
Sharing Incentives for Lazy Free-Riders in
BitTorrent and the BarterCast Reputation

System

Arvind Ganga

Sharing Incentives for Lazy Free-Riders in
BitTorrent and the BarterCast Reputation

System

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Arvind Ganga
born in Leiden, the Netherlands

Algorithmics Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c© 2010 Arvind Ganga.

Sharing Incentives for Lazy Free-Riders in
BitTorrent and the BarterCast Reputation

System

Author: Arvind Ganga
Student id: 9249526
Email: a.k.r.ganga@gmail.com

Abstract

A well-known problem in peer-to-peer networks isfree-riding, where users do not share
resources in return for what they consume. Free-riders can be distinguished in two categories:die-
hard free-ridersthat are willing to subvert the network’s protocol in order to free-ride, andlazy
free-ridersthat are reluctant to share but do follow the protocol. An important body of research
focuses on die-hard free-riders in the popular BitTorrent file-sharing network, but in practice die-
hard free-riding in BitTorrent is not often observed. Lazy free-riding, on the other hand, is often
observed, and in this thesis we investigate whether BitTorrent provides lazy free-riders with an
incentive to share. Based on a game-theoretical model, we prove that this is the case for some
lazy free-riders, but not for all. We then proceed to investigate the same for BarterCast, a new
distributed reputation mechanism that is added to the BitTorrent-based Tribler network to provide
additional sharing incentives. Based on an extended version of the same model, we prove that
BarterCast also provides incentives only to some lazy free-riders, but not for all. We verify these
results with simulations, and find that in practice, even fewer incentives are given than our model
predicts. However, we show that lazy free-riding can provide a gain but also a loss, and that the
net result is difficult to predict, which can be seen as an additional incentive against free-riding.

Thesis Committee:

Chair: prof. dr. C. Witteveen, Faculty EEMCS, TU Delft
Committee Member: dr. ir. J.A. Pouwelse, Faculty EEMCS, TU Delft
University Supervisor: dr. M.M. de Weerdt, Faculty EEMCS, TU Delft
University Supervisor: M. Meulpolder MSc., Faculty EEMCS,TU Delft

Preface

After many months of hard work, I am more than happy to presentthis master thesis. Even though
it is quite different from what I originally intended to do, Iam pleased with the result and I think it
is an interesting piece of research.

Of course, this thesis would not have been possible without the help of others. First, I want to
thank my supervisors Mathijs de Weerdt, Michel Meulpolder,and Léon Planken. Mathijs I thank
for his always positive and motivating guidance. His in-depth knowledge of any topic that came up
was both helpful and impressive. Léon was my supervisor forthe first part of writing this thesis. His
detailed comments and clear understanding of the theory were very valuable. Michel supervised me
for the second part of writing, and his in-depth knowledge ofboth BitTorrent and BarterCast and his
practical approach to research were of great value for this thesis.

I would like to thank Cees Witteveen and Johan Pouwelse in advance for reading and assessing
my work. I also want to thank my employer, TOPdesk, for allowing me to work part-time while
doing this project. Finally, I thank my family and friends for their support.

Arvind Ganga
Delft, the Netherlands

May 31, 2010

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Problem Statement 1
1.2 Outline .2

2 Preliminaries 3
2.1 P2P File-Sharing Networks 3
2.2 Strategic Behavior in BitTorrent 7
2.3 Game Theory and Mechanism Design 7

3 Model 9
3.1 The BitTorrent File-Sharing Network 9
3.2 Model of a P2P File-Sharing Network 12
3.3 Agents in BitTorrent 29

4 Application of the Model to BitTorrent 33
4.1 Network Composition and Outcomes 33
4.2 Equilibria .. . 50
4.3 BarterCast .. . 55

5 Experiments 63
5.1 Experiment Setup 63
5.2 Stratification 64
5.3 Bartering Relations 67
5.4 Download Completion Times 70
5.5 Small Swarms .. 72
5.6 Equilibria .. . 74
5.7 BarterCast .. . 76
5.8 Conclusions .. . 80

6 Conclusions and Recommendations 83

v

Contents Contents

6.1 Conclusions .. . 83
6.2 Recommendations 84

Bibliography 87

vi

List of Figures

3.1 Example file-sharing network 20
3.2 Utility over time 24
3.3 Strategies per agent class 30
3.4 Agent action spaces 31

4.1 Ranking of agents 37
4.2 Stable network configurations 39
4.3 Pareto efficient network configurations 40
4.4 Segmentation 41
4.5 Upload slots and stratification 41
4.6 Bandwidth distribution in Gnutella 42
4.7 Upload slots and segmentation 43
4.8 Segmentation in different stable configurations of the same network 43
4.9 Average unchoking time 46
4.10 Average uploaded volume between agents 47
4.11 Distribution of download completion time 48
4.12 Long-term seeding incentive 55
4.13 Distribution of reputation scores and slot capacities. 59

5.1 Swarm size as function of swarm rank 65
5.2 Stratification index for different networks 66
5.3 Fraction of data uploaded per peer class 68
5.4 Average number and length of relationships 69
5.5 Effect of piece selection strategies on number and length of relationships 71
5.6 Download completion time per agent class 73
5.7 Small swarms 74
5.8 Download completion time as a function of upload capacity 75
5.9 Download completion time as a function of the deviation of the number of upload slots . 75
5.10 Download completion time as a function of BarterCast reputation value 78
5.11 Completion time for agents using BitTorrent or BarterCast unchoking 79
5.12 Completion time by peer class in BarterCast network 80

vii

Chapter 1

Introduction

1.1 Problem Statement

One of the major applications of the Internet is the exchangeof files between people. It is safe to say
that anything that can be binary encoded – from research documents to movies and music – has by
now been transferred over the Internet. Early transfer methods include e-mail, FTP, or downloading
the file from a web page. In 1999 Napster introduced a new method: peer-to-peer (P2P) file-sharing.
The basic idea is that a user interested in sharing or downloading files runs a software program that
connects to other users, so that all users together form a network where every user can download
files from any other user. Napster became popular quickly, with over 20 million concurrent users,
but collapsed due to legal issues. Many other P2P file-sharing networks followed, and by now file-
sharing is responsible for a major portion of all Internet traffic: up to 57% in some geographic
regions [2].

Even though file-sharing networks are very popular, they face some technological issues which
are areas of active research. Examples are how the network isstructured, and searching for content
in the network. One major area of research, however, is more psychologically motivated: it turns out
that many users are willing to download files, but not to sharefiles with the other users. This phe-
nomenon is referred to asfree-riding. In a P2P file-sharing network, users download directly from
each other, and if users do not share files, the network has no files to download. Most file-sharing
networks address free-riding through technological means, but recently more social approaches are
investigated.

The BitTorrent file-sharing network is the most popular file-sharing network today. This is partly
due to the way that it addresses free-riding: by using a technological mechanism that forces users
to share a file while it is being downloaded. Research has shown that this mechanism can be cir-
cumvented [46, 35, 26]. In other words, it is possible for a user to download without sharing, or to
download faster, thereby staying online sharing for a shorter period of time. This requires the user
to install a modified client for the BitTorrent network. In practice, it turns out that users hardly do
this [28]. This is not to say that users are indifferent aboutsharing or their download performance.
Most clients come with many settings, and message boards on the Internet are full of questions on
which settings yield optimal performance.

Following Meulpolder et al. [28], we refer to free-riding users that go to such lengths as in-
stalling modified clients in order to free-ride asdie-hard free-riders, while we refer to users that
are only willing to tweak their settings aslazy free-riders. Most current research in BitTorrent
focuses on die-hard free-riders, and investigates technical solutions that circumvent free-riding pre-
vention mechanisms. This is an important area of research, as it shows how these mechanisms can
be improved upon. However, as we describe above, the resulting clients are not widely adopted by
BitTorrent’s user base. In this thesis, we therefore focus on lazy free-riders, and the effectiveness of

1

1.2 Outline Introduction

the free-riding strategies these users have at their disposal. We investigate this for BitTorrent as this
is the most popular file-sharing network today, and for BarterCast [28], an additional free-riding pre-
vention mechanism that was recently added to BitTorrent by the Tribler [37] team at Delft University
of Technology.

We formulate the central research question for this thesis as:

Do BitTorrent and BarterCast provide incentives to lazy free-riding users to share?

To answer this research question, we develop a model of BitTorrent which allows us to study
what we call theoutcomeof a BitTorrent network. This outcome describes which usersdownload
from which other users, and directly determines any user’s download performance. By investigating
how the outcome changes for different free-riding strategies, we then determine the effect on the
user’s download performance. Following that, we extend themodel with a model of BarterCast, and
study the additional free-riding strategies that BarterCast offers. We verify the results from these
studies with experiments.

1.2 Outline

We provide background information on P2P file-sharing networks, and BitTorrent in particular, in
Chapter 2. There, we also introduce the techniques we use in our model of the BitTorrent network.
The model itself we develop in Chapter 3. In Chapter 4, we investigate BitTorrent’s outcome using
our model, and investigate theoretically whether lazy free-riding can improve a user’s performance.
In that chapter, we extend our model with BarterCast, and investigate the effect of lazy free-riding
in BarterCast. We verify the results from Chapter 4 experimentally in Chapter 5. Finally, Chapter 6
draws conclusions and identifies directions for future research.

2

Chapter 2

Preliminaries

Chapter 1 introduces peer-to-peer file-sharing networks, and their main problem: free-riding, where
users profit from the network but do not contribute in return.We also state that in this thesis, our
focus is on how individual users can improve on their download completion time by strategically
specifying their settings in the BitTorrent file-sharing network. We investigate these questions in the
following chapters. In this chapter, we provide preliminaries and an overview of the literature that is
relevant to this central theme.

