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Summary

The bodily decline that occurs with advancing age strongly

impacts on the prospects for future health and life expectancy.

Despite the profound role of age in disease etiology, knowledge

about the molecular mechanisms driving the process of aging in

humans is limited. Here, we used an integrative network-based

approach for combining multiple large-scale expression studies in

blood (2539 individuals) with protein–protein Interaction (PPI)

data for the detection of consistently coexpressed PPI modules

that may reflect key processes that change throughout the course

of normative aging. Module detection followed by a meta-

analysis on chronological age identified fifteen consistently

coexpressed PPI modules associated with chronological age,

including a highly significant module (P = 3.5 3 10�38) enriched

for ‘T-cell activation’ marking age-associated shifts in lymphocyte

blood cell counts (R2 = 0.603; P = 1.9 3 10�10). Adjusting the

analysis in the compendium for the ‘T-cell activation’ module

showed five consistently coexpressed PPI modules that robustly

associated with chronological age and included modules enriched

for ‘Translational elongation’, ‘Cytolysis’ and ‘DNA metabolic

process’. In an independent study of 3535 individuals, four of five

modules consistently associated with chronological age, under-

pinning the robustness of the approach. We found three of five

modules to be significantly enriched with aging-related genes, as

defined by the GenAge database, and association with prospec-

tive survival at high ages for one of the modules including ASF1A.

The hereby-detected age-associated and consistently coex-

pressed PPI modules therefore may provide a molecular basis

for future research into mechanisms underlying human aging.

Key words: aging; blood transcriptomics; meta-analysis;

network-based analysis; protein–protein interactions.

Introduction

A steadily growing life expectancy of the general western population

throughout the past two centuries (Oeppen & Vaupel, 2002) has

imposed the urgency for understanding the adverse effects of aging for

public health and its relation to the observed large variation in healthy

lifespan (Hitt et al., 1999). Age-dependent detrimental processes

strongly attenuate prospects for future health, with chronological age

being the major risk factor for mortality and virtually all common

diseases in the western world (Wilson et al., 1998). Aging is a systemic

ailment marked by a gradual metabolic decline eventually leading to a

state of senescence on both the cellular and organismal level that seems

to be caused by the accumulation of damage over time (Kirkwood,

1977). Despite their profound role for disease etiology, the existing

knowledge concerning the molecular mechanisms driving biological

aging processes in humans is limited.

Construction of consistent age-associated signatures has proven to be

challenging as a multitude of gene expression studies have identified

age-associated genes so far, though with limited mutual overlap

(Passtoors et al., 2008; de Magalhaes et al., 2009). This inconsistency

is most likely due to variable technical circumstances, small study sizes,

and low signal-to-noise ratios, typically observed when analyzing the

aging transcriptome. More similarity was observed at the pathway level,

across tissues and even species (Partridge & Gems, 2002; Zahn et al.,

2006), suggesting that the analysis of the aging transcriptome by

functionally grouped gene sets is a promising alternative for the classical

individual-gene analyses.
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Rather than employing literature-based sets of genes sharing similar

biological functions, so-called network approaches are increasingly used,

which infer functional clusters of genes from the expression data itself by

exploiting gene coexpression patterns hidden within the data (Zhang &

Horvath, 2005). Alternatively, changes in these gene coexpression

patterns that occur with age might be used for inferring a func-

tional grouping from the data (Southworth et al., 2009). However,

coexpression patterns may contain spurious gene–gene correlations

(Stuart et al., 2003), which makes the use of multiple data sources

simultaneously or the integration with other additional information

sources on functional relationships between genes desirable.

Established modulators of aging processes in model organisms were

reported to spatially cluster within networks constructed of protein–

protein interaction (PPI) data (de Magalhaes & Toussaint, 2004; Bell

et al., 2009). Hence, PPI networks can be exploited for prioritizing new

aging-associated genes (Witten & Bonchev, 2007; Tacutu et al., 2012) or

for refining modules of coexpressed genes that are correlated during the

course of aging (Xue et al., 2007). We previously demonstrated that the

inference of these so-called coexpressed PPI modules has a high

reproducibility across multiple expression datasets in breast cancer (van

den Akker et al., 2011), and here we extend this algorithm to combine

multiple gene expression datasets on aging.

Though many algorithms for network inference exist (Marbach et al.,

2012), relatively little attention has gone to the problem of network

inference and subsequent associations with a phenotype using multiple

heterogeneous expression data sources simultaneously. Merging the

expression data into a single set and using this for network inference

clearly surpasses the differences in correlation structures present within

each dataset. Irrespective of the type of network inference chosen, we

propose to handle such heterogeneity by integrating the gene–gene

similarity measures obtained across expression datasets using a suitable

meta-analysis setting. Thus, in the approach described in this paper, we

employ a meta-analysis for inferring a consistent gene–gene network

that serves as a basis for identifying consistently coexpressed PPI

modules, which are subsequently analyzed with respect to chronological

age across datasets using again a meta-analysis.

