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Abstract

With the proliferating networks, resource allocation based on Quality of Service (QoS) con
straints mapping has been one of the difficulties faced by Internet Service Providers (ISP).
The advent of new technologies such as virtualization and cloud computing have enabled the
users to access content from anywhere around the world. This results in a need for an ef
ficient and fast resource allocation method based on demand acting on the network. Many
researchers have developed various algorithms to address this issue. However, they have
considered only flowbased network properties, while the contemporary networks communi
cate mostly through path based communication using the shortest paths. Inverse shortest path
algorithm (ISPA) is a graphtheory based heuristic developed to solve this network resource
allocation problem which considers both flowbased communication properties through Effec
tive resistance matrix and path based communication properties through Shortest path matrix.
Nevertheless, ISPA is so far implemented only for unweighted graphs. This study aims at
assessing the feasibility of ISPA for weighted graphs by understanding the nature of Inverse
shortest path problem (ISPP) bounds in weighted random graphs and implementing ISPA for
weighted graphs. ISPP bounds behaviour is studied for weighted graphs by analyses of Q
norm distributions, probability of failure distributions and hopcount distributions. A feasibility
condition verifying ISPP bounds is derived in relation with the input parameters of the weighted
random graph. The solutions obtained through hop count distribution analysis are observed to
be Poissonian in nature. Finally, ISPA is implemented for weighted graphs such that demand
matrix can be resolved into a simple distance matrix to obtain solution which is a nonnegative
weighted Adjacency matrix and feasibility conditions are verified for the solutions obtained
through ISPA.

Keywords: Resource allocation, inverse shortest path problem, shortest path computa
tions.
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1
Introduction

Every network with its many links, has a certain demand acting on each node pair which can
be quantified through bandwidth requirements and QoS requirements such as endtoend de
lay, packetloss, and jitter etc. Bandwidth and buffer capacity is generally allocated based
on the demand acting on the network rather than the service provisioning in the conventional
packet networks by Internet Service Providers (ISPs). With an increase in highspeed commu
nications, to meet the network demands, overprovisioning of fast speed routing devices and
highspeed network links was performed, which resulted in cheaper and faster internetbased
connectivity [1].

With this proliferation of IP networks, the number of services and data on the networks
has been increasing considerably which has laid the path for Traffic Engineering (TE), a set of
network management tools and guidelines for performance optimization and evaluation in the
operational IP networks [2]. But, resource allocation based on the QoS constraints mapping
has been one of the difficulties faced by ISPs even with established TE mechanisms. Also,
new technologies such as virtualization and cloud computing have enabled users to access
their data and any content from anywhere and anytime. This has emphasized the need for
efficient and fast resource allocation for providers to satisfy the user requests while improving
their revenue [3].

Many researchers proposedmultiple objective functions and resource allocation techniques
to solve this network resource problem, which is discussed in detail in Section 2.6. One among
such techniques is the network flow optimization problem where input is a flow network and
an algorithm is designed to allocate appropriate weights on the links such that load acting on
a link or utilization of a link is always less than its capacity. Most of the algorithms that have
been proposed [4], [5], [6] and [7] considered the topology of the underlying network to be an
undirected graph (see Section 2.2) and formulated the objective function and algorithm based
on flow acting on each link of the network. The example of flowbased communication is the
current flow between any two nodes which depends on all the resistances in a network. How
ever, the datacommunication network is generally a pathbased network where transport of
data packets between any two nodes is done through shortest paths in most of the cases and
pathbased properties are not considered in most of the cases while formulating the afore
mentioned objective function. Considering shortest paths alone may not give the complete
overview of the flow in the network. Hence, there is a need to consider both flowbased as
well as pathbased network properties to arrive at an ideal network resource allocation solution
which is possible through graph theory. Inverse shortest path algorithm (ISPA) is thus formu

1



2 Chapter 1. Introduction

lated considering both flowbased and pathbased graph properties, considering the network
to be an undirected graph with N nodes and L links proposed by P. Van Mieghem et al. [8] to
address the network resource allocation problem in a holistic approach.

1.1. Challenge

The inverse shortest path algorithm is formulated on two bounds (see Section 3.5). It has been
verified in [8] that inverse shortest path problem (ISPP) bounds hold for unweighted graphs
and ISPA can be implemented for unweighted graphs. As most of the realworld networks are
weighted graphs, it is necessary to extend the ISPA for weighted graphs as well. However, it
is observed that these bounds do not always hold for weighted graphs, creating uncertainty
for implementation of ISPA. The challenge of the thesis is therefore formed by the uncertainty
of ISPA implementation for weighted graphs.

1.2. Objectives

The objectives of the thesis are therefore formulated as

1. To understand the nature of ISPA bounds for weighted random graphs with uniformly
generated link weights through various metrics such as QNorm distribution, probability
of failure distribution and hop count distributions.

2. To check the feasibility of ISPA implementation for weighted random graphs based on
the relation between various parameters of the graph obtained by the analysis of the
nature of ISPP bounds.

3. To implement ISPA for randomly generated demand matrices so as to obtain weighted
adjacency matrices that are nonnegative and to verify the feasibility of ISPA.

1.2.1. Approach

The following approach is followed in the thesis:

1. Perform literature study of network flow problems, resource allocation problems and
various optimization techniques to understand the scope, limitations and latest develop
ments in this field.

2. Based on ISPP lower bound (see Section 3.5), QNorm is computed and studied for vari
ous configurations of ER graphs to understand the dependency of each input parameter
on the realization of ISPA for weighted graphs.

3. The Qnorm distributions and hopcount distributions are analysed for weighted ER graph
for varying input parameters to determine the nature of ISPP bounds for weighted graphs.

4. The probability of failure of ISPP bounds (see Chapter 5) is studied for various configu
rations of ER graphs to derive the dependency of critical threshold r0 of link resistances
of the ER graphs on its input parameters such as number of nodes N , link density p and
average link resistance r.

5. Finally, ISPA is implemented for a range of randomly demand matrices D to obtain non
negative solutions and the feasibility condition derived is verified for ISPA solutions.
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1.2.2. Thesis Outline

The thesis is builtup as follows:

• Chapter 2 presents the literature study and related work that has been carried out in
Network flow and resource allocation problems, various optimization techniques and
also provides the latest developments as well as a comparison of various methods. It
also gives the basics of graph theory which are necessary for understanding the Inverse
Shortest path problem and its bounds.

• Chapter 3 explains the theory of ISPP and the theorems upon which ISPA is formulated
and gives the need and scope of the thesis.

• Chapter 4 gives the Qnorm analysis of ISPP lower bound for weighted random graphs
and its dependency on input parameters of ER graphs.

• Chapter 5 presents the probability of failure analysis for weighted graphs and the relation
between various parameters of weighted graphs to derive a feasibility check for ISPA
implementation.

• Chapter 6 describes the range of results possible with ISPA through hop count distribu
tion analysis for various configurations of weighted ER graphs.

• Chapter 7 explains the validation of ISPA for a range of demand matrices and the verifi
cation of feasibility conditions of ISPP bounds.

• Finally, chapter 8 concludes the thesis summarizing the various results obtained in Chap
ters 4, 5, 6 and 7 and draws insights from the experiments carried out and gives recom
mendations for further research on this topic.





2
Background and related work

2.1. Introduction
This chapter gives an overview of various properties of graph metrics that have been utilised
in understanding and formulating ISPA and ISPP. This chapter also gives the related study of
network flow problems and resource allocation problems that have been studied to understand
the scope of the project as well as to give the overview of the work that has been carried out
in this field.

2.2. Graph
Arrangement of different points and their connection with each other in a layout formulates a
graph which has been helpful in understanding the various underlying properties of the graph
such as its degree distribution, betweenness of nodes or links of the graph, hopcount distribu
tion, etc. This has led to the introduction of Graph Theory, a branch of discrete mathematics
that is used in the study of various physical networks such as electric circuits, transport sys
tems, brain networks, social networks, epidemics, etc. To understand the elegance of graph
theory and its distinct and diverse properties, it is vital to understand the basic terminology
and types of graphs.

Figure 2.1: An undirected graph G1(N,L) with number of nodes N = 5 and number of links L = 6 with unit link
weights

A graph is given by G(N,L) with N being the number of nodes (also called vertices)
and L representing the number of links (also called edges) between different node pairs.
It’s generally assumed that a graph does not contain any selfloops (starting node and end
ing node of any link are not same) and multiple links between a node pair. For example,
in the graph presented in Fig. 2.1, with set of nodes n = {1, 2, 3, 4, 5} and set of links

5



6 Chapter 2. Background and related work

l = {(1, 2), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)}, it can be observed that links in the graph G1 do
not specify any direction i.e., the origination and destination of the link, hence these types
of graphs are called undirected and no selfloops or multiple links between a node pair are
present. In this project, all the graphs considered for analysis are undirected. Insights on an
other kind of graphs  directed graphs or digraphs and comparison of directed and undirected
graphs and their applications in detail can be found in [9].

2.3. Random graph
A random graph is a graph whose edges occur in a certain probability and the occurrence of
the links is random in nature. As the ISPP model input is demand matrix D (see Section 3.3),
we may not be aware of the underlying topology of the graph. Hence, it is essential to consider
the random graphs for the starting model of the ISPP study. In Subsection 2.3.1, we describe
the two basic models for the random graphs.

2.3.1. Erdös Rényi Graphs

The first model on random graphs is put forth by Erdös Rényi, represented by G(N,L) [10]. It
states that if the maximum number of links in a graph is Lmax =

(
N
2

)
, then the number of links

in G(N,L) is chosen uniformly with probability
(
Lmax

L

)−1 and consists of
(
Lmax

L

)
elements.

The secondmodel, the binomial modelGp(N) proposed by Gilbert in 1959 [11] has number

of nodes N and link probability given by p =
E[L]

Lmax
where E[L] is the average number of links

in graph G and Lmax =
(
N
2

)
is the maximum number of links possible. The degree distribution

for this second model is binomial in nature and given by Pr[D = k] =
(
N−1
k

)
pk(1− p)N−1−k.

The set of graphs obtained by this model lie in the extremes of p = 0 which gives a null graph
and p = 1 which gives a complete graph. An undirected Erdös Rényi (ER) graph for number
of nodes N = 15 and link probability p = 0.25 is presented in Fig. 2.2.

Figure 2.2: An undirected ER graph for number of nodes N = 15 and link probability p = 0.25

2.4. Adjacency matrix A

The adjacency matrix A gives the link existence between the nodes of the graph G in a N ×N
matrix, where each element of the matrix is either 0 or 1. If aij = 1, it represents the link
existence between node pair (i, j) of graph G, else aij = 0. And aii = 0, as there are no self
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loops considered in our study. The adjacency matrix is symmetric hence aij = aji, in matrix
form given as A = AT . The adjacency matrix A for graph G1(N,L) is therefore given as,

A =


0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
0 1 0 1 0


If the graph has diverse weights which are not unity, adjacency matrix which provides

weight of the links along with the link presence is called weighted adjacencymatrix represented
by Ã. As an example, the graphG2(N,L) is presented in Fig. 2.1 with nonuniform link weights
and the corresponding weighted adjacency matrix Ã is also given.

