
 
 

Delft University of Technology

Urban challenges in seismology
seismic monitoring of Kwintsheul’s geothermal operation (the Netherlands)
Naranjo, David; Isken, Marius; Boullenger, Boris; Toledo, Tania; Weemstra, Cornelis; Draganov, Deyan

DOI
10.70712/njg.v104.12188
Publication date
2025
Document Version
Final published version
Published in
Netherlands Journal of Geosciences: Geologie en Mijnbouw

Citation (APA)
Naranjo, D., Isken, M., Boullenger, B., Toledo, T., Weemstra, C., & Draganov, D. (2025). Urban challenges
in seismology: seismic monitoring of Kwintsheul’s geothermal operation (the Netherlands). Netherlands
Journal of Geosciences: Geologie en Mijnbouw, 104, Article e12188.
https://doi.org/10.70712/njg.v104.12188
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.70712/njg.v104.12188
https://doi.org/10.70712/njg.v104.12188


https://doi.org/10.70712/NJG.v104.12188

1. Introduction

The Netherlands is increasingly adopting geothermal energy to reduce carbon emissions 
and transition to local, sustainable energy sources. Understanding the subsurface processes 
associated with geothermal operations is essential to optimise resource extraction and 
ensure long-term sustainability. These processes, such as fluid migration and fault reactiva-
tion, are often accompanied by low-magnitude seismic events. Therefore, seismic monitor-
ing is a key tool for characterising geothermal reservoirs.

In 2018, a geothermal doublet became operational in Kwintsheul, South Holland, to 
heat 64 hectares of greenhouses. At that time, the coverage of the Royal Netherlands 
Meteorological Institute’s (KNMI) seismological network was still relatively sparse in 
the province of South Holland, as shown in Figure 1. In 2019, a temporary passive 
seismic network was installed to study the interaction between the geothermal 
operation and the underlying geological structures. During this monitoring period, a 
seismic event with a magnitude of Md 0.16 was detected on 14 July 2019 (Muntendam-
Bos et al., 2022). This event suggested the presence of more low-magnitude seismicity 
in the region, motivating us to investigate the feasibility of detecting additional events 
in the recorded data.

Monitoring low-magnitude seismicity around geothermal operations is challenging in 
the Netherlands. Many of these operations are located in noisy urban environments, 
where low-magnitude events are difficult to detect due to strong background noise (Groos 
& Ritter, 2009). This raises a fundamental question: how can we effectively monitor low-
magnitude seismicity in such settings to better characterise subsurface processes?

We address this question by presenting a comprehensive workflow for detecting and 
characterising low-magnitude seismic events in urban areas. The workflow integrates 
data management, machine-learning-based event detection, and probabilistic hypocentre 
estimation, providing a portable approach to seismic monitoring. We apply this workflow 
to a 4-month monitoring period in Kwintsheul and demonstrate its effectiveness in 
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Abstract

Seismic monitoring is essential for understanding subsurface processes, particularly in 
geothermal operations where low-magnitude events can provide valuable insights into 
reservoir behaviour. There are two significant challenges when monitoring the seismicity 
in Dutch geothermal operations: (1) detecting signals from seismic events as noise levels 
are typically high in regions hosting geothermal operations, and (2) accurately estimating 
their corresponding hypocentre and uncertainty. In this study, we present a comprehen-
sive workflow for detecting and characterising low-magnitude seismic events. Specifi-
cally, we integrated data preparation, template-matching and machine-learning-based 
event detection, and probabilistic hypocentre estimation. Applying this workflow to 4 
months of recordings in Kwintsheul, Netherlands, we detected 65 events with coherent 
signals, including six weak seismic events (ML < 0.0) near a local fault and a geothermal 
injection well. These events suggest the presence of a recurring microseismic sequence 
previously unreported in the area. However, spatial uncertainties, the short monitoring 
period, and the limited azimuthal coverage make the nature of these events unclear. Our 
findings highlight the importance of improving network design and refining velocity 
models to reduce uncertainties in event locations and magnitudes. The proposed work-
flow offers a scalable solution for enhancing seismic monitoring, particularly in urban 
and geothermal settings.
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detecting previously unreported seismicity. Our findings 
highlight the importance of dense seismic arrays to enhance 
redundancy and azimuthal coverage, which is crucial for 
detecting and locating low-magnitude seismicity. The results 
provide insights into ongoing low-magnitude (ML < 0) seismic 
activity; however, the nature of these events remains 
inconclusive due to limitations in the velocity model and the 
short monitoring period.

2. Geological context and seismicity in the Netherlands

The complete earthquake catalogue for the Netherlands and 
surrounding regions (KNMI, 2023) indicates that natural seis-
micity is concentrated in the Roer Valley Graben (RVG), 
depicted as red circles in Figure 1. These events are associated 
with the northeastern extension of the active faults bounding 
the Lower Rhine Graben (Houtgast & van Balen, 2000). Induced 
seismic activity is concentrated in the northern Netherlands, 
particularly in the Groningen region, linked to gas extraction 
(Muntendam-Bos et al., 2022). These induced events, shown as 
blue circles in Figure 1, are typically low in magnitude (ML ≤ 4.0).

Kwintsheul is located on top of the West Netherlands Basin 
(WNB) in the province of South Holland. To this date, no 

seismic activity has been detected in this region by KNMI’s 
seismic monitoring network (KNMI, 2023). The WNB is a 
60-km-wide transtensional basin that forms part of a failed rift
system (Boersma et  al., 2021). It contains NW-SE oriented
normal faults and consists of Permian to Tertiary deposits that
reach thicknesses of up to 5 km, with a well-connected fault
system throughout (Worum et  al., 2005; Duin et  al., 2006;
Boersma et al., 2021). The location of the geothermal doublet is
depicted in Figure 1B. The injection and production wells reach
a depth of approximately 2300 m, targeting the Delft Sandstone 
Member. The separation between the two wells is approximately 
1500 m at reservoir depth. Until 2020, KNMI’s magnitude of
completeness around Kwintsheul was ML1.0, meaning
earthquakes below this threshold were likely undetected
(Muntendam-Bos et al., 2022; Ruigrok et al., 2023).