To robustly characterize the changes of the blood transcriptome

associated with chronological age, we have build a compendium using

three large-scale transcriptomic studies (Goring et al., 2007; Emilsson

et al., 2008; Inouye et al., 2010) generated in blood comprising 2539

individuals on which we applied our integrative network approach. For

comparison, two types of individual-gene meta-analyses were per-

formed as well, which in combination with an enrichment analysis

yielded only broad terms for age-associated cellular processes. Applica-

tion of our integrative network-based approach, yielded five consistently

coexpressed PPI modules showing robust age associations and functional

enrichments for ‘Translational elongation’, ‘Cytolysis’ and ‘DNA meta-

bolic process’, which seem to reflect downstream mTOR signaling events

or cell-cycle checkpoints. Finally, we show that four of five modules

replicate in an independent cohort, and that they are enriched for

known longevity- and aging-related genes and that the expression of

one module associates with prospective survival at old age.

Results

The largest transcriptome compendium for normative aging

To robustly characterize the changes of the blood transcriptome

throughout the course of normative aging in the range of 15–94 years,

we built a gene expression compendium using three large-scale

transcriptomic studies performed in blood: the San Antonio Family

Heart Study (SAFHS) (Goring et al., 2007), the Icelandic Family Blood

(IFB) cohort (Emilsson et al., 2008) and the Dietary, Lifestyle, and Genetic

determinants of Obesity and Metabolic syndrome (DILGOM) study

(Inouye et al., 2010). Data of IFB were measured in two roughly equally

sized batches, from this point on referred to as IFB_A and IFB_B, and was

treated as two separate datasets in the downstream analysis. Data

quality was critically reassessed and reannotated yielding a compendium

of 9047 unique genes expressed in 2539 individuals divided over four

datasets (SAFHS: 1,240, IFB_A: 411, IFB_B: 435, DILGOM: 454) [Table 1

& Experimental Procedures].

Limited overlap of age-associated genes between studies

within the compendium

The most straightforward method for an integrative analysis across

datasets is to first compute the age-association genes per dataset and

subsequently inspect the overlap of significant results. A linear model

adjusted for gender yielded between 111 (1.2%) and 1103 (12.2%)

significantly age-associated genes per dataset (Bonferroni correction,

a ≤ 0.05), of which 26 genes were significantly associated with age in all

four datasets [Fig. 1 and Table S1, Supporting information]. These results

confirmed the high discrepancy between lists of age-associated genes

previously reported in literature, even though now observed in equal or

similar tissues (Passtoors et al., 2008; de Magalhaes et al., 2009).

Table 1 Descriptives of the datasets composing the compendium

Study Tissue Cohort Ethnicity

No. of

start total†
No. of

end total‡
No. of

males (%)‡
Mean

age‡
Min

age‡
Max

age‡

SAFHS§ Lymphocytes San Antonio Family Heart Study Mexican Americans (USA) 1240 1240 506 (40.8) 39.3 15 94

IFB_A Peripheral blood Icelandic Family Blood (IFB) cohort Caucasian (Icelandic) 904¶ 411 198 (48.2) 48.8 19 84

IFB_B Peripheral blood Icelandic Family Blood (IFB) cohort Caucasian (Icelandic) 904¶ 434 180 (41.5) 46.2 20 76

DILGOM Peripheral blood DILGOM (Dietary, Lifestyle, and Genetic

determinants of Obesity and

Metabolic syndrome)

Caucasian (Finnish) 518†† 454 195 (43.0) 51.6 30 70

†Number of individuals with matching phenotypic data per study when obtained.
‡Statistics computed after preprocessing.
§Expression and phenotypic data were obtained from ArrayExpress under accessions: E-TABM-305.
¶Data of IFB were measured in two batches. This figure indicates the total number of individuals before preprocessing or removal of duplicates across batches.
††A small batch was detected and all samples belonging to it were removed.

Module-based meta-analysis of human aging data, E. B. van den Akker et al.2

ª 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



Rank-based integration of age-associated genes improves

consistency between studies

As repeatedly applied cutoffs across multiple heterogeneous datasets

may lead to high false exclusion rates of age-associated genes, we

investigated whether age-association rankings were consistently high

across datasets by applying a rank integration approach (Breitling et al.,

2004; de Magalhaes et al., 2009). From the 9047 genes present in the

compendium, 247 consistently showed highly ranked differential

expressions with age across the four datasets, of which 195 remained

significant after permutation tests (both at FDR<=0.05) [Experimental

Procedures]. Of these 195 genes, 128 (65.6%) showed decreased and

67 (34.4%) showed increased expression levels with age. The top 25

genes with increased and decreased expression are displayed in Tables 2

and 3, respectively, and include many of the age-associated genes

previously identified, like LRNN3, LEF1, and SYT11 (Hong et al., 2008;

Harries et al., 2011; Passtoors et al., 2012). Results for all 9047 genes in

the compendium are provided in Table S2 (Supporting information).

Functional enrichments of individual-gene analysis are not

informative for normative aging

We next identified enriched functional groupings among genes signif-

icantly associated with normative aging using DAVID focusing on

GO_FAT terms. Whereas the 26 genes from the overlap did not yield any

significantly enriched terms, the 195 significant genes obtained with the

rank integration approach yielded 11 significant enriched groupings

when run at default settings [Tables S3 and S4, Supporting information

respectively]. Interestingly, enriched terms include ‘Glycosylation site:

N-linked’ (P = 6.1 9 10�5, Benjamini corrected), previously linked to the

inflamm-aging theory (Dall’olio et al., 2013). However, as most of the 11

identified terms are rather broadly defined, like ‘disulfide bond’ or ‘signal

peptide’, little detailed knowledge is gained on potential molecular

mechanisms underlying normative aging following the individual-gene

analysis approach.