We start with a short overview of P2P file-sharing networks inSection 2.1. Here, we identify
some key characteristics of file-sharing networks. Section2.2 discusses one specific topic prevalent
in the BitTorrent file-sharing network: how files are distributed between the peers. This topic is of
central importance in this thesis as it allows us to answer our research questions stated in the previous
chapter. We investigate this using a model based on game theory, a field we introduce in Section 2.3.

2.1 P2P File-Sharing Networks

In this section, we present some key characteristics of P2P file-sharing networks. We elaborate
on free-riding, one of the major problems in P2P networks, and provide an overview of proposed
solutions to prevent free-riding.

2.1.1 Introduction

File-Sharing Networks Overview

A peer-to-peer (P2P) network is a network in which the participants, the peers or agents1, are directly
connected to each other. Peers have an equal role, acting both as clients and servers. This is different
from the more traditional client-server model, where communication is usually to and from a central
server.

Although peers in P2P networks have an equal role, the networks may contain central compo-
nents, such as a superpeer maintaining an index of connectedpeers. Such networks are referred to
ascentralizedP2P networks. The central components in these networks are often considered prob-
lematic because they need to be maintained and paid for, and are a single point of failure for the
network: when the central component is unreachable, the whole network is down. A P2P network
that does not have any centralized components is called adistributedP2P network.2

1In this thesis, the terms peers and agents are used interchangeably.
2Distributed P2P networks are also referred to asdecentralizedor pureP2P networks.

3

2.1 P2P File-Sharing Networks Preliminaries

P2P networks have many applications; examples are distributed computing, task allocation, and
resource scheduling. In this thesis, our focus is on distributed P2Pfile-sharingnetworks, which
allow peers to exchange files.

The first P2P file-sharing network was Napster, which grew to 25 million users in the first 12
months after its introduction in 1999. Napster clearly illustrates the problems inherent in a central-
ized network. It maintained a central catalogue of available files in the network, which was shutdown
following a lawsuit filed by the Recording Industry Association of America, which led to the demise
of the network as a whole [23].

Many networks that have emerged following Napter’s demise adopted a decentralized or hybrid
approach to reduce both legal and technical risks from the loss of a central server, and to reduce
the monetary investment required to operate such a server. Examples are Gnutella, Kazaa, and
BitTorrent. Soon after its release, a study by Adar and Huberman [4] showed that 70% of Gnutella’s
users werefree-riding(not uploading any content) and nearly 50% of all responses were returned by
the top 1% of all sharing hosts. From these numbers, it is clear that the basic principle of all users
acting both as servers and clients was not adhered to.

The problem of free-riding is not unique to Gnutella, but arises in all file-sharing networks. As
one user’s download is another user’s upload, the network offers no content if all users free-ride. A
substantial part of research in P2P file-sharing networks therefore concentrates on free-riding, and
mechanisms to prevent it.

Incentives to Prevent Free-Riding

Feldman et al. [18] show, based on a simple economic model, that a P2P network can tolerate a
certain fraction of free-riders, but that it collapses if this fraction exceeds some threshold which
depends on the level of churning (how often users join or leave the network) and the generosity in
the user population. Mechanisms to prevent free-riding arerequired to keep the fraction of free-
riders below that threshold, but a mechanism that eliminates free-riding completely may do more
harm than good as it may impose burdens on all users that render the system less attractive to non-
free-riders. Every free-riding prevention mechanism musttherefore select an optimum between its
effectiveness in preventing free-riding, and the cost it incurs on its users.

The main problem with preventing free-riding in a P2P network is that the peers are autonomous:
the client to the network is a program that runs on the user’s computer, and nothing in the network
can prevent the user from e.g. specifying unwanted settings, or installing a malicious client [31]. This
is similar to the real world, where people are autonomous andmake their own decisions. Where in
the real world, the law prevents people from behaving maliciously, this is no option in P2P networks
because peers can easily switch their identity which makes them untraceable [18]. As an alternative,
most research focuses on offering the peers incentives to motivate them to contribute to the system.

Many networks adopted a tit-for-tat mechanism to offer incentives: peers must upload files in or-
der to be allowed to download files. This is often referred to asdirect reciprocity. Whena downloads
from b, he will allowb to download files from him in return. But ifb refuses to leta download,a will
not upload tob. Although this idea sounds promising and fair in theory, in practice there are some
problems with it. The major problems here are the large scaleof the networks, combined with high
churning, and the relative anonymity of agents in the network. This makes most P2P transactions
one-shot interactions between strangers that will never meet again [6]. An additional problem is
what is calledasymmetry of interest: when usera downloads a file from userb, even in the unlikely
case the two do meet again for a file exchange, there is no guarantee usera offers the file userb is
looking for. The probability of repeated interaction is even smaller than that of a second encounter.

To overcome the problems of the direct reciprocity approach, indirect reciprocitywas proposed
as an alternative. To illustrate this concept with an example, suppose usera downloads a file from
userb. Usera now knows that userb participates in the network. When userb requests a file from

4

Preliminaries 2.1 P2P File-Sharing Networks

userc, c can ask the network including usera for the reputation ofb, and when it finds thatb has
a good reputation, it will offer the requested file tob. Thus, for indirect reciprocity to work, some
reputation systemis needed that keeps track of the reputation of all participating peers. However,
a reputation system is not trivial to implement. In the Kazaanetwork, for example, peers build
up a reputation score by uploading, and highly reputed peersreceive preferential treatment in their
downloads [6], but the client itself is responsible for broadcasting its own reputation. Not surpris-
ingly, this was soon exploited by the Kazaa Light client which by default broadcasts a very high
reputation value. More secure distributed mechanisms provide theoretically valid frameworks, but
are often not feasible in practice and as of yet, none of thesemechanisms have successfully been
deployed [17, 28]. We investigate reputation systems below.

Reputation Systems

Because of their usefulness in attaining indirect reciprocity, there has been significant research on
reputation systems over the years. An overview is given by Tang [47], who distinguishes between
global and local reputation systems. In a global system, every agenti has the same reputation of
some agentj, while in a local system,i’s view of j ’s reputation is subjective. Both have different
computational efficiency and incentive compatibility characteristics, and neither strictly dominates
the other. The problem with reputation systems is that they are easily manipulated, and very difficult
to implement distributedly.

Centralized reputation systems are successfully implemented in the form ofprivate trackers[28].
Here, a user needs an account and shares its upload and download statistics with the tracker. It can
only download if its upload/download-ratio exceeds some threshold. These trackers suffer from the
problems that all centralized components in a distributed network have; additionally, users may be
reluctant to share their statistics with some third party, and there is the possibility of inflation of
reputation [22].

Both Bachrach et al. [7] and Piatek et al. [36] propose distributed local reputation systems, specif-
ically designed for application in P2P systems. With both approaches, every agent shares its experi-
ence in dealing with other agents with a small subset of the other agents in the system. Even though
the ideas are interesting, neither of the systems has been deployed in practice.

Meulpolder et al. [28] propose BarterCast, a distributed local reputation system that is based
on a similar idea, but that has been deployed in practice in the BitTorrent-based Tribler file-sharing
network. We study BarterCast in detail in this thesis, when we investigate whether a user can improve
on its performance by enabling or disabling BarterCast in order to answer our research question in
Section 1.1.

Preventing Free-Riding with the Use of Currency

An alternative approach to reputation systems for attaining indirect reciprocity is the use ofcurrency.
A user gets some currency for uploading a file, that he can spend in order to download another file
from a third user. Unfortunately, currency approaches facea number of practical issues as well. The
currency needs to be “signed” to distinguish valid from counterfeit currency, which brings the need
for some public key infrastructure [41]. Furthermore, the question is where the currency comes from:
is it real money, that users can bring to the network? How is the currency linked to the valuation
of a file, and to a network connection being used? Finally, it might actually destroy the incentive
it strives to bring to the network: a peer that shares popularcontent can get so rich that it has no
incentive to share its content anymore [41]. The seminal work in the use of currency is by Golle et
al. [21]. Because of its shortcomings, we do not consider theuse of currency in this thesis.

5

2.1 P2P File-Sharing Networks Preliminaries

2.1.2 The BitTorrent File-Sharing Network

Our main focus in this thesis is on the BitTorrent network as it is the most popular file-sharing net-
work today [37]. BitTorrent uses direct reciprocity as an incentive mechanism, but adds a twist to
increase the probability that two peers will meet again. It does this with a mechanism calledbar-
tering, which we describe and analyze in great detail in this thesisto answer our research questions.
For now, we suffice with a short intuitive explanation.

The file to be downloaded is partitioned into small chunks. A downloading peerp is matched
with a small set of peers, that are also downloading or uploading pieces of the same file. From this
set, p periodically selects a few peers that upload to it at the highest rate, and in return it uploads
its own pieces to those selected peers. With this design, peers in BitTorrent engage in multiple
interactions with a small number of peers for the duration ofa file download period. For larger files,
the number of repeated interactions is large enough to allowcooperation to take hold through direct
reciprocity [6].

Free-Riding in BitTorrent

Because bartering forces repeated interactions, there is no need to keep long-term state information
in the form of either reputation or currency, which simplifies the design and improves BitTorrent’s
robustness against attacks. Empirical studies found much lower levels of free-riding in BitTorrent
communities [6], but theoretical analysis (e.g., Shneidman et al. [42], Sirivianos et al. [46], Piatek
et al. [35], and Levin et al. [26]) has demonstrated that it can still be manipulated by selfish peers in
their favor, improving download times or reducing uploadedvolume.

