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Abstract—The current demands for autonomous driving gen-
erated momentum for an increase in research in the different
technologies required for these applications. Nonetheless, the lim-
ited access to representative designs and industrial methodologies
poses a challenge to the research community. Considering this
scenario, there is a high demand for an open-source solution
that could support development of research targeting automotive
applications. This paper presents the current status of AutoSoC,
an automotive SoC benchmark suite that includes hardware and
software elements and is entirely open-source. The objective is
to provide researchers with an industrial-grade automotive SoC
that includes all essential components, is fully customizable, and
enables analysis of functional safety solutions and automotive SoC
configurations. This paper describes the available configurations
of the benchmark including an initial assessment for ASIL B to
D configurations.

Keywords - Automotive benchmark; SoC; open-source; Func-
tional Safety; ISO 26262.

I. INTRODUCTION

In recent years, advances in technology enabled the em-
ployment of automated systems to control driving tasks. The
idea of electronic devices having full control over a vehicle
promises to change the concept of mobility in the near future.
However, allowing computers to control all the tasks in a
vehicle requires high complexity systems and major concerns
with respect to the safety. The development of Autonomous
Vehicles applications, where a system failure could cause life-
threatening situations, entails in state-of-the-art challenges on
different aspects of system development. Concerns with Reli-
ability, Security, Quality, and compliance to Safety Standards
are of high priority. This scenario requires adoption of new
techniques and methodologies that will facilitate development
and verification of these applications. Several organizations
are working to close the technological gap for Autonomous
Vehicles. However, in order to assess the quality of the pro-
posed solutions, it is necessary to compare the results against
what is applied in the industry. Nowadays, development life-
cycles and verification techniques applied by industry are not
disclosed, and each big player in the automotive sector has
its own methodologies and tools. In addition, there is limited
access to automotive hardware and software solutions. This

is a challenge for researchers, that may not be able to verify
their work in representative designs or assess the quality of
their results. For that reason, there is a high demand for a suite
of open-source benchmarks that would enable research on the
different aspects of Automotive applications development. It
should be outlined that the benchmarks should include not only
the hardware description (at different levels of abstraction),
but also compatible software modules (Operating System,
peripheral drivers, sample applications) and information about
the implemented safety and security mechanisms.

As part of the efforts for developing solutions to address
the demands of Autonomous Driving, industry and academia
are investing in research on several related areas. Several
works are exploring aspects of fault-tolerance in hardware
architectures [1], [2], software design [3], operational sys-
tems [4], among others. [5] provides a broader look on
specific reliability challenges for autonomous systems, for
both automotive and robotics. The challenges of Functional
Safety compliance, based on standards like ISO 26262, are
also explored in research as [6], [7]. The authors point out
Fault Injection (FI) Simulation as one of the critical steps
for compliance with the standard. For that reason, different
approaches are proposed to leverage FI Simulation, optimiza-
tion of the simulation techniques [8], [9], combination of
multiple fault analysis technologies [10], analysis of faults
on different hardware abstractions levels [11], [12], and many
others. Several works are also discussing the security issues
imposed by these applications [13]. Challenges with hardware
attacks [14] and secure in-vehicle communication [15] are
being investigated and their interference with functional safety
and reliability is getting to the front. Although several works
include significant contributions to advance the state-of-the-
art, they all have some common pitfalls. First, experiments are
usually not performed on representative designs. Results may
be compromised by a lack of comprehensive test cases, which
should be based on Systems on Chip (SoCs) with an operating
system and software applications that are representative of the
Automotive sector. Also, such systems should be fully open-
source, allowing different researchers to assess the quality of
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the results by comparison. Even though some components of
such systems are available in the community, to the best of our
knowledge no open-source package including SoC hardware
models, OS and SW applications, that is representative of the
Automotive sector is available.

To address these challenges, we propose an open-source
industrial-grade benchmark suite. The proposed Automotive
benchmark comprises all its elements in the format of an
SoC, and hence, it was named AutoSoC. The AutoSoC
was conceived by the analysis of commercial solutions, and
considering common development techniques deployed by
industry. The selected architecture considered the availability
of software (compilers, debuggers, operating systems, and
others) and the feasibility of development in multiple hardware
abstraction levels (Virtual Platform, RT and gate level). The
suite includes multiple configurations with different levels of
Safety Mechanisms (SMs), enabling investigation of Func-
tional Safety aspects. The AutoSoC appears as an interesting
candidate to support Automotive research. The main contribu-
tions of our work are:

• Launch the initiative for an open-source SoC benchmark
suite for Automotive applications

• Provide a solution for integrating inter-layer components
and their interoperability required for an automotive SoC
development

• Demonstrate representative use cases by a set of software
applications including an Automotive Cruise Control

• Validate the concept by including a preliminary Safety
Assessment targeting different ASIL configurations.

