<]
TUDelft

Delft University of Technology

Urban challenges in seismology
seismic monitoring of Kwintsheul’'s geothermal operation (the Netherlands)

Naranjo, David; Isken, Marius; Boullenger, Boris; Toledo, Tania; Weemstra, Cornelis; Draganov, Deyan

DOI
10.70712/njg.v104.12188

Publication date
2025

Document Version
Final published version

Published in
Netherlands Journal of Geosciences: Geologie en Mijnbouw

Citation (APA)

Naranjo, D., Isken, M., Boullenger, B., Toledo, T., Weemstra, C., & Draganov, D. (2025). Urban challenges
in seismology: seismic monitoring of Kwintsheul’s geothermal operation (the Netherlands). Netherlands
Journal of Geosciences: Geologie en Mijnbouw, 104, Article e12188.
https://doi.org/10.70712/njg.v104.12188

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.70712/njg.v104.12188
https://doi.org/10.70712/njg.v104.12188

Netherlands Journal of
Geosciences

Original Article

Cite this article: David Naranjo et al.

Urban challenges in seismology: seismic
monitoring of Kwintsheul’s geothermal
operation (the Netherlands). Netherlands
Journal of Geosciences, Volume 104, e12188.
https://doi.org/10.70712/NJG.v104.12188

Received: January 29, 2025
Revised: May 12, 2025
Accepted: August 29, 2025
Published: November 24, 2025

Keywords:
Seismic-event detection; hypocentre
inversion; geothermal energy

Corresponding author:
David Naranjo,
Email: d.f.naranjohernandez@tudelft.nl

© The Author(s), 2025. Published by the
Netherlands Journal of Geosciences
Foundation. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (https://
creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

https://doi.org/10.70712/NJG.v104.12188

Urban challenges in seismology: seismic
monitoring of Kwintsheul’s geothermal
operation (the Netherlands)

David Naranjo', Marius Isken? Boris Boullenger?, Tania Toledo*, Cornelis Weemstra®'
and Deyan Draganov'

"Department of Geoscience and Engineering, Delft University of Technology, Delft, the Netherlands; *GFZ Helmholtz
Centre for Geosciences, Potsdam, Germany; *TNO Geological Survey of the Netherlands, Utrecht, the Netherlands;
“Swiss Seismological Service (SED) at ETH Zurich, Switzerland; *Department of Seismology and Acoustics, Royal
Netherlands Meteorological Institute, De Bilt, the Netherlands

Abstract

Seismic monitoring is essential for understanding subsurface processes, particularly in
geothermal operations where low-magnitude events can provide valuable insights into
reservoir behaviour. There are two significant challenges when monitoring the seismicity
in Dutch geothermal operations: (1) detecting signals from seismic events as noise levels
are typically high in regions hosting geothermal operations, and (2) accurately estimating
their corresponding hypocentre and uncertainty. In this study, we present a comprehen-
sive workflow for detecting and characterising low-magnitude seismic events. Specifi-
cally, we integrated data preparation, template-matching and machine-learning-based
event detection, and probabilistic hypocentre estimation. Applying this workflow to 4
months of recordings in Kwintsheul, Netherlands, we detected 65 events with coherent
signals, including six weak seismic events (ML < 0.0) near a local fault and a geothermal
injection well. These events suggest the presence of a recurring microseismic sequence
previously unreported in the area. However, spatial uncertainties, the short monitoring
period, and the limited azimuthal coverage make the nature of these events unclear. Our
findings highlight the importance of improving network design and refining velocity
models to reduce uncertainties in event locations and magnitudes. The proposed work-
flow offers a scalable solution for enhancing seismic monitoring, particularly in urban
and geothermal settings.

1. Introduction

The Netherlands is increasingly adopting geothermal energy to reduce carbon emissions
and transition to local, sustainable energy sources. Understanding the subsurface processes
associated with geothermal operations is essential to optimise resource extraction and
ensure long-term sustainability. These processes, such as fluid migration and fault reactiva-
tion, are often accompanied by low-magnitude seismic events. Therefore, seismic monitor-
ing is a key tool for characterising geothermal reservoirs.

In 2018, a geothermal doublet became operational in Kwintsheul, South Holland, to
heat 64 hectares of greenhouses. At that time, the coverage of the Royal Netherlands
Meteorological Institute’s (KNMI) seismological network was still relatively sparse in
the province of South Holland, as shown in Figure 1. In 2019, a temporary passive
seismic network was installed to study the interaction between the geothermal
operation and the underlying geological structures. During this monitoring period, a
seismic event with a magnitude of M, 0.16 was detected on 14 July 2019 (Muntendam-
Bos et al., 2022). This event suggested the presence of more low-magnitude seismicity
in the region, motivating us to investigate the feasibility of detecting additional events
in the recorded data.

Monitoring low-magnitude seismicity around geothermal operations is challenging in
the Netherlands. Many of these operations are located in noisy urban environments,
where low-magnitude events are difficult to detect due to strong background noise (Groos
& Ritter, 2009). This raises a fundamental question: how can we effectively monitor low-
magnitude seismicity in such settings to better characterise subsurface processes?

We address this question by presenting a comprehensive workflow for detecting and
characterising low-magnitude seismic events in urban areas. The workflow integrates
data management, machine-learning-based event detection, and probabilistic hypocentre
estimation, providing a portable approach to seismic monitoring. We apply this workflow
to a 4-month monitoring period in Kwintsheul and demonstrate its effectiveness in


https://doi.org/10.70712/NJG.v104.12188
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.70712/NJG.v104.12188
mailto:d.f.naranjohernandez@tudelft.nl

David Naranjo et al.