This manipulation is not possible with any common BitTorrent client. Instead, a user that wants
to perform these types of manipulation needs to download andinstall a modified client that sophis-
tically subverts the bartering protocol. Empirical studies find that the use of such clients is not
widespread [28]. Whether this means that users are not awareof these clients, or that they are – for
one reason or another – not interested or not able to use them,is an open question, to our knowledge.
However, this does not mean that users are not interested in minimizing their download time or re-
ducing the amount of data they upload, and are willing to takestrategic actions in order to achieve
this. To give an example, the community support forum [1] forthe Vuze client3 is full of questions
from users asking which settings to specify for maximum performance. We refer to such users as
lazy free-riders (as opposed to die-hard free-riders that are willing to install manipulating clients).
One of the two central questions of this thesis is whether BitTorrent provides these lazy free-riders
with an incentive to share (see Section 1.1).

Adding Social Components to BitTorrent

With Pouwelse et al. [37], a new direction in offering incentives is taken. They introduce Tribler, a
file-sharing system that is based on BitTorrent. Tribler strives to bring incentives to the system by
adding social components to its network. Where users are anonymous in BitTorrent, in Tribler they
have an identity. This allows them to import friends from other social networks they participate in,
or make friends based on their tastes. They form a social network, with the idea that “kinship fosters
cooperation”. This is due to the higher probability of repeated interactions between users in a social
circle, and the possibility that a user may gain social status in real life by actively cooperating in
Tribler. We describe Tribler in detail in this thesis.

3Vuze is a highly configurable client for the BitTorrent network, available athttp://www.vuze.com/.

6

Preliminaries 2.2 Strategic Behavior in BitTorrent

2.2 Strategic Behavior in BitTorrent

Research on BitTorrent is not limited to free-riding and manipulation. Other topics include overlay
topology formation, peer discovery, and content search. Asthese topics are not relevant to our
research questions, we do not cover them in this thesis. There is, however, one additional topic
that only recently receives attention [10]: the data distribution in BitTorrent, which governs how the
file pieces are transmitted and distributed among peers. As peers are connected to the Internet with
different upload- and download capacities, it will intuitively be clear that strategically selecting the
right peer to download from directly improves performance.

This topic is covered by Chan et al. [10], Kumar and Ross [24],Ma et al. [27], and Qio and
Srikant [39]. All try to determine an optimal piece distribution schedule, which is sometimes (e.g.,
with Ma et al.) linked to offering incentives to contribute to the network. All make problematic
assumptions that limit the applicability in real P2P networks, such as relying on central components,
the presence of a reputation system, or non-scalable computation times to determine the optimal
schedule. In a file-sharing network with millions of concurrent users exchanging many files simul-
taneously, determining an optimal schedule on the pieces-level is a daunting task.

More recent research takes a different path. Instead of determining an optimal schedule from
scratch, the data distribution in real BitTorrent swarms isinvestigated, and ideas for improvement
are drawn from the results. Examples of this line of work are Bharambe et al. [8], Fan et al. [14],
Legout et al. [25], and Meulpolder et al. [29]. All group the peers in the network in classes (e.g.,
slow, medium, and fast peers), and show that most data is exchanged within these classes, rather
than between classes.

Our work in this thesis also follows this more recent path. Wedevelop a model that allows for
different peer classes based on some metric (such as upload capacity), and using that model we
determine for any peer which peer classes it is likely to be bartering with. This allows us to predict
the download completion time for a peer, and how strategically selecting its settings affects a peer’s
completion time. Additionally, we are able to explain, theoretically, observed phenomena from the
articles mentioned above.

2.3 Game Theory and Mechanism Design

In the previous section, we briefly mentioned that in this thesis, we develop a model of the BitTorrent
file-sharing network in order to answer the research questions stated in Chapter 1. We model a
file-sharing network as a multi-agent system, where the agents are the actors in the system. What
exactly constitutes an agent varies: sometimes this is limited to the client that communicates with
the network, sometimes it involves the user as well. We modelthe agents to be autonomous (i.e.,
they make their own decisions), rational (i.e., these decisions can be motivated) and self-interested
(i.e., they want to improve their own situation, and if necessary at the expense of other agents).

Our model heavily relies on game theory, which originally stems from economics where it is
used to model agent behavior in markets. There, agents are usually people or companies that in-
teract with each other. The market is modelled as a game, where each actor, being self-interested,
tries to maximize its own profit. As multi-agent systems are very similar to markets, Nisan and
Ronen [33] applied game theory in multi-agent settings. Specifically, they were interested in mech-
anism design, a subfield of game theory which does not directly model agent behavior, but instead
asks how to design a game such that autonomous, rational and self-interested agents behave accord-
ing to the system designer’s specification. In general, thisis done by offering incentives, as explained
in Section 2.1.1. A thorough overview of mechanism design isgiven by Nisan [32].

Applied to BitTorrent, mechanism design would specify somemechanism that the agents interact
with, and that motivates the agents not to free-ride. The problem with traditional mechanism design

7

2.3 Game Theory and Mechanism Design Preliminaries

is that the resulting mechanism is centralized, and therefore not a good fit for a distributed network as
BitTorrent. Feigenbaum et al. [15] investigate the possibilities of designing distributed mechanisms,
but find that this is not trivial and no off-the-shelf solution can be given. One of the problems is that
the mechanism needs to be carried out by the agents interacting with that very mechanism, allowing
the agents to carry out the mechanism untruthfully in an attempt to improve on their current situation.
Another problem is that, in general, agents need to communicate while executing the mechanism.
First of all, this allows them to send false messages, and second, the communication overhead may
be so large that it becomes intractable [16]. Distributing mechanisms is further investigated in three
articles by Parkes and Shneidman [34, 43, 44].

In our model, we consider BitTorrent as a distributed mechanism. This is possible because in
BitTorrent, the only mechanism is the peer selection mechanism we briefly introduced in Section 2.2
and investigate in depth in this thesis. This mechanism is carried out with minimal communication
between the nodes – although it should be noted that Levin et al. [26] show how this communication
can be exploited by a strategic client.

Even though mechanism design is by now an important technique in designing multi-agent sys-
tems, in this thesis we only borrow some ideas from it. Our main focus is on modelling agent
behavior in BitTorrent networks, and for that, plain game theory suffices. Using game theory to that
end is common practice by now; in fact, most of the literaturepresented in this chapter so far borrow
from game theory.

8

Chapter 3

Model

Our main result in this chapter is a model of a generic peer-to-peer file-sharing network and its users.
In the remainder of this thesis, we apply this model to BitTorrent and extend it with the BarterCast
reputation system to answer our research question from Chapter 1.

We start with a description of the BitTorrent file-sharing protocol in Section 3.1, which is the ba-
sis for the BitTorrent file-sharing network. In Section 3.2,we use game theory to develop a model of
a generic peer-to-peer network, and we show how to apply thismodel to BitTorrent. Section 3.3 de-
scribes how we model users in BitTorrent and BarterCast, andelaborates on the distinction between
lazy and die-hard free-riders.

3.1 The BitTorrent File-Sharing Network

Our focus in this thesis is on the BitTorrent file-sharing network, and the Tribler client in particular.
In this section, we describe both the BitTorrent protocol (Section 3.1.1), and the Tribler client (in
Section 3.1.2).

3.1.1 The BitTorrent File-Sharing Protocol

The BitTorrent file-sharing network is one of the few P2P file-sharing networks that over the past
five years has attracted and served a very large user community [38]. BitTorrent in itself is only
a file-sharing protocol, which is implemented by many different clients. The protocol defines the
entities in the network, and the messages exchanged betweenclients. In this section, we describe
version 11031 [12], the current version of this protocol.

The BitTorrent network consists of the following entities:

• Thetorrent: a meta-info file, which describes the file that is to be exchanged,

• A tracker server, which keeps track of the peers exchanging the file describedin the torrent,

• Theuserthat originally shared the file,

• leechers: the users downloading the file ,

• seeders: the users that have completed the download and stay online,sharing the file to leech-
ers.

In the following, we describe how these entities are used in the BitTorrent network.

9

3.1 The BitTorrent File-Sharing Network Model

A user that wants to share a filef creates a meta-info file forf , often referred to as atorrent
file or torrent, after its extension.torrent. Most BitTorrent clients provide the option to create a
torrent. A torrent can be created both for a single file, as well as for multiple files.

When creating the torrent, the file is logically split into fixed sizepiecesof the same length,
typically 256 KB. The last piece may be truncated. Each pieceis given an index. Then, for each
piece, the SHA-1 hash1 is calculated. The torrent lists the hashes ordered by pieceindex.

In addition to this hash list, the torrent provides the address of thetracker server. This tracker
keeps track of all peers currently participating in the download, and collects statistics. It is not
involved in the actual distribution of the file content. The tracker can be apublic tracker, which is
a tracker server available for public use, or aprivate tracker, for which a user account is needed,
managed by a central authority. Many public trackers are available, one of the better known is
https://thepiratebay.org/.

The torrent file is then made available to the public, often byplacing it on a web site dedicated
to hosting torrents. Most public trackers also function as torrent providers.

A peer p that wants to downloadf needs to obtain the torrent file. With every new download,
p randomly creates an id. Thenp connects to the trackert, and sendst its id and address sot can
track p. In response,t providesp with a list of peers currently exchangingf . This list of peers is
typically a subset of all peers the tracker knows, i.e. a peeris not aware of all peers currently known
to the tracker. We refer to the list of peers as theremote peers, and to the peer receiving the list as
the local peer. Because peers join and leave the network continuously, theremote peer list needs to
be kept up to date. A peer can update the list by sending are-requestto the tracker.

