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Abstract
Understanding the impact of fractures on fluid flow is fundamental for developing geoen-
ergy reservoirs. Pressure transient analysis could play a key role for fracture characteriza-
tion purposes if better links can be established between the pressure derivative responses 
(p′) and the fracture properties. However, pressure transient analysis is particularly chal-
lenging in the presence of fractures because they can manifest themselves in many different 
p′ curves. In this work, we aim to provide a proof-of-concept machine learning approach 
that allows us to effectively handle the diversity in fracture-related p′ curves by automat-
ically classifying them and identifying the characteristic fracture patterns. We created a 
synthetic dataset from numerical simulation that comprised 2560 p′ curves that represent a 
wide range of fracture network properties. We developed an unsupervised machine learn-
ing approach that can distinguish the temporal variations in the p′ curves by combining 
dynamic time warping with k-medoids clustering. Our results suggest that the approach 
is effective at recognizing similar shapes in the p′ curves if the second pressure deriva-
tives are used as the classification variable. Our analysis indicated that 12 clusters were 
appropriate to describe the full collection of p′ curves in this particular dataset. The clas-
sification exercise also allowed us to identify the key geological features that influence the 
p′ curves in this particular dataset, namely (1) the distance from the wellbore to the clos-
est fracture(s), (2) the local/global fracture connectivity, and (3) the local/global fracture 
intensity. With additional training data to account for a broader range of fracture network 
properties, the proposed classification method could be expanded to other naturally frac-
tured reservoirs and eventually serve as an interpretation framework for understanding how 
complex fracture network properties impact pressure transient behaviour.
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Article Highlights

• Detailed characterization of naturally fractured geoenergy reservoirs using pressure 
transient analysis.

• Proof-of-concept workflow that identifies the characteristic pressure derivative 
responses using machine learning.

• Identification of key geological controls on pressure derivative responses in naturally 
fractured geoenergy reservoirs.

Keywords Fractured reservoirs · Machine learning · Well tests · Classification

1 Introduction

The characterization of fractures is fundamental for assessing geoenergy reservoirs (i.e., 
geothermal,  CO2 storage, or hydrocarbon reservoirs) as they can control fluid flow in geo-
logical formations. Pressure transient analysis (PTA), which is based on the study of the 
evolution of the fluid pressure in a well during injection or withdrawal periods, could pro-
vide key information for estimating properties of naturally fractured reservoirs (NFRs) 
if the links between the fractures and the pressure derivative responses (p′) are properly 
understood. These p′ curves (hereafter simply referred to as p′) represent a magnified pic-
ture of the variation of pressure with time, which in the context of NFRs are a function of 
fracture (e.g., aperture, length, intensity, and connectivity) and matrix properties.

Barenblatt et al. (1960) developed the standard analytical model for PTA in NFRs (later 
introduced to the western literature by Warren and Root 1963). The most prominent feature 
of this model is the concave-up inflection (the so-called “v-shape”) in p′, which has been 
largely regarded as the key diagnostic of NFRs. However, Kuchuk and Biryukov (2014) 
noted that this v-shape signature rarely appears in real well tests.

Different studies (e.g., Kuchuk and Biryukov 2013, 2014; Egya et al. 2019) have dem-
onstrated that the assumptions behind the Warren and Root model (1963) and similar mod-
els (e.g., de Swaan 1976; Gringarten 1984; Streltsova 1983) are too restrictive for repre-
senting common features inherent to many real fracture systems. That is, NFRs that do 
not conform to the underlying assumptions of dual-porosity models (e.g., fractures are 
disconnected or only partially connected, fracture apertures vary, fracture densities are 
non-uniform across the volume of investigation, wells are connected to the matrix not the 
fractures) could result in p′ that are significantly different to the one suggested by War-
ren and Root (1963). In addition, the pressure transient behaviour obtained from dynamic 
tests reflects weighted averages of the reservoir properties within specific reservoir zones 
(Oliver 1990), which means that p′ may vary not only as a function of the global fracture 
properties but also the local fracture characteristics. Considering that numerous possible 
fracture topologies and internal characteristics exist in nature, it is obvious that p′ can vary 
widely from one case to another.

Two important challenges are encountered when performing PTA in NFRs. First, it 
can be difficult to associate p′ with the presence of fractures as the characteristic v-shape 
that has traditionally been used to infer fracture properties fails to represent many NFRs. 
It is not known what other p′ could provide a better diagnostic tool in these situations. 
Kuchuk and Biryukov (2013, 2014) used semianalytical solutions to investigate the 
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pressure transient behaviour of continuously and discretely fractured reservoirs. Egya et al. 
(2019) used numerical simulation to investigate p′ for different NFRs with varying proper-
ties (e.g., fracture conductivity, fracture skin, fracture connectivity, matrix permeability). 
While these studies have substantially advanced our understanding of PTA in NFR, they 
are mostly based on a small number of fracture network geometries (e.g., fully connected 
or fully disconnected fracture networks, periodically spaced fractures, constant fracture 
apertures, etc.) and hence do not comprehensively classify the different forms p′ can take 
and link them back to the properties of the fractures. Second, the actual range of variability 
of p′ in NFRs is unknown but expected to be large. If an effective classification scheme 
could be developed, it would facilitate identifying general patterns in p′ that can be used to 
infer the characteristics of the fracture networks.

In this study we present a proof-of-concept workflow that aims to address these two 
challenges. The method presented in this paper allows us to handle large samples of p′ and 
classify them based the similarities of the shapes of p′, which is key because the shape of 
p′ is used is used as a visual indicator to find suitable models for well test interpretation. 
We show that the proposed method yields consistent results that link p′ to the underlying 
fracture networks characteristics, thus providing a more robust NFRs diagnosis tool and 
interpretation framework compared to conventional PTA for NFRs (e.g., using Warren and 
Root 1963). We note, however, that this proof-of-concept study is limited with respect to 
the range of fracture and fluid properties in our training dataset and hence not a universal 
classification. For specific reservoir studies, a bespoke training dataset that captures the 
range of fracture properties that might be present in the reservoir would need to be created.

To generate a sufficiently diverse sample of p′ from NFRs to test our method, we used 
numerical simulations in the framework of geological well testing (Corbett et al. 2012). We 
resorted to numerical simulations and not to real data because we needed to know the exact 
link between the input (fracture network) and the output (p′) to analyse the consistency of 
the results. Our dataset encompassed p′ from more than 2500 individual fracture network 
geometries. Each fracture scenario was generated using a discrete fracture network (DFN) 
generator that honours strict geological rules (e.g., relationship between fracture length 
and aperture, fracture spacing, etc.) and is subject to numerical model constraints (e.g., 
the gridding requires the fracture planes to exist in specific locations). We represented all 
fractures explicitly through an appropriately refined simulation grid and avoid common 
modelling simplifications such as dual-porosity or dual-permeability models, thus provid-
ing a more reliable representation of the impact of the fractures in the observed pressure 
transient behaviour.