Fig. 1 Significantly age-associated genes in studies of the blood compendium. A

Venn analysis was performed for inspecting the overlap of the significantly age-

associated genes found within different studies. The majority of the consistently

detected age-associated genes (24 of 26) show a decreased expression with

advancing age and include the following: ARH, BACH2, CCR7, ECRG4, EDAR,

EPHA1, EPHX2, FAM102A, FAM134B, FBLN2, FCGBP, FLNB, IL24, LRRN3, NELL2,

NMT2, NRCAM, OXNAD1, PDE9A, PHGDH, PIK3IP1, SIRPB2, SUSD3, and TSGA14.

The remaining 2 consistently age-associated genes showing increased expressions

are ARP10 and SYT11. See Table S1 (Supporting information) for more details.

Table 2 Top 25 genes according to the gene statistic (Ui) having increased expression with age

Symbol GeneID P-value* q-value* P-value** q-value**

GPR56 9289 5.3 9 10�09 4.8 9 10�05 1.0 9 10�06 0.0018

HF1 3075 2.3 9 10�08 8.1 9 10�05 1.0 9 10�06 0.0018

SYT11 23208 2.7 9 10�08 8.1 9 10�05 ≤ 5.0 9 10�7 0.0018

ARP10 164668 7.3 9 10�08 1.7 9 10�04 1.0 9 10�06 0.0018

B3GAT1 (CD57) 27087 1.1 9 10�07 2.0 9 10�04 3.0 9 10�06 0.0021

SLC1A7 6512 1.8 9 10�07 2.6 9 10�04 3.2 9 10�05 0.0110

IFNG 3458 5.0 9 10�07 6.4 9 10�04 1.1 9 10�05 0.0065

DSCR1L1 10231 6.1 9 10�07 6.8 9 10�04 2.0 9 10�06 0.0021

ARK5 9891 7.9 9 10�07 7.9 9 10�04 3.0 9 10�06 0.0021

PIG13 81563 9.3 9 10�07 8.8 9 10�04 1.0 9 10�06 0.0018

SPUVE 11098 1.1 9 10�06 8.8 9 10�04 1.2 9 10�05 0.0067

PDGFRB 5159 1.2 9 10�06 8.8 9 10�04 1.5 9 10�06 0.0021

EDG8 53637 1.4 9 10�06 9.4 9 10�04 7.8 9 10�05 0.015

MARLIN1 152789 1.5 9 10�06 9.4 9 10�04 5.0 9 10�06 0.0032

TGFBR3 7049 2.0 9 10�06 0.0012 2.8 9 10�05 0.011

GZMB 3002 2.4 9 10�06 0.0013 5.0 9 10�04 0.050

CX3CR1 1524 2.9 9 10�06 0.0014 2.9 9 10�05 0.011

STYK1 55359 3.3 9 10�06 0.0015 4.8 9 10�05 0.013

ADRB2 154 3.7 9 10�06 0.0016 3.0 9 10�06 0.0021

GAF1 26056 7.1 9 10�06 0.0029 7.2 9 10�05 0.015

CTSL 1514 7.7 9 10�06 0.0030 3.2 9 10�04 0.040

GFI1 2672 1.1 9 10�05 0.0040 3.0 9 10�06 0.0021

TTC38 55020 1.1 9 10�05 0.0040 7.6 9 10�05 0.015

AGPAT4 56895 1.2 9 10�05 0.0041 2.5 9 10�06 0.0021

GZMA 3001 1.4 9 10�05 0.0045 3.3 9 10�04 0.040

*P- and q-values determined using the gamma distribution of the gene statistic, Ui.

**P- and q-values determined using permutation of the gene statistic, Ui.
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A novel integrative network approach for detecting

consistent coexpressed PPI modules

To improve robustness against noise and increase power, we used a

novel integrative network-based approach to explore functional

age-associated groupings of genes. The proposed approach detects

consistently coexpressed PPI modules across multiple datasets (for details

see Experimental Procedures and Data S1, Supporting information).

Using the four transcriptomic datasets mapped onto the PPI network, we

detected a total of 162 consistently coexpressed PPI modules ranging in

size from 2 to 37 genes [see Fig. S1, Supporting information for a

complete overview]. The following steps in our analysis were limited to

the subset of 27 coexpressed PPI modules counting at least five genes.

Application of DAVID yielded significant functional enrichments for 19 of

the 27 identified coexpressed PPI modules [Table S5, Supporting

information], suggesting that the applied approach grouped genes

according to plausible biological functions.