Faults

M1.0

M2.0

M 3.0

M 4.0

KNMI sta. <2019.11

Kwint. station
Well KW GT-02
Well KW-GT-01
South Holland

100 km

BRUSSELS

1 52.02N

| 52.00N

4.25E 4.28E 4.31E

Figure 1. (A) Regional distribution of seismicity in the Netherlands, main structural features, and location of the Kwintsheul geothermal doublet. The epicentres from the complete
KNMI earthquake catalogue (1920-2021) (KNMI, 2023) are shown in red (natural seismicity) and blue (induced seismicity) circles. The stations of KNMI's permanent seismic network
(operational from 22 July 2019 to 9 November 2019) are shown in green (KNMI, 1993). The West Netherlands Basin (WNB), Groningen region, and Roer Valley Graben (RVG) are
highlighted, and the individual faults (v. Gessel et al., 2021) are shown in grey. The orange polygon delineates the province of South Holland, where the Kwintsheul geothermal
doublet is located (black square). (B) Enlarged view of the Kwintsheul geothermal site. The injector well (KW-GT-01) is shown in blue, and the producer well (KW-GT-02) is shown in
red. The temporal monitoring seismic stations are shown in dark red triangles. These were operational from 22 July to 9 November 2019. The background map tiles are provided

by OpenStreetMap (OpenStreetMap Contributors, 2017).

detecting previously unreported seismicity. Our findings
highlight the importance of dense seismic arrays to enhance
redundancy and azimuthal coverage, which is crucial for
detecting and locating low-magnitude seismicity. The results
provide insights into ongoing low-magnitude (M, < 0) seismic
activity; however, the nature of these events remains
inconclusive due to limitations in the velocity model and the
short monitoring period.

2. Geological context and seismicity in the Netherlands

The complete earthquake catalogue for the Netherlands and
surrounding regions (KNMI, 2023) indicates that natural seis-
micity is concentrated in the Roer Valley Graben (RVG),
depicted as red circles in Figure 1. These events are associated
with the northeastern extension of the active faults bounding
the Lower Rhine Graben (Houtgast & van Balen, 2000). Induced
seismic activity is concentrated in the northern Netherlands,
particularly in the Groningen region, linked to gas extraction
(Muntendam-Bos et al., 2022). These induced events, shown as
blue circles in Figure 1, are typically low in magnitude (M, <4.0).

Kwintsheul is located on top of the West Netherlands Basin
(WNB) in the province of South Holland. To this date, no
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seismic activity has been detected in this region by KNMI's
seismic monitoring network (KNMI, 2023). The WNB is a
60-km-wide transtensional basin that forms part of a failed rift
system (Boersma et al., 2021). It contains NW-SE oriented
normal faults and consists of Permian to Tertiary deposits that
reach thicknesses of up to 5 km, with a well-connected fault
system throughout (Worum et al., 2005; Duin et al., 2006;
Boersma et al., 2021). The location of the geothermal doublet is
depicted in Figure 1B. The injection and production wells reach
a depth of approximately 2300 m, targeting the Delft Sandstone
Member. The separation between the two wells is approximately
1500 m at reservoir depth. Until 2020, KNMI’'s magnitude of
completeness around Kwintsheul was M,1.0, meaning
earthquakes below this threshold were likely undetected
(Muntendam-Bos et al., 2022; Ruigrok et al., 2023).

3. Workflow for seismic monitoring

To characterise seismicity around Kwintsheul’s geothermal
operation, we adopted a multi-stage workflow designed to
manage seismic data, detect seismic events, and characterise
their hypocentres and magnitudes (Figure 2). The workflow
begins with data preparation, including seismic waveform
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Figure 2. Workflow for seismic-event detection, location, and characterisation. The process is divided into four main stages: data management, event detection, hypocentre

estimation, and local magnitude estimation.

management, station information, and retrieving local velocity
models. Next, event detections are performed using a combina-
tion of template matching (TM) and machine-learning-based
detection techniques. Finally, the detected events are character-
ised by estimating their hypocentres and magnitudes, account-
ing for uncertainties in both observed and theoretical phase
arrival times. The following sections provide a detailed descrip-
tion of each stage in the workflow.

3.1 Data management

Waveform data

Our workflow begins with preparing seismic waveform data
and station metadata. We use the Squirrel package from the
Pyrocko toolbox (Heimann et al., 2017) to manage these data-
sets. Its metadata caching allows quick inspection, helping us
detect and resolve issues such as gaps or timing errors.

Velocity-model retrieval

As part of the data management stage, we also retrieve the
velocity model required for hypocentre inversion. In this study,
we use Velmod (3.1), the Dutch regional seismic velocity model
(Pluymaekers et al., 2017). Velmod is a 3D velocity model that
integrates velocities measured in boreholes (sonic logs and
check-shot data) with stacking velocities derived from seismic
surveys. It provides a 3D distribution of seismic velocities and
includes estimates of their uncertainties. Further details regard-
ing the parameterisation of Velmod 3.1 are provided in Section
3.3. To retrieve the local velocity cube from Velmod, we use
PRESEIS (Kraaijpoel, 2025), which extracts the region of interest
and outputs the model as a multidimensional array in Xarray
format (Hoyer & Hamman, 2017). The next stage of the work-
flow involves event detection and preliminary locations.