The AutoSoC benchmark suite is available for download in
http://www.autosoc.org.

The remainder of this paper is organized as follows. Section
II elaborates on the reasons behind the need for standardization
and benchmarking in the automotive as well as in the closely
related robotics domain. Next, Section III describes the defi-
nition of the functional requirements for the AutoSoC based
on the characterization of industrial solutions. Afterwards, in
Sections IV, V and VI, we describe its base HW and SW com-
ponents, the Safety components and the available benchmark
configurations. Section VII outlines a preliminary functional
safety analysis targeting different ASIL configurations. Last,
Section VIII presents our conclusions and future work.

II. SAFETY STANDARDIZATION AND
BENCHMARKING FOR AUTOMOTIVE AND

ROBOTICS
Nowadays, highly automated safety-critical systems (such

as autonomous vehicles and autonomous mobile robots) are
implemented with very complex integrated circuits. They are
composed of a large set of HW elements, executing an equally
large set of SW elements, often from third parties. This
complexity has created a strong demand for standardization
initiatives related to semiconductors, to guarantee uniformity,
interoperability and repeatability of the many activities re-
quired by a safety lifecycle. The main initiative is the 2nd
edition of ISO 26262, with a part 11 [16] fully dedicated to

the application of ISO 26262 to semiconductor technologies.
The part 11, with its 179 pages, provides a detailed set of
guidelines on principles, methods and architectures for digital,
mixed signal, programmable device and sensor type of inte-
grated technologies. The variety of solutions and combinations
provided by part 11 is huge, as also the opportunity to create
new ideas fulfilling the principles highlighted by the standard.

On the other hand, that vastity of options is a challenge from
several points of view. For example, despite the ISO 26262
provides a mathematical approach to quantify the probability
of failure due to HW random failures, it is very effort intensive
to apply it and quickly compare the effectiveness of each
proposed solution. In fact, the results are highly dependent on
the chip architecture and the related SW application executed
on it. The same challenge exists for the verification activities
(e.g. fault injection) required to confirm the effectiveness of
some of the functional safety properties, such as the diag-
nostic coverage. The time spent to setup each fault injection
campaign for each different architecture solution makes un-
practical to use it during the exploration phase – so limiting
the creativity and the space of possible solutions. Another
challenge is caused by the interaction between several different
properties and requirements. For example, a typical approach
to achieve high diagnostic coverage is the so-called loosely
coupled lock-step, i.e. the same SW is executed redundantly
in two different processing cores and compared by a third
element. The resulting diagnostic coverage highly depends on
how the SW redundancy is executed (e.g. if it is a task per
task or instruction per instruction redundancy, if the OS is in
common or shared, etc.), on how often the two SW executions
are compared, on how many variables of the compared SW
are exposed to the comparison, etc. It is also necessary to
evaluate the so-called Diagnostic Time Interval, i.e. how often
it is possible to perform that comparison and the time required
by the Safety Mechanisms to compare and detect the potential
failure. As also it is necessary to evaluate the degradation of
performance (e.g. in terms of worst case execution time or
WCET) that the comparisons of the loosely coupled lock-step
are causing to the data traffic of the nominal functionality.

The complexity described by the previous examples indi-
cates the strong need of an open-source benchmarking environ-
ment, to provide scientists with a ready-to-use and clearly de-
fined platform on which to implement and test safety solutions
in a comparable way. That platform, for example, should allow
researchers to compare two different implementations of the
loosely coupled lock-step scheme. Another use case for that
benchmarking environment is the measure of the application
overhead caused by the execution of SW test libraries (STLs),
a well-known method described in ISO 26262 part 11. The
availability of a common benchmark will allow a transparent
and well defined comparison of the impact to the application
caused by two different STL implementations.

III. AUTOMOTIVE SOC ARCHITECTURES

This section describes the analysis of commercial automo-
tive SoCs that led to the definition of the functional blocks of



the AutoSoC. The gathering of requirements for the proposed
SoC considered the main features available in well-known
automotive solutions. The objective of this characterization
was to create an SoC that is representative of the industry
standards.