3. Workflow for seismic monitoring

To characterise seismicity around Kwintsheul’s geothermal 
operation, we adopted a multi-stage workflow designed to 
manage seismic data, detect seismic events, and characterise 
their hypocentres and magnitudes (Figure 2). The workflow 
begins with data preparation, including seismic waveform 

Figure 1.  (A) Regional distribution of seismicity in the Netherlands, main structural features, and location of the Kwintsheul geothermal doublet. The epicentres from the complete 
KNMI earthquake catalogue (1920–2021) (KNMI, 2023) are shown in red (natural seismicity) and blue (induced seismicity) circles. The stations of KNMI’s permanent seismic network 
(operational from 22 July 2019 to 9 November 2019) are shown in green (KNMI, 1993). The West Netherlands Basin (WNB), Groningen region, and Roer Valley Graben (RVG) are 
highlighted, and the individual faults (v. Gessel et al., 2021) are shown in grey. The orange polygon delineates the province of South Holland, where the Kwintsheul geothermal 
doublet is located (black square). (B) Enlarged view of the Kwintsheul geothermal site. The injector well (KW-GT-01) is shown in blue, and the producer well (KW-GT-02) is shown in 
red. The temporal monitoring seismic stations are shown in dark red triangles. These were operational from 22 July to 9 November 2019. The background map tiles are provided 
by OpenStreetMap (OpenStreetMap Contributors, 2017).
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management, station information, and retrieving local velocity 
models. Next, event detections are performed using a combina-
tion of template matching (TM) and machine-learning-based 
detection techniques. Finally, the detected events are character-
ised by estimating their hypocentres and magnitudes, account-
ing for uncertainties in both observed and theoretical phase 
arrival times. The following sections provide a detailed descrip-
tion of each stage in the workflow.

3.1 Data management

Waveform data
Our workflow begins with preparing seismic waveform data 
and station metadata. We use the Squirrel package from the 
Pyrocko toolbox (Heimann et al., 2017) to manage these data-
sets. Its metadata caching allows quick inspection, helping us 
detect and resolve issues such as gaps or timing errors.

Velocity-model retrieval
As part of the data management stage, we also retrieve the 
velocity model required for hypocentre inversion. In this study, 
we use Velmod (3.1), the Dutch regional seismic velocity model 
(Pluymaekers et al., 2017). Velmod is a 3D velocity model that 
integrates velocities measured in boreholes (sonic logs and 
check-shot data) with stacking velocities derived from seismic 
surveys. It provides a 3D distribution of seismic velocities and 
includes estimates of their uncertainties. Further details regard-
ing the parameterisation of Velmod 3.1 are provided in Section 
3.3. To retrieve the local velocity cube from Velmod, we use 
PRESEIS (Kraaijpoel, 2025), which extracts the region of interest 
and outputs the model as a multidimensional array in Xarray 
format (Hoyer & Hamman, 2017). The next stage of the work-
flow involves event detection and preliminary locations.

3.2 Event detection

Template-matching detection – EQcorrscan
As the waveforms of a previously detected seismic event are 
available, we use TM to identify additional events with similar 
waveform characteristics. In this method, previously detected 

events serve as templates, which are cross-correlated with con-
tinuous waveform recordings from multiple seismic stations to 
find matching events. Events identified through this process 
are known as repeating microearthquakes, as they exhibit high 
waveform similarity across different stations (e.g. Ellsworth, 
1995; Menke, 1999). These events often originate from a concen-
trated volume of hypocentres and provide valuable insights for 
monitoring induced seismicity.

TM was performed using the open-source Python package 
EQcorrscan (Chamberlain et  al., 2017). The preprocessing 
parameters and threshold values for the TM are presented in 
Section 5.1.

Machine-learning event detection
Machine-learning event detection involves two steps. Firstly, 
we identify the onset times of seismic phases, such as P- and 
S-waves, by distinguishing their unique signal attributes from 
background noise. Secondly, we associate these seismic phases 
across multiple stations with a single seismic event. These steps 
are explained in detail below and the preprocessing parameters 
are introduced in Section 5.

Step 1: Waveform image function
Deep-learning phase-picking models are trained on large data-
sets of manually labelled seismic phases (Mousavi et al., 2020; 
Soto & Schurr, 2021). These models convert seismic waveforms 
into time series known as image functions (or characteristic func-
tions), which quantify the probability of a P-phase, S-phase, or 
noise being present in the waveform (Zhu & Beroza, 2019). An 
example image function generated from single-station wave-
forms is shown in Figure 6 in Section 5.1. A phase detection is 
declared if the probability is above a certain threshold.

We select the Generalised Phase Detection (GPD) model, 
which was trained to detect P- and S-phases from events with 
magnitudes between −0.81 and 5.7 and epicentral distances of 
less than 100 km (Ross et  al., 2018). The model was trained 
using hand-labelled data archives from the Southern California 
Seismic Network (California Institute of Technology and 
United States Geological Survey Pasadena, 1926), which 
included 1.5 million P- and S-wave seismograms and an equal 
number of 4-second noise windows.

Figure 2.   Workflow for seismic-event detection, location, and characterisation. The process is divided into four main stages: data management, event detection, hypocentre 
estimation, and local magnitude estimation.
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Step 2: Stacking and migration – Qseek
To associate the neural network’s phase annotations with a 
coherent seismic source, we apply the stacking and migration 
approach implemented in the Qseek software (Isken 
et al., 2025).