We used machine learning to classify the dataset of p′. Machine learning techniques 
have proven effective to analyse and classify other complex geoscience and geoenergy 
engineering applications that encounter similarly large amounts of (non-linear) data and 
high dimensionality, for example in groundwater flow modelling (e.g., Sahoo et al. 2017), 
geophysics (e.g., Ehret 2010; Köhler et al. 2010; Raiche 1991), pore-scale modelling (e.g., 
Menke et al. 2021; Wang et al. 2021), reservoir geology (e.g., Demyanov et al. 2019; Su 
et al. 2018), subsurface modelling (e.g., Pyrcz et al. 2006; Scheidt et al. 2015), uncertainty 
quantification (e.g., Caers et al. 2010; Maldonado-Cruz and Pyrcz 2021), reservoir engi-
neering (e.g., Brantson et al. 2018), or production optimization (e.g., Insuasty et al. 2015).

Specifically, we used clustering, an unsupervised machine learning method, to identify 
structures in unlabeled data (p′ ensemble) in such way that the objects within a cluster are 
more similar to each other than to objects in other clusters (Han et al. 2001). We use the 
k-medoids algorithm to identify the most centrally located p′ in each cluster and assign 
the rest of the p′ to their closest medoid. This approach allowed us to identify similar p′ 
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patterns in the p′ ensemble. We combined the k-medoids algorithm with dynamic time 
warping (DTW) to account for the different durations over which individual p′ were sam-
pled (the duration of p′ depends on the underlying fracture properties). DTW is a well-
established algorithm that estimates the similarity between two time series (Sakoe and 
Chiba 1971).

Our approach is fundamentally different to previous applications of Artificial Intelli-
gence in the field of PTA (e.g., Al-Kaabi and Lee 1990; Allain and Horne 1990; Deng et al. 
2000; Ershaghi et al. 1993; Kumoluyi et al. 1995; Sinha and Panda 1996; Sung et al. 1995). 
Previous studies focused on the automatic identification of analytical models for PTA to 
assist the well test interpretation, assuming that appropriate analytical models to represent 
real reservoirs exist. As noted above, it is increasingly well understood that the influence of 
fractures on p′ cannot always be described using analytical solutions. Morton et al. (2013) 
applied Global Sensitivity Analysis to determine the main fracture properties that govern 
the evolution of the p′ as a function of time. Their findings were used as a starting point to 
compare the results of our study.

This paper is organised as follows. Considering that this study combines aspects of frac-
tured reservoir modelling, PTA, and machine learning, we start with a brief review of each 
field to establish the key terminology and outline the main concepts used in our work. Next, 
we describe the methodology and experimental design, discuss the pertinent details of the 
DFN generator, and validate our simulation approach. Given that the k-medoids algorithm 
combined with DTW are central to our work, we also show a detailed validation of this 
algorithm. Finally, we present the proof-of-concept classification for the our p′ ensemble, 
analyse how the identified clusters represent the key behaviours observed in p′ that can be 
linked back to the characteristics of the underlying fracture network, and discuss the limita-
tions of our approach.

2  Background

2.1  Model Concepts for Fractured Reservoirs

Fracture properties, including but not limited to the fracture aperture a, fracture length Lf , 
fracture intensity I, fracture connectivity C, and fracture orientation Θ influence fluid flow 
in NFRs.

The fracture aperture a controls the permeability of an individual fracture. Assuming 
laminar flow through a fracture of length L that is bounded by smooth parallel plates, the 
relationship between flow rate Q and pressure drop Δp∕L is proportional to the cube of the 
fracture aperture a (Snow 1968)

where hf is the fracture height, µ is the fluid viscosity, Q is the flow rate, and k is the frac-
ture permeability, which can be approximated as

Equation  1 is applicable for a wide range of fracture apertures (Denetto and Kamp 
2016), with a lower limit of apertures of 2 µm (Whitherspoon et al. 1980). Most fractures 

(1)Q =
kahf

�

Δp

L
,

(2)k =
a2

12
.
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that act as conduits for fluid flow have apertures above this threshold. In this study, we 
hence assume that the cubic law (Eq. 1) is appropriate to approximate the permeability of 
the fractures.

The distribution of fracture apertures across a formation can be modelled through one of 
the following approaches (unless geomechanical simulations are used): the Barton-Bandis 
model (Barton and Bandis 1980; Barton 1982), power-law scaling (Hooker et  al. 2012, 
2014), or (sub-)linear length-aperture scaling (Lawn and Wilshaw 1975; Olson 2003). 
In this work, we use the length-aperture relationship to model fracture apertures, which 
relates L and a as

where � is a constant that depends on the geomechanical characteristics of the host rock 
and the exponent β controls the (non-)linear scaling (Scholz 2010, 2011; Olson 2003).

The fracture length L therefore influences the effective reservoir permeability k (Narr 
et  al. 2006), not only because long fractures carry fluids across long distances, but also 
because of the relationship between the L and a (Eq. 3). The distribution of L in a reservoir 
typically has an exponential form or follows a truncated power law (Gillespie et al. 1993; 
Marrett 1997), the latter takes the form

where F is the inverse cumulative probability density function and � represents the slope of 
the distribution.

The fracture intensity I quantifies the degree of fracturing on a given area Λ according 
to

where N is the total number of fractures that exist within Λ. The fracture spacing � (i.e., the 
spatial distribution of the fractures across Λ) commonly follows a log-normal probability 
density function (Narr and Suppe 1991). That is, the fractures tend to cluster into closely-
spaced groups separated by relatively unfractured rock (Narr et al. 2006). This geological 
observation is important at the scale of conventional well tests as the existence of clusters 
of fractures can affect the pressure response in a distinctive manner as compared to more 
scattered fractures.

The parameter I is related to the fracture connectivity C, which can be computed as

where J is the total number of fractures intersections. Especially in fractured reservoirs 
with low matrix permeability, I and C control the overall impact of the fractures on fluid 
flow (Bisdom 2016).

The fracture orientation Θ also controls fluid flow because different fracture sets may 
have different intrinsic fracture properties (e.g., a or L) and because Θ impacts in C.

The interplay between a, I, L, and Θ ultimately governs the nature of the fractured res-
ervoirs and determines the appropriate model concept to represent the fracture system. 
Kuchuk and Biryukov (2015) proposed four categories for fractured reservoirs:

(3)a = � ∗ L� ,

(4)F(L) =

(
L

Lmin

)�

,

(5)I =

∑N

i=1
L

Λ
,

(6)C =
J

Λ ∗ N
,
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Category I. Continuously fractured reservoirs;
Category II. Discretely fractured reservoirs;
Category III. Compartmentalized faulted reservoirs;
Category IV. Unconventional fractured basement reservoirs.

This classification scheme is convenient as it is linked to the topology of the fracture 
system. Here, we consider categories I and II as we assume networks of naturally occur-
ring fractures in a low-permeability matrix. We did not differentiate explicitly between 
these categories; instead, we created fracture network samples with I ranging from scat-
tered (discretely fractured) to heavily fractured systems (continuously fractured).

