<]
TUDelft

Delft University of Technology

Blockchain verification and validation
Techniques, challenges, and research directions

Marijan, Dusica; Lal, Chhagan

DOI
10.1016/j.cosrev.2022.100492

Publication date
2022

Document Version
Final published version

Published in
Computer Science Review

Citation (APA)
Marijan, D., & Lal, C. (2022). Blockchain verification and validation: Techniques, challenges, and research
directions. Computer Science Review, 45, Article 100492. https://doi.org/10.1016/j.cosrev.2022.100492

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.cosrev.2022.100492
https://doi.org/10.1016/j.cosrev.2022.100492

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



Computer Science Review 45 (2022) 100492

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Blockchain verification and validation: Techniques, challenges, and
research directions
Dusica Marijan **, Chhagan Lal”

@ Simula Research Laboratory, Oslo, Norway
b Delft University of Technology, Netherlands

Check for
updates

ARTICLE INFO ABSTRACT

Article history: As blockchain technology is gaining popularity in industry and society, solutions for Verification
Received 17 August 2021 and Validation (V&V) of blockchain-based software applications (BC-Apps) have started gaining equal
Received in revised form 2 June 2022 attention. To ensure that BC-Apps are properly developed before deployment, it is paramount to apply

Accepted 12 July 2022

systematic V&V to verify their functional and non-functional requirements. While existing research
Available online 28 July 2022 y y q s

aims at addressing the challenges of engineering BC-Apps by providing testing techniques and tools,

Keywords: blockchain-based software development is still an emerging research discipline, and therefore, best
Blockchain practices and tools for the V&V of BC-Apps are not yet sufficiently developed. In this paper, we provide
Smart contracts a comprehensive survey on V&V solutions for BC-Apps. Specifically, using a layered approach, we
p2p synthesize V&V tools and techniques addressing different components at various layers of the BC-App
Consensus stack, as well as across the whole stack. Next, we provide a discussion on the challenges associated
%Zggi; with BC-App V&V, and summarize a set of future research directions based on the challenges and gaps

identified in existing research work. Our study aims to highlight the importance of BC-App V&V and
pave the way for a disciplined, testable, and verifiable BC development.
© 2022 Elsevier Inc. All rights reserved.

Verification
Validation
Simulation
Benchmarking
Software testing
Security testing
Performance testing
System under test
Formal verification
Platform testing

Contents

1. INtrOAUCION...uiueuiieteteeettete ettt se et senene
1.1.  State-of-the-art and contribution .......c..ccceceeveverurvennne
2. Background.......ceccceevererirreniereneerinresenrestssessesessesesseseesessssessesessenes
2.1.  Blockchain and smart contracts
2.2, BC components ......c.cceeeerveennes
2.3.  Blockchain-based applications
2.4.  Software verification and validation ..........cececeveeeeuenene
3. Taxonomy of blockchain verification and validation..............
3.1, Smart CONract teStiNG......cecvrerrererrrrerrererrererresesesseressene
3.2, Platform teStiNg......cccerererrererrereerereesenseressesesseseeessesessens
3.3, Application teStiNG......cceeveereerererrerrerreereereereereeesessessennes
3.4. Layer, inter-layer, and cross-layer testing of BC-Apps
4.  State of the art: Smart contract testing
4.1, StatiC ANAlYSiS...cciveeevererererrerereresreressesessesessessssesssessenes
4.2.  Dynamic Verification ........coceeeeevercnerereeerescnereneeeencnns
5.  State of the art: Performance testing .........cceccevererverurrenvevereenes
5.1 BecChmarking........ccecerverererrererreneereneesesseressesesseseseseesessens

* Corresponding author.
E-mail addresses: dusica@simula.no (D. Marijan), c.lal@tudelft.nl (C. Lal).

https://doi.org/10.1016/j.cosrev.2022.100492
1574-0137/© 2022 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.cosrev.2022.100492
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2022.100492&domain=pdf
mailto:dusica@simula.no
mailto:c.lal@tudelft.nl
https://doi.org/10.1016/j.cosrev.2022.100492

D. Marijan and C. Lal

5.2.  Live MONItOring......cceerervrrerune

Computer Science Review 45 (2022) 100492

.13

5.3.  Experimental analysis

.13

5.4.  SIMUIAtION.cciiieeeeeteerctecteceereceee e e e e enesseesens

14

5.5. Comparative discussion of performance evaluation approaches

5.6. Performance metrics

..................................................................................................................... 15

6. State of the art: Security testing.......
7. APl and interface testing

8. Summary of the state-of-the-art.....

8.1. Smart contract testing............

8.2.  Performance teStiNg.......coeeereeeerereeresrerersesesseseesesessesseseseessssessesens

8.3.  Security testing
9. Open issues and future research directions

9.1, OPEN ISSULS...viuerreerreereereesnsresseressssesssessesssseseesessssessssessesassessesens

9.2.  Future research directions.....

10.  Conclusion........cccceevennenee.

Declaration of competing interest.....

Acknowledgments

REFEIEIICES ..uvveeieeeeteeeteieteere e te e e te s se st e e te e e st e e ste s sseseesestnsnasans

1. Introduction

In recent years, blockchain (BC) technology has gained increas-
ing attention across many domains, ranging from manufacturing
and healthcare to insurance and aeronautics [1]. It is mainly
because of BC’s inherent features, such as decentralization, im-
mutability, improved security, transparency, and its ability to se-
curely implement complex business logic and processes through
Smart Contracts (SCs). On the one hand, these features provide
various advantages to businesses [2-4], while on the other hand,
they increase the complexity of verifying the correctness of ap-
plications using these features [5]. Therefore, with an increasing
demand to leverage BC technology for various purposes in dif-
ferent applications, it is equally important to perform adequate
V&V to detect bugs and vulnerabilities in BC components and
interfaces that could lead to security threats or asset losses [6].

BC-Apps significantly differ from traditional software appli-
cations (i.e., applications not using BC technology). Specifically,
BC-Apps have specific requirements and acceptance criteria to
be reached in testing [5,7]. For instance, deploying correct SCs
is highly important in BC, because their execution cannot be
reversed once implemented. Due to BC's immutable nature, once
a buggy SC goes into a production system, fixing the bug might
require a complete revision of the code. Besides, the SC code also
defines how efficiently the software performs with increasing
workloads. Therefore, it becomes necessary to perform compre-
hensive performance testing of SCs before deployment, to ensure
their expected performance in production. Moreover, SCs are
mostly written in new programming languages (e.g., Solidity [8],
and Go [9]), for which either the testing tools are not available
or are not at mature stages. While SC programming is challeng-
ing [10], SC correctness is paramount, because bugs in SCs may
lead to immense asset losses and disruptions [11]. To support the
development of secure SCs, numerous tools and techniques have
emerged in recent years [6,12]. Some of these tools may help the
analysis of already deployed SCs [13].

Apart from SCs, the decentralized and anonymous nature of
the participating nodes that work together with distributed sys-
tems in a peer-to-peer network further adds to the BC V&V
complexity. For instance, the distributed nature enforces the need
for the validation of synchronization between the nodes, and test-
ing the performance and security of consensus algorithms [14].
Due to software testing challenges inherent to BC-Apps, V&V
techniques used for traditional software applications may not be
valid for testing BC-Apps, thus calling for specialized BC V&V tools
and practices.

Since SCs are important entities in a BC implementation, a
large percentage of the state-of-the-art is addressing the area
of ensuring the correctness of SCs. Researchers have proposed
different approaches, including formal verification methods (e.g.,
model checking and theorem proving) [12,22], fuzzing meth-
ods (e.g., mutation, and hybrid) [23,24], automated program re-
pair [25], symbolic execution and analysis [26], and Control Flow
Graph (CFG) construction [27]. Other than SC testing, researchers
have worked on approaches for BC performance testing, aimed at
evaluating the performance of BC-Apps under different workloads
and faultloads [28,29]. Apart from SC testing and BC perfor-
mance testing, other areas, such as peer/node testing, Applica-
tion Programming Interface (API) testing, and consensus algo-
rithm testing have not been sufficiently explored by the research
community yet.

Due to the fragmented nature of the available solutions for BC-
App V&V, it is of utmost importance to the research community
to (i) identify specific challenges in BC V&V, key BC components
that need to be tested, and the ongoing research efforts in this
direction, along with their limitations, and (ii) propose novel V&V
techniques to address the identified open challenges.

1.1. State-of-the-art and contribution

There are several survey articles available in the state-of-the-
art on V&V-related efforts for BC technology. However, these
articles cover only the partial aspects of BC V&V, for example,
SC testing [6,13,15,16] or BC performance testing [17,20,21] or
security testing [18,19]. To the best of our knowledge, there is
no previous study providing a comprehensive survey of differ-
ent techniques for ensuring the functional and non-functional
correctness of BC components at different layers and across the
whole BC stack. Moreover, existing surveys mainly cover verifica-
tion approaches for individual BC components and do not study
the verification of BC-Apps, where BC components are integrated
with various real-world applications. Finally, existing surveys do
not investigate new testing challenges that BC software devel-
opers and testers face while developing and testing BC-Apps.
Understanding these challenges is an essential step towards pro-
gressing the current state-of-the-art in BC V&V. Table 1 provides a
comparison of our survey with the state-of-the-art by considering
several parameters. The comparison clearly shows the need for
our study in the domain of BC V&V.

The key contributions of our paper are as follows.

e We present a detailed survey of existing techniques and
tools proposed for the V&V of BC-Apps. We identify the lim-
itations of existing approaches, and provide a comparison



D. Marijan and C. Lal

Computer Science Review 45 (2022) 100492

Table 1
Comparison with related work.
SC testing Performance testing Security testing APl/interface testing BC V&V challenge identification
[15], 2018 Yes No No No Partially
[13], 2019 Yes No No No No
[16], 2019 Yes No No No No
[6], 2020 Yes No No No No
[17], 2020 No Yes No No No
[18], 2020 Partially No Yes No Partially
[19], 2020 Partially No Yes No Partially
[20], 2021 No Yes No No No
[21], 2021 No Yes No No No
This survey Yes Yes Yes Yes Yes

between different approaches by discussing their efficiency,
performance, and practicability.

e Using a layered design for BC-Apps, we discuss possible ap-
proaches for identifying the key components at each layer,
and the interfaces across different layers, that need to be
verified, along with the best techniques for that purpose.

e We provide a comprehensive discussion of the challenges
faced by software developers while developing and verifying
BC-Apps, in contrast to traditional (non-BC-based software).
Finally, we provide a set of research directions for advancing
the state-of-the-art on BC-App V&V.

The remainder of this paper is organized as follows. We pro-
vide the required background that includes a brief discussion
about BC and SC technology, as well as the overview of V&V
techniques used in software engineering in Section 2. We provide
the taxonomy of BC V&V in Section 3. In Sections 4-7, we describe
the state-of-the-art V&V tools and techniques for performing dif-
ferent types of testing and verification on various BC components.
In Section 8, we summarize the findings from our comprehensive
state-of-the-art review. We discuss open issues and the directions
of future research work in the area of BC V&V in Section 9. Finally,
we conclude our work in Section 10.

2. Background

In this section, we present a discussion on BC and SC, BC
components that need to be tested, BC-Apps, and software V&V
techniques relevant for the understanding of the paper.

2.1. Blockchain and smart contracts

BC is a distributed ledger consisting of a series of chronologi-
cally ordered blocks appended in a link-list type of data-structure.
To provide integrity and immutability of data in the ledger, it
is required to prevent any updates in the committed blocks. To
ensure this, each block contains the hash of the previous block,
and the ledger is replicated across peers in the BC network. A
block usually contains a set of timestamped transactions that are
bundled together and stored in the form of a Merkle tree [30]. BC
adopts various cryptographic primitives like hashing algorithms,
digital signatures, and Public Key Infrastructure (PKI) protocols to
ensure adequate security. There are two key participants in the
BC network, one that generates transactions and the other that
validates and stores them in the ledger.

A BC network runs on a peer-to-peer topology where each
node is expected to store the same copy of the ledger. Nodes
or organizations may not have a preexisting trust relationship
among them. Therefore, to ensure that each peer node has the
same copy of the ledger at any given time, a new valid block
that will be appended to the ledger is selected by executing
a consensus mechanism. In particular, a consensus mechanism,
e.g., Practical Byzantine Fault Tolerance (PBFT), Proof-of-Work

(PoW), and Proof-of-Stake (PoS), is a protocol that ensures syn-
chronization among all network peers about the validity and
ordering of transactions [31]. Therefore, these mechanisms are
pivotal for BC’s correct functioning and need to be tested properly
before their use in real-world applications.

Depending on the type of access, BC can be public, private,
consortium, or hybrid. A public BC is permissionless, allowing
anyone to access the ledger, interact with other participants, and
create and validate new data blocks. In a public BC, all transac-
tions are visible to all participants. Examples of public BCs are
Ethereum, Bitcoin, and Litecoin. On the other hand, a private BC is
permissioned, allowing access to only those who are granted the
right of access by the central authority [32]. Examples of private
BCs are Hyperledger (HL) and Ripple. While a public BC has longer
validation times for new data compared to a private BC, a private
BC is more vulnerable to malicious actors. Consortium and hybrid
BCs stand in the middle. A consortium BC is permissioned and
governed by a group of organizations, thus having higher levels
of decentralization and security compared to a private BC [33].
A hybrid BC is managed by a single organization, and uses both
private and public BCs. For example, a public BC can be used to
verify the data stored in between the ledgers of a private BC. An
example of a hybrid BC is XinFin, built on Ethereum as a public BC
and Quorum as a private BC. Depending upon the requirements
of the target application, one should select a suitable type of BC
platform for the deployment of BC-Apps [34].

BC can use SCs, which are securely stored on the BC and
are executed manually (via a transaction invoking a function
in it) or automatically (when a precondition evaluates to true).
Specifically, SCs allow for decentralized automation by facilitating
the verification and enforcement of conditions written in the
underlying contract [35]. In this way, SCs serve as policies that su-
pervise a transaction. For instance, an SC can define a set of rules
for an individual’s travel insurance, which trigger’s the contract
execution when a traveling carrier (such as a flight or train) is
experiencing a delay by more than a fixed amount of time. In par-
ticular, an SC consists of a set of instructions or operations written
in special programming languages (e.g., Solidity and Go Lang), and
it gets executed upon the fulfillment of predefined conditions.
The key property that makes SCs of great use in many real-
world applications is their ability to eliminate the requirement
of a trusted third party in multiparty interactions [36]. Parties
can participate by performing secure peer-to-peer transactions
over BC without placing their trust in outside parties that are
generally used to ensure that all parties fulfill the contractual
obligations. Currently, the largest BC platform for SC deployment
is Ethereum [35]. It uses Solidity, a high-level scripting language
that is specifically designed for writing SCs [8].

Besides using SCs to eliminate the requirement of a trusted
third party in multiparty interactions, there are other benefits
that SCs provide. These include data fusion [37], consent man-
agement, fine-grained access control, and reduced bureaucracy



D. Marijan and C. Lal

Cross-institutional data sharing

Data availability and fault tolerance

. ] Decentralization
No centralized authority (user control)

Network scalability

Tamper-resistance and data integrity

Nonrepudiation and provenance

— Immutability
Accountability

Auditing

Trust in the network

Transparency
Consensus-driven

Security via validation and verification

Chain-of-custody via ordering J

BC benefits
Managed data history

Transparency | provenance

Audit support

Legitimacy or authenticity

System efficiency through automation

Interoperability and data fusion
- Smart contracts
Automation of consent management

Fine-grained access and privacy control

System responsiveness by minimizing waiting time

Finality
Transaction irreversibility

Fig. 1. Key BC features.

and expenses. Moreover, BC with its features such as tamper-
resistance, decentralization, and transparency, provides a much-
needed platform for secure deployment and execution of SCs.
Therefore, in recent years, there has been a rapid increase in
the popularity of SCs [38]. However, similar to other software
programs, SCs may contain bugs leading to vulnerabilities. Since
BC technology along with SCs is mainly used in either finan-
cial applications (e.g., banking, insurance, and trade of goods
or services) or data-sensitive applications (e.g., Healthcare and
smart-grids [39]), these bugs can be exploited by malicious enti-
ties for financial gains or leaking sensitive data. Thus, it is vital to
perform rigorous testing to ensure the development of bug-free
SCs. Further, unlike traditional software, it is difficult to update an
SC once it is deployed. Therefore, it is critical to verify SCs before
their deployment to avoid serious adverse consequences.

Fig. 1 shows the key features provided by BC platforms used
in various applications. These features include decentralization,
immutability, consensus (e.g., chain-of-custody via ordering [40]),
provenance, SCs, and finality [41]. These inherent features are the
reason behind the rapid increase in the usage of BC and SC in
various domains. However, as these technologies are new and
immature, there is a need for rigorous testing solutions to ensure
their correctness for use in any real-world application.

2.2. BC components

To better understand the interaction interfaces and compo-
nents that require testing in BC-Apps, we provide a generic
framework of BC-Apps in Fig. 2. The figure shows different BC
components within a BC-App that need to be tested to ensure
the BC-App security and overall performance. At the Application
Layer of BC-Apps, there are typically APIs enabling the integration
with different data sources, and APIs for accessing and interact-
ing with BC components. These APIs need thorough testing for

Computer Science Review 45 (2022) 100492

Application Layer D
Integration API
APIs for BC access ‘ ‘ APIs for data access ‘
[ Smart Contract Layer ’ Smart Contracts ‘
Platform Layer \

SC Execution Engine Database Storage System ‘

Transaction Ledger

Centralised (e.g. MongoDB) ‘

|
|

Decentralised (IPFS) ‘
P2P Network

| |
I Consensus Algorithms l
| s

Fig. 2. Generic reference architecture for BC-Apps showing BC components that
require testing.

ensuring their correct functionality. Specifically, the APIs used
to access data storage systems should be tested for security
(i.e., data protection from malicious or unauthorized entities), and
performance (i.e., low-latency to data access operations).

At the Smart Contract Layer, there are SCs that require thor-
ough testing to detect different types of vulnerabilities and func-
tional bugs. SC testing may use different testing types and meth-
ods, and it may be conducted for different purposes. For instance,
functional testing of SCs needs to be done to identify bugs and to
check the implemented business logic correctness. Security test-
ing of SCs needs to detect vulnerabilities that may be exploited
by a malicious entity after SC deployment. Performance testing of
SCs could be done to check their execution and time complexity,
leading to code optimizations.

Furthermore, at the Platform Layer, BC-Apps include a set of
core BC components such as Peer-to-Peer (P2P) network, consen-
sus protocols, transaction ledger, and storage systems (including
both on-chain and off-chain), which should be thoroughly tested
using different types of testing techniques. Since a large num-
ber of BC-Apps are data-driven applications, i.e., data acts as
an asset, in domains where data volume is huge (e.g., medical
data sharing and managing a digital forensics evidence), the off-
chain data storage solutions are preferred due to performance and
compliance reasons. Therefore, in such BC-Apps, to ensure secu-
rity (i.e., data protection) and good performance (i.e., low access
latency), testing of data storage solutions and their interactions
with other BC components and with application users should be
performed.

We further detail different types of testing required for BC
components at and across different layers of BC-Apps in Fig. 4
and Section 3.

2.3. Blockchain-based applications

In this paper, by BC-App we mean a software application
that uses BC technology. In contrast, by a traditional software
application we mean an application not using the BC technology.

While BC-App benefits from several features provided by BC,
deploying BC-Apps can have specific challenges, such as low scal-
ability, high energy consumption, integration problems, privacy,
and security issues. In particular, the BC technology used for
an application does not work in isolation. It must interact with
various components of the application infrastructure in which it
is being deployed. Therefore, before deploying a BC-App, we must



D. Marijan and C. Lal

perform systematic testing and verification, to ensure a secure
and efficient interaction between the BC components and the
application entities.

In some business applications using BC, BC components are
considered as an add-on technology in existing business pro-
cesses. This requires verifying all integration points between the
BC and the application. However, there has been a shift towards
the inclusion of BC from the start of BC-Apps development, rather
than developing them in isolation followed by the integration
with BC. Therefore, we can expect the emergence of multiple
APIs to facilitate the development of BC-Apps. Consequently, it
is important to understand and test such APIs, to ensure proper
integration.