Figure 3 illustrates the stacking and migration approach, 
where the seismograms are annotated with the first arrivals 
of the P- and S-phases using a pre-trained neural network. 
The magnitude of each annotation represents the model’s 
certainty in the phase arrival. These annotations are back-
projected onto a subsurface grid according to theoretical 
travel times and stacked at each node. The node with the 
most constructive stack corresponds to the maximum 
semblance (i.e. coherence of arrivals). If this value exceeds a 
predefined threshold, the algorithm indicates a detection and 
assigns the corresponding node as the most likely location of 
the seismic event.

We describe the selection of preprocessing parameters and 
detection thresholds in Section 5.1.

3.3 Hypocentre  estimation

Hypocentre inversion aims to estimate the spatial location xs 
(often-times together with the origin time T0) at which energy 
is released during a seismic event using the arrival times of 
seismic phases at various seismic stations. It involves solving 
both the forward and the inverse problem. In the forward 
problem, theoretical seismic-phase arrival times are com-
puted, simulating the travel times of seismic waves 

originating from a (potential) hypocentre to various receiver 
stations. The inverse problem seeks to identify the solution(s) 
that minimise the differences between theoretical phase arriv-
als (tcalc) and observed phase arrivals (tobs). Note that different 
hypocentres may satisfy the fitting criterion, and small pertur-
bations in the input data (e.g. arrival times) can lead to signif-
icant changes in the inferred hypocentre. Therefore, we are 
interested not only in the model parameters that best fit the 
observed data but also in the overall volume of solutions and 
their associated uncertainties.

Observed phase arrivals and associated uncertainty
An observed phase arrival corresponds to the (picked) onset 
time of the first measurable seismic energy recorded on a seis-
mogram. Due to potential errors in picking the onset time, it is 
more accurate to represent a phase arrival as a probability den-
sity function (PDF) rather than a scalar value. Following Lomax 
et  al. (2009), we use a normal distribution to describe an 
observed phase arrival. The key parameters for the hypocentre 
estimation are the mean of the distribution, tobs, and the corre-
sponding standard deviation, σobs. Figure 4 illustrates how these 
terms are derived from the picking process and the correspond-
ing observed phase-arrival distribution. We manually reviewed 
and selected the phase arrival times and their associated 
uncertainty.

Theoretical phase arrival times
Estimating the hypocentre requires a model to compute theo-
retical phase arrival times, which are then compared with the 
observed phase arrival times. The theoretical phase arrival, 
tcalc, results from the solution of the forward problem. To com-
pute tcalc, we require the receiver’s location, a hypocentre loca-
tion (our guess), and the forward function u describing the 
propagation time from the hypocentre’s location to the 
receiver’s location. The theoretical phase arrival time is 
defined as:

tcalc (xs , xr , t0 , vmodel) = t0 + u(xs , xr , vmodel).� (1)

In this study, we adopt an infinite frequency approximation 
(Lin & Ritzwoller, 2011). Specifically, u exploits the fast Marching 
Method (FMM) (Sethian & Popovici, 1999), implemented in the 
PyKonal Python Package (White et  al., 2020). Besides being 
contingent on the validity of the infinite frequency approximation, 
the accuracy of the estimated travel time depends strongly on the 
accuracy of the velocity model vmodel.

Travel-time uncertainty
The accuracy of the velocity model vmodel directly affects the 
accuracy of the theoretical phase arrival times, which in turn 
impacts the reliability of the hypocentre inversion. The velocity 
model should closely represent accurate velocities in the sub-
surface and, as such, correctly account for the interaction of the 
phases with the different lithostratigraphic units and their 
geometry. Variations in subsurface properties, such as layer 
thicknesses or velocity gradients, can lead to deviations 
between the theoretical and observed phase arrivals. To account 
for these variations, the velocity model must incorporate both 
mean velocity values and measures of variability, such as 
standard deviations or probability distributions. These can be 
used as inputs to estimate the uncertainties of the theoretical 
phase arrivals.

Figure 3.  Conceptual 2D illustration of the stacking-and-migration procedure used in 
Qseek (Isken et al., 2025). (A.1) Image functions recorded at the receiver array (yellow 
triangles) after shifting each trace by the predicted P-wave travel time from the blue 
candidate node shown in B. The pulses remain misaligned, and the resulting stack 
(C.1) displays low coherence. (A.2) Image functions shifted by the travel times from 
the red candidate node in B. The shifts align the pulses coherently, producing a sharp, 
high-amplitude peak in the corresponding stack (C.2). B. Two-dimensional search grid 
beneath the array. The colour map denotes the maximum normalised semblance ob-
tained at each node. The blue and red squares indicate the two candidate nodes eval-
uated in panels (A.1) and (A.2).
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The following steps detail the procedure we use to estimate 
the standard deviation of σcalc:

1)	 Retrieve the velocity profile: Select a 1D velocity profile 
with well-defined mean velocity values and standard devi-
ations for each geological unit (see Section 4.2). For this 
study, the profile is taken from the surface location of 
Kwintsheul’s geothermal doublet.

2)	 Monte Carlo Sampling: Use the mean velocity values 
and their standard deviations to generate multiple 
realisations of the velocity model, perturbing the mean 
velocities by sampling from their respective 
distributions.

3)	 Recalculate theoretical phase arrivals: For each perturbed 
velocity model, recompute the tcalc at the maximum 
likelihood hypocentre.

4)	 Quantify variability: Compute the standard deviation of 
the recalculated tcalc values across all realisations. This 
standard deviation represents σcalc. 

