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ABSTRACT1
Traffic congestion has lead to an increasing emphasis on management measures for a more effi-2
cient utilization of existing infrastructure. In this context, this paper proposes a novel framework3
that integrates real-time optimization of control strategies (tolls, ramp metering rates, etc.) with4
the generation of traffic guidance information using predicted network states for Dynamic Traf-5
fic Assignment systems. The efficacy of the framework is demonstrated through a fixed demand6
dynamic toll optimization problem which is formulated as a non-linear program to minimize pre-7
dicted network travel times. A scalable efficient genetic algorithm is applied to solve this problem8
that exploits parallel computing.9

Experiments using a closed-loop approach are conducted on a large scale road network10
in Singapore to investigate the performance of the proposed methodology. The results indicate11
significant improvements in network wide travel time of up to 9% with real-time computational12
performance.13

14
Keywords: dynamic toll optimization, dynamic traffic assignment (DTA), predictive control opti-15
mization, large-scale network, real-time traffic management16
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INTRODUCTION1
Urban transportation networks are subject to large degree of variability due to the fluctuating sup-2
ply and demand characteristics. These fluctuations result in the pervasive phenomena of recurrent3
and non-recurrent congestion, which is an escalating problem worldwide. The adverse impacts4
of the resulting congestion include high travel delays, high travel costs, and significant costs to5
the economy and environment. Consequently, there has been an increased emphasis on develop-6
ing tools to mitigate congestion and efficiently utilize existing infrastructure. In this context, we7
propose an integrated framework —within a Dynamic Traffic Assignment (DTA) system— to op-8
timize network control strategies in real-time considering network state predictions. Specifically,9
the generated control strategies are predictive (or proactive) as opposed to being just reactive. The10
framework also incorporates the generation of consistent guidance —it ensures that the guidance11
disseminated considers the travelers response to it, thereby increasing the reliability of the pro-12
vided information. Further, we demonstrate the effectiveness of the proposed framework through13
a real-world application to the predictive optimization of network tolls.14

The motivation for this study is fourfold. First, the need for decision support tools to facili-15
tate a more efficient utilization of existing infrastructure. Second, most studies on optimal network16
control do not combine the optimization of network control strategies with the generation of guid-17
ance information. The third motivating factor is the complexity and scale of the problem. As the18
objective function involves simulation, it tends to be non-linear and non-convex making it chal-19
lenging for a real-time application. Finally, the study is also motivated by important applications20
in real-time traffic management and incident response systems.21

In view of the aforementioned motivations, the following objectives are identified: 1) To22
develop an integrated framework within a real-time DTA system that determines optimal control23
strategies and consistent guidance information considering traffic state predictions; 2) To apply the24
framework to the fixed demand dynamic toll optimization problem; 3) To evaluate the proposed25
framework using a closed-loop approach (where the DTA system is interfaced with a traffic mi-26
crosimulator that emulates the stochasticity in real world, thus providing a platform for realistic27
evaluation) on a large real-world network with link tolls as control strategies.28

The salient contributions of this work are, first, the proposed simulation-optimization frame-29
work simultaneously optimizes network control strategies and computes consistent guidance in-30
formation based on traffic state predictions. Utilizing traffic state predictions aids in accurately31
evaluating the effect of control strategies. Furthermore, the control strategy at any location is de-32
termined based on global traffic state predictions and not just local predictions, thereby explicitly33
considering the system-level effects. The consistency in guidance ensures that the information dis-34
seminated by the traffic management center is reliable, an important issue that has been overlooked35
in the literature on control strategy optimization. A parallel genetic algorithm is applied to solve36
for the optimal control strategy (within the proposed framework) that maintains computational37
tractability to achieve real-time performance on a large real-world network. Second, we evaluate38
the proposed framework using a rigorous closed-loop approach that ensures that impacts of the39
control strategy are not overestimated. The experiments demonstrate the effectiveness of the pro-40
posed system which can yield travel time improvements of up to 9%, and average computational41
times of less than 5 minutes. Third, a sensitivity analysis is performed with respect to network42
demand levels and the consistency in guidance information is verified.43
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LITERATURE REVIEW1
Although the framework presented in this paper is applicable to other control strategies including2
signal timing and ramp-metering, the review here focuses on real-time congestion pricing in view3
of the application presented. The reader is referred to (1) for a review of existing toll facilities in4
the US and to (2) for a discussion of congestion pricing technologies.5