A. Industry Solutions Characterization

Nowadays, the industry is embedding several features in
SoCs targeting different in-vehicle applications. The so-called
Automotive Ecosystem includes solutions for infotainment,
powertrains, network communication, automatization of driv-
ing tasks, among others. All those features require robust
solutions that must consider aspects of functional safety and
security. Although different commercial solutions are avail-
able, in general, architectures have similarities that can be
explored to define a set of requirements for an Automotive
SoC. The requirements for the AutoSoC were gathered based
on an analysis of the datasheets of commercial Automotive
SoCs. We considered the main characteristics of available
solutions to identify common aspects that can be regarded as
mandatory by the industry. In general, the analysis can be split
into the following domains:

1) Hardware Architecture: common architecture character-
istics;

2) Safety: what components of the SoCs are considered for
functional safety compliance and which safety mecha-
nisms are usually implemented;

3) Security: which security features are available;
4) Other: commonly available peripherals (e.g. communi-

cation protocols, GPUs, Audio/Video DSPs).
One notable common characteristic, among the evaluated

solutions, is the availability of multiple CPUs. In general, ded-
icated hardware components are available for safety-critical
and application-specific operation. This concept allows the
deployment of powerful CPUs for applications with high pro-
cessing demands (e.g. video processing), while safety-critical
applications are executed in CPUs with dedicated safety mech-
anisms. For example, the Renesas R-Car M3 [17] includes
two CPUs for common applications and an additional Dual
Lockstep CPU for safety-critical applications. The Infineon
AURIX [18] and Texas Instruments TDA2SG [19], follow
a similar concept by including a CPU and separated cores
for dedicated functionalities. Dual-Core Lockstep (DCLS) is
the most common safety mechanism available for CPUs.
For the memories, including RAMs and caches, industrial
solutions usually deploy Error Correction Codes (ECCs) and
Parity. DCLS, ECCs, and Parity have an advantage regarding
Functional Safety analysis. These SMs are introduced by the
recommendations of ISO 26262 [20] and include a reference
of their fault coverage capabilities. Hence, by deploying any
of these SMs as described in ISO 26262, the referenced
Diagnostic Coverage can be directly used during Functional
Safety Analysis.

The other components available in the analyzed SoCs
could be categorized as communication protocols, application-
specific, security, and infrastructure peripherals. In general, the

TABLE I
SUMMARY OF COMMERCIAL SOC ANALYSIS

Renesas
R-Car M3

Infineon
AURIX

Texas
TDA

Safety CPU with DCLS + + -
Memories with ECC + + +
Second CPU (no SM) + + +
Dedicated Video IPs + + +
Automotive Peripherals + + +
Security Cripto IPs + - +

commercial solutions implement a good variety of commu-
nication peripherals, including automotive protocols as CAN
and FlexRay, and general protocols as Ethernet, SPI, and I2C.
Another common characteristic is the availability of Video and
Audio dedicated hardware. As the majority of the SoCs aim
to Advanced Driver-Assistance Systems (ADAS) applications,
they include peripherals like GPUs, video codecs, Image
Processing Units, and Audio DSPs. In the security domain,
apart from proprietary features that are not detailed, the most
common components are cryptography engines, like Advanced
Encryption Standard (AES), Data Encryption Standard (DES),
Hash, among others. Also, some solutions provide access
control features like firewalls and protected memory areas.
Additionally, every analyzed solution included infrastructure
peripherals like JTAG, UART, GPIO and debug components.

Considering the characteristics of the evaluated commercial
solutions, it is possible to define a common set of features that
can be seen as required by the automotive industry. The ad-
dition of safety-related components, application-specific units,
automotive protocols, and security cores, can be established
as the basic set of features for a representative Automotive
SoC. The summary of common characteristics found in the
evaluated commercial solutions is available in Table I.

B. AutoSoC Functional Blocks

Based on the characterization of industrial solutions, sum-
marized in Table I, an initial architecture of AutoSoC was
established. Functional blocks were defined aiming to cover
the minimum set of features required for a representative au-
tomotive benchmark suite. The concept of functional blocks is
also important to keep the design modular. Different versions
of AutoSoC can deploy diverse hardware components to cover
the requirements of each functional block. Figure 1 illustrates
the outcome of our analysis.

As it happens in most commercial solutions, the AutoSoC
has two main processing units. The Safety Island is responsible
for all safety-critical processing capabilities. It is composed
of CPUs and memories that must be covered by Safety
Mechanisms according to the requirements of ISO 26262.
The division between safety-related hardware and the rest of
the SoC components supports the compliance with Functional
Safety standards, as only the safety-related hardware is re-
quired to comply with ISO 26262. The other processing unit
is the Application Specific Block. This unit implements the



Fig. 1. AutoSoC Functional Blocks.

hardware required for application-specific processing. It may
include CPUs and memories for high demand applications,
GPUs and Image processing units for video applications,
among others. The target functionality for each given AutoSoC
configuration will define the Hardware components required
for the Application Specific Block. Also, it is important to
notice that the Safety Island and the Application Specific
Blocks have dedicated Software stacks. Both can execute
distinct Operational Systems and applications that will better
suit their requirements.