2.4. Software verification and validation

Software V&V is a process performed during software engi-
neering, aimed to check whether a software system meets its
requirements, thus fulfilling its intended purpose. While verifi-
cation aims at checking whether the software is functioning cor-
rectly, validation aims at checking whether the software satisfies
customer’s needs. One of the most commonly used techniques
for verifying that a software works correctly is software testing.
In general, the primary objective of software testing is detecting
software errors (aka bugs).

The practice of software testing can be classified along differ-
ent dimensions. According to where it happens in the software
development life-cycle, there are four major levels recognized:
unit, integration, system, and acceptance testing. Unit testing aims
to ensure that individual software code units are working cor-
rectly. Integration testing is performed to evaluate whether mul-
tiple units are working correctly when integrated. System testing
analyzes the whole system’s behavior, evaluating whether it is
compliant with its specified requirements. Finally, acceptance
testing tests whether the software works for its users. Both the
complexity and cost of testing increase while moving from unit
testing to acceptance testing. This is because unit tests are more
easily automated compared to other types of tests.

According to whether the software is executed or not during
analysis, testing can be static or dynamic. Static testing (aka static
analysis) does not involve software execution, but performs the
checking of source code structure, syntax, and data-flow. Typical
approaches to static analysis include inspections, reviews, and
walkthroughs. Static analysis can be used with formal verification
methods for proving the correctness of software. Formal verifica-
tion normally requires a formal specification of software, which
is used to provide formal proof of the software’s correctness.
The most used techniques to carry out formal verification are
theorem proving [42] and model checking (also called property
checking) [43]. Theorem proving requires well-known axioms
and basic inference rules which are used to derive every new
theorem or lemma that is needed for the proof. Since it applies
to all systems that can be expressed mathematically, theorem
proving is considered a flexible verification method. Moreover,
it can be interactive, automated, or a hybrid of the two. On the
other hand, model checking uses specific software to verify if a
system’s finite-state model works as per its formal specification
and correctness properties. Model-checking software first takes
input from a user, including the finite state model of the System
Under Test (SUT) and the set of formally specified properties
that it should have. Second, it checks if all the states satisfy the
specifications. Moreover, authors in studies like [44], and [45]
show the usage of formal verification methods for the correctness
verification of BC consensus algorithms. Dynamic testing, on the
other hand, involves software execution, while feeding inputs
and producing outputs. Test cases are typically developed by

Computer Science Review 45 (2022) 100492

specifying test inputs and outputs, and the goal of testing is
to check whether the actual outputs conform to the expected
outputs.

Finally, according to the testing objective, we distinguish func-
tional and non-functional testing. Functional software testing aims
to evaluate whether the software is compliant with specified soft-
ware functional requirements. Functional testing techniques can
be further classified as white-box testing and black-box testing.
White-box testing aims to verify the internal structure of the
software and is usually performed at the level of unit testing.
Specific white-box testing techniques include API testing and
mutation testing with fault injection. Black-box testing aims to
examine the functionality of the software without having any
knowledge about the software’s internal working. It answers the
question of “what” the software does, not “how” it does it. Black-
box testing is usually performed at the level of integration testing,
system testing and user acceptance testing. Typical black-box
testing techniques include model-based testing, fuzz testing, pair-
wise testing, boundary value analysis, equivalence partitioning,
and exploratory testing. Non-functional testing aims to examine
non-functional requirements of the software, for example, how
does the software perform under unforeseen (at design time)
circumstances, or how does the software recover from failures.
Some types of non-functional testing techniques include security
testing, performance testing, or usability testing. Security test-
ing aims at detecting threats, vulnerabilities and risks within
the software, to prevent attacks from intruders. Performance
testing assesses how the software responds in conditions of a
given workload. Typical types of performance testing include load
testing, performed to assess the response of software under a
given load, stress testing, performed to assess the response of
software under upper limits of capacity, and endurance testing,
performed to assess software response under continuous load.
Usability testing checks how easily the software can be used by
its users, with the overall goal to improve user experience. For a
detailed description of the software testing field (both traditional
software and software integrating machine learning), we point
interested readers to other research work, such as [46-48].

3. Taxonomy of blockchain verification and validation

We propose a taxonomy of BC-App V&V, broadly classified into
SC Testing, Platform Testing, and Application Testing, illustrated in
Fig. 3. We further discuss different testing types and methods
belonging to these three main classes in Sections 4-7.

3.1. Smart contract testing

SC Testing aims to discover bugs and vulnerabilities in SC code.
If SC source code is analyzed in a non-runtime environment, such
analysis type is called static analysis, while if SCs are checked
at run-time, it is called dynamic analysis (verification). Orthog-
onal with the testing type (static vs. dynamic), SC Testing can
utilize varying testing methods, such as formal methods, machine
learning, search-based, or model-based methods. Furthermore, SC
testing may aim to achieve functional compliance or non-functional
compliance. Testing for functional compliance addresses the func-
tional correctness of SCs with respect to requirements specifica-
tion. Testing for non-functional compliance focuses on detecting
issues such as buffer overflows, run-time safety, command injec-
tion, cross-site scripting, and security vulnerabilities present in
SCs.



D. Marijan and C. Lal

Symbolic execution

Control flow graph '\ Static analysis
Static single assignment /

Fuzzing

- Dynamic verification
Mutation

Theorem proving

Formal methods
Model checking
Machine learning Method

Search-based
Model-based

SC Testing

Functional testing
Objective

Non-functional testing

Platform Testing

Application Testing

Computer Science Review 45 (2022) 100492

Benchmarking
Live monitoring
Performance testing Experimental analysis
Simulation
Type Analytical modeling

Security testing

APl/Interface testing

SC execution engine

Transaction ledger
Component -

Consensus algorithms

P2P network

Traditional software testing

Fig. 3. Blockchain verification and validation taxonomy.

3.2, Platform testing

The end-to-end Quality of Service (QoS) of BC-Apps is highly
affected by the capabilities of the underlying BC platform. Testing
these platform capabilities can be broadly classified into Per-
formance Testing, Security Testing, and APl & Interface Testing.
Performance Testing focuses on benchmarking BC platforms on
various parameters such as network latency, transaction process-
ing speed (including performance bottlenecks in a production
environment), transaction sequence at each node, and responses
needed from SCs. Security Testing focuses on the security vul-
nerabilities in BC platforms, including network security, cross-site
scripting, access control to the BC platform. API & Interface Test-
ing focuses on API security, discovery and performance testing.
These testing types are orthogonal with the platform Components,
which include SC execution engine, transaction ledger, consensus
algorithms, P2P network and communication protocols.

Furthermore, Platform Testing includes the testing of data
storage system illustrated in the BC-Apps architecture in Fig. 2,
through the testing of some of the Platform Layer components.
In particular, BC-Apps could have on-chain or off-chain storage
systems. The security of on-chain data depends on the proper
functioning and security of other BC components, such as trans-
action ledger, P2P network, and consensus algorithms, as these
platform components ensure properties such as data integrity,
data availability, and data provenance. While the testing of off-
chain storage systems is done using traditional database storage
systems testing tools/methods.

3.3. Application testing

Applications developed on top of a BC platform can be consid-
ered as traditional software applications. Herein, we do not aim
to review testing techniques for traditional software applications
(applications not using BC technology), since there already exist
many such studies [49-52].

3.4. Layer, inter-layer, and cross-layer testing of BC-Apps

Fig. 4 illustrates the abstraction layers in a BC-App architecture

showing relevant BC components at each layer and the types of
testing at and across the layers. For the sake of clarity, we further
break down the Platform Layer into Data Layer, Consensus Layer,
and Network Layer.
Performance and security testing are typically performed across
all the layers of a BC-App. Furthermore, unit testing is performed
at each layer, testing individual BC components such as consensus
algorithms or communication protocols. In the case of SCs, we call
this type of testing SC Testing. Finally, API and Interface testing
are performed during the integration of components belonging to
different layers.

DApps (e.g., Escrows, Auctions, Data provenance, and
Notaries), generic application services (e.g.,
Crypto-tokens & wallets, Exchanges, identity
management, and secure-timestamping)

Application layer

<----->

A

A
SCs, chaincode, languages (e.g., Solidity, and Go),
execution environment (e.g., Docker, EVM, and
compilers)
Contract and execution layer

<--=-=>

A
Platform Layer v

Data models (i.e., blocks and transactions), indexing,
structures (e.g., Merkle, and hashing), storage system

Data layer

< -->

A
\4
Distributed consensus algorithms (e.g., PoW, PoS,
PBFT, Solo, and Kafka)
Consensus layer

<--=->

A

Y
Peer-to-peer communication protocols (e.g., Kademlia,
and Gossip), peers, distributed systems

Network Layer

o — — — — o — — — — ¢ — —

<-->

i £ = > Performance and Security Testing
<« - --> Unit Testing (e.g.,SC Testing)

5 T » APl and Interface Testing

Fig. 4. Layered architecture for BC-Apps, illustrating the types of testing at and
across the layers.

4. State of the art: Smart contract testing

The presence of bugs and vulnerabilities (e.g., buffer overflows,
command injection, and cross-site scripting) in SCs after their
deployment on a BC network causes the following two major
problems: (i) wastage of resources (e.g., gas and computing hard-
ware) and delay in transaction processing, due to the presence
of bugs in SCs, and (ii) security threats caused by malicious en-
tities by exploiting the vulnerabilities present in SCs. Both these
problems may lead to financial and non-financial (e.g., sensitive



D. Marijan and C. Lal

data) asset losses in BC-Apps. Moreover, such issues decrease the
users’ trust in BC, which could further harm the reputation of
the organization using the BC-Apps. Therefore, it is important
to provide tools and techniques to discover and fix SC bugs and
vulnerabilities before deployment.

4.1. Static analysis

SC testing techniques based on static analysis analyze SC
source code structure, syntax, and data-flow without source code
execution. Next, we discuss popular SC static analysis tools (see
Tables 2 and 3).

Oyente [27] is the first symbolic execution tool for Ethereum
SCs that automatically detects popular vulnerabilities like trans-
action order dependency and reentrancy. Oyente directly works
with Ethereum Virtual Machine (EVM) bytecode without needing
to access the high-level representations (e.g., Solidity, Serpent).
The tool was evaluated on 19366 SCs extracted from the first
1,460,000 blocks in the Ethereum network, and it detected 8833
SCs potentially having documented bugs. However, Oyente only
aims to detect potentially vulnerable contracts, leaving the full-
scale false positive detection as future work. Osiris [53] is another
tool based on Oyente, which focuses on detecting integer-related
bugs, such as integer overflows. Moreover, the tool combines
taint analysis with symbolic execution to reduce the number of
false positives. Similarly, authors in [54] propose Mythril, a tool
for security analysis of Ethereum SCs by using concolic and taint
analysis and control-flow checking.

ZEUS [55] is an automated SC verification framework that
uses abstract interpretation and model checking, and accepts
user-provided policies. First, it inserts policy predicates as as-
sert statements in the SC code, then it translates the code into
an intermediate Low-Level Virtual Machine (LLVM) representa-
tion, and finally, it verifies ascertain assertion violations. Another
tool called Securify [56] uses static analysis to extract seman-
tic information about SC bytecode, using a dependency graph
of the SC, and then checks safety pattern violations. The tool
allows adding new patterns created using a designated Domain-
Specific Language (DSL), thus aiding flexibility. SmartCheck [57]
is a static analysis tool that first changes Solidity code into an
XML-based intermediate representation, which is then examined
against XPath patterns to find potential security, operative, op-
erational, and development bugs. Other tools, Gasper [58] and
GASTAP [59], use static analysis to identify potential code opti-
mizations in SCs both at high-level and a bytecode instruction
level, while mainly focusing on dead code and loop optimiza-
tions. Other popular static analysis tools are Vandal [60] and
EtherTrust [61].

Slither [62] is a static analysis tool for automated vulnera-
bility detection and code optimization detection for SCs. It deals
with real-world contracts and aims to provide rich information,
speed, robustness, and an adequate tradeoff between detection
rate and false positives. It also supports users to improve their
understanding of SC code by assisting them with code review,
and by flagging bad coding practices. Moreover, it uses program
analysis techniques such as dataflow and taint tracking to extract
and refine the information, and it performs lexical and syntactical
analysis on Solidity code. Authors in [63] propose NPChecker,
which uses static analysis along with code instrumentation for
detecting non-deterministic payment bugs in SCs. The novelty of
the tool lies in the support to search bugs beyond the predefined
vulnerability patterns.

Ethainter [64] is a security analyzer for SCs. It checks in-
formation flow with data sanitization in SCs to identify com-
pound attacks that include an intensification of tainted informa-
tion through many transactions, leading to extreme violations.

Computer Science Review 45 (2022) 100492

The Ethainter implementation is highly scalable, shown by its
application to the entire set of unique SCs around 38M Line
of Code (LoC) on the Ethereum BC in 6 h. The evaluation re-
sults show that using automatic exploit generation (e.g., killing
about 800 SCs on the Ropsten network) and manual review,
Ethainter obtains high accuracy of 82.5% real warnings for end-
to-end vulnerabilities. Moreover, Ethainter provides an adequate
tradeoff between code coverage and false positives. Finally, the
authors in [65] propose SolidiFI, an automated tool that uses
a systematic approach to evaluate existing static analysis tools
to detect SC vulnerabilities. First, SolidiFI allows bug injection
(i.e., code defects) at different SC locations to introduce prede-
fined security vulnerabilities. Second, it analyzes the resulting
buggy SCs and collects the bugs that remain undetected (along
with false positives) by the analyzed tools. SolidiFI evaluates six
static analysis tools: SmartCheck, Manticore [26], Oyente, Secu-
rify, Mythril, and Slither, using 50 SCs injected with 9369 distinct
bugs. The evaluation results show that several bug instances
remain undetected by these tools despite their claims of detecting
such bugs. Moreover, all the tools list several false positives.

VERX [74] is the first automatic verifier which can prove
the temporal safety properties of Ethereum SCs. VERX’s design
consists of combining the following three ideas: (i) reachability
checking via reduction of temporal safety verification, (ii) calcula-
tion of particular symbolic states within a transaction by using an
efficient symbolic execution engine, and (iii) delayed abstraction,
which approximates symbolic states into abstract states at the
end of transactions. Based on the evaluation results obtained by
considering 12 real-world Ethereum projects, it is determined
that VERX automatically proves 83 temporal safety properties of
SCs, demonstrating its practicality. Moreover, the experimental
results conclude that VERX is a practical framework for testing
custom functional properties of SCs. However, it is challenging
to scale the verification to a large number of SCs. In particular,
while particular specifications of SCs are mandatory to prove
its customized functional properties [74], general specifications
applicable to large classes of SCs would facilitate verifying SCs
in a group. Ideally, the specifications of given SC classes can be
written once and reused to test SCs of each class. Indeed, general
specifications need to be adequately weak to be mapped with
a class’s functional properties. Furthermore, genuinely general
specifications need to be free of any particular SC’s state variables
because other SCs belonging to the same class typically differ in
name, type, and number. However, such general specifications are
not well suited for existing verification tools such as VerX [74]
and Solc-Verify [71], which assume that input SCs are annotated
with expressions that refer to state variables (e.g., pre-conditions
and post-conditions). Therefore, it poses a scalability issue since
deriving such annotations for each SC from class-wide general
specifications can be a labor-intensive process. Recently, authors
in [22] introduce an automated method to check unannotated SCs
against specs ascribed to a few manually-annotated SCs. Specif-
ically, a concept of behavioral clarification, which signifies the
inheritance of functional properties and an automated approach
to inductive proof by synthesizing simulation relations on the
states of related SCs is contributed.

EClone [68] is a clone detector tool for Ethereum SC. The au-
thors introduce the concept of SC birthmark, which is a semantic-
preserving and computable representation for SC bytecode. The
tool detects clones by computing statistical similarity between
two SC birthmarks. EClone has been evaluated on Ethereum
SC and has shown the ability to accurately identify clones. ES-
hield [69] is an automated security improvement tool that pro-
tects SC against reverse engineering. The idea behind the tool
is that by interfering with identifying the connections between
basic blocks it is possible to increase the difficulty of recovering



D. Marijan and C. Lal

Table 2
SC static analysis tools.

Computer Science Review 45 (2022) 100492

Tool

Problem addressed

Benefits

Analysis type, method,
objective

Evaluation workload?®

Slither [62], (2019)

Automated vulnerability
detection, code
optimization, code
review

Speed, robustness, good
tradeoff between
detection rate and false
positives

Static analysis, formal
methods, non-functional
compliance

1002 SCs, including
Decentralized
Autonomous
Organization (DAO) [66]
and SpankChain [67]

SmartCheck [57],
(2018)

Vulnerability detection

Extensible, scalable and
fast

Static analysis, formal
methods, non-functional
compliance

4600 verified contracts

Mythril [54],
(2018)

SC security analysis

High accuracy due to
exploration of all
execution paths

Symbolic execution,
control flow graph,
formal methods,
non-functional
compliance

N/A

Securify [56],
(2018)

Security analysis

Scalable, Captures critical
violations, low false
positive, high code
coverage

Symbolic execution,
formal methods,
non-functional
compliance

Uses more than 18 000
real-world SCs Etherscan

Simulation-based
verification (SBV)
[22] (2020)

Vulnerability detection

Large scale SC
verification

Static analysis, formal
methods, non-functional
compliance

13 SCs

NPChecker [63],
(2019)

Detecting
non-deterministic
payment bugs

Bug search beyond
predefined vulnerability
patterns

Static analysis, model
checking, functional
compliance

30K online contracts
(3075 distinct) from
mainnet

EClone [68],
(2019)

Vulnerability detection,
deployment optimization

Accurate identification of
clones

Symbolic execution,
formal methods,
non-functional
compliance

Mainnet Etherscan

EShield [69],
(2020)

Security enhancement
for protecting against
reverse engineering

Protects against three
different reverse
engineering tools with
little extra gas cost

Control flow graph,
formal methods,
non-functional
compliance

20266 SCs

Ethainter [64],
(2020)

Checks information flow
with data sanitization

Detects composite
information flow
violations, scalable,
provide good tradeoff
between precision and
completeness

Control flow graph,
model checking,
non-functional
compliance

882000 from Ropsten
testnet, and small
random sample of
contracts from Ethereum
mainnet (240K)

SolidiFI [65],

Evaluation of six static

Automated, systematic

Static analysis, formal

Bugs are injected into

(2020) analysis tools for finding methods, non-functional source code of 50 SCs
SC security bugs compliance
Vulnerability ML-based detection of Time-efficient compared Static analysis, machine 1000 SCs

detection (VD)
[70], (2019)

security vulnerability
patterns

to traditional static code
analyzers

learning, non-functional
compliance

Solc-Verify [71],
2020

Source-level formal
verification

Discovers non-trivial
bugs, proves correctness,
allows modular
verification, scalable

Static analysis, formal
verification,
non-functional
compliance

37531 SCs from
Etherscan

SmartShield [72],
(2020)

Bytecode rectification,
makes SCs more
gas-friendly and secure
against common attacks

Scalability, correctness,
cost reduction,
gas-friendly

Static analysis, formal
methods, non-functional
compliance

28,621 real-world buggy
contracts

Oyente [27],
(2016)

Security testing

Bulk analysis, discovers
new classes of security
bugs in Ethereum SCs

Symbolic execution,
formal methods,
non-functional
compliance

19366 SCs from
Ethereum BC

MPro [73], (2019)

Detection of depth-n
vulnerabilities

Scalability, based on
Mythril-Classic and
Slither tools

Symbolic execution,
formal methods,
non-functional
compliance

100 real-world SCs

4All tools are evaluated on Ethereum BC platform.

CFG. Eshield has been evaluated on more than 20K SCs showing
that all the protected bytecode cannot be decompiled using

existing reverse engineering tools.

Authors in [70] introduce a machine learning (ML)-based
tool for detecting the patterns of security vulnerabilities in SCs.

The tool uses static code analysis to label SCs that were veri-
fied on the Ethereum platform. The experimental results show

good prediction performance with the average accuracy of 95%.

SmartShield [72] is another tool for detecting vulnerable SCs.
In addition to vulnerability detection, it rectifies such SCs by



D. Marijan and C. Lal

Table 3

SC static analysis tools continued.