3.2 Event detection

Template-matching detection — EQcorrscan

As the waveforms of a previously detected seismic event are
available, we use TM to identify additional events with similar
waveform characteristics. In this method, previously detected
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events serve as templates, which are cross-correlated with con-
tinuous waveform recordings from multiple seismic stations to
find matching events. Events identified through this process
are known as repeating microearthquakes, as they exhibit high
waveform similarity across different stations (e.g. Ellsworth,
1995; Menke, 1999). These events often originate from a concen-
trated volume of hypocentres and provide valuable insights for
monitoring induced seismicity.

TM was performed using the open-source Python package
EQcorrscan (Chamberlain et al., 2017). The preprocessing
parameters and threshold values for the TM are presented in
Section 5.1.

Machine-learning event detection

Machine-learning event detection involves two steps. Firstly,
we identify the onset times of seismic phases, such as P- and
S-waves, by distinguishing their unique signal attributes from
background noise. Secondly, we associate these seismic phases
across multiple stations with a single seismic event. These steps
are explained in detail below and the preprocessing parameters
are introduced in Section 5.

Step 1: Waveform image function

Deep-learning phase-picking models are trained on large data-
sets of manually labelled seismic phases (Mousavi et al., 2020;
Soto & Schurr, 2021). These models convert seismic waveforms
into time series known as image functions (or characteristic func-
tions), which quantify the probability of a P-phase, S-phase, or
noise being present in the waveform (Zhu & Beroza, 2019). An
example image function generated from single-station wave-
forms is shown in Figure 6 in Section 5.1. A phase detection is
declared if the probability is above a certain threshold.

We select the Generalised Phase Detection (GPD) model,
which was trained to detect P- and S-phases from events with
magnitudes between —0.81 and 5.7 and epicentral distances of
less than 100 km (Ross et al., 2018). The model was trained
using hand-labelled data archives from the Southern California
Seismic Network (California Institute of Technology and
United States Geological Survey Pasadena, 1926), which
included 1.5 million P- and S-wave seismograms and an equal
number of 4-second noise windows.
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Step 2: Stacking and migration — Qseek

To associate the neural network’s phase annotations with a
coherent seismic source, we apply the stacking and migration
approach implemented in the Qseek software (Isken
et al., 2025).

Figure 3 illustrates the stacking and migration approach,
where the seismograms are annotated with the first arrivals
of the P- and S-phases using a pre-trained neural network.
The magnitude of each annotation represents the model’s
certainty in the phase arrival. These annotations are back-
projected onto a subsurface grid according to theoretical
travel times and stacked at each node. The node with the
most constructive stack corresponds to the maximum
semblance (i.e. coherence of arrivals). If this value exceeds a
predefined threshold, the algorithm indicates a detection and
assigns the corresponding node as the most likely location of
the seismic event.

We describe the selection of preprocessing parameters and
detection thresholds in Section 5.1.

3.3 Hypocentre estimation

Hypocentre inversion aims to estimate the spatial location x
(often-times together with the origin time T,) at which energy
is released during a seismic event using the arrival times of
seismic phases at various seismic stations. It involves solving
both the forward and the inverse problem. In the forward
problem, theoretical seismic-phase arrival times are com-
puted, simulating the travel times of seismic waves

Shifted Image Function

Al VAVAVAVAVAVAVAVAVAV,

A2 %
\V.

C.1 Stack

D> /)

Shift TT
9,

Shift TT

Depth
Semblance (normalised)

Distance

Figure 3. Conceptual 2D illustration of the stacking-and-migration procedure used in
Qseek (Isken et al., 2025). (A.1) Image functions recorded at the receiver array (yellow
triangles) after shifting each trace by the predicted P-wave travel time from the blue
candidate node shown in B. The pulses remain misaligned, and the resulting stack
(C.1) displays low coherence. (A.2) Image functions shifted by the travel times from
the red candidate node in B. The shifts align the pulses coherently, producing a sharp,
high-amplitude peak in the corresponding stack (C.2). B. Two-dimensional search grid
beneath the array. The colour map denotes the maximum normalised semblance ob-
tained at each node. The blue and red squares indicate the two candidate nodes eval-
uated in panels (A.1) and (A.2).
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originating from a (potential) hypocentre to various receiver
stations. The inverse problem seeks to identify the solution(s)
that minimise the differences between theoretical phase arriv-
als (t_,) and observed phase arrivals (¢, ). Note that different
hypocentres may satisfy the fitting criterion, and small pertur-
bations in the input data (e.g. arrival times) can lead to signif-
icant changes in the inferred hypocentre. Therefore, we are
interested not only in the model parameters that best fit the
observed data but also in the overall volume of solutions and
their associated uncertainties.

Observed phase arrivals and associated uncertainty

An observed phase arrival corresponds to the (picked) onset
time of the first measurable seismic energy recorded on a seis-
mogram. Due to potential errors in picking the onset time, it is
more accurate to represent a phase arrival as a probability den-
sity function (PDF) rather than a scalar value. Following Lomax
et al. (2009), we use a normal distribution to describe an
observed phase arrival. The key parameters for the hypocentre
estimation are the mean of the distribution, ¢, , and the corre-
sponding standard deviation, ¢, . Figure 4 illustrates how these
terms are derived from the picking process and the correspond-
ing observed phase-arrival distribution. We manually reviewed
and selected the phase arrival times and their associated
uncertainty.