There are two broad categories of tolling strategies: fixed pricing strategies and dynamic6
pricing strategies. In fixed pricing strategies, the tolls are predetermined; they can be a time-7
invariant or can vary in a predetermined manner during the day (time-of-day tolling). Further,8
in a fixed pricing strategy, tolls can also vary based on location and vehicle type. In the dynamic9
pricing strategies, the tolls are continually determined based on the current/future traffic conditions10
and are not predetermined. A dynamic tolling strategy can be either reactive or predictive. In a11
reactive tolling strategy, the tolls are determined based on the current traffic conditions. In contrast,12
in predictive tolling, the tolls are determined considering predicted traffic states.13

(3) and (4) should be referred for a review of work on static and fixed congestion pricing.14
Among the studies that determine time-dependent and fixed pricing, (5) was one of the earliest to15
study the effect of time-invariant vs. time-dependent pricing using a simulator. Their experiments16
show that time-dependent tolls can generate twice the welfare gains compared to time-invariant17
tolls. (6) presented an optimization framework with the travel time objective and solved the prob-18
lem using the SPSA (Simultaneous Perturbation Stochastic Approximation) algorithm. (7) solve19
the similar problem for a travel time objective. The problem was solved by statistically modeling20
the objective function (calculated from the output of DynusT) using Kriging. The same authors21
later extended the work to objectives of throughput and revenue(8). The tolling scheme was based22
on the vehicle miles traveled.23

The studies on the dynamic reactive pricing have predominantly been in the context of24
managed-lane operations. (9) propose two dynamic pricing approaches for managed toll lanes: a25
feedback-control approach and reactive self-learning approach. The pricing decisions are based on26
real-time traffic conditions and the objective is to improve the free-flow travel service on the toll27
lanes while maximizing total throughput. Similar approaches —based on feedback control— have28
been used to optimize for various other objectives like speed, travel time, delays, and revenues29
(10–12). (13) studied dynamic reactive pricing for different tolled links in a network by employing30
the traffic simulation software Paramics and TransModeler. The algorithm applied was from (10);31
it is a feedback controller based on speed measurements. It was shown that dynamic tolling results32
in lower queue lengths and higher speeds.33

(14) studied the predictive tolling strategy, where the predicted traffic conditions provided34
by DYNASMART-X were used to generate the tolls. A feedback control approach was adopted35
where the toll at a location is determined by adjusting the previous toll based on the deviation36
of predicted concentration on the corresponding link from the desired level. (15) also studied37
predictive tolling in order to maximize revenue. The toll is optimized based on a formulation38
where a Greenshields model is embedded to represent traffic dynamics and a binary logit model is39
incorporated for route choice. A linear approximation is used for the solution of the optimization40
model and the optimized toll is evaluated through a simulation-based DTA system (DIRECT) with41
prediction capabilities. They applied the tolling methodology on a synthetic corridor network42
with two gantries where the tolls need to be optimized. (16) also study a a managed lane setting43
and demonstrate the impact of online calibration within a predictive toll optimization framework.44
More recently, (17) provided a predictive control framework with an example of timing decisions45
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on signalized intersections. As in (15), the authors use the simulation-based DTA system DIRECT1
for state estimation and prediction, and for control optimization a genetic algorithm is used, similar2
to that adopted in this study. They applied the methodology to the US-75 corridor in Dallas. The3
authors also extend the framework for robust traffic network management on a corridor network by4
explicitly accounting for uncertainty (18). Finally, (19) propose a deep learning methodology for5
real-time network management and demonstrate that the method achieves comparable travel time6
savings on a corridor network as that of the optimization-based approach proposed in (17).7