Age-associated coexpressed PPI modules point toward T-cell

activation

To test whether transcriptional changes of the 27 identified modules

associate with chronological age, an expression profile for each module

was constructed by determining the mean expression of the genes

within a detected coexpressed PPI module per individual. As with the

individual-gene analysis, we proceeded by computing the associations of

the module expressions with age while adjusting for gender for each

dataset separately. Only one module [Fig. 2A], enriched for ‘T-cell

activation’, was significantly associated with age in each of the four

datasets of the compendium. This module A contains genes commonly

employed as markers for assessing the differentiation status of T-cell

lineages, such as CCR7, CD28, and TNFRSF7 (CD27). A fixed-effect meta-

analysis on the expression of the different modules across the datasets

showed again that the ‘T-cell activation’ module was most significantly

associated with age (Bonferroni corrected P = 3.5 9 10�38) [see also

Experimental Procedures]. The consistent age association of the ‘T-cell

activation’ module, however, raises the concern that the identified

modules reflect age-related changes in the proportions of cell popula-

tions in blood, as previously reported (Derhovanessian et al., 2010),

rather than changes in gene expression.

T-cell activation module expression marks blood lymphocyte

counts

To investigate the relation between the expression of the ‘T-cell

activation’ module and the proportions of blood cell populations, for

which we have no data in the compendium, we revisited a transcrip-

tomic dataset on peripheral blood measured in the Leiden Longevity

Study (LLS) (Passtoors et al., 2012) [Data S1, Supporting information].

Using the expression data of 50 middle-aged and 50, 90-year-old

individuals, we first confirmed the association with age of the expression

of the ‘T-cell activation’ module (P = 3.7 9 10�5), and subsequently

observed a significant correlation between the expression of the ‘T-cell

activation’ module and lymphocyte counts (R2 = 0.603, P = 1.9 9

10�10). These findings suggest that the previously observed age

associations in the blood compendium are most probably confounded

by the age-associated decline in lymphocyte counts. We also conclude

that the expression of the ‘T-cell activation’ module could serve as a

proxy for the age-associated decline in lymphocyte counts in the

compendium.

Table 3 Top 25 genes according to the gene statistic (Ui) having decreased expression with age

Symbol GeneID P-value* q-value* P-value** q-value**

LRRN3 54674 1.3 9 10�12 1.2 9 10�8 ≤ 5.0 9 10�7 3.2 9 10�4

FCGBP 8857 3.2 9 10�10 1.5 9 10�6 ≤ 5.0 9 10�7 3.2 9 10�4

CCR7 1236 1.1 9 10�9 3.2 9 10�6 ≤ 5.0 9 10�7 3.2 9 10�4

NELL2 4753 2.0 9 10�8 4.5 9 10�5 1.0 9 10�6 3.8 9 10�4

NRCAM 4897 3.1 9 10�8 5.6 9 10�5 ≤ 5.0 9 10�7 3.2 9 10�4

IGJ 3512 1.5 9 10�7 2.3 9 10�4 2.6 9 10�4 0.019

LEF1 51176 1.9 9 10�7 2.5 9 10�4 ≤ 5.0 9 10�7 3.2 9 10�4

FAM134B 54463 2.2 9 10�7 2.5 9 10�4 ≤ 5.0 9 10�7 3.2 9 10�4

PACAP 51237 2.5 9 10�7 2.5 9 10�4 1.5 9 10�6 4.8 9 10�4

ITM2C 81618 2.8 9 10�7 2.5 9 10�4 3.5 9 10�6 8.1 9 10�4

PIK3IP1 113791 3.0 9 10�7 2.5 9 10�4 1.0 9 10�6 3.8 9 10�4

PDE9A 5152 5.1 9 10�7 3.8 9 10�4 1.0 9 10�6 3.8 9 10�4

BACH2 60468 6.9 9 10�7 4.8 9 10�4 1.0 9 10�6 3.8 9 10�4

FLJ12895 65982 9.5 9 10�7 6.0 9 10�4 1.5 9 10�6 4.8 9 10�4

FAM102A 399665 1.1 9 10�6 6.0 9 10�4 ≤ 5.0 9 10�7 3.2 9 10�4

FBLN2 2199 1.1 9 10�6 6.0 9 10�4 ≤ 5.0 9 10�7 3.2 9 10�4

FLNB 2317 1.2 9 10�6 6.0 9 10�4 ≤ 5.0 9 10�7 3.2 9 10�4

APEG1 10290 1.2 9 10�6 6.0 9 10�4 1.0 9 10�6 3.8 9 10�4

EPHX2 2053 1.3 9 10�6 6.0 9 10�4 1.5 9 10�6 4.8 9 10�4

TNFRSF17 608 1.3 9 10�6 6.1 9 10�4 1.2 9 10�4 0.011

MYC 4609 1.6 9 10�6 6.6 9 10�4 3.5 9 10�6 8.1 9 10�4

NT5E 4907 1.7 9 10�6 6.6 9 10�4 1.0 9 10�6 3.8 9 10�4

TOSO 9214 1.7 9 10�6 6.6 9 10�4 1.0 9 10�6 3.8 9 10�4

ARH 26119 3.2 9 10�6 0.0012 2.0 9 10�6 6.2 9 10�4

OXNAD1 92106 3.3 9 10�6 0.0012 ≤ 5.0 9 10�7 3.2 9 10�4

*P- and q-values determined using the gamma distribution of the gene statistic, Ui.

