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 A B S T R A C T

In this work, we extend a recent surrogate modeling approach, the Physically Recurrent Neural Network 
(PRNN), to include the effect of debonding at the fiber–matrix interface of composite materials. The core 
idea of the PRNN is to implement the exact material models from the micromodel into one of the layers of the 
network to capture path-dependent behavior implicitly. For the case of debonding, additional material points 
with a cohesive zone model are integrated within the network, along with the bulk points associated to the 
fibers and/or matrix. The limitations of the existing architecture are discussed and taken into account for the 
development of novel architectures that better represent the stress homogenization procedure. In the proposed 
layout, the history variables of cohesive points act as extra latent features that help determine the local strains 
of bulk points. Different architectures are evaluated starting with small training datasets. To maximize the 
predictive accuracy and extrapolation capabilities of the network, various configurations of bulk and cohesive 
points are explored, along with different training dataset types and sizes.
1. Introduction

Composite materials such as fiber-reinforced polymers (FRPs) can 
be tailored to reach optimal mechanical properties and enhance struc-
tural performance by design at different length scales. In practice, 
however, while modeling techniques have the potential to reduce the 
experimental testing costs and accelerate product development, the 
multi-scale nature and nonlinear behavior of these materials pose chal-
lenges for the reliable prediction of their global response. A suitable 
method to tackle such challenges is computational homogenization, 
or FE2, a concurrent multiscale approach that offers a high-fidelity 
representation of the material behavior. Nevertheless, this flexibility 
and generality is followed by excessively high computational costs.

Several methods have been proposed to alleviate the computational 
bottleneck associated with FE2. One alternative is to solve the equi-
librium problem at the microscale, where a Representative Volume 
Element (RVE) is used to describe the material geometry and proper-
ties, in low-dimensional spaces. For instance with Proper Orthogonal 
Decomposition (POD) (Monteiro et al., 2008) or Proper Generalized 
Decomposition (PGD) (Halabi et al., 2013; Cremonesi et al., 2013). 
Although both techniques can effectively reduce computational time, 

∗ Corresponding author at: Delft University of Technology, Department of Civil Engineering and Geosciences, P.O. Box 5048, 2600GA, Delft, The Netherlands.
E-mail address: n.kovacs-1@tudelft.nl (N. Kovács).

obtaining a meaningful set of basis functions/modes is not trivial. With 
PGD, the construction of the basis functions based on the separation 
of the variables (e.g., space, time, geometry, etc.) requires careful 
formulation and involves a large number of parameters as non-linearity 
increases. On the other hand, POD relies on a meaningful coverage 
of potential loading paths in the snapshots used for mode extraction, 
which can become a difficult task when dealing with path-dependent 
materials.

With higher potential to accelerate the microscopic problem, an-
other popular approach is to replace the full-order microscale BVP with 
a surrogate model. In Ghavamian and Simone (2019) and Logarzo et al. 
(2021), the full-order micromodel is replaced by a recurrent neural 
network (RNN) at each integration point. The network is then used 
to predict the average stress from the micromodel, as well as history 
variables such as the equivalent plastic strain. A drawback of this 
method is related to the black-box nature of RNNs. Since the network 
maps the input strain to output stress values without being grounded 
on physical assumptions, extrapolation to unseen loading scenarios is 
rather limited. This issue is usually tackled by training with a large 
amount of data.
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A different approach was presented in a recent work using
mechanics-informed machine learning (Li et al., 2023). In this ap-
proach, a priori knowledge of mechanics was implemented in the net-
work to predict elastoplasticity for composites with pressure-
independent yielding behavior by physics-based decomposition of
stresses and strains. The network showed accurate predictions trained 
on a small dataset. A newly emerging method of combining the me-
chanical basis with the flexibility of neural networks is using physics-
augmented neural networks (Rosenkranz et al., 2024; Klein et al., 2023; 
Schommartz et al., 2024). The essence of these networks is that they are 
tailored for a specific material model to fulfill mechanical conditions 
by construction. Although these networks provide accurate predictions, 
their complexity increases significantly with more complex material 
models.

Another alternative not limited to a specific type of material model 
is using physically recurrent neural networks (PRNNs) (Maia et al., 
2023). In PRNNs, the constitutive relations in the full-order micromodel 
are directly implemented in the hidden layer of the network, bypassing 
the need for a complex network while giving physical interpretation 
to the hidden layer. In that work, the performance of the PRNN was 
first assessed in several loading cases at the microscale and compared 
to state-of-the-art RNNs. The PRNN was able to predict with the same 
accuracy as the RNN, but with much less training data, and notably, 
it was able to extrapolate to non-monotonic test data even though it 
only saw data from monotonic loading scenarios during training. Then, 
in a multiscale setting, the proposed network was used to replace the 
microsctructure with elastic and elastoplastic phases. It was observed 
that replacing the full-order micromodel with the network resulted in 
a reduction of computational time by more than 20,000 times.