The resulting σcalc quantifies the uncertainty in the 
theoretical phase arrival times caused by variability in 
the  velocity model. This value is subsequently used in the 
likelihood function to account for travel-time uncertainties 
in hypocentre estimation. Note that we did not consider 
potential correlations of the calculated travel times between 
different stations. Ideally, this would have been the  
case, but to limit the computational burden, we chose not to 
do so.

Equal-differential-time likelihood function
A likelihood function is used to quantify how likely it is that a 
specific hypocentre could explain the observed phase arrival 
times. The Equal-Differential-Time formulation (Font et  al., 
2004) is an approximation that allows removing the origin time 
from the unknown parameters. It is also robust in case of outli-
ers (Lomax et  al., 2009). If a hypocentre xs is perfectly deter-
mined within the Earth model, and in the absence of noise, the 
time difference between the calculated phase arrivals at two 
seismic stations a and b should be equal to the difference 
between their corresponding observed phase arrivals, i.e.:

t t = t t .calc
a

calc
b

obs
a

obs
b− − � (2)

A reliable hypocentre estimation requires accounting for the 
uncertainties related to the theoretical phase arrivals and 
observed phase arrivals. Accounting for these terms, the 
likelihood of the hypocentre becomes:
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x x
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Figure 4.  Illustration of a p-phase arrival time and associated picking uncertainty. The blue line represents a seismic trace, while the green line is a normal distribution that de-
scribes the uncertainty of the phase arrival time. Note that the normal distribution is scaled for visual clarity, and its integral equals one. The label on the vertical axis only applies 
to the seismic trace amplitude.
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where L(xs) estimates the Gaussian likelihood of the hypocentre 
xs. The terms tobs

a  and tobs
b

 are the observed arrival times at seis-
mic stations a and b, while tcalc

a  and tcalc
b  are their corresponding  

modelled arrival times. The variances of the observed and the-
oretical phase arrivals of stations a and b are denoted by a

2σ  and 

b
2σ , respectively.

For stations a and b, the total uncertainty is expressed as:

, ,a a a b b
2

obs,
2

calc,
2

b
2

obs,
2

calc,
2σ σ σ σ σ σ= + = + � (4)

where aobs,
2σ  and bobs,

2σ  represent the uncertainties in the 
observed phase arrivals at stations a and b, respectively,  
and acalc,

2σ  and bcalc,
2σ  correspond to the uncertainties in the the-

oretical phase arrivals. These combined uncertainties are used 
in calculating the likelihood function L(xs), which measures the 
agreement between the observed and theoretical arrival times 
for a given hypocentre xs.

L(xs) reaches its maximum value when the differentials of 
the observed and theoretical phase arrivals are equal, hence the 
term Equal Differential Time (EDT). Since the summation over 
observations occurs outside the exponential, the EDT PDF 
attains its highest values at locations where the most observation 
pairs are satisfied, making it robust against outliers (Lomax 
et  al., 2009). In addition, the EDT PDF is independent of the 
earthquake’s origin time.

Complete probabilistic solution – posterior sampling

Tarantola and Valette (1982) introduced a general methodology 
to obtain a complete probabilistic solution of a seismic event’s 
hypocentre by computing the posterior probability distribution 
(PPD):

π(m) = κ ρ(m)L(m).� (5)

Here, m is the model parameter vector, which includes the 
hypocentre’s spatial coordinates (x, y, z). In this equation, κ is a 
normalisation constant that ensures the posterior integrates to 
one, ρ(m) is the prior PDF representing prior knowledge of the 
model parameters, and L(m) is the likelihood function 
representing how well the observed data fits a given set of 
model parameters. In our case, the likelihood is estimated 
through equation (3), which effectively removes the origin time 
from m (as explained in Section 3.3). It should be understood 
that this likelihood is an approximation of the true Gaussian 
likelihood function in the sense that the correlation between 
different arrival time differences is ignored. In principle, these 
can be accounted for using a covariance matrix (Spetzler et al., 
2024). This, however, would require us to limit the number of 
arrival-time differences to N − 1 (where N is the number of 
stations for which a P-wave arrival-time pick is available). In 
this study, we choose to adopt the likelihood proposed by 
Lomax et al. (2009), which is based on all arrival-time differences 
(N (N − 1)/2). In principle, any set of model parameters can be 
arbitrarily chosen to calculate theoretical phase arrivals. 
However, prior information, often based on fundamental laws 
or physical constraints, can indicate whether a set of parameters 
is feasible. Here, we use a uniform prior probability density 
that assumes that any model parameter has an equal probability 
of explaining the observed data:

ρ(m) = const.� (6)

That is, we assign equal a priori probabilities to equal 
volumes. Note that the prior is not completely uninformative, 
as we still choose a search area.

The spatial domain must be discretised into a grid to perform 
numerical computations. Each grid cell represents a 
surrounding region (Δx Δy Δz), which must be sufficiently 
small to ensure the probability distribution remains 
approximately constant within the cell (Mosegaard & Tarantola, 
1995). Consequently, the probability associated with a point in 
the grid denotes the probability that the hypocentre falls within 
the surrounding region represented by the grid cell. The 
marginal PDF of the hypocentre can be estimated by integrating 
over specific parameters in the model parameter space. The 
marginal PDF of the epicentral location can be obtained by 
integrating over the depth parameter z as:

m mx y L dzπ , ,xy
z

z

min

max

∫ ρ( ) ( ) ( )= � (7)

where the limits of integration represent the plausible range of 
hypocentral depths.