**P- and q-values determined using permutation of the gene statistic, Ui.
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Five coexpressed PPI modules associate with age

independent of T-cell activation

Based on these findings, we adapted the fixed-effect meta-analysis to

reanalyze the 27 modules in the compendium while adjusting for gender

as well as the expression of the ‘T-cell activation’ module. This revealed

nine modules significantly associated with chronological age, of which

five also showed a significant association without adjusting for ‘T-cell

activation’ [Fig. 2B–F]. These five modules thus exhibit the most robust

expression changes with age and include (i) a large consistently down-

regulated ribosomal module (P = 9.4 9 10�19), enriched for ‘Transla-

tional elongation’ (P = 4.5 9 10�46); (ii) an up-regulated module

containing among others several granzymes and the perforin gene

(P = 2.9 9 10�24), enriched for ‘Cytolysis’ (P = 9.4 9 10�05); and (iii) a

down-regulated module containing the PARP1 (ADPRT) gene

(P = 3.1 9 10�39) enriched for ‘DNA metabolic process’ (P = 0.0036).

The two remaining modules were both down-regulated with advancing

age and lacked any significant functional enrichments (Fig. 2E,F;

P = 3.9 9 10�11 and P = 2.5 9 10�18, respectively).

Replication of coexpressed PPI modules as robust markers for

aging

We conducted an independent replication study of the identified

network modules as robust markers for chronological age using gene

expression data from the Netherlands Twin Register and Netherlands

Study of Depression and Anxiety (NTR & NESDA) consortium (N = 3535)

(Boomsma et al., 2008) assayed on individuals within age range

17–79 years [Data S1, Supporting information]. An association analysis

between the mean expression of a module and chronological age,

adjusted for sex and the mean expression of the ‘T-cell activation’

module, yielded significant results for four of the five identified modules,

all with directions corresponding to those found in the compendium

[Table S6, Supporting information]. These results emphasize the robust-

ness of the findings produced by our approach and confirm that the

mean module expression in whole blood of module B, C, E, and F may be

considered as robust markers of chronological age.

Coexpressed PPI modules are enriched for GenAge longevity

and aging genes

As a validation of the identified modules, we computed whether aging-

related genes stored by GenAge (de Magalhaes & Toussaint, 2004), a

database providing a comprehensive overview of aging-related genes in

humans and model systems, were enriched within modules A–F (Fig. 2)

[Data S1, Supporting information]. Whereas module A was supported by

human derived annotations only (OR = 12.1, 95% CI 2.88–39.2,

P = 6.95 9 10�4), module B was solely based on knowledge

derived from model organisms (OR = 16.9, 95% CI 7.26–39.1,

P = 2.52 9 10�10) [Table S7, Supporting information]. Modules D, E,

and F had annotations balanced over both sources, and therefore, the

significance of the joint enrichment was assessed by using a resampling

approach [Data S1, Supporting information], which yielded significant

enrichments for modules E (P = 0.016) and F (P = 0.0029). These

Fig. 2 Overview main results of the integrative network-based approach. Panel 1: Overlap of the PPI network and cluster analysis of the transcriptomic data reveals 27

modules, 15 are significantly associated with age, 9 are significantly associated with age when corrected for the ‘T-cell activation’ module expression, and the 5 most robust

findings are found in the overlap. Panel 2: Legend: Genes are represented by nodes, whose shape and color reflect the results of the individual-gene statistic (Ui). The red and

green colors denote a correlating or anti-correlating relationship of gene expression with age, respectively. The intensity of the coloring indicates the significance of the

gamma-distributed transformed rank product statistics. Nodes marked by a thick bordering or a hexagon shaped bordering represent genes with FDR adjusted P-values ≤
0.05 for respectively the analytical and permutation-based approach. Panel 3: The coexpressed PPI module that is enriched for ‘T-cell activation’. Panel 4: B-F: 5 coexpressed

PPI modules with expressions robustly associated with age. B, C and D: modules enriched for ‘Translational elongation’, ‘Cytolysis’, and ‘DNA metabolic process’,

respectively. Node’s shape and color reflect the results of the individual-gene statistic (Ui).
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findings provide additional evidence that the joint expression of these

modules may play a relevant role in human aging.

Module F associates with prospective survival at old age

To investigate whether the identified modules could potentially serve as

biomarkers, we studied the microarray data assayed on 50 nonagenarian

individuals from the Leiden Longevity Study (Passtoors et al., 2012). A

left truncated Cox proportional hazard model adjusted for sex and cell

counts indicates that the mean expression of module F associates with

prospective survival beyond the age of 90 years (N = 50, Ndeath = 45,

HR = 0.265, 95% CI 0.12–0.57, P = 0.001). By showing that module F

associates with prospective survival at old age, we illustrate its potential

biological relevance.

Interestingly, the ASF1A gene is part of module F and has previously

been identified by our group as one of the genes that was differentially

expressed in blood of members of long-lived families as compared to

similarly aged controls at middle age (Passtoors et al., 2012). To confirm

that the expression of the ASF1A gene in module F also associates with

prospective survival at old age, we analyzed the gene expression of

ASF1A measured with RT-qPCR in 74 nonagenarians from the Leiden

Longevity Study (of which 24 overlapped with the micro-array experi-

ment) for association with prospective survival. Because we observe a

similar association (Ndeath = 64, HR = 0.54, 95% CI 0.34–0.85,

P = 0.008) [Fig. 3], these results indicate that modules, of which the

expression in blood is consistently associated with chronological age

across various datasets, may associate with variation in lifespan, and

therefore provide valid gene targets for studying relevant biological

endpoints in human aging.