A large part of recent literature on surrogate modeling focuses on 
predicting (hyper)elastic or elastoplastic behavior. Surrogate modeling 
for damage and fracture mechanics applications is a much less explored 
field. For example, Wang and Sun (2019) used deep reinforcement 
learning techniques to create traction–separation laws, but did not 
apply this in a multiscale setting. In the works of Liu (2020) and 
Liu (2021), a deep material network (DMN) was developed, which 
describes the RVE with a network that is built up from physics-based 
building blocks. In the first work (Liu, 2020), debonding effects in the 
RVE were successfully captured by the adaptable cohesive building 
blocks included in the network. In a multi-stage training strategy, one 
of the phases from the DMN trained for the bulk material is enriched 
with the interface interaction learned from a second DMN built on 
top of cohesive building blocks. As a result, the accuracy of the final 
network is somehow limited by the original bulk DMN. In Liu (2021) 
this method was extended to localization problems with a cell-division 
scheme, which overcame the difficulties related to selecting the proper 
size of the RVE. While these networks excel in extrapolating from linear 
elastic RVE data to nonlinear and path-dependent behavior, training 
and online evaluation are not straightforward. These two stages involve 
different input spaces and an iterative Newton–Raphson scheme is 
required for the online stage (Liu, 2020, 2021). Further, a probabilistic 
machine learning approach using Bayesian regression was proposed 
in Rocha et al. (2021) and also applied to active learning of traction–
separation relations in a multiscale setting, but this approach was not 
made suitable for capturing unloading behavior.

In fracture mechanics problems, the computational cost involved 
with FE (without a multiscale framework) can also be extreme. A 
noteworthy approach to deal with that is proposed by Kerfriden et al. 
(2013) through the use of a domain separation strategy to focus the 
computational power on the fracture region, which requires most of 
the attention. The domain separation strategy can also be used in 
multiscale settings, as proposed by Oliver et al. (2017). To further 
reduce the sampling points, it is combined with another key technique 
based on model order reduction, specifically the Reduced Optimal 
Quadrature (ROQ). However, these methods are highly dependent on 
2 
snapshots and the complexity of the problem increases with nonlinear 
and path-dependent materials.

In this work, the ability of the PRNN to describe the effect of 
microscale damage is investigated. The study is restricted to diffuse 
damage in the form of microscale debonding in composite materials. 
The aim is to describe the stiffness degradation that is the result 
of diffuse damage, without the occurrence of macroscopic softening. 
Section 2 outlines the FE2 framework and briefly describes the PRNN 
as detailed in Maia et al. (2023). Section 3 provides the data gener-
ation method for training and testing the networks. In Section 4, the 
performance of the existing PRNN on cases with stiffness degradation 
is tested, motivating the development of new architectures. Section 5 
introduces the proposed architectures, while Section 6 evaluates their 
performance in achieving the research objective.

2. Theoretical background

In the following sections, the foundational aspects of the methods 
used in this work are discussed. This includes an overview of the FE2
method and the homogenization procedure, as well as the main features 
and limitations of the existing PRNN.

2.1. The FE2 method

Computational homogenization with the FE2 method allows for cap-
turing the response of composite materials, for cases where it is difficult 
to do that on the macroscale due to the complex interaction between 
nonlinear constituents and microstructural geometry. In this approach, 
the structure is discretized as a homogeneous macrostructure, where a 
heterogeneous micromodel is nested into each macroscopic integration 
point of it (Schröder, 2014; Feyel and Chaboche, 2000; Feyel, 2003). 
The micromodel is assumed to be a representative volume element 
(RVE). The macroscopic strain values are downscaled as boundary 
conditions for the micromodel, where the microscopic boundary value 
problem (BVP) is solved. The microscopic stress values obtained from 
the BVP are then upscaled back to the macromodel after a homoge-
nization operation. This bypasses the need for any assumptions on the 
constitutive relation at the macroscale.

The schematics of the FE2 method is shown in Fig.  1. The macro-
scopic solid domain is denoted by 𝛺, and the surfaces where the 
Dirichlet and Neumann boundary conditions are applied are denoted as 
𝛤𝛺
𝑢  and 𝛤𝛺

𝑓 , respectively. In this work, we simulate damage at the fiber–
matrix interface, which precludes global softening of the micromodel 
and avoids the need for inserting a discontinuity on the macroscale. 
The discontinuity in the microscopic domain is denoted by 𝛤𝜔

𝑑 . At the 
fracture surface, the two opposite sides of the crack are differentiated 
by a + and a − sign.

The displacement field in the micromodel with domain denoted 
as 𝜔 is approximated for the boundary conditions imposed from the 
macroscale with a finite element discretization of the RVE geometry. 
The macroscale strain 𝜀𝜀𝜀𝛺 is considered to be constant over the volume 
aside from a periodic microscale fluctuation field due to the assumption 
of separation of scales. Nonlinearity in the microscale problem comes 
from the constitutive models 𝜔 and  𝜔:

𝜎𝜔, 𝛼𝛼𝛼 = 𝜔 (

𝜀𝜀𝜀𝜔, 𝛼𝛼𝛼𝑡−1
)

(1)

𝐭𝜔𝑑 , 𝑑 =  𝜔 (

[[𝐮𝜔]], 𝑑𝑡−1
)

, (2)

where 𝜎𝜎𝜎𝜔 is the microscale stress obtained from the microscale strain 𝜀𝜀𝜀𝜔
and the internal variables 𝛼𝛼𝛼, and 𝐭𝜔𝑑  is the cohesive traction computed 
from the displacement jump [[𝐮𝜔]] and internal variable 𝑑.