After it receives the remote peer list, a local peer connectsto peers on this list. A connection
starts with a handshake in which peers exchange their ids. After that, the peers exchange a bit vector,
in which each bit represents whether the corresponding piece (ordered by index) is present or not.

A peera is interestedin peerb whenb has pieces thata does not have; otherwise it isuninter-
ested. A peera is chokedby peerb whenb decides not to send any data toa. If b is willing to send
data toa, a is unchokedby b. This happens whena has pieces thatb does not have. All connections
start out choked and uninterested. A local peer notifies a remote peer when the remote peer gets
choked or unchoked, or when the local peer becomes interested or uninterested in it.

A local peer that is unchoked by a remote peera can requesta for a specific piece. In return,
a will send the piece to the local peer. When the local peer completes the download of a piece, it
notifies its remote peers that it now has this specific piece.

The local peer is free to decide which pieces it requests, andin theory each implementation of
the protocol could employ a different piece selection strategy. Examples of a piece selection strategy
are downloading pieces in order, or randomly selecting which piece to download. In practice, many
clients, including the official BitTorrent client2 and Tribler, adopt theRarest Piece First(RPF) piece
selection strategy [25], and this is the piece selection strategy we consider in this thesis. With this
strategy, each peer maintains a list of the pieces with the least number of copies among its remote
peers, and pieces from this list are requested first. This minimizes the probability that pieces become
unavailable when a single peer goes offline.

A local peer is also free to decide which peers it chokes or unchokes. Choking has two benefits.
First, TCP congestion control behaves poorly when sending over many connections at once, so a
local peer achieves better upload performance when uploading to a limited number of peers simul-
taneously. Second, the protocol designers hope that, from the choking algorithm, a tit-for-tat-ish
behavior will emerge where agents upload file pieces proportional to what they download. The idea

1SHA-1 is the first version of the Secure Hash Algorithm, a cryptographic message digest algorithm. See
http://www.w3.org/PICS/DSig/SHA1_1_0.html for more details.

2The official BitTorrent client is developed by BitTorrent, Inc., and freely available fromhttp://www.
bittorrent.com/.

10

Model 3.1 The BitTorrent File-Sharing Network

behind the latter is that a local peer unchokes remote peers from which it can download at high rate,
and chokes the slower uploading peers, thus motivating the remote peers to upload at high rate.

The specification provides five criteria a good choking algorithm should meet:

1. The number of simultaneous uploads should be capped for good TCP performance,

2. Quickly choking and unchoking (fibrillation) should be avoided,

3. It should reciprocate to peers who let it download,

4. It should try out unused connections once in a while to find out if they might be better than
the currently used ones. This is known asoptimistic unchoking,

5. the algorithm should work well both in a network consisting entirely of clients implementing
the algorithm, and in a network consisting mostly of clientsimplementing the algorithm.

As with the piece selection strategy, every protocol implementation can create an implementation
of a choking algorithm. In this thesis, we confine ourselves to the currently deployed choking algo-
rithm in the official BitTorrent client and Tribler. This algorithm avoids fibrillation by only changing
who is choked every ten seconds. This ten second period is around, and we say that a new round
starts whenever the choking algorithm is executed.

Two choking algorithms are in use. One is employed when the user is a leecher, and the other
when the user is a seeder. When leeching, reciprocation and number of uploads capping is imple-
mented by unchoking a few peers from which the local peer has the best download rates, and that are
interested. Peers with better upload rates are unchoked andwhen they become interested the worst
uploaders get choked. This is known as aregular unchoke. Optimistic unchoking is implemented by
unchoking a randomly selected peer every three rounds, regardless of it’s upload rate, in the hope of
finding better peers.

When seeding, the agent bases its decision on who to unchoke on its upload rate rather than its
download rate, and prefers peers to which it can upload fastest.

Although BitTorrent is famous for its tit-for-tat-ishbartering(the exchange of file pieces between
downloading peers), this behavior is not specified in the protocol. The protocol only specifies which
messages can be send between clients. The bartering emergesfrom the limited number of upload
slots an agent has, and the choking algorithm. As a result, anagent is given an incentive to upload
while it is downloading. When the other agents in the networkare bartering, it is in any agent’s
best interest to participate in bartering, as an agent that is free-riding only receives pieces by being
optimistically unchoked.

3.1.2 Tribler

The BitTorrent file-sharing protocol we described in the previous section introduces bartering of
file pieces as a technical incentive to share files: high transfer rates can only be achieved by users
that contribute pieces of the downloaded file. Where a large portion of the research in file-sharing
networks (and in P2P networks in general) focuses on technical incentives, Pouwelse et al. [37] in-
troduce Tribler, a BitTorrent client based on a social P2P file-sharing paradigm that “exploits social
phenomena by maintaining social networks and using these incontent discovery, content recommen-
dation, and downloading.” The authors argue that the problem of free-riding can be alleviated when
users are considered social partners that tend to cooperatewith the social group they belong to.

At the basis, Tribler is a client for the BitTorrent network and thus implements the BitTorrent
specification. The social components are added on top of the BitTorrent layer. Using Tribler, users
can find users with similar interests and add these as contacts. This way, a social network is formed.
In the future, it will become possible to expand this networkby importing contacts from other social

11

3.2 Model of a P2P File-Sharing Network Model

networks (e.g. MSN or GMail). This requires each peer to havea permanent identifier (PermID), be-
cause otherwise it cannot be identified by its contacts when it rejoins the network after a disconnect.
This permanent PermID is used as the randomly generated identifier suggested by the BitTorrent
protocol.

The social network provides Tribler users with new functionality unavailable from traditional
BitTorrent clients. This includes content discovery (filescan be downloaded from contacts without
the need for torrents), suggesting users with similar interests, give recommendations for files based
on a user’s taste, and cooperative downloading (peers from asocial network assist each other in
downloading, resulting in higher transfer rates). In this thesis, our focus is on a new feature intro-
duced in Tribler in 2009: the BarterCast reputation mechanism [28]. This provides both a technical
and a social incentive to users to be online sharing files evenwhen not downloading, thus improving
the availability of files in the network. We describe BarterCast in detail in Section 4.3.

3.2 Model of a P2P File-Sharing Network

Based on our discussion of BitTorrent and Tribler in the previous section, in this section we define
a formal model of a P2P file-sharing network based on game theory. This model models peer-to-
peer file-sharing networks in general, and BitTorrent in particular. We use the model derived in this
section in the remainder of this thesis to gain insight into auser’s download performance, and what
options are available to users to improve this performance.We extend this model in Section 4.3 to
determine how the BarterCast reputation mechanism affectsthe download performance and options
for improvement.

In Section 3.2.1, we state the objectives and requirements of a P2P file-sharing network, and
define the problem description for such networks. Section 3.2.2 defines a static model, followed
by an example in Section 3.2.3. Based on that static model, Section 3.2.4 introduces a dynamic
model that takes into account that agents may join or leave the network, change files they request
or share, etc. This is followed by a discussion of how agents may benefit from using the network
(Section 3.2.6). Finally, we list what aspects of file-sharing networks we omitted from our model.

3.2.1 Problem Description

Users join a file-sharing network to download files, and it is safe to assume that they want to down-
load these files as quickly as possible. The user’s benefit from using the network increases with
higher transfer rates. We refer to this benefit as autility, which we formally define in Section 3.2.2.
For now, we just assume that utility is linked to its downloadrate, and that a user wants to max-
imize its utility. The actual utility a user receives is different for each user. Utility is negatively
influenced by the costs of using the network, which will generally consist of files a user needs to
upload. A technical motivation for this is that uploading files affects a user’s download capacity,
while a more emotional motivation is that, where possible, people prefer to receive things without
doing something in return. However, as one agent’s downloadis another agent’s upload, uploading
files is required for the network to function. A file-sharing network that offers requested content for
download at high speeds is attractive to users, as long as thebenefits of using the network outweigh
the costs.

Since the end of the 1990s, many P2P file-sharing networks have been introduced. Pouwelse
et al. [38] find that of these networks, BitTorrent is one of the few that, over the past years, has
consistently managed to attract millions of users. In the article, they argue for four requirements a
P2P file-sharing system must have to be attractive to users, and show that BitTorrent has all these
properties to some extent. The requirements are:

12

Model 3.2 Model of a P2P File-Sharing Network

1. High availability: the system must be available to users most of the time. Additionally, files
that are available in the network should constantly be available,

2. File integrity: the files must be as advertised, and not fake, manipulated, or unplayable,

3. The network must be able to deal with flash crowds. A flash crowd is the phenomenon that
occurs when new popular content first enters the network and is immediately requested by
a large number of users. This generates a burst of network activity and traffic which may
negatively affect the system’s performance,

4. The system must offer users a relatively high download speed.

In this thesis, we look at file availability indirectly when we investigate the BarterCast reputation
system, and investigate the download speed that is offered to the users. In BitTorrent, this is ad-
dressed by the assignment policy: BitTorrent’s decision onwhich agent downloads which file from
which agents, and at which rate. We described BitTorrent in detail in Section 3.1.1, and describe
there how clients make a selection of which clients to uploadto or to download from. We refer
to the result of this selection as an assignment, and elaborate on it in the remainder of this thesis.
In this section, we confine ourselves to the idea behind BitTorrent’s assignment policy, as given by
Cohen [11]: “The strategy for allocating upload which seemsmost likely to make peers happy with
their download rates is to make each peer’s download rate be proportional to their upload rate.”

The idea that an agent’s download should be proportional to its upload has been suggested and
implemented before, e.g. in Kazaa, and is fair in that it enables users to benefit from the network,
but requires the users to participate proportionally with the network in return.