In summary, a considerable number of studies adopt a reactive setting, i.e., they do not8
consider the effects in future time-periods while determining tolls in the current time-period. This9
myopic tolling policy can result in undesirable and fluctuating tolls and traffic conditions. Addi-10
tionally, a common approach to determine the dynamic tolls is based on feedback control, where11
the tolls are adjusted based on either observed or predicted characteristics like speed or queues.12
However, as the characteristics of only the tolled links are used to determine the corresponding13
tolls, the system-level interactions are ignored and hence, makes them inefficient for large scale14
networks. The approaches that utilize traffic state predictions for the optimization of tolls typically15
have been applied only to corridor type networks. Furthermore, consistency between the provided16
guidance and the resulting network conditions is not completely handled in most of the studies.17
Finally, the evaluation of the optimized tolls is done through the same simulator that is used to18
optimize the tolls. This may overestimate the network performance improvements. This study19
addresses these gaps in real-time predictive control systems, more specifically tolling.20

INTEGRATED FRAMEWORK FOR REAL TIME CONTROL STRATEGY OPTIMIZA-21
TION AND GUIDANCE GENERATION22
This section briefly describes the proposed framework for the integrated optimization of control23
strategies and generation of consistent travel time guidance. For the ease of exposition, the frame-24
work is illustrated using DynaMIT2.0, a simulation based DTA system for traffic state estimation25
and prediction developed at the MIT Intelligent Systems Laboratory (20, 21). However, it is noted26
that the framework is generic and applies to any real-time DTA system. The DynaMIT2.0 system27
is first very briefly introduced followed by a discussion of the proposed framework.28

FIGURE 1: Framework for Integrated Guidance Generation and Control Strategy Optimization

DynaMIT2.0 is composed of two core modules, state estimation and state prediction, and29
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operates in a rolling horizon mode. During each execution cycle, the state estimation module1
uses a combination of historical information and real-time data from various sources (surveillance2
sensors, traffic information feeds, weather forecasts) to first calibrate the demand and supply pa-3
rameters of the simulator so as to replicate prevailing traffic conditions as closely as possible. The4
updated parameters are then utilized to estimate the state of the entire network for the current time5
interval. Based on this estimate of the current network state, the state prediction module predicts6
future traffic conditions for a prediction horizon and generates consistent guidance information7
(refer to (20) for more details on the DynaMIT) that is disseminated to the travelers.8

The integrated framework is summarized in Figure 1. During each execution cycle, fol-9
lowing state estimation, the Prediction based Information Generation and Strategy optimization10
process is invoked. Within this process, the optimization module generates a series of control11
strategies (for example network tolls, signal timings, etc.) for the prediction horizon period which12
are to be evaluated on the basis of a specific objective. This can include the minimization of total13
system travel time, maximization of consumer surplus, maximization of operator revenues and so14
on. The evaluation of each control strategy involves running the state prediction module iteratively15
to ensure that the predicted network state is consistent with the provided guidance.16

More specifically, the state prediction module (expanded in the right half of Figure 1) be-17
gins with the most recently disseminated guidance (for instance, the guidance may be in the form18
of network link travel times) as a trial solution. The coupled demand and supply simulators are19
then used to predict the network state based on the given control strategy and assumed guidance20
as inputs (note that the route choices of drivers change in response to the control strategy and21
guidance). This yields predicted network travel times which are then combined with the origi-22
nal guidance (using the method of successive averages or MSA) to obtain a revised travel time23
guidance solution. This procedure is iteratively performed until convergence, i.e., the provided24
travel time guidance and predicted network travel times are within a pre-specified tolerance limit25
εP. Once convergence is achieved, the state prediction and guidance strategy are termed ’consis-26
tent’ and the corresponding network state is then used by the optimization module to evaluate the27
objective function and search for the optimal control strategy. Following the completion of the28
optimization procedure, the Prediction based Information Generation and Strategy optimization29
process returns an optimal control strategy that is applied to the network and consistent travel time30
guidance that is disseminated to travelers.31

The proposed framework is demonstrated in the subsequent sections through an application32
to the dynamic toll optimization problem.33

FORMULATION OF DYNAMIC TOLL OPTIMIZATION PROBLEM34
The transportation network of interest is represented as a directed graph G(N,A) where N repre-35
sents the set of n network nodes and A represents the set of m directed links. Let Ã ⊆ A repre-36
sent a subset of network links that are tolled with m̃ = |Ã|. Consider an arbitrary time interval37
[t0− ∆, t0] where ∆ is the size of the state estimation interval (typically 5 minutes in real time38
DTA systems). Assume that the length of the current state prediction horizon is equal to H∆39
(each ∆ interval within the prediction horizon is termed a prediction interval) and extends from40
[t0, t0 +H∆]. In addition, assume that the link tolls are set for intervals of size ∆ (this period is41
referred to as the tolling interval) and that the tolling intervals are aligned with the state estima-42
tion/prediction intervals. Let τττh =(τh