Theoretical phase arrival times

Estimating the hypocentre requires a model to compute theo-
retical phase arrival times, which are then compared with the
observed phase arrival times. The theoretical phase arrival,
t . results from the solution of the forward problem. To com-
putet ,, we require the receiver’s location, a hypocentre loca-
tion (our guess), and the forward function u describing the
propagation time from the hypocentre’s location to the
receiver’s location. The theoretical phase arrival time is
defined as:

tcalf (xs’ xr’ tO’ vmndel) = tU + u(xs’ xr’ Umodfl)' (1)

In this study, we adopt an infinite frequency approximation
(Lin & Ritzwoller, 2011). Specifically, u exploits the fast Marching
Method (FMM) (Sethian & Popovici, 1999), implemented in the
PyKonal Python Package (White et al.,, 2020). Besides being
contingent on the validity of the infinite frequency approximation,
the accuracy of the estimated travel time depends strongly on the
accuracy of the velocity model v

model”

Travel-time uncertainty

The accuracy of the velocity model v, ,, directly affects the
accuracy of the theoretical phase arrival times, which in turn
impacts the reliability of the hypocentre inversion. The velocity
model should closely represent accurate velocities in the sub-
surface and, as such, correctly account for the interaction of the
phases with the different lithostratigraphic units and their
geometry. Variations in subsurface properties, such as layer
thicknesses or velocity gradients, can lead to deviations
between the theoretical and observed phase arrivals. To account
for these variations, the velocity model must incorporate both
mean velocity values and measures of variability, such as
standard deviations or probability distributions. These can be
used as inputs to estimate the uncertainties of the theoretical
phase arrivals.
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Figure 4. lllustration of a p-phase arrival time and associated picking uncertainty. The blue line represents a seismic trace, while the green line is a normal distribution that de-
scribes the uncertainty of the phase arrival time. Note that the normal distribution is scaled for visual clarity, and its integral equals one. The label on the vertical axis only applies

to the seismic trace amplitude.

The following steps detail the procedure we use to estimate
the standard deviation of ¢, :
1) Retrieve the velocity profile: Select a 1D velocity profile

with well-defined mean velocity values and standard devi-
ations for each geological unit (see Section 4.2). For this
study, the profile is taken from the surface location of
Kwintsheul’s geothermal doublet.

2) Monte Carlo Sampling: Use the mean velocity values
and their standard deviations to generate multiple
realisations of the velocity model, perturbing the mean
velocities by sampling from their respective
distributions.

3) Recalculate theoretical phase arrivals: For each perturbed
velocity model, recompute the t , at the maximum
likelihood hypocentre.

4) Quantify variability: Compute the standard deviation of
the recalculated ¢, values across all realisations. This
standard deviation represents o_, .
The resulting o, quantifies the uncertainty in the

theoretical phase arrival times caused by variability in
the velocity model. This value is subsequently used in the
likelihood function to account for travel-time uncertainties
in hypocentre estimation. Note that we did not consider
potential correlations of the calculated travel times between
different stations. Ideally, this would have been the
case, but to limit the computational burden, we chose not to
do so.
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Equal-differential-time likelihood function

A likelihood function is used to quantify how likely it is that a
specific hypocentre could explain the observed phase arrival
times. The Equal-Differential-Time formulation (Font et al.,
2004) is an approximation that allows removing the origin time
from the unknown parameters. It is also robust in case of outli-
ers (Lomax et al., 2009). If a hypocentre x_ is perfectly deter-
mined within the Earth model, and in the absence of noise, the
time difference between the calculated phase arrivals at two
seismic stations @ and b should be equal to the difference
between their corresponding observed phase arrivals, i.e.:

a b _ @ b (2)

cale ~ ‘cale obs — ‘obs”

A reliable hypocentre estimation requires accounting for the
uncertainties related to the theoretical phase arrivals and
observed phase arrivals. Accounting for these terms, the
likelihood of the hypocentre becomes:

- 3)

([’st — 1 ] B [’:azc ()= 10 (xs)])z

cl+o?
a b
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where L(x,) estimates the Gaussian likelihood of the hypocentre
b . . .
x.. The terms ¢ and Z, are the observed arrival times at seis-

. . . a b . .
mic stations a and b, while 7, and ¢/, are their corresponding

modelled arrival times. The variances of the observed and the-
oretical phase arrivals of stations 2 and b are denoted by 0'5 and
o;, respectively.

For stations a and b, the total uncertainty is expressed as:

2 2 2 2
0,=0 +Gcalc,a’ obs,b

2 2
a obs,a O-b =0 + O-calc,b > (4)

2 2
where O bs.a and O o

observed phase arrivals at stations a and b, respectively,
and o’

calc,a

represent the uncertainties in the

and O'CZaIC! , correspond to the uncertainties in the the-

oretical phase arrivals. These combined uncertainties are used
in calculating the likelihood function L(x,), which measures the
agreement between the observed and theoretical arrival times
for a given hypocentre x..

L(x ) reaches its maximum value when the differentials of
the observed and theoretical phase arrivals are equal, hence the
term Equal Differential Time (EDT). Since the summation over
observations occurs outside the exponential, the EDT PDF
attainsits highest values at locations where the most observation
pairs are satisfied, making it robust against outliers (Lomax
et al., 2009). In addition, the EDT PDF is independent of the
earthquake’s origin time.