The marginal PDF for the depth, πz(z), can be obtained by 
integrating over the epicentral coordinates x and y from the 
full  posterior distribution. This process effectively reduces 
the  three-dimensional posterior PDF to a one-dimensional 
distribution along the depth axis, which allows us to understand 
the uncertainty specifically related to the depth of the 
hypocentre. The depth PDF is computed as:

m mz L dx dyπ ( ) ,z y

y

x

x

min

max

min

max ∫∫ ρ= ( ) ( ) � (8)

where the integration bounds represent the plausible spatial 
extent of the epicentre.

The spatial uncertainty of the seismic events is quantified by 
analysing the depth’s marginal PDF πz. We define the 
uncertainty range as the interval where the likelihood values 
exceed 95% of the maximum likelihood, ensuring that it 
encompasses the most probable depth values. We refer to this 
range as the 95% confidence interval.

To estimate this range, we follow these steps:

1)	 Identify the maximum likelihood value, Lmax, from the 3D 
posterior distribution.

2)	 Define a threshold at 95% of Lmax, above which depth solu-
tions are considered significant.

3)	 Calculate the mean likelihood over x and y. The depth 
uncertainty range is determined as the interval [zmin, zmax] 
where the mean likelihood exceeds the threshold.

4)	 The depth uncertainty is given by Δz = zmax − zmin.

The probabilistic hypocentre determination provides the 
spatial coordinates and depth of each event, along with their 
associated uncertainties. These results serve as essential inputs 
for the next step: estimating event magnitudes.

3.4 Local-magnitude estimation

We estimate the local magnitudes (ML) following the methodol-
ogy described by Dost et  al. (2004). This approach uses the 
observed peak amplitudes from seismic waveforms, corrected 
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for distance-dependent attenuation. The attenuation correction 
factor was calibrated using a set of induced earthquakes 
at  approximately 3 km depth in the Groningen area (Dost 
et al., 2004).

The procedure for estimating ML involves the following 
steps:

1) Waveform preparation: Seismic waveforms are detrended
and preprocessed using instrument-response corrections to
obtain Wood-Anderson-equivalent amplitudes. We use
only horizontal components of the waveform, correspond-
ing to S-wave arrivals, for magnitude estimation.

2) Peak amplitude extraction: For each horizontal trace, the
absolute peak amplitude (AWA) is identified. Here, AWA is the 
maximum averaged horizontal-displacement amplitude of
a simulated Wood-Anderson instrument, expressed in
millimetres.

3) Local-magnitude calculation: The local magnitude for each 
station is computed as:

ML = log10(AWA) + 1.33 log10(R) + 0.00139R + 0.424	 (9)

(Dost et al., 2004), where AWA is the observed peak amplitude 
of the simulated Wood-Anderson displacement, and R is the 
hypocentral-distance correction term.

4) Station filtering: Magnitudes are calculated for all stations
that recorded the event, and the median magnitude is used
as the event’s ML. Stations with anomalous deviations from
the event-wise mean are excluded.

4. Data

4.1 Waveform data

The temporary seismic network in Kwintsheul was operational 
from 22 July 2019 to 9 November 2019 (Muntendam-Bos et al., 
2022; Naranjo et  al., 2022). The network consisted of 30 
three-component force-balance Seismotech geophone sensors, 
which recorded at a bandwidth of 0.2–100 Hz at 250 sps. These 
were installed on the surface. The geometry of the network con-
sisted of two intersecting lines, each composed of 13 stations, 
covering an area of approximately 3.8 km2. These stations were 
installed with an average in-line spacing of 150 meters. The lay-
out was designed to record ambient seismic noise for consecu-
tive illumination analysis and application of body-wave seismic 
interferometry (e.g. Panea et al., 2014). Additionally, an outer 
ring of four peripheral stations surrounded the array, encom-
passing an 18 km2 area around the injection point of the geo-
thermal doublet. The goal of the peripheral stations was to 
increase the azimuthal coverage for the location of events and a 
more robust estimation of hypocentral depths. The network’s 
layout and the location of the geothermal doublet are shown in 
the inset of Figure 1.

As explained in Section 3.1, we assess the completeness of 
the available seismic waveform data. Figure 5 provides an 
overview of the data, with vertical lines indicating gaps in the 
data that directly affect the detection results and hypocentre 
estimations (see Section 5).

The most significant data gaps are observed at stations 027, 
029, and 030. These stations are part of the outer ring designed 

Figure 5.  An overview of seismic waveform data visualised using Snuffler (Heimann et al., 2017). Continuous gray colours indicate sections without gaps, while vertical lines 
indicate interruptions in the data.
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to improve azimuthal coverage and extend the array’s reach 
(Figure 1). Specific details regarding these gaps include:

•	 Station 029 stopped recording on 18 July 2019.
•	 Station 027 stopped recording on 16 August 2019.
•	 Station 030 experienced intermittent gaps and stopped 

recording on 29 September 2019.

The effects of these gaps on detection capabilities and 
hypocentre estimations are further detailed in Section 5.

4.2 Seismic-velocity model

We compute theoretical phase arrivals and travel-time uncer-
tainties (Sections 3.3 and 3.3) using Velmod 3.1 (Pluymaekers 
et al., 2017). Velmod provides both the mean velocities and cor-
responding uncertainties for each geological unit. It is parame-
terised as follows:

V z( )inst
unit  = N σ( ) + ⋅V k z, ,unit

V
unit

0 � (10)

where V z( )inst
unit  is the P-wave velocity at depth z, V unit0  is the mean 

velocity at the top of the unit, V
unitσ  is the standard deviation of 

the velocity, and k is the velocity gradient within the unit. For 
additional details on retrieving the velocity model, refer to 
Section 3.1.