Figure 2.3: Graph G2(N,L) with number of nodes N = 5, number of links L = 6 and nonuniform link weights.

Ã =


0 2 0 0 0
2 0 1 1 2
0 1 0 3 0
0 1 3 0 2
0 2 0 2 0


2.5. Graph Metrics
Graph metrics measure the properties of a graph based on the topology of the network such as
connectivity, robustness, resilience, etc. In this Section, we will look into the graph metrics that
have been utilised in the implementation of ISPA for weighted graphs. To clearly understand
these graph related matrices and metrics, we will also derive the corresponding metrics for
the graphs in Fig. 2.1 and Fig. 2.3 along with their definitions.

2.5.1. Degree

The degree of node i gives the number of nodes with which node i is connected by a link, i.e.,
the number of neighbors of node i. In a connected network, the degree of each node ranges
from 0 toN−1. For an undirected graph G(N,L), the sum of degrees of all the nodes is given
by (2.1) and 2 in the equation occurs as the link between two nodes is counted twice.

N∑
i=1

di = 2 L (2.1)

Hence the average degree of the graph G is given by (2.2).

davg =
1

N

N∑
i=1

di =
2L

N
(2.2)
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The minimum value of average degree davg is 2−
2

N
obtained for spanning trees with number

of links L = N − 1. The maximum value for average degree davg is N − 1 which is seen in the

case of complete graphs with L =
N(N − 1)

2
.

The degree vector d = (d1, d2, ...., dN ) is a column vector that gives the degree of each
node of graph G in a vector obtained by the relation d = A u where A is the Adjacency matrix
of the graph and u is the all one vector. For the graph in Fig. 2.1,

• Sum of the degrees of all nodes
∑N

i=1 di = 2 L = 12.

• Average degree of the graph G1 = 2.4

• Degree vector is thus obtained as

d = A ∗ u =


0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
0 1 0 1 0

 ∗

1
1
1
1
1

 =


1
4
2
3
2


2.5.2. Shortest path matrix S

In a weighted graph, each link in graph G(N,L) is assigned a weight given by wl for link lϵ L
which represents any property of the network such as resistance, delay, cost incurred, capacity,
etc. Weight of the path Pij between node pair (i, j) is given by the sum of the weights of the
links along the path taken.

w(Pij) =
∑
lϵPij

wl (2.3)

The shortest path P ∗
i→j from node i to node j is the path with minimum weight. Hence,

w(P ∗
i→j) ≤ w(Pi→j) for all Pi→j (2.4)

The shortest path matrix S consists of weights of the shortest paths between all the node
pairs of the graph. In an unweighted graph, the shortest paths between node pairs are also
called as shortest hop paths. For the graph G1 in Fig. 2.1, the S matrix is computed as S1
and for the weighted graph G2 in Fig. 2.3, the S matrix is computed as S2

S1 =


0 1 2 2 2
1 0 1 1 1
2 1 0 1 2
2 1 1 0 1
2 1 2 1 0

 S2 =


0 2 3 3 4
2 0 1 1 2
3 1 0 2 3
3 1 2 0 2
4 2 3 2 0


The number of links or hops in the shortest path between nodes i and j is called the

hopcount between node pair (i, j) generally represented by hij . The hopcount between all
the node pairs in a graph G(N,L) is given in a distance matrix H. It’s called distance matrix
as it obeys distance relations such as

• Each element of distance matrix hij ≥ 0.
• Diagonal elements are always zero: hii = 0.
• It obeys triangular inequality: hik + hkj ≥ hij
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The distance matrix of the graph G1(N,L) is calculated as H1 and the distance matrix
of G2(N,L) is computed as H2. In G2(N,L), due to link weights w32 and w24 influence, the
shortest path between w(P ∗

3→4) is routed via 3→ 2→ 4 instead of direct path 3→ 4.

H1 =


0 1 2 2 2
1 0 1 1 1
2 1 0 1 2
2 1 1 0 1
2 1 2 1 0

 H2 =


0 1 2 2 2
1 0 1 1 1
2 1 0 2 2
2 1 2 0 1
2 1 2 1 0


2.5.3. Effective resistance matrix Ω

It gives the effective resistance between all the node pairs of the graph in a matrix. For an
electrical network, the effective resistance between the end points of the network is computed
by series and parallel combinations of resistances. In graph theory, we compute effective
resistance matrix with the use of Laplacian matrix Q given by

Q = ∆−A where ∆ = Degree matrix =


d1 0 ... 0
0 d2 ... 0
...

... . . . 0
0 . . . . . . dn

 (2.5)

and di = degree of node i and A = Adjacency matrix of graph G.

From Q, the pseudo inverse Q† is computed as

Q† =
N−1∑
k=1

1

µk
zk zTk (2.6)

where µk = kth eigen value when all the eigen values of Q are arranged in µ1 ≥ µ2 ≥ · · · ≥
µN−1 ≥ µN ≥ 0 and zk = eigen vector corresponding to µk. The effective resistance matrix is
given by

Ω = uζT + ζuT − 2Q† (2.7)

where ζ = Diagonal vector of Q† = (Q†
11, Q

†
22, . . . , Q

†
NN ).

The effective graph resistance RG is a graph property by which the difficulty of transport is
measured in graph G [12] given by

RG =
1

2

N∑
a=1

N∑
b=1

ωab =
1

2
uTΩu (2.8)

where ωab = Effective resistance between node pair (a, b).

For weighted graph, weighted effective resistance matrix Ω̃ and weighted effective graph
resistance R̃G are computed in similar manner with inputs as flowbased weighted adjacency
matrix ÃF and the corresponding weighted laplacian matrix Q̃ = ∆̃F − ÃF .The flowbased
weighted adjacency ÃF is constructed with elements afij where afij =

1

aij
for all i ̸= j,
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afij = 0 for all i = j and if there is no link present between node pair (i, j) i.e. if aij = 0 then
afij = 0 and ∆̃F = Degree matrix of AF .

For unweighted graphG1 in Fig. 2.1, the effective resistance and effective graph resistance
are computed as

Ω =


0 1 1.625 1.5 1.625
1 0 0.625 0.5 0.625

1.625 0.625 0 0.625 1
1.5 0.5 0.625 0 0.625

1.625 0.625 1 0.625 0

 RG = 9.75

For weighted graphG2 in Fig. 2.3, the weighted effective resistance and weighted effective
graph resistance are computed as

Ω̃ =


0 2 2.792 2.667 3.167
2 0 0.792 0.667 1.167

2.792 0.792 0 1.125 1.792
2.667 0.667 1.125 0 1.167
3.167 1.667 1.792 1.167 0

 R̃G = 17.334

2.6. Network resource allocation problem
The network resource allocation problem is the shortest path routing problem where the short
est path between any two vertices is calculated, given the resources consumed along a path
must lie with the demand acting on the link. These network resource allocation problems have
been formulated in various domains such as transportation, telecommunications etc. [13]. In
this Section, we will see the various network resource allocation problems utilised in Traffic
Engineering (TE) to satisfy the network resource accommodation such as bandwidth, Quality
of Service (QoS) delay, etc. and various objective functions formulated to solve the routing
problem and arrival on General Routing Problem. The Section also discusses the various
methods by which the routing optimization was addressed by numerous techniques and dis
cusses the benefits and drawbacks of these techniques.

The intradomain routing problem was mostly presented as minimization of the maximum
utilization of the network in many of the routing problems [14], [15] and [5]. Consider a directed
graph G(N,L) where N represents the nodes in the Graph and L is the set of links between
the nodes in the graph. The utilization of the link (i, j) is defined as Uij = lij/cij where lij is
the load acting on the link (i, j) ϵ L and cij is the capacity of the link (i, j) ϵ L. The objective
function was thus formulated as (2.9).

min max(i,j) ϵ LUij (2.9)

As the objective function has been aimed at reducing the demand of major utilised link, it has
not been global to the network, i.e., the whole network was not considered for optimization.

Themajor work in shortest path routing optimization was performed by Fortz and Thorup by
developing a local heuristic approach to solve the cost optimization problem. They proposed
a piecewise linear cost function in which each link is assigned a routing cost based on an
increasing convex optimization function in the work of [4], [16] and [17]. The cost function
Φ(i, j)(cij , lij) has beenmodelled based on the closeness of lij to its capacity cij . The objective
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function is formulated as to keep the load within the capacity of each link while minimizing the
overall cost of the network. The change in cost for increased or decreased load acting on the
link is presented as derivative of Φ as follows in [16].

ϕ
′
(cij , lij) =



1 for 0 ≤ lij/cij ≤ 1/3
3 for 1/3 ≤ lij/cij ≤ 2/3
10 for 2/3 ≤ lij/cij ≤ 9/10
70 for 9/10 ≤ lij/cij ≤ 1
500 for 1 ≤ lij/cij ≤ 11/10
5000 for 11/10 ≤ lij/cij ≤ ∞

(2.10)

The cost function Φ has been modelled as an increasing piecewise linear convex function
symbolising that links which are overutilised are penalised for allowing to transmit traffic when
the capacity is fully utilised. If the utilisation is higher than 100% and till 110% cost of the link
increases rapidly. The cost calculation with respect to load acting on the network is presented
in Fig. 2.4 where capacity of the link is considered to be 1 and the cost function is modelled
as increasing function of load on the link.

Figure 2.4: Link cost Φ(1, lij) versus load acting on the link when capacity is unity.

This model is the first one to address the link weight optimization based on the utilisation.
Their work acted as an impetus for many researchers to solve the optimal routing problem. The
work of Fortz and Thorup [4] and [17] also formulated the General Routing Problem (GRP) as
minimization of the objective function Φ with respect to the demand acting on each link. GRP
has been expressed as a Multi Commodity Network Flow Problem (MCNFP)  the set of de
mands are routed across the links based on the link capacities. However, this GRP doesn’t
take the Equal Cost MultiPath Routing principle (ECMP) into consideration which makes the
GRP as the lower bound for Interior Gateway Routing Protocol (IGP). But Fortz et al. [4] proved
that including ECMP rule would make IGP routing NP hard. This NPcompleteness has also
been presented in the work of [18] and [15].
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As a workaround to circumvent the NPcompleteness problem, a local search heuristic ap
proach was proposed in the work of Fortz and Thorup [4] and [17] to optimize the GRP. In this
approach, the function to be minimised is supposed to be g over a set of Y possible option sets.
For each iteration of the algorithm, a neighbourhood S(y) ⊂ Y was chosen to minimise the
function g such that g(y) bares lesser cost than the previous neighbourhood. The techniques
such as search diversification and hashing were utilised for faster solutions [4]. The method
was further improved by additional weight settings for the possibility to include link failures and
robustness in [16].

The work of Kodialam and Lakshman [19] introduced a new objective function called mini
mum interference routing to address the network resource allocation problem. The objective
function is given as:

max
∑

(i,j)ϵQ

αstθst (2.11)

where αst is the weight representing the importance of ingressegress pair (s, t) ϵ Q− set of
all commodities. The motive of the objective function is to minimize the blocking probability of
the future demand request by minimising the maximum flow between a pair (s, t) ϵ Q such that
the maximum future request that can be admitted between the pair also reduces. Their work
aimed to maximize the weighted sum of the maximum flows over residual topology. Similar
works of residual capacity maximization have been discussed in [15] and [5]. But, the objective
function fails to incorporate multiple criteria into account. As network performance is depen
dent on various criteria such as throughput, fairness, utilization, etc. the works of [4],[16],[17]
and [19] didn’t provide the holistic optimal solution to address the intra domain routing problem.