Different model concepts exist to simulate fluid flow through fractures and fracture 
networks. Berre et al. (2018) summarised these model concepts as implicit fracture rep-
resentation (single-continuum and multi-continuum models) and explicit fracture rep-
resentation. The aforementioned Warren and Root (1963) model is an example of an 
implicit multi-continuum model where the fractures are upscaled to a secondary contin-
uum that interacts with the primary continuum (the rock matrix) via transfer functions. 
As mentioned previously, we use an explicit representation of the fractures in order to 
avoid the simplifications normally required for implicit methods. We employ a commer-
cial finite-difference simulator to model flow through the matrix and fractures by solv-
ing the pressure diffusion equation for slightly compressible single-phase flow

where φ is the porosity, q is a source/sink term (i.e., the flow rate at the well), p is the pres-
sure, ρ is the fluid density, and k is the spatially varying permeability tensor. Depending 
on whether a grid cell represents a matrix block or a fracture, a fixed matrix permeability 
or a fracture permeability corresponding to the given fracture aperture (Eq. 2) is assigned 
to this grid block. The simulator that we use discretises Eq. 7 in space using a finite differ-
ences scheme with two-point flux approximation and upstream weighting and in time using 
a fully implicit scheme.

2.2  Clustering

Clustering identifies structures in unlabeled datasets by automatically organizing data 
into groups where the within-group similarity and the between-group dissimilarity are 
maximized (Liao 2005). We applied the k-medoids clustering algorithm. The k-medoids 
method is closely related to the well-known k-means method, with the difference that in 
k-medoids a member of the population—the most centrally located one, known as the 
medoid—is used to represent the cluster, as opposed to k-means where the centroid is 
obtained through averaging of the cluster members. This is a desirable feature for clus-
tering p′ as it is impossible to ensure that an average p′ could be linked to geologically 
consistent fracture geometries.

K-medoids clustering can be described as follows (e.g., Park and Jun 2009). 
Let R =

{
R1,R2,… ,Rn

}
 denote a set of n objects, Ru =

{
ru1, ru2,… , rum

}
 be the 

uth ( 1 ≤ u ≤ n ) data element with m attributes, and c be the number of clusters. The 
k-medoid algorithm minimizes the objective function O given by

(7)
�(��)

�p
= ∇ ⋅

[
�k

�
∇p

]
+ q�,
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where Mz is the medoid of cluster z, nz is the number of data elements in R assigned to 
cluster z, and d is a generic expression to measure the similarity between data elements. In 
this study, R represents the ensemble of p′ obtained from the simulation of drawdown tests. 
The parameter m represents the total number of pressure derivative points in the ith simula-
tion run.

For the minimization of O, we applied the partitioning around medoids algorithm 
(PAM) (Kaufman and Rousseeuw 1990), which is considered a robust solution to the 
high computational cost of k-medoids clustering (Park and Jun 2009). The iterative PAM 
method is based on the following steps:

1. Initialization: The number of clusters c(2 ≤ c ≤ n) and the tolerance ε for the minimiza-
tion process are selected. The initial cluster medoids Mz are assigned arbitrarily.

2. Cluster assignment: The data elements Ru are assigned to their closest cluster medoid 
Mz based on the selected distance measure d.

3. Medoids update: New medoids Mz are calculated as the data elements that minimize the 
distance to other elements in their respective clusters.

4. Steps 2 and 3 are repeated until Ol − Ol+1 ≤ � or the maximum number of iterations lmax 
is reached; l is the iteration counter.

The initialization step includes two key challenges: (1) selecting the most appropriate 
number of clusters and (2) randomly initializing the clusters. A fundamental problem in 
cluster analysis is the appropriate determination of the number of clusters (Cao et al. 2010). 
We used the elbow method to estimate the threshold for which the decrease in the objective 
function with every iteration becomes negligibly small. The random initialization of the 
clusters can lead to local instead of global optima and can hence directly impact the quality 
of the clusters (Gupta et al. 1999). We overcame this issue by randomly initializing every 
clustering task ten times and compared the results. Park and Jun (2009) suggested that ran-
dom initializations of the clusters lead to similar convergence rates compared to more sys-
tematic approaches where the initial cluster medoids are selected based on specific criteria 
(e.g., the outmost objects or the preliminary clustering based on subsets of the population). 
Recently, Schubert and Rousseeuw (2019) showed that the PAM algorithm can be acceler-
ated, which is particularly beneficial for large datasets. Since our dataset is comparatively 
small, we use the conventional PAM algorithm and obtain results in less than 30 min using 
a standard desktop PC.

One challenge in the context of classifying p′ is that the k-medoids method is 
designed to be applied to static data. However, certain adaptations can improve its per-
formance for time series clustering. Liao (2005) recommended to replace the distance/
similarity measure for static data with an appropriate measure for time series. As noted 
above, DTW is a commonly used similarity measure for classifying time series (Ding 
et  al. 2008; Ye and Keogh 2009). Sakoe and Chiba (1971, 1978) developed the con-
cept of DTW for speech recognition applications. Berndt and Clifford (1994) applied 
DTW to time series classification domain. Today, DTW is regarded as the most robust 
distance measure for comparing time series signals (Rakthanmanon et al. 2012). DTW 
finds the optimal alignment (or coupling) between two sequences of numerical values 
and therefore captures similarities by aligning the coordinates inside both sequences 

(8)O =

c∑

z=1

nz∑

i=1

d
(
Ruz,Mz

)
,
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(Petitjean et al. 2011). This concept is illustrated in Fig. 1. In simple terms, DTW is a 
distance measure that accounts for the relative shape of the time series.

More formally, DTW aligns the time series Rx =
{
rx1, rx2,… , rxi,… , rxv

}
 and 

Ry =
{
ry1, ry2, … , ryj,… ryg

}
 so that their difference is minimized. For this pur-

pose, a matrix A(v × g) is constructed, where the (i, j) element contains the distance d
(rxi, ryj)—usually the Euclidean distance—between points rxi and ryj . A warping path 
S =

{
s1, s2,… sh,… sH

}
 , where max (v, g) ≤ H ≤ v + g − 1 , is defined as a sub-set of ele-

ments of A that satisfies the following three constraints (Liao 2005). First, each element 
belongs to adjacent cells (continuity). Second, the points are monotonically spaced. 
Third, the warping path starts and finishes in diagonally opposite corners of A. That is, 
s1 = (1, 1) and sH = (v, g) . The best possible alignment between pairs of time series is 
the warping path S that minimizes dDTW , which is given by

The warping path in A can be constrained within a specified window |i − (v∕(g∕j))| < w , 
where w is a positive integer that reflects the window width. The parameter w is key to 
avoid forced alignments where a single point in one time series maps onto a large subsec-
tion of another time series, which results in a singularity (Keogh and Pazzani 2001). The 
impact of w on the clustering of p′ will be explored later.

3  Methodology

Figure  2 outlines the workflow utilized in this work. Step 1 is the generation of the 
DFN ensemble, which aims to cover a wide range of fracture network geometries. Step 
2 is the numerical generation of the ensemble of over 2500 p′, which provides the data 
used to classify the pressure transient behaviour for the different NFRs. Step 3 is the 
configuration and application of the clustering method to classify the p′ obtained in 
Step 2.

(9)dDTW =

∑H

h=1
sh

H
.