Computer Science Review 45 (2022) 100492

Tool

Problem addressed

Benefits

Analysis type, method,
objective

Evaluation workload?®

SCRepair [25], (2020)

Pre-deployment analysis,
automated bug repair

Gas-aware, generates
patches for vulnerable
SCs

Symbolic execution,
search-based methods,
non-functional compliance

38225 SCs from
Etherscan

VerX [74], 2020

Verification of SC
functional properties

Fast, less-expensive

Symbolic execution, formal
methods, functional
compliance

12 real-world projects
(138 contracts), 83
safety properties

MAIAN [75], (2018)

Finds vulnerabilities
from SC bytecode

Effective, practical

Symbolic execution, formal
methods, non-functional
compliance

9825 SC from Etherscan

Osiris [53], (2018)

Finds integer bugs in SC

Low false positives

Symbolic execution, formal
methods, non-functional
compliance

More than 1.2 million SC

ZEUS [55], (2018) Verifies correctness and Zero false negatives and Symbolic execution, model 22400 SC
validates fairness of SC low false positives checking, non-functional
compliance
Gasper [58], (2017) Locates gas-costly Discovers 3 Symbolic execution, 4240 SC

patterns

representative gas-costly
patterns in SC bytecode

search-based,
non-functional compliance

GASTAP [59], (2019)

Automatic gas analyzer
for SC

Effective, automatically
infers gas upper bounds

Symbolic execution, formal
methods, non-functional
compliance

More than 29000 SC

Vandal [60], (2018) Security analysis for Fast, robust, effective Symbolic execution, formal 141000 SC
Ethereum SC methods, non-functional
compliance
EtherTrust [61], Sutomated static Practical, scalable Static analysis, theorem 148 SC

(2018)

reachability analysis for
EVM bytecode

proving, non-functional
compliance

2All tools are evaluated on Ethereum BC platform.

Table 4
SC hybrid analysis tools.

Tool

Problem addressed

Benefits

Analysis type, method,
objective

Evaluation workload*

ETHPLOIT [76], (2020)

Automated exploit
generation

Lightweight in solving
unsolvable constraints, good
coverage of exploits

Static analysis, fuzzing,
formal methods,
non-functional compliance

45,308 SCs from
Etherscan

CONFUZZIUS [24], 2020

Bug detection with
hybrid fuzzing

Addresses environmental
dependencies

Symbolic execution, fuzzing,
search-based methods,
functional compliance

27 real-world SCs
collected from 17
GitHub repositories

ContractFuzzer [77]
(2019), [78] (2018), [23]
(2018)

Fuzz testing of SCs

Setects real-world
vulnerabilities, addresses
path explosion problem,
low false positives

Static analysis, dynamic
verification, formal
methods, non-functional
compliance

6991 real SCs from
Etherscan

SolAnalyser [79], (2020)

Automated security
analysis

Detects more vulnerabilities
than Oyente, Securify,
Maian, SmartCheck and
Mythril tools, scalable, low
false positives

Static analysis, dynamic
verification, formal
methods, non-functional
compliance

1838 SCs, and 12866
mutated SCs

4All tools are evaluated on Ethereum BC platform.

securing their EVM bytecode. The tool can detect and rectify
several security-related bugs, including state changes after exter-
nal calls, missing checks for out-of-bound arithmetic operations,
and missing checks for failing external calls. SmartShield was
evaluated on more than 28K buggy SCs on Ethereum showing
that 91.5% SCs were automatically fixed by SmartShield. Authors
in [73] introduce MPro, a tool that combines static and sym-
bolic analysis to analyze depth-n vulnerabilities in SCs for the
purpose of SC testing. The benefit of combining symbolic and
static analysis is better scalability compared to symbolic analysis
alone. Furthermore, such an approach avoids the problem of false
positives often present for static analysis tools. MPro is evaluated
on 100 SCc showing that it is n-times faster than Mythril-Classic

for detecting depth-n vulnerabilities, without compromising de-
tection capability. SCRepair [25] is a general-purpose automated
and gas-aware SC repair tool that uses genetic programming to
search for a set of edits to the SC that fixes a given vulnerability.
In addition, the authors introduce a gas dominance level for SCs
which is useful for comparing the quality of patches based on
their runtime gas. MAIAN [75] is a tool for identifying and veri-
fying vulnerabilities on trace properties (e.g., identifying SCs that
endlessly lock funds or leak them to random users) of Ethereum
SCs during runtime, using inter-procedural symbolic analysis and
testing. MAIAN labels the malicious SCs into three categories,
namely greedy (i.e., lock funds indefinitely), prodigal (i.e., releases
funds to arbitrary accounts instead of legitimate owners), and



D. Marijan and C. Lal

Table 5
SC dynamic verification tools.

Computer Science Review 45 (2022) 100492

Tool

Problem addressed

Benefits

Analysis type, method,
objective

Evaluation workload?®

SOCRATES [80],
(2020)

Test-case generation

Highly configurable

Dynamic verification,
formal methods,
functional compliance

1905 real SCs from
Etherscan

Test coverage criteria
(TCC) [81] (2019)

Test coverage

Covers complete
transaction basic path
set and bounded
transaction interactions

Dynamic verification,
formal methods,
functional compliance

Pool-Shark application
consists of 12 SCs

Deviant [82], (2019)

Mutant generation for
Solidity SC

Easy to use

Dynamic verification,
formal methods,
functional compliance

3 projects with a total of
67 contracts

MuSC [83], (2019)

Mutation-based testing
for SCs

Robust, novel mutation
operators for Solidity,
test report generation

Mutation, formal
methods, functional
compliance

4 real-world Ethereum
DApps (SkinCoin,
Smartldentity, AirSwap
and CryptoFin)

Solythesis [84],
(2020)

Automated runtime
detection of SC invariant
violations

Provides
source-to-source Solidity
compiler, higher code
coverage, low overhead

Dynamic verification,
formal methods,
functional compliance

23 SCs from ERC20,
ERC721, and ERC1202
standards

Echidna [85], (2020)

Test generation for
discovering infractions in
assertions and custom
properties

Fuzzing based on custom
user-defined properties,
easy-to-use, fast

Fuzzing, formal methods,
functional compliance

VeriSmart and Tether
BCs and their token
contracts

SoliAudit [86] (2019)

Vulnerability detection

Detects 13 types of
vulnerabilities, uses
solidity machine code as
learning features

Fuzzing, machine
learning, non-functional
compliance

18k SCs, 14,383 training
samples and 3596 test
samples

ReGuard [87], (2018)

Bug detection (i.e.,
Reentrancy Bugs), bulk
analysis of SCs

Allow inputs as bytecode
and solidity code

Dynamic verification,
formal methods,
functional compliance

5 SCs

SolUnit [88], (2019)

SC unit testing

Fast, testing through the
reuse of SC deployment

Dynamic verification,
formal methods,
functional compliance

5 applications

EthRacer [89], (2019)

Detection of
event-ordering (EO) bugs

Allows input as SCs
before and after
deployment on BC

Fuzzing, formal methods,
functional compliance

10 000 SCs from Solidity
source code repository
and Ethereum BC

ModCon [90], (2020)

Model-based testing for
SC

Customizable testing,
test prioritization

Dynamic verification,
model-based testing,
functional compliance

Credit Management
Application (CMA) SC
application from WeBank

and BlindAuction SC

2All tools are evaluated on Ethereum BC platform.

suicidal (a random account kills the SC or forcibly executes the
suicide code).

4.2. Dynamic verification

Since dynamic verification checks a program code at runtime,
it can replicate an attacker looking for vulnerabilities in the code
under test. This can be achieved by feeding malicious or anony-
mous inputs to the specific SC functions. Dynamic verification
can also validate the findings of a static code analyzer. Next,
we discuss some popular dynamic verification methods along
with some hybrid approaches that use both dynamic and static
analysis (see Tables 4 and 5).

Authors in [82] present Deviant, a mutation-based security
testing tool for Solidity SCs. Deviant automatically produces mu-
tants! for a target SC and runs them with the predefined test-
cases to assess the mutants’ effectiveness. To reproduce several
faults in Solidity SCs, Deviant uses mutation operators for all the
distinct features of Solidity according to its fault model. The sim-
ulation results acquired by running Deviant to test three Solidity-
based projects show that these tests have not yet achieved large

1 Changes in software code expected to induce errors.

10

mutation scores. The results further show that a test suite compe-
tent for the coverage statement and branch criteria of Solidity SCs
does not surely give a high-level assurance of code quality. Such
measurements advise Solidity developers to write more effective
tests to deliver trustworthy code and decrease security risks.
EthRacer [89] is an automatic security analysis tool that runs
on top of Ethereum bytecode and checks if changing the order of
input events, i.e., event-ordering (EO) of SC results in differing
outputs. These EO bugs are linked to the dynamic ordering of
SC events, i.e. function calls, and could facilitate possible exploits
of millions of dollars worth of cryptocurrency. The authors pro-
pose a concurrent program analysis technique to formulate a
generic class of EO bugs that arise due to long permutations of
such events. The authors show that the technical challenge in
detecting EO bugs in SCs (even in simple ones) is the intrinsic
combinatorial dispute in the path and state-space analysis. The
experimental outcome shows that most SCs do not manifest
varieties in outputs under reordered input events, which means
they are EO-safe. EthRacer analyzes 10000 SCs, out of which it
flags 8% for vulnerabilities. Moreover, when SCs do show distinct
outcomes upon reordering, it is observed that they are likely
to have an unintended behavior most of the time. The com-
parison with Oyente reveals that EthRacer discovers all 78 true
EO bugs that Oyente finds, along with 596 bugs that Oyente



D. Marijan and C. Lal

fails to find. Authors in [24] propose a hybrid fuzzer that also
uses symbolic execution called CONFUZZIUS. The tool aims to
provide higher code coverage and detect more bugs using the
evolutionary fuzzing and constraint solving method. In partic-
ular, evolutionary fuzzing is applied on the shallow parts of
SC, while constraint solving generates inputs that meet difficult
conditions that restrict the evolutionary fuzzing from investigat-
ing deeper paths. Moreover, data dependency analysis efficiently
generates sequences of transactions to create specific SC states
that may hide bugs. CONFUZZIUS uses a more efficient fuzzing
approach than EthRacer, because instead of using an entirely ran-
dom transaction order, it uses read-after-write data dependencies
between transactions. Thus, it generates quicker and more useful
combinations of transaction order dependencies.

In the scope of dynamic verification, researchers have used
fuzzing-based methods for runtime testing of SCs. However, SC
fuzzing presents some unique challenges that are unusual in the
traditional fuzzer development approach [85]. More specifically,
a considerable amount of engineering effort is needed to simu-
late the semantics of BC execution and the transaction sequence
generation [91]. Furthermore, there is a challenge of finding SC
inputs that produce disordered execution times [92]. In BCs such
as Ethereum, where a certain amount of gas is needed to execute
a transaction, SC design inefficiency can be costly, and malicious
inputs can lock SCs by making all transactions require more gas
than needed. Therefore, defining a quantitative upper bound on
the gas usage is a critical fuzzer feature, besides more tradi-
tional correctness restraints. To address the issues mentioned
above, the authors in [85] propose a security analysis tool called
Echidna, which is configurable and supports high code coverage.
Echidna works in two steps. First, it leverages a static analysis
framework called Slither [62] to compile SCs and check them for
constants and functions that directly handle Ether (ETH). Second,
the fuzzing starts with an iterative method producing arbitrary
transactions using the following (i) Application Binary Interface
(ABI) given by the SC, (ii) critical constants defined in SC, and (iii)
any previously collected sets of transactions from the corpus. A
counterexample is automatically minimized upon a property vio-
lation to report the smallest and simplest transactions that trigger
the failure. Optionally, Echidna can also provide a transaction set
to maximize the coverage over all SCs under test.

ContractFuzzer [23] is an accurate and comprehensive hybrid
tool that uses static analysis and a fuzzing-based approach for de-
tecting seven types of Ethereum SC vulnerabilities. It contains an
offline EVM instrumentation tool that performs instrumentation
of EVM, so that an online fuzzing tool can oversee the execution
of SCs to get the required information for vulnerability analy-
sis. ContractFuzzer also provides a set of new test oracles that
can accurately detect real-world vulnerabilities within SCs. The
systematic fuzzing performed on 6991 real-world Ethereum SCs
shows that ContractFuzzer had identified at least 459 SCs vulner-
abilities, including the DAO and Parity Wallet. The performance
analysis also shows that the tool detects more types of bugs,
and has lower false positives than Oyente. Furthermore, authors
in [80] propose SOCRATES, an extremely configurable and exten-
sible framework to generate test cases for SCs. SOCRATES uses a
federated organization of bots to mimic the complex interactions
among many users. These bots interact with the BC based on a
defined set of composable behaviors. In particular, the use of a
society of bots in SOCRATES allows triggering faults simulating the
multi-user interactions that are difficult to produce by using one
bot. The aim is to spot programming defects hidden in complex
and articulated interactions backed by SCs. The tool also aims to
expose known and unknown faults in SCs currently published
in Ethereum. ETHPLOIT [76] is another hybrid tool that com-
bines fuzzing and static taint analysis to create exploit-targeted

11

Computer Science Review 45 (2022) 100492

transaction sequences, which dynamically set hard constraints to
simulate BC behavior. The tool was evaluated on 45,308 SCs and
it discovered 554 exploitable SCs.

SolAnalyser [79] is a fully automated approach that uses static
and dynamic analysis for vulnerability detection of Solidity SCs.
SolAnalyser supports the detection of eight vulnerability types
that are not supported by the state-of-the-art tools. Moreover, the
tool can be easily extended to support other kinds of vulnerabili-
ties. [79] also contributes a fault seeding tool that injects different
types of vulnerabilities in SCs. SolAnalyser is evaluated by ex-
perimenting with 1838 real SCs, from which 12866 mutated SCs
are produced by artificially seeding eight distinct vulnerability
types. The results show that SolAnalyser can identify the seeded
vulnerabilities. Furthermore, SolAnalyser outperforms five popu-
lar analysis tools (i.e., Oyente, Securify, Maian, SmartCheck, and
Mythril) by detecting all eight vulnerability types and achieving
a high precision/recall rate.

Although there exist many security analysis approaches based
on code coverage analysis, it appears that they are not enough on
their own. This is because these approaches are not designed for
testing SC's functional correctness. A complementary approach
could be to use Model-Based Testing (MBT) [93] in which test
automation is based on a model. Recently, authors in [90] propose
ModCon, a model-based testing tool that uses an explicit abstract
model of the target SCs to derive tests automatically. ModCon
complements code coverage analysis methods by providing more
flexible and reliable quality assurance solutions. Moreover, most
of the existing security analysis tools used for testing of SCs are
designed and analyzed for public BCs (e.g., Ethereum). These tools
might not be suitable for enterprise SC applications. ModCon
shows its effectiveness specifically for enterprise SC applications
based on private BC platforms. It allows SC developers to input
their test model for the SC under test. Naturally, the efficiency
of MBT depends on the input test model and fault model. An in-
teresting research challenge could be to investigate SCs and their
faults to determine suitable fault models or test assumptions.

There exist tools for mutation testing of SCs, such as MuSc [83].
MuSc applies mutation operations at the Abstract Syntax Tree
(AST) level and allows creating user-defined testnet. It also sup-
ports deploying and executing tests. The tool has been evaluated
on 4 real-world Ethereum DApps (SkinCoin, Smartldentity, Air-
Swap, and CryptoF), showing its efficiency in exposing defects in
SCs.

Authors in [84] introduce Solythesis, which is the first source
to source runtime validation tool that enforces global invariants
with quantifiers on SC with low overhead. The tool overcomes the
limitations of static analysis tools, which often have a large false-
positive or false-negative rate. Solythesis incurs a CPU overhead
of only 0.1% on average for 23 benchmark contracts. textbfSoli-
Audit [86] is a tool for assessing SC vulnerability using ML and
fuzzing. First, it uses ML to verify 13 types of vulnerabilities, and
then uses fuzzing for on-line transaction verification. The tool
has been tested on close to 18k Ethereum SCs and has shown
90% accuracy, while finding vulnerabilities such as reentrancy and
arithmetic overflow problems. ReGuard [87] is another fuzzing-
based analyzer for detecting reentrancy bugs in Ethereum SCs.
The tool runs fuzz testing on SCs by generating diverse random
transactions. Using runtime traces, it finds reentrancy vulnerabil-
ities. The tool has been evaluated on 5 Ethereum SCs, finding 7
new reentrancy bugs. Authors in [88] propose SolUnit, a tool for
executing unit tests for SCs with the goal to reduce test execution
time. To reduce time, the tool reuses the deployment and setup
execution of an SC for every test run. The tool was evaluated on
5 projects, showing the reduction of test execution time by up to
70%.



D. Marijan and C. Lal
5. State of the art: Performance testing

In the literature, there exist different approaches for per-
formance testing of BC-Apps. The most common of these are
benchmarking, monitoring, experimental analysis, and simulation
techniques. These approaches aim to help developers evaluate
different performance characteristics and identify bottlenecks, to
improve the performance of BC-Apps. Next, we discuss these
approaches in detail, along with their advantages and limitations.
In Table 6, we summarize and compare different types of BC per-
formance analysis benchmarking tools. There are several efforts
from academia as well as from industry to develop benchmarking
tools for performance analysis of BC platforms. All these tools are
open-source. Caliper and DAGBench are from industry (i.e., IBM,
and IOTA foundation), while the rest are from academia. Both
Caliper and DAGBench are well documented and active (i.e., new
versions are being updated continuously), and they are being
actively used within the research community for BC-App platform
performance evaluation. Apart from Caliper, DAGBench, and BBB
tool, other tools mentioned in Table 6 are inactive at present.

5.1. Bechmarking

BlockBench [94] is an open-source benchmark tool devel-
oped to perform the performance evaluation of BC-Apps. The
metrics it evaluates include Transaction Per Second (TPS), la-
tency, scalability, and fault-tolerance. Authors in [94] use Block-
Bench to compare the performance of three major BC platforms
(i.e., Ethereum, Parity, and Fabric). The authors also claim that
BlockBench can be used for the evaluation of other private BC
platforms by extending the workloads and BC adaptors. The eval-
uation of the three BC platforms is performed by first splitting
BC functionalities into four concrete layers, and then each layer
is evaluated against different workloads. The evaluation results
show that (i) the consensus algorithm is the main bottleneck in
HL Fabric v0.6 and Ethereum, and (ii) the Ethereum execution
engine is less efficient compared to Fabric. BlockBench uses two
workloads, namely YCSB [95] and Smallbank [96], to quantify
the four performance metrics for the target BC platforms. The
performance evaluation shows various performance deficiencies
in the comparison of BC-Apps. These deficiencies depend on
the design choices made by developers at different layers of
the BC software stack. Moreover, the results show that current
BC platforms are not well suited for large-scale data processing
workloads. Some key limitations of BlockBench are as follows: (i)
deployment of BC platforms to be tested is managed through bash
scripts that do not offer abstractions over the target testbed, (ii) it
collects metrics about performance (latency and throughput), but
does not include system metrics like CPU, memory or disk usage
(important to consider the overall footprint of BC technologies)
nor functional metrics (e.g., number of connected peers), (iii) it
does not offer testing for faulty behavior, and (iv) insecurity, as it
is installed using root user privilege.

Hyperledger Caliper (HLC?) is a performance evaluation
framework that, at the moment, supports benchmarking the
following BC platforms: Hyperledger Besu, Hyperledger Burrow,
Ethereum, Hyperledger Fabric, FISCO BCOS, Hyperledger Iroha
and Hyperledger Sawtooth. Caliper framework consists of two
main components, namely Caliper core (which defines system
flow), and Caliper adaptor (which provides support for integra-
tion of various BC platforms). A predefined configuration file
consists of benchmark workloads, and information required for
interfacing the adaptor to the SUT is needed before running a test.
During the performance testing, a resource monitoring module

2 https://github.com/hyperledger/caliper.

