0 ∗

〉
= 0 . 

The first-order velocity u 1 ∗ consists of an M 0 and M 4 contribu-

tions, resulting in 

c 0 ∗u 

1 ∗ = (c 00 ∗ + c 04 ∗)(u 

10 ∗ + u 

14 ∗) 

= c 00 ∗u 

10 ∗ + c 00 ∗u 

14 ∗ + c 04 ∗u 

10 ∗ + c 04 ∗u 

14 ∗. 

In the above expression, on the extreme right, the first term gives

an M 0 contribution, the second and third terms both give M 4 con-

tributions, and the fourth term gives an M 0 and M 4 contribution.

When averaged over a tidal period, all contributions vanish except

the residual ( M 0 ) ones, i.e., 
〈
c 0 ∗u 1 ∗

〉
= c 00 ∗u 10 ∗ + 

〈
c 04 ∗u 14 ∗〉. 
The first-order suspended sediment concentration contains an

 2 contribution i.e., c 1 ∗ = c 12 ∗, resulting in 

〈
c 1 ∗u 0 ∗

〉
= 

〈
c 12 ∗u 02 ∗〉. Us-

ng this information, it follows that 〈∫ εη∗

−h ∗
c ∗u 

∗ d z ∗
〉

= ε

[∫ 0 

−h ∗
c 00 ∗u 

10 ∗ + 

〈
c 04 ∗u 

14 ∗ + c 12 ∗u 

02 ∗〉 d z ∗

+ 

〈
η0 ∗c 0 ∗u 

0 ∗| z ∗=0 

〉]
+ O(ε2 ) 

 

Next, we will derive the leading-order contribution to the sec-

nd term in Eq. (C.2) . Again, we split the integral in two parts: 

 εη∗

−h ∗
c ∗x ∗ d z ∗ = 

∫ 0 

−h ∗
c ∗x ∗ d z ∗ + 

∫ εη∗

0 

c ∗x ∗ d z ∗. 

sing the same approach as above, we find that ∫ εη∗

−h ∗
c ∗x ∗ d z ∗

〉
= 

∫ 0 

−h ∗

〈
c 0 ∗x ∗

〉
d z ∗ + ε

[∫ 0 

−h ∗

〈
c 1 ∗x ∗

〉
d z ∗ + 

〈
η0 ∗(c 0 ∗| z ∗=0 ) x ∗

〉]
+ O(ε2 ) . 

n a similar way as above, we find that 

c 0 ∗ = c 00 ∗ + c 04 ∗ ⇒ 

〈
c 0 ∗x ∗

〉
= c 00 ∗

x ∗ , 

c 1 ∗ = c 12 ∗ ⇒ 

〈
c 1 ∗x ∗

〉
= 0 , 

0 ∗c 0 ∗ = η02 ∗(c 00 ∗ + c 04 ∗) = η02 ∗c 00 ∗︸ ︷︷ ︸ 
M 2 

+ η02 ∗c 04 ∗︸ ︷︷ ︸ 
M 2 + M 6 

⇒ 

〈
η0 ∗c 0 ∗

〉
= 0 . 

ence the second term in Eq. (C.2) after averaging over a tidal pe-

iod becomes, ∫ εη∗

−h ∗
c ∗x ∗ d z ∗

〉
= 

∫ 0 

−h ∗
c 00 ∗

x ∗ d z ∗ + O(ε2 ) . 

ence we obtain, 

∂ x ∗
∫ εη∗

−h ∗

(
εc ∗u 

∗ − K h 

ωL 2 
c ∗x ∗

)
d z ∗

〉

= ε2 ∂ x ∗
[ ∫ 0 

−h ∗
c 00 ∗u 

10 ∗ + 

〈
c 04 ∗u 

14 ∗ + c 12 ∗u 

02 ∗〉 d z ∗

+ 

〈
η0 ∗c 0 ∗u 

0 ∗| z ∗=0 

〉] 
− K h 

ωL 2 
∂ x ∗

∫ 0 

−h ∗
c 00 ∗

x ∗ d z ∗ + O(ε3 ) . (C.3)

