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Abstract

In this thesis, more research is done to investigate Hanea’s and Nane’s

calibration score for discrete random variables. Also, slight adjustments of

Hanea’s and Nane’s calibration score are introduced as well as investigating

the behaviour of these calibration scores. For this, both real data as well as

simulations are used to validate the procedure.

In section 2, an overview is given of how the validation of the quality of the

assessments of the different experts for events which either occur or don’t

occur is given. In section 3, the focus will be on looking at different properties

of this calibration score using cases where all events get assigned to the same

bin. Also, in section 3, other calibration scores which are slight adjustments of

Hanea’s and Nane’s calibration score are introduced as well as looking at the

properties of these calibration scores using cases where all events get assigned

to the same bin. In section 4, data consisting of experts answering calibration

questions is used to further investigate the behaviour of the calibration scores.

At the end of the report, the concluding remarks, references and appendices

for the R code used during this project can be found.
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1 Introduction

When a government or company makes policy, it is often needed to elicit the

probability whether events of interests will occur or not. To do so, these

governments and companies often ask experts for their assessments. Before

using the assessments, it is important to validate the quality of the

assessments of the different experts. An example of an organization which uses

this type of forecasting to serve governments, companies NGOS and nonprofits

is The Good Judgement Project. This organization uses this forecasting for

example to predict topics with regards to the USA election or topics with

regards to the Russia - Ukraine war (Good Judgment Inc, 2023).

Along with the Brier score (Brier, 1950), other scoring rules have been

developed in order to validate the quality of the assessment of the different

experts. Inspired by the continuous setting, Cooke (1991) developed a

calibration and information score. The robustness of the calibration score is

however guaranteed only by using tens (or sometimes hundreds) of calibration

questions (Cooke, Mendel and Thijs, 1988), which is, in practice, inefficient.

The reason that this number of calibration questions is needed to guarantee

the robustness of Cooke’s calibration score is because Cooke’s calibration score

is based on an asymptotic distribution. Hanea and Nane (2019) developed a

calibration score based on an exact rather than asymptotic distributional

result, which decreases the number of calibration questions used but this

calibration score sometimes gives inexplicably small values.

During this bachelorproject, more research is done to investigate the

properties of the Hanea’s and Nane’s calibration score and to look at slight

adjustment of Hanea’s and Nane’s calibration score. Both simulated data and

real data will be used to investigate the behaviour of these calibration scores.

8



2 Structured expert judgement

When a government or company makes policy, it is often needed to elicit the

probability whether events of interests will occur or not. To do so, these

governments and companies often ask experts for their assessments. Before

using the assessments, it is important to validate the quality of the

assessments of the different experts. This section will give an overview of how

this validation is done.

2.1 Data to validate quality of assesment

In order to collect the data which is used to validate the quality of the

assesments of the different experts, calibration questions are formulated. A

calibration question is a question where the answer is known (by the analyst

but not the expert or unknown but known in the very near future) and is

related to the questions of interest where the answer is not yet known. The

answers the experts give on these calibration questions form the data, which

are used to determine the quality of the assessments of the different experts.

There are different types of calibration questions. In this thesis only the type

of question where the answers whether the event will occur or not is

considered. Note that assessing the probability of occurrence for certain events

of interest equates to eliciting bivariate random variables. Say X is a bivariate

random variable such that P(X = 1) = p and P(X = 0) = 1 - p, where X = 1

means that the event occurs and X = 0 means that the event does not occur.

Experts are asked to give an estimation of p. Using this estimation of p for

each expert, Cooke, Mendel and Thijs came up with a method where the event

whose occurrence is modelled by X is assigned to a probability bin (Cooke,

Mendel and Thijs). In this method, any positive integer greater than 2 can be

used as the amount of bins. In (Hanea and Nane, 2019) and in my bachelor

thesis, the focus will be on using ten bins, denoted as B1, B2, ..., B10. If an

event is assigned to a bin Bi with i ∈ {1, 2, ..., 10}, this means that the expert

associates the probability of occurrence with pi. An event gets for instance

assigned to B3 if the best estimation about the probability of occurrence p of

that expert is anywhere between 0.2 and 0.3. In this method the middle value

of this interval is chosen, which is 0.25. Therefore in this method, p1 = 0.05,

p2 = 0.15, ..., p10 = 0.95 and let p = (p1, p2, ..., p10).
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Say we have n binary random variables X1, X2, ..., Xn that model the

probability of occurrence of n events. Let ni be the number of events which

got assigned to bin Bi, with i ∈ {1, 2, ..., 10}. Clearly, n =
∑10

i=1 ni, as the

expert assigns each separate event to exactly one of the ten bins. Given the

outcome of each event, we consider

si =

∑n
j=1 Xj · 1{Xj∈Bi}

ni
,

for i = 1, 2, ..., 10, where 1{Xj∈Bi} = 1 if Xj = 1 if Xj is assigned to Bi and 0

otherwise. The vector s = (s1, s2, ..., s10) is often called the empirical

probability vector. Preferably, si is close to pi for i = 1, 2, ..., 10 and so it

follows that taking as null hypothesis H0 : si = pi is a natural choice (Hanea

and Nane, 2019).

2.1.1 Example of bin assignment

In subsection 2.1, an overview was given of how to collect the data to validate

the quality of the assessment of the experts using the bin assignment method

introduced in (Cooke, Mendel and Thijs). Here an example is given of how

this bin assignment works. Say we have 20 binary random variables

X1, X2, ...X20, where X1, X2, ...X20 could for instance be whether it will rain

tomorrow, whether it will rain in two days, ..., whether it will rain in 20 days,

respectively. Then each event gets assigned to exactly one bin. One could

visualize this by seeing the events as balls and putting each ball in one of the

ten bins, see figure 1.

Figure 1: Vizualisation of bin assignment [1]

As can be seen in figure 1, three events got assigned to bin B1, one event to

bin B2, two events to bin B3, zero events to bin B4, etc. Therefore, in this

example, (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10) = (3, 1, 2, 0, 4, 1, 3, 1, 3, 2).

[1] Figure 1 is taken from a slide from Hanea and Nane about their article

(Hanea and Nane, 2019).

10



Suppose that 2 out of 3 events occur in bin B7, then s7 = 2
3 . If 0 out of 1

events occur in bin B8, then s8 = 0. So, as was stated mathematically in

subsection 2.1, si is how many events in bin Bi occur, divided by how many

events are in bin Bi.

Once the outcomes of the events in this example are known, we’d like to know

how good the expert answered the calibration questions. The closer si is to pi

for i = 1, 2, ..., 10, the better the expert performed. That is, the closer s1 is to

0.05, the closer s2 is to 0.15, ..., the closer s10 is to 0.95, the better the expert

performed. Given the bin assignment in this example after the expert

answered the calibration questions, it would be best if 0 out of 3 events

occurred in bin B1, as zero is closer to 0.05 than 1
3 . Similarly, it would be best

if 0 out of 1 events happened in bin B2, as zero is closer to 0.15 than 1. Using

similar reasoning, it would be best if 2 out of 4 events occurred in bin B5 and

2 out of 2 events occurred in bin B10.

2.2 Validation of quality assessment of experts

In subsection 2.1, an overview is given of how to collect the data to validate

the quality of assessment of the different experts. This data is then used to

evaluate the assessments. In (Morgan et Al. ,1979) four criteria for evaluating

probability assessments are discussed (these criteria are attributed to Sarah

Lichtenstein). Assessments should be:

-consistent, they should not vary with the assessment method, nor over time

(assuming the assessor gets no new information),

-coherent, they should obey the laws of probability (e.g. Bayes’ rule),

-informative, they should contain information about actual outcome values of

the quantities assessed,

-well-calibrated, in the long run assessed probabilities should approximate

empirical frequencies of outcomes.

In this bachelor thesis we are concerned with the last criterion (calibration).

There are different ways to quantify this criterion, for example the calibration

score using the chi-squared distribution (Cooke, Mendel, and Thijs, 1988), the

calibration score using the binomial distribution (Hanea and Nane, 2019) and

the Brier score (Brier, 1950). In the next two subsubsections the calibration

score using the chi-squared distribution and the calibration score using the
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binomial distribution will be discussed. The Brier score BS is defined as

BS =
1

n

n∑
t=1

(ft − ot)
2,

where ft is the probability that was given by the expert and ot the actual

outcome of event t (where ot = 1 if the event did occur and ot = 0 if the event

did not occur) (Brier, 1950).

2.2.1 Calibration score using chi-squared distribution

In Cooke’s method (Cooke, 1991) the difference between si and pi is measured

using the relative information of si with respect to pi. That is

I(si, pi) = si ln
si
pi

+ (1− si) ln
1− si
1− pi

for i ∈ {1, 2, ..., 10}. In Cooke’s method,
∑10

i=1 2niI(si, pi) ∼ χ2
10. The

calibration score of expert e is then defined as

calχ2(e) = 1− F (

10∑
i=1

2niI(si, pi)),

where F is the cumulative distribution function of the chi-square distribution

with 10 degrees of freedom. The reasoning behind this calibration score can be

found in (Cooke, 1991). Every calibration score takes values from 0 to 1 and a

small difference between s and p gives a small relative information of s with

respect to p and thus a high calibration score. calχ2(e) works best for a

sufficient amount of questions, where a rule of thumb for the amount of

calibration questions is proposed in (Bhola and Cooke, 1992), which states

that the amount of calibration questions need to satisfy

nipi ≥ 4 and ni(1− pi) ≥ 4 for each i.

This rule of thumb implies that at least 80 events need to be assigned to bins

B1 and B10, at least 27 events need to be assigned to bins B2 and B9, at least

16 events need to be assigned to bins B3 and B8, at least 12 events need to be

assigned to bins B4 and B7 and at least 9 events need to be assigned to bins

B5 and B6 in order to obtain a reliable calibration score. Besides the unlikely

criterion that an expert answers the calibration questions in such a way that

the described bin assignment occurs, also there are at least 288 calibration
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questions needed. In order to be able to use Cooke’s calibration score in

practice, in most cases the number of bins used for the expert judgement need

to be reduced.

2.2.2 Calibration score using binomial distribution

In order to use ten bins and to avoid Bhola’s and Cooke’s rule of thumb,

Hanea and Nane have developed a calibration score based on the binomial

distribution (Hanea and Nane, 2019). This calibration score uses that under

the null hypothesis H0 : s = p, sini follows a binomial distribution with

parameters ni and pi, that is, sini ∼ Bin(ni, pi). Let Yi ∼ Bin(ni, pi) and

Y =
∑10

i=1 Yi. Hanea and Nane propose a calibration score based on this

distribution, where the two-sided mid-p-value of the hypothesis test,

πtwo(a) = 2 ·min(P (Y > a) + 0.5P (Y = a), P (Y < a) + 0.5P (Y = a))

is choosen. For more information about the two-sided mid-p-value, see

(Lancaster, 1949; Lancaster, 1961; Agresti, 2003). The calibration score of an

expert e is then defined as

Calbin(e) = πtwo(

10∑
i=1

nisi)
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3 Some properties of calibration scores for

discrete random variables using simulated

data

Hanea and Nane concluded in their paper (Hanea and Nane, 2019) that after

investigating their calibration score’s theoretical properties and practical

performance they found this score has a number of positive and negative

attributes. An example of a positive attribute is that his calibration score

relies on an exact distribution, which will hopefully significantly reduce the

necessary number of questions needed in order to provide reliable scores. An

example of a negative attribute is that that this calibration score sometimes

gives inexplicably small values.

In this section, the focus will be on looking at different properties of this

calibration score using cases where all events get assigned to the same bin to

hopefully find a way to get rid of some of the negative attributes. Also, in this

section, other calibration scores which are slight adjustments of Hanea’s and

Nane’s calibration score are introduced as well as looking at the properties of

these calibration scores using cases where all events got assigned to the same

bin. The code used in this section can be found in appendix B.

3.1 All events assigned to same bin

In this subsection, calibration scores are computed for situations where an

expert assigns all events to the same bin. In table 1, the following results can

be seen for Cooke’s calibration score and for Hanea’s and Nane’s calibration

score (this results were given to me by G. F. Nane, except for the last two

rows).

As can be seen in table 1, Hanea’s and Nane’s calibration score takes lower

values than Cooke’s calibration score for these simulations. In row 2 and row 3

of table 1, a calibration score close to 1 is desired. This is the case since the

expert assigned all events to bin B10 and all events indeed occured. Cooke’s

calibration score in these two cases is very close to 1, but Hanea’s and Nane’s

calibration score takes the values 0.35849 and 0.21464, which is not the desired

result.