1 ,τ
h
2 . . .τ

h
m̃) represent the vector of link tolls for the time period43

[t0 +(h− 1)∆, t0 + h∆] where h = 1 . . .H. The vector of tolls for the current prediction horizon is44
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FIGURE 2: Illustration of the rolling horizon approach for toll optimization

thus given by τττ = (τττ1,τττ2, . . .τττH).1
In real world applications, given that the state estimation and solution of the optimization2

problem will require a finite computational time (assume that this is at most equal to the interval3
length ∆), it will not be possible to implement the optimal toll vector for the first tolling interval4
within the prediction horizon. Consequently, the size of the optimization horizon is assumed to5
be one tolling interval less than the size of the prediction horizon and the decision variables in6
our optimization problem are in fact τττ

′
= (τττ2, . . .τττH). τττ1 is set to the optimal value for the same7

prediction interval from the previous execution cycle (denoted by λλλ ), so that τττ = (λλλ ,τττ
′
).8

This is illustrated in the example in Figure 2 for a case where H = 3. In execution cycle9
1 (denoted by C1), the decision vector consists of the toll values (τττ2

C1,τττ
3
C1) for the prediction10

intervals P2 and P3. The toll vector τττ1
C1 is set as the optimal value from the previous execution11

cycle (denoted by λλλ 1). Subsequently, in the second execution cycle, the decision vector consists12
of the toll values (τττ2

C2,τττ
3
C2) and λλλ 2 = τττ2∗

C1, where τττ2∗
C1 is the optimal value of τττ2

C1 from execution13
cycle 1.14

Furthermore, consider the collection of vehicles ν = 1, . . .V on the network during the15
prediction horizon [t0, t0 +H∆]. Let the travel time of vehicle ν be represented by ttν and the16
predictive travel time guidance be denoted by ttg = (ttg

i ;∀i ∈ A), where ttg
i represents a vector17

of the time dependent link travel times (guidance) for link i. Note that the vehicle travel times18
tt = (ttν ;ν = 1, . . .V ) are a result of the state prediction module of the DTA system and cannot be19
written as an explicit function of the tolls and predictive guidance. We characterize the complex20
relationship through a function S(.) that represents the coupled demand and supply simulators as,21

S(xp,γp, ttg,τττ) = tt, (1)22
where xp,γp represent the forecasted demand and supply parameters for the prediction23

horizon. Also note the iterative procedure described in Section 4 ensures consistency between ttg24
and tt.25

It is assumed that the total network demand is fixed (inelastic) and the behavioral response26
of users to the tolls and predictive travel time guidance is solely through route choice which is27
modeled within the demand simulator of DynaMIT2.0 using a path size logit model wherein the28
utility of a vehicle ν on path k is given by,29

∪ν
k = βc τ̃k +βt t̄tg

k + log(PSk)+Ck + ε
ν
k , (2)30

where τ̃k is the toll on route k , t̄tg
k is the travel time on route k as per the guidance information31

(which is the sum of travel times on component links), βc and βt represent the cost and travel time32
coefficients respectively, PSk represents the path size variable for path k, Ck represents a composite33
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utility pertaining to additional variables including path length, number of left turns and number of1
signalized intersections, εν

k represents a random error term. Note that first, for vehicles that do not2
have access to the guidance information, historical travel times are used and second, similar model3
structures are used for both the pre-trip and en-route choice models. The reader is referred to (20)4
for more details.5

It should be also be pointed out that since the optimization is performed within a rolling6
horizon framework and given that the tolls change every five minutes, it is likely that the toll values7
on which the driver based his pre-trip (or en-route) route choice decision are significantly different8
from the tolls he pays in reality. To mitigate the public opposition that may arise from this, we9
impose a limit on how much the tolls can vary across successive tolling intervals on a given gantry.10
Thus we have,11