Fig. 1  Illustration of time series alignment using DTW (modified after Dau et al. 2016). G and V are time 
series; the light grey lines represent the mapping of points in G onto V (left). Matrix representation of the 
mapping (alignment) of time series G onto V (right)
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3.1  DFN Models

The DFN models were created using a DFN generator designed specifically for this study. 
The DFN generator is written in MATLAB and available as open access (Freites et  al. 
2022). The DFN generator creates stochastic realisations of fracture distributions follow-
ing a series of geological constraints derived from outcrop observations by Bisdom (2016). 
The reasons for developing this fit-for-purpose DFN generator rather than using options 
available in commercial or academic packages are twofold: First, our DFN generator offers 
more flexibility to represent the relationships of the fracture network parameters L, a, I, and 
� . Second, our DFN generator allows us to adapt the projection of the fractures in space to 
ensure compatibility with the structured grids used in the numerical simulations.

A fundamental assumption of our DFN generator is that the fractures are bed-bound, 
sub-vertical, and with limited extent in the vertical direction and therefore gravity effects 
are negligibly small. Hence, the resulting DFN can be modelled in 2D. We also assumed 
that the fractures are organized in two orthogonal fracture sets (x- and y-directions). The 
reason for such assumption is related to the simulation grid rather than to a particular geo-
logical reason. The explicit representation of non-orthogonal fractures would require com-
plex unstructured grids and/or more complex numerical algorithms (e.g., embedded dis-
crete fracture methods), which typically require longer simulation times. As we aimed to 
minimize the amount of numerical artefacts that could be introduced in the simulations and 
relied on a standard commercial simulator, we used a structured grid that provided simula-
tion results in manageable CPU time, which is key considering the large number of cases 
that we had to run. More details about the simulation grid are presented in the following 
subsection.

The DFN generator creates stochastic realisations of fracture distributions. It requires 
four input parameters, the fracture intensities Ix and Iy and the minimum fracture lengths 
Lxmin

 and Lymin
 . As noted above, the constraints for these parameters come from the data ana-

lysed by Bisdom (2016) for outcrop analogues for fractured reservoirs. The fracture inten-
sity I is used to constraint the amount of fracture planes that the DFN generator creates 
to complete each directional fracture set. Lmin is used to generate the probability density 
function from Eq. 4 by sampling L for the individual fracture planes. Figure 3 presents an 
example of the resulting probability density function L for the case where Lmin = 2 m and 

Fig. 2  Summary of the workflow used to generate the ensemble of p′ curves to classify the transient pres-
sure behaviour and fracture network characteristics across a range of geologically consistent NFRs
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� = −1.5 , which are similar values to those observed by Bisdom (2016) in a range of out-
crop studies.

We specified � = 0.5 (sub-linear fracture aperture-length relationship) and � = 0.0001 in 
Eq. 3 to calculate a. We model the spatial distribution of the fractures using a log-normal 
probability density function with a mean fracture distance of 125 m and standard deviation 
of 200 m (Fig. 3). These values were chosen because they yield fracture sets with distin-
guishable groupings along corridors at the scale of our study (1 km × 1 km), while also 
providing a large numbers of fractures that are spaced between 5 and 20 m. The resulting 
values for L and � are also similar to those observed by Bisdom (2016).

The DFN generator executes the following steps to create a fracture set in the x- and 
y-directions (here the steps for the fracture set in the x-direction are explained, the proce-
dure for the y-direction is analogous):

1. A random number is sampled from a uniform distribution within the coordinate limit 
of the y-axis. This number represents the reference for spacing the fractures in the 
y-direction.

2. The y-coordinate of a new fracture is defined by sampling a number (i.e., distance) from 
the appropriate probability density function (see Fig. 3) and positioning this coordinate 
relative to the reference point defined in Step 1. The x-coordinate of this fracture is 
defined randomly within the limits of the y-axis.

3. L for this new fracture is defined by sampling Eq. 4 and the corresponding value of a is 
calculated from Eq. 3.

4. A collision test is performed to detect whether the new fracture is superimposed on an 
existing fracture. If the test is positive, Steps 2 and 3 are repeated until the new fracture 
does not overlap with an existing fracture.

5. Steps 2–4 are repeated until the desired Ix is reached.

In order to sample a wide range of fracture network models, i.e., fracture networks 
ranging from slightly fractured (scattered fractures) to moderately fractured, we used a 

Fig. 3  Probability density function used by the DFN Generator for sampling the fracture lengths L using 
Lmin = 2 m and � = −1.5 (left) and probability density function for defining the spatial position of the frac-
tures using an average distance from the reference point of 125 m and standard deviation of 200 m (right)
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four-level full factorial design of experiments for the input parameters Ix,Iy,Imin x,Imin y . The 
chosen values for these parameters are listed in Table 1. We emphasise that these param-
eters do not encompass the full range of fracture network properties encountered in nature 
but still provide a dataset with sufficient variability in the resulting p′.

The lower bound of I is close to the limit observed by Bisdom (2016) for fracture zones 
with limited fracture occurrence. The upper bound I is related to limitations of the grid 
structure in the numerical simulations. As will be discussed below, the minimum separa-
tion between two parallel fractures is set to 2 m. If I values larger than 0.25 are selected, 
the DFN generator has difficulties placing new fractures on the grid. Similarly, the lower 
bound for Lmin is limited by the grid structure in the numerical simulations. The upper 
bound for Lmin was constrained by the shape of the probability density function to favour 
the generation of a significant number of long fractures, which could potentially span the 
limits of the model.

The full factorial design of experiments yielded 256 combinations of input parameters. 
To minimize bias caused by the stochastic nature of the DFN generation process, we cre-
ated ten equiprobably realisations for each of the 256 parameter combinations, resulting 
in R = 2560 DFN models. Illustrative examples of the resulting fracture architectures are 
shown in Fig. 4.

Table 1  Input parameters and 
values used to generate the 
fracture networks

Parameter Values

Fracture intensity Ix, Iy 0.03125, 
0.0625, 
0.125, 0.25

Minimum fracture length Lmin x,Lmin y 2, 6, 12, 24 m

Fig. 4  Illustrative examples of the DFN models generated for different fracture network input param-
eters: Lmin x = 2  m, Lmin y = 2  m, Ix = 0.0312   m−1, and Iy = 0.03125   m−1 (left), Lmin x = 2  m, Lmin y = 2  m, 
Ix = 0.0312   m−1, and Iy = 0.0625   m−1 (centre) and Lmin x = 2  m, Lmin y = 2  m, Ix = 0.156   m−1 and 
Iy = 0.125   m−1 (right). The red lines represent the fracture set oriented parallel to the x-direction and the 
blue lines the fracture set oriented parallel to the y-direction
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3.2  Numerical Simulations to Compute p′ Curves

We performed numerical simulations to generate a synthetic p′ for each of the 2560 DFN mod-
els. As noted above, the fracture geometry is 2D based on the assumption that the fractures are 
bed-bound, sub-vertical and their vertical extent is limited. The simulation model therefore 
employed a 2D grid as well. We also assumed that the fractures were placed symmetrically 
along the x-axis so we only modelled half of the x-axis domain. This grid is designed to rep-
resent the fractures explicitly without having an excessively large number of grid cells such 
that each simulation could be run in an acceptable time on a standard desktop PC (i.e., 2–4 h 
per run). For this purpose, coarse cells with dimensions of 2 m × 2 m were intertwined with 
finer cells with dimensions of 0.05 m × 0.05 m (Fig. 5). A coarse cell only represents a matrix 
block. A fine cell represents either a matrix block or a fracture, depending on whether or not a 
fracture plane intersects this cell. If a fracture plane intersects a fine cell, this cell inherits the 
properties of the fracture (φ, k, and fracture compressibility γ). If no fracture plane intersects 
this cell, the matrix properties are assigned to it. A typical fine grid cell has a width of 5 cm, 
which is larger than the actual fracture aperture. If a cell is intersected by a fracture, the cell’s 
permeability is rescaled to ensure that the total volumetric flow through this cell is computed 
correctly.