In the fourth row of table 1, a calibration score close to value 1 is desired, as

all events are assigned to the fifth bin and one out of two events occur. Again,
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# questions Bin assignment si Chi Bin
20 (0,0,0,0,0,0,0,0,0,20) (0,0,0,0,0,0,0,0,0,1) 0.99062 0.35849
30 (0,0,0,0,0,0,0,0,0,30) (0,0,0,0,0,0,0,0,0,1) 0.961138 0.21464
30 (0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.999996 0.58606
30 (0,0,30,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 1 0.86234
30 (0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.995448 0.20445
30 (0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.5087536 0.00507
30 (0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0.04051272 5e-05
30 (0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.9999856 0.55065
30 (0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.9536956 0.07225
30 (0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.9536956 0.07225
30 (0,0,0,0,0,0,0,0,0,30) (0,0,0,0,0,0,0,0,0,0) 0 0
30 (30,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 1: Cooke’s calibration score and Hanea’s and Nane’s calibration score for
given bin assignment.

Cooke’s calibration score is close to 1 but Hanea’s and Nane’s calibration score

takes value 0.58606, which is not the desired result. In the second last row, all

events are assigned to bin 10 and zero events occur. Both Cooke’s calibration

score as well as Hanea’s and Nane’s calibration score correctly take value 0. In

the last row, all events are assigned to bin 1 and all events occur. Again, both

Cooke’s calibration score as well as Hanea’s and Nane’s calibration score

correctly take value 0.

Using similar reasoning as before, in the fifth row of table 1, a calibration

score close to 1 is desired, Cooke’s calibration score is exactly 1 whereas

Hanea’s and Nane’s calibration score is 0.85234. Note that in this row Hanea’s

and Nane’s calibration score performs better than in previous rows.

In the sixth row, Cooke’s calibration score is again close to 1. Since in this

case all events are assigned to the fifth bin but only three out of ten events

occur, a calibration score close to 1 is a bit too optimistic. Now Hanea’s and

Nane’s calibration score is 0.20445. This clearly indicates that indeed the

performance of this expert was not close to perfect, but whether that is about

the right score or a bit too negative is not entirely clear to me.

In row 7, again the expert assigns all events to the fifth bin, this time only one

out of five events occur. Cooke’s calibration score now is 0.508736, clearly

indicating that the expert performed not too well. Hanea’s and Nane’s

calibration score this time is 0.00507, In row 8, again all events are assigned to

the the fifth bin, only one out ten events occur. The expert performed poorly
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and this is clearly indicated by both Cooke’s calibration score and Hanea’s and

Nane’s calibration score, being 0.04051272 and 5e-05 respectively.

Looking at row 9, all events are assigned to the eight bin and eight out of ten

events occur. A calibration score close to 1 is desired. Cooke’s calibration

score is 0.9999856 and Hanea’s and Nane’s calibration score is 0.55065. Again,

Hanea’s and Nane’s calibration score is a bit on the low side.

In the second last row, all events are assigned to the tenth bin but 0 events

occur. A calibration score close to 0 is desired. Both Cooke’s calibration score

and Hanea’s and Nane’s calibration score is 0, as desired. In the last row, all

evnets are assigned to the first bin and all events occur. Again, a calibration

score close to 0 is desired and both Cooke’s calibration score and Hanea’s and

Nane’s calibration score is 0.

In summary, Cooke’s calibration score performs in most rows better than

Hanea’s and Nane’s calibration score for these simulations.

In order to determine what causes Hanea’s and Nane’s score to sometimes give

a bit of a too low calibration score, each step of the computation of Hanea’s

and Nane’s calibration score is inspected. For this, we take the case where all

20 events get assigned to bin 10 and all events occur, that is, ni =

(0,0,0,0,0,0,0,0,0,20) and si = (0,0,0,0,0,0,0,0,0,1). Clearly, element wise

multiplication gives nisi = (0,0,0,0,0,0,0,0,0,20) and then summing over the

elements of nisi gives 20. Looking at the formulas of subsubsection 2.2.2, for

this case, a = 20. Now we look at (P (Y > a), P (Y < a) and P (Y = a). Since

for any binassignment, a ≤ 20 and in this case a = 20, if follows that

(P (Y > a) = 0. Since any cumulative distribution function can only take

values in the interval [0, 1], 0 = (P (Y > a) ≤ P (Y < a). Since Hanea’s and

Nane’s calibration score is

2 ·min(P (Y > a) + 0.5P (Y = a), P (Y < a) + 0.5P (Y = a), in this case the

calibration score is 2 · (P (Y > a) + 0.5P (Y = a)) = P (Y = a) = 0.35849. This

shows why for the case where all 20 events get assigned to the same bin

Hanea’s and Nane’s calibration score does not take a value close to one as

desired, but a value of 0.35849.

Let’s look at a second case, this time the case that all 30 events get assigned

to bin 5 and 50% of the events occur, that is, ni = (0,0,0,0,30,0,0,0,0,0) and si

= (0,0,0,0,0.5,0,0,0,0,0). Then element wise multiplication gives nisi =

(0,0,0,0,15,0,0,0,0,0) and then summing over the elements of nisi gives 15.

Looking at the formulas of subsubsection 2.2.2, for this case, a = 15. Again,
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we look at (P (Y > a), P (Y < a) and P (Y = a). P (Y = a) = 0.1242479,

P (Y < a) = 0.1354354 and (P (Y > a) = 0.8555356 and so the calibration

score in this case is 0.5860639, while a score close to 1 in this case is desired.

Analyzing these two cases give the idea that using another formula for the

p-value might give better results.

In table 2, Cooke’s calibration score and Hanea’s and Nane’s calibration score

are computed for different bin assignments, s′is and ten calibration questions.

The code for these computations can be found in appendix A.

Bin assignment si Chi Bin
(0,0,0,0,0,0,0,0,0,10) (0,0,0,0,0,0,0,0,0,1) 0.9998065 0.59874
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 1 0.75716
(0,0,10,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 1 0.69853
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.9998683 0.3656
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.9866848 0.12282
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0.8271783 0.02579
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.8,0,0) 1 0.76962
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.9997529 0.30225
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.984176 0.09785
(0,0,0,0,0,0,0,0,0,10) (0,0,0,0,0,0,0,0,0,0) 0 0
(10,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 2: Cooke’s calibration score and Hanea’s and Nane’s calibration score for
given bin assignment using 10 questions.

Again, Hanea’s and Nane’s calibration score gives lower values than desired,

though the scores are higher than in table 1. Surprisingly is how high Cooke’s

calibration score is for all cases using ten calibration questions, except for the

last two rows, where Cooke’s calibration score correctly takes 3.761608e-09.

Those high calibration scores may be caused by the Chi-squared distribution.

3.2 Hanea’s and Nane’s calibration score using different

formulas for p-value

Hanea and Nane used as formula for the p-value the mid-p-value as described

in (Rivals et al., 2006) and as stated in subsubsection 2.2.2. In (Rivals et al.,

2006), an overview of three other formulas for two-sided tests with a discrete

null distribution is given, namely the two-sided p-value defined as twice the

one-sided p-value and two formulas using the minimum-likelihood approach.
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The formula for the two-sided p-value is

pdoublingtwo (a) = 2 ·min(P (Y > a), P (Y < a)).

Clearly, for any a, this formula gives values lower or equal than for the

mid-p-value, since the mid-p-value also takes two multiplied by the minimum

of P (Y ≥ a) and P (Y ≤ a), but by both components of the minimum

0.5P (Y = a) is added. For many rows of table 2, a higher calibration score is

desired. Therefore, Hanea’s and Nane’s calibration score using pdoublingtwo (a) will

not solve these cases, but it might work well in different cases, for example

when it is applied to actual data. Therefore, the results of this calibration

score, in the table denoted as Cal score bin 2, using pdoublingtwo (a) are given in

table 3. The case where all events occur and are assigned to bin 10 is notable,

as a score close to one is desired but calibration score bin 2 takes a value of

zero. In this case we have ni = (0,0,0,0,0,0,0,0,0,10) and si =

(0,0,0,0,0,0,0,0,0,1). Clearly, element wise multiplication gives nisi =

(0,0,0,0,0,0,0,0,0,10) and then summing over the elements of nisi gives 10. In

this case, for the formula of calibration score bin 2, a = 10. Since when

assigning ten events to ten bins a can never be greater than 10 and a = 10,

P (Y > a) = 0 and this explains why calibration score bin 2 takes a value of 0,

while a value close to 1 is desired.

Bin assignment si Bin Bin 2
(0,0,0,0,0,0,0,0,0,10) (0,0,0,0,0,0,0,0,0,1) 0.59874 0
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.75716 0.52313
(0,0,10,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.69853 0.44825
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.3656 0.19912
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.12282 0.04651
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0.02579 0.00507
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.76962 0.48805
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.30225 0.15625
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.09785 0.03946
(0,0,0,0,0,0,0,0,0,10) (0,0,0,0,0,0,0,0,0,0) 0 0
(10,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 3: Hanea’s and Nane’s calibration score and calibration score bin 2 for
given binassignment using 10 questions.
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The two formulas using the minimum-likelihood approach are

pminlik
two (a) =

∑
P (Y=b)≤P (Y=a)

P (Y = b)

and

πminlik
two (a) =

∑
P (Y=b)<P (Y=a)

P (Y = b) + 0.5
∑

P (Y=b)=P (Y=a)

P (Y = b).

Clearly, pminlik
two (a) ≥ πminlik

two (a) for every a, because if P (Y = b) = P (Y = a),

in the sum of πminlik
two (a) we multiply these elements with 0.5, whereas these

elements in pminlik
two (a) are multiplied with one.

The results of the calibration score, in the table denoted as Cal score bin 3,

using pminlik
two (a) are given in table 4. Furthermore, calibration score bin 3

seems to perform best in cases where all events are assigned to the same bin

compared to the other other calibration scores based on the binomial

distribuion.

Bin assignment si Bin Bin 3
(0,0,0,0,0,0,0,0,0,10) (0,0,0,0,0,0,0,0,0,1) 0.59874 1
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.75716 0.76163
(0,0,10,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.69853 0.71843
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.3656 0.5276
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.12282 0.20155
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0.02579 0.02776
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.76962 1
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.30225 0.28044
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.09785 0.13444
(0,0,0,0,0,0,0,0,0,10) (0,0,0,0,0,0,0,0,0,0) 0 0
(10,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 4: Hanea’s and Nane’s calibration score and calibration score bin 3 for
given binassignment using 10 questions.

Looking at table 4, in each row Cal score bin 3 is higher than Cal score bin,

except for the second last row. Also, for the second and the eight row, since

Cal score bin 3 is exactly one, it performs well in these cases. In some cases,

there is only a small difference between the two scores, see row 3, 4, 7 and 9.

The results of the calibration score, in the table denoted as Cal score bin 4,
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using πminlik
two (a) are given in table 5. As was stated earlier in this subsection,

Bin assignment si Cal score bin Cal score bin 4
(0,0,0,0,0,0,0,0,0,10) (0,0,0,0,0,0,0,0,0,1) 0.59874 0.70063
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.75716 0.64462
(0,0,10,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.69853 0.59329
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.3656 0.44436
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.12282 0.1634
(0,0,0,0,10,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0.02579 0.0174
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.76962 0.85922
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.30225 0.20744
(0,0,0,0,0,0,0,10,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.09785 0.10524
(0,0,0,0,0,0,0,0,0,10) (0,0,0,0,0,0,0,0,0,0) 0 0
(10,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 5: Hanea’s and Nane’s calibration score and calibration score bin 4 for
given binassignment using 10 questions.

Cal score bin 4 will always have a smaller value than Cal score bin 3 and this

can be seen in tables 4 and 5. Furthermore Cal score bin 4 has four cases

where it has a lower value than Cal score bin. Also, Cal score bin 4 performs

clearly worse than Cal score bin 3 in the second and eight row, since Cal score

bin 3 takes the values 1, whereas Cal score bin 4 takes the values 0.70063 and

0.85922, respectively. However, there can be other cases where Cal score bin 4

might perform better than Cal score bin 3.

3.3 Calibration score and sample size

In order to check if the different calibration scores are affected by the sample

size, each calibration score is computed for similar situations using 10, 30, 50

and 100 calibration questions. The values of the calibration scores can be

found in the tables of subsection 3.1, 3.2 and appendix A.

There are two cases where for all four sample sizes, all five calibration scores

are zero. These two cases are when all events are assigned to bin 10 but zero

events occur and when all events are assigned to bin 1 and all events occur.

Note that a score of 0 for these two cases is good. For calibration score bin 2,

there is another case where for each sample size the score is zero. This is the

case where all events get assigned to bin 10 and all events occur. Note that a

score close to 1 is desired. The reason why calibration score bin 2 takes a value

of 0 in this case is treated in subsection 3.2.
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For Cooke’s calibration score, in 6 out of 11 cases the difference between scores

for different sample sizes is greater than 0.1. For Hanea’s and Nane’s

calibration score, this difference occurs in 7 out of 11 cases, for calibration

score bin 2, this difference occurs in 5 out of 11 cases for calibration score bin

3 and calibration score bin 4.

The number of cases where a calibration score is strictly decreasing as the

sample size increases happens for Cooke’s calibration score in 9 out of 11

cases, for Hanea’s and Nane’s calibration score in 8 out of 11, for calibration

score bin 2 in 7 out of 11, for calibration score bin 3 in 9 out of 11 cases and

for calibration score bin 4 in 9 out of 11 cases. In some cases, this (sometimes)

strong decrease might cause each calibration score to give relative low scores

compared to a value close to one which is in some cases desired.