5. Results

5.1 Event detections

The magnitude Md 0.16 event reported in Muntendam-Bos 
et al. (2022) raised the question of whether more seismicity 
occurred below Kwintsheul. We, therefore, applied the TM 
detection routine (see Section 3.2) using the waveforms from 
the reported event as templates. To enhance the signal, we 
apply a band-pass filter between 4 Hz and 20 Hz and use 
templates with a length of 1 s following the P- and S-wave 
phase arrival time. We use templates for each station channel 
(i.e. P-wave for vertical components and S-wave for horizon-
tal components). As a result, we identified five additional 
seismic events with near-identical waveforms. Together with 
the event reported in Muntendam-Bos et al. (2022), this gives 
six events.

Building on the six identified seismic events, we calibrate 
the machine-learning detection routine. Among several 
deep-learning arrival-time picking models, we select the 
Generalized Phase Detection (GPD) model (Ross et  al., 
2018), whose training dataset includes low-magnitude 
events (see Section 3.2 for details). To ensure consistency 
with the features learned by the GPD model, we apply the 
same preprocessing: a high-pass filter at 2 Hz and 
resampling to 100 Hz. Note that these processing parameters 
deviate from those of the TM routine. We select P- and 
S-pick thresholds of 0.3 based on the analysis of image 
functions for the identified events. Figure 6 shows an 
example image function generated using these threshold 
values. When the image function exceeds the threshold, a 
phase arrival is annotated in the time series.

The annotated image functions are the input for the stacking 
and migration approach explained in Section 3.2. To improve 
the accuracy of stacking and migration, we define a 1D velocity 

model retrieved at the location of the injection well. This 
velocity model is used by Qseek to estimate the travel-time 
shifts (see Figure 3A). We select a maximum semblance 
threshold of 0.8, which enables us to detect five of the six events 
used for calibration.

In total, the machine-learning detection routine identified 65 
events that exhibit coherent seismic signals across the seismic 
array. We classified these events based on their waveform 
characteristics and spatial distribution. The detection statistics 
are summarised in Figure 7, and further details on each category 
can be found in Section 5.2.

A limitation of the machine-learning detection routine is the 
disproportionately large number of detections produced when 
fewer sensors are recording. After the association step outlined 
in Section 3.2, the detection workflow yielded 17,108 detections. 
However, 16,812 occurred on just six specific dates when station 
coverage was particularly low (<50%). These dates and the 
number of sensors operating at those times are summarised in 
Table 1.

5.2 Waveform characterisation 

The 65 events detected in Kwintsheul can be categorised based 
on their waveform attributes into (1) microseismic cluster, (2) 
eastern events, (3) other events, and (4) a controlled explosion.

1)	 Microseismicity Cluster: Corresponds to six events that 
exhibit clear, impulsive P- and S-wave arrivals with fre-
quencies between 5 and 50 Hz (see Figure 8) and P- to 
S-wave delays of approximately 1.8 seconds. The character 
of the phase arrivals is impulsive, with a clear, sudden 
onset. P-waves are most prominent on the vertical compo-
nent recordings, whereas the S-waves are most pronounced 
on the horizontal components.

2)	 Eastern Events: Correspond to 55 coherent events coming 
from the East of the array. These events exhibit frequencies 
from 1 to 25 Hz for P-waves and 1 to 12 Hz for the later 
arriving waves (delayed by approximately 4 seconds with 
respect to the impulsive P waves; see Figure 9A and 9C). In 
an attempt to estimate their hypocentres, we found that 
they appear to originate at or close to the Earth’s surface. 
Since there is no mechanical argument for having earth-
quakes originate at depths less than approximately 200 
meters (unconsolidated sediments do not allow for seismic 
stress release), we believe that they, in fact, originated at the 
Earth’s surface. The lack of a clear S-wave arrival supports 
this conclusion. We did not include the hypocentre inver-
sion results because the high azimuthal gap (>250) renders 
the posterior very broad (although it is clear that they come 
from the East).

3)	 Other Events: Correspond to three events that exhibit three 
pulses of low-frequency waves in the vertical component. 
The spectrogram analysis (Figure 9B and 9D) reveals that 
the energy is predominantly concentrated along the vertical 
component, with frequencies ranging between 5 and 10 Hz. 
The energy travels primarily vertically as the signals arrive 
almost simultaneously at all stations. There is, furthermore, 
no clear evidence of an S-wave associated with these events.

4)	 Controlled Explosion: Corresponds to a controlled explo-
sion in the North Sea on 2019-10-15 at 17:47:11, also reported 
in the International Seismological Centre’s On-Line Bulletin 
(ISC, 2025) with Event ID 618929881.
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5.3 Hypocentres and magnitudes

To investigate the spatial distribution of the microseismicity 
cluster, we derived their maximum-likelihood hypocentre 
solutions with 95% confidence intervals as error bars shown in 
Figure 10A–C. The hypocentres of the microseismicity cluster 
are located at approximately 2.3 km depth, with vertical uncer-
tainties ranging from 267 to 735 m (Table 2).

Events on 2019-09-11, 2019-10-02 and 2019-10-06 have 
different depth hypocentre values (~2.1 km), as shown in 
Table 2. These events were not recorded by any peripheral 
station, which increased their azimuthal gap and, consequently, 
their depth uncertainty, as shown in Appendix A.

To contextualise the hypocentre solutions with the known 
faults in the Kwintsheul area, we compare them in Figure 10D 
against the mapped faults, the geothermal doublet, and the 
seismic stations. The interpretation of these mapped faults is 
derived from a regional 3D seismic dataset reprocessed in 2012, 
covering approximately 1200 km² in the WNB (Merrifield, 
2012), and was provided by S. Peeters (personal communication, 
November 2024). The six seismic events lie close to a local fault 

Table 1.  Summary of days with fewer than 16 operational stations and elevated 
detection numbers

Date Number of available 
stations

False detections

29 June 2019 6 2786

9 July 2019 15 36

18 July 2019 13 119

19 July 2019 4 4386

20 July 2019 5 8409

8 November 2019 7 1076

Figure 6.  Seismic waveforms of the (A) East, (B) North, and (C) vertical components from station 001 of the temporary seismic array installed in Kwintsheul. (D, E) Corresponding 
annotated image functions of P- and S-waves using the GPD model with P- and S-pick thresholds of 0.3.