τττ
h−1−δδδ ≤ τττ

h ≤ τττ
h−1 +δδδ , h = 2, . . .H, (3)12

where δδδ = (δi;∀i ∈ Ã) represents the vector of limits on the change in tolls across successive13
intervals.14

With this background, the dynamic toll optimization problem in our context is formulated15
as a non-linear program in Equation 4. The objective function considered here is the total travel16
time of all vehicles on the network, but can be suitably modified to accommodate other objectives17
such as consumer surplus, operator revenues or social welfare depending on the context. The18
decision variables are the vector of toll values for the optimization horizon period. The constraints19
are the DTA system, upper and lower bounds on the toll values (denoted by vectors τττLB and τττUB),20
and the constraints on changes in toll values across successive tolling intervals.21

DTOP : MIN
τττ
′

V

∑
ν=1

ttν(τττ
′
)

s.t.
S(xp,γp, ttg,τττ) = tt,
τττ

h−1−δδδ ≤ τττ
h ≤ τττ

h−1 +δδδ , h = 2, . . .H,

τττLB ≤ τττ
h ≤ τττUB, h = 2, . . .H.

(4)22

In case of computational performance constraints, the dimensionality of the DTOP prob-23
lem above may be significantly reduced by assuming that the vector of tolls does not change across24
prediction intervals within the optimization horizon. In other words, we assume that (τττ2 = τττ3 . . .=25
τττH = τ̄ττ) which reduces the number of decision variables from m̃(H − 1) to m̃. In this case, the26
constraints defined by Equation 3 are replaced by,27

λλλ −δδδ ≤ τ̄ττ ≤ λλλ +δδδ (5)28

SOLUTION ALGORITHM29
As noted earlier, since the objective function of the dynamic toll optimization problem in our con-30
text does not have a closed form and is the output of a complex simulator, evolutionary algorithms31
and meta-heuristics are preferable to classical gradient based approaches. Hence, a real-coded Ge-32
netic Algorithm (GA) (22) is applied to solve the DTOP problem formulated in Section 5. For33
more details, on the solution algorithm, the user is referred to (23).34
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In order to facilitate real time performance, given that evaluation of different control strate-1
gies in a particular iteration are independent of each other, evaluating them in parallel significantly2
reduces computational time and makes the approach scalable. We adopt a Master-Slave archi-3
tecture using the GNU1 Parallel library (24). To evaluate each control strategy, a new process is4
launched on a different CPU. Moreover, the framework is designed so as to allow Batch-Wise eval-5
uation of different control strategies. Specifically, during each iteration, different control strategies6
can be launched as different processes on different CPUs, or they can be launched in batches of7
smaller size. In this batch wise implementation, different batches can either be launched sequen-8
tially on a single cluster of CPUs or they can even be launched in parallel on multiple clusters of9
CPUs.10

EXPERIMENTS11
This section discusses results from a set of experiments conducted to investigate the performance12
of the proposed strategy optimization approach using DynaMIT2.0 on the Singapore expressway13
network. The numerical experiments are conducted using a closed-loop framework, interfacing14
DynaMIT2.0 and MITSIMLab (MITSIM), a microscopic simulator (25). MITSIM is run con-15
currently with DynaMIT and mimics the real network, providing sensor counts for the current16
interval to DynaMIT which in turn provides predictive guidance and tolls to MITSIM. The effect17
of the guidance and tolls can then be examined by extracting relevant performance measures from18
MITSIM avoiding overestimation of the benefits.19

The experiments are conducted on the network of major arterials and expressways in Sin-20
gapore (Figure 3) which consists of 948 nodes, 1150 links, 3891 segments, and 4123 origin-21
destination (OD) pairs, and 16 tolled links. The labels represent the links where there is a toll22
gantry.23

FIGURE 3: Network of Expressways and Major Arterials in Singapore

The section is organized into six parts. The first sub-section discusses the setup of the24
closed-loop framework and calibration, the second describes the experimental design and inputs.25
The third section analyzes the results in terms of travel time savings and the effect of network de-26
mand, fourth part discusses the optimal tolls through few gantries, the fifth discuss the consistency27
of guidance information and finally, the sixth part discusses computational performance.28