Degrande et al. [20] put forth a weighted sum of multiple criteria method by formulating an
objective function incorporating various bases by introducing coefficient for each parameter to
give priority to different criteria based on the need of the network optimization. The objective
function was, thus formulated as

min(Cb U
max + Cu

∑
(i,j)ϵL

Uij) (2.12)

where Cb is the coefficient associated with balance B = 1−Umax and Cu is the coefficient
associated with the network utilization defined as U =

∑
(i,j)ϵL Uij .

The work of Pioro and Medhi [15] and [5] have also contributed to shortest path routing
optimization. Their work was mainly focused on residual capacity optimization and minimum
average delay Objective Functions. Pioro and Medhi [15] and [5] formulated the generalised
Interior Gateway Protocol (IGP) weight optimization problem as follows:

(IGPbasic) {Objective} (2.13)

such that
∑
pϵP

fp
st(w) = dst(s, t)ϵQ

∑
pϵP

∑
(s,t)ϵQ

δstpaf
p
st(w) ≤ γaca

where IGPbasic is the Intra Domain Routing Objective Function with any objective which
meets the network requirements, P (s, t) represents the set of directed paths for the origin
destination pair (s, t) ϵ Q − set of commodities. fp

st depicts the traffic flow due to the weight
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ω acting on path p ϵ P (s, t). dst represents the traffic demand for the pair (s, t)ϵQ. δstpa is 1
if link a belongs to path pϵP (s, t) and 0 otherwise. γa shows the link utilization factor for link
a belongs to path pϵP (s, t). The IGP was later modified to meet the ECMP requirement as
well. The equations (2.13)  (2.6) thus served as the basis for generalised routing function for
intra domain routing problem. Their work also provides the NPcompleteness to optimize IGP
metric with ECMP rule.

Pioro and Medhi have also proposed Weight Adjustment method in [5] to solve the routing
objective. In this method, the weights of the links are initially set to a random number and
adjusted till a preferred load optimisation is achieved. The weight variation method is carried
out such that the least and most loaded links are chosen and the weights are modified until
the required network utilization is achieved. Though this method optimizes the network uti
lization, the iterative nature of the algorithm may lead to recursive action there by consuming
the computational resources. They have also proposed a Lagrangean Relaxation approach
which utilises the objective functions of residual capacity maximization to obtain the optimal
link weights.

The various objective functions were compared in the work of [21] for the best optimal rout
ing method. The objective functions were tested on an operational network and the United
States research network called Abilene with diverse traffic matrices. It has been verified that
the objective function of [4] performs better compared to the rest of the objective functions.

The Intradomain routing problem was also addressed by other heuristic algorithms such
as Genetic Algorithm [7]. This algorithm utilised crossover procedure where two parents p1
and p2 are combined to produce a random vector of real numbers. A cutoff number V ϵ [0.5, 1]
was chosen to determine the gene of the child. This approach was further improved by adding
local search algorithm in [22]. The resulting approach has led to faster convergence compared
to that of [4].

The methods so far discussed the routing problem incorporating ECMP principle. Bley has
proposed unique shortest path problem  link weights are chosen such that demand acting on
the network are routed by unique shortest paths in [6]. This approach is also referred as in
verse shortest path problem. In this work [6], unique shortest path problem was formulated as
Integer Linear Programming models to minimize the longest arc or longest path length.

The major works of network resource allocation problem in Traffic Engineering domain are
presented in Table 2.1 which gives an outlook of the optimization objective chosen, optimiza
tion method developed and the outcome of the work. The common thread in all these works
is that the demand acting on the network is modelled as network flow problem. The works
mentioned in Table 2.1, give the enormous possibilities of optimization methods possible for
solving the network resource allocation problem. In this project, we have formulated a novel
algorithm based on graph theory and its metrics.
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Reference Optimization Objective Optimization Method Performance/Outcome

Fortz and Thorup [4], [16], [17]

Optimizing weight settings
based on a demand matrix
subject to minimize the
overall cost

Local Search Heuristic 50110 % increase
in demand is met

Pioro et al. 2000 [15]
Maximization of average
free capacity and total
free capacity

Two phased approach 
Mixed Linear Integer
programming (Phase 1),
linear programming (Phase 2)

Optimal

Altin 2013 [14] Minimization of
maximum utilization

Mixed Integer Linear
Programming 
Branch And Price
Algorithm

Optimal

Bley 2005 [6] Minimization of longest
path/arc 

Proof of
NPCompleteness
of Inverse Shortest
path problem

Balon 2006 [21]

Comparison of various
objective functions
such as weighted mean
delay, multiple criteria

Linear Programming model
and simulations

Delay objective function
is optimal and best
objective function

Wang et al. 2001 [23]

Minimize the total
weight of links 
Dual Shortest
path formulation

Linear Programming Duality Optimal

Blanchy et al. 2003 [24] Load balancing function Bellman Kalaba Algorithm Optimal

Elwalid 2001 [25] Average delay function MATE  Asynchronous
Algorithm Optimal

Degrande 2003 [20]

Minimize blocking,
utilization rate;
Maximizing throughput
and load balancing

Mixed Integer Linear Program Less Optimal for
flat networks

Holmberg and Yuan 2004 [26] Minimization of cost
Lagrangian Heuristic
Approach and
branch bound Algorithm

Optimal

Ericsson et al. 2002 [7] Minimization of
network congestion Genetic Algorithm Optimal

Farago et al. 2003 [27] Minimization of cost vector Combinatorial Optimization
and linear programming

Reduction in average
blocking probability
from 20 % to 3.5 %

Bley and Koch 2002 [6]

Minimization of flow and
installation cost for
access and backbone
network

Mixed integer linear
programming model for
each access and backbone
network

Optimal

Kodialam and Lakshman 2000 [19] Minimum Interference
Routing

Minimum Interference Routing
Algorithm (MIRA) Optimal

Zhang and Rodosek 2005 [28] Maximize the sum of
residual capacities

Mixed Linear Programming with
Bender’s Decomposition Method Optimal

Table 2.1: Various research objective functions and methods proposed by peers along with the
performance/outcome of the research carried out.

2.7. Conclusion
This chapter gives the basics of graph theory, random graphmodels and graphmetrics needed
to understand the thesis. The graph metrics are computed for example graphs to understand
the basics in an effective way. Alongside, network resource allocation problem and various
works by peers in this domain have been studied to understand the scope and novelty of the
inverse shortest path algorithm.
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Methodology: Inverse Shortest Path

Problem

3.1. Introduction
We have seen the various graph models, network resource allocation problems, various ob
jective functions and algorithms formulated by peers to solve the network resource allocation
problem in the previous chapter. In the current chapter, we will be looking into the inverse
shortest path problem (ISPP), inverse shortest path algorithm (ISPA) along with its bounds.
The aim of this chapter is to provide the methodology upon which ISPA is formulated and to
understand its applicability for weighted graphs and the need of the thesis. The Sections 3.4,
3.5, 3.6 and 3.7 are incorporated from [8] which have been formulated by P. Van Mieghem et
al. and the article can be referred for indetailed description, as the theory in this chapter is
bounded to provide the scope of the thesis.

3.2. Flow and path networks
ISPP is a network resource allocation problem formulated based on flow and path network
based graph metrics and properties. To understand the ISPP, it is therefore vital to understand
the flow and path networks.

Consider a graph G with a set of N nodes and L links. Let wl be the weight on link l ϵ L,
which gives any property of the network such as delay, bandwidth, throughput etc. For exam
ple, an electrical grid network has link weights as resistances in ohm whereas the transporta
tion network has link weights being the distance between various nodes.

Firstly, let us consider the electrical grid which is the best example of flowbased commu
nication. Fig. 3.1 is an electrical network represented in the form of undirected graph G(N,L)
where the link weight represents the resistance between any two node pairs in the network.
The effective resistance between any node pair, say, (1, 2) given by R12 is not only dependent
on the flow between node pair (1, 2) but also on all the flows in the network. The effective
resistance matrix Ω is the graph metric which gives the effective resistance between all node
pairs in the Graph and is discussed in Section 2.5.3.

On the other hand, a path network is a network that is utilised in data communication to
transfer digital information between various nodes and for this type of communication, the

15
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Figure 3.1: A simple electrical grid network represented in an undirected graph G(N,L) along with its effective
resistance matrix Ω

path with the shortest length is chosen to transfer the data. The weight of the path w(Pij) =∑
l ϵ Pij

wl of a path Pij between node pair (i, j) consists of the sum of the weights over all the
links that belong to path Pij . The shortest path P ∗

ij is the path with minimum weight of all the
paths Pij and hence w(P ∗

ij) ≤ w(Pij). The shortest path matrix S is the graph metric which
gives the shortest path between all the node pairs of the graph G as shown in Fig. 3.2.

Figure 3.2: An undirected graph G(N,L) along with its shortest path matrix S

These two graph metrics Ω and S are necessary to understand the ISPP bounds – bounds
upon which ISPA is formulated which is discussed in detail in Section 3.5.

3.3. Network Communication Constraint
The network communication constraint, also called demand matrix D, gives the requirement
of the network in terms of Bandwidth, QoS, Delay or cost etc. for each node pair (i, j) given
by dij . Hence the demand matrix is given by,

D =

 0 . . . d1n
... . . . ...

dn1 . . . 0


The demand matrixD is mainly used in resource constrained shortest path problem where

shortest path between two vertices in the network is calculated, given the resources consumed
along a path must lie below certain upper limit. This is often referred to as traveller problem
with certain budget who has to reach a certain destination within the constraints imposed by
the budget [29].
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3.4. Inverse shortest path problem
The Inverse Shortest Path Problem (ISPP) is a form of resource constrained shortest path
problem famously known as network resource allocation problem given by:

Given a N × N demand matrix D, determine the weighted Adjacency matrix Ã such that
obtained shortest path matrix S obeys

sij ≤ dij for all i = 1, 2, ..., N

for all j = 1, 2, ..., N

The above ISPP problem is solved using an inverse shortest path algorithm (ISPA) which
utilises the ISPP bounds (Section 3.5) and Fiedler’s inverse block matrix relation (Section 3.6)
which are formulated using the graph metrics Ω and S.

3.5. ISPP Bounds
The ISPP bounds are the basis on which the ISPA is formulated. It essentially has two bounds
to establish relation between two parameters Ω and S. The first bound states that weight
of the shortest path w(P ∗

ij) is lower bounded by the effective resistance for node pair (i, j).
Mathematically written as,

ωij ≤ sij = w(P ∗
ij) (3.1)

If we construct a difference matrix C = S −Ω, then the only case when C = 0 is observed
for path graphs such as line graph, tree graph and star graph in which Ω and S coincide. In
any other type of graph, the effective resistance Ω is always less than S which implies C ≥ 0
due to which it results in parallel combination of resistances between the node pairs of the
graph reducing the effective resistance.