After the computation of the full-order solution at the microscale, 
the resulting stress field is homogenized and the homogenized stress is 
returned to the macroscale model. The homogenized stress is defined 
as the average over the volume of the RVE: 

𝜎𝛺 = 1 𝜎𝜎𝜎𝜔 𝑑𝜔 (3)

|𝜔| ∫𝜔
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Fig. 1. FE2 framework.
𝜀

For accurate coupling between the two scales, the energy between 
them must be consistent. For this, the Hill–Mandel principle has to 
be satisfied (Hill, 1963) which is ensured when periodic boundary 
conditions are used. To solve the macroscale problem stress update, a 
nonlinear finite element solution procedure (e.g. based on the Newton–
Raphson method) is needed, making the cost of solving the microscale 
BVP at each integration point and every macroscale iteration pro-
hibitive for practical applications.

2.2. Physically recurrent neural network

To tackle the issues related to the black-box nature of neural net-
works, Physically Recurrent Neural Networks (PRNNs) developed by 
Maia et al. (2023) introduce a new way of embedding knowledge on 
the physics of a system in a surrogate model. Unlike in PINNs, where 
the physical constraints of the problem are incorporated in the loss 
function (Raissi et al., 2019), in PRNNs the actual material models used 
in the full-order microscopic BVP are implemented in the hidden layer 
of the network such that their state variables introduce a physics-based 
recurrency. Fig.  2 displays the PRNN in general terms for the case with 
two constitutive models on the microscale, 1 and 2.

The architecture consists of an input layer, a material layer, and 
an output layer. The macroscale strains 𝜀𝜀𝜀𝛺 at the integration points 
of the macrostructure are the inputs to this network. In two dimen-
sions assuming small strains, this corresponds to 3 input values. These 
macroscale strains are passed through an encoder, which is a sin-
gle dense layer with linear activations. This encoder converts the 
macroscale strains to a set of values we interpret as fictitious micro-
scopic strains, or local strains, which corresponds to the macro- to 
micro-scale transition in the FE2 method. These local strains 𝜀𝜀𝜀 are given 
by: 
𝜀 = 𝐖1𝜀𝜀𝜀

𝛺 + 𝐛1, (4)

where 𝐖1 are the weights connecting the input layer to the material 
layer and 𝐛𝟏 is the bias associated with the encoder. There are no 
residual stresses considered in this work, which means that there is a 
zero stress state for when no strain is applied to the microstructure. 
Therefore, the network should also predict zero stresses when the strain 
inputs are zeros. This is achieved by setting the bias term 𝐛 = 𝟎.
𝟏 𝜀

3 
Fig. 2. Architecture of PRNN.

These local strains are passed through the material layer, which pro-
vides the essence of the physically recurrent neural network. The mate-
rial layer consists of cells, each with three inputs and three outputs, and 
possibly internal variables, representing a fictitious integration point. In 
these points, a classical constitutive model 𝜔 converts the local strains 
𝜀 to local stresses 𝜎𝜎𝜎. This constitutive model is the exact same model 
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Fig. 3. Fictitious material point in material layer.

that is used to compute the stress in the integration points of the full-
order micromodel. The number of fictitious material points in the layer 
is a model hyperparameter to be tweaked via model selection.

History dependence is naturally included in the PRNN by storing 
the internal variables 𝛼𝛼𝛼 of each material point, which for example 
in plasticity can be plastic deformation, as they are computed in the 
assigned constitutive model. Therefore, path-dependency does not need 
to be learned from data. This stands in contrast with regular recurrent 
neural networks, where the evolution of history variables is also learned 
through additional learnable parameters and standard activation func-
tions (e.g. with LSTM or GRU cells). The operation in the fictitious 
material point 𝑗 at time 𝑡 is shown in Fig.  3 and can be described by: 
𝜎𝑡𝑗 , 𝛼𝛼𝛼

𝑡
𝑗 = 𝜔(𝜀𝜀𝜀𝑡𝑗 , 𝛼𝛼𝛼

𝑡−1
𝑗 ) (5)

After the local stresses are computed in the material layer, a decoder 
is applied to these values. In the particular architecture shown in Fig. 
2, the decoder consists of a dense layer with a SoftPlus activation 
function applied on the weights (𝜙𝑠𝑝(⋅)). This is done to represent 
the homogenization process through numerical integration, in which 
weights are strictly positive. Therefore, the macroscale stress output of 
the network is obtained by: 
𝜎𝛺 = 𝜙sp(𝐖2)𝜎𝜎𝜎 + 𝐛2, (6)

where 𝐖2 are the weights connecting the material layer to the output 
layer, and 𝐛𝟐 is the bias associated with the decoder. This bias term is 
again set to zero to ensure zero macroscale stresses for zero local stress 
values. Essentially, the network is tasked to learn how to best combine 
the response of a small number of material points into a representative 
macroscale response.