Complete probabilistic solution — posterior sampling

Tarantola and Valette (1982) introduced a general methodology
to obtain a complete probabilistic solution of a seismic event’s
hypocentre by computing the posterior probability distribution
(PPD):

a(m) = x p(m)L(m). ®)

Here, m is the model parameter vector, which includes the
hypocentre’s spatial coordinates (x, y, z). In this equation, « is a
normalisation constant that ensures the posterior integrates to
one, p(m) is the prior PDF representing prior knowledge of the
model parameters, and L(m) is the likelihood function
representing how well the observed data fits a given set of
model parameters. In our case, the likelihood is estimated
through equation (3), which effectively removes the origin time
from m (as explained in Section 3.3). It should be understood
that this likelihood is an approximation of the true Gaussian
likelihood function in the sense that the correlation between
different arrival time differences is ignored. In principle, these
can be accounted for using a covariance matrix (Spetzler et al.,
2024). This, however, would require us to limit the number of
arrival-time differences to N — 1 (where N is the number of
stations for which a P-wave arrival-time pick is available). In
this study, we choose to adopt the likelihood proposed by
Lomax et al. (2009), which is based on all arrival-time differences
(N (N - 1)/2). In principle, any set of model parameters can be
arbitrarily chosen to calculate theoretical phase arrivals.
However, prior information, often based on fundamental laws
or physical constraints, can indicate whether a set of parameters
is feasible. Here, we use a uniform prior probability density
that assumes that any model parameter has an equal probability
of explaining the observed data:
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p(m) = const. (6)

That is, we assign equal a priori probabilities to equal
volumes. Note that the prior is not completely uninformative,
as we still choose a search area.

The spatial domain must be discretised into a grid to perform
numerical computations. Each grid cell represents a
surrounding region (Ax Ay Az), which must be sufficiently
small to ensure the probability distribution remains
approximately constant within the cell (Mosegaard & Tarantola,
1995). Consequently, the probability associated with a point in
the grid denotes the probability that the hypocentre falls within
the surrounding region represented by the grid cell. The
marginal PDF of the hypocentre can be estimated by integrating
over specific parameters in the model parameter space. The
marginal PDF of the epicentral location can be obtained by
integrating over the depth parameter z as:

ey (5)= [ plom) () o
where the limits of integration represent the plausible range of
hypocentral depths.

The marginal PDF for the depth, 7 (z), can be obtained by
integrating over the epicentral coordinates x and y from the
full posterior distribution. This process effectively reduces
the three-dimensional posterior PDF to a one-dimensional
distribution along the depth axis, which allows us to understand
the uncertainty specifically related to the depth of the
hypocentre. The depth PDF is computed as:

Fax [0 Vmax
w@= [ pomyLom) ava, ®)
Xeain ¥ Vain

where the integration bounds represent the plausible spatial
extent of the epicentre.

The spatial uncertainty of the seismic events is quantified by
analysing the depth’s marginal PDF 7. We define the
uncertainty range as the interval where the likelihood values
exceed 95% of the maximum likelihood, ensuring that it
encompasses the most probable depth values. We refer to this
range as the 95% confidence interval.

To estimate this range, we follow these steps:

1) Identify the maximum likelihood value, L__, from the 3D
posterior distribution.

2) Define a threshold at 95% of L__,
tions are considered significant.

3) Calculate the mean likelihood over x and y. The depth
uncertainty range is determined as the interval [z
where the mean likelihood exceeds the threshold.

4) The depth uncertainty is givenby Az=z__ -z

above which depth solu-

i Zonax)
min max

ax in®

The probabilistic hypocentre determination provides the
spatial coordinates and depth of each event, along with their
associated uncertainties. These results serve as essential inputs
for the next step: estimating event magnitudes.

3.4 Local-magnitude estimation

We estimate the local magnitudes (M, ) following the methodol-
ogy described by Dost et al. (2004). This approach uses the
observed peak amplitudes from seismic waveforms, corrected
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for distance-dependent attenuation. The attenuation correction
factor was calibrated using a set of induced earthquakes
at approximately 3 km depth in the Groningen area (Dost
et al., 2004).

The procedure for estimating M, involves the following
steps:

1) Waveform preparation: Seismic waveforms are detrended
and preprocessed using instrument-response corrections to
obtain Wood-Anderson-equivalent amplitudes. We use
only horizontal components of the waveform, correspond-
ing to S-wave arrivals, for magnitude estimation.

2) Peak amplitude extraction: For each horizontal trace, the
absolute peak amplitude (A,,) is identified. Here, A, is the
maximum averaged horizontal-displacement amplitude of
a simulated Wood-Anderson instrument, expressed in
millimetres.

3) Local-magnitude calculation: The local magnitude for each
station is computed as:

M, =log,(A,,) + 1.33 1og,(R) + 0.00139R + 0.424  (9)

(Dost et al., 2004), where A, , is the observed peak amplitude
of the simulated Wood-Anderson displacement, and R is the
hypocentral-distance correction term.

4) Station filtering: Magnitudes are calculated for all stations
that recorded the event, and the median magnitude is used
as the event’s M, . Stations with anomalous deviations from
the event-wise mean are excluded.

4, Data
4.1 Waveform data

The temporary seismic network in Kwintsheul was operational
from 22 July 2019 to 9 November 2019 (Muntendam-Bos et al.,
2022; Naranjo et al., 2022). The network consisted of 30
three-component force-balance Seismotech geophone sensors,
which recorded at a bandwidth of 0.2-100 Hz at 250 sps. These
were installed on the surface. The geometry of the network con-
sisted of two intersecting lines, each composed of 13 stations,
covering an area of approximately 3.8 km? These stations were
installed with an average in-line spacing of 150 meters. The lay-
out was designed to record ambient seismic noise for consecu-
tive illumination analysis and application of body-wave seismic
interferometry (e.g. Panea et al., 2014). Additionally, an outer
ring of four peripheral stations surrounded the array, encom-
passing an 18 km? area around the injection point of the geo-
thermal doublet. The goal of the peripheral stations was to
increase the azimuthal coverage for the location of events and a
more robust estimation of hypocentral depths. The network’s
layout and the location of the geothermal doublet are shown in
the inset of Figure 1.