Many users connect to BitTorrent simultaneously, and each of these users has its own utility
function. In general, it will not be possible to maximize every user’s utility. An increase of one user’s
utility may come at the expense of that of another user. However, following the last requirement, the
network must be attractive to all users. We refer to this attractiveness associal welfare, and it is our
goal, as system designers, to maximize this social welfare in order to make the system attractive to
users. At this point, we do not restrict ourselves to one specific definition of utility or social welfare.

If we assume, as we do in the beginning of this section, that utility is linked to a user’s transfer
rate, one example of a social welfare function would be to maximize the sum of the agents’ utilities,
i.e. maximizing the sum of all transfer speeds. This, however, is not effective when transfer rates
greatly vary and social welfare is maximized when all users have very low transfer speeds except for
one agent that has an exceptionally high transfer speed. In such a network, a more suitable social
welfare function would be a function that minimizes the deviation of the agents’ transfer speeds from
the average transfer speed.

When we want the user’s download rate to be proportional to its upload rate, we affect his user
utility as we force him to upload. However, the proportionality constraint ensures that, depending
on a user’s utility function, a positive utility can be obtained from using the network. Additionally,
many users will understand that it is fair to contribute to a network that offers benefits in return, and
will rather contribute to the network then leave it if they are given the choice.

The assignment policy determines for every user the utilityit receives. As a result, users may
attempt to free-ride by manipulating the assignment policy. This would result in an increased utility
for these users at the expense of the other agents in the system. That is an unwanted situation, so
we require the assignment policy to be non-manipulable by the agents. In the remainder of this
section, we derive a a model for a file-sharing network. We usethis model to investigate BitTorrent’s
assignment policy.

13

3.2 Model of a P2P File-Sharing Network Model

3.2.2 Static Model

In this section, we derive a model for a file-sharing network.This model is not specific for one
particular file-sharing network, but rather applies to file-sharing networks in general. Section 3.2.5
demonstrates how this model can be applied to the BitTorrentfile-sharing network. We extend the
model derived in this Section in Section 3.2.4, and the two models are used in the remainder of this
thesis as tools to analyze file-sharing networks.

Preliminaries

We distinguish the following entities in our model:

1. Theagentsthat wish to exchange files using the file-sharing network,

2. TheInternet, which is used as an underlay network. All communication between the agents is
physically transferred over the Internet,

3. Thenetwork connectionsover which agents are connected to the Internet,

4. Thefile-sharing networkthat is formed by the agents using this file-sharing network’s protocol
to communicate, using the Internet as an underlay network,

5. Thefilesthat are available to the agents to exchange in the file-sharing network,

6. Themechanismthat determines for every agent which files it can download, and from which
agents.

The model we derive in this section is static. By that, we meantwo things: first, that all entities
are fixed. No elements are added or removed from any set, network connections do not change, etc.
Second, this means that when actions need to be performed, they are performed before the game
starts and will not be changed during the game. An example of an action is an agent sharing a file,
or specifying which portion of its Internet connection is available for the file-sharing network. In
Section 3.2.4, we introduce dynamic aspects into our model and remove the assumption we make
here that everything is fixed.

A file sharing network is about exchanging files. Agents bringto the network a set of files they
wish to share, and maintain a list of files they wish to download. We assume that there is some
mechanismM that, based on which files are available, which files are requested, and the agents’
network connections, decides for any agent at what speed it downloads a file piece from which
agent, and when this download starts. Intuitively, one can think of such a mechanism as some
broker that makes this decision. How exactly the mechanism is implemented depends on the file-
sharing network. In BitTorrent, as we described in Section 3.1.1, this decision is implemented by
the BitTorrent clients. See Section 3.2.5 for an application of our model to BitTorrent.

Network

Denote byN a set ofn agents. Every agenti ∈ N is connected to the Internet with some network
connection, and is capable of participating in the file-sharing network, i.e. it can send the file-sharing
network’s protocol messages over the network connection tothe Internet. Through the file-sharing
network, every agenti can reach every other agent it wants.

The connection to the Internet provides agents with both an upload connection and a download
connection to the file-sharing network. Both types of connections have a data transfer rate, or capac-
ity, which is expressed in bytes per second. This capacity islimited by the capacity of the physical

14

Model 3.2 Model of a P2P File-Sharing Network

connection to the Internet. The capacities for the upload and download connections of an agent to
the file-sharing network are given bycu andcd, respectively:

cu : N → R
+ (3.1)

cd : N → R
+ (3.2)

An agent has a number ofupload slots, which determines the maximum number of peers the
agent will upload to simultaneously. See Section 3.1.1 for more details. The upload slots are given
by the functionk:

k : N → N
+ (3.3)

Files

Agents in the network request files and share files for download by other agents. Denote byFS,i the
set of files shared by agenti, and byFR,i the set of files requested byi.3 The set of shared files in the
network is then denoted byFS=

S

i∈N
FS,i . Similarly,FR =

S

i∈N
FR,i is the set of requested files. Finally,

denote byF the collection of all the files considered in the network:F = FS
S

FR. Note that some
requested files may not be shared or even available in the network.

Files can be transferred in small pieces, as is the case in BitTorrent (see Section 3.1.1). A file
f ∈ F is a set of file piecesp∈ P. How exactly files are divided into pieces depends on the network
in question.

Download Assignment

In a file-sharing network, many agents are connected. Every agent may share multiple files, or
request multiple files. Multiple agents may request the samefile f , and multiple agents may offerf .
The brokerM we introduced in Section 3.2.2 considers all agents, the files they request and share, and
their network connections, and based on this information decides which file pieces are exchanged
by which agents, the rate of the transfer, and the time at which this transfer starts. We refer to such a
decision as adownload assignment, which is a collection ofscheduled piece exchanges. We add one
restriction to a download assignment: an agent is assigned only one download for every file piece,
i.e., it is not possible for an agent to download one piece from multiple peers, or from one peer at
multiple times and/or at multiple rates.

We consider time as an infinite series of discrete time steps:T = {0,1,2, . . .}, and then formally
define a download assignment as follows:

Definition 3.1. A download assignmentis a set of 5-tuples(nd, p,nu, r,t), where:

• nd ∈ N is the downloading agent,

• p∈ P the downloaded file piece,

• nu ∈ N the uploading agent; nu 6= nd,

• r ∈ R
+ is the rate in bytes/second at which the transfer takes place,4

3In the remainder of this chapter, we use the subscripti to denote a function or variable for an agenti. So,
FS,i is the set of files shared by agenti, andcu,i = cu(i), etc.

4In this thesis, we defineR+ as{x∈ R | x > 0}, andR
+
0 as{x∈ R | x≥ 0}.

15

3.2 Model of a P2P File-Sharing Network Model

• t ∈ T is the time at which the download starts.

In any download assignment, the combination of(nd, p) is unique.

Denote byΠ the set of all possible combinations of piece exchanges:Π = 2N×P×N×R
+×T , the

power set of all piece exchanges. Every element ofΠ is a possible download assignment. Based on
its information on the network and connected agents,M chooses one assignment out ofΠ that best
meets its objective (see Section 3.2.1). This assignment specifies all piece exchanges in the network,
and we refer to that set as theoutcome.

Agent Types

For every agenti, there will be possible outcomesπ ∈ Π that are more beneficial than others. In
one outcome, an agent can download all requested files, for example, while in another this is not
possible, and yet another outcome may dictate the agent to upload more files than other outcomes.
Every agenti wantsM to select an outcome that maximizesi’s utility.

The mechanismM does not know which files an agenti has stored on its computer, and which
of these files are actually shared byi. Only i itself is informed of this information. We say that
agents haveprivate information. Another example of private information is the upload and download
capacities an agent has available. An agent performs actions based on this private information:
request and share files, and make upload and download capacity available to the network. The
outcome decided on byM depends on these actions: if for example an agent decides notto share a
file f , it may not be available in the network and cannot be assignedto an agent requestingf . This
means that an agent can influence the outcome by choosing its actions strategically.

An agent’s private information is modelled by itstype: for each agenti, there is a set of types
Θi . One of these,θi ∈ Θi , is i’s type and modelsi’s private information. A user’s type models many
things, including:

1. The type of content the user is interested in. For example:action movies, disco music, etc,

2. The cost of uploading,

3. The effects of altruism: will sharing a file increase a user’s happiness?

4. A user’s willingness to free-ride, and to what extend a user will free-ride.

Actions

Based on its type, an agent performsactionsin order to reach its goal: maximizing its utility. The
actions available to an agent depend on the file-sharing network. Different agents may have different
actions at their disposal, which is modeled by a agent’s action space:

x : N → 2X (3.4)

Here,X is the set of all actions available in the network’s protocol. Every agenti has an action
spaceXi ⊆ X.

We enumerate the actions available to users in the BitTorrent network in Section 3.2.5. In gen-
eral, the actions include sharing and requesting files, and specifying the upload and download ca-
pacity somewhere between zero and the physical capacity of the link.

By giving every agent a set of actions, we imply that different agents may have different actions
at their disposal. We elaborate on this in Section 3.3, wherewe distinguish different classes of
agents, and define for every agent class what actions are available to the agents in that class.

16

Model 3.2 Model of a P2P File-Sharing Network

Outcome

M’s goal is to consider all agents’ actions and from those, determine an outcome that satisfies some
objective. An example of such an objective is given in Section 3.2.1: to maximize the average
transfer rate, keeping for each agent download in proportion to upload. The mechanism thus can
be thought of as some protocol that specifies possible actions and implements an outcome based on
these actions. The outcome is determined using an outcome function:

g : X1× . . .×Xn → Π (3.5)

It is important to realize that in our static model, the outcome is static as well. We assume all
agents choose their actions (i.e., share files, request files, set upload and download capacity, etc.),
and that those actions do not change. The outcome is then fixedbased upon that information. This
means that a downloading agent will seed its downloaded filesaccording to the seeding strategy it
selected. As the setN is static, in this model agents do not leave the network aftertheir download
completes, but they may opt to not seed the downloaded file, which has the same effect.