The second bound upon which ISPA is formulated as ‘the effective resistance ωij can be
lower bounded by the combinatorial shortest path ŝij ’ as,

1

m
ŝij

2 ≤ ωij (3.2)

wherem =
∑

l ϵ Lw−1
l is the sum over all links of the inverse link weights and ŝij is the weight

of the shortest path w(P ∗
ij) when each link has unit weight wl = 1 for all l ϵ L and called hop

count [12]. The second bound in (3.2) is based on theorem of Nash Williams’ inequality [30]
and the theorem is as follows:

Theorem: A cut in graph theory is described as a partition of the vertices of a graph into two
disjoint sets. For a pair of nodes i and j, an i − j cut consists of a set of links such that
removing these links from the graph disconnects node i from node j. If Cij is a collection of
i− j cuts which are independent i.e., no two cuts share a link, then Nash William’s inequality
states that ∑

C ϵ Cij

w(C) ≤ ωij (3.3)

where w(C) =
(∑

(a,b)ϵ C w−1
ab

)−1
is the weight of a cut C ϵ Cij and ωij is the effective resis

tance between two nodes i ϵ N and j ϵ N .
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For nodes i and j which are ŝij hops removed from each other, we consider the following
collection of i− j cuts Cij = {Ck}

ŝij−1
k=0 , where the cut Ck = {(a, b) ϵ L : ŝia = k, ŝib = k+1}

contains all links between one node at combinatorial shortest path distance k from i, and the
other node at distance k + 1. From (3.3), we obtain the lower bound as,

ωij ≥
ˆsij−1∑

k=0

w(Ck) (3.4)

By multiplying both sides of (3.3) with m =
∑

l ϵ Lw−1
l , we obtain (3.5) that proves the lower

bound in (3.2).

mωij ≥
ŝij−1∑
k=0

w−1(Ck) ≥ ŝij
2 (3.5)

3.6. Fiedler’s inverse block relation
In undirected flow networks, Fielder has derived an inverse block matrix relation [31], [32] from
which the weighted adjacency matrix Ã can be derived from effective resistance matrix Ω [33],
[34], [35] as follows: [

0 uT

u Ω

]−1

=

[
−2σ2 pT

p −1

2
Q̃

]
with Ωp = 2σ2u (3.6)

where Q̃ = ∆̃F − ÃF is the weighted Laplacian matrix and the variance σ2 =
ζT Q̃ζ

4
+ RG,

where RG =
1

2
uTΩu is the effective graph resistance. The matrix ∆̃F = diag(ÃFu) is a

diagonal matrix and u is the allone vector. The diagonal elements of pseudoinverse Q† of
the Laplacian Q̃ is ζ. The weighted degree vector d̃ = ÃFu has components equal to diagonal
elements of Q̃. The matrix ÃF represents adjacency matrix of the flow network and is different
from the weighted adjacency matrix Ã of the path network. In order to make weight of the link
wl = rl resistance of the link, the weighted Laplacian Q̃ elements qij can be made − 1

rij
for

i ̸= j [33]. Using this relation, (ãF )ij =
1

rij
while ãij = rij , (ãF )ii = ãii = 0 and (ãF )ij = 0

while ãij = 0 . By applying the block inverse formulae to Fielder’s block matrix equation in 3.6,

we obtain 2σ2 =
1

uTΩ−1u
and p =

1

uTΩ−1u
Ω−1u and thus the inverse of effective resistance

matrix is obtained as
Ω−1 =

1

2σ2
p.pT − 1

2
Q̃ (3.7)

Hence, the weighted adjacency matrix from (3.7) as

ÃF = ∆̃F + 2Ω−1 − 1

σ2
p.pT (3.8)

By suitably converting the demand matrix D into a distance matrix, we can replace Ω by D
in (3.8) and derive the weighted adjacency matrix ÃF which is the key principle of inverse
shortest path algorithm (ISPA).
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3.7. Inverse shortest path algorithm (ISPA)
By combining the two bounds in Section 3.5, we obtain the inequality in (3.9).

1

L
s2ij ≤ ωij ≤ sij (3.9)

As the number of links L ≤ N(N − 1)

2
<

N2

2
, the term L in lower bound can be replaced

by N2

2
. Hence, the second bound in (3.2) can be written as 2

N2
s2ij ≤ ωij . By modifying to

maintain S on the left hand side of the inequality, we arrive at sij ≤
N√
2

√
ωij . By choosing

ωij =
2

N2
d2ij , in matrix form Ω =

2

N2
D o D, then the inequality in (3.9) can be written it terms

of demand matrix D as,
2

N2
s2ij ≤

2

N2
d2ij (3.10)

Therefore, by choosing ωij =
2

N2
d2ij , we establish sij ≤ dij which in turn states that length

of the shortest path is within the demand constraint. This is the first step in ISPA which requires
to obtain Ω from the demand matrix D. The ISPA is formulated as follows:

Algorithm 1: Inverse shortest path algorithm

1. Choose Ω← 2

N2
(D o D)

2. If (Ω ̸= distance matrix of a simplex)
3. Construct a distance matrix Ω′ ≤ Ω

4. Construct a simplex distance matrix Ω′′ ≤ Ω′

5. Replace Ω← Ω′′

6. Compute ÃF via (3.8)

7. Return Ã by aij =
1

(AF )ij
for all i ̸= j and (AF )ij ̸= 0

The demand matrix D may not be always a distance matrix. However, after obtaining
effective resistance matrix Ω from D, it is possible to convert Ω to a distance matrix if it is not
already one. After constructing Ω from line 1 of the algorithm, if ωij < 0, then ISPP is not
feasible. If Ω is not symmetrical, i.e., ωij ̸= ωji, then ω′

ij is computed as ω′
ij = min(ωij , ωji). If

ωik+ωkj < ωij for at least one kϵN which violates the triangular inequality of a distance matrix,
then we replace ω′

ij = min1≤k≤N (ωik + ωkj). In line 4, we check whether Ω corresponds to a
simplex, else the calculated ÃF has negative elements. However, it is not possible to check
the simplex nature of Ω as it is complicated and can be taken as future study.

3.8. Need of the thesis
The ISPA is possible to implement for unweighted graphs as the two bounds (3.1) and (3.2)
hold as link weights are all unity. In case of a weighted graphs, it has been observed that
lower bound (3.2) doesn’t hold always and the variability of the inequality in (3.2) changes
with input parameters of the graph such as number of nodes N , link density p and average
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link resistance r for ER graphs. Hence the need of the thesis is to validate the implementation
of ISPP for weighted graphs and also to study its characteristics through probability of failure,
QNorm analysis and hop count distribution analysis to determine the conditions under which
ISPP lower bound holds for weighted graphs and to understand the nature of the solutions
obtained by applying ISPP for weighted graphs.



4
Qnorm Analysis

4.1. Introduction
In the previous Chapter Methodology, the ISPP bounds upon which ISPA works have been
studied in detail and we also observed that ISPP upper bound (3.1) holds for weighted graphs
and unweighted graphs. Also, the ISPP lower bound (3.2) behaviour is unknown for weighted
graphs and will be explored through the Euclidean norm or Qnorm analysis carried out in this
chapter. Through Euclidean norm analysis, we aim at understanding the ISPP lower bound
behaviour in weighted graphs and its dependency on the configuration parameters such as
number of Nodes N , link density p and average link resistance r for ER graphs qualitatively.

Euclidean norm is a function on real or complex vector space, where Euclidean distance
of a vector is computed from the origin. If x = (x1, x2,…xn) is a vector in the ndimensional
Euclidean space Rn , Euclidean norm or Qnorm [36] is given by ∥x∥2 =

√
x21 + x22 + ...+ x2n.

In ISPP, Qnorm is computed for the ISPP lower bound to find the closeness between the
terms Ω and (1/m)∗S o S and to determine if the variation between these terms is dependent
on the input or configuration parameters of the graph such as number of nodes N , link density
p and average link resistance r for weighted ER graphs. The procedure followed is explained
in Section 4.2.

4.2. Simulation setup
The experiment is carried out for weighted ER graphs for the following input parameters.

• Number of nodes N = {25, 50, 75, 100}
• Link density p = {0.1, 0.25, 0.5, 0.75, 1.0}
• Average link resistance r ranging starting from 0.1 with incremental of 0.5.
• Minimum link resistance rmin = 0.1.
• Maximum link resistance rmax = 2 ∗ r − 0.1.
• Number of realizations for each N, p and r of ER graphs = 106.

For each N , p and r, 106 instances of weighted ER graphs are generated with uniformly
distributed weights. Initially, the topology or the underlying structure of the graph is generated
for a givenN and pwith unit link weights and for each ER graph structure, uniformly distributed

21
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link weights in the range of rmin and rmax = 2 ∗ r – rmin are generated and assigned to the
underlying structure to make it weighted. For each weighted ER graph constructed, Effective
resistance matrix Ω (see Section 2.5.3), Shortest path matrix S are computed (see Section
2.5.2) along with m which is sum of inverse link weights of the graph. For each weighted ER
graph generated, the Qnorm is computed as∥∥∥∥Ω− 1

m
∗ S o S

∥∥∥∥
q=2

if Ω ≥ 1

m
∗ S o S (4.1)

Thus, for 106 realizations of weighted ER graphs generated for a combination of N, p and r,
the total number of Qnorm values can be anywhere between a maximum of 106 when the
inequality holds for every instance to a minimum of 0 when no weighted ER graph instance
satisfies the inequality. The matlab code for generating Qnorm distributions is presented in
Appendix A.

To understand the variation of each of the input parametersN, p and r on the ISPP bounds,
Qnorm distribution analysis has been performed where the set of Qnorm values obtained for
a combination of N, p and r of ER graph are normalized by the total number of Qnorm values
and the normalized Qnorm values are plotted for variation in one of the input parameters
keeping the other two parameters constant. So, the Qnorm distribution analysis is studied for
the following combinations and the insights derived are discussed in Section 4.3.

1. Variation in N for constant p, r
2. Variation in p for constant N , p
3. Variation in r for constant N , p

4.3. Analysis
The Qnorm distribution analysis plotted for variation in each input parameter for the other
parameters being constant is shown in Fig. 4.1, Fig. 4.2 and Fig. 4.3 and the following
insights are derived.

• The Qnorm distributions follow a binomial distribution for N ≥ 50 with corresponding
mean µ and standard deviation σ given by Pr[X = k] =

(
n
k

)
pk(1 − p)n−k where X

is a binomial random variable, where p being probability of success on a single trial
and n being the total number of trials. For lower N and lower p, it is observed that
the distributions distort which may be due to their finiteness and are deviated from the
binomial distribution.

• As number of Nodes N increases for a constant p and r in Fig. 4.1, the mean of the
distribution moves closer to origin indicating the closeness of bounds. This means the
ISPP bounds are valid for higher N (N >= 50) with higher probability.

• As link density p increases for constant N and r in Fig. 4.2, the mean of the distribution
approaches origin indicating the difference between the terms in inequality reduces. This
could be due to increase in number of links within the same weight range (rmin, rmax)
which reduces both effective resistance Ω and Shortest path matrix S values of the ran
dom graph generated, hence, overall average Qnorm reduces along with its spread.