For cases where all events got assigned to the same bin, calibration score bin 3

seems to perform best when 10, 30 and 50 calibration questions were used, as

it most frequently took the closest value of one when a score close to 1 was

desired compared to the other calibration scores based on the binomial

distribution and correctly displays it when an expert did not answer the

calibration questions perfectly. For 100 calibration questions, the difference

between Hanea’s and Nane’s calibration score is always smaller than 0.1 and

so they give close values compared to each other.

3.4 Summarizing results

Summarizing the important points and results, calibration score bin 2 takes

always lower or equal values than Hanea’s and Nane’s calibration score and

calibration score bin 4 takes always lower or equal values than calibration

score bin 3.

Also, it is inspected if the different calibration scores are affected by the

sample size, where each calibration score is computed for similar situations

using 10, 30, 50 and 100 calibration questions. It turns out that as the sample

size increases, each calibation score tends to strictly decrease. In cases where a

score close to 1 is desired, sometimes using a larger sample size makes each

calibration score perform worse. Also, in most cases which were treated in this

section, for each calibration score, the difference between scores using different

sample sizes is greater than 0.1.

For cases where all events got assigned to the same bin, calibration score bin 3

seems to perform best when 10, 30 and 50 calibration questions were used. For
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100 calibration questions Hanea’s and Nane’s calibration score and calibration

score bin 3 for all cases took values close to each other.
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4 Some properties of calibration scores for

discrete random variables with data

In practice, it does not often occur that all events get assigned to the same

bin. Therefore, in this section, data is used where the data consists of experts

answering calibration questions. Three different data files are used in this

bachelorthesis referred to as dataSIPS, dataACE IDEA and dataACE GJP. In

the next three subsections, information about the data files and the behaviour

of the different calibration scores for each datafile can be found. The code

used for this subsection can be found in appendix C.

4.1 DataSIPS

The data is from the repliCATS project from the university of Melbourne.

The aim of this project is to use crowdsource to evaluate the credibility of

published research in business research, criminology, economics, education,

political science, psychology, public administration, and sociology (the

repliCATS project, z.d.-b). The datafile DataSips consists of 25 experts each

answering 25 calibration questions. Note that since each expert answered 25

calibration questions and ten bins are used, this does not satisfy a sufficient

amount of calibration questions needed for Cooke’s calibration to be robust

according to a rule of thumb as proposed in (Bhola and Cooke, 1992), which

should at least be 288 calibration questions (even if the other criterion of the

rule of thumb which gives conditions to how many events at least should be

assigned to each bin is ignored). Therefore, this data does not contain cases

where the calibration scores based on a binomial distribution can be compared

to Cooke’s calibration score which is guaranteed to be robust.

4.1.1 Behaviour of calibration scores

In figure 2, the plot of the five different calibration scores for each expert can

be found. It can be seen that calibration score bin 2 always takes lower values

than the other three calibration scores based on a binomial distribution. Only

for two experts, Cooke’s calibration score gives lower values than calibration

score bin 2. Calibration score bin 3 gives except for one expert the highest

score compared to the other three calibration scores based on the binomial

distribution. There is one expert where Hanea’s and Nane’s calibration score
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gives a higher score than calibration score bin 3. Cooke’s calibration score

gives most frequently the highest score, that is, for 13 out of 25 experts. The

difference between Hanea’s and Nane’s calibration score and calibration score

bin 4 is for seven out of twentyfive experts greater than 0.05 and the difference

is never greater than 0.1. Therefore, calibration score bin 4 often gives results

close to Hanea’s and Nane’s calibration score. For 22 out of 25 experts, the

difference between Cooke’s calibration score and calibration score bin 3 is

greater than 0.05. For 20 out of 25 experts, this difference is greater than 0.1.

Therefore, calibration score bin 3 does rarely give results close to Cooke’s

calibration score.

Figure 2: Plot of each calibration score for each expert in dataSIPS

In tables 6, for each expert used in the dataSIPS file, the expert id and the

five different calibration scores can be found. It can be seen that for the expert

with id 19, Cooke’s calibration score is 0.6346904. Calibration score bin 1, bin

2, bin 3 and bin 4 take values 0.06262, 0.03329, 0.06157 and 0.04691. Since for

this expert, (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10) = (2 1 3 2 1 1 3 5 4 3) and

(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10) = (0, 0, 0, 0.5, 1, 1, 0.6666667, 0.6, 0.75,

0.6666667), this expert did not perform so bad that a calibration score below

0.1 seems justifiable and so Cooke’s calibration score seems more appropriate.

Calibration score bin 3 takes values 1 for experts with id 10, 8, 25, 3 and 2.

This means that calibration score bin 3 states that these experts answered the

calibration questions perfectly. In order to see if this is true or whether this

score sometimes states that the experts answered the calibration questions

perfectly while this is not the case, again we inspect the different ni’s and si’s

for the different experts, which can be found in table 7.
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Expert id Chi bin bin 2 bin 3 bin 4
12 0.7195363 0.32975 0.22829 0.39732 0.34659
22 0.8010957 0.51625 0.37363 0.50531 0.434
10 0.6441146 0.98616 0.81629 1.00000 0.91506
6 0.9332712 0.77394 0.60069 0.82194 0.73531
5 0.6246355 0.67463 0.52794 0.68934 0.61599
18 0.7866629 0.75111 0.58687 0.82861 0.74649
15 0.7782713 0.70478 0.53997 0.82194 0.73954
16 0.5421891 0.20988 0.11743 0.29062 0.24439
11 0.5205494 0.49936 0.33902 0.60657 0.52639
21 0.4998845 0.15089 0.09064 0.17043 0.14030
4 0.1432706 0.38143 0.25968 0.49033 0.42946
14 0.7765745 0.57083 0.41814 0.64649 0.57015
8 0.6192868 0.91452 0.74732 1.00000 0.91640
20 0.5199728 0.27228 0.17944 0.27777 0.23135
25 0.3883761 0.91900 0.75394 1.00000 0.91747
19 0.6346904 0.06262 0.03329 0.06157 0.04691
3 0.7199183 0.86337 0.65974 1.00000 0.89818
2 0.8173941 0.83746 0.66135 1.00000 0.91194
7 0.4913925 0.41895 0.28010 0.45532 0.38589
9 0.3702145 0.10220 0.05765 0.10558 0.08331
23 0.7637622 0.49024 0.35305 0.50374 0.43515
17 0.7658761 0.26540 0.17061 0.25389 0.20650
24 0.7312899 0.27779 0.18198 0.26700 0.21909
1 0.1886612 0.30034 0.19959 0.36629 0.31591
13 0.3165419 0.43601 0.30608 0.49715 0.43219

Table 6: Calibration scores Chi, bin and bin 2 for SIPS data.

Expert id ni si
10 (0, 1, 0, 1, 2, 7, 4, 2, 7, 1) (0, 0, 0, 0, 0, 0.5714286, 0.25, 1, 0.7142857, 1)
8 (6, 5, 0, 1, 0, 4, 3, 1, 5, 0) (0.1666667, 0.4, 0, 0, 0, 0.75, 0.3333333, 1, 1, 0)
25 (0, 0, 2, 4, 7, 5, 3, 4, 0, 0) (0, 0, 0, 0, 0.4285714, 0.6, 1, 1, 0, 0)
3 (0, 2, 2, 2, 3, 7, 6, 2, 1, 0) (0, 0, 0, 0, 0, 0.7142857, 0.5, 1, 1, 0)
2 (0, 3, 1, 1, 4, 1, 5, 7, 3, 0) (0, 0, 0, 0, 0.25, 1, 0.6, 0.7142857, 1, 0).

Table 7: Bin assign and empirical probability vector for different experts.

For experts with id 8, 10 and 25, this calibration score of 1 is overly positive.

The experts with id 2 and 3 did not perform perfect, but very good, and so a

calibration score of 1 is justifiable.
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4.2 For dataACE IDEA

The data is from the research article (Hanea et al., 2021). The research in this

article is based upon work funded by DARPA, which stands for Defense

Advanced Research Project Agency. DARPA is an agency of the United States

Department of Defense responsible for the development of technologies for use

by the military. The datafile dataACE IDEA consists of 150 experts, where

experts answered a different amount of questions, ranging from just one up to

96 calibration questions. Note that since the experts answered at most 96

calibration questions, this does not satisfy a sufficient amount of calibration

questions needed for Cooke’s calibration score to be robust according to a rule

of thumb as proposed in (Bhola and Cooke, 1992), which should at least be

288 calibration questions (even if the other criterion of the rule of thumb

which gives conditions to how many events at least should be assigned to each

bin is ignored).

4.2.1 Behaviour of calibration scores

Using calibration score bin 2, 40 out of 150 experts got a score of zero. In

table 8, all other calibration scores never take values below 0.5, but calibration

score bin 2 takes in every row value zero (not displayed in the table). This

might seem as that calibration score bin 2 is too low. However, since the

number of questions ranges from one up to and including four which is a very

low number of questions this is not enough to conclude that calibration score

bin 2 gives too low values. Note that in all these rows Cooke’s calibration

score take values close to 1. Also, using calibration score bin 3, 1 out of 150

experts got a score of 0.

Using calibration score bin 3, 34 out of 150 experts got a score of one. In table

9, cal score bin 3 in all four cases takes value one, but all other calibration

scores take vakues lower than 0.9. This might seem as that calibration score 3

is too high, but since this are 4 out of 150 cases this is not enough to conclude

that calibration score bin 3 gives too high values.

For 96 out of 150 experts, the difference between Cooke’s calibration score and

calibration score bin 3 is greater than 0.05. For 82 out of 150 experts, this

difference is greater than 0.1. Therefore, in most cases, calibration score 3 does

not give results close to Cooke’s calibration score. Also, using Hanea’s and

Nane’s calibration score, 0 out of 150 experts got a score of one.

For 59 out of 150 experts, the difference between calibration score bin 4 and
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Expert id # questions Chi bin bin 3 bin 4
308 3 9.999963e-01 0.85738 1 0.57131
310 4 9.967547e-01 0.46059 1 0.76970
33 4 9.962073e-01 0.44614 1 0.77693
34 4 9.962073e-01 0.44614 1 0.77693
223 1 9.999445e-01 0.75 1 0.625
187 2 9.990043e-01 0.56250 1 0.71875
241 4 9.999870e-01 0.81451 1 0.59275
57 1 9.996958e-01 0.65 1 0.675
168 3 9.970595e-01 0.46962 1 0.76519
86 1 9.999953e-01 0.85 1 0.575

Table 8: Calibration scores Chi, bin and bin 2 for DATA ACE data.

Expert id # questions Chi bin bin 2 bin 4
24 11 0.2526121 0.85940 0.56766 0.85413
85 31 0.3876623 0.78836 0.57791 0.89478
104 23 0.4573048 0.79213 0.59177 0.89982
218 22 0.7841410 0.87597 0.60632 0.86518

Table 9: Calibration scores Chi, bin and bin 2 for DATA ACE data.

Hanea’s and Nane’s calibration score is greater than 0.05. For 38 out of 150

experts, this difference is greater than 0.1. Therefore, in most cases calibration

score bin 4 gives results close to Hanea’s and Nane’s calibration score.

For 33 out of 150 experts, the absolute difference between Cooke’s calibration

score and each calibration score based on the binomial distribution is greater

than 0.5.

To get a better idea of the behaviour of the different calibration scores, in

figure 3, the plot of the five different calibration scores for each expert who

answered at least ten questions can be found. The amount of experts who

answered more than nine questions is 84. Again, it can be seen that

calibration score bin 4 takes most frequently a value of 0 or a value close to 0.

In some of the cases where calibration score bin 4 takes a value close to 0 or is

exactly 0, some or all other calibration scores also take values close to 0. Also,

calibration score 2 also tends to give relatively low values compared to Cooke’s

calibration score, Hanea’s and Nane’s calibration score and calibration score

bin 3. Furthermore, calibration score bin 3 takes in almost all cases higher

values than the other three calibration scores based on the binomial

distribution. Also calibration score bin 3 sometimes takes higher values than
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Cooke’s calibration score.

Figure 3: Plot of each calibration score for each expert in dataACE IDEA
answering 10 up to and including 100 questions

4.3 For dataACE GJP

The data is from The Good Judgement Project. This organization uses

forecasting for example to predict topics with regards to the USA election or

topics with regards to the Russia - Ukraine war (Good Judgment Inc, 2023).

The datafile dataACE GJP consists of 4844 experts, where experts answered a

different amount of questions, ranging from just one up to 256 calibration

questions. Note that since the experts answered at most 256 calibration

questions, this does not satisfy a sufficient amount of calibration questions

needed for Cooke’s calibration score to be robust according to a rule of thumb

as proposed in (Bhola and Cooke, 1992), which should at least be 288

calibration questions (even if the other criterion of the rule of thumb which

gives conditions to how many events at least should be assigned to each bin is

ignored).