The remaining blocks implement communication, security,
and general SoC infrastructure. The Automotive Block is
responsible for SoC communication with in-vehicle systems.
The most common protocol deployed for in-vehicle commu-
nication is CAN. However, other options can be implemented,
like FlexRay, LIN, Automotive Ethernet, among others. The
Security Block is responsible to perform all security-related
functionalities of the AutoSoC. The most common employ-
ment is cryptography cores, like AES and DES. However,
we expect other security features to be explored. With this,
the AutoSoC benchmark architecture allows future extensions
aiming at support the new security standard under develop-
ment ISO 21434. The latter aims at defining a Cybersecurity
Assurance Level (CAL), similar to the ASIL concept [21].
The Infrastructure Block is responsible for the on-line health
monitoring of the SoC. It includes debugging features such
as JTAG and UARTs to ease the development process. Fi-
nally, the Interconnect Block is responsible for internal SoC
communication. It may deploy common communication buses,
like AXI and Wishbone, or more advanced options such as a
Network-on-Chip (NoC).

IV. AUTOSOC BASE COMPONENTS

This section outlines the processing units, interconnect com-
ponents, debug elements, and software workloads currently
integrated into the AutoSoC. An initial configuration of the
benchmark, named AutoSoC QM, is set up by deploying only

the base components. The AutoSoC QM is a fully functional
version of the benchmark and works as the foundation for
further configurations. The modular design of the AutoSoC
allows additional configurations to be instantiated by simply
enabling additional Safety components. The next sections
describe the available Safety components and AutoSoC con-
figurations.

A. Hardware Components

The selection of the CPU, as the central unit of the
AutoSoC, considered different processor architectures, perfor-
mance features (e.g. pipeline stages and memory interfaces),
main buses, software stacks, and the possibility of develop-
ment on multiple abstraction levels (Virtual Platforms, RT
level, and gate level). A further requirement is that the CPU
has to be open-source. Different analyzed options could be
considered as good candidates for the CPU. For instance, the
Amber2 [22] is a 32-bit RISC CPU compatible with the ARM
v2a instructions set. Another considered option was the Gaisler
LEON3 [23]. It includes a 7 stages pipeline, a comprehensive
set of peripherals, and support scripts. This work has deployed
the OpenRISC [24] (mor1kx implementation) as the main
CPU. The OpenRISC includes a better variety of support tools,
an active community and the resources for the development of
a Virtual Platform. Also, the community supports a variety of
compatible peripherals that can be easily integrated, including
CAN, AES, and DES [25].

The OpenRISC community provides tools and examples for
the development of SoCs. As part of that, there is an example
SoC based on the mor1kx CPU. The package includes CPU,
memory, UART, JTAG, and a debug unit, all connected with
a Wishbone bus. Also, the example SoC contains a testbench
with features for loading software applications to the memory
and connection to the debug unit via JTAG. This example was
used as a base for the AutoSoC. By deploying the example,
we can cover the infrastructure and interconnect blocks. Also,
we can reuse part of the provided test environment to speed
up the development.

B. Software Resources

One of the objectives of the Automotive Functional Safety
analysis is to avoid disturbance of the safety-related function-
alities of a system by random hardware fault. In the case
of an SoC, the software application executed by the CPU
defines the functionality. For that reason, the software stack
is an important part of the Functional Safety analysis. The
current version of AutoSoC includes several software options.
The intention was to integrate the available resources and the
applications developed by ourselves in a unified repository in
the AutoSoC simulation environment. The simulation of all
available software applications is possible by suitably setting
up the configuration files. AutoSoC includes several software
resources organized by folders. The Baremetal folder includes
development resources as Makefiles, drivers, and around 50
compiled test applications. Also, a compiled Linux kernel
(bootable in simulation) is available in the Linux folder.



Fig. 2. Time diversity Dual-Core Lockstep implementation.

Furthermore, the RTEMS folder includes a development en-
vironment with Makefiles, drivers, and applications. Finally,
an Automotive Cruise Control application was developed. The
application is based on the RTEMS Operational System. It
comprises four real-time tasks for reading vehicle sensor data,
computing actuation, setting some engine parameters, and
housekeeping.