12

Computer Science Review 45 (2022) 100492

gathers resources (e.g., CPU, RAM, network, and I/O) utilization
data. After the test, a test report containing the values for vari-
ous performance metrics is generated. Caliper can also monitor
server-related metrics through Prometheus.> To gain a better
understanding of the Fabric BC platform, authors in [97] provided
a detailed empirical study by using the Caliper tool. The study
characterizes the performance of BC and highlights potential per-
formance bottlenecks by using a two-phased approach. The first
phase aims to understand the impact on performance of Fabric
(considering TPS and latency metrics) when the configuration
parameters, including block size, endorsement policies, number
of channels, resource allocation, and state database choice, are
used in the test environment. The evaluation results provide
various guidelines on configuring these parameters. Moreover,
the three performance bottlenecks or hotspots that are identified
include (i) verification of endorsement policy, (ii) state valida-
tion and commit (with CouchDB), and (iii) sequential validation
of associated policies of a block transaction. The second phase
focuses on optimizing the Fabric by considering the obtained
observations from performance analysis. Finally, a few limitations
of Caliper tool include the lack of network emulation, which is
essential for studying the impact of network failure or latency
on a BC platform, and the lack of any functionality for resource
reservation on scientific testbeds such as Grid’5000.

DAGbench [98] is a framework dedicated to benchmarking Di-
rected Acyclic Graph (DAG) Distributed Ledger Technology (DLT),
such as IOTA, Nano, and Byteball. The supported performance
metrics include TPS, latency, success indicator, scalability, re-
source utilization, and transaction fee. DAGbench shares an ap-
proach similar to BlockBench and HLC tools, i.e., adopts a modular
adaptor-based architecture. In such designs, users can select or
develop the required adaptors to integrate different types of
workloads and BC platforms that they want to evaluate.

BCTMark [99] is one of the most recent tools for benchmark-
ing BC-Apps on an emulated network in a reproducible way.
To illustrate the portability of experiments using BCTMark, the
authors have conducted experiments on two different testbeds:
a cluster of Dell PowerEdge R630 servers (Grid’5000) and one
of Raspberry Pi 3+. Experiments have also been conducted on
three different BC platforms (i.e., Ethereum Clique/Ethash, and
HL Fabric) to measure their CPU consumption and energy foot-
print for different numbers of clients. The framework provides an
abstraction of the underlying physical infrastructure and can be
used to deploy quickly on any platform that supports the Secure
Shell Protocol (SSH) protocol. In particular, BCTMark provides
the following key advantages over other benchmarking tools: (i)
playbooks written in Ansible and deployed with BCTMark can be
used to deploy an arbitrary number of peers on any testbed that
supports SSH connections, while providing the same abstraction
over a network, enabling scientists to easily express network con-
straints and topology, (ii) collects both system metrics, including
CPU, memory or disk usage and functional metrics (e.g., number
of connected peers), and (iii) it can be used with the public as
well as private BC platforms. As a limitation, it does not support
testing for faulty behavior.

BBB [100] is a benchmarking framework for BC platforms,
namely Boston Blockchain Benchmark (BBB). The BBB design
choice allows emulating the underlying networking infrastruc-
ture. The participants can communicate with BC through the
emulated network. This provides several benefits, such as sup-
port for fine-grained control over network metrics (e.g., network
topology, link latency, and bandwidth) and the integration of vari-
ous network-related attacks (eclipse [101], and Distributed Denial

3 https://prometheus.io/.


https://github.com/hyperledger/caliper
https://prometheus.io/

D. Marijan and C. Lal

Table 6

Benchmarking tools for BC-App performance evaluation.

Computer Science Review 45 (2022) 100492

Tool

Supported BC platform(s)

Supported performance
metrics

Evaluation workload

Limitations

BlockBench [94]

Ethereum, Parity, and
Hyperledger Fabric

Throughput, latency,
scalability and
fault-tolerance

YCSB, Smallbank,
Etherld, IOHeavy,
CPUHeavy, DoNothing

Insecurity (installed using root
user privilege), no testing for
faulty behavior, collects
performance metrics but not
system metrics such as CPU,
memory/disk usage, nor functional
metrics

Hyperledger Caliper
[102]

Besu, Burrow, Ethereum,
Fabric, FISCO BCOS, Iroha
and Sawtooth

Resource consumption,

transaction/read throughput

and latency, success rate

All types of custom build
loads are supported via
config files

Lack of network emulation, lack
of support for resource
reservation on scientific testbeds

DAGbench [98]

IOTA, Nano, and Byteball

Resource consumption,

throughput, latency, success

rate, transaction data size
and fee, scalability

Value/data transfers,
transaction queries

Specific for DAG DLTs

BCTMark [99]

Ethereum Clique/Ethash,
and Hyperledger Fabric

CPU consumption and
energy footprint for

different numbers of clients

Ad hoc load generation
based on Python scripts
and on an history

Testing for faulty behavior is not
performed

BBB [100,103]

Ethereum, could be
extended to other BC

Tolerance against faulty
behavior, network

Not specified

Does not include failure injection
loads

platforms

bandwidth) affect BC

performance

properties (e.g., latency, and

of Service (DDoS) attacks). Rather than designing and implement-
ing a network emulator tool, the authors choose to seamlessly
integrate the BBB tool with a widely popular (in academia and the
industry) emulator called Mininet,* which is a battle-tested tool
to emulate real-world network scenarios. Although BBB usage is
only shown to evaluate Ethereum-based applications, the tool de-
sign is generic, and it is possible to extend BBB to evaluate other
BC platforms. BBB developers claim that the tool is easy to install
and use, as it allows every parameter configuration through a
simple change of a YAML configuration file. Furthermore, BBB is
extensible and configurable. As a limitation, it does not support
failure injection loads.

5.2. Live monitoring

Performance benchmarking solutions usually require a stan-
dardized test scenario and well-documented workloads as input.
However, in the case of public BC platforms, it is not feasible to
have adequate control over the workload and the users participat-
ing in the consensus process. This makes the use of benchmarking
approaches for public BC platforms challenging. Therefore, there
are two potential solutions that could be used for evaluating the
performance of public BC platforms. The first approach is to build
a test network in a private setting, able to closely represent the
test network of a public BC platform. Next, we can leverage the
state-of-the-art benchmarking tools to evaluate the BC perfor-
mance, by providing artificially designed workloads as inputs.
This solution might need the development of a new adaptor in
a benchmark tool for integrating either the workload or the BC
network. In such a setting, one must consider the problem of BC
scalability, which may arise when the tested private version is
implemented publicly. The second approach includes monitoring
and evaluating the performance of a live public BC with realistic
workloads as input [104]. For instance, authors in [105] provide
a real-time performance monitoring architecture that is based on
logging. The solution is detailed, and it results in lower overhead
and higher scalability, when compared with solutions that use
Remote Procedure Call (RPC).

4 http://mininet.org/.

13

5.3. Experimental analysis

Experimental analysis approaches are typically based on self-
designed experiments [28,106,107] and simulators, i.e., software
tools to mimic the behavior of real-world systems [108,109].
Next, we discuss the state-of-the-art performance analysis work
that uses experimental-based performance analysis.

The performance of a private variant of Ethereum BC is studied
in [106], by evaluating Ethereum’s two popular clients, namely
PoW based Geth, and Proof of Assignment (PoA) based Parity. The
evaluation results depict that, on average, the Parity is 89.82%
faster than Geth concerning transaction processing rate under
various workloads. To measure the scalability of Ethereum BC,
authors in [110] used a quantitative analysis approach, in which
synthetic benchmarks over an extensible testing scenario are
used to measure the transaction throughput. Based on the test
outputs, it was observed that Ethereum platform can hardly
achieve the three properties, which include decentralization, scal-
ability, and security, concurrently.

With the release of long-term support for the HL Fabric v1.4
BC platform, the platform has been evaluated for performance by
various researchers. For example, the impact of various workloads
on networking infrastructure of HL Fabric v1.4 BC is investigated
in [28]. The performance metrics include transactions per second
(i.e., throughput), latency, and scalability (measured by evalu-
ating the number of users serviced by the system in a specific
time period). During the performance evaluation process, various
parameters, like number of transactions, generation rate of new
transactions, and transaction types (e.g., read or write) were
varied to dynamically change the network load. Similarly, authors
in [111] used an empirical approach to perform the performance
evaluation of Sawtooth BC, which is a popular private BC platform
under the umbrella of Hyperledger BCs. The metrics considered
for performance analysis include consistency (to check if the
system produces the same results each time under the same
workloads and a cloud virtual machine configuration), stability
(to check if the system’s performance remains stable in the same
workloads, but under the varying cloud VM configurations), and
scalability (to check if the system performance stays scalable
with varying parameters related to workloads and cloud VM
configurations). It is also observed that by adjusting the configu-
ration parameters, namely scheduler and maximum batches per


http://mininet.org/

D. Marijan and C. Lal

block, the performance of Sawtooth can be optimized. Finally,
based on the results obtained from the empirical performance
analysis in [28,111], it is concluded that Hyperledger BC plat-
forms require improvements on geographical scalability (which
is usually limited due to the tradeoff with network latency [112])
and size scalability (e.g., [94] shows that the system fails to
scale with more than 16 peers). Moreover, a major performance
bottleneck in scalability is PBFT, the consensus algorithm used
in many permissioned BC platforms. It is because PBFT adopts
a communication-bound mechanism for consensus instead of a
computation-intensive PoW consensus.

In the initial implementations of BCs (e.g., Bitcoin and
Ethereum), to add transactions in a distributed ledger, multiple
user transactions are grouped to form blocks, which are added
in an immutable linked-list type of data structure in the global
chain. This process of updating the ledger does not allow the
generation of concurrent blocks, thus providing low transaction
throughput by limiting the number of transactions that can be
added to the ledger per second. Alternatively, in the distributed
ledgers that are based on the DAG concept, multiple transac-
tions/blocks can be added simultaneously on different vertices of
the directed graph, thus supporting parallel generation and inclu-
sion of transactions/blocks. Inspired by this idea and the need to
improve the transactions per second, several distributed ledgers
use consensus algorithms that support such concepts of trans-
action generation and addition. For example, I0TA foundation
BC uses a cumulative weight approach to confirm transactions,
and Markov Chain Monte Carlo (MCMC) sampling method to
select tip (i.e., the vertex in DAG where the newly confirmed
transaction can be added) randomly. Other examples include
Byteball’ system, in which the consensus process relies on a
mechanism that selects 12 reputable Witnesses who need to
reach to consensus, and Nano,® which adopts a balance-weighted
vote technique to achieve consensus on transaction commit. As
per the design considerations and theoretical functioning details,
the DAG-based DLTs have higher transaction per second. How-
ever, it is also essential to identify their performance bottlenecks
and the tradeoff between different properties (i.e., scalability
and latency). To this end, IOTA scalability in the IoT application
scenario, consisting of a private network with 40 nodes, has been
demonstrated in [107]. The evaluation results show that against
the arrival rate of transactions, the processing rate (i.e., TPS) has
adequate linear scalability.

5.4. Simulation

Next, we provide a discussion on popular simulators used for
measuring the performance of BC-Apps.

BlockSim. Three simulators, all named BlockSim (or Block-
SIM), were proposed in 2019 for simulating BC-based systems.
First, the authors in [108] proposed an implementation of a
framework called BlockSim, which aimed to create a discrete-
event dynamic system model for BC-Apps that use PoW-based
consensus algorithms. The BlockSim framework was developed
by using a layered approach, and it consists of three layers: incen-
tive, connector, and system. With the use of BlockSim simulator,
the authors evaluated the performance regarding block creation
time for DLTs with a PoW-based consensus algorithm, and it pro-
vided important insights concerning the block generation process
in PoW. To further show the correctness and feasibility of the pro-
posed solution, in their extension study, the authors used verified
predefined test cases, where the results of the simulation were
compared against the outcome of real-life BC platforms, such as

5 https://byteball.org/Byteball.pdf.
6 https://nano.org/en/whitepaper.

14

Computer Science Review 45 (2022) 100492

Bitcoin and Ethereum. However, whether the simulator can be
extensible or not, this fact is not yet established and needs further
research. To better understand, evaluate, and plan the system
architecture and its performance, the authors in [113] provide an
implementation of their proposed comprehensive simulation tool
called BlockSIM. It is open-source and can be used to simulate
private BC-Apps. BlockSIM aims to measure system stability, and
transaction per second for private BC platforms, by running them
in various target scenarios. Based on the evaluation results, one
can then decide about the optimal system parameters that suit
best. The effectiveness of the BlockSIM is proved by compar-
ing it with the private Ethereum network running PoA-based
consensus.

Recently, another simulator to evaluate BC projects, with the
name BlockSim, is proposed in [114], as a flexible discrete-event
simulator. When running BlockSim for Bitcoin and Ethereum BC
platforms, interesting observations related to the performance of
BCs were drawn. For example, it was observed that the impact of
doubling the size of blocks on block propagation delay is small
(i.e., 10 ms), but if the communication is encrypted then the
delay is greatly affected (i..e, more than 25%). Later, an extension
of BlockSim, namely SIMBA (SIMulator for Blockchain Applica-
tions), is proposed in [115]. SIMBA includes the Merkle tree as
an additional feature on BC nodes and shows that it improves
simulation efficiency and allows more realistic experiments that
were not feasible before. In particular, the use of Merkle trees
provided huge improvements (up to 30 times) in verification time
of transaction in a block reduction, without impacting the block
propagation delay. Since the verification of block transactions
plays a critical role in the overall computational load of network
nodes, its improvements substantially affect overall performance
of network nodes, and consequently, of the whole network.

DAGsim. To simulate DAG-based DLTs, authors in [109] pro-
posed a continuous-time, multi-agent simulator, namely DAGsim.
The tool was developed by IOTA foundation to mainly test the
performance of their BC system (i.e., IOTA) concerning its trans-
action attachment probability. The analysis results revealed that
agents (who play a similar role as miners) with lower latency
and higher connection degrees exhibit higher chances that their
transactions will be accepted by the network. Another multi-
agent tangle simulator [116] is developed in collaboration with
NetLogo. It simulates random uniform, as well as MCMC tip
selection, while providing visuals (i.e., graphical user interface)
and an interactive experience during simulation. There also exists
research work that leverages simulations together with analytical
approaches to perform validation and exploration. For example,
authors in [117] present a generic DAG-based cryptocurrency
simulator. The simulator is built using Python, and it was used
to validate an analytical performance model. The results revealed
that by issuing a transaction with a smaller average number of
parents in DAG, it is possible to increase transaction per second.

PeerSim. Authors in [118] introduce a performance evalua-
tion simulator specifically targeting P2P nodes. The simulator is
modular and easy to configure. It is written in Java and each sim-
ulation is defined using a plain text configuration file similar to a
Java property file. PeerSim supports dynamic scenarios including
different failure models. One of its features is graph abstraction,
which allows representing overlay networks as graphs.

P2PTester. Another simulator for P2P network performance
is P2PTester [119], which is a Java-based application that can
interface with any arbitrary P2P system. The simulator is designed
with three goals in mind: genericity, scalability, and modularity.
Genericity supports working with a wide range of P2P platforms.
Scalability allows simulating the performance of a large number
of real peers. Modularity enables fine-grained measurements of
various components of a P2P system. In addition, the simulator


https://byteball.org/Byteball.pdf
https://nano.org/en/whitepaper

D. Marijan and C. Lal

provides a user interface for specifying the simulation param-
eters, such as the number of peers, the type of peer overlay,
the duration of simulation, and how to measure and report the
results.

Finally, authors in [120] proposed a technique to predict the
latency of a private Ethereum (Geth) platform by using a model-
ing tool called Palladio Software Architecture Simulator [121].
The evaluation shows a lower relative error in response time
(mostly under 10%).

5.5. Comparative discussion of performance evaluation approaches

Next, we summarize and provide a comparative discussion
along with the pros and cons of the above-mentioned different
types of empirical performance evaluation solutions. Our com-
parison considers the generic properties of individual solutions,
as well as their suitability for evaluating different BC platforms.

The performance analysis of BC platforms using live monitor-
ing approaches requires (i) a testing deployment network that has
high fidelity with respect to real-time production systems, and
(b) realistic workloads and faultloads as its inputs. Although live
monitoring approaches are better suited for evaluating public BC
platforms, they can also be used for benchmarking the private BC
platforms.

A common issue associated with evaluating a public BC is that
it is difficult to change any parameters to vary experiments. In
general, a benchmarking approach needs a controlled evaluation
environment that mainly consists of a SUT network and artificial
workloads. The eligible workloads and performance test metrics
cannot be easily modified or tuned after the selection of a bench-
mark tool (because they are closely coupled). For example, in
Blockbench, tuning of a network layer parameters (e.g., network
delay) is not supported yet. Blockbench provides support for the
evaluation of only three specific BC platforms (i.e., Ethereum, HL
Fabric, and Parity). However, with the design of well-designed
APIs, users can develop additional adaptors to extend Block-
bench’s functionality to support the evaluation of other private BC
platforms. Therefore, compared to the benchmarking approaches,
the extensibility of the monitoring approach is lower. Also, the
availability of several well documented and open-source bench-
marking tools makes them easier to deploy and use than the
monitoring approaches.

Experimental analysis is one of the most common approaches
adopted by researchers to evaluate the performance of BC-Apps,
by using self-designed experiments. Experimental analysis has
several similarities with the benchmarking approach, but there
are two main differences. First, since self-design experiments
are designed to test requirements and considerations associated
with a given BC-App, they have a better capability of parame-
terization. For example, as mentioned before, Blockbench cannot
measure the impact of a network delay in HL Fabric, which
can be evaluated with self-designed experiments. Furthermore,
unlike benchmarking tools, which are somewhat standardized
and their functionality could be extended for evaluating various
BC-Apps, tests in self-defined experiments are usually dedicated
to a specific BC-App, thus limiting their extensibility.

For both benchmarking and experimental analysis approaches,
the complexity of the testing environment depends partly on the
complexity of a SUT and what performance parameters need to
be evaluated. In contrast, a simulation-based performance test-
ing environment exhibits high complexity only in the simulator
design and development phase. Once a BC-App under test is
deployed, the simulator provides extensibility, as the simulation
can be used to test multiple configurations with different param-
eter values quickly and cost-effectively. Another inherent benefit
of the simulation approach is that there are no dependencies

15

Computer Science Review 45 (2022) 100492

Table 7

Performance metrics at different layers of the BC stack.

TPS, Average response time, TP CPU, TP disk
I/O, TP network data, TP memory/sec

Application layer

SC layer RPC response rate, SC execution time, State
update time
Data layer Encryption and hash function efficiency

Consensus-cost time, Byzantine/Crash fault
tolerance, Transaction finality

Consensus layer

Peer discovery rate, Transaction/block
propagating rate, Resource consumption

Network layer

on a physical testbed nor a BC platform. However, the evalu-
ation results obtained from simulation could be quite different
from the evaluation results obtained in other performance testing
approaches. Additionally, there are several metrics (e.g., transac-
tions per CPU/per memory second/per disk IO, and transactions
per network data) for a BC-App that are difficult to evaluate in
simulation.

Other than empirical approaches, there are research efforts
on using analytical modeling for BC-App performance analysis.
Analytical modeling uses mathematical tools to formalize a BC-
App abstractly, and to solve the resulting models with precision.
The model output (e.g., latency expressed as a function of net-
work indicators) gives an analytical proof for a BC-App perfor-
mance evaluation. Three popular analytical modeling approaches
for performance analysis of DLTs are queueing models [122-124],
Markov chains [125,126], and stochastic Petri nets [127].

5.6. Performance metrics

Metrics evaluated during BC-App performance testing play
a huge role in measuring the effectiveness and correctness of
the BC-App. These metrics can be broadly classified into two
categories: macro (measured across the whole BC stack), and
micro (evaluated for specific components at different layers of
the BC stack) [105]. In particular, a BC-App performance from
a user’s viewpoint can be measured using macro metrics. These
metrics include transaction per second, transaction processing
latency, fault tolerance, scalability, transactions per CPU/memory
second/disk 10/network data. From these metrics, the first two
are measured frequently over all BC platforms. On the other
hand, the micro metrics include peer discovery rate, RPC response
rate, transaction propagating rate, SC execution time, BC state
update time, consensus cost time, encryption, and hash function’s
efficiency. A well-designed workload should be used to evaluate
both types of metrics. Concerning the benchmarking and moni-
toring approaches to BC performance testing, there are specific
workloads designed for evaluating the performance of different
BC layers. Table 7 shows the performance metrics for different
layers of the BC stack.

6. State of the art: Security testing

In this section, we discuss the Security and Privacy (S&P)
related aspects of BC-Apps that should be considered during an
end-to-end BC-App security testing. We discuss various S&P as-
pects considering components at different layers of the BC stack.
Please note that specific approaches to SC security testing are
covered in Section 4.