4.3.1 Behaviour of calibration scores

Using calibration score bin 2, 1115 out of 4844 experts got a score of zero. For

calibration score bin 4 this is for 273 out of 4844 experts. Therefore, it seems
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that calibration score bin 2 tends to give low values. Using calibration score

bin 3, 1059 out of 4844 experts got a score of one. For Hanea’s and Nane’s

calibration score, 20 out of 4844 experts got a score of one.

For 2861 out of 4844 experts, the difference between Cooke’s calibration score

and calibration score bin 3 is greater than 0.05. For 2465 out of 4844 experts,

this difference is greater than 0.1. Therefore, in most cases, calibration score 3

does not give results close to Cooke’s calibration score.

For 1549 out of 4844 experts, the difference between calibration score bin 4

and Hanea’s and Nane’s calibration score is greater than 0.05. For 955 out of

4844, this difference is greater than 0.1. Therefore, in most cases calibration

score bin 4 often gives results close to Hanea’s and Nane’s calibration score.

For 6 out of 4844 experts, the absolute difference between Cooke’s calibration

score and each calibration score based on the binomial distribution is greater

than 0.5.

In figure 4, the plot of the five different calibration scores for each expert who

answered at least ten and at most 100 questions can be seen. Since the amount

of experts who answered at least ten and at most 100 questions is 2778, the

plot is a bit cluttered. However, still the behaviour of the different calibration

scores can be observed. It can be seen that calibration score bin 4 most

frequently values of zero or close to zero. Most frequently, calibration score bin

3 takes the highest value compared to the other calibration scores based on the

binomial distribution. Calibration score bin 2 tends to give relatively low

values, sometimes taking lower values than calibration score bin 4.
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Figure 4: Plot of each calibration score for each expert in dataACE GJP an-
swering 10 up to and including 100 questions

In figure 5, the plot of the five different calibration scores for each expert who

answered more than 100 questions can be seen. The amount of experts who

answered more than 100 questions is 518. It can be seen that calibration score

bin 4 often takes values of zero or close to zero. This time, there are only four

cases where calibration score bin 3 takes values of one or close to one. This is

interesting, since for this plot only experts who answered over 100 questions

were used and so uncertainty plays a smaller role compared to when experts

answered less questions. Bin score 3 still most frequently gives higher values

than the other three calibration scores based on the binomial distibution.

Calibration score bin 2 tends to give lower values compare to Cooke’s

calibration score, Hanea’s and Nane’s calibration score and calibration score

bin 3, but in some cases not as low or lower than calibration score bin 4.
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Figure 5: Plot of each calibration score for each expert in dataACE IDEA
answering more than 100 questions

4.4 Summarizing results

In summary, calibration score bin 4 most frequently takes values of zero or

close to zero. Also, calibration score bin 2 and 4 tend to give values lower than

Cooke’s calibration score, Hanea’s and Nane’s calibration score and calibration

score bin 3. Calibration score bin 3 tends to give the highest values compared

to the other three calibration scores, frequently taking values of one or close to

one, except for dataACE GJP for all experts answering more than 100

questions, where it happened in 4 out of 518 cases that calibration score bin 3

takes a value of one or close to one. For 33 out of 150 experts from

dataACE IDEA, the absolute difference between Cooke’s calibration score and

each calibration score based on the binomial distribution is greater than 0.5.

However, since 66 out of 150 experts answered less than ten questions,

uncertainty might play a big role. For 6 out of 4844 experts from

dataACE GJP, the absolute difference between Cooke’s calibration score and

each calibration score based on the binomial distribution is greater than 0.5.

In this datafile, 2778 out of 4844 experts answered between 10 and 100

questions and 518 out of 4844 experts answered over 100 questions. This

means that 1548 out of 4844 experts answered less than 10 questions. Why the
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amount of experts whose absolute difference between Cooke’s calibration score

and each calibration score based on the binomial distrubtion between

dataACE IDEA and dataACE GJP is so different is not clear to me.
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5 Concluding remarks

The behaviour of Hanea’s and Nane’s calibration score, calibration score bin 2

(which uses the two-sided p-value), calibration score bin 3 (which uses the

minimum-likelihood approach) and calibration score bin 4 (which uses another

minimum-likelihood approach) is investigated using cases where all events got

assigned to the same bin as well as real data where experts gave an estimation

for the probability that certain events would occur.

For cases where all events got assigned to the same bin, calibration score bin 3

seems to perform best compared to the other calibration scores based on the

binomial distribution. In order to make this statement more robust, more

cases where all events got assigned to the same bin must be investigated. Also

there are cases where it is hard to distinguish if a score of 0.4 or a score of 0.6

is more suitable for how well the expert answered the calibration questions.

Looking at the behaviour of the different calibration scores based on the

binomial distribution using real data, calibration score bin 3 tends to give the

highest values compared to the other three calibration scores based on the

binomial distribution, most frequently taking values close to or equal to one.

However, for experts who answered over 100 calibration questions, calibration

score 3 took in only 4 out of 518 cases a calibration score close to or exactly

equal to one. Calibration score bin 2 most frequently takes values close to or

equal to zero. Also, calibration score bin 2 and 4 tend to give lower values

than Cooke’s calibration score, Hanea’s and Nane’s calibration score and

calibration score bin 3. This does not come as a total surprise, as calibration

score bin 2 by definition always takes values lower or equal than Hanea’s and

Nane’s calibration score and calibration score bin 4 by definition always takes

values lower or equal than calibration score bin 3. Also, the absolute difference

between Cooke’s calibration score and each calibration score based on a

binomial distribution being greater than 0.5 is for the dataSIPS file 2 out of 25

experts, for the dataACE IDEA file 33 out of 150 experts and for the

dataACE GJP file 6 out of 4844 experts. What causes this great absolute

difference between each calibration score based on the binomial distribution

and Cooke’s calibration score for 33 out of 150 experts from dataACE IDEA is

not clear for me.

Since no expert in any three of the datafiles answered 288 or more calibration

questions, there is no case that satisfies a sufficient amount of calibration

questions needed for Cooke’s calibration score to be robust acoording to a rule
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of thumb as proposed as proposed in (Bhola and Cooke, 1992) (even if the

other criterion of the rule of thumb which gives conditions to how many events

at least should be assigned to each bin is ingored). This makes giving

statements about which calibration score based on the binomial distribution

performs best for the given data difficult.

However, we can still look at the behaviour of the different calibration scores

and make statements about which seems to perform best. As calibration score

bin 2 by definition gives a score of 0 when all events get assigned to bin 10 (in

this case a score close to 1 is desired) I would not say that calibration score 2

seems to perform best. Also, Hanea and Nane (2019) found that their

calibration score sometimes gives inexplicably small values and therefore I

would not recommend this calibration score in its current form. Calibration

scores bin 2 and 4 tend to give relatively low values compared to the other

scores. Also, calibration score 3 seems to perform best for the simulated data

used during this project. Therefore, although calibration score 3 might

sometimes gives a bit too high values in situations where given the bin

assignment a lower score might be more suitable, I would say that calibration

score bin 3 seems to perform best compared to the other calibration scores

based on the binomial distribution.
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6 Future research

As feature research, the behaviour of the calibration scores using different

number of bins (for example five or 20 bins) could be looked at. Also,

determining what is the best way to validate the quality of the assessments of

the different experts could be investigated.
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A More tables used in section 2

Bin assignment si Chi Bin
(0,0,0,0,0,0,0,0,0,50) (0,0,0,0,0,0,0,0,0,1) 0.8823728 0.07694
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.9999932 0.48059
(0,0,50,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.9999785 0.415
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.9092397 0.03233
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.1843731 0.00026
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0.00112149 0
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.9999672 0.42589
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.8620486 0.02018
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.1561812 0.00016
(0,0,0,0,0,0,0,0,0,50) (0,0,0,0,0,0,0,0,0,0) 0 0
(50,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 10: Cooke’s calibration score and Hanea’s and Nane’s calibration score
for given bin assignment using 50 questions.

Bin assignment si Chi Bin
(0,0,0,0,0,0,0,0,0,100) (0,0,0,0,0,0,0,0,0,1) 0.418101 0.00592
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.9998239 0.3173
(0,0,100,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.9994723 0.25333
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.491397 0.0023
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.002158577 0
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 6.767618e-09 0
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.9992134 0.24836
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.3714682 0.00101
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.001358348 0
(0,0,0,0,0,0,0,0,0,100) (0,0,0,0,0,0,0,0,0,0) 0 0
(100,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 11: Cooke’s calibration score and Hanea’s and Nane’s calibration score
for given bin assignment using 100 questions.
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Bin assignment si Bin Bin 2
(0,0,0,0,0,0,0,0,0,30) (0,0,0,0,0,0,0,0,0,1) 0.21464 0
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.58606 0.46182
(0,0,10,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.86234 0.39319
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.20445 0.06241
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.00507 0.00218
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 5e-05 1e-05
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.55065 0.4052
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.07225 0.04319
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.07225 0.00164
(0,0,0,0,0,0,0,0,0,30) (0,0,0,0,0,0,0,0,0,0) 0 0
(10,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 12: Hanea’s and Nane’s calibration score and calibration score bin 2 for
given binassignment using 30 questions.

Bin assignment si Bin Bin 3
(0,0,0,0,0,0,0,0,0,30) (0,0,0,0,0,0,0,0,0,1) 0.21464 0.40246
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.58606 0.58784
(0,0,10,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.86234 0.529
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.20445 0.1408
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.00507 0.00556
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 5e-05 6e-05
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.55065 0.67446
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.07225 0.08811
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.07225 0.00471
(0,0,0,0,0,0,0,0,0,30) (0,0,0,0,0,0,0,0,0,0) 0 0
(10,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 13: Hanea’s and Nane’s calibration score and calibration score bin 3 for
given binassignment using 30 questions.
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Bin assignment si Bin Bin 4
(0,0,0,0,0,0,0,0,0,30) (0,0,0,0,0,0,0,0,0,1) 0.21464 0.29514
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.58606 0.52572
(0,0,10,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.86234 0.4641
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.20445 0.1217
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.00507 0.00411
(0,0,0,0,30,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 5e-05 4e-05
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.55065 0.60173
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.07225 0.07358
(0,0,0,0,0,0,0,30,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.07225 0.00375
(0,0,0,0,0,0,0,0,0,30) (0,0,0,0,0,0,0,0,0,0) 0 0
(10,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 14: Hanea’s and Nane’s calibration score and calibration score bin 4 for
given binassignment using 30 questions.

Bin assignment si Bin Bin 2
(0,0,0,0,0,0,0,0,0,50) (0,0,0,0,0,0,0,0,0,1) 0.07694 0
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.48059 0.39326
(0,0,50,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.415 0.32617
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.03233 0.02077
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.00026 0.00011
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0 0
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.42589 0.32737
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.02018 0.01253
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.00016 8e-05
(0,0,0,0,0,0,0,0,0,50) (0,0,0,0,0,0,0,0,0,0) 0 0
(50,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 15: Hanea’s and Nane’s calibration score and calibration score bin 2 for
given bin assignment using 50 questions.

41



Bin assignment si Bin Bin 3
(0,0,0,0,0,0,0,0,0,50) (0,0,0,0,0,0,0,0,0,1) 0.07694 0.18056
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.48059 0.48133
(0,0,50,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.415 0.4156
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.03233 0.03355
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.00026 3e-04
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0 0
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.42589 0.51412
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.02018 0.02096
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.00016 0.00021
(0,0,0,0,0,0,0,0,0,50) (0,0,0,0,0,0,0,0,0,0) 0 0
(50,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 16: Hanea’s and Nane’s calibration score and calibration score bin 3 for
given bin assignment using 50 questions.

Bin assignment si Bin Bin 4
(0,0,0,0,0,0,0,0,0,50) (0,0,0,0,0,0,0,0,0,1) 0.07694 0.14209
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.48059 0.43766
(0,0,50,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.415 0.37118
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.03233 0.02777
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0.00026 0.00023
(0,0,0,0,50,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0 0
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.42589 0.46486
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.02018 0.01714
(0,0,0,0,0,0,0,50,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0.00016 0.00017
(0,0,0,0,0,0,0,0,0,50) (0,0,0,0,0,0,0,0,0,0) 0 0
(50,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 17: Hanea’s and Nane’s calibration score and calibration score bin 4 for
given bin assignment using 50 questions.
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Bin assignment si Bin Bin 2
(0,0,0,0,0,0,0,0,0,100) (0,0,0,0,0,0,0,0,0,1) 0.00592 0
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.3173 0.26915
(0,0,100,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.25333 0.20757
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.0023 0.20757
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0 0
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0 0
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.24836 0.19906
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.00101 0.00065
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0 0
(0,0,0,0,0,0,0,0,0,100) (0,0,0,0,0,0,0,0,0,0) 0 0
(100,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 18: Hanea’s and Nane’s calibration score and calibration score bin 2 for
given bin assignment using 100 questions.