As explained in Section 3.1, we assess the completeness of
the available seismic waveform data. Figure 5 provides an
overview of the data, with vertical lines indicating gaps in the
data that directly affect the detection results and hypocentre
estimations (see Section 5).

The most significant data gaps are observed at stations 027,
029, and 030. These stations are part of the outer ring designed
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to improve azimuthal coverage and extend the array’s reach
(Figure 1). Specific details regarding these gaps include:

e Station 029 stopped recording on 18 July 2019.

e Station 027 stopped recording on 16 August 2019.

e Station 030 experienced intermittent gaps and stopped
recording on 29 September 2019.

The effects of these gaps on detection capabilities and
hypocentre estimations are further detailed in Section 5.

4.2 Seismic-velocity model

We compute theoretical phase arrivals and travel-time uncer-
tainties (Sections 3.3 and 3.3) using Velmod 3.1 (Pluymaekers
etal.,, 2017). Velmod provides both the mean velocities and cor-
responding uncertainties for each geological unit. It is parame-
terised as follows:

unit _ it it
Vi (z) = W(VO‘”” o )+ k-z,

(10)
where Vl::’t” (z)is the P-wave velocity at depth z, VO"”” is the mean
velocity at the top of the unit, 0} is the standard deviation of
the velocity, and £ is the velocity gradient within the unit. For
additional details on retrieving the velocity model, refer to

Section 3.1.

5. Results
5.1 Event detections

The magnitude Md 0.16 event reported in Muntendam-Bos
et al. (2022) raised the question of whether more seismicity
occurred below Kwintsheul. We, therefore, applied the TM
detection routine (see Section 3.2) using the waveforms from
the reported event as templates. To enhance the signal, we
apply a band-pass filter between 4 Hz and 20 Hz and use
templates with a length of 1 s following the P- and S-wave
phase arrival time. We use templates for each station channel
(i.e. P-wave for vertical components and S-wave for horizon-
tal components). As a result, we identified five additional
seismic events with near-identical waveforms. Together with
the event reported in Muntendam-Bos et al. (2022), this gives
six events.

Building on the six identified seismic events, we calibrate
the machine-learning detection routine. Among several
deep-learning arrival-time picking models, we select the
Generalized Phase Detection (GPD) model (Ross et al.,
2018), whose training dataset includes low-magnitude
events (see Section 3.2 for details). To ensure consistency
with the features learned by the GPD model, we apply the
same preprocessing: a high-pass filter at 2 Hz and
resampling to 100 Hz. Note that these processing parameters
deviate from those of the TM routine. We select P- and
S-pick thresholds of 0.3 based on the analysis of image
functions for the identified events. Figure 6 shows an
example image function generated using these threshold
values. When the image function exceeds the threshold, a
phase arrival is annotated in the time series.

The annotated image functions are the input for the stacking
and migration approach explained in Section 3.2. To improve
the accuracy of stacking and migration, we define a 1D velocity
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model retrieved at the location of the injection well. This
velocity model is used by Qseek to estimate the travel-time
shifts (see Figure 3A). We select a maximum semblance
threshold of 0.8, which enables us to detect five of the six events
used for calibration.

In total, the machine-learning detection routine identified 65
events that exhibit coherent seismic signals across the seismic
array. We classified these events based on their waveform
characteristics and spatial distribution. The detection statistics
are summarised in Figure 7, and further details on each category
can be found in Section 5.2.

Alimitation of the machine-learning detection routine is the
disproportionately large number of detections produced when
fewer sensors are recording. After the association step outlined
in Section 3.2, the detection workflow yielded 17,108 detections.
However, 16,812 occurred on just six specific dates when station
coverage was particularly low (<50%). These dates and the
number of sensors operating at those times are summarised in
Table 1.

5.2 Waveform characterisation

The 65 events detected in Kwintsheul can be categorised based
on their waveform attributes into (1) microseismic cluster, (2)
eastern events, (3) other events, and (4) a controlled explosion.

1) Microseismicity Cluster: Corresponds to six events that
exhibit clear, impulsive P- and S-wave arrivals with fre-
quencies between 5 and 50 Hz (see Figure 8) and P- to
S-wave delays of approximately 1.8 seconds. The character
of the phase arrivals is impulsive, with a clear, sudden
onset. P-waves are most prominent on the vertical compo-
nent recordings, whereas the S-waves are most pronounced
on the horizontal components.

2) Eastern Events: Correspond to 55 coherent events coming
from the East of the array. These events exhibit frequencies
from 1 to 25 Hz for P-waves and 1 to 12 Hz for the later
arriving waves (delayed by approximately 4 seconds with
respect to the impulsive P waves; see Figure 9A and 9C). In
an attempt to estimate their hypocentres, we found that
they appear to originate at or close to the Earth’s surface.
Since there is no mechanical argument for having earth-
quakes originate at depths less than approximately 200
meters (unconsolidated sediments do not allow for seismic
stress release), we believe that they, in fact, originated at the
Earth’s surface. The lack of a clear S-wave arrival supports
this conclusion. We did not include the hypocentre inver-
sion results because the high azimuthal gap (>250) renders
the posterior very broad (although it is clear that they come
from the East).