The chosen grid resolution implied that the minimum distance between two paral-
lel fractures and Lmin was 2  m, which translated to a maximum possible fracture intensity 
Imax = Ix + Iy of 0.5  m−1. The well was located centrally in the y-axis, within a locally refined 
region of 10 m × 10 m designed to ensure that the early time pressure transient behaviour was 
captured adequately. Other input parameters used to set up the numerical simulation case are 
summarised in Table 2.

We compared our simulation model against well-known analytical solutions, namely the 
radial homogeneous models (Earlougher 1977) and the infinite wellbore-intersecting fractures 
models (Gringarten et al. 1974), following the methodology presented in Freites et al. (2019) 
and Egya et al. (2019) to ensure that simulation results are free from numerical artefacts aris-
ing from the fractures projection onto the simulation grid or the boundary effects due to the 
assumption of symmetry.

Since the fractures were assumed to extent vertically across a formation of limited height, 
the porosity of a grid block containing a fracture �∗

f
 can be calculated as

Fig. 5  Schematic representa-
tion of the simulation grid 
(not in scale). The shaded area 
corresponds to the region with 
local grid refinement containing 
the well
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and the corresponding fracture permeability k∗
f
 as

where � is the length (or width) of the grid block perpendicular to the direction of the 
fracture. This rescaling was needed to ensure that the volumetric properties and transmis-
sibilities of the grid blocks containing a fracture were physically correct given that the 
grid block was still wider than the actual fracture aperture. The process of assigning each 
fracture from an ensemble member of the 2560 DFN models to the simulation grid was 
scripted in a commercial geomodelling software.

The following assumptions are common to all simulation cases: Fluid flow is gov-
erned by slightly compressible single-phase flow (Eq.  7) in a 2D domain, i.e. gravity 
forces are negligibly small. We only simulate the drawdown period of a well  test (sin-
gle-rate) and assume the absence of skin, wellbore storage, and superposition effects. 
We consider only the transient period of the pressure response. Given the parameters in 
Table 2, it is important to point out that all simulations consider a significant fracture-
matrix permeability contrast with km = 1 mD and k ≥ 1.68 ×  106 mD. The lower bound 
k = 1.68 ×  106 mD represents the permeability of a fracture of Lmin = 2 m. The value can 
be estimated by using Lmin = 2 m in Eq. 4 and the resulting a from Eq. 3

We focus only on the transient period by stopping the simulations whenever a change 
in pressure was detected in the grid cells located at the model boundaries. These grid 
cells are located 500 m away from the wellbore (Fig. 5). The impact of this approach is 
that many of the p′ appear to show only partial signals; that is, p′ does not exhibit a rec-
ognizable period where individual p′ values are constant other than for the periods that 
correspond to the matrix permeability. In these situations, the combined permeability of 
the matrix plus fracture network could not be calculated. It is important to note, how-
ever, that a volume of investigation encompassing reservoir boundaries located 500 m 
from the wellbore is not very different to what we may expect in real well tests and 
hence the same issue of partial signals can be expected in real field data.

We modelled situations where the well was located in the matrix adjacent to fractures 
or where the well intersected fractures. As will be shown later, both cases yielded com-
pletely different p′. Pressure was recorded as a function of time for the grid block that 

(10)�∗
f
=

a

�
,

(11)k∗
f
=

k ∗ a

�
,

Table 2  Parameters used in the 
numerical simulation model

Variable Values

Fluid viscosity, µ 0.096 mPa s
Matrix compressibility, �m 4.35 ×  10−6  bar−1

Fracture compressibility, � 2.18 ×  10−4  bar−1

Matrix porosity, �m 0.10
Matrix permeability, km 1 mD
Well radius, rw 0.10 m
Production rate, q 100  m3/d
Initial pressure, pi 400 bar
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contained the well. Since the wellbore storage and boundary effects were excluded and 
the matrix was defined homogeneous, the shape of transient response was a direct con-
sequence of the fracture network properties.

The recorded wellbore pressures were resampled to equally spaced points in time and 
the first and second derivatives calculated. We defined p′, the first derivative of pressure p 
at a given time t, as

where t is time and b is a counter such that 1 ≤ b < m (Bourdet et al. 1989). The second 
derivative p″ was defined as

The resulting p′ and p″ curves were smoothed using moving averages to remove spuri-
ous oscillations that could obscure the subsequent analysis. Two examples of this smooth-
ing are shown in Fig.  6, corresponding to a well located in the matrix and a well that 

(12)p� =

((
(pb+1−pb)
ln (tb+1∕ tb)

)
∗ ln

(
tb+2

/
tb+1

))
+
((

(pb+2−pb+1)
ln (tb+2∕ tb+1)

)
∗ ln

(
tb+1

/
tb
))

ln
(
tb+2

/
tb+1

)
+ ln

(
tb+1

/
tb
) ,

(13)p�� =
ln
(
p�
b+1

/
p�
b

)

ln
(
tb+1

/
tb
) .

Fig. 6  Examples illustrating the smoothing of the pressure derivative data for a well located in the matrix 
(left) and well that intersects a fracture (right)
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intersects a fracture, respectively. Initially, the noise in the second derivative was large at 
early times (corresponding to seconds in real time) but the smoothing process produced 
adequate curves for interpretation.

The results in Fig.  6 are presented in terms of the dimensionless variables pd and td, 
which were defined as

and

where h is the reservoir thickness and pwf is the wellbore flowing pressure.

3.3  Validation of the Clustering Algorithm

We first validated the clustering algorithm described above by applying it to two synthetic 
datasets for which the classification was known. Validation dataset 1 considered R = 16 sets 
of p′ generated from drawdown tests using four different analytical models (Table 3). Each 
analytical solution yielded distinct shapes in the p′. For each case we used m = 50 equally 
spaced points in logarithmic scale. By using different combination of parameters in the 
analytical models, we introduced significant lateral displacements in the transition between 
flow regimes while keeping a reference vertical position around a pressure derivative of 
p′ = 10 (Fig. 7).

The differences and similarities between the individual p′ are easy to recognise for the 
human eye: there are four different classes of behaviours, i.e. four different clusters with 
four members each. The k-medoids algorithm with DTW therefore needs to detect an opti-
mum number of four clusters, each with four members, as well.