Discussion

Age-associated changes in gene expression may provide meaningful

leads to pathways affected by and involved in aging, though are

generally difficult to detect consistently (de Magalhaes et al., 2009).

Therefore, we constructed a large compendium of human whole blood

expression studies (Goring et al., 2007; Emilsson et al., 2008; Inouye

et al., 2010) comprising 2539 individuals on which we performed a

novel integrative network-based analysis. This yielded fifteen consis-

tently age-associated coexpressed PPI modules. Because the most

significant age-associated module appeared to correlate with lympho-

cyte cell counts in an independent gene expression dataset, the

expression of this module, enriched for ‘T-cell activation’, was

subsequently used as a proxy for possible confounding shifts in the

distribution of lymphocyte subsets. This enabled the identification of

five age-associated modules [Fig. 2 Panel I and IV], including three

modules enriched for ‘Translational elongation’, ‘Cytolysis’ and ‘DNA

metabolic process’ [Fig. 2B–D]. Replication in an independent cohort

confirmed these findings for four of five modules [Fig. 2B,C,E and F],

underpinning the robustness of the proposed approach. The enrich-

ments against a database for aging-related genes [Fig. 2B,E and F]

emphasize the relevance of these biological findings for aging research,

which is even further substantiated by the fact that the mean

expression of module F associates with prospective survival at old age.

Mitochondrion-related aging

Two of the identified modules are down-regulated with age and seem to

be related to the mitochondrion, though lacking any significant

functional enrichment [Fig. 2E,F]. Despite the absence of functional

enrichments, both modules were significantly enriched for aging-related

genes, as defined by GenAge, implying that known age-related single

genes can be put into a novel biological perspective by our network

approach.

Module [Fig. 2F] contains several mitochondrial factors and enzymes,

like, for instance, the mitochondrial transcription termination factor

MTERF, the ACADM enzyme used for fatty acid metabolism, or the

mitochondrial tRNA synthetase IARS2, whose homolog was shown to

increase lifespan upon disruption in worms (Smith et al., 2008). This

module also includes several genes previously associated with age or

age-associated diseases such as the mitotic checkpoint protein BUB3,

previously associated with accelerated aging in mice (Baker et al., 2006),

and the cell-cycle checkpoint protein APPBP1 found in increased

quantities in the brain affected by Alzheimer’s disease (Chen et al.,

2003). This broad range of gene characteristics composing the module

could be explained by the fact that the functionality of mitochondria is

not confined to cellular energy metabolism alone, but also seems to

make up an integral part of multiple cell signaling cascades including

cell-cycle control and cell death (McBride et al., 2006).

Interestingly, module F also includes the ASF1A histone chaperone of

which we previously have shown that its expression associates with

familial longevity in the Leiden Longevity Study (Passtoors et al., 2012).

We revisited the RT-qPCR data assayed on 74 nonagenarians and now

show that the expression of ASF1A also associates with prospective

survival. This result illustrates that modules, of which the expression in

blood is consistently associated with chronological age across various

datasets, may associate with variation in lifespan, and therefore provide

valid gene targets for studying relevant biological endpoints in human

aging.

The other mitochondrion-related module [Fig. 2E] contains the heat

shock protein HSPCA (HSP90) and the mitochondrial receptor TOMM20,

which jointly play a central role in translocating preproteins into the

mitochondria (Fan et al., 2011). They seem to be consistently coex-

pressed in blood with EIF4A2, a eukaryotic translation initiation factor
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Fig. 3 Expression of ASF1A associates with prospective survival in nonagenarians.

High expression of ASF1A confers a prospective survival benefit at old age.

Module-based meta-analysis of human aging data, E. B. van den Akker et al.6

ª 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



and DDX18, an ATP-dependent RNA helicase, of which the worm

homologs were shown to extent lifespan upon disruption (Curran &

Ruvkun, 2007; Smith et al., 2008). To summarize, this module seems to

relate to aging by influencing protein translation and mitochondrial

translocation efficiency.

Age-associated limitation of protein synthesis

One of the identified modules predominantly consisted of ribosomal

proteins and translation elongation factors comprising part of the

ribosomal complex [Fig. 2B]. The module was significantly enriched for

‘Translational elongation’ and for previous findings in model organisms

with respect to aging and longevity. In addition, the module was down-

regulated with advancing age fitting previous observations of the aging

blood transcriptome (Hong et al., 2008; Harries et al., 2011; Passtoors

et al., 2012), which could be interpreted as an attempt of the cell to limit

global protein synthesis in response to stress arising from damage

accumulating throughout lifespan (Clemens, 2001). Whether caused by

response to stress or other factors, the change in protein translationmaybe

ascribed to themTORC1 complex (Laplante&Sabatini, 2009). This complex

modulates cellular growth and metabolisms by determining the balance

between protein synthesis and degradation in response to nutrient

availability. Inhibition of mTOR signaling through the mTORC1 complex

not only inhibits protein synthesis, but also has been shown to positively

affect the lifespan in various invertebrates and mammals (Johnson et al.,

2013). Moreover, human blood transcriptome studies showed that the

gene expression of mTOR pathway is down-regulated with chronological

age (Harries et al., 2011; Passtoors et al., 2013) and is even associatedwith

human familial longevity (Passtoors et al., 2012). Hence, a consistently

down-regulated ribosomal module with advancing age corresponds with

the age-associated demise of mTOR signaling. Although it is well

established that mTOR signaling links to both lifespan regulation and

‘Translational elongation’, it remains to be determined whether down-

regulation of ‘Translational elongation’ is causal for human aging.