BC technology supports the concept of security by leveraging
public-key cryptography and primitives such as hash function and
digital signature. However, this may give a false impression of
the security provided. It is because all cryptographic protocols



D. Marijan and C. Lal

have their limits and because holistic security includes tech-
nology, people, and processes, which are often overlooked in a
BC security analysis. The main objective of security testing is
to ensure that BC-Apps are secured against different types of
threats caused by viruses and malicious programs injected by
malicious entities. Specifically, in BC-Apps, the security analysis
and imposed countermeasures should be extremely thorough and
responsive due to the unique BC characteristics. For instance, an
ongoing transaction cannot be stopped, and thus, the testing pro-
cess should be effective enough to uncover all potential threats
before the transaction deployment on BC. Table 8 shows a list of
major threats along with their possible countermeasures across
different layers of the BC stack. Security testing should exercise
a range of different scenarios potentially leading to such various
threats, while ensuring that measures are in place to properly
handle such threats, if they arise after a BC-App deployment.
There exists extensive literature that discusses an array of S&P
threats in BC technology [18,128], which should be considered
during the security testing and analysis of BC-Apps.

Since most of the threats in BC-Apps are associated with
the data and processes (i.e., business logic), it is essential to
understand the criticality of data and processes. In particular,
understanding the sensitivity of the data being stored and pro-
cessed in BC is needed before one starts the security analysis
of such systems. To determine the importance of Confidentiality,
Integrity, and Availability (CIA) of the data stored in a BC-App, one
should first understand the associated regulatory implications
and perform a business impact analysis. During security analysis,
a comprehensive threat model that closely reflects the real-world
adversary model needs to be adopted. The developers should
ensure that the well known threats associated with PKI and
application development (e.g., user key leakage, vulnerabilities in
source code) are factored into the security analysis. Additionally,
the security threats specific to a BC-App should be identified.
These threats include attacks such as hijacking consensus proce-
dure, DDoS, exploiting private BCs and SCs, and wallet hacking.
Based on the identified threats, different scenarios represent-
ing one or more risks can be identified and evaluated for their
likelihood and impact. Finally, based on the identified risks and
their impact level, adequate security controls via security analysis
procedures should be selected. Moreover, several well-defined se-
curity practices like source code review, secure key management,
data protection via encryption methods, restricted data access
via access control methods, and regular security monitoring can
be deployed. Finally, security improvement techniques specific to
the BC technology such as robust wallet management, authorized
ledger management, and secure SC development should be em-
ployed. In particular, it is vital to understand that technology,
processes, and people are equally important to secure BC-Apps.
For example, the DAO hack damage could have been minimized, if
an adequate governance structure and incident response process
were in place.

In its default implementation, BC design does not provide sup-
port for data privacy, because all the transactions in the ledger are
visible to all the network participants. However, pseudonymity is
supported by allowing users to use public keys to transact instead
of any identifying value. Depending upon the purpose of a BC-
App, confidentiality and data protection considerations may be
essential during the design and implementation of the BC-App.
One common way to support data confidentiality is to utilize off-
chain storage solutions, in which the organizations can store all
or part of their data in local storage. To ensure data integrity for
the data stored at local storage, the hash of the data is stored
in the distributed ledger. Another approach could involve a fine-
grained access control technique to regulate the access to the data
stored on the ledger. Most of the solutions will require the use

16

Computer Science Review 45 (2022) 100492

of cryptographic techniques, which are still the topic of active
research. For example, a version of Zero-Knowledge Proof called
zk-SNARKs [129], allows verifiers to validate a statement about
encrypted data, while not revealing the corresponding decrypted
data. Another alternative is to stop broadcasting transactions in
the whole network, and instead, limit the dissemination and
visibility to predefined parties in the network. An example of
such a design is adopted in R3 Corda’ BC, which uses an Unspent
Transaction Output (UTXO) set model. Finally, the security of
transactions is closely coupled with the underlying consensus
algorithm, which results in an update in the distributed ledger.
As advancements in DLT progress, developers have more options
to choose which BC platform and consensus algorithm to use for
a target BC-App. The selected design elements, along with their
rules, will set various networking parameters such as transaction
speed, latency, and scalability. Therefore, during the requirements
analysis, or before developing a proof-of-concept, it is vital that
developers and security engineers carefully evaluate the algo-
rithms and protocols, to identify the ones that are best suited for
their specific BC-App.

Consensus protocols are critical to BC security, therefore, un-
derstanding potential threats to their security is essential to se-
curing the BC. To this end, a large number of consensus protocols
have been proposed [130,131], some of them with the aim of im-
proved security against various threats and high performance in
large-scale networks. However, the adversaries are continuously
targeting the consensus protocols, either to destabilize them or
gain financial profits from the BC-App using these protocols.
Therefore, the security testing should cover all the possible test
cases and adversary models, to check if the consensus protocol
used in a BC-App could be exploited for vulnerabilities, further
leading to other security threats. In particular, the consensus
protocol should be able to tolerate or quickly recover from faults,
to ensure that it finds consensus and completes transactions
even in a sub-optimal network topology. Also, BC-App developers
should take precautionary measures (e.g., economic incentives,
strong consistency, decentralization, and fast finality) to reduce
the risk to consensus protocols. While performing security testing
for consensus protocols against well-known threats, it should be
ensured that the protocol can satisfy the following three essential
properties: (i) consistency (the network peers should agree on a
proposed value to reach a consensus in a certain time limit), (ii)
transaction censorship resistance (resilience to malicious nodes
blocking genuine transaction), and (iii) distributed denial of ser-
vice DDoS resistance (resilience to malicious nodes launching
DDoS attacks on consensus algorithms).

As discussed by authors in [14], a consensus algorithm must
satisfy a number of security properties, and the same should be
tested during its security analysis. These properties are as follows:
(i) Authentication, it implies whether nodes participating in a
consensus protocol need to be properly verified/authenticated,
(ii) Non-repudiation, it signifies whether a consensus protocol
satisfies non-repudiation, (iii) Censorship resistance, it implies
whether the corresponding algorithm can withstand against any
censorship resistance, and (iv) Attack vectors, it implies the attack
vectors applicable to a consensus mechanism. The attack vec-
tor can be further divided into the three threats against which
a consensus protocol should be tested. These threats include:
(i) Adversary tolerance, which signifies the maximum byzantine
nodes supported/tolerated by the respective protocol, (ii) Sybil
protection, in which an attacker can duplicate his identity as
required, to achieve illicit advantages. Within a BC-App, a sybil at-
tack implicates the scenario when an adversary can create/control
as many nodes as required within the underlying P2P network

7 https://www.r3.com/corda-platform/.


https://www.r3.com/corda-platform/

D. Marijan and C. Lal

Table 8
Various security threats at different layers of BC-Apps.

Computer Science Review 45 (2022) 100492

S&P threats

Potential adversaries

Possible defense mechanisms

Application layer - False data feeds, CIA and
Front-Running attacks, attacks on availability
and privacy, malicious Trusted Execution
Environment (TEE) or token issuer, censorship,

permanent hardware (HW) fault of TEE authorities

Internal or external attackers (e.g., users,
third-party service providers, malware),
application/service developers, TEE
manufacturers, token issuers, regulatory

Multi-factor authentication, decentralized
authority, reputation-based methods,
application-level privacy-preserving constructs,
HW wallets, redundancy

Smart contract layer - Exploiting SC specific
bugs

SC developers, users, external attackers
with lightweight node

Safe languages, static/dynamic analysis, formal
verification, audits, best practices, mixers,
Non-interactive zero-knowledge proof (NIZK),
trusted HW, ring/blinding signatures,
homomorphic encryption

Data layer - Quantum attacks, transaction data Consensus nodes

tampering attacks

Quantum-resistant cryptosystems, economic
incentives, strong consistency, decentralization

Consensus layer - Protocol deviations, Consensus nodes

violation of assumptions

Economic incentives, strong consistency,
decentralization, fast finality

Network layer - MITM attacks, availability
attacks, network partitioning, routing attacks,
DDoS, deanonymization

Providers of network services

Redundancy, protection of naming, availability,
routing, anonymity, and data

to exert influence on the distributed consensus algorithm and
to taint its outcome in her favor, and (iii) DoS resistance, which
implies whether the consensus protocol has any built-in mecha-
nism against DoS attacks. Finally, securing the consensus protocol
should not come at the cost of low performance, i.e., it should
not adversely impact the latency, throughput, and scalability, and
a suitable trade-off should be considered. This trade-off strongly
depends on the requirements of the target BC-App, and the same
should be taken into consideration during the security analysis.

Depending upon its implementation nature (i.e., private or
public), a BC networking infrastructure is based on either private
or public networks. A private network uses centralized admin-
istration and it supports features such as low latency, user and
transaction privacy, and compliance with regulatory obligations
(e.g., HIPAA for healthcare data). Private networks inherently
provide authentication and access control, and have full control
over communication routes and network resources used, enabling
suitable network topology regulation about the given require-
ments. The network administrators can apply fine-grained access
control techniques to implement the security principle of mini-
mal exposure. This way, the insider threats in a local network can
be minimized. Authors in [ 18] observed that internal and external
attacks are the specific security threats to permissioned BC plat-
forms. For example, permissioned BC platforms use centralized
access control that can be attacked by an external attacker by
exploiting a network or system vulnerability. Such an attack is
even easier to launch for internal attackers, as they might already
have the required privileges or can get them by exploiting certain
vulnerabilities in systems, network, or organizations involved
in the BC-App. One result of such exploitation could be that
the internal attacker can add malicious miners (nodes running
consensus algorithms) or remove legitimate ones from the net-
work. Such a change in the network will result in increasing
the adversarial hash rate (aka consensus power) demonstrated at
the consensus layer. Moreover, the attacker could launch many
attacks, such as double spending, and attacks on violation of
protocol assumptions, that can be leveraged with the increased
hash rate at the consensus layer. Therefore, it is vital that secu-
rity testing considers all these possible attacks before deploying
permissioned BC-Apps. Testing the security of permissioned BC
is easier compared to its counterpart, due to the controlled en-
vironment. On the other hand, the public BC platforms are, and
should be, more secure by implementation, as they are built to
deal with many unknown entities (including the malicious ones)
participating in different activities of the BC ecosystem.

BC-App components such as peer nodes and APIs use under-
lying private or public network for communication. Depending

17

upon the type of a BC-App, the peer nodes and their associ-
ated roles can differ in different implementation scenarios. These
nodes use participants’ own (in case of public BC) or an orga-
nization’s (in case of private BC) networking infrastructure to
communicate with the BC network. These networking infrastruc-
tures should be equipped with required fundamental security
controls and measures, e.g., penetration testing, periodic vul-
nerability checks, log monitoring, endpoint vulnerability testing,
and security patch or update management. The lack of defense
mechanisms could lead to the compromising of client nodes, and
a single compromised node can result in the loss of assets of
the client associated with that node in case of public BCs. While
in private BCs, such a malicious node will remain undetected,
thus violating the privacy of the attacked client node by eaves-
dropping on the transactions performed by the node. To protect
the client nodes from such attacks, BC-App developers can align
to the BC security recommendations set out by Gartner.® The
recommendations include steps such as taking a holistic view
of security, and ensuring the risks are evident at the business,
technical, and cryptographic levels. Moreover, same as with any
technology implementation, all BC-Apps need to be analyzed
for their readiness to handle a security threat, and should have
incident response plans in place to handle critical security events
during a BC-App life-cycle.

In summary, there exists a large number of security threats at
different layers in the BC stack [18]. Still, apart from the security
analysis of SCs, there is none or little support, in terms of tools or
techniques, available in the state-of-the-art for performing secu-
rity testing of various components of the BC-Apps (e.g., consensus
protocols, peer nodes, and integrating endpoints). A point to be
noted is that based on the research articles in literature, there
exists a large number of security threats to standalone BC systems
as well as BC-Apps, but the security incident types occurring in
practice are significantly lower, mainly at consensus and applica-
tion layers. At the application layer, a large percentage of security
incidents are caused by exploiting a centralized component by
external or internal adversaries, while at the consensus layer,
the majority of incidents are caused via temporary violations of
protocol assumptions by 51% attacks.

7. API and interface testing

The users of BC-Apps typically have available APIs to connect
to the underlying BC components. A BC-App ecosystem comprises

8 Gartner, Evaluating the Security Risks to BC Ecosystems, March 2018.



D. Marijan and C. Lal

different components, all of which must be connected. Therefore,
it is crucial that different APIs associated with these components
are tested for their compatibility with each other. API testing
plays a major role to ensure that the backend is functional. The
APIs in BC-Apps need to be tested for errors including unau-
thorized access, encrypted data in transit, and cross-site request
forgery. Furthermore, APIs developed to interact with BC need
to be checked for errors such as starting an automatic call over
a large number of transactions. Such a common mistake in the
API development could be very costly, especially in BC networks
where transaction processing has a cost (e.g., gas in Ethereum BC).
The API tests need to ensure that all the interactions between
applications/users and the backend (BC network) in a BC-App
meet specifications. Furthermore, API testing needs to ensure that
the performance of the interactions is correct and smooth, i.e., the
application can process and format API requests optimally, and
verify that all API requests/replies from the backend are handled
correctly. Finally, API testing helps in BC’s block verification pro-
cess. It is because each block information has a unique hash that
changes when there is any change performed in the block, and the
APIs that fetch and verify these hashes can be validated through
API testing.

Furthermore, all the APIs require thorough functional testing
to ensure that there are no functional issues and that the service
integration works seamlessly. In a practical BC-App scenario,
there exist two types of interfaces. The first is between the BC and
the application in which API is being integrated, and the second
is between the various components of a BC-App. The former
is more challenging to test efficiently, as it requires significant
knowledge of both domains and specialized testing tools that can
work with both these domains. For instance, usually the users
of DApp interact with the BC using a web application browser.
In the existing test scenarios, the methods that test the web
applications [132] only consider browser-side code, while the SC
analysis tools [55] consider only the SC code. This approach of
independent testing makes it challenging to use these techniques
as they are in the DApp setting. Therefore, in practice, the testing
procedure should consider the fact that the testers need to work
together to understand the interfacing between the browser pro-
gram (e.g., JavaScript code) and BC programs (i.e., SCs). Finally,
API testing should ensure that APIs are secure, simple, and that
they provide a high level of performance.

8. Summary of the state-of-the-art

In this section, we provide a discussion of the advantages and
limitations of the current state-of-the-art V&V efforts (i.e., testing
tools and techniques) for BC-Apps.

Finally, in Table 9, we provide a complete overview of the tools
discussed in the paper, categorized based on the type, method,
and objective of testing, BC component addressed and target BC
platform.

8.1. Smart contract testing

Despite the increasing interest in SC development, this en-
gineering discipline remains somewhat a puzzle to numerous
developers, primarily due to the unique design of SCs. Therefore,
it is required that the research community investigates the critical
questions related to the development process of SCs. These ques-
tions include: (i) what are specific differences between SC-based
software and traditional software development, and (ii) how do
these differences affect V&V of SCs.

We broadly classify SCs testing into two categories, namely
static and dynamic approaches, including different testing meth-
ods and objectives that can be used with each of these two

18

Computer Science Review 45 (2022) 100492

categories (Section 4). Authors in [16,65] provide a comparison
of static and dynamic approaches concerning their performance,
coverage of finding vulnerabilities, and accuracy, which could be
referenced while selecting a testing approach for SC testing. Au-
tomation tools implementing static and dynamic analysis meth-
ods are convenient to use to analyze vulnerable SCs. However,
tools that detect only specifically defined vulnerable patterns
are of limited use, since their testing expanse is limited, as the
defined patterns are rarely exhaustive.

As mentioned in Section 4.1, researchers have proposed many
tools and techniques to discover bugs and vulnerabilities in SCs.
Nevertheless, there are many recent incidents reporting various
vulnerabilities in SCs. This questions the efficacy of the state-
of-the-art tools and techniques used to detect vulnerabilities in
SCs. This could be because most of the tools have been evaluated
either on developer-generated data-sets and inputs, or on data-
sets of contracts with a limited number of bugs. Mainly, the
existing solutions do not provide the level of code coverage that
could uncover all the threats in SCs, while false positives and false
negatives remain high. Moreover, empirical studies of software
defects have shown that it is possible to detect many defects
using static analysis tools, but this is true only in theory due
to limitations of the tools [133]. Recently, authors in [65] focus
specifically on the undetected bugs (false-negatives), but also
consider false-positives.

Formal testing is considered an important component of soft-
ware development life cycle, which tests the software behavior
and performance against the predefined specifications and re-
quirements, and thus using a predefined set of possible input
conditions. Formal testing practices from a traditional software
could be used for testing SC-based software. For example, using
the test environment in the SC development tool Truffle [134],
one can create formal test cases for Solidity SCs based on certain
mathematical logic and rules, and these tests can be executed to
check SC properties. Although formal methods may be effective
for SC verification, their limitation lies in the fact that if some
important properties are left out during the verification, an SC
could remain buggy. Therefore, one can never be certain that
specified properties used during formal testing will detect all
undesirable outcomes of an SC. Furthermore, formal verification
frameworks could incur high time complexity in bug detection,
be expensive and highly complex.

Recently, authors in [10] concluded that developers are fac-
ing several significant challenges during SC development, based
on findings obtained from interviews and a survey. These chal-
lenges include (i) there is no practical way to assure the security
of SC code, (ii) existing tools for development are still imma-
ture and exhibit limited functionalities, (iii) the programming
languages and the virtual machines still have several limita-
tions, (iv) performance obstacles are difficult to manage under a
resource-constrained running scenario, and (v) online resources
(including advanced/updated reports and community support)
are still insufficient.

8.2. Performance testing

As an important component of BC research, performance eval-
uation plays a crucial role in improving BC-Apps. Although nu-
merous tools and techniques for BC performance evaluation have
been proposed and implemented in the literature, as mentioned
in Section 5, only few of them have been well analyzed and
evaluated. Due to the unavailability of standardized interfaces
while running workloads, comparative analysis between various
BC platforms is challenging (specifically for systems using dif-
ferent consensus protocols and data structures). Apart from the



D. Marijan and C. Lal

Table 9

Computer Science Review 45 (2022) 100492

Complete overview table. Dyn: Dynamic, Hyb: hybrid, FM: formal methods, ML: machine learning, SB: search-based method, MB: model-based, Funct: functional,
Non-funct: non-functional, BM: benchmarking, SIM: simulation, SC: smart contract, E2E: end-to-end, P2P: peer-to-peer. BC Platforms ET: Ethereum, P: Parity, F:
Fabric, BE: Besu, BU: Burrow, BC: BCOS, I: Iroha, S: Sawtooth, I0: I0TA, N: Nano, BY: Byteball, C: Clique, E: Etash, BI: Bitcoin.

Tool SC testing Platform testing Component/E2E BC platform
(Type)

Static Dyn Hyb Method Funct Non-funct
Slither [62] . FM . SC ET
SmartCheck [57] ° FM . SC ET
Mythril [54] o M . e ET
Securify [56] . FM . SC ET
SBV [22] o M . SC ET
NPChecker [63] ° M . SC ET
EClone [68] . FM . SC ET
EShield [69] o M o SC ET
Ethainter [64] ° FM . SC ET
SolidiFI [65] . FM . SC ET
VD [70] . ML . SC ET
Solc-Verify [71] ° FM . SC ET
SmartShield [72] . M . SC ET
Oyente [27] . FM . SC ET
MPro [73] o M . e ET
SCRepair [25] ° SB . SC ET
VerX [74] . FM . SC ET
MAIAN [75] . FM . SC ET
Osiris [53] ° FM . SC ET
ZEUS [55] . FM . SC ET
Gasper [58] . SB . SC ET
GASTAP [59] o M . Ne ET
Vandal [60] . M . SC ET
EtherTrust [61] . FM . SC ET
ETHPLOIT [76] . FM . SC ET
CONFUZZIUS [24] . SB . e ET
ContractFuzzer [77] . FM . SC ET
SolAnalyser [79] . FM . SC ET
SoCRATES [80] . M . Ne ET
TCC [81] . FM . SC ET
Deviant [82] . FM . SC ET
MuSC [83] . FM . Ne ET
Solythesis [84] . M . SC ET
Echidna [85] . FM . SC ET
SoliAudit [86] . ML . SC ET
ReGuard [87] . FM . SC ET
SolUnit [88] . FM . SC ET
EthRacer [89] . M . SC ET
ModCon [90] . MB . SC ET
BlockBench [94] Performance BM E2E ET, P, F
HL Caliper [102] Performance BM E2E BE, BU, ET, F, BC, I, S
DAGbench [98] Performance BM E2E 10, N, BY
BCTMark [99] Performance BM E2E ET, G E F
BBB [103] Performance BM E2E ET
BlockSim [108] Performance SIM E2E BI, ET
SIMBA [115] Performance SIM E2E BI, ET
DAGsim [109] Performance SIM E2E 10
Tangle sim [116] Performance SIM E2E 10
DAG-based sim [117] Performance SIM E2E N/A
PeerSim [118] Performance SIM P2P N/A
P2PTester [119] Performance SIM P2P N/A

requirement to evaluate the performance of basic functionalities
in the most popular BC platforms (e.g., HL Fabric and Ethereum),
there is a requirement for performance testing of the newly pro-
posed BC functionalities. For example, sharding approaches [135]
have been implemented in many BC platforms as a viable solution
to BC scalability, however, such shard-based BC platforms have
not been compared for their performance. Therefore, it is not
clear how the use of sharding could impact the performance of
the target BC-App. Moreover, support is needed for evaluating
the impact on the performance of BC platforms implementing
different solutions, such as sharding vs. DAG, and off-chain vs.
side-chain. Additionally, it would be beneficial to evaluate a BC
performance by combining empirical and analytical performance
evaluation techniques.