1GNU is a recursive acronym for GNU’s Not Unix.
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Closed-Loop Calibration1
In order to set up the closed-loop environment, a two stage calibration procedure is adopted using2
the w-SPSA algorithm (26) (for other approaches see (27)). In the first stage, dynamic OD demand3
(for a period between 06:30 AM and 12:00 PM), driver behavior and route choice parameters of4
MITSIM are calibrated by minimizing a two component objective function. The first component is5
the sum of squared deviations between simulated counts and actual counts (on a set of 325 sensors6
for 5 minute time intervals averaged across 30 weekdays in February and March 2015) obtained7
from the Singapore Land Transport Authority (LTA). The second component is the difference8
between the parameter values and apriori estimates. The inputs for the calibration process is a set9
of a priori parameter values and a seed OD matrix obtained from a prior calibration procedure (26).10
The normalized root mean square error in the sensor counts before and after the calibration process11
were 73% and 34% respectively.12

In the second stage, the historical OD matrix, supply and route choice parameters of Dy-13
naMIT2.0 are calibrated against the outputs (sensor counts on 650 network segments) generated14
by MITSIM. The normalized root mean square error in the sensor counts before and after the cali-15
bration process were 56% and 19% respectively. Further, the RMSN in time-dependent link travel16
times after calibration was found to be 24%.17

Experimental Setup18
The numerical experiments are conducted using a simulation period from 6:30 AM to 12:00 PM19
which includes the morning peak in Singapore. The state estimation interval (and OD demand20
interval) is five minutes (∆ = 300 seconds) and the prediction horizon is 15 minutes (H = 3). The21
simulation period is composed of three parts: a Warm-up period from 6:30-7:30 AM where no tolls22
are imposed, a tolling period from 7:30 - 11:00 AM, and a post-tolling period from 11:00 AM to23
12:00 PM where again no tolls are imposed.24

The impact of the predictive toll optimization is examined against two benchmarks using25
the closed-loop framework described earlier. It is assumed that the base demand (MITSIM OD de-26
mand obtained from the closed-loop calibration) represents the historical demand or an "average"27
day. This demand is then perturbed to reflect day to day variability by sampling from a normal28
distribution with expected value as the base demand and a coefficient of variation of 0.2.29

The first benchmark is the no toll scenario where the closed-loop is simulated using the30
perturbed demand with zero tolls. The second scenario consists of static optimum tolls. In this31
scenario, we first compute the optimum static tolls which involves minimizing the total travel times32
for the entire simulation period (obtained from the state estimation) by implementing a single vec-33
tor of tolls for the complete tolling period. The closed-loop is now simulated using the perturbed34
demand with the static optimum tolls. Finally, in the third scenario the closed-loop is simulated35
using the perturbed demand and the predictive optimized tolls based on the proposed framework36
in Section 4. In all three scenarios, MITSIM receives predictive travel time guidance from Dyna-37
MIT2.0 and in turn provides sensor counts to DynaMIT2.0 every estimation interval (or execution38
cycle).39

Further, to investigate the effect of the overall demand level, all the three aforementioned40
scenarios are simulated for four different demand levels: low (base demand reduced by 10%), base41
(closed-loop calibration as noted earlier) , high (base demand increased by 10%) and very high42
(base demand increased by 20%). Note that the demands referred to here are the actual MITSIM43
(real world) demands. For the scenarios with predictive optimization, the DynaMIT2.0 historical44
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demand (obtained from the second stage in the closedloop calibration) remains unchanged for all1
demand scenarios. For the scenarios with the static optimum tolls, note that the regulator must2
perform the determination of the optimum tolls ’offline’ using an estimate of historical demand.3
Given that different levels of actual demand (unknown to the regulator) are tested, we assume4
that a single computation of the static optimum tolls is performed by considering a worst case5
scenario where the calibrated DynaMIT2.0 historical demand is increased by 20%. In addition to6
the comparison with predictive optimization, this allows us to also test the robustness of the static7
optimum tolls to both systematic and random variation in the actual OD demands (from historical8
estimates).9

The performance measures are: 1) average travel times (across vehicles) for each departure10
time interval obtained from MITSIM, 2) computational time for each execution cycle of Dyna-11
MIT2.0. Note that for each scenario and demand level, the performance measures reported are12
averages across 10 different runs to account for stochasticity in the overall system.13