V. AUTOSOC SAFETY COMPONENTS

Another important aspect of the benchmark is the avail-
ability of Safety Mechanisms in the Safety Island. As this
block is responsible for executing safety-critical applications,
we need to assure that potential faults can be detected avoiding
possible harm to the expected functionalities. The CPU, as the
primary unit of the Safety Island, is the primary target for the
safety evaluation. Different safety mechanisms schemes were
conceived, each targeting different Automotive Safety Integrity
Levels (ASIL).

A. Dual-Core LockStep

The first option deploys time diversity Dual-Core Lockstep
(DCLS) as the main Safety Mechanism. The DCLS config-
uration includes a redundant copy of the CPU, delay units
for time diversity and compare units for fault detection. The
implementation of the DCLS with time diversity is illustrated
in Figure 2.

The performance of the main processor is not affected by the
DCLS implementation. The main CPU is the only one with
write access to the bus, controlling the functionality of the
SoC. On the other hand, the shadow CPU does not perform
any write access to the SoC resources. Instead, the outputs
of the shadow CPU are used only by the Compare Unit for
fault detection. In case of a mismatch between the outputs of
both processors, an alarm is activated by the Compare Unit.
Despite the additional fault coverage by including DCLS, we
still need to consider the effect of common-mode failures
that can impact both processors and are not detectable by
comparison of the their outputs [26]. To minimize the potential
of common-mode failures the DCLS mechanism includes time
diversity. Time diversity works by applying a delay in the
execution of the shadow processor. The delay is obtained by
including a delay unit in the driven signals of the CPU. Delay

units are also added to the outputs of the main processor,
to align both core outputs for the Compare Unit. The Delay
Units can be configured with the desired time shift: the current
version applies a delay of 2 clock cycles to all signals. The
shadow CPU execution delay configuration must consider the
system requirements for maximum fault tolerance time. Since
this delay is also applied to the input of the Compare Unit,
a mismatch between the CPU outputs will be detected only
after the configured delay.

Dual-Core Lockstep is the most used SM scheme for
processors targeting ASIL D applications. However, not all
applications demand ASIL D and the extra cost of including
a redundant copy of the CPU. For that reason, AutoSoC
incorporates additional configurations targeting different ASIL
requirements.

B. Software Test Libraries

A Software Test Library, also referred to as STL, is a
collection of software tests that are run on power-on (key-
on), power-off (key-off) or periodically to prevent faults from
leading to single-point failures or prevent them from becoming
latent as a result of a multiple-point fault.

This software mechanism aims at detecting permanent faults
that can occur anytime during the execution of a safety appli-
cation and can cause a safety violation. An STL corresponds
to a set of software procedures, usually developed in assembly
code, C code or a combination of both. These may be executed
either at boot-time or run-time. In the former case they require
supervisor capabilities and therefore, to avoid conflict with
the Operating System (OS), are usually executed during the
power-on and power-off. On the other hand, when the STLs are
executed at run-time, they have to coexist with the OS. Then,
it is essential to make these tests run in a short period of time,
usually few milliseconds, to avoid affecting the behavior of
the other software applications running on the same hardware.
The software scheduler will schedule these tests at specified
time intervals when the hardware is idle or running less time
sensitive applications.

In the recent years, several semiconductor and IP companies
started to provide their customers with Software Test Libraries
(STLs) to be used for on-line fault detection when the target
devices are used in safety-critical applications. The advantage
stemming from their adoption lies first of all in the fact that
system companies can test their products in the field while
guaranteeing a given fault coverage, even without knowing the
implementation details (black-box testing). Moreover, STLs
perform the test exactly in the system operating conditions,
thus executing at speed and avoiding any overtesting. Finally,
they do not require any change in the hardware, thus avoiding
any area or performance overhead. On the other side, the
generation of STLs is mainly manual at the moment and
requires special skills in order to achieve sufficiently high
fault coverage figures. Computing these figures for a given
STL also requires a new generation of tools called Functional
Fault Simulators. Several recent works introduced guidelines
on how to correctly generate STLs for CPUs [27], [28] and



peripherals [29], how to speed up the FI experiments [30],
how to maximize their fault coverage in the different scenarios
(possibly minimizing the test time [31]), and how to re-use
existing STLs.

C. Internal Memories ECC

Usually, in complex CPUs internal memories occupy the
highest area on the physical device. As the component size is
directly related to the probability of faults, the internal memo-
ries are a primary target for SMs. The ISO 26262 standard
includes recommendations for well-known memory Safety
Mechanisms. Based on the recommendations and the findings
of the industry solutions characterization, Error-Detection-
Correction Codes (ECC) was selected as an option to protect
the internal memories of the CPU. The current implementation
of the Safety Island CPU includes seven blocks of internal
RAMs. Together, the internal memories represent 91.3% of the
total fault targets in the RT level representation of the CPU.
The deployment of an SM with high Diagnostic Coverage,
like ECC, on all internal memories, will provide a satisfying
coverage for the overall CPU.