During training, the following loss function is minimized: 

L = 1
𝑁

𝑁
∑

𝑡=1
‖𝜎𝜎𝜎𝛺(𝜀𝜀𝜀𝛺𝑡 ) − 𝜎𝜎𝜎𝛺(𝜀𝜀𝜀𝛺𝑡 )‖

2, (7)

where 𝑁 is the number of stress–strain pairs in the dataset and 𝜎𝜎𝜎𝛺(𝜀𝜀𝜀𝛺𝑡 )
is the target value, which in this case is obtained from full-order 
micromodel simulations followed by averaging stresses over the mi-
croscopic volume. Predicting the stress response in PRNNs consists of 
a simple forward pass, making them computationally efficient in the 
online phase and alleviating the computational bottleneck of multiscale 
modeling. This is one of the main differences compared to DMNs, where 
the online-phase is computationally heavier due to its iterative nature. 
Additionally, PRNNs offer a more flexible alternative by implementing 
the constitutive models directly into the network structure.

Because of the history variables 𝛼𝛼𝛼, back-propagation in time be-
comes necessary and stress/strain pairs are grouped in paths (time 
series). Data and gradient handling is therefore analogous to when 
4 
training RNNs, with the key difference being that memory in PRNNs is 
physical and interpretable. It is worth emphasizing that if the material 
model is implemented with automatic differentiation support, gradients 
are handled automatically through general-use packages such as py-
torch and tensorflow. Otherwise, a detailed implementation of how to 
incorporate these using finite differences is given in Maia et al. (2023).

In the full-order micromodel used in Maia et al. (2023), J2 plasticity 
was used for the matrix and a linear elasticity model for the fibers. In 
the previous study, the PRNN was able to find a solution with only 
the elastoplastic model (i.e. the constitutive model used to describe the 
matrix) in the material layer with no loss of accuracy. The expected 
linear elastic behavior in the fibers is reproduced in elastoplastic mate-
rial points when small enough strain values are passed by the encoder 
and stresses are amplified in the decoder, making one or more matrix 
material points effectively work as if they were linear elastic fiber 
points.

3. Data generation

To generate the data for assessing the PRNN’s performance when 
predicting microscale damage, a micromodel with cohesive elements 
at the fiber–matrix interface is considered. This section introduces 
the micromodel used to create the training and test datasets and the 
different loading conditions that are considered.

3.1. Full-order micromodel

The FE model of the microscale is shown in Fig.  4 and consists 
of 25 periodically arranged fibers and diameter of 5 μm embedded 
in a matrix to result in a fiber volume fraction of 0.6. This single 
RVE is used to generate all datasets in this study. There are two bulk 
constitutive models: a plasticity model for the matrix, and a linear 
elastic model for the fibers. The geometry, mesh, and bulk material 
properties in the RVE are kept as in Maia et al. (2023) except that 
zero-thickness interface elements are positioned at the fiber–matrix 
interfaces. Limiting damage to the fiber–matrix interface means that 
no global failure can take place. Tractions at the interface elements 
are computed from displacement jumps with the bilinear cohesive zone 
model (CZM) by Turon et al. (2006).

For the CZM properties, we use equal normal and shear strengths 
𝜏0𝑛 = 𝜏0𝑠 = 60 MPa, mode I and mode II fracture energy 𝐺𝐼𝑐 =
0.874 kJ∕m2, 𝐺𝐼𝐼𝑐 = 1.717 kJ∕m2, mode interaction parameter 𝜂 = 1, 
and penalty stiffness 𝐾 = 5 ⋅ 107 N∕mm3. Plane stress conditions are 
assumed for the micromodel.

3.2. Load path generation

To generate data for training and testing of the network, the mi-
cromodel is subjected to different loading paths using periodic bound-
ary conditions. The datasets can be separated into two categories: 
proportional and non-proportional loading.

3.2.1. Proportional loading
For proportional loading, we use a modified arc-length algorithm 

to enforce the directions of the applied stress, as described in Rocha 
et al. (2020). In this method, the proportionality of the stress response 
is enforced by considering a constant load vector with increments 
defined in terms of displacement magnitude, specifically the sum of 
the unsigned applied displacements. In this work, the increments are 
fixed at 𝛥𝑠 = 1.67 × 10−3 mm. The loading directions are catego-
rized as either fundamental or random. The fundamental directions 
contain 18 common loading cases often used for traditional material 
model calibration, shown in red in Fig.  5(a), and include pure tension, 
compression, shear, biaxial tension, and combinations thereof. On the 
other hand, the random directions are obtained by sampling three 
values, each corresponding to a component of the load vector, from 
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Fig. 4. Full-order micromodel used in this work.
Fig. 5. Types of loading paths considered in this work.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
a normal distribution  (0, 1) and normalizing them to a unit vector, 
with examples shown in black in Fig.  5(a).

In this work, only non-monotonic loading is considered. During non-
monotonic loading, the direction in which the step size is kept fixed, but 
unloading takes place at different loading steps for a predefined amount 
of time. The loading functions that define the relation between 𝑡 and the 
magnitude of loading for non-monotonic cases considered in this paper 
are shown in Fig.  6. In the arc-length formulation, this corresponds to 
the imposed value for the unsigned sum of the displacements at the 
controlling nodes.