Bin assignment si Bin Bin 3
(0,0,0,0,0,0,0,0,0,100) (0,0,0,0,0,0,0,0,0,1) 0.00592 0.01019
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.3173 0.31698
(0,0,100,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.25333 0.24907
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.0023 0.00247
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0 0
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0 0
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.24836 0.29837
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.00101 0.00108
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0 0
(0,0,0,0,0,0,0,0,0,100) (0,0,0,0,0,0,0,0,0,0) 0 0
(100,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 19: Hanea’s and Nane’s calibration score and calibration score bin 3 for
given bin assignment using 100 questions.
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Bin assignment si Bin Bin 4
(0,0,0,0,0,0,0,0,0,100) (0,0,0,0,0,0,0,0,0,1) 0.00592 0.00723
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.5,0,0,0,0,0) 0.3173 0.29291
(0,0,100,0,0,0,0,0,0,0) (0,0,0.3,0,0,0,0,0,0,0) 0.25333 0.22619
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.3,0,0,0,0,0) 0.0023 0.00209
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.2,0,0,0,0,0) 0 0
(0,0,0,0,100,0,0,0,0,0) (0,0,0,0,0.1,0,0,0,0,0) 0 0
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.8,0,0) 0.24836 0.27372
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.6,0,0) 0.00101 9e-04
(0,0,0,0,0,0,0,100,0,0) (0,0,0,0,0,0,0,0.5,0,0) 0 0
(0,0,0,0,0,0,0,0,0,100) (0,0,0,0,0,0,0,0,0,0) 0 0
(100,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) 0 0

Table 20: Hanea’s and Nane’s calibration score and calibration score bin 4 for
given bin assignment using 100 questions.
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B R code for section 3

This code was used for (Hanea and Nane, 2019) and during this project small

adjustments and additions have been made.

#de f i n e the t h e o r e t i c a l p b

p i<−seq (5 ,95 , by=10)/100

#ca l s co r e based on the ch i square d i s t

#the func t i on computes f o r each expert ( with index x ) the c a l i b r a t i o n s c o r e s

c a l i b r a t i o n c h i s imu l a t i o n s<−f unc t i on ( s i , n i )

{
p1<−s i ∗ l og ( s i / p i )

p1 [ i s . nan ( p1)]<−0

p2<−(1− s i )∗ l og ((1− s i )/(1− p i ) )

p2 [ i s . nan ( p2)]<−0

r e l i n f o <−p1+p2

sum re l i n f o<−sum(2∗ n i ∗ r e l i n f o )

c a l i b r a t i o n <−1−pch i sq ( sum re l i n f o ,10)#10 bins so 10 degree s o f freedom

return ( c a l i b r a t i o n )

}

#simula t i on r e s u l t s

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 ) )

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 2 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 8 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

45



c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

#t e s t

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 3 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n c h i s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s<−f unc t i on ( s i , n i ){
s um n i s i<−sum( n i ∗ s i )

x<−get . exact . binsum ( n i , p i )

x<−rbind ( c ( −1 ,0 ,0) , x )

k=which (x [ ,1]== sum n i s i )

mid p value<−2∗min(1−x [ k ,3 ]+1/2∗x [ k , 2 ] , x [ k−1 ,3]+1/2∗x [ k , 2 ] )

r e turn ( round ( mid p value , 5 ) )

}

c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 2 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 8 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )
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c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

#c a l i b r a t i o n s co r e based on f i r s t two−s ided t e s t formula from Riva l s e t Al

c a l i b r a t i o n b i n s imu l a t i o n s 2<−f unc t i on ( s i , n i ){
s um n i s i<−sum( n i ∗ s i )

x<−get . exact . binsum ( n i , p i )

x<−rbind ( c ( −1 ,0 ,0) , x )

k=which (x [ ,1]== sum n i s i )

tw i c e one s i d ed p va lu e = 2∗min(1−x [ k , 3 ] , x [ k−1 ,3 ])

r e turn ( round ( tw i c e one s ided p va lue , 5 ) )

}

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 , 0 , 0 . 2 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 8 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3<−f unc t i on ( s i , n i ){
s um n i s i<−sum( n i ∗ s i )
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x<−get . exact . binsum ( n i , p i )

x<−rbind ( c ( −1 ,0 ,0) , x )

k=which (x [ ,1]== sum n i s i )

m in l i k p va l u e = 0

f o r ( j in 1 : nrow (x ) ){ i f ( x [ j ,2]<=x [ k , 2 ] ) { min l i k p va l u e=min l i k p va l u e+x [ j , 2 ] } }

re turn ( round ( min l i k p va lue , 5 ) )

}

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 , 0 , 0 . 2 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 8 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

#t e s t

c a l i b r a t i o n b i n s imu l a t i o n s ( s1 , n1 )

c a l i b r a t i o n b i n s imu l a t i o n s 4<−f unc t i on ( s i , n i ){
s um n i s i<−sum( n i ∗ s i )

x<−get . exact . binsum ( n i , p i )

x<−rbind ( c ( −1 ,0 ,0) , x )
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k=which (x [ ,1]== sum n i s i )

m i n l i k p i v a l u e = 0

f o r ( j in 1 : nrow (x ) ){
i f ( x [ j ,2]<x [ k , 2 ] ) { min l i k p i v a l u e=m in l i k p i v a l u e+x [ j , 2 ] }
e l s e i f ( x [ j ,2]==x [ k , 2 ] )

{min l i k p i v a l u e=m in l i k p i v a l u e +0.5∗x [ j , 2 ] }
}

re turn ( round ( m in l i k p i v a l u e , 5 ) )

}

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 , 0 , 0 . 2 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 8 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 ) , c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 ) )

# f o r bin

n1 = c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 20 )

n2 = c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 30 )

n3 = c (0 , 0 , 0 , 0 , 30 , 0 , 0 , 0 , 0 , 0 )

n4 = c (0 , 0 , 30 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

n5 = c (0 , 0 , 0 , 0 , 30 , 0 , 0 , 0 , 0 , 0 )
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n6 = c (0 , 0 , 0 , 0 , 30 , 0 , 0 , 0 , 0 , 0 )

n7 = c (0 , 0 , 0 , 0 , 30 , 0 , 0 , 0 , 0 , 0 )

n8 = c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 30 , 0 , 0 )

n9 = c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 30 , 0 , 0 )

n10 = c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 30 , 0 , 0 )

s1 = c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 )

s2 = c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 )

s3 = c ( 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 , 0 , 0 , 0 )

s4 = c ( 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

s5 = c ( 0 , 0 , 0 , 0 , 0 . 3 , 0 , 0 , 0 , 0 , 0 )

s6 = c ( 0 , 0 , 0 , 0 , 0 . 2 , 0 , 0 , 0 , 0 , 0 )

s7 = c ( 0 , 0 , 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 , 0 )

s8 = c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 8 , 0 , 0 )

s9 = c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 , 0 )

s10 = c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 )

n1s1 = n1∗ s1
n2s2 = n2∗ s2
n3s3 = n3∗ s3
n4s4 = n4∗ s4
n5s5 = n5∗ s5
n6s6 = n6∗ s6
n7s7 = n7∗ s7
n8s8 = n8∗ s8
n9s9 = n9∗ s9
n10s10 = n10∗ s10

sum n1 s1 = sum( n1s1 )

sum n2 s2 = sum( n2s2 )

sum n3 s3 = sum( n3s3 )

sum n4 s4 = sum( n4s4 )

sum n5 s5 = sum( n5s5 )

sum n6 s6 = sum( n6s6 )

sum n7 s7 = sum( n7s7 )

sum n8 s8 = sum( n8s8 )
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sum n9 s9 = sum( n9s9 )

sum n10 s10 = sum( n10s10 )

x1<−get . exact . binsum (n1 , p i )

x1<−rbind ( c ( −1 ,0 ,0) , x1 )

k1=which ( x1 [ ,1]== sum n1 s1 )

1−x1 [ k1 ,3]+1/2∗ x1 [ k1 , 2 ]

x1 [ k1−1 ,3]+1/2∗x1 [ k1 , 2 ]

x2<−get . exact . binsum (n2 , p i )

x2<−rbind ( c ( −1 ,0 ,0) , x2 )

k2=which ( x2 [ ,1]== sum n2 s2 )

1−x2 [ k2 ,3]+1/2∗ x2 [ k2 , 2 ]

x2 [ k2−1 ,3]+1/2∗x2 [ k2 , 2 ]

x3<−get . exact . binsum (n3 , s3 )

x3<−rbind ( c ( −1 ,0 ,0) , x3 )

k3=which ( x3 [ ,1]== sum n3 s3 )

1−x3 [ k3 ,3]+1/2∗ x3 [ k3 , 2 ]

x3 [ k3−1 ,3]+1/2∗x3 [ k3 , 2 ]

x4<−get . exact . binsum (n4 , s4 )

x4<−rbind ( c ( −1 ,0 ,0) , x4 )

k4=which ( x4 [ ,1]== sum n4 s4 )

1−x4 [ k4 ,3]+1/2∗ x4 [ k4 , 2 ]

x4 [ k1−1 ,3]+1/2∗x4 [ k1 , 2 ]

x5<−get . exact . binsum (n5 , s5 )

x5<−rbind ( c ( −1 ,0 ,0) , x5 )

k5=which ( x5 [ ,1]== sum n5 s5 )

1−x5 [ k5 ,3]+1/2∗ x5 [ k5 , 2 ]

x5 [ k5−1 ,3]+1/2∗x5 [ k5 , 2 ]

x6<−get . exact . binsum (n6 , s6 )

x6<−rbind ( c ( −1 ,0 ,0) , x6 )
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k6=which ( x7 [ ,1]== sum n6 s6 )

1−x6 [ k6 ,3]+1/2∗ x6 [ k6 , 2 ]

x6 [ k6−1 ,3]+1/2∗x6 [ k6 , 2 ]

x7<−get . exact . binsum (n7 , s7 )

x7<−rbind ( c ( −1 ,0 ,0) , x7 )

k7=which ( x7 [ ,1]== sum n7 s7 )

1−x7 [ k7 ,3]+1/2∗ x7 [ k7 , 2 ]

x7 [ k7−1 ,3]+1/2∗x7 [ k7 , 2 ]

x8<−get . exact . binsum (n8 , s8 )

x8<−rbind ( c ( −1 ,0 ,0) , x8 )

k8=which ( x8 [ ,1]== sum n8 s8 )

1−x8 [ k8 ,3]+1/2∗ x8 [ k8 , 2 ]

x8 [ k8−1 ,3]+1/2∗x8 [ k8 , 2 ]

x9<−get . exact . binsum (n9 , s9 )

x9<−rbind ( c ( −1 ,0 ,0) , x9 )

k9=which ( x9 [ ,1]== sum n9 s9 )

1−x9 [ k9 ,3]+1/2∗ x9 [ k9 , 2 ]

x9 [ k9−1 ,3]+1/2∗x9 [ k9 , 2 ]

x10<−get . exact . binsum (n10 , s10 )

x10<−rbind ( c ( −1 ,0 ,0) , x10 )

k10=which ( x10 [ ,1]== sum n10 s10 )

1−x10 [ k10 ,3 ]+1/2∗ x10 [ k10 , 2 ]

x10 [ k10−1 ,3]+1/2∗x10 [ k10 , 2 ]

# f o r ch i

p1 1<−s1 ∗ l og ( s1 / p i )

p1 1 [ i s . nan ( p1 1)]<−0

p2 1<−(1−s1 )∗ l og ((1− s1 )/(1− p i ) )

p2 1 [ i s . nan ( p2 1)]<−0

r e l i n f o 1 <−p1 1+p2 1

sum re l i n f o1<−sum(2∗n1∗ r e l i n f o 1 )
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c a l i b r a t i on1<−1−pch i sq ( sum re l i n f o1 , 1 0 )

p1 2<−s1 ∗ l og ( s2 / p i )

p1 2 [ i s . nan ( p1 2)]<−0

p2 2<−(1−s2 )∗ l og ((1− s2 )/(1− p i ) )

p2 2 [ i s . nan ( p2 2)]<−0

r e l i n f o 2 <−p1 2+p2 2

sum re l i n f o2<−sum(2∗n2∗ r e l i n f o 2 )

c a l i b r a t i on2<−1−pch i sq ( sum re l i n f o2 , 1 0 )

p1 3<−s3 ∗ l og ( s3 / p i )

p1 3 [ i s . nan ( p1 3)]<−0

p2 3<−(1−s3 )∗ l og ((1− s3 )/(1− p i ) )

p2 3 [ i s . nan ( p2 3)]<−0

r e l i n f o 3 <−p1 3+p2 3

sum re l i n f o3<−sum(2∗n3∗ r e l i n f o 3 )

c a l i b r a t i on3<−1−pch i sq ( sum re l i n f o3 , 1 0 )

p1 4<−s4 ∗ l og ( s1 / p i )

p1 4 [ i s . nan ( p1 4)]<−0

p2 4<−(1−s4 )∗ l og ((1− s4 )/(1− p i ) )

p2 4 [ i s . nan ( p2 4)]<−0

r e l i n f o 4 <−p1 4+p2 4

sum re l i n f o4<−sum(2∗n4∗ r e l i n f o 4 )

c a l i b r a t i on4<−1−pch i sq ( sum re l i n f o4 , 1 0 )