The validation dataset 2 was generated using the same analytical models as for the 
validation dataset 1. However, for validation dataset 2, we introduced a displacement of 
the curves in the vertical direction by varying the permeability (Fig. 8). DTW can effec-
tively align time series differences in the horizontal direction, i.e., local acceleration or 

(14)pd =
2�kmh

qB�

[
p − pwf(t)

]

(15)td =
kmt

�
(
�m�m + ��

)
r2
w

.

Table 3  Analytical models used to create the two validation datasets

The following values were common for both datasets: q = 10   m3/d, φ = 10%, γ = 6 ×  10−6   bar−1, 
µ = 0.096 mPa  s−1, h = 1 m, rw = 0.1 m. For validation dataset 1 we used k = 1 mD, for validation dataset 2, 
the permeability varied for each model

Analytical model Boundary Flow regimes References

Radial homogenous Closed Radial—pseudo-steady state Earlougher (1977)
Dual-porosity Infinite Radial—inflection—radial Warren and Root (1963)
Well-intersecting vertical frac-

ture (infinite conductivity)
Infinite Linear—radial Gringarten et al. (1974)

Radial composite Infinite Radial—transition—radial Odeh (1969)
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deceleration of the time series, but has problems with vertical translations (Keogh and 
Pazzani 2001). Validation dataset 2 therefore presented a more challenging case for our 
approach.

We initially ran the k-medoids algorithm for validation dataset 1 using c = [2, 4, 6, 8] 
clusters. For each case, we generated 10 random initializations and stopped the iteration 
process at lmax = 5 after which we observed no considerable improvement in the minimi-
zation of the objective function O (Fig. 9). Note that many cases did not reach the global 
minimum, which emphasizes the importance of working with multiple initializations. 
Using the elbow method, we estimated the appropriate number of clusters to describe the 
validation dataset 1 as c = 4. This value is obviously correct because we used four different 
analytical solutions to generate the input data.

Fig. 7  Validation dataset 1 showing the pressure derivatives based on four different analytical solutions 
(Table  3): the radial homogeneous model with closed boundary (top-left), the dual-porosity model (top-
right), the well-intersecting vertical fracture with infinite conductivity model (bottom-left) and the radial 
composite model (bottom-right). U represents the distance to the closed boundary in the radial homogene-
ous case and the distance to the discontinuity in the radial composite model; ω is the storativity ratio, λ is 
the interporosity coefficient, Xf is the fracture half-length, Mr is the mobility ratio. Note that the mobility 
ratio Mr in the radial composite model refers to contrasts in hydraulic diffusivity between reservoir zones 
rather than the differences in fluid mobility as in the conventional definition for multi-phase flow
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To further inspect the clustering results we made use of a confusion matrix (Fig. 10) 
and introduced the concept of the matching coefficient τ. The confusion matrix allowed 
us to easily identify whether a member R of the dataset was assigned correctly to each 
cluster. Elements in the principal diagonal of the confusion matrix represent samples 
correctly classified, while off-diagonal elements are misclassified. Figure 10 shows the 
row- and column-normalized summary of correctly and incorrectly classified observa-
tions. For validation dataset 1, the k-medoids algorithm correctly classified the four 
cases for each cluster. In contrast, for validation dataset 2, the confusion matrix shows 
that 9 of the 16 p′ were not classified correctly.

The matching coefficient was defined as � =
Rc

n
 where Rc is the total number of ele-

ments in the dataset containing n entries that were correctly classified by the k-medoids 
algorithm. τ represents a quantitative measure of the quality of the clustering results. 
For validation dataset 1, we obtained τ = 1. We also note that the cluster medoids Mz 
were correctly identified as the non-extreme members of each model (orange or yellow 
lines in Fig. 7).

Fig. 8  Validation dataset 2 showing the pressure derivatives based on four different analytical solutions 
(Table  3). The variations in permeability were set to introduce vertical displacement in the resulting p′ 
curves
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Fig. 9  Minimization of O using multiple random initializations for the validation dataset 1 for 
c = 2[2, 4, 6, 8] and corresponding change in O (top four plots). For the elbow method, we plot the lowest 
value of O for each c 

Fig. 10  Confusion matrix for validation dataset 1 (left) and validation dataset 2 (right). Blue colours indi-
cate samples that have been correctly classified and orange colours indicate misclassified samples
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In the case of the validation dataset 2, the clusters were not identified correctly for all 
input data. When set to the expected value c = 4, τ decreased to 0.4375. The k-medoids 
algorithm was particularly deficient in classifying the radial homogeneous and dual-poros-
ity cases, assigning them mainly to the vertical fracture model. The reason for this poor 
performance, as noted above, are the inherent difficulties of the DTW to properly handle 
the vertical offset between time series. It will be later shown that the p′ derived from our 
NFRs dataset exhibit significant vertical displacement among the curves so we needed to 
ensure that the clustering method effectively handled this issue.

We explored two alternative options to try to improve the clustering. In the first option, 
we standardized the dataset to R = 0 and �R = 1 where R and �R are the mean and standard 
deviations of each dataset member, respectively. In the second option, we took the second 
derivative p″ (i.e., the shape of p′) of the dataset members (Fig.  11). The first approach 
increased τ to 0.5625, which is only a marginally better. The second option, however, led to 
an increase of τ = 0.95.

The second derivative p″ provides a convenient way to identify flow regimes in the 
reservoir. A period of constant p″ is related to particular flow regimes, with the value 

Fig. 11  Second pressure derivatives p″ for validation dataset 2 (see Fig. 8 for the corresponding p′)
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indicating its type. For example, a wellbore-intersecting vertical fracture with infinite 
conductivity manifests itself as consecutive periods of p″ = 0.5, variable p″, and p″ = 0 
(Gringarten et al. 1974), denoting linear, transition, and radial flow regimes, respectively 
(Fig. 11).

In addition, using p″ has obvious advantages that are rooted in the physical processes 
governing fluid flow in fractured geological formations. First, p″ measures the rate of vari-
ation of the first derivative, which is a function of the fracture properties. Second, p″ effec-
tively removes a major part of the vertical offset among the curves, allowing a direct com-
parison of the shapes of the p′. With this approach, both the vertical and the horizontal 
displacements of the time sequences are appropriately handled, by using p″ for vertical and 
DTW for the horizontal displacement between pairs of time sequences.

Figure 12 shows the confusion matrix for the clustering exercise using p″ instead of p′. 
One instance of the radial composite model (blue line in Figs. 8 and 11) was misclassified 
as being part of the vertical fracture model. While this classification error only occurs in 
dataset 2, the analysis shows that even an improved clustering approach may not be able to 
correctly identify all cases. These classification errors are due to the chosen distance metric 
and the clustering algorithm itself.

Nevertheless, the performance of the clustering process using p″ proved to be reliable 
enough to be deployed in the automated classification exercise for the entire p′ ensemble.