3.3. Non-proportional loading

To create more diverse loading scenarios, non-proportional and non-
monotonic loading paths are generated. Both the direction of loading 
and the step size are varied at each time step. This is achieved by sam-
pling the strains from Gaussian Processes (GPs). Each strain component 
is drawn from an independent multivariate normal distribution given 
by: 

𝐗 ∼  (𝜇𝜇𝜇,𝛴𝛴𝛴) (8)
5 
where 𝐗 represents a vector containing the strain values at the different 
time steps, 𝜇𝜇𝜇 is the mean vector that specifies the expected value 
of strains, and 𝛴𝛴𝛴 is the covariance matrix. The covariance matrix 𝛴𝛴𝛴
describes the relationships between the samples in each of the compo-
nents. The covariance function between two time steps 𝑖 and 𝑗 is given 
by: 

𝛴𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝜎2𝑓 exp
(

− 1
2𝓁2

‖𝑥𝑖 − 𝑥𝑗‖
2
)

(9)

with 𝜎2𝑓  being the variance that determines the step size and 𝓁 being the 
length scale that controls the smoothness of the generated path. With 
increased variance 𝜎2𝑓  the strains are able to attain larger values, and 
with increased length scale the path becomes smoother. Values 𝜎2𝑓 =
0.0001667 and 𝓁 = 200 are used in this work. A subset of the load paths 
generated by GPs is shown in Fig.  5(b), with one path highlighted in red 
for clarity. We also show in Fig.  7(a) the corresponding strain paths for 
the highlighted loading path and the corresponding stress–strain curves 
obtained from the full-order micromodel in Fig.  7(b).
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Fig. 6.  Loading functions used to generate proportional non-monotonic loading curves.
Fig. 7.  Example of non-proportional GP-based loading path.
4. Performance of PRNN with bulk model only

This section investigates whether the PRNN as proposed in Maia 
et al. (2023) is able to capture stiffness degradation due to microscale 
damage. The architecture consists of one input layer, one material layer 
with bulk integration points only, and one output layer, as depicted in 
Fig.  8. All bulk material points embed a J2 plasticity model to convert 
2D local strains to 2D local stresses.

In Maia et al. (2023), the network could find a way to make elasto-
plastic material points reproduce linear elasticity by appropriately 
scaling encoder and decoder weights. In the following, we demonstrate 
how such an approach does not work for distributed damage. To 
highlight this inability to learn as clearly as possible, the networks 
here are trained and tested on the same curves. Specifically, the non-
monotonic, proportional dataset with one cycle of unloading in the 18 
fundamental directions is used. Networks with different material sizes 
are trained by adding bulk points to the network until the mean value 
of the Mean Squared Errors (MSEs) no longer decreases with additional 
points. The training MSE across the different material layer sizes is 
shown in Fig.  9, with 10 networks with different initializations per size 
plotted as blue dots and the purple line representing the mean value for 
each material layer size. The best performing network with 7 fictitious 
material points and a xtraining MSE of 4.61 MPa is selected for further 
examination.

The prediction of the network on two fundamental loading scenarios 
is shown in Fig.  10: uniaxial tension and biaxial tension with shear. The 
network provides a somewhat accurate prediction on the monotonic 
region of the curve, however, the model is unable to reproduce the 
unloading/reloading region. The PRNN starts to predict unloading with 
the initial, linear elastic stiffness following the assumptions embedded 
6 
Fig. 8. PRNN with elastoplastic model only.

in the J2 model, and predicts erratically afterwards. This highlights 
the limitation of the PRNN for describing stiffness degradation in its 
original design. The network encodes plasticity through the presence of 
a plasticity model in the material layer. This design gave the network a 
good bias in earlier work, when it could predict unloading behavior 
in plasticity without seeing it during training (Maia et al., 2023). 



N. Kovács et al. European Journal of Mechanics / A Solids 112 (2025) 105668 
Fig. 9. Training error for PRNN trained on 18 fundamental curves with one cycle 
of unloading.  (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Here, however, the bias is too strong as it prevents the network from 
describing the stiffness loss that is present in the micromodel.

This observation is in line with the core idea of the PRNN to include 
a representation of all relevant physics by embedding the constitutive 
models from the micromodel in the network. This idea is violated 
by not including the cohesive zone model in the network. Therefore, 
the following sections of this work focus on the implementation of 
7 
the cohesive zone model within the PRNN framework, along with 
evaluation of the proposed architectures.

5. Extending the network with cohesive material points

As shown in Section 4, the physically recurrent neural network 
cannot accurately predict the effect of debonding at the fiber–matrix 
interface without including all sources of nonlinearity present in the 
RVE. Therefore, the cohesive zone model from the full-order micro-
model has to be implemented in the PRNN as well. This section details 
the network configurations considered in this study for implementing 
the CZM within the PRNN framework.