3) Other Events: Correspond to three events that exhibit three
pulses of low-frequency waves in the vertical component.
The spectrogram analysis (Figure 9B and 9D) reveals that
the energy is predominantly concentrated along the vertical
component, with frequencies ranging between 5 and 10 Hz.
The energy travels primarily vertically as the signals arrive
almost simultaneously at all stations. There is, furthermore,
no clear evidence of an S-wave associated with these events.

4) Controlled Explosion: Corresponds to a controlled explo-
sion in the North Sea on 2019-10-15 at 17:47:11, also reported
in the International Seismological Centre’s On-Line Bulletin
(ISC, 2025) with Event ID 618929881.
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5.3 Hypocentres and magnitudes

To investigate the spatial distribution of the microseismicity
cluster, we derived their maximume-likelihood hypocentre
solutions with 95% confidence intervals as error bars shown in
Figure 10A-C. The hypocentres of the microseismicity cluster
are located at approximately 2.3 km depth, with vertical uncer-
tainties ranging from 267 to 735 m (Table 2).
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Table 1. Summary of days with fewer than 16 operational stations and elevated
detection numbers

Date Number of available False detections
stations

29 June 2019 6 2786

9 July 2019 15 36

18 July 2019 13 119

19 July 2019 4 4386

20 July 2019 5 8409

8 November 2019 7 1076

Events on 2019-09-11, 2019-10-02 and 2019-10-06 have
different depth hypocentre values (~2.1 km), as shown in
Table 2. These events were not recorded by any peripheral
station, which increased their azimuthal gap and, consequently,
their depth uncertainty, as shown in Appendix A.

To contextualise the hypocentre solutions with the known
faults in the Kwintsheul area, we compare them in Figure 10D
against the mapped faults, the geothermal doublet, and the
seismic stations. The interpretation of these mapped faults is
derived from a regional 3D seismic dataset reprocessed in 2012,
covering approximately 1200 km? in the WNB (Merrifield,
2012), and was provided by S. Peeters (personal communication,
November 2024). The six seismic events lie close to a local fault
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as well as the injection well, as shown in Figure 10D. We
estimate the minimum distance from each event to the nearest
point on the closest fault, finding values ranging from 265 to
434 m. However, since the uncertainties in the X, Y, and Z
coordinates are within this range, it is not possible to determine
whether the events originated on the fault.

The local magnitudes of the microseismicity cluster range
from -1.60 to -2.52, computed with the site-specific local-
magnitude formula given in Equation 9. The deviation of
station-specific M, s with respect to the median varies from 0.13
to 0.18 M,, which shows a relatively low variability among the
different stations. This is not surprising, given that the stations
are relatively close to each other.

6. Discussion

A primary motivation for this study was to develop a work-
flow to monitor low-magnitude seismic events in the
Netherlands, particularly those around areas with geother-
mal operations. Although the nationwide KNMI network
effectively detects events above the regional and spatially
varying magnitude of completeness (Ruigrok et al., 2023),
lower magnitude events will go unnoticed. Detecting and
accurately locating these low-magnitude events is crucial
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for understanding seismicity patterns, informing network
designs, and ensuring the safe expansion of geothermal
operations. Our results confirm that such low-magnitude
seismic events occur in the study area.

We demonstrated that local dense seismic arrays are
essential for microseismic-event detectability. False detections
increased sharply when the array was partially or poorly
configured, highlighting the importance of robust station
coverage. Moreover, noisy urban environments benefit from a
multi-method approach that includes deep-learning pickers
and TM (Panebianco et al., 2023; Sugan et al., 2023; Diaferia
et al., 2024). Using the multimethod approach introduced in
Section 3.2, we identified 65 events that exhibited coherent
signals during the 4-month monitoring period.

We found that the seismic event, reported in Muntendam-
Bos et al. (2022), was not an isolated occurrence but part of a
repetitive microseismic sequence. This follows from
applying the TM method, which identified five similar
events. The nearly identical waveform patterns indicate a
common source region and mechanism. The six seismic
events occur at a depth of approximately 2.3 km near both a
mapped fault system and the injection well KW-GT-01. The
depth uncertainties, however, prevent a definitive
interpretation of whether these events are fault-related or
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induced by the injection. The limited duration of the
monitoring period further complicates this distinction.
Longer-term monitoring would help clarify whether these
events are truly linked to seismic stress release in the
geothermal reservoir, activities at the well, or natural
tectonic activity.

In addition, we detected seismicity originating to the east of
the array, referred to as Eastern Events (or Cluster 2 events).
These events exhibit impulsive P-wave arrivals, but they lack an
impulsive S-wave. The attenuation of high-frequency S-waves
suggests a more distant source for Cluster 2 events. The high
azimuthal gap in the current array configuration prevented us
from properly estimating their hypocentres, but an origin at the
Earth’s surface is likely (though not confirmed). Clearly, low
detection thresholds are needed to identify low-magnitude
seismicity. These low thresholds result in a higher number of
false detections, which requires manual inspection. In regions
with high seismicity rates, such manual inspection may
be infeasible. Therefore, we recommend retraining the machine-
learning pickers on site-specific datasets to improve pick
accuracy, enable lower thresholds, and, thereby, reduce false
detections. This strategy is particularly suitable where permanent
seismic stations and high seismicity rates are available.