A High Performance Computing Cluster (HPCC) with 120 CPUs and 256 GB of memory is14
used to run the experiments. For the parameters of GA, we use a population size of 60, probability15
of cross-over and mutation as 0.7 and 0.1 respectively with a computation budget of 300 seconds.16
The number of iterations may vary from interval to interval depending on the demand, i.e., peak or17
off-peak periods.18

(a) Travel Time for Low Demand (b) Travel Time for Base Demand

(c) Travel Time for High Demand (d) Travel Time for Very High Demand

FIGURE 4: Travel Time plots for various demand levels
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TABLE 1: Travel Time Improvement

Demand Level
% Travel Time Improvement Total Demand

Tolling Period Peak Period
(vehicle trips)

No Toll Static Optimum No Toll Static Optimum
Low 3.71 5.39 7.61 6.25 275000
Base 6.74 9.12 8.36 7.94 300000
High 8.24 8.88 9.65 10.74 325000
Very high 8.38 4.00 8.20 7.01 350000

Analysis of Travel Time1
In order to compute and compare average time-dependent travel times across scenarios, for the2
entire population, all the drivers departing in a given time interval (e.g., 07:00-07:05) are identified3
and their average trip travel time is calculated. This process is repeated for each consecutive 54
min interval in the entire simulation period, i.e., starting from 6:30-6:35, 6:35-6:40, ...., up to5
12:25 -12:30. The results indicate that the use of predictive optimized tolls yields significant travel6
time savings over both the no toll and static optimum scenarios. The percentage improvement in7
travel times of the predictive optimized toll scenarios over the two benchmark scenarios for the8
tolling period and peak period (for all demand levels) is summarized in Table 1. The average travel9
times (over the tolling period) in the case of the predictive optimized tolls are lower than the static10
optimum and no toll cases by 9.12% and 6.74% in the base demand case. Interestingly, the static11
optimum is worse than the no toll case for the low, base and high demand scenarios (see also12
Figure 4). This indicates that the static optimum based on historical demands is not robust when13
the actual demands vary significantly from the historical estimates. Note that the historical demand14
was scaled up by 20% when computing the static optimum and hence, in the very high demand15
case where the historical estimates are closest to the actual demands, the static outperforms the no16
toll scenario. The percentage decrease in travel time is 5.39% and 3.71% in the low demand case,17
8.88% and 8.24% in the high demand case and 4.00% and 8.38% in the very high demand case.18
In addition, the percentage improvement for the peak period (between 8:00 am and 9:30 am) is19
7.94% with respect to the no toll scenario and 8.36% with respect to the static optimum scenario20
for the base demand case. It should be noted that in event of non-recurrent scenarios (like a special21
event or an incident) one would expect a significantly higher impact of the toll optimization and22
guidance provision.23

Furthermore, for all demand cases, a standard two sided t-test indicates that the mean travel24
time (for all departure time intervals within the peak period) of the predictive optimized tolling25
scenario has a statistically significant difference from that of the no toll/static optimum scenarios26
at a confidence level of α = 95%.27

Figure 4 plots the mean travel times (shaded region represents the standard error in estimate28
of the mean) versus departure time interval for the three scenarios and each demand level. With29
regard to the effect of the overall demand level on the improvement in travel time savings with30
respect to the static/no-toll toll case, the results indicate the lowest improvements (during the peak31
period) are attained when the congestion levels are either very low or very high. This occurs32
because in the low demand scenario the relatively uncongested state of the network reduces the33
impact of toll optimization. On the other hand, the severely congested network state in the very34
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high demand scenario also reduces the possibility of alleviating congestion through the re-routing1
of vehicles leading once again to smaller benefits of the toll optimization.2

(a) Link 45 (b) Link 83

(c) Link 225 (d) Link 226

FIGURE 5: Optimal Tolls on Selected Links

Analysis of Optimized Tolls3
In this section, we provide few examples in order to analyze the optimized tolls under predictive4
optimization with respect to static optimization. First, we give an example of two gantries on links5
45 and 83 (see Figure 3). We present the optimized tolls under static and predictive strategies in6
Figure 5. The most preferred path for one of the ODs with a very high demand during the morning7
peak uses these gantries (first 83 and then 45). The predictive tolls are optimized at higher values8
compared to the static case and this indicates that real-time predictive tolls are adjusted better with9
respect to demand.10