19

8.3. Security testing

The lack of best practices along with innovative tools and
techniques for security testing of BC-Apps is an important rea-
son that makes BC security a significant challenge. In BC-Apps,
vulnerabilities that lead to security threats are not limited just
to the BC platform and SCs. Other aspects are susceptible to
vulnerabilities, such as governance, compliance, human errors or
misunderstanding, and assert at risk, which should also be evalu-
ated. Consequently, BC-Apps should embed security mechanisms
specifically targeted to various components lying at different lay-
ers of the BC stack. This should be done in the application design
phase, instead of putting security patches afterwards, when a
vulnerability is detected. Such an approach to security can hope-
fully provide a robust defense, and make a BC-App cyber-resilient.



D. Marijan and C. Lal

We suggest that for each layer of our BC-layered model, secure
cryptographic primitives with recommended key lengths based
on existing standards [136,137] are considered. Examples involve
secure communication (i.e., network layer), the use of digital
signatures that are based on private keys for signing the trans-
action (i.e., consensus layer), and login credentials management
for BC-oriented services (i.e., application layer).

To provide end-to-end security in BC-Apps, it is required to
ensure that all the individual components of BC (e.g., SCs, consen-
sus algorithms, peer nodes, peer-to-peer network, and an offchain
storage system) are tested for vulnerabilities [ 18]. Furthermore, it
is required to analyze and test new threats arising from the in-
tegration of the BC technology with the target application. Based
on the state-of-the-art presented in Section 6, we observe that
many security attacks happen at the application layer, due to ex-
ploiting a centralized element by external or internal adversaries.
In contrast, for the consensus layer, many attacks happened due
to a temporary breach of protocol hypotheses by 51% attacks.
Therefore, further research is required to propose solutions to
address these threats at both the layers. Moreover, to manage safe
and correct software at each of the layers, alike to the contract
and execution layer case, developers should employ verification
tools, code reviews, testing, audits, known design patterns, and
best practices. We believe that as BC-Apps mature with time, new
security threats will be discovered, but at the same time there will
be a more mature security testing strategy and a rich set of BC-
specific security testing tools available. However, at present, it is
safe to conclude that there is a lack of comprehensive security
testing frameworks that could be used to perform systematic
testing of BC-Apps.

9. Open issues and future research directions

In this section, we summarize various open issues related to
BC-Apps V&V, and derive future research directions based on our
comprehensive study of the state-of-the-art.

9.1. Open issues

o Lack of best practices for developing BC-Apps: As BC is a
new technology, there is a lack of technology understanding,
and the lack of skills and experience in designing and devel-
oping BC-Apps. Moreover, the lack of standardization in the
usage of BC concepts and terminologies (i.e., conceptual and
architectural ambiguity) leads to decreased clarity, quality,
and productivity of the BC-App development. Furthermore,
heterogeneous domain knowledge, such as technical, non-
technical, legal (e.g., GDPR compliance rules), and the target
application are critical for effective and exhaustive testing
of BC-Apps.

e Lack of best practices for testing BC-Apps: BC-App devel-
opment is a rapidly evolving area where efforts are largely
focused on the core technology development. This may im-
ply that testing is given less importance over programming,
leading to the BC-App development ecosystems with few or
no experienced testers to evaluate a developed application.
Moreover, due to the complexity of the BC ecosystem, the
scope of a minimal set of tests (i.e., sanity check) for BC-Apps
can expand dynamically, to a significant margin.

One of the factors determining the scope and level of test-
ing required for BC-Apps is the choice of the used BC-
platform. For public platforms, such as Ethereum or Open-
chain, testing efforts will be comparatively lower than for
a customized platform that is purpose-built for an orga-
nization’s needs. It is because public BC platforms have
more evolved testing recommendations and guidelines, as

20

Computer Science Review 45 (2022) 100492

well as testing methods developed and improved by a vast
community over time. In contrast, in-house BC-App imple-
mentations need a detailed test strategy framework based
on the functionality that is custom-developed.

Lack of mature development and testing tools: The lack
of efficient development tools is a significant hurdle for BC-
App development. In particular, BC-Apps need an integrated
development environment that offers the required linters
and plugins, a build tool and compiler, a deployment tool,
a testing framework, and debugging and logging tools. Al-
though few versions of such tools exist, they are not yet
adequate to satisfy various needs of BC-App developers.
There exist open-source BC development frameworks, such
as Ganache, Hyperledger composer, Ethereum Tester, Ex-
onum Testkit, and Embark, that have some built-in features
for testing BC-Apps. However, the available testing support
in these frameworks is limited, the available tools are not
standardized, or they include a limited set of testing fea-
tures. The choice of testing tools heavily depends on the
underlying BC platform. As a BC-App consists of various BC
components, such as SCs, peer-to-peer networks, distributed
systems, and consensus protocols, a set of specialized testing
tools is needed for testing each of these components and
their integrations.

Several programming languages like Go, Solidity, and Ruby
are increasingly used for BC-App development. However,
compared to older programming languages (e.g., Java), there
is a lack of enhanced testing and debugging suites distinct
to these languages.

Lack of pre-production environments: To comprehensively
test a BC-App before deployment to production, we need a
testing environment that resembles a production environ-
ment with high fidelity. The deployment of the BC network
for testing a BC-App requires a huge effort. Although a few
deployment automation utilities are available in the mar-
ket offering such functionality via blockchain-as-a-service
(BaaS), these BaaS are limited concerning the supported BC
platforms and hardware infrastructure. If such support is
not available, then a significant part of time and resources
needs to be invested in setting up a testing environment
or spawning from the real implementation. To address this
issue, few tools with open-source implementations exist
for generating test cases, which do not exactly reflect the
test cases of a real-world scenario, but they can still be
effective to test some of the transaction functionalities.
Compared to the public BC, setting up a testing environment
is easier in private BCs, as it can be set up by configuring the
deployment tools with customized functionality.
Blockchain immutability: Implementing BC-Apps without
paying special care to immutability carries a significant asset
risk to institutions or users. Immutability is an inherent
property of BC that ensures data integrity and auditability.
Moreover, immutability supports a secure and transparent
nature of BC. It guarantees that the data stored on the
BC ledger are tamper-proof (i.e., it cannot be removed or
modified). However, immutability repudiates many privacy
requirements and data protection rights when personal data
is involved as a BC asset. Among others, it disputes the
Right-to-be-Forgotten (RtbF), described in the new EU data
protection act (i.e., GDPR), according to which individuals
have the right-to-delete their data if specific provisions ap-
ply [138]. Therefore, BC-App testers need to have adequate
knowledge about various data protection acts. Furthermore,
compliance testing needs to be carried out to ensure that
a BC-App does not breach any of these acts. This implies
that BC immutability calls for an interdisciplinary approach
to BC-App testing.



D. Marijan and C. Lal

Furthermore, BC transactions are used to invoke various
functions in SCs. Therefore, users must be aware of the
possible outputs of a transaction they are performing. SC
developers could also place the required checks that inval-
idate the transactions that are trying to invoke a wrong
function in SCs. To this end, testers need to ensure that
SCs are checked for such possible transaction validation
and verification codes before their deployment in the BC
network.

Performance evaluation: The aim of performance testing
in BC-Apps typically includes identifying performance bot-
tlenecks, defining metrics (e.g., latency and transactions per
second) for tuning the application, and assessing whether
it is production-ready. Accurate and comprehensive perfor-
mance testing with varying workloads and fault-loads is a
key to gathering insights into how a BC-App will perform in
a production environment, under specific loads and network
conditions.

A BC-App consists of many components, and its overall
performance is tightly coupled with the individual and com-
bined performance of these components. This, along with
several dynamic events (e.g., rate of input transactions, net-
work conditions, and dependencies), makes an end-to-end
performance testing of BC-Apps a significant challenge in
the BC ecosystem. For instance, testers need to predict vari-
ances in performance test cases, because a transaction com-
mit latency varies with the size of the P2P network and the
transaction volume. Data types and server locations can also
influence performance. Moreover, for performance testing,
a high-fidelity replica of the production scenario is needed,
but replicating real-world transactions and the transaction
processing latency is difficult. Let us take an example to
understand this issue better. To initiate a transaction in
the Bitcoin system, miners have to confirm and validate
the transaction, which could get delayed due to a surge in
usage. Also, the distributed ledger that powers BC needs to
reflect the same order of transactions at each network node.
Since the latency across different consensus mechanisms
may vary, testers have to perform peer/node testing to en-
sure the consistency and performance of newly committed
transactions. Furthermore, to ensure the integrity of the
network and the ledger, all these newly added transactions
should be provided in the proper sequence. Hence, consid-
ering the above issues, it can be challenging to replicate the
production system in a dummy environment.

One way to overcome some of the above-mentioned per-
formance testing challenges is to have all the details, such
as block size based communication latency, network size,
expected size of a transaction, and time taken to process
different queries stored on ledger data. In particular, testing
for block size and ledger size is essential, as improper valida-
tion of these elements leads to a BC-App failure. Moreover,
automated performance testing could be a key to assessing
the overall scalability of a BC-App. Finally, in BC-Apps, iden-
tifying the adequate trade-off between the consistency of
ledger data and the availability and partition tolerance by
setting the optimal values of different network parameters
during performance testing is critical to the success of the
target BC-App.

Dependability evaluation: During a BC-App performance
testing, one of the critical assessments that needs to be
performed using a comprehensive set of fault-loads is the
application dependability. However, due to the distributed
nature of BC, performing dependability assessment for BC-
Apps is a challenging task. Furthermore, it is important to
assess fault-tolerance levels and the performance of a BC-
App, to provide evidence of the offered guarantees for the

21

Computer Science Review 45 (2022) 100492

application performance and security levels. However, at
present, such assessments are partially conducted because
developers rely on the chosen BC platform.

Fault-injection (emulating custom faults in a BC-App under
test) is considered one of the most reliable techniques to
assess the dependability of a distributed system. During
fault-injection, fault-loads of different granularity are sent at
different levels in the target application under test, to exer-
cise its dependability under a various and rich set of possible
issues (e.g., vulnerabilities and faults) that may occur in
practice. Therefore, the need for developing the tools that
can produce realistic fault-loads at different levels (i.e., sys-
tem, network, and software) is a key challenge for efficient
dependability assessment. For instance, at the system level,
fault-loads should test the ability to tolerate process hangs
and memory leaks. At the network level, fault-loads should
test the ability to handle network partitions and message
losses.

9.2. Future research directions

Based on the comprehensive survey of the state-of-the-art on

BC-App V&V and identified open issues, we derive the following
suggestions for future research directions.

e Practical guidelines for BC-App testing: There is a lack of
standardized best practices for developing BC-Apps, which if
followed, could alleviate some of the open issues of BC-App
testing. For instance, at present, SCs follow a non-standard
software development life cycle, according to which a de-
ployed BC-App can hardly be updated, and bugs can only
be resolved by releasing a new version of the software
(i.e., hard fork). Therefore, one of the important research
directions for BC-App testing is establishing practical guide-
lines that could support BC-App developers to carry out test-
ing specific to BC-Apps. Such guidelines would help make
sure that all necessary steps are made for ensuring that
the developed BC-App will work as expected in the real-
world environment. The best practices defined in the vast
literature on software engineering for testing traditional
software applications help, but only partially. It is because
BC-Apps exhibit some unique properties (e.g., immutability,
and transparency) and new components (e.g., SCs, and con-
sensus algorithms) that need comprehensive understanding
before standardized test guidelines can be defined.
Furthermore, with a rapid development and deployment of
BC-Apps, the use of standard best practices for BC source
code review is particularly encouraged. When feasible, hav-
ing a practice of peer-review and software testing per-
formed by an external independent team before BC-App
release can be beneficial. Another important practice that
such testing guidelines can contain is the usability testing
of BC-Apps. Usability testing aims to evaluate the overall
quality of the software from the user’s perspective. Current
research shows that user experience of interacting with
BC-Apps can be a significant concern [139]. For example,
users face a lot of hurdles in interacting with BC-Apps,
if the decentralization tenet of BC is kept intact. How-
ever, such hurdles are hard to evaluate, due to the lack
of proper usability evaluation tools for BC-Apps. To that
end, an interesting research direction would be developing
the client-side of BC-based software such to honor the
decentralization without compromising user experience.

e Compliance testing: The inherent features of BC, such as
transparency and immutability, could cause S&P related
threats to data owners, when their personal data is being



D. Marijan and C. Lal

processed and managed via BC-Apps. For instance, if there
is a requirement for BC-Apps to comply with the “right
to be forgotten” regulations, then there is a conflict with
data immutability provided by the BC. Such issues make
BC-App compliance testing important, because failing to
comply with regulatory bodies (e.g., GDPR or HIPPA) can
have serious consequences, such as fines, negative press,
revenue decline, and even jail time. Furthermore, compli-
ance testing also ensures that all data privacy-related risks
stated in the associated regulation acts are taken into con-
sideration during the design of BC-Apps. Compliance testing
checks BC-Apps against non-compliance with regulations
or confidentiality agreements governing data. For instance,
the following issues could be evaluated during the compli-
ance testing, related to data privacy regulations: (i) does
the application involve personally identifiable information
(PII) or confidential freight data, and (ii) do the application
requirements allow on-chain data storage, or data must be
stored off-chain. The importance of compliance testing, as
well as the lack of support for BC-App compliance testing,
shows a significant research gap in this area that needs to
be filled.

Ecosystem and third-party risks analysis: Compared to the
BC-Apps where BC technology is integrated within the target
application, the standalone BC platforms (such as Bitcoin,
and Ethereum) have proven secure till now. However, the
security of a BC-based solution relies on all the applications
that are part of the ecosystem in which the BC is integrated.
Often, such an ecosystem consists of multiple organizations
and third-party service providers (e.g., SC developers, and
wallet and payment platforms). This heterogeneity of au-
tonomous organizations makes testing the BC ecosystem as
a whole challenging. For instance, different organizations
may use different types of devices, communication proto-
cols, and security protocols. Specifically, an organization’s
BC-App consisting of third-party BC solutions and platforms
is as secure as its weakest link across all the technology
provided. The security considerations of a public BC differ
from the security requirements of each organization or a
service provider taking part in the BC ecosystem. Therefore,
to avoid vulnerabilities caused by third-party services, it is
required to do a thorough vetting of parties involved in the
ecosystem. The vetting phase should be accompanied by
comprehensive testing that could ensure that the performed
security tests cover the risks associated with the usage of
third-party solutions integrated in the BC-App.

Tool automation: Since the deployment of BC-Apps is still
in early phases, there is a lack of automation tools for devel-
oping, deploying and testing BC-Apps. The lack of such tools
makes the testing expensive and time-consuming, thus dis-
couraging thorough testing altogether. Moreover, the highly
competitive market to provide BC-Apps and services further
adds fuel by creating a race condition between different
BC-based service providers. Therefore, there is a significant
need for automation tools for BC-App development, deploy-
ment and testing. For instance, the BC network deployment
process is usually complicated and therefore should be au-
tomated, so that the time and resource consumption of
testing can be reduced significantly. Some deployment au-
tomation utilities? exist on the market, typically as part of a
blockchain-as-a-service offering. However, they are limited
in terms of the supported BC platforms and hardware in-
frastructure. Moreover, they fail to capture high-level design

9 https://www.ansible.com.

22

Computer Science Review 45 (2022) 100492

decisions, and thus do not represent the high-fidelity testing
setups when compared with the production environment.
Manual test generation is likely to form an important com-
ponent, but inevitably is limited, therefore, there is a need
for effective automated test generation and execution tools.
To this end, researchers have already started to work to-
wards the creation of automation tools for SC testing [82,85].
Moreover, there are few automation tools for performance
testing [98]. However, these tools are at the early stages and
do not support the automation of all the required functional-
ities and operations [17,140]. For example, Caliper tool takes
a configuration file as input, to represent the workload, and
falutloads to evaluate the performance of the system, but it
does not allow SC functions to interact with the fabric during
the evaluation process. Thus, it does not truly automate
the performance analysis process when complex SCs are
involved that need to interact with the BC system during
its execution. Therefore, another future research direction
could consist in developing specialized automation tools for
testing different components of BC-Apps.

o Endpoint vulnerability testing: With a growing demand to
release BC-Apps rapidly, there is often the risk of deploying
a partially tested code, sometimes even on live BCs. For any
new technology, its endpoints are most vulnerable, thus an
easy target for the adversaries to launch malicious attacks.
The BC endpoints, such as digital wallets, specific devices,
or any user-side applications, are interfaces for users/clients
to connect with the BC-App. If an adversary can compro-
mise (i.e., get possession of a user’s password or private
key, or get physical access to the devices) any of these
endpoints, it can get access to the user accounts, unless
enhanced security measures, such as multi-factor authen-
tication or fine-grained access control, are in place. Such
malicious access, if successful, can put everything in the
user account at risk. For example, the attacker can misuse
the account without raising any external alarms or leaving
signs of any abnormal behavior. In private or centralized
systems such as banking, there are possibilities to detect and
even correct (e.g., reverse) a malicious transaction. How-
ever, the decentralized and immutable nature of public BCs
does not support such corrections, and the same applies to
private BCs up to a certain point. Therefore, it is essential
to thoroughly test the interfaces used to access the BC
infrastructure. To ensure that the client-side applications
are secure, progress has been made in protective measures,
such as the use of cold wallets, often along with the Hard-
ware Security Models (HSMs), which are being implemented
by various companies. Unlike hot wallets that need inter-
net connection and that store all the account information
(e.g., password and private keys) in an online storage, the
cold wallets work in an offline mode, thus making them
hard to compromise. In summary, it is essential to carefully
check and address all end-point vulnerabilities that exist at
the integration points of different components of BC, and
between the BC and endpoints of the application in which
the BC is integrated.

10. Conclusion

In this paper, we provide a comprehensive study on the testing
of BC-Apps, which includes the challenges it faces, the tech-
niques and tools available to test various BC components, and the
different types of testing required for it. Moreover, we identify
a set of research gaps that need attention from the research
community working on the topic. As concluded from our study,
the key component requiring extensive and rigorous testing are


https://www.ansible.com

D. Marijan and C. Lal

SCs, and the same have received a lot of attention from re-
searchers that have proposed different tools to test SCs for finding
bugs and vulnerabilities. Such tools aim to automate BC test-
ing, improve code coverage, and achieve low false positives and
negatives. Next, there exist a few tools that provide support
for performance testing, but these tools are at their primary
phases, and require further improvement and new test features.
The efforts towards the security testing of BC-Apps are limited.
There are research works that address the security of individual
BC components, but tools that could access the security of the
whole BC stack (i.e., end-to-end threat detection) do not exist
yet. Finally, techniques to test the performance and security of
consensus algorithms and BC nodes need to be explored. The
issues related to the testing of applications that use SCs and BC
technologies raise huge concerns to developers. It is because the
rapid usage of these technologies in industries is currently worth
billions of dollars. Hence, the testing of these technologies needs
testers from multiple research domains (e.g., distributed systems,
new coding languages, formal V&V methods, and cryptography)
to work together to perform inter-domain research activities.
Achieving significant progress on these issues would be difficult
if the research challenges and gaps mentioned in this paper are
not addressed properly. To this end, we hope that the testing
challenges and research gaps highlighted in this work will help
the research community to coordinate and work together to
improve SCs and BC-Apps in general.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by the Research Council of Norway,
grant number 288106.