Utility

Section 3.2.1 introduced an agent’s utility as some measureof the benefit it receives from using
the network. We are now ready to give a formal definition of utility. From the above, it will be
obvious that this utility depends on an agent’s type, which captures its preferences, and the outcome,
which specifies which files are exchanged at which rates. For every agenti ∈ N, we define its utility
function as:

ui : Θi ×Π → R (3.6)

Some realistic utility functions in Tribler are given in Section 3.2.6. As a small illustration of a
utility function, think of a function that returns the sum ofall download rates for an agent: the faster
the outcome allows the agent to download, the higher its utility from that outcome will be.

We assume that an agent receives its utility when download completes. A seeding agent receives
utility when it stops seeding.

Strategies

An agent’s utility indirectly depends on all agents’ actions, because the joint set of actions determines
the outcome. Any agenti only knows its own private typeθi , and chooses its own actionxi ∈ Xi .
Although the other agents’ types are not known toi, their actions (which are based on these unknown
types) do affecti’s utility. As i tries to maximize its utility, it needs to select an action from its action
space that will achieve just that. The decision on which action to choose is made by an agent’s
strategy function, which chooses an action based on the agent’s type:

si : Θi → Xi (3.7)

The strategy functionsi in turn is an element of the agent’s strategy function spaceSi , which is
specified in the agent’s type.

Static Game

An agent’s typeθi capturesi’s private information. In a file-sharing network, althoughθi is private
information, other agents may have some belief about it. Bandwidth, for example, is not uniformly
distributed over Internet users, because Internet providers offer a limited set of subscriptions, some
of which are more popular than others. An agent can thereforemake an informed guess about the

17

3.2 Model of a P2P File-Sharing Network Model

capacities of the network connections of the other agents. Another example is that some files are
very popular and, depending on the file’s age, probably requested by many agents or available from
many agents. This may influence an agent’s decision on when toshare or request a file, if at all.
This information is publicly available, and we assume that all agents share the same information.5

Then, the agent’s types are drawn from a probability distribution over the types. We refer to this
distribution as acommon priorover the types, and denote this byP:

P : Θ → [0,1], (3.8)

with Θ = Θ1× . . .×Θn.
With the above, we define file-sharing as aBayesian game, which Leyton-Browne and Shoham [9]

define as follows:

Definition 3.2. A Bayesian gameis a tuple (N, X, S,Θ, P, u, g), where:

• N is a set of n agents,

• X = X1× . . .×Xn is the set of actions available to the agents,

• S= S1× . . .×SN is the set of strategies available to the agents,

• Θ = Θi × . . .Θn is the set of type spaces available to the agents

• P is the common prior defined above,

• u = (u1, . . . ,un) is the vector of the agents’ utility functions,

• g is the outcome function from Equation 3.5.

For this game, we assume the following:

One-shot game: We assume file-sharing is aone-shot game. By that, we mean that every execu-
tion of the game stands on itself and no information or state is carried from one execution of the
game to the other. Effectively, this corresponds to a game that is executed only once.

Game proceedings: At the beginning of the game, all agents simultaneously use their strategy
function to choose their actions. Actions are fixed after being chosen. When all actions are chosen,
M decides on an outcome, according to which the file transfer isexecuted. The game ends when
all file transfers are completed as specified in the outcome. Because actions are fixed, and per the
assumption of a static network in which no agents leave the network as we explained in Section 3.2.2,
the game will always end.

Solution Concepts

Every agenti in the network has a strategy function, which chooses the action that i expects will
maximize its utility. By doing so,i affects the other agents’ utilities. Another user anticipates on
that and adapts its actions, which in turn affects the other agents’ utilities, etc. This way, the agents’
actions are intricately interwoven.

We refer to the tuple{si , . . . ,sn}, which contains one strategy for every agent, as astrategy
profile. Every agent selects a strategy that provides it with maximum utility. If every agent selects

5This is a very limiting assumption, but we make it to be able toapply the main ideas from Bayesian games
later in this section. Most (but not all) work in game theory makes this assumption [9].

18

Model 3.2 Model of a P2P File-Sharing Network

such a strategy, and no agent can select a different strategywithout lowering its utility, then we refer
to that strategy profile as anequilibrium. It is our goal, as system designers, that every agent selects
a strategy that has it specify full upload capacity and long seeding times. Therefore, we need to
design an equilibrium in which every agent selects such a strategy.

Different types of equilibria exist, and in this thesis we confine ourselves to the three that are
most used: the Nash equilibrium, the Bayesian-Nash equilibrium, and the Dominant Strategies-
equilibrium [32]. The equilibria differ by the assumptionsthey require an agent to make of the other
agents in the network.

The most influential solution concept in game theory is the Nash equilibrium [9]. Before we
define this equilibrium, we first define what abest responseis for an agent. We defines−i =
{s1, . . . ,si−1,si+1, . . . ,sn} as the strategy profileswithout i’s strategy. We can then writes= (si ,s−i).
If all agents other thani play s−i , i needs to determine the strategy that provides it with maximum
utility: his best response.

Definition 3.3. (Best response) Agent i’sbest responseto the strategy profile s−i is a strategy s∗i ∈ Si

such that ui(s∗i ,s−i) ≥ ui(si ,s−i) for all strategies si ∈ Si .6

Note that the best response is not necessarily unique, as multiple strategies may result in the
same utility.

In general, an agenti does not know which profiles−i the other agents will play. However,
if every strategysi in the strategy profiles is a best response to the other strategiess−i , then no
agent has an incentive to choose another action as that will always decrease its utility. Therefore,
this is a stable strategy profile, which motivates the term equilibrium. Specifically, this is the Nash
equilibrium, which Leyton-Brown and Shoham [9] formally define as follows:

Definition 3.4. (Nash equilibrium) A strategy profile s is aNash equilibriumif, for all agents i, si is
a best response to s−i .

We distinguish betweenstrict andweakNash equilibria. In the former,i’s utility obtained by
playingsi is unique, while in the latter it is not.

In the Bayesian game we defined above (Definition 3.2), the types are distributed over the agents
according to the distributionP. As a result, an agent does not know what its utility will be when it
playssi ; instead, it expects some utility based onP. We denote thisexpected utilityfor agenti by
EUi(s). Because the meaning of expected utility is intuitively clear, while the formal definition is
convoluted, we do not formally define this here but instead refer the reader to Leyton-Brown and
Shoham [9] for a formal definition. Next, we define the best response in a Bayesian game:

Definition 3.5. (Best response in a Bayesian game) The set of agent i’sbest responsesto a strategy
profile s−i is given by BRi(s−i) = argmaxsi∈Si EUi(si ,s−i).

This allows us to define the Nash-equilibrium in a Bayesian game, which is referred to as the
Bayes-Nash equilibrium:

Definition 3.6. (Bayes-Nash equilibrium) A strategy profile s is aBayes-Nash equilibriumif, for all
agents i, si ∈ BRi(s−i).

Sometimes, an agenti has a strategysi that yields a greater utility than any of its other strategies,
for any strategy profile of the remaining agents. Such a strategy is adominant strategy. If this is the
case, theni always playssi , regardless ofP. A special form of Nash equilibrium is the Dominant

6Note that we are a little loose in notation here, as formally an agent’s utility is a function of its type and
the outcome. However, this is justified here as the strategy chooses the agent’s actions based on its type, which
in turn determine the outcome.

19

3.2 Model of a P2P File-Sharing Network Model

A

B

C

S Network

2

3

1

2

1 1

2

2

Figure 3.1: Example of a file-sharing network with one seeder (S), and three leechers (A, B, and C). Arrows
indicate connections to and from the network. Capacities are given next to the connections.

Strategies equilibrium, in which every strategy is a dominant strategy. Based on Shoham and Leyton-
Brown [45], we define this as follows:

Definition 3.7. (Dominant Strategies equilibrium) A strategy profile s is aDominant Strategies
equilibrium, if, for all agents i, si is a dominant strategy.

In Section 3.2.1, we motivated that we do not want the outcometo be manipulable. It will now
be clear how an agent may try to manipulate the outcome to its own advantage: by sharing only
few files it has available, or making only a fraction of its upload capacity available to the network,
for example. This way, it avoids uploading while it may be able to download files nonetheless.
Because the files that an agent can share, or its maximum upload capacity, are private information,
it is impossible for the mechanism to verify an agent’s actions and check whether it manipulates.
However, we do know that the agents are rational and they try to maximize their utility. If it is
possible to design the mechanism such that it implementsg (Equation 3.5) in some equilibrium,
then an agent maximizes its utility by playing the equilibrium strategy (assuming the other agents
are rational and do the same). We thus need to make sure that this equilibrium strategy is the desired
strategy from our perspective.

3.2.3 Static Model Example

In this section we provide a small example to illustrate the static model we just defined. In Figure 3.1
a file-sharing network is given, with one swarm consisting offour agents: a seederS, and leechersA,
B, andC. All agents have an upload connection to the network (outward arrow) and a download con-
nection from the network (inward arrow). For every connection the capacity is listed. All capacities
are in kB per second. Every agent makes its full connection capacity available to the network. For
simplicity, we define every file piece to be 1 kB in size. Then the connection capacity corresponds
to the number of pieces that can be sent over the connection inone second. Finally, every agent has
two upload slots.