5.1. Cohesive points in the existing material layer

The first design option retains the architecture proposed in Maia 
et al. (2023) as much as possible. In this design, referred from now 
on as PRNN1, there is one material layer containing bulk and cohesive 
fictitious points. The network is illustrated in Fig.  11 with bulk and co-
hesive points, represented in blue and pink, respectively. The cohesive 
points relate the local displacement jump vector, with normal and shear 
components, to a local traction vector, as illustrated in Fig.  12. Similar 
to the bulk points, the cohesive points also store internal variables to 
account for history, in this case the damage variable defined as the ratio 
between dissipated energy and critical energy release rate (Turon et al., 
2018).

5.2. Cohesive points in separate layer

Instead of having both types of models in the same layer, we also 
investigate architectures with two material layers: a cohesive and a 
Fig. 10.  Prediction of PRNN trained with 18 fundamental curves with one cycle of unloading on training curves.
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Fig. 11. PRNN1 architecture: bulk and CZM in the same material layer. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 12. Fictitious cohesive material point 𝑗.

bulk material layer, each with embedded models, as illustrated in 
Fig.  13. The two architectures considered here consist of one input 
layer that receives macroscopic strain, two material layers containing 
the nonlinear models, and one output layer yielding the macro-scale 
stress predictions. The state variables of the cohesive points are densely 
connected to the bulk points together with the macroscopic strains. 
To illustrate the connectivity of the layers, Fig.  13 highlights how one 
cohesive point and one bulk point are linked to each other, as well as 
to the input and output.

Rather than using the output traction values of the cohesive points, 
damage is used as input to the bulk points. Damage, the internal 
variable stored in the cohesive points, either increases or remains the 
same in case of unloading, providing a more monotonic influence on 
the overall response. This damage variable modifies the local strain 
𝜀

8 
Fig. 13. Novel architecture PRNN2 and PRNN3 with damage as input to bulk point.

Fig. 14. Validation error for PRNN1 trained on 192 GP curves.

value received by the bulk points, resulting in adjusted local stress 
values for the same level of macroscopic strain. The irreversibility of 
damage gives rise to a decrease in stiffness during unloading. This 
design ensures that only the bulk points contribute directly to the 
stress homogenization procedure, unlike in the architecture described 
in Section 5.1, where tractions rising from the cohesive points are 
directly connected to the output through the decoder layer. This is 
more consistent with the homogenization procedure in FE2, where 
cohesive tractions do not contribute directly to the macroscopic stress 
(cf. Eq. (3)).

Two ways of connecting the damage variable from the cohesive 
points to the local strain at the bulk points are considered. The first 
method follows a more conventional approach, which involves densely 
connecting the damage values to the bulk points: 

𝜀 = 𝐖 ⋅ 𝐝 +𝐖 ⋅ 𝜀𝜀𝜀𝛺 (10)
d 𝜀b
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Fig. 15. Validation error for PRNN2 trained on 192 GP curves.

where 𝐖d and 𝐖𝜀b are the weight matrices connecting the damage 
values 𝐝 from all the cohesive points and the macroscale strain, respec-
tively, to the local strain values of the bulk points. The network with 
this approach will be referred to as PRNN2 from now on.

In the second method, referred to as PRNN3 from now on, the 
damage variables are used to modify the amplitude of the local strain 
input to the bulk points. This is achieved by multiplying the local strain 
input piece-wise by the term 𝜙sp(𝟏 +𝐖d ⋅ 𝐝), which is forced to attain 
positive values by applying a SoftPlus activation function (𝜙sp(⋅)): 

𝜀 = 𝜙sp(𝟏 +𝐖d ⋅ 𝐝)⊙ (𝐖𝜀b ⋅ 𝜀𝜀𝜀
𝛺) (11)

6. Performance of PRNN with cohesive model

In this section, we assess the performance of the PRNNs with the 
architectures proposed in Section 5. The model selection process is 
presented by analyzing their performance across different training sets 
and material layer sizes. We evaluate and compare the PRNNs’ ability 
to accurately capture the homogenized response, taking into account 
microscale damage, under various loading scenarios.

6.1. Model selection

First we perform model selection for the size of the material layer. 
For that purpose, networks are trained on 192 GP-based curves (non-
monotonic and non-proportional loading) with varying numbers of bulk 
and cohesive points. The ratio of bulk to cohesive points is kept con-
stant and equal to 4, mirroring the ratio of matrix to cohesive elements 
in the RVE. The size of the material layer ranges from a minimum 
configuration of four bulk and one cohesive points to 80 bulk and 20 
cohesive points. Figs.  14–16 show the MSE on a validation set with 
200 GP-based curves for 10 different initializations in each material 
layer size, for all three architectures considered in this work. Networks 
with lowest validation MSE are selected for optimal performance, while 
prioritizing small networks to avoid overfitting. For PRNN1, networks 
with 4 bulk points and 1 cohesive point are selected, while for PRNN2
a combination with 28 bulk points and 7 cohesive points is needed. 
Finally, for PRNN3, 16 bulk and 4 cohesive points are selected. The 
observation that the validation error increases for increasing network 
sizes of PRNN1 points at the tendency of this architecture to overfit.