p1 5<−s5 ∗ l og ( s5 / p i )

p1 5 [ i s . nan ( p1 5)]<−0

p2 5<−(1−s5 )∗ l og ((1− s5 )/(1− p i ) )

p2 5 [ i s . nan ( p2 5)]<−0

r e l i n f o 5 <−p1 5+p2 5

sum re l i n f o5<−sum(2∗n5∗ r e l i n f o 5 )

c a l i b r a t i on5<−1−pch i sq ( sum re l i n f o5 , 1 0 )

p1 6<−s6 ∗ l og ( s6 / p i )

p1 6 [ i s . nan ( p1 6)]<−0
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p2 6<−(1−s6 )∗ l og ((1− s6 )/(1− p i ) )

p2 6 [ i s . nan ( p2 6)]<−0

r e l i n f o 6 <−p1 6+p2 6

sum re l i n f o6<−sum(2∗n6∗ r e l i n f o 6 )

c a l i b r a t i on6<−1−pch i sq ( sum re l i n f o6 , 1 0 )

p1 7<−s7 ∗ l og ( s7 / p i )

p1 7 [ i s . nan ( p1 7)]<−0

p2 7<−(1−s7 )∗ l og ((1− s7 )/(1− p i ) )

p2 7 [ i s . nan ( p2 7)]<−0

r e l i n f o 7 <−p1 7+p2 7

sum re l i n f o7<−sum(2∗n7∗ r e l i n f o 7 )

c a l i b r a t i on7<−1−pch i sq ( sum re l i n f o7 , 1 0 )

p1 8<−s8 ∗ l og ( s8 / p i )

p1 8 [ i s . nan ( p1 8)]<−0

p2 8<−(1−s8 )∗ l og ((1− s8 )/(1− p i ) )

p2 8 [ i s . nan ( p2 8)]<−0

r e l i n f o 8 <−p1 8+p2 8

sum re l i n f o8<−sum(2∗n8∗ r e l i n f o 8 )

c a l i b r a t i on8<−1−pch i sq ( sum re l i n f o8 , 1 0 )

p1 9<−s9 ∗ l og ( s9 / p i )

p1 9 [ i s . nan ( p1 9)]<−0

p2 9<−(1−s9 )∗ l og ((1− s9 )/(1− p i ) )

p2 9 [ i s . nan ( p2 9)]<−0

r e l i n f o 9 <−p1 9+p2 9

sum re l i n f o9<−sum(2∗n9∗ r e l i n f o 9 )

c a l i b r a t i on9<−1−pch i sq ( sum re l i n f o9 , 1 0 )

p1 10<−s9 ∗ l og ( s10 / p i )

p1 10 [ i s . nan ( p1 10)]<−0

p2 10<−(1−s10 )∗ l og ((1− s10 )/(1− p i ) )

p2 10 [ i s . nan ( p2 10)]<−0

r e l i n f o 1 0<−p1 10+p2 10

sum re l i n f o10<−sum(2∗n10∗ r e l i n f o 1 0 )
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c a l i b r a t i on10<−1−pch i sq ( sum re l i n f o10 , 1 0 )
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C R code for section 4

This code was used for (Hanea and Nane, 2019) and during this project small

adjustments and additions have been made.

r e qu i r e ( openxlsx )

l i b r a r y ( ggp lot2 )

r e qu i r e ( g r id )

r e qu i r e ( gr idExtra )

r e qu i r e ( cowplot )

#############################

#####import data#############

#############################

#dataIG4years i s data imported from dataIG4years f i l e

#dataACE GJP i s data imported from dataACE GJP f i l e

#dataACE IDEA i s data imported from dataACE IDEA f i l e

#dataSIPS i s data imported from dataSIPS f i l e

#need to d e f i n e those f o r the computations

expert s IG4years<−dataIG4years [ , 1 ]

ques t ions IG4years<−dataIG4years [ , 2 ]

answers IG4years<−dataIG4years [ , 7 ]

r e a l i z a t i o n s IG4yea r s<−dataIG4years [ , 9 ]

#need to d e f i n e those f o r the computations

experts dataACE GJP<−dataACE GJP [ , 1 ]

questions dataACE GJP<−dataACE GJP [ , 2 ]

answers dataACE GJP<−dataACE GJP [ , 3 ]

real izations dataACE GJP<−dataACE GJP [ , 4 ]

#need to d e f i n e those f o r the computations

experts dataACE IDEA<−dataACE IDEA [ , 1 ]

questions dataACE IDEA<−dataACE IDEA [ , 2 ]

answers dataACE IDEA<−dataACE IDEA [ , 7 ]

real izations dataACE IDEA<−dataACE IDEA [ , 9 ]
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#need to d e f i n e those f o r the computations

experts dataSIPS<−dataSIPS [ , 1 ]

quest ions dataSIPS<−dataSIPS [ , 2 ]

answers dataSIPS<−dataSIPS [ , 7 ]

r e a l i z a t i on s da taS IPS<−dataSIPS [ , 9 ]

un ique ques t i ons IG4year s<−(unique ( ques t i ons IG4year s ) )

un ique expert s IG4years<−(unique ( exper t s IG4year s ) )

unique questions dataACE GJP<−(unique ( questions dataACE GJP ) )

unique expert dataACE GJP<−(unique ( experts dataACE GJP ) )

unique questions dataACE IDEA<−(unique ( questions dataACE IDEA ))

unique experts dataACE IDEA<−(unique ( experts dataACE IDEA ))

unique quest ions dataSIPS<−(unique ( quest ions dataSIPS ) )

unique experts dataSIPS<−(unique ( experts dataSIPS ) )

#############################

###ca l i b r a t i o n s c o r e s########

#############################

p<−seq (5 ,95 , by=10)/100

p i<−seq (5 ,95 , by=10)/100

#func t i on to a s s i gn experts ’ as ses sments to b ins

#the func t i on prov ide s r e s u l t s per expert , and x stands f o r index o f

expert

exp to b in<− f unc t i on ( experts , ques t ions , answers , x )

{
unique expert s<−(unique ( expe r t s ) )

ans<−answers [ which ( exper t s==un ique expe r t s [ x ] ) ]

i f e l s e ( ans==1, expert answers <−10, expert answers<−c e i l i n g ( ( ans+10ˆ(−6))∗10))

re turn ( exper t answers )
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}

#func t i on which d i s p l a y s r e a l i z a t i o n s o f events f o r g iven expert

outcomes = func t i on ( experts , r e a l i z a t i o n s , x )

{
un ique expe r t s=(unique ( expe r t s ) )

outcome = r e a l i z a t i o n s [ which ( expe r t s==un ique expe r t s [ x ] ) ]

r e turn ( outcome )

}

#some t e s t s

exp to b in ( experts dataACE GJP , questions dataACE GJP , answers dataACE GJP , 1 )

exp to b in ( experts dataACE IDEA , questions dataACE IDEA , answers dataACE IDEA , 1 )

exp to b in ( experts dataACE IDEA , questions dataACE IDEA , answers dataACE SIPS , 1 )

outcomes ( experts dataACE GJP , real izations dataACE GJP , 1 )

#func t i on to compute n

compute n i = func t i on ( b ina s s i gn )

{
b<−1:10

n i<−sapply ( 1 : 1 0 , f unc t i on (x ) l ength ( which ( b ina s s i gn%in%b [ x ] ) ) )

re turn ( n i )

}

#func t i on to compute s

compute s i = func t i on ( b inas s ign , outcome )

{
a = b ina s s i gn

b = 1:10

s i<−sapply ( 1 : 1 0 , f unc t i on (x )

sum( outcome [ which ( a%in%b [ x ] ) ] ) / l ength ( outcome [ which ( a%in%b [ x ] ) ] ) )

#be c a r e f u l with the NaN va lues

s i [ i s . nan ( s i )]<−0

return ( s i )

}
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############################################

#ca l s co r e based on the ch i square d i s t

#the func t i on computes f o r each expert ( with index x ) the c a l i b r a t i o n s c o r e s

c a l i b r a t i o n c h i<−f unc t i on ( s i , n i )

{
p1<−s i ∗ l og ( s i /p)

p1 [ i s . nan ( p1)]<−0

p2<−(1− s i )∗ l og ((1− s i )/(1−p ) )

p2 [ i s . nan ( p2)]<−0

r e l i n f o <−p1+p2

sum re l i n f o<−sum(2∗ n i ∗ r e l i n f o )

c a l i b r a t i o n <−1−pch i sq ( sum re l i n f o , 9 )

re turn ( c a l i b r a t i o n )

}

##ca l s co r e based on the exact d i s t r i b u t i o n and the mid p−value

##Binomial approach o f computing c a l i b r a t i o n s c o r e s with p−va lue s

c a l i b r a t i o n b i n s imu l a t i o n s<−f unc t i on ( s i , n i ){
s um n i s i<−sum( n i ∗ s i )

x<−get . exact . binsum ( n i , p i )

x<−rbind ( c ( −1 ,0 ,0) , x )

k=which (x [ ,1]== sum n i s i )

mid p value<−2∗min(1−x [ k ,3 ]+1/2∗x [ k , 2 ] , x [ k−1 ,3]+1/2∗x [ k , 2 ] )

r e turn ( round ( mid p value , 5 ) )

}

#ca l i b r a t i o n s co r e based on f i r s t two−s ided t e s t formula from Riva l s e t Al

c a l i b r a t i o n b i n s imu l a t i o n s 2<−f unc t i on ( s i , n i ){
s um n i s i<−sum( n i ∗ s i )
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x<−get . exact . binsum ( n i , p i )

x<−rbind ( c ( −1 ,0 ,0) , x )

k=which (x [ ,1]== sum n i s i )

tw i c e one s i d ed p va lu e = 2∗min(1−x [ k , 3 ] , x [ k−1 ,3 ])

r e turn ( round ( tw i c e one s ided p va lue , 5 ) )

}

c a l i b r a t i o n b i n s imu l a t i o n s 3<−f unc t i on ( s i , n i ){
s um n i s i<−sum( n i ∗ s i )

x<−get . exact . binsum ( n i , p i )

x<−rbind ( c ( −1 ,0 ,0) , x )

k=which (x [ ,1]== sum n i s i )

m in l i k p va l u e = 0

f o r ( j in 1 : nrow (x ) ){ i f ( x [ j ,2]<=x [ k , 2 ] ) { min l i k p va l u e=min l i k p va l u e+

x [ j , 2 ] } }

re turn ( round ( min l i k p va lue , 5 ) )

}

c a l i b r a t i o n b i n s imu l a t i o n s 4<−f unc t i on ( s i , n i ){
s um n i s i<−sum( n i ∗ s i )

x<−get . exact . binsum ( n i , p i )

x<−rbind ( c ( −1 ,0 ,0) , x )

k=which (x [ ,1]== sum n i s i )

m i n l i k p i v a l u e = 0

f o r ( j in 1 : nrow (x ) ){
i f ( x [ j ,2]<x [ k , 2 ] ) { min l i k p i v a l u e=m in l i k p i v a l u e+x [ j , 2 ] }
e l s e i f ( x [ j ,2]==x [ k , 2 ] )

{min l i k p i v a l u e=m in l i k p i v a l u e +0.5∗x [ j , 2 ] }
}

re turn ( round ( m in l i k p i v a l u e , 5 ) )

}
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ca l scores ch i unique dataACE GJP = c ( )

f o r ( j in 1 : l ength ( unique expert dataACE GJP ) )

{
n = compute n i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) )

s = compute s i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) , outcomes ( experts dataACE GJP ,

real izations dataACE GJP , j ) )

ca l scores ch i unique dataACE GJP = append ( cal scores chi unique dataACE GJP ,

c a l i b r a t i o n c h i ( s , n ) )

}

cal scores bin unique dataACE GJP = c ( )

f o r ( j in 1 : l ength ( unique expert dataACE GJP ) )

{
n = compute n i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) )

s = compute s i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) , outcomes ( experts dataACE GJP ,

real izations dataACE GJP , j ) )

ca l scores bin unique dataACE GJP = append ( cal scores bin unique dataACE GJP ,

c a l i b r a t i o n b i n s imu l a t i o n s ( s , n ) )

}

cal scores bin2 unique dataACE GJP = c ( )

f o r ( j in 1 : l ength ( unique expert dataACE GJP ) )

{
n = compute n i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) )

s = compute s i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) , outcomes ( experts dataACE GJP ,

real izations dataACE GJP , j ) )

ca l scores bin2 unique dataACE GJP =

append ( cal scores bin2 unique dataACE GJP , c a l i b r a t i o n b i n s imu l a t i o n s 2 ( s , n ) )

}
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cal scores bin3 unique dataACE GJP = c ( )

f o r ( j in 1 : l ength ( unique expert dataACE GJP ) )

{
n = compute n i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) )

s = compute s i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) , outcomes ( experts dataACE GJP ,

real izations dataACE GJP , j ) )

ca l scores bin3 unique dataACE GJP =

append ( cal scores bin3 unique dataACE GJP , c a l i b r a t i o n b i n s imu l a t i o n s 3 ( s , n ) )