The file considered in this swarm isf , which consists of three pieces:f = {p1, p2, p3}. Initially,
the seeder has all three pieces available (i.e., the complete file, while the leechers have none. The
leechers decide to seed the downloaded file after their download completes.

We assume that the leeching agents have the same type. Their utility functions are also the same,
and the faster download completes, the higher utility is:

20

Model 3.2 Model of a P2P File-Sharing Network

Time p1 p2 p3

0 S→ A S→ B

1 A→ B
S→C

S→ A
B→ A

2
S→C
A→ B

3 S→C

Table 3.1: Assignment from g for the network in Figure 3.1. Each row shows at what time the corresponding
piece is sent from the uploading to the downloading agent.

Agent Utility
S 0.6
A 0.5
B 0.33
C 0.25

Social welfare: 1.68

Table 3.2: Utilities and social welfare for the outcome in Table 3.1.

ui(θi ,π) =
1
∆t

where∆t is the number of seconds it takesi to complete its download in outcomeπ.
With the above utility function, the seeder would never receive any utility because it does not

download anything. Vassilakis and Vassalos [48] distinguish two ways a seeding peer may receive
utility, and we adopt one here: utility is proportional to the uploaded volume. The seeder’s utility
function is then defined as:

uS(θS,π) =
number of uploaded pieces

10

A possible outcome decided on byg is given in Table 3.1, which could be an outcome in a real
BitTorrent swarm. Because agentsA andB have the largest download capacity available,Sprefers
to upload to those agents. It sends different pieces to each of them to ensure a good diversity of
the pieces in the system. Att = 1, S optimistically unchokesC and sends itp2, and it sendsp3 to
its fastest downloader,A. BecauseA andB have different pieces available locally, they can start
bartering and they exchangep1 and p2. A has now completed its download. It stays online as a
second seeder, sendingp3 to B, which allowsB to finish its download.Ssends the final two pieces
to C.

The utilities for the agents and social welfare arising fromthis download assignment are given
in Table 3.2.

We find that, with the given utility functions and outcome, all agents obtain a positive utility.
However, other outcomes are possible as well. Suppose the mechanism’s objective is to minimize the
deviation of the average download time, or, in other words, to have all agents finish their downloads
roughly at the same time. An outcome satisfying that objective is given in Table 3.3 shows. Here,
all agents finish their download aftert = 2.

Obviously, with the alternative assignment all leeching agents have the same utility, as is shown
in Table 3.4. The seeder’s utility does not change with this new assignment, but social welfare is

21

3.2 Model of a P2P File-Sharing Network Model

Time p1 p2 p3

0 S→C S→ B
1 S→ B B→ A S→C

C→ A
2 A→C S→ A

S→ B

Table 3.3: Alternative outcome allows all agents to finish simultaneously.

Agent Utility
S 0.6
A 0.33
B 0.33
C 0.33

Social welfare: 1.6

Table 3.4: Utilities and social welfare for the alternative outcome from Table 3.3.

slightly lower than with the previous assignment.
In this example, all agents made full connection capacity available to the network. Suppose that

B would have refused to upload, so it would set its upload capacity to zero. This would have had an
impact on both outcomes. In both outcomes,B sendsp2 to A at t = 1, which is impossible without
upload capacity. As a result,A cannot finish its download aftert = 1. Assuming the seeder would
send the missing piece toA, utility for B would be the same in both outcomes, butA’s utility would
drop significantly: from 0.5 to 0.33 in the first outcome, and from 0.33 to 0.25 in the second. In the
first assignment,B’s refusal to upload would cause social welfare to drop from 1.68 to 1.61. In the
latter, social welfare rises slightly from 1.6 to 1.61, although the mechanism’s objectives are better
met with the original outcome. This shows the effect one agent’s manipulation can have on social
welfare and the other agents’ utilities.

3.2.4 Towards a Fully Dynamic Model

The model we defined in Section 3.2.2 describes a static game,in which the agents choose their
actions at the beginning of the game and these actions are fixed for the remainder of the game.
This is a major simplification of reality in P2P file-sharing networks, which are inherently dynamic:
agents join and leave the network continuously, new files areadded to the network, shared files
are removed, etc. In this section, we add dynamic aspects to the static model. Although a fully
dynamic model gives a good representation of reality, it mayalso needlessly complicate the model.
We therefore choose to review the aspects that can be dynamic. This allows us to use the simpler
static model with only the dynamic aspects that are of interest.

In the following sections, we first define the dynamic game andhow it relates to the static game.
Then, we investigate what aspects of the static model are dynamic in reality and how they can be
modelled in a dynamic fashion. We do this in order of importance: we start with the files that are
requested and shared, as agents will typically change theseafter each successful download. We then
proceed to agents joining and leaving the network. After that, we consider agents that change their
network capacity. Finally, we investigate the dynamic aspects of the utility function. Any aspects
we omitted from this model are listed in Section 3.2.7.

22

Model 3.2 Model of a P2P File-Sharing Network

The Dynamic Game

In Section 3.2.2, we defined the static model as a Bayesian game. This is not changed in this section
where we make the model dynamic. As in the static model, the game consists of a set of agents, each
of which have action and type spaces, a utility function, anda common prior over the agent types.

The other assumptions we made in Section 3.2.2 no longer hold. We replace those with the
following assumptions.

Dynamic game: For the static model, we defined a static game in which agents specify their
actions once at the beginning, after which the actions are fixed and the mechanism determines an
outcome. In our dynamic model, we remove this limiting assumption and instead allow the agents
to perform actions continuously.

Game proceedings: As we describe above, in the dynamic model, agents can perform new actions
at any time. For example, agents go offline at some point and rejoin the network later, or when a
new movie comes out, agents will request that. As a result, the game does not end. Agents can
exchange files whenever they wish, and do not need to wait for all transfers to complete whenever a
new file is shared or requested. Because the outcome depends on the actions the agents perform, a
new outcome needs to be determined whenever an actions is performed.

Types and Strategies: The dynamic model runs for an extended period of time. Over that time,
possibly many years, an agent’s type and strategies can change. We choose not to include this in
our model to not make it overly complex. Instead, we assume that an agent’s type, and its strategy
function, are fixed.

History and agent memory: We assume that the agents have a limited memory available. How
exactly memory is limited depends on the particular file sharing network under consideration.

Dynamic Actions In the dynamic model, agents have all actions at their disposal as in the static
model. Additionally, they can join or leave the network. Theactions available to the agents in
BitTorrent are enumerated in Section 3.2.5.

Download Assignment and Outcome

We keep our definitions of a download assignment and outcome (Definition 3.1). A download as-
signment may be scheduled in the future. This may happen, forexample, because the uploading
agent is not yet online at some timet, or its upload connection is currently filled to capacity. At
any timet, an outcome can be calculated based on the information available at timet. This out-
come includes download assignments that start immediately, as well as assignments scheduled in
the future.

g : X1× . . .×Xn×T → Π (3.9)

In the dynamic model, agents can perform actions continuously. As every action influences the
outcome, this means that an outcome becomes invalid whenever an action is performed. When that
happens, a new outcome is determined, which is valid until the next action is performed.

Utility

As in the static model, in the dynamic model we assume that a leecher receives its utility when the
download completes, because an incomplete download is useless and has no value to the user. This

23

3.2 Model of a P2P File-Sharing Network Model

0 1 2 3 4 5 6
0

1

2

3

0 1 2 3 4 5 6
0

1

2

3

Figure 3.2: Utility changes over time. Downloads complete at t= 0 and t= 1.

may be a simplification of reality: one can imagine that a userreceives a small utility when it notices
a download for a movie has completed, but receives full utility when the movie is actually being
watched. Because that is outside the scope of this model, we ignore that possibility.

It is different for a seeder, as a seeder uploads pieces and not necessarily a complete file. We
therefore assume that a seeder receives its altruistic utility after every uploaded piece. As a result,
a leecher receives no utility while downloading but all utility when download completes, while a
seeder receives utility for every uploaded file piece but no utility when the seeded file is uploaded
completely.

The question is then how long utility lasts. We assume that, for both seeders and leechers, it does
not last forever, but somehow decreases over time. Two examples of this are depicted in Figure 3.2,
which shows utility that is constant for some time interval,after which it disappears, and utility that
gradually decreases. How exactly utility decreases is specified in an agent’s utility function and
depends on the outcome. We redefine the utility function to incorporate time:

ui : Θi ×Π×T → R (3.10)

3.2.5 Model Applied To BitTorrent

The static and dynamic models we presented in Sections 3.2.2and 3.2.4, respectively, are generic
models that can be applied to file-sharing networks in general. In this thesis, our focus is on the
BitTorrent file-sharing network. In this section, we apply our models to BitTorrent. We use the
BitTorrent terminology as introduced in Section 3.1.

Remote Peers and Swarms

In BitTorrent, a file is identified by the.torrent-file, which also enumerates the pieces and lists the
tracker server. Agents that exchange a filef , either by leeching or seeding it, announce themselves
to the tracker server. From the tracker, a leecher receives aselection of other agents currently ex-
changing the file. As a result, any agent is aware of only a subset of the other peers exchanging the
file. To model this, in the static model we supply every agenti ∈ N with the subsetNr,i ⊆ N\{i};
the agents in this set arei’s remote peers. This does not suffice in the dynamic model, because the
remote peer list is updated periodically from the tracker, or peers may go offline. In the dynamic
model, an agent’s remote peers at any moment in time are givenby the functionr:

r : N×T → 2N (3.11)

Because the remote peer list is received from the tracker fora certain file, it only contains peers
exchanging that file. The group of all agents exchanging one file f is referred to as a swarm. In our
model, we identify a swarm by grouping the outcome by file – each group represents a swarm.