The selected networks are then trained on different training set 
sizes, ranging from 4 to 192 GP-based curves (non-monotonic and non-
proportional loading). Fig.  17 displays the validation MSE across the 
various training data sizes for the selected material layer sizes of the 
9 
Fig. 16. Validation error for PRNN3 trained on 192 GP curves.

Fig. 17. Validation MSE for the PRNNs considered across various training data sizes.

three architectures considered in this work. The solid lines in the figure 
represent the mean MSE values for each PRNN at different training data 
sizes. For the first architecture (PRNN1), a training set size of 96 paths 
is selected. The plateau in Fig.  17 indicates that the network in this 
configuration has reached the limit of its representational power and 
is too rigid to capture the underlying physical behavior. On the other 
hand, PRNN2 and PRNN3 can represent a broader range of material 
non-linearity and therefore can reach lower MSE values as dataset 
size is further increased. Therefore, 192 curves are selected for the 
latest two architectures. The lowest validation error corresponding to 
these networks is 11.40 MPa, 5.74 MPa, and 5.89 MPa, achieved with 
training times of 10, 60, and 20 h, respectively.

6.2. Predicting micro-scale damage

The selected networks are tested on two different datasets: one con-
taining 54 curves from the non-monotonic, non-proportional dataset 
(the same loading type used for training and validation but in differ-
ent directions), and another with 54 curves from the random, non-
monotonic, and proportional dataset with one cycle of unloading with. 
The average MSE values on these two test sets are presented in Table 
1 for each network. It is observed that for the non-monotonic non-
proportional test curves, PRNN2 and PRNN3 both outperform PRNN1, 
with a small difference in accuracy between the two. However, when 
testing on curves of the proportional type, PRNN3 offers significant 
additional accuracy over PRNN2.

To illustrate the meaning of these numbers, in the remainder of this 
section, we compare the performance of the three networks in more 
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Fig. 18.  Prediction of PRNN1 and PRNN2 on representative test curves.
Table 1
Average MSE values for the two test datasets, in MPa.
 Test set PRNN1 PRNN2 PRNN3

 Non-monotonic, non-proportional 11.63 5.72 6.03
 Non-monotonic, proportional 7.45 5.56 3.40

detail with stress predictions on individual curves, each time picking 
representative curves with MSE close to the average MSE from Table 
1.

First, we illustrate in Fig.  18 the performance of PRNN1 and PRNN2. 
Note how the predictions of PRNN1 on GP-based curves follow the 
overall trend but with significantly less accuracy compared to PRNN2
(Fig.  18(a)). This observation aligns well with the results shown in 
Fig.  17, where the validation set is also comprised of GP-based curves, 
emphasizing the significant decrease in validation error when the co-
hesive points are implemented in a separate layer from the bulk points. 
The difference between PRNN1 and PRNN2 predictions becomes more 
pronounced when tested on the non-monotonic, proportional dataset. 
As shown in Fig.  18(b), PRNN1 predicts poorly. The network not only 
fails to capture the decrease in stiffness during unloading but also loses 
accuracy in the monotonic part. It is observed that with PRNN1 there is 
a preference towards networks with fewer cohesive points. Moreover, 
small weights connect the normal component of these cohesive points 
with the output, which is likely due to the large traction values output 
from the cohesive points in compression. These factors indicate that 
the network avoids utilizing the cohesive points implemented in the 
material layer, resulting in unloading with the initial linear stiffness.

Besides the improved accuracy on the test sets, as shown in Table 
1, PRNN2 shows another advantage. Unloading occurs with a different 
slope than the initial linear phase (Fig.  18(b)), indicating that the net-
work is able to account for the effect of microscale damage. However, a 
10 
new problem arises: reloading follows a different path than unloading. 
Given the interpretable nature of PRNNs, this phenomenon can be 
investigated by closely examining the input to one of the bulk points. 
Fig.  19(a) illustrates the 𝜀𝑥𝑥 component of a particular fictitious bulk 
material point and its two contributions, one that follows directly from 
the macroscopic strain (𝐖𝜀b ⋅ 𝜀𝜀𝜀𝛺) and the other that follows from the 
damage variables from all the cohesive points (𝐖d ⋅ 𝐝). Globally, the 
micromodel is unloading from time step 25, a trend represented by 
the weighted sum of the global strain values. Meanwhile, the weighted 
sum of damage is larger than the weighted sum of the global strain 
and has an opposite sign. Therefore, the final sum used as input to 
the bulk point prevents the point to follow the global unloading trend 
(from t = 25 to t = 35). Instead, the bulk point continues to load 
while the macroscopic strain is subjected to unloading and only starts 
unloading once the macroscopic strain is at the reloading branch (from 
t = 35 to t = 45). This mismatch between the loading phases leads to 
further evolution of plastic strain during the macroscopic unloading, as 
shown in Fig.  19(b), and causes the undesired change in slopes during 
unloading and reloading.

When damage is used as an amplifier rather than being simply 
densely connected to the bulk points, no significant difference in val-
idation errors is found (Fig.  17). This is reflected on the prediction of 
PRNN2 and PRNN3 on a representative GP-based curve in Fig.  20(a). 
However, robustness improves significantly when predicting on curves 
from the non-monotonic, proportional set. Fig.  20(b) clearly shows that 
unloading/reloading now takes place along the same path and with a 
different slope than the initial linear phase, effectively capturing the 
effect of microscale damage.