• For increase in average link resistance r, the Qnorm distributions move away from the
origin indicating increase in difference between the terms of ISPP inequality. The spread
of the Qnorm distributions increases with increase in r, as shown in Fig. 4.3, where
standard deviation Ω increases from 0.231 for r = 1.0 to 1.204 for r = 6.0. This also
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gives insight that the ISPP inequality only holds for certain set of r for a given N and p of
weighted ER graphs. However, strict bounds of average link resistance r for which ISPP
inequality holds may not be derived from the distribution plots and this is investigated in
the Chapter 5.

Figure 4.1: Qnorm Distribution plots of ISPP inequality for 106 realizations of ER graphs with
N = {25, 50, 75, 100} and link density p = 0.25 and average link resistance r = 2.0 for variation in N .

Figure 4.2: Qnorm Distribution plots of ISPP inequality for 106 realizations of ER graphs with N = 100 and link
density p = {0.1, 0.25, 0.5, 0.75, 1.0} and average link resistance r = 2.0 for variation in p.
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Figure 4.3: Qnorm Distribution plots of ISPP inequality for 106 realizations of ER graphs with N = 100 and link
density p = 0.25 and average link resistance r = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0} for variation in r.

4.4. Conclusion
The Qnorm analysis on the weighted ER graphs showed that the ISPP bounds hold for
weighted ER graphs with higher probability for higher N and p and the applicability of ISPP for
weighted graphs is also dependent on the input parameters of ER graphs N, p and r and the
Qnorm distributions suggests a possible relation between the input parameters of the graph
and ISPP bounds. However, the Qnorm analysis doesn’t give relation between the bounds
and the input parameters of the graph. This analysis acted as an impetus to carry out the
further analysis in the thesis to derive the relation showing the feasibility of implementation of
ISPP for weighted ER graphs in further chapters.



5
Probability of Failure Analysis

5.1. Introduction
The Qnorm analysis revealed that ISPA is valid for weighted graphs with a certain proba
bility and with increase in number of nodes N and link density p of weighted ER graphs the
ISPA can be applicable for weighted ER graphs with increased closeness between the bounds.
However, it is required to obtain the intrinsic relation between the different parameters of the
weighted graphs to check the feasibility of implementation of ISPA for weighted graphs.

In this chapter, we will explore how probability of failure is used as a measure to determine
the feasibility of implementation of ISPA for weighted graphs. We also explore the various
insights we have gained from the analysis such as critical threshold, phase transition in prob
ability of failure and we derive a relation between critical threshold and number of nodes N
for varying link density p of the weighted ER graphs. Additionally, we will also explore the
behaviour of probability of failure pf analysis for change in minimum link resistance rmin.

5.2. Simulation setup
The experiment assumes the following input parameters for the weighted ER graphs genera
tion and calculation of probability of failure.

• Number of nodes N = {25, 50, 75, 100}.
• Link density p = {0.1, 0.25, 0.5, 0.75, 1.0}.
• Average link resistance r ranging starting from 0.1 with incremental of 0.5.
• Minimum link resistance rmin = 0.1.
• Maximum link resistance rmax = 2 ∗ r − 0.1.
• Number of realizations for each N, p and r of ER graphs = 106.

For each ER graph realization of a given combination of N, p and r, the inequality Ω =
1
m ∗ S o S is checked to see if it holds, else the realization is considered as failure. Similarly,
out of 106 ER graph realizations for a given N, p and r, the number of realizations failed are
collected.

Therefore,
Probability of failure pf for a combination of N, p and r = Number of realizations failed

Total 106 realizations .

25
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5.3. Analysis
For a given link density p and number of nodes N , the probability of failure pf is plotted for
increasing average link resistance r as shown in Fig. 5.1. The initial analysis shows that for
each N and p, probability of failure pf curve follows a sigmoidal function with (0, 1) transition
for increase in r.

Figure 5.1: The probability of failure pf versus average link resistance r for weighted ER graphs with number of
nodes N = 100 and link density p = 1.0.

To understand the characteristics of probability of failure pf for increasing r and various N ,
it is necessary to obtain the fit closest to the sigmoidal function. In the following Subsection,
the various fits closest to the phase transition of pf vs r are considered to derive meaningful
insights from them.

5.3.1. Sigmoidal Function Fitting

The various sigmoidal functions that can be the possible fits for probability of failure curve
which show a transition from zero to one are presented in the following sections.

5.3.2. Tanh Hyperbolic

The tanh hyperbolic, also called as FermiDirac distribution is given by

fFD(r) = 0.5 ∗ (1 + tanh(c ∗ (r − r0))) =
1

(1 + e−2c(r−r0))
(5.1)

where r0 is the critical threshold of the pf curve and c is the slope factor of the pf curve.

The Fermi Dirac distribution is a maximum entropy function which is used to study the
energy states in Quantum Statistics [37]. Fermi Dirac distribution is also utilised to understand
the dynamics of random processes such as network diffusion and epidemics [38]. The Fermi
Dirac function fit for probability of failure pf versus average link resistance r is shown for link
density p = 1.0 and number of nodes N = {25, 50, 75, 100} for weighted ER graphs in Fig.
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5.2. Though the fit seems to overlap perfectly, the derivative of FermiDirac distribution is
required to produce a Gaussianlike distribution [39] which has not been observed in the case
of probability of failure pf curve as shown in Fig. 5.3.

Figure 5.2: The FermiDirac distribution fit of probability of failure pf versus average link resistance r for
weighted ER graphs with number of nodes N = {25, 50, 75, 100} and link density p = 1.0.

Figure 5.3: The derivative of probability of failure pf with respect to average link resistance r which does not
produce Gaussian like curve for number of nodes N = {25, 50, 75, 100} and link density p = 1.0 of ER graphs.

5.3.3. Gumbel

The Gumbel distribution is an another fit that produces the zeroone transition and, theoreti
cally, is an extremal distribution for the maximum of a set of independent and identically dis
tributed (i.i.d) random variables [12]. The distribution that is used in the fitting is given as
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pf = F (r) = e( − e (−c∗ (r – r0))) (5.2)

where r0 is the critical threshold obtained by Gumbel fit and c is the slope factor by which
probability of failure pf increases by incrementing r by 0.5. As the derivative of a Gumbel is
asymmetric in nature and probability of failure pf curve also represents maximum of set of i.i.d.
random variables, the Gumbel fit is the best fit for the pf versus r curve. The Gumbel distribu
tion fit for probability of failure pf versus average link resistance r for weighted ER graphs with
number of nodes N = {25, 50, 75, 100} and various link densities p = {0.1, 0.25, 0.5, 0.75, 1.0}
is shown in Fig. 5.4  Fig. 5.8.

Figure 5.4: The Gumbel fit of probability of failure pf versus average link resistance r for weighted ER graphs
with number of nodes N = {25, 50, 75, 100} and link density p = 0.1.
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Figure 5.5: The Gumbel fit of probability of failure pf versus average link resistance r for weighted ER graphs
with number of nodes N = {25, 50, 75, 100} and link density p = 0.25.

Figure 5.6: The Gumbel fit of probability of failure pf versus average link resistance r for weighted ER graphs
with number of nodes N = {25, 50, 75, 100} and link density p = 0.5.
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Figure 5.7: The Gumbel fit of probability of failure pf versus average link resistance r for weighted ER graphs
with number of nodes N = {25, 50, 75, 100} and link density p = 0.75.

Figure 5.8: The Gumbel fit of probability of failure pf versus average link resistance r for weighted ER graphs
with number of nodes N = {25, 50, 75, 100} and link density p = 1.0.

5.3.4. Error function

The error function is an another function which has zeroone transition sigmoidal curve given
by

pf = F (r) = 0.5 ∗
[
1 + erf

(
r − r0

b

)]
(5.3)

However, the derivative of error function is a Gaussian curve [40] which clearly doesn’t
correlate with the asymmetry in derivative of probability of failure pf with respect to average
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link resistance r curve as shown in the Fig. 5.3. Therefore, the error function is not considered
for further analysis. The error function fit for pf versus r curve for N = {25, 50, 75, 100} and
p = 1.0 of weighted ER graphs is shown in Fig. 5.9.

Figure 5.9: The error function fit of probability of failure pf versus average link resistance r for weighted ER
graphs with number of nodes N = {25, 50, 75, 100} and link density p = 1.0.

Observations

The following are the inferences derived from the different sigmoidal fits for the probability of
failure pf versus average link resistance r plots for various number of nodesN and link density
p of the ER graphs.

• Gumbel fit is the best fit among the three analysed fits; it is an extremal distribution
for the maximum of set of i.i.ds for pf versus r curve. Also, the derivative of pf with
respect to r also points out asymmetry ruling out FermiDirac and error function fits from
consideration even though they fit pf vs r nicely.

• The critical threshold gives themeasure of feasibility of ISPP implementation for weighted
graphs which can be computed in terms of input configuration parameters of ER graphs
such asN and p. The critical threshold r0 obtained by Gumbel fit is considered for further
computation explained in Subsection 5.3.5

• For a given link density p of ER graphs, the Gumbel fitting constants r0 and c increase
with increase in N corresponding to the shift of pf versus r curve away from origin
towards the positive xaxis which in turn shows that the range of r for which ISPP holds
increases with increase in N .

• The phase transition of probability of failure pf is observed to be sharply increasing with
increase in N . The slope factor c can provide further insights on how fast the phase
transition occurs which will be discussed in Section 5.3.6.

5.3.5. Critical threshold r0

The phase transition is the phenomenon by which a system changes its behaviour at a criti
cal moment. This phenomenon is found in different systems of nature such as the liquidgas
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phase transition and the magnetic field displacement by pressure [37]. Similar behaviour is
discovered in random graphs by Erdos Renyi in ‘On the evolution of random graphs’ [41] where
the connectivity of the graph changes from disconnectedness to connected graph by varying
link density p of the graph. The critical link density pc = logN

N is the critical threshold in random
graph, hence when p < pc the random graph is almost certainly disconnected whereas for
p > pc the graph is almost certainly connected. Similar phase transition is observed in failure
probability pf of ISPP implementation of weighted random graphs.

To understand this phase transition and critical threshold for ISPP bounds, probability of
failure pf is plotted against r for different N and presented in Fig. 5.4  Fig. 5.8. The critical
threshold is the average link resistance r for which the failure probability is approximately 50%.
It can be observed that, with increase in N , the critical threshold r0 increases for a given link
density p indicating a possibility of relation between r0 and N for varying link densities. Also,
when r < r0, ISPP holds in most of the cases and when r is very much greater than r0 ISPP
fails for anyN and p of the weighted ER graphs. Hence r0 can be utilised to check the feasibil
ity of implementation of ISPP for weighted graphs by presenting it in terms of input parameters
of weighted ER graphs.