Figure 7.  Summary of machine-learning detection results. The left chart categorises 
the trigger detections based on station coverage. In blue, detections during periods of 
poor station coverage (<50%); in green, detections during adequate station coverage 
(>50%). The middle chart highlights the filtered dataset (after discarding the events 
on poor-station-coverage dates), displaying coherent events (green) versus false (in-
coherent) detections (blue). The right chart classifies these coherent events by event 
characteristics (green = microseismic cluster at 2.3 km depth, blue = events to the east, 
grey = controlled explosion, and red = other events). These groups are explained in 
Section 5.2.
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as well as the injection well, as shown in Figure 10D. We 
estimate the minimum distance from each event to the nearest 
point on the closest fault, finding values ranging from 265 to 
434 m. However, since the uncertainties in the X, Y, and Z 
coordinates are within this range, it is not possible to determine 
whether the events originated on the fault.

The local magnitudes of the microseismicity cluster range 
from –1.60 to –2.52, computed with the site-specific local-
magnitude formula given in Equation 9. The deviation of 
station-specific ML’s with respect to the median varies from 0.13 
to 0.18 ML, which shows a relatively low variability among the 
different stations. This is not surprising, given that the stations 
are relatively close to each other.

6. Discussion 

A primary motivation for this study was to develop a work-
flow to monitor low-magnitude seismic events in the 
Netherlands, particularly those around areas with geother-
mal operations. Although the nationwide KNMI network 
effectively detects events above the regional and spatially 
varying magnitude of completeness (Ruigrok et  al., 2023), 
lower magnitude events will go unnoticed. Detecting and 
accurately locating these low-magnitude events is crucial 

for understanding seismicity patterns, informing network 
designs, and ensuring the safe expansion of geothermal 
operations. Our results confirm that such low-magnitude 
seismic events occur in the study area.

We demonstrated that local dense seismic arrays are 
essential for microseismic-event detectability. False detections 
increased sharply when the array was partially or poorly 
configured, highlighting the importance of robust station 
coverage. Moreover, noisy urban environments benefit from a 
multi-method approach that includes deep-learning pickers 
and TM (Panebianco et  al., 2023; Sugan et  al., 2023; Diaferia 
et  al., 2024). Using the multimethod approach introduced in 
Section 3.2, we identified 65 events that exhibited coherent 
signals during the 4-month monitoring period.

We found that the seismic event, reported in Muntendam-
Bos et al. (2022), was not an isolated occurrence but part of a 
repetitive microseismic sequence. This follows from 
applying the TM method, which identified five similar 
events. The nearly identical waveform patterns indicate a 
common source region and mechanism. The six seismic 
events occur at a depth of approximately 2.3 km near both a 
mapped fault system and the injection well KW-GT-01. The 
depth uncertainties, however, prevent a definitive 
interpretation of whether these events are fault-related or 

Figure 8.  Analysis of the seismic event on 2019-07-15T12:11:51. (A) Waveforms of the event bandpass filtered between 4 and 20 Hz. (B, D) Map views and cross-sections showing 
the probability distribution of the event location are displayed on the Viridis colour scale, with green indicating the maximum likelihood location. (C) Spectrograms representative 
of other stations, exemplified here for station 023, show the vertical, north, and east components. The colour scale represents the logarithm of the power spectral density, with 
red indicating higher values.
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induced by the injection. The limited duration of the 
monitoring period further complicates this distinction. 
Longer-term monitoring would help clarify whether these 
events are truly linked to seismic stress release in the 
geothermal reservoir, activities at the well, or natural 
tectonic activity.

In addition, we detected seismicity originating to the east of 
the array, referred to as Eastern Events (or Cluster 2 events). 
These events exhibit impulsive P-wave arrivals, but they lack an 
impulsive S-wave. The attenuation of high-frequency S-waves 
suggests a more distant source for Cluster 2 events. The high 
azimuthal gap in the current array configuration prevented us 
from properly estimating their hypocentres, but an origin at the 
Earth’s surface is likely (though not confirmed). Clearly, low 
detection thresholds are needed to identify low-magnitude 
seismicity. These low thresholds result in a higher number of 
false detections, which requires manual inspection. In regions 
with high seismicity rates, such manual inspection may 
be infeasible. Therefore, we recommend retraining the machine-
learning pickers on site-specific datasets to improve pick 
accuracy, enable lower thresholds, and, thereby, reduce false 
detections. This strategy is particularly suitable where permanent 
seismic stations and high seismicity rates are available.

Our findings highlight a critical limitation of the current 
array design: excessive reliance on the outer ring of stations. 
Although the two lines of aligned sensors provide 
redundancy in signal detection, they do little to improve 
azimuthal coverage or depth resolution. This array design 
is, therefore, suboptimal for passive seismic studies that 
require accurate event locations (at reservoir depths of two 
or three kilometres). An optimized network targeting the 

already localized seismic events is recommended for future 
campaigns (e.g. Maurer et  al., 2010; Toledo et  al., 2020; 
Esquivel-Mendiola et al., 2022). For large-scale operations, 
including borehole geophones would aid in estimating the 
depths of hypocentres.

Beyond the need for better station coverage, our study 
underscores the importance of refining the velocity model used 
for event location. Although the publicly available P-wave 
velocity model (Velmod 3.1) was instrumental for this study, an 
S-wave velocity model is needed to enhance the depth resolution 
and reduce location uncertainties (e.g. Spetzler et al., 2024).