Our findings highlight a critical limitation of the current
array design: excessive reliance on the outer ring of stations.
Although the two lines of aligned sensors provide
redundancy in signal detection, they do little to improve
azimuthal coverage or depth resolution. This array design
is, therefore, suboptimal for passive seismic studies that
require accurate event locations (at reservoir depths of two
or three kilometres). An optimized network targeting the
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already localized seismic events is recommended for future
campaigns (e.g. Maurer et al.,, 2010; Toledo et al., 2020;
Esquivel-Mendiola et al., 2022). For large-scale operations,
including borehole geophones would aid in estimating the
depths of hypocentres.

Beyond the need for better station coverage, our study
underscores the importance of refining the velocity model used
for event location. Although the publicly available P-wave
velocity model (Velmod 3.1) was instrumental for this study, an
S-wave velocity model is needed to enhance the depth resolution
and reduce location uncertainties (e.g. Spetzler et al., 2024).

Our analysis also highlights the challenges of magnitude
estimation for low-magnitude events. The Groningen-
calibrated magnitude formula (Equation 9), used here as a
first-order approximation, may result in systematic under- or
over-estimation of event magnitudes in South Holland, where
the subsurface properties are different. In addition, Equation
9 is calibrated using recordings from borehole geophones at
200 meters depth. It should, in principle, be used for particle
motions recorded at that (or close to that) depth. Establishing
a specialised local magnitude scale for this region would
require a dedicated network design, knowledge of site-specific
attenuation properties, and additional data collected over a
longer monitoring period (i.e. more earthquakes).

Taken together, our findings address an important gap
between large-scale seismic detection frameworks and the
finer resolution needed for local hazard assessment. Moving
forward, efforts to refine velocity models, improve monitoring
networks, and establish regional magnitude scales will
enhance our ability to capture and interpret low-magnitude
seismicity.
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Figure 10. Hypocentres that belong to the microseismic cluster. (A, B, C) Map showing the spatial distribution of event hypocentres with associated 95% confidence interval
shown as error bars. The background image corresponds to the 3D velocity model used for the inversion, and its corresponding colour scale is shown in the legend on the right
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Table 2. Characterization of the detected microseismic events. Origin times are given in Coordinated Universal Time (UTC). Hypocentre coordinates are reported in
the Dutch national reference system (EPSG: 28992). M,denotes the local magnitude, and Var(M,) represents the variance of the magnitude estimates across multiple
stations. The parameters g, o, and g, correspond to the 95% confidence intervals of the hypocentre location in each coordinate direction.

Date Time x [m] y [m] z [m] Az. gap M, Var(M,) g, [m] g, [m] o, [m]
2019-06-23 08:02:08 79483.25 447004.24 -2314.38 93 -2.04 0.13 602 363 267
2019-07-14 08:48:31 79483.30 446967.93 —-2354.52 143 —1.60 0.21 662 399 294
2019-07-15 12:11:51 79543.51 446986.10 -2314.38 95 -1.79 0.18 632 38l 280
2019-09-11 08:51:06 79212.04 446986.08 -2274.25 149 -2.00 0.13 1627 980 722
2019-10-02 11:46:50 79392.84 447004.24 -2100.33 150 =211 0.13 1446 871 642
2019-10-06 01:20:01 79392.90 446986.08 -2153.85 170 -2.52 0.18 1657 998 735

7. Conclusions

We presented a comprehensive workflow for monitoring seismic-
ity, specifically designed to detect and characterise low-magni-
tude events in urban areas. We addressed key challenges in
seismic monitoring by integrating data preparation, tem-
plate-matching detection, machine-learning-based detection, and
probabilistic hypocentre estimation. Applying this workflow to
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the Kwintsheul area, we detected six seismic events near a local
fault and near the bottom of injection well KW-GT-01, although
spatial uncertainties remain in the order of hundreds of meters. In
addition, we detected 59 events with coherent signals, but inade-
quate azimuthal coverage hindered their accurate characterisa-
tion. Our findings highlight the need for more spatially distributed
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networks, refined local velocity models, and region-specific
magnitude calibrations to enhance the accuracy and reliability
of seismic monitoring. Our workflow provides a scalable and
adaptable solution for improving seismic monitoring in urban
environments.
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Appendix
A Influence of station 030 on hypocentre uncertainty

The influence of Station 030 on hypocentre location accuracy is
illustrated in Figure A1, which compares two inversions: one
excluding data from Station 030 (Panels A and C) and one
including it (Panels B and D). The likelihood probability den-
sity function (PDF) is visualised using a Viridis colour scale,
where higher values indicate greater likelihood.

In the inversion without Station 030 (Figure A1.A and C),
the maximum likelihood location is estimated at x = 79355.37,
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y = 446982.12, and z = -2084.03 m. The uncertainties for this
estimate are: azimuthal gap of 168.68°, depth uncertainty of
470.59 m, x uncertainty of 1060.01 m, and y uncertainty of
638.47 m.

Including Station 030 in the inversion (Figure A1.B and D)
significantly reduces uncertainties and shifts the maximum
likelihood location. The new estimate is at x = 79506.80,
y = 446936.51, and z = -2386.55 m. The uncertainties for this
solution are: azimuthal gap of 146.07, depth uncertainty
of 201.68 m, x uncertainty of 454.29 m, and y uncertainty of
273.63 m.
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Figure A1. Probability density function (PDF) projections for two seismic events. (A and C) show the map view and cross-section of the event on 14 July 2019, while (B and D)
show the event on 6 October 2019. Red and blue lines represent the geothermal wells KW-GT01 and KW-GT02. Dark red triangles indicate seismic stations, and dotted lines mark
the cross-section positions. PDF contours (Viridis scale) are overlaid on the velocity model used for the inversion.
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