The critical threshold r0 obtained by Gumbel fitting is plotted against N for varying p to find
a relation between r0, N and p, presented in Fig. 5.10. The r0 and N follow a linear relation
in loglog scale and fitting constants a and b are also presented in Fig. 5.10. The relation
between r0 and N can be given as

log(r0) = a(p) + b(p) ∗ log(N) for p = {0.1, 0.25, 0.5, 0.75, 1.0} (5.4)

Modifying the equation,

r0 = 10a(p) ∗N b(p) (5.5)

where a(p) and b(p) are the fitting constants which vary with link density p and are presented
in Fig 5.10.

Figure 5.10: The critical threshold r0 obtained by Gumbel fit is plotted against number of nodes N for various
link densities p = {0.1, 0.25, 0.5, 0.75, 1.0}.



5.3. Analysis 33

5.3.6. Slope factor c

The slope factor c of the Gumbel fit gives the rate at which the probability of failure pf increases
with a constant increase in r, for increase in r of 0.5 which has been plotted in Fig. 5.11. The
slope factor c exhibits a linear relation with number of nodes N for various link densities of
weighted ER graphs given by

log(c) = a(p) + b(p) ∗ log(N) (5.6)

Rewriting it,
c = 10a(p) ∗N b(p) (5.7)

where a(p) and b(p) are fitting constants which vary with link density p and the values of these
constants are provided in Fig. 5.11.

Figure 5.11: The slope factor c obtained by Gumbel fit is plotted against number of nodes N for various link
densities p = {0.1, 0.25, 0.5, 0.75, 1.0}.

5.3.7. Effect of minimum link resistance rmin on the phase transition

The critical threshold r0 and slope factor c relations computed so far take the assumption of
minimum link resistance rmin = 0.1. But the shortest paths computation depends on both
topology as well as link weight structure as mentioned in [42]. Therefore, by varying rmin, we
observe the changes in phase transition curve between pf and r. The aim of this study is to
show that varying minimum link resistance rmin affects the phase transition curve.

The simulations so far run are extended for rmin = {0, 0.2, 0.4, 0.6, 0.8, 1.0} for N = 25, p =
0.25 and for 106 realizations for each N, p, r and rmin and the corresponding phase transition
curve for each rmin is presented for pf on yaxis and r on xaxis as shown in Fig. 5.12. It
can be noted that for increase in rmin, the phase transition is sharply rising from 0 to 1 for
rmin ≥ 1. Hence when rmin ≥ 1, could be the region where topology is dominant as change
in link weights doesn’t affect the phase transition curve of pf . Whereas for rmin < 1, the slope
of the phase transition increases with increase in rmin which indicates the region where link
weight structure is clearly dominant. However, by varying N and p, the regions of link weight
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filtering and topology are dominant changes. This indicates the relations r0 and c computed in
terms ofN and p can also be extended to include the rmin effect. However, this study requires
extensive simulations and could be considered for further study to derive a relation between
rmin, N , p and r0. In this project, we only emphasize the role of rmin in phase transition curve
of pf versus r.

Figure 5.12: The effect of rmin on the phase transition curve between pf and r for N = 25, p = 0.25 for weighted
ER graphs for varying r and fitted by corresponding Gumbel distribution with fitting constants c and r0.

5.4. Conclusion
The probability of failure pf exhibits a phase transition with increasing r for varying N and p
of weighted ER graphs. The probability failure pf versus average link resistance r is closely
fitted by Gumbel function and through which the critical threshold r0 and slope factor c are
expressed in terms of ER weighted graph input parameters N and p. The equation with r0,
N and p can be utilised as a measure to check the feasibility of implementation of ISPP for
weighted graphs. Finally, we have shown that rmin chosen has an effect on phase transition
curve between pf and r.
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Hopcount distribution analysis

6.1. Introduction
We have seen that ISPP bounds hold for weighted graphs for a certain range of link weights
and a feasibility condition has been derived based on the critical threshold r0 and input pa
rameters N, p and r of weighted ER graphs. In this chapter, we aim at understanding the
characteristics of solutions possible for ISPA through hopcount distribution analysis.

Hopcount between any two nodes of a network gives the number of traversed nodes in the
shortest path between the node pair (see Section 2.5.2). The hopcount is considered as an
important measure in the contemporary IP networks, especially, for QoS measures such as
packet delay, jitter and packet loss which are dependent on the number of traversed routers
in the shortest path – hopcount, rather than the length of the shortest path [43]. Hence, the
objective of the analysis is to understand the characteristics of hopcount distribution of shortest
paths of the solutions obtained through ISPA.

6.2. Simulation setup
Initially, weighted ER graphs are generated for each combination of (N, p, r) for 106 realizations
for the following set of values of input parameters.

• Number of nodes N = {25, 50, 75, 100}.
• Link density p = {0.1, 0.25, 0.5, 0.75, 1.0}.
• Average link resistance r ranging starting from 0.1 with incremental of 0.5.
• Minimum link resistance rmin = 0.1.
• Maximum link resistance rmax = 2 ∗ r − 0.1.

For each realization of ER graph, difference Ω− 1

m
SoS is computed for ISPA inequality (see

detailed procedure in Section 4.2). If the difference is greater than or equal to zero, hopcount
of the generated ER graph realization is computed and stored in an array. This procedure
is repeated for 106 realizations of weighted ER graphs for a given set of input parameters
(N, p, r) and the hopcount distribution obtained for all the realizations are collected in the same
array. The hopcount distribution data consists of two arrays. One being the possible hopcount
values possible for a given number of Nodes N . For example, for N = 25, the possible
hopcount values are [1, 2, 3,…24]. The second array is the frequencies corresponding the
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hopcount values which are obtained through the extensive simulations. The code developed
for hopcount distribution analysis can be found in Appendix B.

6.3. Analysis
By plotting the frequency with respect to the hopcount values, we obtain Fig. 6.1 for weighted
graph simulations withN = 25, p = 0.25 and r = 1.0 which suggests that the hopcount distribu
tion approximates Poisson distribution provided the frequencies are normalised to probability
and mean of the distribution that are computed as (6.1) and (6.2) respectively, due to the fact
that the hopcount distribution in Fig. 6.1 has events which are discrete and independent.

Normalised frequency of a hopcount value =
Frequency corresponding the hopcount value

Sum of the frequencies for all the hopcount values
(6.1)

Mean of the hopcount distribution =
∑

Hopcount value×Its corresponding normalised frequency
(6.2)

Figure 6.1: Hopcount distribution for weighted ER graph with N = 25, p = 0.25 and r = 1.0

6.3.1. Poisson Distribution

A discrete random variable X is said to have Poisson distribution if its distribution is given by
[44]

Pr(X = k) =
λke−λ

k!
(6.3)

where λ = Mean or Expected value of X and k = Number of occurrences of event.

Poisson distribution is utilised in various discrete reallife computations. One such example
is the call blocking probability in mobile communications network which is computed to model
the capacity of the network provided a mean of λ calls arrive per hour and all the calls are
independent [45].

By calculating the Poisson distribution values for each hopcount with mean λ = 2.59 using
(6.2) for each of the hopcount values, we obtain the Poisson distribution values as shown
in Table 6.1. By plotting the normalised hopcount distribution and its corresponding Poisson
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distribution as shown in Fig. 6.2, we show that ISPA provides solutions which meets the
constraints provided through the demand matrices D for the weighted random graphs such
that r is considerably less than r0 and the ISPA inequality holds.

Hopcount Frequency Normalised frequency Poisson distribution values
1 54704418 0.182 0.194
2 97102223 0.324 0.252
3 86184426 0.287 0.217
4 44314315 0.148 0.141
5 14235294 0.047 0.073
6 2990163 0.010 0.031
7 424325 0.001 0.012
8 41741 0.000 0.004
9 2940 0.000 0.001
10 149 0.000 0.000
11 5 0.000 0.000
12 1 0.000 0.000
13 0 0.000 0.000
14 0 0.000 0.000
15 0 0.000 0.000
16 0 0.000 0.000
17 0 0.000 0.000
18 0 0.000 0.000
19 0 0.000 0.000
20 0 0.000 0.000
21 0 0.000 0.000
22 0 0.000 0.000
23 0 0.000 0.000
24 0 0.000 0.000
25 0 0.000 0.000

Table 6.1: Hop count distribution of 106 weighted ER graphs for N = 25, p = 0.25 and r = 1.0 along with their
normalised frequencies and corresponding Poisson distribution values.

Figure 6.2: Hopcount distribution of weighted ER graphs with N = 25, p = 0.25 and r = 1.0 with mean λ = 2.59
presented in terms of normalised frequencies and their corresponding Poisson values.
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6.4. Conclusion
The aim of the analysis was to study the hopcount characteristics of the solutions obtained
through ISPA for weighted graphs, as hopcount is termed as an important parameter for ser
vice differentiation in contemporary IP networks. We conclude that the hopcount distribution
of solutions obtained through ISPA can be approximated by Poisson distribution with mean λ
and ISPA provides solutions which meets the constraints provided r is considerably less than
r0 and the inequality holds.



7
Validation of ISPA

7.1. Introduction
We have, so far, studied the various properties of ISPP bounds for weighted graphs such
as Qnorm analysis, probability of failure analysis and hopcount distribution analysis through
which we explored the nature of ISPP bounds for weighted ER graphs and derived a relation
for feasibility of implementation of ISPA. In this chapter, we aim at validating the ISPA to obtain
nonnegative weighted Adjacency from a given demand matrix D and to verify the feasibility
condition derived between pf and r.

7.2. Generation of demand Matrices
The main challenge in validating ISPA is the conversion of nonsimplex distance matrix to
simplex in step 4 of ISPA (see Section 3.7) which is yet unknown. Hence, it is not yet possible to
derive simplex distance matrix for any random demand matrixD. So we compute the demand
matrix D from the effective resistance matrix Ω which is a squared Euclidean distance matrix
and by taking square root of Ω we obtain distance matrices which are simplex in nature [46].
The procedure is as follows:

• Generate effective resistance matrix Ω for any N, p and r of a weighted ER graph as
shown in Section 2.5.3.

• To verify step 3 of ISPA, add a set of small randomelements ewithin a range of (emin, emax)
to the lower triangle of the Ω in order to obtain modified effective resistance matrix given
by Ω′. Adding e to all the elements of Ω may result in a nonsimplex distance matrix
while solving for ISPA, hence e is added only to the lower triangle of Ω such that ISPA
can resolve the matrix to simplex distance matrix.

• The demand matrix D is obtained as D =
N√
2
∗
√
Ω′.

Through this procedure, we ensure that the demand matrix always returns a nonnegative
weighted Adjacency through ISPA. The code for generating demand matrices is provided in
the Appendix C.

7.3. Verification of feasibility relation
The feasibility condition derived between pf and r in Subsection 5.3.5 for the ISPA lower bound
also needs to be verified for which the following procedure has been followed:
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• For a given demand matrix D, once a nonnegative weighted Adjacency Ã is obtained,
the terms N, p and r are computed from Ã.

• For solution obtained through ISPA, critical threshold r0 is computed from the feasibility
condition and Qnorm is computed to check if the ISPA inequality holds. This procedure
is repeated for 1000 instances of demand matrices generated for the input parameters
of N = 25, p = 0.25 and increasing r.

• The pf obtained by ISPA is compared with the feasibility condition derived between pf
and r to verify the precision of the conditions derived.