D. External Memory ECC

The other elements of the Safety Island must also be
verified for the possibility of single points of failure. Gen-
erally, software applications must be loaded to the external
memory to be executed by the CPU. Also, the applications
utilize the memory for storing data and control parameters.
As the software application function relays on the external
RAM, memory failures have a direct impact on the intended
functionality. The external RAM must also be covered by ECC
to avoid propagation of internal memory faults to the outputs
of the Safety Island.

E. Bus Parity

The data bus is responsible for data transmission between
the memory and the CPU. For that reason, a fault in the
data bus could propagate to the CPU or to the memory and
would not the detected by their SM. To avoid these cases,
a parity checker was included to cover data transmissions
between CPU and memory. The Parity checker monitors
data bus transmissions, and calculates a Parity bit for all
communications between CPU and memory. The Parity bit is
transmitted by a direct connection between the Parity Check
blocks. In case of a wrong parity, an alarm is set to inform
the system.

F. Checkpoint Control

Even if the DCLS SM is employed, both CPUs could get
stuck in the same software instruction, and none of the men-
tioned SMs would be able to detect this fault. For that reason,
a Checkpoint Control safety mechanism was implemented.
The Checkpoint control monitors the Data Bus expecting pre-
determined software signatures in specific memory locations.
The mechanism works as a Hardware Watchdog, but instead
of expecting a single refresh from the software application,

Fig. 3. AutoSoC Safe Configuration.

it expects a different signature for each software task. Conse-
quently, the SM is capable of verifying not only if the software
application is running, but also if the Control Flow is as
expected. The Checkpoint Control is fully customizable during
elaboration, allowing the definition of the software signatures,
expected sequence, and deadlines.

G. Safety Monitor

Finally, a Safety Monitor block was developed to integrate
all the detection alarms. In the case of fault detection of any
SM, the Safety Monitor generates an external alarm and an
error code to indicate where the fault was detected. Figure 3
illustrates the architecture of the AutoSoC Safe configuration,
including the DCLS, External Memory ECC, Bus Parity and
Checkpoint Control.

VI. AUTOSOC CONFIGURATIONS

This section outlines the available benchmark configura-
tions and how they can be set up by enabling the different
safety components. The available configurations comply with
the Functional Blocks: Safe, Automotive, Infrastructure and
Interconnect. The Application Specific and Security Blocks, as
illustrated in Figure 1, will be developed in the next stages of
our work. The modular design of the AutoSoC allows the reuse
of the Functional Safety Analysis, performed in the scope of
this paper, on later configurations.

As part of its modular concept, several configurations of the
AutoSoC are possible by enabling different combinations of
the mentioned components. For defining a new configuration,
based on the provided simulation folder, the user must select
the Hardware components in the elaboration config file, choose
the software application and enable any combination of Safety
Mechanisms by adding defines to the ’plus args’ config file



TABLE II
AUTOSOC CONFIGURATIONS

Benchmark
Configurations

Dual Core
LockStep

Internal
Mem ECC

Software Test
Libraries

BUS
Parity

Checkpoint
Control

Safety
Monitor

AutoSoC QM - - - - - -
AutoSoC ECC - + - - - -
AutoSoC STL - + + - - -

AutoSoC DCLS + - - - - +
AutoSoC SAFE + - - + + +

(e.g. +define+DCLS). The new configuration can then be elab-
orated and simulated with the provided Makefile. Although
any possible combination of components can be created, we
have defined a group of initial configurations for the AutoSoC.
These configurations are based on common SM combinations
from industry solutions. Table II illustrates some potential
configurations for the AutoSoC. For the scope of this paper,
we have performed a preliminary safety assessment for three
configurations. The configurations AutoSoC ECC, AutoSoC
STL, and AutoSoC DCLS, were analyzed as candidates to
target different ASIL levels.

VII. PRELIMINARY FUNCTIONAL SAFETY ANALYSIS

This section describes the functional safety analysis of some
of the available configurations of AutoSoC. Functional Safety
Analysis, as specified by ISO 26262, aims to decrease the risk
of failures caused by malfunctions. Within electronic systems,
it focuses on avoiding that random hardware faults can disrupt
the expected functionality of a design. The Automotive Safety
Integrity Level (ASIL), defines the required risk reduction for
a particular functionality. Functionalities with a higher risk
of hazard situations demand a higher ASIL. In general, to
reduce the risk of malfunctions induced by random faults, we
include Safety Mechanisms (SMs). The required percentage
of detection, or Diagnostic Coverage (DC), is defined by the
ASIL.