To further demonstrate the network’s predictive capabilities, Fig. 
21 shows the prediction of PRNN3 on a curve from a test set con-
taining non-monotonic, proportional curves with two cycles of un-
loading. The evolution of damage over time is evident as the slope 
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Fig. 19. Behavior of one of the bulk points of PRNN2 when predicting on a representative curve from the non-monotonic, proportional test set.
of the unloading–reloading phase gradually decreases as the loading 
continues.

7. Conclusions

In this paper, we have proposed an extension to a recently proposed 
surrogate model, namely the Physically Recurrent Neural Network 
(PRNN), to account for the complex combination of plasticity and 
microscale damage. The PRNN’s excellent ability to predict elastoplas-
tic behavior motivated this study into its use as a surrogate model 
in a more challenging context where both plasticity and damage are 
present. Constitutive relations from the full-order micromodel are di-
rectly implemented into the hidden layer of the PRNN, creating a direct 
link to the micromodel. Path-dependency naturally arises from the 
material models in the network, resulting in accurate predictions with 
a significantly smaller training dataset compared to networks without 
physical interpretation.

As a first step to use the PRNN framework for microscale damage, 
a preliminary study was conducted using the network in its original 
form with bulk material points only. It was demonstrated that the 
original PRNN could not describe stiffness degradation, even when 
trying to overfit on a small set of training curves. These results align 
well with the general guideline in Maia et al. (2023) that all types of 
nonlinearities present in the RVE need to be included in the network, 
justifying the need for an extended PRNN architecture that integrates 
a cohesive zone model.

Next, three architectures of the PRNN with bulk and cohesive points 
were proposed. In the first design, PRNN , cohesive points with the 
1

11 
CZM were incorporated into the same material layer of the PRNN as the 
plasticity model. Two material layers were used in the second and third 
design with the cohesive points implemented in a separate cohesive 
layer from the bulk material layer. Together with the global strain, the 
internal variable of the cohesive points, damage, was then used as input 
to the bulk points. This connection was defined in two different ways, 
either in a conventional way with a dense connection (PRNN2) or by 
using the damage as an amplifier to the local strain of the bulk points 
(PRNN3).

Afterwards, the performance of the proposed PRNNs was evalu-
ated. The three networks were trained with data from non-monotonic, 
non-proportional (GP-based) curves and tested on the same type of 
curves, and on proportional, non-monotonic curves with one cycle of 
unloading.

When tested on GP-based curves, the results showed that while all 
three networks followed the general trend of the curves, PRNN2 and 
PRNN3 performed with significantly higher accuracy than PRNN1. Ad-
ditionally, PRNN1 failed to accurately capture the loss of stiffness due to 
damage evolution when predicting on the non-monotonic, proportional 
dataset. Specifically, it unloaded with the initial linear stiffness, which 
is due to the network’s preference towards not utilizing the cohesive 
points effectively. This limitation can be explained by the network’s 
layout: when the cohesive points are implemented in the material layer 
together with the bulk points, the stress output of the network is given 
by a linear combination of both stresses coming from the bulk models 
and tractions coming from cohesive zone models. This layout of the 
PRNN1 does not resemble the physics of the full-order solution, where 
only the bulk points contribute to the stress homogenization.
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Fig. 20.  Prediction of PRNN2 and PRNN3 on representative test curves.
Fig. 21. Prediction of PRNN3 on a representative curve with two cycles of unloading.

On the other hand, the modified architectures with the damage 
input to the bulk points did not have this problem. Adjusting the local 
strain by the damage input allowed for a modified tangent stiffness 
12 
matrix able to capture the decrease in stiffness during unloading. This 
highlights the significance of designing the network’s architecture with 
the knowledge of the underlying material behavior to achieve more 
accurate predictions.

When tested on non-monotonic, proportional curves with one cycle 
of unloading, PRNN3 outperformed PRNN2. It was observed that with 
a simple linear dense connection between the damage and bulk points, 
unloading and reloading occurred along different paths: while the RVE 
was unloading on the global scale, some bulk points in the network 
experienced further loading. This phenomenon occurred because the 
weighted sum of damage caused the input to the bulk point to have an 
opposite sign, leading these points to undergo further loading instead 
of unloading. This caused further plastic strain development during 
macroscopic unloading and led to the different slopes during unloading 
and reloading. The issue with the different unloading/reloading path 
was mitigated when damage was used as an amplifier in PRNN3. This 
method ensured that the fictitious bulk points follow the global trend 
of unloading/reloading.

Lastly, PRNN3 was tested on non-monotonic, proportional curves 
with two cycles of unloading. The network provided accurate predic-
tions in this case as well, demonstrating a progressively decreasing 
stiffness in successive unloading/reloading phases. This significant re-
sult highlights the network’s capability to capture damage evolution 
over time, and further reinforces that the PRNN with modifications to 
its architecture is capable of representing microscale damage.
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