Fig. 12  Confusion matrix for the validation dataset 2 using p″
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4  Results

Figure 13 shows the rate at which the objective function O (Eq. 8) changes as a function 
of c for the classification of the R = 2560 cases, using p″ as the classification variable. We 
tested classifications using c = [2, 4, 6, 8, 10, 12, 16, 20] and w = [5, 10, 20, 40, 100] . By 
including different w in the analysis, we were able to track the minimization of O while 
assessing the amount of warping required for this purpose. We performed this tracking to 
avoid extreme distortions in the alignment between the cluster medoids and the respective 
cluster members. Using the elbow method, we identified that no significant reduction in O 
was obtained for c > 12 independently of w.

In order to quantify the amount of warping considered for each combination of c and w, 
we defined the warping factor W as

where Lw , and LMz
 refers to the length of w and Mz , respectively. LRuz

 is the length of the 
elements of R assigned to cluster z. Note that W is bound by 0 ≤ W < 1 . W values close 
to one imply that a high amount of warping was required to align the pressure derivative 
curves. It is ideal to obtain the best possible alignment with the least amount of warping, 
i.e., W close to zero. Figure 14 shows O as a function of w for c = 12. Note that W decreases 
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Fig. 13  Elbow method for different window sizes w for the dataset comprising 2560 p′
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noticeably for w < 20. However, this decrease is at the expense of a substantial increase 
in O. We selected the number of clusters c = 12 for the pressure derivative curves as sug-
gested for w = 20, which is an acceptable trade-off between accuracy and warping.

Figures  15 and 16 show the results of the clustering exercise for p′ and p″, together 
with their respective cluster medoids. Since the medoid curves represent the most centrally 
located p′ shape in each cluster they are likely to concentrate most—or at least some—of 
the relevant features of the collection of p′ shapes assigned to each cluster. The use of the 
cluster medoids for assisting the interpretation of p′ is discussed later.

We evaluated the performance of the clustering algorithm by using the silhouette 
index Y, which is widely used for clustering validation. Y measures how close a point 
in one cluster is to other points in neighbour clusters (Kassambara 2020) and is calcu-
lated as

where A(u) is the average distance from the uth p″ curve to the other p″ curves in the clus-
ter and B(u) is the minimum average distance from the uth p″ to the other p″ in a different 
cluster, minimized over clusters. Note that α values close to one indicate that the observa-
tion (in this case the p″) is well clustered while Y values close to zero indicate that the 
observation lies between two clusters. A negative Y value indicates that the observation is 
probably in the wrong cluster. Figure 17 shows the silhouette plot for the clustering results 
depicted in Figs. 15 and 16 with c = 12. In general, the clustering yields acceptable values 
with an average silhouette index of Y ≈ 0.3 ; only 12% of the samples have been misclassi-
fied as evidenced by the negative Y values in Fig. 17.

(17)Y =
B(u) − A(u)

max (B(u),A(u))
with (−1 ≤ � ≤ 1),

Fig. 14  Change in objective function O and warping factor W as a function of window size w for c = 12 
clusters for the entire dataset of 2560 p′
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5  Discussion

Figures 15 and 16 show the significant variability of the p′ shapes that one could expect 
to see in well tests in NFRs. The clustering provided an effective way to group the curves 

Fig. 15  Clustering of p′ for the entire dataset. The black line represent the medoid of each cluster, the grey 
lines the remaining curves in the cluster
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based on the similarity of their shapes. An important question is whether this p′ classifi-
cation is physically consistent and can capture the similarities (or dissimilarities) of the 
underlying fracture network properties.

Fig. 16  Clustering of p″ for the entire dataset. The black line represent the medoid of each cluster, the grey 
lines the remaining curves in the cluster
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We hence created a visual representation of the classification results by applying non-
metric multi-dimensional scaling (MDS). MDS is a dimensionality reduction technique 
and highlights the relative distances, measured using DTW, between the p″ cluster mem-
bers. Figure 18 shows that the clusters of p″ are relatively well separated in 3D space. More 
distant cluster regions indicate more distinct differences in the p′ between clusters, which 

Fig. 17  Silhouette plot for the 
clustering results of entire dataset 
of 2560 p′ (Figs. 15 and 16), 
indicating how close each p″ in 
the dataset is to the cluster to 
which it was assigned

Fig. 18  3D representation of the relative distance between the p″ after dimensionality reduction using 
multi-dimensional scaling. Each colour represents a different cluster. The larger points represent the 
medoids of each cluster
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could facilitate the identification of characteristic patterns in the p′ and the subsequent 
association of these patterns with the properties of the fracture networks.

The specific way in which the clusters were organized in 3D space also provided impor-
tant information. p′ belonging to clusters 1–8 plotted narrowly along the origin of the 
x-axis, while clusters 10–12 plotted at a significant distance away from the origin of the 
x-axis, indicating that these p′ were considerably different in comparison. The reason for 
this difference becomes clearer in Fig. 19, which shows a box plot summarizing the median 
and the 25 and 75 percentiles of the average fracture length L , the average fracture aperture 
a , the total fracture intensity I = Ix + Iy, the distance between the wellbore and the nearest 
fracture dfw , and the fracture connectivity C for the entire ensemble of 2560 p′. We used 
the median of each parameter as reference in the following analysis. We reiterate that this 
analysis does not mean to imply that the results are universal but is intended to confirm 
that, for the given dataset, the results are consistent and interpretable.

Fig. 19  Box plots showing median, P25 and P75 for L , a , I, dfw , and C. The red crosses represent outliers
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Clusters 1–9 mainly contained cases where the wellbore was located in the matrix 
(89% of all p′ in the cluster), as opposed to clusters 10–12, which almost exclusively con-
tained cases where the well intersected a fracture (99% of all p′ in this cluster). The strong 
dependency of p′ on the position of the wellbore with respect to the fracture network may 
indicate that dfw is a first-order control for the shape of p′. A similar observation was made 
by Morton et al. (2013) who established that the early time behaviour of p′ is dominated 
by whether the well intersects a fracture. While it seems intuitive that the p′ would be com-
pletely different depending on the position of the well relative to the fractures, the widely 
used Warren and Root (1963) model is unable to represent the behaviour observed in cases 
where the well intersects fractures.

Clusters 1 and 2 rank among the lowest in terms of I (0.12  m−1) and  C (7.37 ×  10−7 and 
5.60 ×  10−7   m−2, respectively), but highest in terms of dfw (4.6 and 4.1  m, respectively). 
These factors combine for a very small deviation from the early time radial flow regime, 
which reflects the matrix properties for cases in which the fracture do not intersect the 
wellbore. However, it is noticeable that 20% of the members in cluster 1 show a similar 
shape in p′ when the fracture networks are well connected and fracture intensity is high. 
This observation suggests that intensively fractured networks may show derivatives similar 
to that of homogeneous single-porosity (matrix-only) reservoirs, with the difference that 
the permeability would correspond to the contribution of both the matrix and fracture sys-
tems. The relative closeness of cluster 12 to cluster 1 (Fig. 18) seems to support this obser-
vation, i.e., the shape of clusters 1 and 12 show a relatively low deviation from a radial 
flow regime where p″ = 0.