}

cal scores bin4 unique dataACE GJP = c ( )

f o r ( j in 1 : l ength ( unique expert dataACE GJP ) )

{
n = compute n i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) )

s = compute s i ( exp to b in ( experts dataACE GJP , questions dataACE GJP ,

answers dataACE GJP , j ) , outcomes ( experts dataACE GJP ,

real izations dataACE GJP , j ) )

ca l scores bin4 unique dataACE GJP =

append ( cal scores bin4 unique dataACE GJP , c a l i b r a t i o n b i n s imu l a t i o n s 4 ( s , n ) )

}

data <− data . frame (

expert = unique expert dataACE GJP ,

ch i = cal scores chi unique dataACE GJP ,

bin = cal scores bin unique dataACE GJP ,

bin2 = cal scores bin2 unique dataACE GJP ,

bin3 = cal scores bin3 unique dataACE GJP ,

bin4 = cal scores bin4 unique dataACE GJP

)

g jp f r om than t en upto 100 que s t i on s

=ca l i b r s co r e s da taACE GJP f i l e
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[ ca l ibr scores dataACE GJP f i le$exp quest ions dataACE GJP > 9 &

cal ibr scores dataACE GJP f i le$exp quest ions dataACE GJP < 101 , ]

g jp more than 100 ques t i ons=ca l i b r s co r e s da taACE GJP f i l e

[ ca l ibr scores dataACE GJP f i le$exp quest ions dataACE GJP > 100 , ]

exp questions dataACE GJP<−sapply ( 1 : l ength ( unique expert dataACE GJP ) ,

func t i on (x ) l ength ( which ( experts dataACE GJP==(unique expert dataACE GJP [ x ] ) ) ) )

cal ibr scores dataACE GJP<−cbind ( unique expert dataACE GJP ,

exp questions dataACE GJP , cal scores chi unique dataACE GJP ,

cal scores bin unique dataACE GJP , cal scores bin2 unique dataACE GJP ,

cal scores bin3 unique dataACE GJP , cal scores bin4 unique dataACE GJP )

h i s t ( data$chi , y lab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data$bin , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data$bin2 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data$bin3 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data$bin4 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

ggp lot ( ) +

geom l ine ( data = data , aes ( x = expert , y = ch i ) , c o l o r = ” red ”) +

geom point ( data = data , aes ( x = expert , y = ch i ) , c o l o r = ” red ”) +

geom l ine ( data = data , aes ( x = expert , y = bin ) , c o l o r = ”blue ”) +

geom point ( data = data , aes ( x = expert , y = bin ) , c o l o r = ”blue ”) +

geom l ine ( data = data , aes ( x = expert , y = bin2 ) , c o l o r = ” green ”) +

geom point ( data = data , aes ( x = expert , y = bin2 ) , c o l o r = ” green ”) +

geom l ine ( data = data , aes ( x = expert , y = bin3 ) , c o l o r = ” ye l low ”) +

geom point ( data = data , aes ( x = expert , y = bin3 ) , c o l o r = ” ye l low ”) +

geom l ine ( data = data , aes ( x = expert , y = bin4 ) , c o l o r = ”black ”) +

geom point ( data = data , aes ( x = expert , y = bin4 ) , c o l o r = ” black ”) +

xlab ( ’ expert ’ ) +

ylab ( ’ c a l i b r a t i o n score ’ )

c o l o r s = c (”Chi” = ” red ” , ”Bin 1” = ”blue ” , ”Bin 2” = ” green ” ,

”Bin 3” = ” ye l low ” , ”Bin 4” = ”black ”)
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ggp lot ( ) +

geom point ( data = g jp f rom than ten upto 100 que s t i on s , aes ( x= 1 :2778 , y =

cal scores chi unique dataACE GJP , c o l o r=”Chi ” ) ) +

geom point ( data = g jp f rom than ten upto 100 que s t i on s , aes ( x = 1 :2778 , y =

cal scores bin unique dataACE GJP , c o l o r = ”Bin 1”)) +

geom point ( data = g jp f rom than ten upto 100 que s t i on s , aes ( x=1:2778 , y =

cal scores bin2 unique dataACE GJP , c o l o r = ”Bin 2”)) +

geom point ( data = g jp f rom than ten upto 100 que s t i on s , aes ( x=1:2778 , y =

cal scores bin3 unique dataACE GJP , c o l o r = ”Bin 3”)) +

geom point ( data = g jp f rom than ten upto 100 que s t i on s , aes ( x=1:2778 , y =

cal scores bin4 unique dataACE GJP , c o l o r = ”Bin 4”)) +

labs (x = ”Expert ” ,

y = ”Ca l i b ra t i on s co r e ” ,

c o l o r = ”Cal s co r e ”) +

sca l e c o l o r manua l ( va lue s = c o l o r s )

ggp lot ( ) +

geom point ( data = gjp more than 100 ques t i ons , aes ( x= 1 :518 , y =

cal scores chi unique dataACE GJP , c o l o r=”Chi ” ) ) +

geom point ( data = gjp more than 100 ques t i ons , aes ( x = 1 :518 , y =

cal scores bin unique dataACE GJP , c o l o r = ”Bin 1”)) +

geom point ( data = gjp more than 100 ques t i ons , aes ( x=1:518 , y =

cal scores bin2 unique dataACE GJP , c o l o r = ”Bin 2”)) +

geom point ( data = gjp more than 100 ques t i ons , aes ( x=1:518 , y =

cal scores bin3 unique dataACE GJP , c o l o r = ”Bin 3”)) +

geom point ( data = gjp more than 100 ques t i ons , aes ( x=1:518 , y =

cal scores bin4 unique dataACE GJP , c o l o r = ”Bin 4”)) +

labs (x = ”Expert ” ,

y = ”Ca l i b ra t i on s co r e ” ,

c o l o r = ”Cal s co r e ”) +

sca l e c o l o r manua l ( va lue s = c o l o r s )

ca l scores chi unique dataACE IDEA = c ( )
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f o r ( j in 1 : l ength ( unique experts dataACE IDEA ) )

{
n = compute n i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) )

s = compute s i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) , outcomes ( experts dataACE IDEA ,

real izations dataACE IDEA , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)

ca l scores chi unique dataACE IDEA =

append ( cal scores chi unique dataACE IDEA , c a l i b r a t i o n c h i ( s , n ) )

}

cal scores bin unique dataACE IDEA = c ( )

f o r ( j in 1 : l ength ( unique experts dataACE IDEA ) )

{
n = compute n i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) )

s = compute s i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) , outcomes ( experts dataACE IDEA ,

real izations dataACE IDEA , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)

cal scores bin unique dataACE IDEA =

append ( cal scores bin unique dataACE IDEA , c a l i b r a t i o n b i n s imu l a t i o n s ( s , n ) )

}

cal scores bin2 unique dataACE IDEA = c ( )

f o r ( j in 1 : l ength ( unique experts dataACE IDEA ) )

{
n = compute n i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) )

s = compute s i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) , outcomes ( experts dataACE IDEA ,
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real izations dataACE IDEA , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)

cal scores bin2 unique dataACE IDEA =

append ( cal scores bin2 unique dataACE IDEA , c a l i b r a t i o n b i n s imu l a t i o n s 2 ( s , n ) )

}

cal scores bin3 unique dataACE IDEA = c ( )

f o r ( j in 1 : l ength ( unique experts dataACE IDEA ) )

{
n = compute n i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) )

s = compute s i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) , outcomes ( experts dataACE IDEA , real izations dataACE IDEA , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)

cal scores bin3 unique dataACE IDEA =

append ( cal scores bin3 unique dataACE IDEA , c a l i b r a t i o n b i n s imu l a t i o n s 3 ( s , n ) )

}

cal scores bin4 unique dataACE IDEA = c ( )

f o r ( j in 1 : l ength ( unique experts dataACE IDEA ) )

{
n = compute n i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) )

s =

compute s i ( exp to b in ( experts dataACE IDEA , questions dataACE IDEA ,

answers dataACE IDEA , j ) ,

outcomes ( experts dataACE IDEA ,

real izations dataACE IDEA , j ) ) ,

ca l scores bin4 unique dataACE IDEA =

append ( cal scores bin4 unique dataACE IDEA , c a l i b r a t i o n b i n s imu l a t i o n s 4 ( s , n ) )

}
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data2 <− data . frame (

expert = unique experts dataACE IDEA ,

ch i = cal scores chi unique dataACE IDEA ,

bin = cal scores bin unique dataACE IDEA ,

bin2 = cal scores bin2 unique dataACE IDEA ,

bin3 = cal scores bin3 unique dataACE IDEA ,

bin4 = cal scores bin4 unique dataACE IDEA

)

idea more than n ine que s t i on s=ca l ib r s co r e s dataACE IDEA f i l e

[ ca l ibr scores dataACE IDEA fi le$exp quest ions dataACE IDEA > 9 , ]

exp questions dataACE IDEA<−sapply ( 1 : l ength ( unique experts dataACE IDEA ) ,

func t i on (x ) l ength ( which ( experts dataACE IDEA==(unique experts dataACE IDEA [ x ] ) ) ) )

cal ibr scores dataACE IDEA<−cbind ( unique experts dataACE IDEA ,

exp questions dataACE IDEA , cal scores chi unique dataACE IDEA ,

cal scores bin unique dataACE IDEA , cal scores bin2 unique dataACE IDEA ,

cal scores bin3 unique dataACE IDEA , cal scores bin4 unique dataACE IDEA )

h i s t ( data2$chi , y lab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data2$bin , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data2$bin2 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data2$bin3 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data2$bin4 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

c o l o r s 2 = c (”Chi” = ” red ” , ”Bin 1” = ”blue ” , ”Bin 2” = ” green ” , ”Bin 3” =

” ye l low ” , ”Bin 4” = ”black ”)

ggp lot ( ) +

geom point ( data = idea more than n ine que s t i on s , aes ( x= 1 :84 , y =

cal scores chi unique dataACE IDEA , c o l o r=”Chi ” ) ) +

geom point ( data = idea more than n ine que s t i on s , aes ( x = 1 :84 , y =

cal scores bin unique dataACE IDEA , c o l o r = ”Bin 1”)) +

geom point ( data = idea more than n ine que s t i on s , aes ( x=1:84 , y =

cal scores bin2 unique dataACE IDEA , c o l o r = ”Bin 2”)) +
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geom point ( data = idea more than n ine que s t i on s , aes ( x=1:84 , y =

cal scores bin3 unique dataACE IDEA , c o l o r = ”Bin 3”)) +

geom point ( data = idea more than n ine que s t i on s , aes ( x=1:84 , y =

cal scores bin4 unique dataACE IDEA , c o l o r = ”Bin 4”)) +

labs (x = ”Expert ” ,

y = ”Ca l i b ra t i on s co r e ” ,

c o l o r = ”Cal s co r e ”) +

sca l e c o l o r manua l ( va lue s = co l o r s 2 )

c a l s c o r e s ch i un i qu e da t aS IPS = c ( )

f o r ( j in 1 : l ength ( un ique expert s dataSIPS ) )

{
n = compute n i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) )

s = compute s i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) , outcomes ( experts dataSIPS , r e a l i z a t i on s da taS IPS , j ) )

c a l s c o r e s ch i un i qu e da t aS IPS = append ( ca l s c o r e s ch i un i que da taS IPS ,

c a l i b r a t i o n c h i ( s , n ) )

}

ca l s c o r e s b i n un ique da taS IPS = c ( )

f o r ( j in 1 : l ength ( un ique expert s dataSIPS ) )

{
n = compute n i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) )

s = compute s i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) , outcomes ( experts dataSIPS , r e a l i z a t i on s da taS IPS , j ) )

c a l s c o r e s b i n un ique da taS IPS = append ( ca l s co r e s b in un ique da taS IPS ,

c a l i b r a t i o n b i n s imu l a t i o n s ( s , n ) )

}

ca l s c o r e s b in2 un ique da taS IPS = c ( )

f o r ( j in 1 : l ength ( un ique expert s dataSIPS ) )

{
n = compute n i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,
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answers dataSIPS , j ) )

s = compute s i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) , outcomes ( experts dataSIPS , r e a l i z a t i on s da taS IPS , j ) )

c a l s c o r e s b in2 un ique da taS IPS = append ( ca l s co r e s b in2 un ique da taS IPS ,

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( s , n ) )

}

ca l s c o r e s b in3 un ique da taS IPS = c ( )

f o r ( j in 1 : l ength ( un ique expert s dataSIPS ) )

{
n = compute n i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) )

s = compute s i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) , outcomes ( experts dataSIPS , r e a l i z a t i on s da taS IPS , j ) )

c a l s c o r e s b in3 un ique da taS IPS = append ( ca l s co r e s b in3 un ique da taS IPS ,

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( s , n ) )

}

ca l s c o r e s b in4 un ique da taS IPS = c ( )

f o r ( j in 1 : l ength ( un ique expert s dataSIPS ) )