Typically, Functional Safety analysis is completed at later
stages of the hardware design. Additional parameters like area,
Failure-in-Time (FIT) rate, and Failure Modes distribution, are
necessary to confirm design compliance to the required ASIL.
These parameters are used to calculate Safety Metrics that
show the design capacity to cope with different fault models.
For that reason, the current AutoSoC analysis is considered
preliminary. The next step of our work is to finalize the gate-
level description of AutoSoC, determine the possible failure
modes, define the diagnostic coverage based on the failure
mode distribution, and calculate the final safety metrics.

A. AutoSoC DCLS configuration

Hardware redundancy schemes, like Dual-core Lockstep,
are defined by ISO 26262 as recommended safety mechanisms
for processing units. The standard defines the typical diagnos-
tic coverage for these mechanisms is high, meaning 99% of
detection for random hardware faults. The implementation of
DCLS should aim to provide early detection of failures, by
step-by-step comparison of results produced by two processing

TABLE III
DCLS CPU FAULT COVERAGE

Fault Target SA(1/0)
Faults

Detected
by DCLS

Residual
Faults

mor1kx cpu 675,504 668,749 6,755

units operating in lockstep. The AutoSoC DCLS configuration
intends to comply with the description from ISO 26262. Also,
the implementation of time diversity increases the DCLS
features by addressing the effects of common-mode failures.

A preliminary investigation of the mor1kx cpu description
shows a potential of 337,752 possible fault targets. If we
consider the SA0 and SA1 fault models, as required for
ISO 26262 permanent faults analysis, there are a total of
675,504 faults to be analyzed. The DCLS safety mechanism
intends to identify faults in the mor1kx cpu. By respecting the
Diagnostic Coverage defined by ISO 26262 for the DCLS, we
can assume that 99% of the faults in the mor1kx cpu(Main)
will be detected by the Lockstep Controller. With 99% of
fault coverage, we can expect the AutoSoC DCLS to be a
good candidate to comply with ASIL D requirements. Table III
illustrates the potential fault coverage for the AutoSoC DCLS
configuration.

B. AutoSoC ECC configuration

As described for the Processing Units, ISO 26262 also
includes recommendations of Safety Mechanisms for Volatile
and Non-Volatile memories. One of the recommendations is
the deployment of Memory monitoring using Error-Detection-
Correction Codes (ECC). Traditionally, ECC algorithms can
detect every one and two-bit failures, and some three or
more bit failures in a word. The standard defines the typical
diagnostic coverage for ECC is also 99% of detection for
random hardware faults. Usually, on complex CPUs, internal
memories, or caches, occupy the largest area on the physical
devices. For that reason, they will have a high contribution
to the design Failure-In-Time (FIT) rate. This contribution
will appear in the Failure Modes (FM) distribution, with
cache-related FMs requiring Safety Mechanisms to decrease
the residual FIT. It is a common design practice to protect
the cache memories with ECC or Parity. In the AutoSoC
design, the internal memories represents a potential of 633,344
possible fault targets considering the SA0 and SA1 fault
models. This number represents 93.7% of the total number of
fault targets for the entire CPU. For that reason, the addition of



TABLE IV
INTERNAL MEMORIES ECC FAULT COVERAGE

Fault Target SA(1/0)
Faults

Detected
by ECC

Residual
Faults

Fetch instructions cache ram 262,144 259,523 2,621
Fetch instructions cache tag ram 20,992 20,782 210
Fetch instructions MMU ram 8,192 8,110 82
Load/Store data cache ram 262,144 259,523 2,621
Load/Store data cache tag ram 19,968 19,768 200
Load/Store data MMU ram 8,192 8,110 82
Load/Store store buffer 51,712 51,195 517

TOTAL 633,344 627,011 6,333

SM to the internal memories represent a good overall coverage
for the CPU faults. The AutoSoC internal ECC configuration
considers the incorporation of ECCs to all internal memories.
Table IV demonstrates the fault coverage of the ECC for each
internal memory block. The total number of faults covered by
the ECCs, considering the 99% DC defined by ISO 26262, is
627,011 faults. This coverage represents a 92.8% Diagnostic
Coverage of the entire CPU. These figures acknowledge the
AutoSoC internal ECC configuration as a good candidate to
comply with ASIL B requirements.

C. AutoSoC STL configuration

To avoid the hurdle of the extra hardware required by DCLS
schemes, there is an increasing demand for software strategies
for the on-line testing of automotive processors. This section
describes the main characteristics of the software test libraries
being developed to improve the AutoSoC CPU fault coverage
and reports the preliminary results.