WRN-related cell-cycle checkpoint on DNA integrity

A module down-regulated with age and enriched for ‘DNA metabolic

process’ identified in the compendium could not be replicated in the NTR

& NESDA cohort [Fig. 2D]. Interestingly, this module contains the PARP1

(ADPRT) gene, which directly binds to WRN to induce apoptosis upon

oxidative stress induced DNA damage and is as such a prime suspect for

Werner syndrome (von Kobbe et al., 2003), a premature aging disease.

Furthermore, the activity of the Parp1 protein in mononuclear cells has

previously been shown to positively correlate with the species-specific

lifespan across 13 mammalian species (Grube & Burkle, 1992). Taken

together, findings in the compendium suggest that the lowered

transcription rate of PARP1 negatively affects DNA integrity and thus

lifespan, though more experiments are required to investigate this

hypothesis.

Age-associated shifts in T-cell composition

Another identified module is up-regulated with age and enriched for

‘Cytolysis’ [Fig. 2C]. It contains several genes used to dispatch virus-

infected cells and may reflect the decreased competence for fighting

infections in an early stage, caused by an age-related deterioration of the

immune system, knownas immuno-senescence (Pawelec& Solana, 1997).

We can, however, not rule out that the age-associated expression of

GZMA, GZMB, and PRF1 that are part of this module point to an age-

associated shift in T-cytotoxic cells (Derhovanessian et al., 2010; Napoli

et al., 2012).

Though identified coregulated PPI modules may show extensive

correlation with confounding factors, we should be careful to dismiss

modules as such only. For instance, the ‘T-cell activation’ module

[Fig. 2A], which is down-regulated with age, also contained BNIP3, an

inhibitor of the mTORC1 complex shown to modulate lifespan in worms,

flies, and mice (Johnson et al., 2013); and FOXO1, also displaying an

intricate interplay with both complexes of mTOR (Laplante & Sabatini,

2009), and shown to extent lifespan in various invertebrates (Calnan &

Brunet, 2008). Additionally, human mTOR signaling may play a central

role in orchestrating T-cell maturation and T-cell fate decisions (Chi,

2012), and could thereby also explain the age-associated decline in

lymphocytes as marked by the ‘T-cell activation’ module. Taken

together, these examples illustrate that what is confounding the analysis

of the blood transcriptome for molecular mechanisms associated to

aging is subjective to debate and might even not be possible to

determine given the complex interplay between the different biological

levels on which aging acts.

The proposed network approach into perspective

Network analyses have clear advantages over individual-gene analyses,

as they enable the incorporation of useful prior knowledge, which can

be exploited for improving the robustness of the analysis and the

subsequent interpretation of the results. The improved robustness of the

network approach over the individual-gene analyses was reflected by the

low mutual overlap between the individual-gene results [Fig. 1] as

opposed to the high concordance between the results obtained in the

compendium and replication cohort. The advantages for the interpre-

tation were clearly illustrated by the modest insights gained from the

two different strategies for individual-gene analysis (‘Glycosylation site:

N-linked’), as opposed to the detailed gene modules produced by our

approach that can serve as a novel basis for further investigation into the

molecular mechanisms underlying normative aging. Moreover, our

approach is capable of inferring biological coherence from the data,

without the explicit need of predefined functional groupings, as was

shown by the enrichments of the identified modules found for genes

within the GenAge database.

Though the analysis benefits from incorporating protein–protein

interaction data, the type, and source clearly affect the results. To be as

inclusive as possible for types and sources of PPI data, we have chosen to

employ data obtained from the STRING database, which systematically

collects and integrates interaction data derived from various sources for

predicting functional relations between gene pairs. This choice results in

a vast and comprehensive source of data. However, STRING data are not

confined to physical interactions, as is the case with for instance IntAct

(http://www.ebi.ac.uk/intact/) and unlike KEGG (http://www.genome.jp/

kegg/), STRING data are not manually curated. For network inference, a

trade-off exists between the sparsity and the quality of the employed

gene–gene interactions. We made use of a threshold on the quality of

reported interactions that are created by STRING by benchmarking the

different interaction data sources to KEGG. Varying this threshold would

affect the size and nature of the obtained coexpressed PPI modules. As

the threshold determines the scale of the analysis, an interesting

observation is that the results can be confounded to parts of the global

network that do not necessarily overlap with the predefined known

biological pathways. The latter is illustrated by the fact that some of our

modules are not enriched for biological pathways and could basically be

valued as a strong point of our data-driven approach.
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Conclusion

By applying a network approach to multiple blood transcriptomics

datasets, we have identified five coexpression PPI modules that associate

with chronological age in humans. The confirmation of most of our

findings in an independent dataset underpins the robustness of our

approach. The modules are significantly enriched for aging-related genes

as curated by the GenAge database. This implies that these age-related

single genes, in the absence of a clear understanding of their joint

functioning belong to a network that finds its basis in protein–protein

interactions andwill serve as novel input for aging research.We reinforced

thebiological relevanceof oneof themodulesby showing that it associates

with prospective survival beyond 90 years in humans aswas observed also

for a single knownage-relatedgene in thismodule (ASF1A). Thesefindings

collectively warrant further investigations into the biological function of

module F and its potential as a biomarker for healthy aging and human

longevity.