{
n = compute n i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) )

s = compute s i ( exp to b in ( experts dataSIPS , quest ions dataSIPS ,

answers dataSIPS , j ) , outcomes ( experts dataSIPS , r e a l i z a t i on s da taS IPS , j ) )

c a l s c o r e s b in4 un ique da taS IPS = append ( ca l s co r e s b in4 un ique da taS IPS ,

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( s , n ) )

}

data3 <− data . frame (

expert = unique experts dataSIPS ,

ch i = ca l s c o r e s ch i un i que da taS IPS ,

bin = ca l s co r e s b in un ique da taS IPS ,

bin2 = ca l s co r e s b in2 un ique da taS IPS ,

bin3 = ca l s co r e s b in3 un ique da taS IPS ,

bin4 = ca l s c o r e s b in4 un ique da taS IPS
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)

exp quest ions dataSIPS<−sapply ( 1 : l ength ( un ique expert s dataSIPS ) , f unc t i on (x )

l ength ( which ( experts dataSIPS==(unique expert s dataSIPS [ x ] ) ) ) )

c a l i b r s c o r e s da taS IPS<−cbind ( unique experts dataSIPS , exp quest ions dataSIPS ,

c a l s c o r e s ch i un i que da taS IPS , ca l s co r e s b in un ique da taS IPS ,

ca l s co r e s b in2 un ique da taS IPS , ca l s co r e s b in3 un ique da taS IPS ,

c a l s c o r e s b in4 un ique da taS IPS )

h i s t ( data3$chi , y lab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data3$bin , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data3$bin2 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data3$bin3 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

h i s t ( data3$bin4 , ylab=”Ca l i b ra t i on s c o r e s ” , xlab=”Ind i v i dua l expe r t s ” , main=””)

ggp lot ( ) +

geom l ine ( data = data3 , aes ( x = expert , y = ch i ) , c o l o r = ” red ”) +

geom point ( data = data3 , aes ( x = expert , y = ch i ) , c o l o r = ” red ”) +

geom l ine ( data = data3 , aes ( x = expert , y = bin ) , c o l o r = ”blue ”) +

geom point ( data = data3 , aes ( x = expert , y = bin ) , c o l o r = ”blue ”) +

geom l ine ( data = data3 , aes ( x = expert , y = bin2 ) , c o l o r = ” green ”) +

geom point ( data = data3 , aes ( x = expert , y = bin2 ) , c o l o r = ” green ”) +

geom l ine ( data = data3 , aes ( x = expert , y = bin3 ) , c o l o r = ” ye l low ”) +

geom point ( data = data3 , aes ( x = expert , y = bin3 ) , c o l o r = ” ye l low ”) +

geom l ine ( data = data3 , aes ( x = expert , y = bin4 ) , c o l o r = ”black ”) +

geom point ( data = data3 , aes ( x = expert , y = bin4 ) , c o l o r = ” black ”) +

xlab ( ’ expert ’ ) +

ylab ( ’ c a l i b r a t i o n score ’ )

ggp lot ( ) +

geom l ine ( data = data3 , aes ( x = expert , y = chi , c o l o r=”red ”) ) +

geom point ( data = data3 , aes ( x = expert , y = chi , c o l o r= ” red ”) ) +
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geom l ine ( data = data3 , aes ( x = expert , y = bin , c o l o r = ”blue ”) ) +

geom point ( data = data3 , aes ( x = expert , y = bin , c o l o r = ”blue ” ) ) +

geom l ine ( data = data3 , aes ( x = expert , y = bin2 , c o l o r = ” green ”) ) +

geom point ( data = data3 , aes ( x = expert , y = bin2 , c o l o r = ” green ”) ) +

geom l ine ( data = data3 , aes ( x = expert , y = bin3 , c o l o r = ” ye l low ”) ) +

geom point ( data = data3 , aes ( x = expert , y = bin3 , c o l o r = ” ye l low ”) ) +

geom l ine ( data = data3 , aes ( x = expert , y = bin4 , c o l o r = ”black ”) ) +

geom point ( data = data3 , aes ( x = expert , y = bin4 , c o l o r = ” black ”) ) +

xlab ( ’ expert ’ ) +

ylab ( ’ c a l i b r a t i o n score ’ )

ggp lot ( ) +

geom l ine ( data = data3 , aes ( x = expert , y = chi , c o l o r=”red ”) , c o l o r=”red ”) +

geom point ( data = data3 , aes ( x = expert , y = chi , c o l o r= ” red ”) , c o l o r=”red ”) +

geom l ine ( data = data3 , aes ( x = expert , y = bin , c o l o r = ”blue ”) ) +

geom point ( data = data3 , aes ( x = expert , y = bin , c o l o r = ”blue ” ) ) +

geom l ine ( data = data3 , aes ( x = expert , y = bin2 , c o l o r = ” green ”) ) +

geom point ( data = data3 , aes ( x = expert , y = bin2 , c o l o r = ” green ”) ) +

geom l ine ( data = data3 , aes ( x = expert , y = bin3 , c o l o r = ” ye l low ”) ) +

geom point ( data = data3 , aes ( x = expert , y = bin3 , c o l o r = ” ye l low ”) ) +

geom l ine ( data = data3 , aes ( x = expert , y = bin4 , c o l o r = ”black ”) ) +

geom point ( data = data3 , aes ( x = expert , y = bin4 , c o l o r = ” black ”) ) +

xlab ( ’ expert ’ ) +

ylab ( ’ c a l i b r a t i o n score ’ )

c o l o r s 3 = c (”Chi” = ” red ” , ”Bin 1” = ”blue ” , ”Bin 2” = ” green ” , ”Bin 3” =

” ye l low ” , ”Bin 4” = ”black ”)

ggp lot ( ) +

geom point ( data = data3 , aes ( x = expert , y = chi , c o l o r=”Chi ” ) ) +

geom point ( data = data3 , aes ( x = expert , y = bin , c o l o r = ”Bin 1”)) +

geom point ( data = data3 , aes ( x = expert , y = bin2 , c o l o r = ”Bin 2”)) +

geom point ( data = data3 , aes ( x = expert , y = bin3 , c o l o r = ”Bin 3”)) +

geom point ( data = data3 , aes ( x = expert , y = bin4 , c o l o r = ”Bin 4”)) +
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l ab s ( x = ”Expert id ” ,

y = ”Ca l i b ra t i on s co r e ” ,

c o l o r = ”Cal s co r e ”) +

sca l e c o l o r manua l ( va lue s = co l o r s 3 )

#ggp3 legend <− ge t l e g end ( ggp3 )

#gr id . newpage ( )

#gr id . draw ( ggp3 legend )

c a l s c o r e s c h i un i qu e IG4y e a r s = c ( )

f o r ( j in 1 : l ength ( un ique exper t s IG4year s ) )

{
n = compute n i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) )

s = compute s i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) , outcomes ( expert s IG4years , r e a l i z a t i o n s IG4yea r s , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)

c a l s c o r e s c h i un i qu e IG4y e a r s = append ( c a l s c o r e s ch i un i qu e IG4yea r s ,

c a l i b r a t i o n c h i ( s , n ) )

}

c a l s c o r e s b i n un i qu e IG4yea r s = c ( )

f o r ( j in 1 : l ength ( un ique exper t s IG4year s ) )

{
n = compute n i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) )

s = compute s i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) , outcomes ( expert s IG4years , r e a l i z a t i o n s IG4yea r s , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)
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c a l s c o r e s b i n un i qu e IG4yea r s = append ( ca l s c o r e s b i n un i que IG4yea r s , c a l i b r a t i o n b i n s imu l a t i o n s ( s , n ) )

}

c a l s c o r e s b i n 2 un i qu e IG4yea r s = c ( )

f o r ( j in 1 : l ength ( un ique exper t s IG4year s ) )

{
n = compute n i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) )

s = compute s i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) , outcomes ( expert s IG4years , r e a l i z a t i o n s IG4yea r s , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)

c a l s c o r e s b i n 2 un i qu e IG4yea r s = append ( ca l s c o r e s b i n2 un i que IG4yea r s ,

c a l i b r a t i o n b i n s imu l a t i o n s 2 ( s , n ) )

}

c a l s c o r e s b i n 3 un i qu e IG4yea r s = c ( )

f o r ( j in 1 : l ength ( un ique exper t s IG4year s ) )

{
n = compute n i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) )

s = compute s i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) , outcomes ( expert s IG4years , r e a l i z a t i o n s IG4yea r s , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)

c a l s c o r e s b i n 3 un i qu e IG4yea r s = append ( ca l s c o r e s b i n3 un i que IG4yea r s ,

c a l i b r a t i o n b i n s imu l a t i o n s 3 ( s , n ) )

}

c a l s c o r e s b i n 4 un i qu e IG4yea r s = c ( )

f o r ( j in 1 : l ength ( un ique exper t s IG4year s ) )

{
n = compute n i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) )
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s = compute s i ( exp to b in ( experts IG4years , ques t ions IG4years ,

answers IG4years , j ) , outcomes ( expert s IG4years , r e a l i z a t i o n s IG4yea r s , j ) )

#pr in t (n)

#pr in t ( s )

#pr in t (””)

c a l s c o r e s b i n 4 un i qu e IG4yea r s = append ( ca l s c o r e s b i n4 un i que IG4yea r s ,

c a l i b r a t i o n b i n s imu l a t i o n s 4 ( s , n ) )

}

data4 <− data . frame (

expert = unique expert s IG4years ,

ch i = ca l s c o r e s ch i un i qu e IG4yea r s ,

bin = ca l s c o r e s b i n un i que IG4yea r s ,

bin2 = ca l s c o r e s b i n2 un i que IG4yea r s ,

bin3 = ca l s c o r e s b i n3 un i que IG4yea r s ,

bin4 = ca l s c o r e s b i n 4 un i qu e IG4yea r s

)

ggp lot ( ) +

geom l ine ( data = data4 , aes ( x = expert , y = ch i ) , c o l o r = ” red ”) +

geom point ( data = data4 , aes ( x = expert , y = ch i ) , c o l o r = ” red ”) +

geom l ine ( data = data4 , aes ( x = expert , y = bin ) , c o l o r = ”blue ”) +

geom point ( data = data4 , aes ( x = expert , y = bin ) , c o l o r = ”blue ”) +

geom l ine ( data = data4 , aes ( x = expert , y = bin2 ) , c o l o r = ” green ”) +

geom point ( data = data4 , aes ( x = expert , y = bin2 ) , c o l o r = ” green ”) +

geom l ine ( data = data4 , aes ( x = expert , y = bin3 ) , c o l o r = ” ye l low ”) +

geom point ( data = data4 , aes ( x = expert , y = bin3 ) , c o l o r = ” ye l low ”) +

geom l ine ( data = data4 , aes ( x = expert , y = bin4 ) , c o l o r = ”black ”) +

geom point ( data = data4 , aes ( x = expert , y = bin4 ) , c o l o r = ” black ”) +

xlab ( ’ expert ’ ) +

ylab ( ’ c a l i b r a t i o n score ’ )
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D R code used in appendices A and B

This code was used for (Hanea and Nane, 2019) and no adjustments were

made.

### Function to get the exact d i s t r i b u t i o n o f the binomial sum of ni , p i

#n i s a vec to r n=(n 1 , n 2 , . . . , n k ) and p=(p 1 , p 2 , . . . , p k )

get . exact . binsum = func t i on (n , p)

{
### Declare a matrix o f working space , i n i t i a l i z e a l l va lue s to zero .

### The i t h row o f Psum i s the d i s t r i b u t i o n o f the sum of the f i r s t

### i b inomia l s .

### Psum [ i , j ] = Prob ( X1 + . . . + Xi = j −1)

Psum = matrix (0 , nrow=length (n ) , nco l=sum(n)+1)

### Star t by g e t t i n g the d i s t r i b u t i o n o f the f i r s t b inomial

### i = 1 imp l i c i t l y

f o r ( j in 1 : ( n [ 1 ]+1) )

{
Psum[ 1 , j ] = dbinom( j −1, s i z e=n [ 1 ] , prob=p [ 1 ] )

}

### For i = 2 , . . . | i | , get the d i s t r i b u t i o n o f the i t h p a r t i a l

###sum by convo lut ion

f o r ( i in 2 : l ength (n ) )

{
### Prob ( X1 + . . . + X1 > n1 + . . . + ni ) = 0

nso f a r = sum(n [ 1 : i ] )

### For each value j . . .

f o r ( j in 1 : ( n so f a r +1))

{
# Prob (X+Y = j ) = sum k ( Prob ( X = j−k ) ∗ Prob ( Y = k ) )

Psum [ i , j ] = sum(Psum [ i −1 ,1: j ]

∗ dbinom ( ( j :1)−1 , s i z e=n [ i ] , prob=p [ i ] ) )

}
}
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### Return the d i s t r i b u t i o n o f | i | th p a r t i a l sum , which

###i s the d i s t r i b u t i o n o f the complete sum .

output . pdf = Psum [ l ength (n ) , ]

output . cd f = cumsum( output . pdf )

output . s = 0 : sum(n)

output = data . frame ( s = output . s , pdf = output . pdf , cd f = output . cd f )

re turn ( output )
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