Preliminary results are gathered on two AutoSoC CPU mod-
ules: the Arithmetic Logic Unit (ALU) and the Load and Store
Unit (LSU). The STL programs have been developed resorting
to three of the most common strategies for Software-Based
Self-Test (SBST) generation [32]: ATPG-based, deterministic
and evolutionary-based [33]. The current STL comprises 16
test programs for a total of 64 KB. The AutoSoC STL
Configuration targets the CPU (mor1kx cpu), cleared of all the
possible sources of non-determinism such as Instruction Cache
and Data Cache. Indeed, when evaluating the test programs
fault coverage, the exact stream of instructions entering the
pipeline must be deterministic: these modules might lead to a
fluctuating fault coverage and therefore should be deactivated
for the fault grading process (which directly contributes to
the ASIL process certification) [34]. This does not prevent the
caches (or similar) from being used when the STL is integrated
in the application software and deployed in field.

Starting from these considerations, permanent faults injec-
tion analyses have been carried out on a total of 42,160 faults
target for the mor1kx cpu at RT level, and a total of 60,672
permanent faults for the mor1kx alu and the mor1kx lsu units
at gate level. If considering the mor1kx alu and mor1kx lsu
at RT level, there are 4,938 fault targets. The Fault Injections
experiments were performed at both the RT and gate level,
mimicking the typical process used in practice, where RT
level estimations are used as a proxy for gate level fault

TABLE V
SELECTED CPU MODULES STL FAULT COVERAGE

CPU Modules RT-Level Gate Level
FC [%] TFC [%] FC [%] TFC [%]

ALU + LSU 68.71 80.04 76.23 85.43

coverage estimation during the STL development process. A
further investigation was performed in order to identify all
the untestable and safe faults [35], revealing a non-negligible
increase in the fault coverage of the two targeted modules.
Once again, the identification of untestable and safe faults
represents a common issue in practice, given that their number
may often be non negligible. Table V sums up the gathered
results showing the achieved fault coverage on the ALU and
LSU modules, both at the RT and gate level. The achieved
Fault Coverage (FC) considering the redundant and safe faults
is reported as Testable Fault Coverage (TFC).

The deployment of software routines to identify permanent
faults is shown to be effective in multiple units of a CPU
[35]. Although it is not always possible to achieve ASIL
D fault coverage requirements by deploying STLs, they are
an appealing alternative when combined with other Safety
Mechanisms. A common practice in the automotive industry
is to combine STLs with ECC in the internal memories
of the CPU. For instance, in [35] the authors achieved a
permanent fault coverage of 84.4% by deploying an STL in an
OpenRISC CPU similar to AutoSoC CPU. The AutoSoC CPU
contains 42,160 targets for stuck-at-0 and stuck-at-1 faults,
not considering the internal memories. If we consider the
fault coverage from [35], the STL would be able to detect
35,583 faults. If we include the STL routines in the AutoSoC
ECC ConfigurationVII-B, the combined Safety Mechanisms
would detect 662,594 faults. As the total number of faults is
675,504, the combined detection rate represents a Diagnostic
Coverage of 98%. This figure would allow the combination
of the AutoSoC STL and ECC configurations to be a good
candidate to comply with ASIL C requirements.

VIII. CONCLUSIONS

The development of Autonomous Vehicles is driving the
industry to close the technological gap demanded by these
applications. The research community is proposing solutions to
address the concerns with safety, security, performance, among
others. However, it may be hard to assess the quality of their
results. In most cases, there is limited access to representative
designs and comparison with industrial methodologies is very
complicated. To address this matter, we present the AutoSoC
benchmark suite. Our work intends to provide researchers
with an SoC that is based on commercial solutions, includes
all essential components, is highly customizable, and allows
comparability between distinct methodologies and results. This
paper outlines the current architecture options incorporated
in the AutoSoC, including hardware components, software
applications, operating systems, and safety mechanisms. Also,
we describe a preliminary functional safety assessment target-



ing different ASIL configurations. Further works on AutoSoC
may focus on new Safety Mechanisms or combinations of
them, new techniques to automate the safety analysis (e.g.,
to better identify untestable and safe faults) and make it faster
(e.g., speeding up functional fault simulation), and to evaluate
cross-layer solutions to evaluate and increase the system de-
pendability. We believe that the availability of this benchmark
suite will allow researchers to develop new solutions and to
quantitatively assess their effectiveness, thus contributing to
the advancement of the state of the art in the area.
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