The code for verifying the feasibility condition can be found in the Appendix C. The procedure
followed to verify the feasibility condition through ISPA is given in Fig. 7.1. Table 7.1 gives
the comparison of the feasibility condition derived to that of actual implementation. It follows
from Table 7.1 that pf computed from probability of failure analysis correlates with the actual
pf computed from the ISPA solution for randomly generated demand matrices for a given N, p
and r of the weighted ER graphs.

Figure 7.1: Procedure followed to validate feasibility condition derived between pf and r in (5.2) through ISPA
for weighted ER graphs.



7.4. Conclusion 41

r r0 pf calculated from (5.2) pf calculated from ISPA solution
1.05 3.098 0 0
2.05 3.098 0.005 0.004
3.05 3.098 0.331 0.332
4.05 3.098 0.851 0.849
5.05 3.098 0.976 0.978
6.05 3.098 0.996 0.996
7.05 3.098 1 1

Table 7.1: The comparison of pf computed from (5.2) to that of pf computed from ISPA for 1000 demand
matrices of weighted ER graphs with N = 25, p = 0.25, rmin = 0.1 and increasing r.

7.4. Conclusion
The aim of this Section is to check the feasibility of ISPA implementation by generating demand
matrices which can be resolved into simplex distance matrices and verify the feasibility con
ditions derived in Chapter 5. We have successfully generated demand matrices which gives
nonnegative weighted adjacency matrices as solutions and verified the feasibility condition
for weighted ER graphs for given input parameters.





8
Conclusions and future work

In this chapter, we summarize our work and propose some suggestions for future work. We
start with the main conclusions of the thesis in Section 8.1 followed by recommendations for
future work in Section 8.2.

8.1. Conclusions
The aim of the thesis was

1. To understand the nature of ISPP bounds for weighted random graphs with uniformly
generated link weights through various analyses such as QNorm distributions, probabil
ity of failure and hop count distributions.

2. To check the feasibility of ISPA implementation for weighted random graphs based on
the relation between various parameters of the graph obtained by the analysis of the
nature of ISPP bounds.

3. To implement ISPA for any randomly generated demand matrices so as to obtain a non
negative solution and verify the feasibility for ISPA solutions.

We started by explaining the various metrics of graph theory and random graph models,
reviewing various works of peers to solve network resource allocation problem and understand
ing the methodology of ISPA and establishing the need of the thesis. We have performed the
Qnorm analysis in Chapter 4, where we concluded that Qnorm distributions mostly followed
binomial distributions and understood the variation of Qnorm distributions for variation in input
parameters of the ER graph such as N, p and r.

In Chapter 5, we computed pf versus r sigmoidal transition graphs for ISPA inequality
and concluded Gumbel is the most appropriate fit for the sigmoidal curves, from which critical
threshold r0 and slope factor c are expressed in terms of input parameters N, p and r of the
ER graph. We continued our research to understand that the hopcount distribution of solu
tions obtained for ISPA inequality can be approximated by Poisson distribution with mean λ in
Chapter 6.

Finally, in Chapter 7, we have generated demand matrices that can be resolved into sim
plex distance matrices in the algorithm and we were able to verify the feasibility condition
derived in Chapter 5 with ISPA solutions obtained from the demand matrices.

43



44 Chapter 8. Conclusions and future work

8.2. Future work
Based on the results and conclusions, the following future work is suggested.

• We have derived a relation between r0, c with a certain set of input parameters of ER
graphs such as N = {25, 50, 75, 100}, p = {0.1, 0.25, 0.5, 0.75, 1.0}. The work can be
extended to include a wide range of input parameters such that accurate relations can
be obtained for N and p of the ER graphs through extensive simulations.

• We have also made an important assumption that minimum link resistance rmin = 0.1 of
the link weights to derive the relation between pf and r. In Chapter 5, it has been shown
that the phase transition of pf is also dependent on rmin. It is suggestive to include the
effect of rmin in the relations (5.4) and (5.6) for completeness which can also be achieved
through extensive simulations.

• The demand matrix generation in Chapter 7 is performed through Ω, as conversion of
nonsimplex distancematrix to simplex in steps of ISPA algorithm is unknown. A heuristic
approach can be developed to convert any nonsimplex distance matrix to simplex for
improving the applicability of the algorithm for wide range of domains and improve the
utility of the algorithm.
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A
Appendix

Matlab Code for the simulations done to obtain QNorm distribution analysis
and probability of failure analysis results.

1 % Program name: simulation.m
2 % Author: Sai Poojitha Darsi (s.p.darsi@student.tudelft.nl)
3 % Date created: 2021-03-12
4 %
5 % Generates 10^6 realizations of weighted ER graphs for input parameters
6 % number of nodes n, link density p and average link resistance r.
7 % Calcultes effective resistance matrix, Shortest path matrix and computes
8 % Q-norm of ISPA lower bound and thus determines probability of failure.
9

10 clc;
11 clear all;
12
13 % Inputs
14 n = 25; % Number of nodes
15 p = 0.75; % Link density
16 rmin = 0.1; % Minimum link resistance
17
18 % Array initialization to store the results
19 nm_ar = []; % Stores Q-norm values
20 pf = 0; % Set failure cases to 0
21 nodes = []; % Stores n for each realization
22 prob = []; % Stores p for each realization
23 r_avg = []; % Stores r for each realization
24 norm_save = []; % Stores average Q-norm for each realization
25 fail_prob = []; % Stores number of failure cases for 10^6 realizations
26 links = []; % Stores number of links for each realization
27 r_actual = []; % Stores r computed from the graph for each ralization
28
29
30 % Input rmax values for which program needs to run
31 for rmax = [1.9, 2.9, 3.9]
32
33 %Intermediate arrays and variables
34 l = 0;
35 r_calc = 0;
36 l_arr = [];
37 r_calc_arr = [];
38
39
40 % Number of realizations
41 parfor rlz = 1:1000000
42
43 % Generates unweighted ER graph

49
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44 A = generate_ER(n,p)
45
46 %weights generation in [rmax,rmin] range
47 weights = rmin + (rmax - rmin).*rand(n,n);
48 lower_traingle = tril(A,-1);
49 weight_tril = lower_triangle .* weights;
50
51 % Weighted Adjacency matrix generation
52 weight_adj = weight_tril + transpose(weight_tril);
53
54 % Flow based weighted adjacency matrix
55 flow_weight = 1./weight_adj;
56 flow_weight(~isfinite(flow_weight)) = 0;
57
58 % Generates graph with weighted adjacency
59 g1 = graph(weight_adj);
60
61 % Uncomment to plot the graph
62 %plot(g1,'EdgeLabel ',g1.Edges.Weight);
63
64 % Shortest path matrix
65 dist = distances(g1);
66
67 % Degree vector
68 degree_vec = sum(flow_weight ,2);
69
70 % Laplacian
71 lap = diag(degree_vec) - flow_weight;
72
73 % Omega matrix - Calls function 'resistance '
74 omega = resistance(lap,n);
75
76 % S o S calculation
77 sos = dist.* dist;
78
79 % m calculation
80 inv_link_wt = 1./weight_tril;
81 inv_link_wt(~isfinite(inv_link_wt)) = 0;
82 m = sum(inv_link_wt ,'all');
83
84 %ISPA inequality
85 diffX = omega - ((1/m).*sos);
86
87 % If ISPA inequality holds compute Q-norm else
88 % count number of failure cases
89 if(all(diffX(:)>=0))
90 qnorm = norm(diffX);
91 nm_ar = [nm_ar qnorm];
92 else
93 pf = pf + 1
94 end
95
96 % Computes number of links for a realization
97 % This code is not mandotary. Only for verification.
98 l = sum(A(:))/2;
99 l_arr = [l_arr l];

100
101 % Computes actual r for a realization
102 % This code is not mandotary. Only for verification.
103 r_calc = sum(weight_tril(:))/l;
104 r_calc_arr = [r_calc_arr r_calc];
105
106 end
107 % Computes average number of links, r and average q-norm
108 % for 10^6 realizations.
109 l_avg = mean(l_arr);
110 r_actual_avg = mean(r_calc_arr);
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111 norm_avg = mean(nm_ar);
112
113 % Uncomment to store Q-norm array
114 % writematrix(nm_ar', '/home/sdarsi/bulk/exceldata/N='+string(n)+'/qnorm_hist.

txt');
115
116 % Store data for output
117 nodes = [nodes n];
118 prob= [prob p];
119 r_avg = [r_avg ((rmax+0.1)/2)];
120 norm_save = [norm_save norm_avg];
121 fail_prob = [fail_prob pf] ;
122 norm_avg = 0;
123 links = [links l_avg];
124 r_actual = [r_actual r_actual_avg];
125
126 % Set all the values to zero after each run.
127 pf = 0;
128 l_avg = 0;
129 r_actual_avg = 0;
130 nm_ar = [];
131 neg_nm_ar = [];
132 end
133
134 % Copy results to excel.
135 mymatrix(:,1) = nodes;
136 mymatrix(:,2) = prob;
137 mymatrix(:,3) = r_avg;
138 mymatrix(:,4) = r_actual;
139 mymatrix(:,5) = variance_list;
140 mymatrix(:,6) = links;
141 mymatrix(:,7) = norm_save;
142 mymatrix(:,8) = fail_prob;
143
144 %Output File name
145 str2 = "N=" + string(n) + ", p=" + string(p)+ ", rmax="+ string(rmax);
146
147 % Output excel file path
148 writematrix(mymatrix ,'/home/sdarsi/bulk/exceldata/er_graph/'+ str2+ '.xlsx');

Matlab Code for calculating Effective Resistance Matrix for inputs of Laplacian
matrix and number of nodes in the graph N .

1 % Program name: resistance.m
2 % Author: Sai Poojitha Darsi (s.p.darsi@student.tudelft.nl)
3 % Date created: 2021-03-12
4 %
5 % Function to Compute effective resistance matrix for a given Laplacian
6 % matrix and number of nodes of ER graph.
7 % Output - Effective resistance matrix
8
9

10 function [omega] = resistance(lap,n)
11 % Initialise psuedo-inverse(Q) to all zeros.
12 qinv = zeros(n);
13
14 % Compute eigen values and eigen vectors of Laplacian
15 [v,d] = eig(lap);
16
17 % Compute pseudo-inverse(Q)
18 for i = 2:1:n
19 z = v(:,i);
20 dia = d(i,i);
21 qinv = qinv + ( (1/dia) * z * transpose(z));
22 end
23
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24 % All one vector
25 u = ones(n,1);
26
27 % Diagonal elements of pseudo-inverse(Q)
28 diagonal = diag(qinv);
29
30 % Compute effective resistance matrix
31 omega = u * transpose(diagonal) + diagonal * transpose(u) - 2 * qinv;
32 end

Matlab Code for generating connected unweighted ER graph for the inputs of
number of nodes N and link probability pER.