Experimental procedures

Creating the blood expression compendium

Analyses were based on gene expression data derived from individuals

enrolled in three large cohort studies for which details on sample inclusion

and employed expression protocols are provided in depth in the original

publications (Goring et al., 2007; Emilsson et al., 2008; Inouye et al.,

2010). Gene expression and accompanying phenotypic datawas obtained

from either the original authors or from the public data repository

ArrayExpress. Data quality was stringently reexamined per dataset for the

presence of outlier samples or outlier measurements and annotated to a

common annotation standard (EntrezGeneID). A detailed description of

the data processing and an overview on the resulting sample statistics is

given in the Data S1 (Supporting information) and Table 1, respectively.

Rank integration approach

A rank integration approach (Breitling et al., 2004; de Magalhaes et al.,

2009) was used to identify genes consistently up- or down-regulated

with age across multiple heterogeneous datasets. This type of meta-

analysis integrates individual-gene statistics across datasets, by ranking

the statistics per dataset and assessing the significance of the observed

combined ranking using a Gamma distribution (Koziol, 2010) or through

permutation. Gender adjusted linear fits between expression and age

were used as gene statistics that were obtained by fitting the following

multivariate linear regression model:

Eijk ¼ b0ik þ b1ikGjk þ b2ikAjk þ eijk ð1Þ
where Eijk is the gene expression of gene i for individual j in the kth

dataset, with 1 ≤ i ≤ M, 1 ≤ j ≤ N and 1 ≤ k ≤ K, where Gjk and Ajk are

the gender and age of individual j in the kth dataset, respectively, and

where eijk is the residual error of gene i for individual j in the kth dataset.

Genes were ranked on the regression coefficients between age and

expression, b2ik. The rank position of gene i in dataset k is denoted by

Rik. Ranks across the datasets were integrated per gene by computing

rank product statistics as previously defined by Koziol (Koziol, 2010):

RPi ¼
XK

k¼1

logðRikÞ ð2Þ

The significance of the observed rank products was assessed in two

ways. Following Koziol, rank products RPi were transformed using:

Ui ¼ �RPi þ K � logðM þ 1Þ ð3Þ

The significance of the U-statistics could be assessed by employing the

gamma distribution (Koziol, 2010) or through permutation as described

in the Data S1.

Extracting coexpressed PPI modules

Genes were mapped to the protein–protein interaction network (STRING

v9.0, http://string-db.org/), which yielded a compendium of about

81.3% of the initial set of genes (N = 7353) in the compendium. Ranked

coexpression matrices were computed for each dataset separately by

computing a correlation matrix composed of first-order partial correla-

tions between all pairs of genes adjusted for sex and subsequently

assigned a rank to each of them. A higher positive correlation resulted in

a higher ranking. The ranked coexpression matrices were integrated by

computing rank products as in the section on individual-gene analysis.

The resulting gene–gene rank product matrix together with the PPI

network matrix was subsequently used as input for the method that

identifies coexpressed PPI subnetworks as described in Van den Akker

et al. (van den Akker et al., 2011), see also Data S1 (Supporting

information). In short, a cluster analysis on the gene–gene rank product

matrix yielded coexpressed modules of genes. High confidence coex-

pressed genes were obtained by applying a threshold on the gene–gene

rank product matrix. We obtained coexpressed PPI modules by

intersecting the coexpressed gene modules with the PPI network matrix.

Coexpressed PPI modules were subsequently visualized using Cytoscape

[Data S1, Supporting information].

Fixed-effect meta-analysis on module expressions across the

blood compendium

Gene expression data were summarized per coexpressed PPI module for

each dataset separately by taking the mean expression per individual

over all genes in the module, resulting in a module expression for each

dataset. Associations with age were tested for each coexpressed PPI

module, by performing a fixed-effect meta-analysis across the four

datasets using a first-order partial correlation between age and the

module expression, computed with the controlling variable gender to

adjust for sex differences. Per dataset k, we thus computed:

qakmk�gk ¼
qakmk

� qakgkqmkgkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðqakgk Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðqmkgk

Þ2
q ð4Þ

where qakmk
is the correlation between age and the expression of

the nth module across individuals of the kth dataset; qakgk is the correlation
between age, and gender across individuals of the kth dataset and qmkgk

is

the correlation between expression of the mth module and gender of

individuals in the kth dataset. To correct for multiple controlling variables,

higher order partial correlations were computed by repeatedly computing

first-order partial correlations as described above. The functionmetacor of

R packagemetawas used for integrating and testing the meta correlation

statistic between age and module expression across the four datasets

using default settings. Modules with significant correlations (Bonferroni

corrected P-value ≤ 0.05) were considered age dependent.
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