References

[1] D. Di Francesco Maesa, P. Mori, Blockchain 3.0 applications survey, J.
Parallel Distrib. Comput. 138 (2020) 99-114.

[2] J. Xie, H. Tang, T. Huang, FR. Yu, R. Xie, J. Liu, Y. Liu, A survey

of blockchain technology applied to smart cities: Research issues and

challenges, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2794-2830.

D.C. Nguyen, P.N. Pathirana, M. Ding, A. Seneviratne, Integration of

blockchain and cloud of things: Architecture, applications and challenges,

IEEE Commun. Surv. Tutor. (2020) 1.

Y. Liu, FR. Yu, X. Li, H. Ji, V.C.M. Leung, Blockchain and machine learning

for communications and networking systems, IEEE Commun. Surv. Tutor.

22 (2) (2020) 1392-1431.

R. Koul, Blockchain oriented software testing - challenges and approaches,

in: 2018 3rd Int. Conf. for Convergence in Technology (I12CT), 2018, pp.

1-6.

P. Praitheeshan, L. Pan, ]J. Yu, JK. Liu, RRM. Doss, Security analysis

methods on ethereum smart contract vulnerabilities: A survey, 2019,

ArXiv, abs/1908.08605.

S. Porru, A. Pinna, M. Marchesi, R. Tonelli, Blockchain-oriented software

eng.: Challenges and new directions, in: 2017 IEEE/ACM 39th Int. Conf.

on Software Eng. Companion (ICSE-C), 2017, pp. 169-171.

C. Dannen, Introducing Ethereum and Solidity: Foundations of Cryptocur-

rency and Blockchain Programming for Beginners, first ed., A Press, USA,

2017.

A.A. Donovan, B.W. Kernighan, The Go Programming Language, first ed.,

Addison-Wesley, 2015.

W. Zou, D. Lo, P.S. Kochhar, X.D. Le, X. Xia, Y. Feng, Z. Chen, B. Xu, Smart

contract development: Challenges and opportunities, IEEE Trans. Softw.

Eng. (2019) 1.

3]

[4]

5

[6

[7

[8

[9]

[10]

23

Computer Science Review 45 (2022) 100492

[11] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart
contracts SoK, in: Proceedings of the 6th Int. Conf. on Principles of
Security and Trust - Volume 10204, Springer-Verlag, 2017, pp. 164-186.
A. Singh, R.M. Parizi, Q. Zhang, K.-K.R. Choo, A. Dehghantanha, Blockchain
smart contracts formalization: Approaches and challenges to address
vulnerabilities, Comput. Secur. 88 (2020).

J. Liu, Z. Liu, A survey on security verification of blockchain smart
contracts, IEEE Access 7 (2019) 77894-77904.

M.S. Ferdous, M.J.M. Chowdhury, M.A. Hoque, A. Colman, Blockchain
consensus algorithms: A survey, 2020, [Online]. Available: https://arxiv.
org/abs/2001.07091.

G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, R. Hierons,
Smart contracts vulnerabilities: a call for blockchain software engineer-
ing? in: 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), 2018, pp. 19-25.

M. di Angelo, G. Salzer, A survey of tools for analyzing ethereum smart
contracts, in: 2019 IEEE Int. Conf. on Decentralized Applications and
Infrastructures (DAPPCON), 2019, pp. 69-78.

C. Fan, S. Ghaemi, H. Khazaei, P. Musilek, Performance evaluation
of blockchain systems: A systematic survey, IEEE Access 8 (2020)
126927-126950.

I. Homoliak, S. Venugopalan, D. Reijsbergen, Q. Hum, R. Schumi, P. Sza-
lachowski, The security reference architecture for blockchains: Towards
a standardized model for studying vulnerabilities, threats, and defenses,
IEEE Commun. Surv. Tutor. (2020).

J. Leng, M. Zhou, LJ. Zhao, Y. Huang, Y. Bian, Blockchain security: A survey
of techniques and research directions, IEEE Trans. Serv. Comput. (2020)
1.

M. Dabbagh, K.-K.R. Choo, A. Beheshti, M. Tahir, N.S. Safa, A survey of
empirical performance evaluation of permissioned blockchain platforms:
Challenges and opportunities, Comput. Secur. 100 (2021) 102078.

H. Huang, W. Kong, S. Zhou, Z. Zheng, S. Guo, A survey of state-of-the-art
on blockchains: Theories, modelings, and tools, ACM Comput. Surv. 54 (2)
(2021).

S.M. Beillahi, G. Ciocarlie, M. Emmi, C. Enea, Behavioral simulation for
smart contracts, in: Proc. of the 41st Conf. on Programming Language
Design and Implementation, in: PLDI 2020, 2020, pp. 470-486.

B. Jiang, Y. Liu, W.K. Chan, ContractFuzzer: Fuzzing smart contracts for
vulnerability detection, in: Proceedings of the 33rd ACM/IEEE Int. Conf.
on Automated Software Eng., in: ASE 2018, 2018, pp. 259-269.

C.F. Torres, A.K. Iannillo, A. Gervais, R. State, Towards smart hybrid fuzzing
for smart contracts, 2020, ArXiv, abs/2005.12156.

X.L. Yu, O. Al-Bataineh, D. Lo, A. Roychoudhury, Smart contract repair,
ACM Trans. Softw. Eng. Methodol. 29 (4) (2020) [Online]. Available:
https://doi.org/10.1145/3402450.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, A. Dinaburg, Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts, in: 2019 34th IEEE/ACM Int.
Conf. on Automated Software Eng. (ASE), 2019, pp. 1186-1189.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts
smarter, in: Proc. of the 2016 ACM SIGSAC Conf. on Computer and
Communications Security, in: CCS '16, 2016, pp. 254-269.

M. Kuzlu, M. Pipattanasomporn, L. Gurses, S. Rahman, Performance anal-
ysis of a hyperledger fabric blockchain framework: Throughput, latency
and scalability, in: 2019 IEEE Int. Conf. on Blockchain, 2019, pp. 536-540.
M. Schiffer, M. Di Angelo, G. Salzer, Performance and Scalability of Private
Ethereum Blockchains, 2019, pp. 103-118.

R.C. Merkle, A digital signature based on a conventional encryption
function, in: A Conf. on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, in: CRYPTO 87, Springer-Verlag,
1987, pp. 369-378.

Y. Xiao, N. Zhang, W. Lou, Y.T. Hou, A survey of distributed consensus
protocols for blockchain networks, IEEE Commun. Surv. Tutor. 22 (2)
(2020) 1432-1465.

M.J. Amiri, D. Agrawal, A. El Abbadi, Permissioned blockchains: Properties,
techniques and applications, in: Proceedings of the 2021 International
Conference on Management of Data, Association for Computing Ma-
chinery, New York, NY, USA, 2021, pp. 2813-2820, [Online]. Available:
https://doi.org/10.1145/3448016.3457539.

0. Dib, K.-L. Brousmiche, A. Durand, E. Thea, E. Ben Hamida, Consor-
tium blockchains: Overview, applications and challenges, Int. J. Adv.
Telecommun. (2018) [Online]. Available: https://hal.archives-ouvertes.fr/
hal-02271063.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]


http://refhub.elsevier.com/S1574-0137(22)00031-4/sb1
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb1
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb1
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb2
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb2
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb2
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb2
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb2
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb3
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb3
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb3
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb3
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb3
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb4
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb4
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb4
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb4
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb4
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb5
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb5
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb5
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb5
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb5
http://arxiv.org/abs/1908.08605
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb7
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb7
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb7
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb7
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb7
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb8
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb8
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb8
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb8
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb8
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb9
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb9
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb9
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb10
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb10
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb10
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb10
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb10
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb11
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb11
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb11
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb11
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb11
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb12
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb12
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb12
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb12
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb12
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb13
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb13
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb13
https://arxiv.org/abs/2001.07091
https://arxiv.org/abs/2001.07091
https://arxiv.org/abs/2001.07091
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb15
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb15
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb15
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb15
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb15
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb15
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb15
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb16
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb16
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb16
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb16
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb16
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb17
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb17
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb17
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb17
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb17
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb18
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb18
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb18
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb18
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb18
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb18
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb18
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb19
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb19
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb19
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb19
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb19
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb20
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb20
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb20
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb20
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb20
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb21
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb21
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb21
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb21
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb21
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb22
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb22
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb22
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb22
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb22
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb23
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb23
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb23
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb23
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb23
http://arxiv.org/abs/2005.12156
https://doi.org/10.1145/3402450
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb26
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb26
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb26
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb26
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb26
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb26
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb26
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb27
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb27
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb27
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb27
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb27
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb28
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb28
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb28
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb28
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb28
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb29
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb29
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb29
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb30
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb30
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb30
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb30
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb30
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb30
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb30
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb31
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb31
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb31
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb31
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb31
https://doi.org/10.1145/3448016.3457539
https://hal.archives-ouvertes.fr/hal-02271063
https://hal.archives-ouvertes.fr/hal-02271063
https://hal.archives-ouvertes.fr/hal-02271063

D. Marijan and C. Lal

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. Belotti, N. BozZi¢, G. Pujolle, S. Secci, A vademecum on blockchain
technologies: When, which, and how, Commun. Surv. Tutor. 21 (4)
(2019) 3796-3838, [Online]. Available: https://doi.org/10.1109/COMST.
2019.2928178.

V. Buterin, A next-generation smart contract and decentralized appli-
cation platform, White Paper 3 (2014) 1-36, [Online]. Available: https:
|[cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf.

D. Macrinici, C. Cartofeanu, S. Gao, Smart contract applications within
blockchain technology: A systematic mapping study, Telemat. Inform. 35
(8) (2018) 2337-2354.

M. Pincheira, E. Donini, R. Giaffreda, M. Vecchio, A blockchain-based
approach to enable remote sensing trusted data, in: 2020 IEEE Latin
American GRSS & ISPRS Remote Sensing Conference (LAGIRS), 2020, pp.
652-657.

C.D. Clack, V.A. Bakshi, L. Braine, Smart contract templates: foundations,
design landscape and research directions, 2016, ArXiv, abs/1608.00771.
P. Zhuang, T. Zamir, H. Liang, Blockchain for cyber security in smart grid:
A comprehensive survey, IEEE Trans. Ind. Inf. (2020) 1.

M. Chopade, S. Khan, U. Shaikh, R. Pawar, Digital forensics: Maintaining
chain of custody using blockchain, in: 2019 Third International Confer-
ence on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),
2019, pp. 744-747.

R.A. Das, M.M.S. Pahalovi, M.N. Yanhaona, Transaction finality through
ledger checkpoints, in: 2019 IEEE 25th International Conference on
Parallel and Distributed Systems (ICPADS), 2019, pp. 183-192.

Y. Hirai, Defining the ethereum virtual machine for interactive theorem
provers, in: M. Brenner, K. Rohloff, ]. Bonneau, A. Miller, P.Y. Ryan, V.
Teague, A. Bracciali, M. Sala, F. Pintore, M. Jakobsson (Eds.), Financial
Cryptography and Data Security, Springer Int. Publishing, Cham, 2017,
pp. 520-535.

E. Seligman, T. Schubert, M.V.A.K. Kumar, Chapter 2 - Basic formal ver-
ification algorithms, in: Formal Verification, Morgan Kaufmann, Boston,
2015, pp. 23-47.

J. Yoo, Y. Jung, D. Shin, M. Bae, E. Jee, Formal modeling and verification of
a federated Byzantine agreement algorithm for blockchain platforms, in:
2019 IEEE Int. Works. on Blockchain Oriented Software Eng. (IWBOSE),
2019, pp. 11-21.

W.Y. Maung Maung Thin, N. Dong, G. Bai, ].S. Dong, Formal analysis of
a proof-of-stake blockchain, in: 2018 23rd Int. Conf. on Eng. of Complex
Computer Systems (ICECCS), 2018, pp. 197-200.

B. Beizer, Software Testing Techniques, Dreamtech Press, 2003.

M. Pezzé, M. Young, Software Testing and Analysis: Process, Principles,
and Tech, John Wiley & Sons, 2008.

D. Marijan, A. Gotlieb, Software testing for machine learning, in: Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp.
13576-13582, no. 09. [Online]. Available: https://ojs.aaai.org/index.php/
AAAl/article/view/[7084.

Z.M. Jiang, A.E. Hassan, A survey on load testing of large-scale software
systems, IEEE Trans. Softw. Eng. 41 (11) (2015) 1091-1118.

Y. Jia, M. Harman, An analysis and survey of the development of mutation
testing, IEEE Trans. Softw. Eng. 37 (5) (2011) 649-678.

A.A. Omar, FA. Mohammed, A survey of software functional testing
methods, SIGSOFT Softw. Eng. Notes 16 (2) (1991) 75-82.

T. Su, K. Wu, W. Miao, G. Pu, ]. He, Y. Chen, Z. Su, A survey on data-
flow testing, ACM Comput. Surv. 50 (1) (2017) [Online]. Available: https:
//doi.org/10.1145/3020266.

CF. Torres, J. Schiitte, R. State, Osiris: Hunting for integer bugs
in ethereum smart contracts, in: 34th Annual Computer Security
Applications Conf., in: ACSAC 18, 2018, pp. 664-676.

B. Mueller, Smashing ethereum smart contracts for fun and real profit,
in: 9th Annual HITB Security Conf. (HITBSecConf). HITB, Amsterdam,
Netherlands, 54, 2018.

S. Kalra, S. Goel, M. Dhawan, S. Sharma, ZEUS: Analyzing safety of
smart contracts, in: Network and Distributed Systems Security (NDSS)
Symposium, 2018.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli, M. Vechev,
Securify: Practical security analysis of smart contracts, in: Proceedings of
the 2018 ACM SIGSAC Conf. on Computer and Communications Security,
in: CCS '18, 2018, pp. 67-82.

S. Tikhomirov, E. Voskresenskaya, I Ivanitskiy, R. Takhaviev, E.
Marchenko, Y. Alexandrov, SmartCheck: Static analysis of ethereum smart
contracts, in: 2018 IEEE/ACM 1st Int. Workshop on Emerging Trends in
Software Eng. for Blockchain (WETSEB), 2018, pp. 9-16.

T. Chen, X. Li, X. Luo, X. Zhang, Under-optimized smart contracts devour
your money, in: 2017 IEEE 24th Int. Conf. on Software Analysis, Evolution
and ReEng. (SANER), 2017, pp. 442-446.

24

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[751

[76]

[771]

[78]

[79]

[80]

[81]

(82]

Computer Science Review 45 (2022) 100492

E. Albert, P. Gordillo, A. Rubio, I. Sergey, Running on fumes-preventing
out-of-gas vulnerabilities in ethereum smart contracts using static re-
source analysis, in: P. Ganty, M. Kaaniche (Eds.), Verif. and Evaluation of
Computer and Communication Systems, Springer Int. Publishing, Cham,
2019, pp. 63-78.

L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
B. Scholz, Vandal: A scalable security analysis framework for smart
contracts, 2018, [Online]. Available: https://arxiv.org/abs/1809.03981.

I. Grishchenko, M. Maffei, C. Schneidewind, Ethertrust: Sound static
analysis of ethereum bytecode, 2018, [Online]. Available: https://pdfs.
semanticscholar.org/26¢2/b7e7479336d44891aadda6b5eaae2ca2ee91.pdf.
J. Feist, G. Grieco, A. Groce, Slither: A static analysis framework for smart
contracts, in: 2019 IEEE/ACM 2nd Int. Workshop on Emerging Trends in
Software Eng. for Blockchain (WETSEB), 2019, pp. 8-15.

S. Wang, C. Zhang, Z. Su, Detecting nondeterministic payment bugs in
ethereum smart contracts, Proc. ACM Program. Lang. (2019).

L. Brent, N. Grech, S. Lagouvardos, B. Scholz, Y. Smaragdakis, Ethainter:
A smart contract security analyzer for composite vulnerabilities, in:
Proceedings of the 41st ACM SIGPLAN Conf. on Programming Language
Design and Implementation, in: PLDI 2020, 2020, pp. 454-469.

A. Ghaleb, K. Pattabiraman, How effective are smart contract analysis
tools? Evaluating smart contract static analysis tools using bug injection,
in: Proc. of the 29th Int. Symposium on Software Testing and Analysis,
2020, pp. 415-427.

P. Daian, Analysis of the dao exploit, 2022, http://hackingdistributed.
com/2016/06/18/analysis-of-the-dao-exploit/ (June 18, 2016 (accessed on
March 01, 2022)).

We got spanked: What we know so far, 2022, https://medium.com/
spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe (Oct 8,
2018 (accessed on March 01, 2022)).

H. Liu, Z. Yang, Y. Jiang, W. Zhao, J. Sun, Enabling clone detection for
ethereum via smart contract birthmarks, in: 2019 IEEE/ACM 27th Int.
Conf. on Program Comprehension (ICPC), 2019, pp. 105-115.

W. Yan, J. Gao, Z. Wuy, Y. Li, Z. Guan, Q. Li, Z. Chen, EShield: Protect
smart contracts against reverse eng. in: Proc. of the 29th Int. Symposium
on Software Testing and Analysis, 2020, pp. 553-556.

P. Momeni, Y. Wang, R. Samavi, Machine learning model for smart
contracts security analysis, in: 2019 17th Int. Conf. on Privacy, Security
and Trust (PST), 2019, pp. 1-6.

A. Hajdu, D. Jovanovié, Solc-verify: A modular verifier for solidity smart
contracts, in: S. Chakraborty, J.A. Navas (Eds.), Verified Software. Theories,
Tools, and Experim., Springer Int. Publishing, Cham, 2020, pp. 161-179.
Y. Zhang, S. Ma, ]. Li, K. Li, S. Nepal, D. Gu, SMARTSHIELD: Automatic
smart contract protection made easy, in: 2020 IEEE 27th Int. Conf. on
Software Analysis, Evolution and ReEng. (SANER), 2020, pp. 23-34.

W. Zhang, S. Banescu, L. Pasos, S. Stewart, V. Ganesh, MPro: Combining
static and symbolic analysis for scalable testing of smart contract, in:
2019 IEEE 30th Int. Symposium on Software Reliability Eng. (ISSRE), 2019,
pp. 456-462.

A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, M. Vechev,
VerX: Safety verification of smart contracts, in: 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 1661-1677.

I. Nikoli¢, A. Kolluri, I. Sergey, P. Saxena, A. Hobor, Finding the greedy,
prodigal, and suicidal contracts at scale, in: Proc. of the 34th Annual
Computer Security Application Conf., 2018, pp. 653-663.

Q. Zhang, Y. Wang, J. Li, S. Ma, EthPloit: From fuzzing to efficient exploit
generation against smart contracts, in: 2020 IEEE 27th Int. Conf. on
Software Analysis, Evolution and ReEng. (SANER), 2020, pp. 116-126.

X. Mei, L. Ashraf, B. Jiang, W.K. Chan, A fuzz testing service for assuring
smart contracts, in: 2019 IEEE 19th Int. Conf. on Software Quality,
Reliability and Security Companion (QRS-C), 2019, pp. 544-545.

W.K. Chan, B. Jiang, Fuse: An architecture for smart contract fuzz testing
service, in: 2018 25th Asia-Pacific Software Eng. Conf. (APSEC), 2018, pp.
707-708.

S. Akca, A. Rajan, C. Peng, SolAnalyser: A framework for analysing and
testing smart contracts, in: 2019 26th Asia-Pacific Software Eng. Conf.
(APSEC), 2019, pp. 482-489.

E. Viglianisi, M. Ceccato, P. Tonella, A federated society of bots for smart
contract testing, J. Syst. Softw. 168 (2020) 110647.

X. Wang, Z. Xie, ]. He, G. Zhao, R. Nie, Basis path coverage criteria for
smart contract application testing, in: 2019 Int. Conf. on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), 2019, pp.
34-41.