1 % Program name: generate_ER.m
2 % Provided by: Bastian Prasse
3 % Date created: 2021-03-12
4 %
5 % Generates connected unweighted ER graph
6 % for the input parameters number of nodes N and link probability p_ER
7 % Output - Adjacency matrix
8
9 function [A] = generate_ER(N, p_ER)

10
11 L = N*(N-1)/2;
12 connectedComponents = 2;
13 while connectedComponents >1
14 A = zeros(N);
15 A(triu(ones(N), 1)>0) = (rand(L, 1) <= p_ER) ;
16 A = (A + transpose(A));
17 [connectedComponents , ~] = graphconncomp(sparse(A), 'Directed', false);
18 end
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Matlab Code for computing hopcount distribution of theweighted randomgraph

1 % Program name: generate_D
2 % Author: Sai Poojitha Darsi (s.p.darsi@student.tudelft.nl)
3 % Date created: 2021-07-02
4 %
5 % Calculates hopcount distribution of the weighted graph
6 % Inputs - Unweighted/Weighted graph G, number of nodes N
7
8
9 function [dist] = calculate_hopcount(G,N)

10
11 % Initialise empty array
12 H = [];
13
14 % Compute hopcount between all the node pairs
15 for i = 1:1:N
16 for j = i+1:1:N
17 [P] = shortestpath(G,i,j);
18 d = numel(P)-1;
19 H(i,j) = d;
20 end
21 end
22
23 H = H(:);
24 dist = zeros(1,N);
25
26 % Creates Hopcount distribution
27 for k = 1:1:numel(H)
28 if(H(k) ~= 0)
29 dist(H(k)) = dist(H(k)) + 1;
30 end
31 end
32
33 end
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Matlab Code to generate demand matrices D for a given N, p and r of weighted
ER graph.

1
2 % Program name: generate_D
3 % Author: Sai Poojitha Darsi (s.p.darsi@student.tudelft.nl)
4 % Date created: 2021-07-02
5 %
6 % Generates demand matrices for a given N and p of weighted ER
7 % graph. The weights of the ER graph are given through average link
8 % resistance r with minimum resistance rmin and maximum resistance rmax.
9

10 % Input to the program
11 N = 25; % Number of Nodes
12 p = 0.25; % Link density
13 rmin = 0.1; % Minimum link resistance
14 rmax = 40.0; % Maximum link resistance
15 rlz = 1000; % Number of instances of demand matrices
16 emin = 0.001; % Minimum value of random element 'e' added to 'effective_resistance

'
17 emax = 0.003; % Maximum value of random element 'e' added to 'effective_resistance

'
18
19 for rlz = 1:1:rlz
20 % Generates unweighted ER graph for given N and p
21 A = generate_ER(N, p);
22
23 % Generate random link weights with rmin and rmax
24 link_weights = rmin + (rmax - rmin).*rand(N,N);
25 c = tril(A,-1);
26 weight_tril = c .* link_weights;
27 weight_adj = weight_tril + transpose(weight_tril);
28
29 % Round the weighted adjacency matrix to two decimal digits
30 weight_adj = round(weight_adj ,2);
31
32 % Construct flow based Adjacency matrix
33 flow_adj = 1./weight_adj;
34 flow_adj(~isfinite(flow_adj)) = 0;
35
36 % Construct degree vector
37 val = sum(flow_adj ,2);
38
39 % Construct Laplacian
40 lap = diag(val) - flow_adj;
41
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42 % Construct effective resistance matrix
43 effective_resistance = resistance(lap,N);
44
45 % Construct a matrix of random elements
46 e = emin + (emax - emin).*rand(N,N);
47 e = tril(e,-1);
48
49 Adapted_effective_resistance = effective_resistance + e;
50
51 % Generate Demand matrix D
52 D = (N/sqrt(2)).* sqrt(Adapted_effective_resistance);
53
54 % convert D to 1D array to store in an excel
55 D_array = D(:);
56
57 % Matrix to store the arrays to excel
58 matrix_store(:,rlz) = D_array;
59 end
60
61 % Uncomment below line to store the data to desired excel
62 % writematrix(matrix_store ,'/home/sdarsi/bulk/exceldata/er_graph/'+ str2+ '.xlsx')

;

Matlab Code to implement ISPA

1 % Program name: ISPA_implementation
2 % Author: Sai Poojitha Darsi (s.p.darsi@student.tudelft.nl)
3 % Date created: 2021-07-02
4 %
5 % Implements ISPA
6
7 % Uncomment this line if input is from an excel
8 % matrix_store = xlsread('Demand_matrices.xlsx');
9

10 % Check to see if negative weighted Adjacency is obtained
11 check1 = 0;
12 % Check to see if non-negative weighted Adjacency is obtained
13 check2 = 0;
14 % Check to see if S matrix is less than demand matrix D.
15 success = 0;
16
17 for rlz = 1:1000
18 % Get a instance of demand matrix D (1D array)
19 D = matrix_store(:,rlz);
20
21 % Convert 1D array to 2D array
22 D = reshape(D,N,N);
23
24 % Check if D is a square matrix and determine the number of nodes
25 [row, column] = size(D);
26 if row == column
27 disp('D is a square matrix.Proceed');
28 N = row;
29 else
30 disp('D is not a square matrix. Correct it');
31 end
32
33 % ISPA line 1
34 omega = (2/N^2).* D .* D;
35
36
37 %% Conversion of D to distance matrix
38
39 % Check if all the elements of D are greater than or equal to 0 and then
40 % proceed
41
42 if all(omega(:)>= 0)
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43 disp('Distance matrix contains non-negative elements.So proceed');
44
45 %Check to see if D contains zero diagonal elements
46 if all(diag(omega) == 0)
47 disp('Distance matrix contain zero diagonal elements. So it is right.

Hurray!');
48 disp('Checking if distance matrix is symmetric');
49 if issymmetric(omega)
50 disp('Yes it is symmetric. Proceed!');
51 else
52 disp('Distance matrix is not symmetric. Make it symmetric');
53 for i = 1:1:N
54 for j = i+1:1:N
55 if omega(i,j) ~= omega(j,i)
56 min_value = min(omega(i,j),omega(j,i));
57 omega(i,j) = min_value;
58 omega(j,i) = min_value;
59 end
60 end
61 end
62
63 disp('Now Distance matrix should be symmetric. One step ahead');
64 %disp(omega);
65 end
66
67 %Check if triangular inequality holds for each element of D and if not
68 %change the elements accordingly.
69 for i = 1:1:N
70 for j = i+1:1:N
71 for k = 1:1:N
72 if i ~= k && k ~= j
73 if omega(i,k) + omega(k,j) < omega(i,j)
74 for x = 1:1:N
75 min_replace(x) = omega(i,x) + omega(x,j);
76 end
77 min_value = min(min_replace);
78 omega(i,j) = min_value;
79 omega(j,i) = min_value;
80
81 end
82 end
83 end
84 end
85 end
86 disp('Now triangular inequality also holds. So distance matrix is');
87 %disp(omega);
88 end
89
90 else
91 disp('Distance matrix D contains negative elements.Correct it');
92 end
93
94 %% ISPA implementation %%
95
96
97 inv_omega = inv(omega);
98
99 %All one vector

100 u = ones(N,1);
101
102 term1 = u' * inv_omega * u;
103 p = (1/term1) * inv_omega * u;
104 var = 1/(term1*2);
105
106 % Laplacian from ISPA
107 Q = (1/var )*(p * p') - 2 * inv_omega;
108
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109 % Weighted Adjacency of flow networks
110 A_calculated = -(Q - diag(diag(Q)));
111 A_calculated = round(A_calculated ,4);
112
113 % Weighted adjacency of path networks
114 A_reversed = 1./A_calculated;
115 A_reversed(~isfinite(A_reversed)) = 0;
116
117
118 g1 = graph(A_reversed);
119
120 % Check if A is non-negative
121 if any(A_reversed(:) < 0)
122 check1 = check1 + 1;
123 else
124 check2 = check2 + 1;
125
126 % Feasibility check of ISPP lower bound
127 [feasibility_pass_belowr0 ,feasibility_fail_belowr0 ,

feasibility_pass_abover0 ,...
128 feasibility_fail_abover0 ] = feasibility_check(A_reversed);
129
130 % Shortest path matrix
131 s1 = distances(g1);
132
133 % Check to see if S <= D
134 if all(s1(:) <= D(:))
135 success = success + 1;
136 end
137 end
138
139 end

Matlab Code which checks feasibility of ISPP bounds for the solutions obtained
through ISPA

1 % Program name: feasibility_check
2 % Author: Sai Poojitha Darsi (s.p.darsi@student.tudelft.nl)
3 % Date created: 2021-07-02
4 %
5 % Checks feasibility of ISPP bounds for the solutions obtained through ISPA
6
7 function [feasibility_pass_belowr0 ,feasibility_fail_belowr0 ,

feasibility_pass_abover0 ,...
8 feasibility_fail_abover0 ] = feasibility_check(A)
9

10 %Initialization to 0
11 feasibility_pass_belowr0 = 0;
12 feasibility_fail_belowr0 = 0;
13 feasibility_pass_abover0 = 0;
14 feasibility_fail_abover0 = 0;
15
16 % Obtain number of nodes N if A is a square matrix
17 [row, column] = size(A);
18 if row == column
19 disp('A is a square matrix.Proceed');
20 N = row;
21 else
22 disp('A is not a square matrix. Wrong data');
23 end
24
25 %Compute number of links
26 links = sum(A(:) > 0)/2;
27
28 %Compute link density
29 link_density = 2*links/(N*(N-1));
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30
31 %Compute average link resistance r
32 r = sum(A(:))/(2*links);
33 r0 = 0;
34
35 %Compute critical threshold r0
36 if 0.05 <= link_density && link_density <= 0.1
37 r0 = 10^(-0.859) * (N^0.812);
38 elseif 0.15 <= link_density && link_density <= 0.35
39 r0 = 10^(-1.047) * (N^1.089);
40 elseif 0.45 <= link_density && link_density <= 0.55
41 r0 = 10^(-0.963) * (N^1.178);
42 elseif 0.70 <= link_density && link_density <= 0.80
43 r0 = 10^(-0.879) * (N^1.215);
44 elseif 0.95 <= link_density && link_density <= 1.0
45 r0 = 10^(-0.797) * (N^1.231);
46 end
47
48 %Flow adjacency
49 A_F = 1./A;
50 A_F(~isfinite(A_F)) = 0;
51
52 % Valency
53 val = sum(A_F,2);
54
55 % Laplacian
56 lap = diag(val) - A_F;
57
58 %Effective resistance matrix
59 omega = resistance(lap,N);
60
61 %Shortest path matrix s
62 g = graph(A);
63 s = distances(g);
64
65 %m
66 inv_link_wt = 1./A;
67 inv_link_wt(~isfinite(inv_link_wt)) = 0;
68 m = sum(inv_link_wt ,'all')/2;
69
70 %Q-norm
71 diffX = omega - ((1/m).*s.*s);
72
73 % Feasibility check
74 if r <= r0
75 if diffX >= 0
76 feasibility_pass_belowr0 = feasibility_pass_belowr0 + 1;
77 else
78 feasibility_fail_belowr0 = feasibility_fail_belowr0 + 1;
79 end
80 else
81 if diffX >= 0
82 feasibility_pass_abover0 = feasibility_pass_abover0 + 1;
83 else
84 feasibility_fail_abover0 = feasibility_fail_abover0 + 1;
85 end
86 end
87 end
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