Second, gantries on links 225 and 226 are optimized at lower values during the peak com-11
pared to static strategy as shown in Figure 5. It is observed that these gantries are used towards12
destinations that have very low demand in the morning peak. Predictive toll optimization is able to13
lower the tolls during the peak in order to account for lower demand values towards better travel14
times.15
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Consistency of Guidance Information1
A key contribution of the proposed strategy optimization framework is that it ensures that the2
predicted network states (in terms of link travel times) are consistent with the guidance information3
provided to travellers. For a given prediction interval, we begin with the historical travel times as4
a trial guidance solution (in this case, the guidance is in the form of network link travel times).5
The coupled demand and supply simulators are then used to predict the network state based on6
the assumed guidance as an input (note that the route choices of drivers change in response to the7
guidance). A revised travel time guidance solution for the next iteration is then computed using8
a convex combination (method of successive averages or MSA) of the predicted network travel9
times and the guidance from the current iteration. This procedure is iteratively performed until10
convergence, i.e., the provided travel time guidance and predicted network travel times are within11
a pre-specified tolerance limit.12

The process of achieving consistency is illustrated in Figure 6 where the mean absolute13
percentage error between the guidance information and the predicted link travel times are plotted14
as a function of the prediction iteration. The simulation period is 6:30 -12:00 i.e. 5.5 hours, which15
involves 5.5×12 = 66 prediction intervals. The plots show that with as few as 3-4 iterations of the16
state prediction, a mean absolute percentage error of less than 5% is achieved in a majority of the17
66 prediction intervals in the simulation.18

FIGURE 6: Consistency between Guidance and predicted network travel times

Computational Performance19
The results also indicate that the proposed solution algorithm achieves real-time performance, i.e.20
the average computational time per execution cycle (across all demand levels) is within the five21
minute time budget (less than a single state estimation interval) discussed previously.22

The tractable computational times are the result of three contributing factors. The first is23
the imposition of the constraint on the extent to which tolls on a given gantry can vary across24
successive tolling intervals which significantly reduces the search space for the GA. This ensures25
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that a population size of 60 suffices to attain a significant reduction in travel times within a low1
computational time budget. Secondly, the rolling horizon approach implies that the system is2
re-optimized every five minutes and consequently a poor solution in one interval can be quickly3
rectified or improved in subsequent intervals. This along with the feedback from the real network4
to the DTA system (through the online calibration) makes the control strategy optimization frame-5
work more robust. Finally and most importantly, the synchronous parallel evaluation of strategies6
in each iteration of the optimization procedure allows for evaluation of a sufficiently large number7
of candidate solutions.8

CONCLUSIONS9
This paper proposes an integrated framework that combines the optimization of network control10
strategies with the generation of consistent guidance information for real-time DTA systems. The11
efficacy of the proposed framework is demonstrated through a fixed demand dynamic toll opti-12
mization problem. Furthermore, a highly parallelizable genetic algorithm based solution approach13
is adopted. Numerical experiments conducted on a large scale real world network (expressways14
and major arterials in Singapore) indicate that use of the proposed framework can yield significant15
network-wide travel time savings of up to 8.36% and 7.94% over the no toll and static optimum16
scenarios respectively. A sensitivity analysis of demand levels further indicate that the highest17
improvements are attained at moderate and high demand levels. Finally, the proposed solution18
algorithm achieves real-time performance with a computational time of less than 5 minutes for19
each execution cycle within the rolling horizon scheme. The proposed framework and solution20
approach have important applications for real-time traffic management and advanced traveler in-21
formation systems.22

Some directions for future research include the application of the strategy optimization23
framework under non-recurrent scenarios, consideration of other objectives such as consumer sur-24
plus, operator revenue and multiple objectives; incorporation of traffic state prediction errors (28)25
and the modeling of elastic demand through trip cancellation and departure time shifts in response26
to tolls. The application to other network control strategies and examination of the suitability of27
alternative solution algorithms also promise to be interesting areas for future research.28
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