Clusters 3–9 showed a much more distinct influence of the fracture compared to clus-
ters 1 and 2. This difference was driven either by a smaller dfw , higher I and C, or a com-
bination of both. Within the subgroup of clusters 3–9, there were evident similarities in 
p′ (especially between clusters 3–5 and clusters 6–9) that complicated linking particular 
clusters of p′ to their underlying fracture network characteristics. All the cases where the 
well was located in the matrix showed a radial flow regime with p″ = 0.5, followed by a 
downward trend with p″ < 0. The relative difference among the p′ curves falls within the 
magnitude of p″ over the period during which p″ < 0 and the transition to p″ ≥ 0.

Fig. 20  Fracture intensity I 
as function of distance from 
wellbore D for the medoids of 
clusters 3 and 4
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Cluster 3 contained cases with slightly longer fractures ( L = 15.4  m) and networks 
of higher connectivity (C = 8.3 ×  10−7   m−2) compared to cluster 4 ( L = 11.8  m and 
C = 7 ×  10−7  m−2). However, the cases in cluster 4 seem to be more affected by the presence 
of fractures because many cases in cluster 4 deviate strongly from the initial radial flow 
regime and reach more negative values for p″ compared to the cases in cluster 3. We used 
the medoids of the respective clusters to further analyse them.

Figure 20 shows the local values for I as a function of the distance from the wellbore D 
for the medoids of clusters 3 and 4. Despite the fact that the overall fracture intensity was 
the same for both cases (I = 0.15  m−1), the spatial distribution of the fractures differ. The 
fracture intensity I close to the wellbore was substantially larger for the medoid of cluster 4 
while dfw was smaller (8.2 m vs. 4.1 m). In general, these factors (i.e., smaller dfw and larger 
local I) increased the influence of the fractures on the shape of p′, which caused some of 
the difference between the members of cluster 4 and cluster 3.

Clusters 6–9 mainly represented cases where the well is located in the matrix which was 
intensely fractured such that all fractures were well connected. In these scenarios, the pres-
sure perturbation migrated quickly away from the well towards the model boundaries and 
hence masked the formation of flow regimes beyond the period of p″ < 0.

Clusters 10 and 11 contained cases with early time linear flow regime where p″ = 0.5. 
Such behaviour is typically attributed to well-intersecting vertical fractures with infinite 
conductivity (Gringarten et  al. 1974). Note that we worked with fracture permeabilities 
that can be considered as infinitively conductive (k ≥ 1.65 ×  106 mD). Cluster 10 contained 
p′ that are mostly associated with scattered fractures with poor connectivity. In these cases, 
any fracture that intersected the well tended to be isolated from its neighbouring fractures. 
The p′ in cluster 11 showed a similar behaviour but fractures that intersect the well tended 
to be better connected to the fracture network.

Despite the fact that the vast majority of p′ in cluster 12 also resembled the classical 
shapes of a pressure transient with well-intersecting fractures, the early time linear flow 
regime was not observed. This absence was mainly because cluster 12 contained well con-
nected fracture networks with high fracture intensity that masked the development of linear 
flow.

In summary, the clustering led to consistent separation of clusters with distinct p′, which 
encapsulated the characteristic properties of the fracture networks in the current dataset, 
namely L , a , I, dfw and C (Fig. 20). Within the constrains of the dataset, dfw appears to be a 
primary control for the shape of p′, separating the cases in two distinctive groups, clusters 
1–9 and clusters 10–12. Within these sub-groups L , a , C, and the local and global values 
for I, are secondary controls for p′.

6  Limitations

We presented an analysis of how the clusters of p′ can be linked back to the fracture prop-
erties encapsulated in our fracture network ensemble. Despite the significant variability 
observed in p′ for this particular dataset, we were able to classify behaviours that allows 
us to identify general patterns in the pressure transient data which can assist well test 
interpretations.

However, we emphasise that our classification results are not universal. While it is likely 
that some of the observations could be applicable to other NFRs as our dataset contains a 
wide range of fracture networks that might replicate key flow behaviours found in nature, 
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there are two reasons why the classification approach is still a proof-of-concept. First, the 
generation of the fracture networks is based on a series of assumptions (e.g., sub-vertical 
and bed-bound fractures, 2D orthogonal fracture sets, particular statistical distributions) 
that are not universally applicable to all NFRs. Second, the clustering method is not yet 
able to provide a classification of p′ that is both, uniquely interpretable and physically con-
sistent; some degree of human judgement is required to interpret the classification results. 
For example, clusters 3–5 and clusters 6–9 were recognized as different responses but look 
similar on visual inspection. Hence, a well test interpreter may decide to merge clusters 
3–5 and 6–9.

The use of the medoids as a reference p′ is also important. Type curves based on pres-
sure derivatives have been widely used in well test interpretation (Bourdet et al. 1983). It 
would be ideal if a more universal classification could provide a similar type curve concept. 
The medoids in our dataset appear to capture the main trends in p′ that are representative 
of the other cluster members, but it is not yet clear if this observation will hold for a larger 
dataset with a wider range of fracture network properties. The similarity among the cluster 
members governs the representativeness of the medoid as reference curve for the cluster: 
the largest the dissimilarity among the p′ members of one particular cluster corresponds 
to the least representative medoids. Additional training data is needed for further fracture 
networks to confirm if trends in p′ are more universal. Alternatively, specific training data 
that capture uncertainties in fracture network properties in specific field cases need to be 
constructed to identify trends in p′ on a case-by-case basis.

Lastly, the use of p″ as classification variable may also pose a challenge because p″ 
amplifies the noise in the pressure signal for both, real field data and data from numerical 
simulations. An appropriate smoothing of p″ appears to alleviate this problem (Fig. 6) but 
it remains to be seen if this holds for a much larger dataset as well.

7  Conclusions

In this paper, we presented the results of an automated clustering method that allowed us to 
classify pressure derivative responses in NFRs. The p′ ensemble is based on a dataset con-
taining over 2500 individual curves which were created using numerical simulations that 
employ geologically consistent discrete fracture networks.

We showed that the k-medoids algorithm combined with dynamic time warping as 
similarity measure and second pressure derivatives p″ as the clustering variable allowed 
us to classify the first pressure derivatives based on the similarities of their overall shape. 
Despite the variability of p′ in our dataset, only 12 clusters were needed to describe the 
behaviour of the full dataset in a physically and geologically consistent way. These clusters 
capture the main trends in p′, and the trends can be linked to the underlying characteristics 
of the fracture networks.

We identified that the distance from the well to the closest fracture was a first-order 
control on the shape of p′. That is, wells connected to the matrix showed a distinctly dif-
ferent early pressure transient behaviour compared to wells that were connected to an indi-
vidual fracture or a network of fractures. The effect of the fracture length and apertures, the 
local and global fracture intensity and the fracture network connectivity are second-order 
controls.



 A. Freites et al.

1 3

Our classification results are not universally applicable to NFRs and more work is 
needed to account for a wider set of fracture network properties and/or specific field appli-
cations. However, some of the more general trends observed in the shape of p′ were still 
valuable to quantify pressure transient behaviours in naturally fractured reservoirs and 
establish links to the fracture network characteristics. Hence, the classification method pro-
posed in this study could be replicated for different datasets, providing an interpretational 
framework that will help us to better quantify the presence and properties of fracture net-
works in subsurface reservoirs.
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