epeating the same procedure for the third and fourth terms of

q. (C.2) gives, 

∂ y ∗
∫ εη∗

−h ∗

(
εc ∗v ∗ − K h 

ωL 2 
c ∗y ∗

)
d z ∗

〉

= ε2 ∂ y ∗

[∫ 0 

−h ∗
c 00 ∗v 10 ∗ + 

〈
c 04 ∗v 14 ∗ + c 12 ∗v 02 ∗〉 d z ∗ + 

〈
η0 ∗c 0 ∗v 0 ∗| z ∗=0 

〉]

− K h 

ωL 2 
∂ y ∗

∫ 0 

−h ∗
c 00 ∗

y ∗ d z ∗ + O(ε3 ) . (C.4

sing Eqs. (C.3) and (C.4) in Eq. (C.2) , collecting leading-order

erms and transforming back in to dimensional form gives, 

 x 

(∫ 0 

−h 

[
u 

10 c 00 + 

〈
u 

14 c 04 + u 

02 c 12 
〉]

d z + 

〈
η02 u 

02 c 0 | z=0 

〉
−K h 

∫ 0 

−h 

c 00 
x d z 

)

+ ∂ y 

(∫ 0 

−h 

[
v 10 c 00 + 

〈
v 14 c 04 + v 02 c 12 

〉]
d z + 

〈
η02 v 02 c 0 | z=0 

〉
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−K h 

∫ 0 

−h 

c 00 
y d z 

)
= 0 . (C.5) 

Next, using the relations, 

(c 0 , c 00 , c 04 ) = a ( ̃  c 0 a , ̃  c 00 a , ̃  c 04 a ) , and c 12 = a ̃  c 12 a + a x ̃  c 12 a x + a y ̃  c 12 a

nd defining the following components: 

(T xa 
M 0 

, T ya 
M 0 

) = 

∫ 0 

−h 

u 

10 
h ˜ c 00 a d z, (T xa 

M 2 
, T ya 

M 2 
) = 

∫ 0 

−h 

〈
u 

02 
h ˜ c 12 a 

〉
d z, 

(T xa x 
M 2 

, T ya x 
M 2 

) = 

∫ 0 

−h 

〈
u 

02 
h ˜ c 12 a x 

〉
d z, , (T 

xa y 
M 2 

, T 
ya y 

M 2 
) = 

∫ 0 

−h 

〈
u 

02 
h ˜ c 12 a y 

〉
d z 

(T xa 
M 4 

, T ya 
M 4 

) = 

∫ 0 

−h 

〈
u 

14 
h ˜ c 04 a 

〉
d z, (T xa 

surface , T 
ya 

surface 
) = 

〈
η02 u 

02 
h ˜ c 0 a | z=0 

〉
, 

(T xa 
diff, T 

ya 

diff
) = −K h 

∫ 0 

−h 

( ̃  c 00 a 
x , ̃  c 00 a 

y ) d z, D K h = −K h 

∫ 0 

−h 

˜ c 00 a d z, 

e can write the total horizontal sediment transport vector T =
(T xa , T ya ) as 

(T xa , T ya ) = (T xa 
M 0 

, T ya 
M 0 

) + (T xa 
M 2 

, T ya 
M 2 

) + (T xa 
M 4 

, T ya 
M 4 

) + (T xa 
surface 

, T ya 

surface 
) 

+(T xa 
diff

, T ya 

diff
) . (C.6)

ollecting terms that result from horizontal diffusivity explicitly,

ogether with advective contributions that exhibit diffusive be-

aviour, we can define a diffusivity matrix D 

a for the sediment

vailability a ( x, y ) as 

 

a = 

(
D K h + T xa x 

M 2 
T 

xa y 
M 2 

T ya x 
M 2 

D K h + T 
ya y 

M 2 

)
. 

Using these results, the condition of morphodynamic equilib-

ium becomes an elliptic equation for the sediment availability a ( x,

 ) as 

 · (D 

a ∇a + a T ) = 0 . 
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