Our analysis also highlights the challenges of magnitude 
estimation for low-magnitude events. The Groningen-
calibrated magnitude formula (Equation 9), used here as a 
first-order approximation, may result in systematic under- or 
over-estimation of event magnitudes in South Holland, where 
the subsurface properties are different. In addition, Equation 
9 is calibrated using recordings from borehole geophones at 
200 meters depth. It should, in principle, be used for particle 
motions recorded at that (or close to that) depth. Establishing 
a specialised local magnitude scale for this region would 
require a dedicated network design, knowledge of site-specific 
attenuation properties, and additional data collected over a 
longer monitoring period (i.e. more earthquakes).

Taken together, our findings address an important gap 
between large-scale seismic detection frameworks and the 
finer resolution needed for local hazard assessment. Moving 
forward, efforts to refine velocity models, improve monitoring 
networks, and establish regional magnitude scales will 
enhance our ability to capture and interpret low-magnitude 
seismicity.

Figure 9.  Analysis of eastern events and non-seismic events. (A) Waveforms of one of the eastern events recorded on 2019-08-03T04:54:18. (B) Spectrogram of station 011 showing 
the vertical, north, and east components of the eastern event. (C) Waveforms of one of the non-seismic events detected recorded on 2019-10-16 at 21:26:40. (D). Spectrogram of 
station 023 showing the vertical, north, and east components of the non-seismic event.
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7. Conclusions 

We presented a comprehensive workflow for monitoring seismic-
ity, specifically designed to detect and characterise low-magni-
tude events in urban areas. We addressed key challenges in 
seismic monitoring by integrating data preparation, tem-
plate-matching detection, machine-learning-based detection, and 
probabilistic hypocentre estimation. Applying this workflow to 

the Kwintsheul area, we detected six seismic events near a local 
fault and near the bottom of injection well KW-GT-01, although 
spatial uncertainties remain in the order of hundreds of meters. In 
addition, we detected 59 events with coherent signals, but inade-
quate azimuthal coverage hindered their accurate characterisa-
tion. Our findings highlight the need for more spatially distributed 

Table 2.  Characterization of the detected microseismic events. Origin times are given in Coordinated Universal Time (UTC). Hypocentre coordinates are reported in 
the Dutch national reference system (EPSG: 28992). MLdenotes the local magnitude, and Var(ML) represents the variance of the magnitude estimates across multiple 
stations. The parameters σx, σy, and σz correspond to the 95% confidence intervals of the hypocentre location in each coordinate direction.

Date Time x [m] y [m] z [m] Az. gap ML Var(ML) σx [m] σy [m] σz [m]

2019-06-23 08:02:08 79483.25 447004.24 –2314.38 93 –2.04 0.13 602 363 267

2019-07-14 08:48:31 79483.30 446967.93 –2354.52 143 –1.60 0.21 662 399 294

2019-07-15 12:11:51 79543.51 446986.10 –2314.38 95 –1.79 0.18 632 381 280

2019-09-11 08:51:06 79212.04 446986.08 –2274.25 149 –2.00 0.13 1627 980 722

2019-10-02 11:46:50 79392.84 447004.24 –2100.33 150 –2.11 0.13 1446 871 642

2019-10-06 01:20:01 79392.90 446986.08 –2153.85 170 –2.52 0.18 1657 998 735

Figure 10.  Hypocentres that belong to the microseismic cluster. (A, B, C) Map showing the spatial distribution of event hypocentres with associated 95% confidence interval 
shown as error bars. The background image corresponds to the 3D velocity model used for the inversion, and its corresponding colour scale is shown in the legend on the right 
side. (D) Projection in 2D showing the localized events, previously mapped faults (S. Peeters, personal communication, November 2024), and the seismic stations. The colour scale 
indicates the depth at which the events and faults are located.
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networks, refined local velocity models, and region-specific 
magnitude calibrations to enhance the accuracy and reliability 
of seismic monitoring. Our workflow provides a scalable and 
adaptable solution for improving seismic monitoring in urban 
environments.
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Appendix

A Influence of station 030 on hypocentre uncertainty

The influence of Station 030 on hypocentre location accuracy is 
illustrated in Figure A1, which compares two inversions: one 
excluding data from Station 030 (Panels A and C) and one 
including it (Panels B and D). The likelihood probability den-
sity function (PDF) is visualised using a Viridis colour scale, 
where higher values indicate greater likelihood.

In the inversion without Station 030 (Figure A1.A and C), 
the maximum likelihood location is estimated at x = 79355.37, 

y = 446982.12, and z = -2084.03 m. The uncertainties for this 
estimate are: azimuthal gap of 168.68◦, depth uncertainty of 
470.59 m, x uncertainty of 1060.01 m, and y uncertainty of 
638.47 m.

Including Station 030 in the inversion (Figure A1.B and D) 
significantly reduces uncertainties and shifts the maximum 
likelihood location. The new estimate is at x = 79506.80, 
y = 446936.51, and z = -2386.55 m. The uncertainties for this 
solution are: azimuthal gap of 146.07◦, depth uncertainty 
of 201.68 m, x uncertainty of 454.29 m, and y uncertainty of 
273.63 m.

Figure A1.  Probability density function (PDF) projections for two seismic events. (A and C) show the map view and cross-section of the event on 14 July 2019, while (B and D) 
show the event on 6 October 2019. Red and blue lines represent the geothermal wells KW-GT01 and KW-GT02. Dark red triangles indicate seismic stations, and dotted lines mark 
the cross-section positions. PDF contours (Viridis scale) are overlaid on the velocity model used for the inversion.
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