P. Chapman, D. Xu, L. Deng, Y. Xiong, Deviant: A mutation testing tool
for solidity smart contracts, in: 2019 IEEE Int. Conf. on Blockchain, 2019,
pp. 319-324.


https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/COMST.2019.2928178
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb36
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb36
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb36
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb36
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb36
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb37
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb37
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb37
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb37
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb37
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb37
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb37
http://arxiv.org/abs/1608.00771
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb39
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb39
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb39
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb40
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb40
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb40
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb40
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb40
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb40
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb40
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb41
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb41
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb41
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb41
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb41
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb42
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb43
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb43
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb43
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb43
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb43
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb44
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb44
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb44
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb44
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb44
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb44
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb44
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb45
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb45
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb45
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb45
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb45
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb46
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb47
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb47
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb47
https://ojs.aaai.org/index.php/AAAI/article/view/7084
https://ojs.aaai.org/index.php/AAAI/article/view/7084
https://ojs.aaai.org/index.php/AAAI/article/view/7084
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb49
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb49
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb49
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb50
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb50
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb50
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb51
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb51
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb51
https://doi.org/10.1145/3020266
https://doi.org/10.1145/3020266
https://doi.org/10.1145/3020266
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb53
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb53
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb53
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb53
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb53
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb54
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb54
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb54
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb54
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb54
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb55
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb55
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb55
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb55
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb55
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb56
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb56
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb56
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb56
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb56
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb56
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb56
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb57
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb57
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb57
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb57
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb57
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb57
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb57
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb58
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb58
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb58
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb58
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb58
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb59
https://arxiv.org/abs/1809.03981
https://pdfs.semanticscholar.org/26c2/b7e7479336d44891aadda6b5eaae2ca2ee91.pdf
https://pdfs.semanticscholar.org/26c2/b7e7479336d44891aadda6b5eaae2ca2ee91.pdf
https://pdfs.semanticscholar.org/26c2/b7e7479336d44891aadda6b5eaae2ca2ee91.pdf
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb62
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb62
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb62
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb62
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb62
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb63
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb63
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb63
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb64
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb64
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb64
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb64
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb64
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb64
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb64
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb68
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb68
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb68
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb68
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb68
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb70
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb70
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb70
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb70
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb70
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb71
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb71
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb71
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb71
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb71
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb72
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb72
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb72
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb72
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb72
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb73
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb73
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb73
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb73
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb73
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb73
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb73
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb74
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb74
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb74
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb74
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb74
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb76
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb76
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb76
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb76
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb76
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb77
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb77
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb77
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb77
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb77
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb78
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb78
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb78
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb78
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb78
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb79
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb79
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb79
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb79
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb79
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb80
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb80
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb80
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb81
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb81
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb81
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb81
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb81
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb81
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb81
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb82
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb82
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb82
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb82
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb82

D. Marijan and C. Lal

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, Z. Chen, MuSC: A tool for
mutation testing of ethereum smart contract, in: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2019,
pp. 1198-1201.

A. Li, J.A. Choi, F. Long, Securing smart contract with runtime validation,
in: Proc. of the 41st ACM SIGPLAN Conf. on Programming Language
Design and Implementation, in: PLDI 2020, 2020, pp. 438-453.

G. Grieco, W. Song, A. Cygan, J. Feist, A. Groce, Echidna: Effective, usable,
and fast fuzzing for smart contracts, in: Proc. of the 29th Int. Symposium
on Software Testing and Analysis, 2020, pp. 557-560.

J. Liao, T. Tsai, C. He, C. Tien, SoliAudit: Smart contract vulnerability
assessment based on machine learning and fuzz testing, in: 2019 Sixth
Int. Conf. on Internet of Things: Systems, Management and Security, 2019,
pp. 458-465.

C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, B. Roscoe, ReGuard: Finding
reentrancy bugs in smart contracts, in: 2018 IEEE/ACM 40th Int. Conf.
on Software Eng.: Companion (ICSE-Companion), 2018, pp. 65-68.

H. Medeiros, P. Vilain, . Mylopoulos, H.-A. Jacobsen, SolUnit: A framework
for reducing execution time of smart contract unit tests, in: Proceedings
of the 29th Annual Int. Conf. on Computer Science and Software Eng., in:
CASCON '19, IBM Corp., USA, 2019, pp. 264-273.

A. Kolluri, 1. Nikolic, I. Sergey, A. Hobor, P. Saxena, Exploiting the laws of
order in smart contracts, in: Proceedings of the 28th Int. Symposium on
Software Testing and Analysis, in: ISSTA 2019, 2019, pp. 363-373.

Y. Liy, Y. Li, S.-W. Lin, Q. Yan, ModCon: A model-based testing platform
for smart contracts, in: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, in: ESEC/FSE 2020, Association
for Computing Machinery, New York, NY, USA, 2020, pp. 1601-1605,
[Online]. Available: https://doi.org/10.1145/3368089.3417939.

C. Pacheco, S.K. Lahiri, M.D. Ernst, T. Ball, Feedback-directed random test
generation, in: 29th Int. Conf. on Software Eng. (ICSE’07), 2007, pp. 75-84.
C. Lemieux, R. Padhye, K. Sen, D. Song, Perffuzz: Automatically gener-
ating pathological inputs, in: Proceedings of the 27th ACM SIGSOFT Int.
Symposium on Software Testing and Analysis, in: ISSTA 2018, 2018, pp.
254-265.

M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing
approaches, Softw. Test. Verif. Reliab. 22 (5) (2012) 297-312.

T.T.A. Dinh, J. Wang, G. Chen, R. Liu, B.C. Ooi, K.-L. Tan, BLOCKBENCH: A
framework for analyzing private blockchains, in: Proc. of the 2017 ACM
Int. Conf. on Management of Data, 2017, pp. 1085-1100.

B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmark-
ing cloud serving systems with YCSB, in: Proceedings of the 1st ACM
Symposium on Cloud Computing, 2010, pp. 143-154.

MJ. Cahill, U. Réhm, A.D. Fekete, Serializable isolation for snapshot
databases, ACM Trans. Database Syst. 34 (4) (2009).

P. Thakkar, S. Nathan, B. Viswanathan, Performance benchmarking and
optimizing hyperledger fabric blockchain platform, in: 2018 IEEE 26th
Int. Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2018, pp. 264-276.

Z. Dong, E. Zheng, Y. Choon, AY. Zomaya, DAGBENCH: A performance
evaluation framework for DAG distributed ledgers, in: 2019 IEEE 12th
Int. Conf. on Cloud Computing (CLOUD), 2019, pp. 264-271.

D. Saingre, T. Ledoux, ]J.-M. Menaud, BCTMark: a framework for bench-
marking blockchain technologies, in: AICCSA 2020 - 17th IEEE/ACS Int.
Conf. on Computer Systems and Applications, IEEE, Turkey, 2020, pp. 1-8.
H. Pan, X. Duan, Y. Wu, L. Tseng, A. Boukerche, M. Aloqaily, BBB: A
lightweight approach to evaluate private blockchains in clouds, in: 2020
IEEE Global Communications Conf. (GLOBECOM), 2020, pp. 1-6.

E. Heilman, A. Kendler, A. Zohar, S. Goldberg, Eclipse attacks on bitcoin’s
peer-to-peer network, in: Proceedings of the 24th USENIX Conf. on
Security Symposium, in: SEC'15, USENIX Association, USA, 2015, pp.
129-144.

IBM, Blockchain Performance Benchmarking for Hyperledger Besu, Hyper-
ledger Fabric, Ethereum and FISCO BCOS Networks, White Paper, 2018,
[Online]. Available: https://hyperledger.github.io/caliper/.

X. Duan, H. Pan, L. Tseng, Y. Wu, BBB: Make benchmarking blockchains
configurable and extensible, in: 2019 IEEE 24th Pacific Rim Int.
Symposium on Dependable Computing (PRDC), 2019, pp. 61-611.

M.T. Oliveira, G.R. Carrara, N.C. Fernandes, C.V.N. Albuquerque, R.C.
Carrano, D.S.V. Medeiros, D.M.F. Mattos, Towards a performance eval-
uation of private blockchain frameworks using a realistic workload, in:
2019 22nd Conf. on Innovation in Clouds, Internet and Networks and
Workshops (ICIN), 2019, pp. 180-187.

25

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Computer Science Review 45 (2022) 100492

P. Zheng, Z. Zheng, X. Luo, X. Chen, X. Liu, A detailed and real-time
performance monitoring framework for blockchain systems, in: 2018
IEEE/ACM 40th Int. Conf. on Software Eng.: Software Eng. in Practice
Track, 2018, pp. 134-143.

S. Rouhani, R. Deters, Performance analysis of ethereum transactions in
private blockchain, in: 2017 8th IEEE Int. Conf. on Software Eng. and
Service Science (ICSESS), 2017, pp. 70-74.

C. Fan, H. Khazaei, Y. Chen, P. Musilek, Towards a scalable DAG-based
distributed ledger for smart communities, in: 2019 IEEE 5th World Forum
on Internet of Things (WF-IoT), 2019, pp. 177-182.

M. Alharby, A. van Moorsel, BlockSim: A simulation framework for
blockchain systems, SIGMETRICS Perform. Eval. Rev. 46 (3) (2019)
135-138.

M. Zander, T. Waite, D. Harz, DAGsim: Simulation of DAG-based dis-
tributed ledger protocols, SIGMETRICS Perform. Eval. Rev. 46 (3) (2019)
118-121.

M. Bez, G. Fornari, T. Vardanega, The scalability challenge of ethereum: An
initial quantitative analysis, in: 2019 IEEE Int. Conf. on Service-Oriented
System Eng. (SOSE), 2019, pp. 167-176.

Z. Shi, H. Zhou, Y. Hu, S. Jayachander, C. de Laat, Z. Zhao, Operating
permissioned blockchain in clouds: A performance study of hyper-
ledger sawtooth, in: 2019 18th Int. Symposium on Parallel and Distrib.
Computing, 2019, pp. 50-57.

T.S. Nguyen, G. Jourjon, M. Potop-Butucaru, K. Thai, Impact of network
delays on hyperledger fabric, in: IEEE INFOCOM 2019 - IEEE Conf. on
Computer Communications Workshops (INFOCOM WKSHPS), 2019, pp.
222-227.

S. Pandey, G. Ojha, B. Shrestha, R. Kumar, BlockSIM: A practical simulation
tool for optimal network design, stability and planning., in: 2019 IEEE Int.
Conf. on Blockchain and Cryptocurrency (ICBC), 2019, pp. 133-137.

C. Faria, M. Correia, BlockSim: Blockchain simulator, in: 2019 IEEE Int.
Conf. on Blockchain, 2019, pp. 439-446.

S.M. Fattahi, A. Makanju, A. Milani Fard, SIMBA: An efficient simulator
for blockchain applications, in: 2020 50th Annual IEEE-IFIP Int. Conf. on
Dependable Systems and Networks-Supplemental Volume (DSN-S), 2020,
pp. 51-52.

M. Bottone, F. Raimondi, G. Primiero, Multi-agent based simulations of
block-free distributed ledgers, in: 2018 32nd Int. Conf. on Advanced
Information Networking and Applications Workshops (WAINA), 2018, pp.
585-590.

S. Park, S. Oh, H. Kim, Performance analysis of DAG-based cryptocurrency,
in: 2019 IEEE Int. Conf. on Communications Workshops (ICC Workshops),
2019, pp. 1-6.

A. Montresor, M. Jelasity, PeerSim: A scalable P2P simulator, in: 2009
IEEE Ninth International Conference on Peer-To-Peer Computing, 2009,
pp. 99-100.

B. Butnaru, F. Dragan, G. Gardarin, ]. Manolescu, B. Nguyen, R. pop, N.
Preda, L. Yeh, P2PTester: a tool for measuring P2P platform performance,
in: 2007 IEEE 23rd International Conference on Data Engineering, 2007,
pp. 1501-1502.

R. Yasaweerasinghelage, M. Staples, I. Weber, Predicting latency of
blockchain-based systems using architectural modelling and simulation,
in: 2017 IEEE Int. Conf. on Software Architecture (ICSA), 2017, pp.
253-256.

C. Rathfelder, B. Klatt, Palladio workbench: A quality-prediction tool for
component-based architectures, in: 2011 Ninth Working [EEE/IFIP Conf.
on Software Architecture, 2011, pp. 347-350.

S. Ricci, E. Ferreira, D.S. Menasche, A. Ziviani, J.E. Souza, A.B. Vieira,
Learning blockchain delays: A queueing theory approach, SIGMETRICS
Perform. Eval. Rev. 46 (3) (2019) 122-125, [Online]. Available: https:
//doi.org/10.1145/3308897.3308952.

W. Zhao, S. Jin, W. Yue, Analysis of the average confirmation time of
transactions in a blockchain system, in: T. Phung-Duc, S. Kasahara, S.
Wittevrongel (Eds.), Queueing Theory and Network Applications, Springer
Int. Publishing, Cham, 2019, pp. 379-388.

P. Ferraro, C. King, R. Shorten, Distributed ledger technology for smart
cities, the sharing economy, and social compliance, IEEE Access 6 (2018)
62728-62746.

D. Huang, X. Ma, S. Zhang, Performance analysis of the raft consensus
algorithm for private blockchains, IEEE Trans. Syst. Man Cybern.: Syst. 50
(1) (2020) 172-181.

B. Cao, S. Huang, D. Feng, L. Zhang, S. Zhang, M. Peng, Impact of network
load on direct acyclic graph based blockchain for internet of things, in:
2019 Int. Conf. on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2019, pp. 215-218.


http://refhub.elsevier.com/S1574-0137(22)00031-4/sb83
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb83
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb83
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb83
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb83
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb83
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb83
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb84
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb84
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb84
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb84
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb84
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb86
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb86
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb86
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb86
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb86
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb86
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb86
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb87
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb87
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb87
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb87
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb87
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb88
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb88
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb88
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb88
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb88
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb88
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb88
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb89
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb89
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb89
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb89
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb89
https://doi.org/10.1145/3368089.3417939
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb91
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb91
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb91
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb92
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb92
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb92
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb92
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb92
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb92
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb92
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb93
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb93
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb93
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb96
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb96
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb96
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb97
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb97
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb97
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb97
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb97
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb97
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb97
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb98
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb98
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb98
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb98
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb98
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb99
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb99
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb99
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb99
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb99
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb100
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb100
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb100
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb100
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb100
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb101
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb101
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb101
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb101
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb101
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb101
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb101
https://hyperledger.github.io/caliper/
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb103
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb103
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb103
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb103
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb103
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb104
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb105
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb105
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb105
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb105
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb105
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb105
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb105
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb106
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb106
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb106
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb106
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb106
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb107
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb107
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb107
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb107
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb107
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb108
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb108
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb108
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb108
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb108
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb109
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb109
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb109
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb109
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb109
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb110
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb110
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb110
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb110
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb110
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb111
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb111
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb111
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb111
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb111
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb111
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb111
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb112
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb112
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb112
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb112
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb112
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb112
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb112
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb113
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb113
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb113
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb113
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb113
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb114
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb114
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb114
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb115
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb115
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb115
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb115
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb115
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb115
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb115
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb116
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb116
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb116
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb116
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb116
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb116
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb116
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb117
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb117
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb117
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb117
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb117
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb118
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb118
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb118
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb118
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb118
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb119
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb119
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb119
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb119
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb119
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb119
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb119
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb120
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb120
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb120
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb120
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb120
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb120
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb120
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb121
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb121
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb121
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb121
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb121
https://doi.org/10.1145/3308897.3308952
https://doi.org/10.1145/3308897.3308952
https://doi.org/10.1145/3308897.3308952
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb123
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb123
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb123
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb123
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb123
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb123
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb123
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb124
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb124
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb124
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb124
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb124
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb125
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb125
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb125
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb125
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb125
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb126
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb126
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb126
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb126
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb126
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb126
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb126

D. Marijan and C. Lal

[127]

[128]

[129]

[130]

[131]

[132]

[133]

P. Yuan, K. Zheng, X. Xiong, K. Zhang, L. Lei, Performance modeling and
analysis of a Hyperledger-based system using GSPN, Comput. Commun.
153 (2020) 117-124.

M. Conti, E. Sandeep Kumar, C. Lal, S. Ruj, A survey on security and
privacy issues of bitcoin, IEEE Commun. Surv. Tutor. 20 (4) (2018)
3416-3452.

P. AM.,, An introduction to the use of zk-SNARKs in blockchains, in:
Mathematical Research for Blockchain Economy, Springer Proceedings in
Business and Economics, 2020, pp. 233-249.

M. Salimitari, M. Chatterjee, An overview of blockchain and consen-
sus protocols for IoT networks, 2018, CoRR, abs/1809.05613. [Online].
Available: http://arxiv.org/abs/1809.05613.

S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn,
G. Danezis, SoK: Consensus in the age of blockchains, in: Proceedings of
the 1st ACM Conf. on Advances in Financial Technologies, in: AFT '19,
2019, pp. 183-198.

S. Artzi, ]. Dolby, S.H. Jensen, A. Moller, F. Tip, A framework for automated
testing of javascript web applications, in: 2011 33rd Int. Conf. on Software
Eng. (ICSE), 2011, pp. 571-580.

F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, P.T. Devanbu, To what extent
could we detect field defects? an empirical study of false negatives in
static bug finding tools, in: 2012 Proceedings of the 27th IEEE/ACM Int.
Conf. on Automated Software Eng., 2012, pp. 50-59.

26

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Computer Science Review 45 (2022) 100492

Truffle, 2022, https://trufflesuite.com/docs/index.html (accessed on March
01, 2022)).

H. Dang, T.T.A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, B.C. Ooi, Towards
scaling blockchain systems via sharding, in: Proc. of the 2019 Int. Conf.
on Management of Data, in: SIGMOD 19, 2019, pp. 123-140.

P. Pritzker, W.E. May, Secure Hash Standard (SHS), National Institute of
Standards and Technology, Gaithersburg, MD, USA, 2015.

R. Cavanagh, Federal Information Processing Standard (FIPS) 186-4, Digital
Signature Standard; Request for Comments on the NIST Recommended
Elliptic Curves, National Institute of Standards and Technology, 2015.
European Union, Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC, Off. ]J. Eur. Union L 119
(2016) 1-88.

L. Glomann, M. Schmid, N. Kitajewa, Improving the blockchain user
experience - an approach to address blockchain mass adoption issues
from a human-centred perspective, in: T. Ahram (Ed.), Advances in
Artificial Intelligence, Software and Systems Eng., Springer Int. Publishing,
Cham, 2020, pp. 608-616.

H. Chen, M. Pendleton, L. Njilla, S. Xu, A survey on ethereum systems
security: Vulnerabilities, attacks, and defenses, ACM Comput. Surv. 53
(3) (2020).


http://refhub.elsevier.com/S1574-0137(22)00031-4/sb127
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb127
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb127
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb127
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb127
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb128
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb128
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb128
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb128
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb128
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb129
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb129
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb129
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb129
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb129
http://arxiv.org/abs/1809.05613
http://arxiv.org/abs/1809.05613
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb131
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb131
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb131
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb131
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb131
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb131
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb131
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb132
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb132
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb132
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb132
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb132
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb133
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb133
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb133
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb133
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb133
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb133
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb133
https://trufflesuite.com/docs/index.html
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb135
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb135
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb135
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb135
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb135
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb136
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb136
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb136
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb137
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb137
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb137
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb137
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb137
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb138
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb139
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb140
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb140
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb140
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb140
http://refhub.elsevier.com/S1574-0137(22)00031-4/sb140

	Blockchain verification and validation: Techniques, challenges, and research directions
	Introduction
	State-of-the-art and contribution

	Background
	Blockchain and smart contracts
	BC components
	Blockchain-based applications
	Software verification and validation

	Taxonomy of blockchain verification and validation
	Smart contract testing
	Platform testing
	Application testing
	Layer, inter-layer, and cross-layer testing of BC-Apps

	State of the art: Smart contract testing
	Static analysis
	Dynamic verification

	State of the art: Performance testing
	Bechmarking
	Live monitoring
	Experimental analysis
	Simulation
	Comparative discussion of performance evaluation approaches
	Performance metrics

	State of the art: Security testing
	API and interface testing
	Summary of the state-of-the-art
	Smart contract testing
	Performance testing
	Security testing

	Open issues and future research directions
	Open issues
	Future research directions

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