24

Model 3.2 Model of a P2P File-Sharing Network

In a swarm, agents barter for file pieces, which is expressed in our model as one download
assignment for a specific piece, followed (in time) by uploadassignments for that same piece.

Although, in the static model, it is possible to express multiple swarms in the network, we choose
to consider a single swarm only. This is justified because, inBitTorrent, no state information is
exchanged between swarms. An agent enters a new swarm without any knowledge of the other
agents in the swarm. Even if an agent encounters an agent it bartered with before, it will exchange
pieces only when the agent reciprocates pieces in the new swarm.

In the dynamic model, this no longer holds, because we allow agents to request and share new
files, or stop sharing a file. This implies that they join or leave a swarm. However, as in the static
model, we do assume that agents do not take bartering information from one swarm to another.
When an agent encounters an agent it bartered with before in another swarm, that agent is treated as
if it were a stranger, and a regular optimistic unchoke initiates a bartering session. This is exactly as
specified in the protocol.

Implementation Of The Mechanism

In our model we assume a mechanismM that decides on the outcome. Intuitively, we thought of
M there as some broker. In BitTorrent, such a broker does not exist. Instead, the mechanism is
implemented by the agents themselves: a distributed implementation.

The mechanism executes the outcome ruleg (Equation 3.5) to determine which file pieces are
exchanged by which agents. The outcome rule takes as input the actions performed by the agents,
i.e., the files they share and download (in other words, whichswarms they are in), their upload and
download capacities, number of upload slots, and seeding strategy. This is the same in BitTorrent,
as we describe in Section 3.1.1. There, an agenti optimistically unchokes an agentj and sends it a
file piece. The transfer speed of this file piece is given byi’s upload capacity per upload slot, andj ’s
download capacity. Ifi is amongj ’s fastest uploaders,j will reciprocate by sending a piece back toi.
Then, if j is amongi’s fastest uploaders,i will reciprocate and a bartering relationship is established
until either i or j encounters a better bartering partner. In a bartering session, every agent decides
for itself which file piece it requests from which bartering partner; in general, the Rarest Piece First
policy is used to make this decision.

We see here how an agent’s actions influence the outcome: making more upload capacity avail-
able, for example, allows an agent to barter with faster uploading agents.

One final word on the memory of the agents. BitTorrent bartering proceeds in rounds, and an
agent sends pieces to the agents that sent it most pieces in the previous round. An agent does not
take any information from earlier rounds into account. We therefore limit an agent’s memory to be
limited to one round.

Actions in BitTorrent

As we described in Section 3.2.5, the BitTorrent protocol requires an agent to specify an upload
and download capacity, and number of upload slots. These areactions that the user will perform,
typically by adjusting settings in the interface of its BitTorrent client.

Different clients allow a user to specify different settings. Most clients include settings to specify
upload and download rate, and some clients include setting the number of upload slots as well. Some
clients, such as Vuze, allow the user to control most of its behavior, while others, such as Tribler,
offer a limited number of settings to the user.

In this thesis, we consider the settings that can be set from most clients, and we limit ourselves
to those settings that influence the outcome. Below is a list of the settings we consider:

1. Upload rate: Specifies the maximum upload rate (from zero to unlimited) used by BitTor-
rent, expressed in KB/s. Distinguishes between upload ratewhen downloading and when not

25

3.2 Model of a P2P File-Sharing Network Model

downloading. The upload rate is set to unlimited by default,

2. Download rate: Specifies the maximum download rate, from zero to unlimited,expressed in
KB/s. The download rate is set to unlimited by default,

3. Upload slots: Specifies the number of upload slots used,

4. Seeding options:The user can choose one out of four options to select its seeding strategy:

a) Seed until the upload/download-ratio exceeds 1. This is the default option in BitTorrent,
and has as effect that a local peer will upload as much as it downloads,

b) Unlimited seeding,

c) Seed for a specified amount of time,

d) No seeding.

Note that for these options to be effective, the user needs toleave the client running after the
download completes.

In the dynamic model, agents can join or leave the network as well.
At any moment in time, for every setting available to the user, something is specified: either

explicitly by the user, or implicitly in the form of some default setting. We refer to specifying a
combination of settings above as performing anaction.

Specifying one single setting, such as the number of upload slots, we refer to as performing a
subaction. For every setting above, we introduce a subaction space:Xi,u,Xi,d,Xi,k, andXi,e, respec-
tively. Then, for every agenti, we introduce a set of actionsXi , which is the Cartesian product of
Xi,u,Xi,d,Xi,k, andXi,e. Finally, byxi we denote the action played by agenti; xi ∈ Xi .

As we mentioned in Section 3.2.2, every agent has a set of actions at its disposal, and this set
depends on the agent’s type. We elaborate on this in Section 3.3, where we group the agents in
different classes based on their action space.

When the dynamic model is applied, not all settings may be equally relevant. For example, if our
goal is to investigate the effect of sharing and requesting files on agent utility, we are not interested
in the number of upload slots at any moment in time. For this reason, we specifically allow only
some of the subactions to be dynamic, while the remaining subactions are static. Such a model is
only partially dynamic.

Of the six settings, the subactions of sharing and requesting files will be performed most often,
as new content comes available all the time, or users delete files.

Specifying upload and download rates will be performed lessfrequently. This specifically holds
for specifying the number of upload slots, which usually will be set once by more advanced users,
while the majority of the users will not set it at all but use the default value. However, as we show in
Section 4.1, setting the number of upload slots strategically can have a significant impact on utility,
which calculating advanced users may use to their advantage. Such users will also change their
upload and download speed more frequently than other users.

Finally, in practice, users will not often change their seeding strategy. We show the reason
for this in Section 4.1: the other subactions influence utility in a different way than the seeding
strategy subaction does. Therefore, the utility derived from this subaction can be considered more
constant than the utility derived from the other subactions, which is more dependent on the file
being downloaded and the agents downloading that file. Of course, it is our goal to motivate agents
to choose a sharing setting here.

26

Model 3.2 Model of a P2P File-Sharing Network

3.2.6 Utility Functions

In Sections 3.2.2 and 3.2.4, we introduced an agent’s utility function as a function that, given an
agents type, calculates some measure of the benefit an agent receives from the mechanism’s outcome.
In this section, we consider utility functions in BitTorrent in more detail and provide some examples.

Measurements have shown that in practice, users are reluctant to share files. Apparently, upload-
ing incurs them a cost. We can model this with a simple utilityfunction.

Consider a function that values the benefit of the download ofa file at some rate twice as much as
the cost of uploading at the same rate. In other words, this function returns the sum of all download
rates, minus half the sum of all upload rates. We need some notation to formally describe this
function. Denote bya an assignment;a ∈ Π. Denote byad,i the subset ofa in which i is the
downloading agent. Similarly, denote byau,i the subset ofa in which i is the uploading agent.
We introduce the functionz : π → R

+ that outputs the transfer rate of a download assignment, i.e.
r(n1, f ,n2, p) = p. The utility function is then:

vi(θi ,a) = ∑
x∈ad,i

z(x)−
1
2 ∑

x∈au,i

z(x) (3.12)

Obviously, this example is simplified, in that it does not discriminate between files that have
or have not been requested, all transfer rates are valued equally for all files, etc. However, one
recognizes these factors can all be expressed in a utility function.

The utility function above makes two unrealistic assumptions. First, it assumes that the higher
the transfer rate, the higher the utility. Second, it assumes that users are carefully observing their
upload rate. We first address the first assumption. It is reasonable to assume that the user will
become saturated at some point. This is easier to see in the dynamic model: after downloading
movies constantly for 30 days the user may want to actually watch some movies, and downloading
yet another movie will only marginally increase its utility, if at all.

However, the same may hold for download rates: the increase of utility may diminish with the
transfer rate. We could express this by making the benefits grow logarithmically instead of linearly
with the transfer rate. The same will then apply to the costs:when uploading at a substantial rate,
extra uploads may impose less of a cost. The above utility function would then become:

vi(θi ,a) = log

(

1+ ∑
x∈ad,i

r(x)

)

−
1
2

log

(

1+ ∑
x∈au,i

r(x)

)

(3.13)

When we do consider download (and upload) volumes, we assumethat the increase of utility
decreases with the downloaded volume, and vice versa for theuploaded volume:

vi(θi ,a) = log

(

Z ∞

t=0
∑

x∈ad,i

r(x)

)

−
1
2

log

(

Z ∞

t=0
∑

x∈au,i

r(x)

)

(3.14)

The second assumption of Equation 3.12 is that users would carefully observe their upload rates.
In practice, this will not be the case. Users will notice whenthey are uploading, and that may reduce
their utility compared to not uploading with some constant:

vi(θi ,a) =

{

∑x∈ad,i
r(x) if ∑x∈au,i

r(x) = 0

∑x∈ad,i
r(x)−c otherwise, withc∈ R

+ (3.15)

Similarly, the costs can relate to the fraction of upload capacity used. If only a small portion is
used, this does not affect the utility. If a large portion is used, utility is negative as no matter how
much is downloaded, the costs of using that much capacity is too high. For upload rates in between,
utility drops with some constant:

27

3.2 Model of a P2P File-Sharing Network Model

vi(θi ,a) =

∑x∈ad,i
r(x) if ∑x∈au,i

r(x) < cu
4

∑x∈ad,i
r(x)−c if cu

4 < ∑x∈au,i
r(x) < 3cu

4 ∈ R
+

c otherwise, withc∈ R
−

(3.16)

Another example of a utility function is motivated by possible contract terms an ISP may impose.
With some contracts, users are allowed to upload only a fixed amount of data. When this is exceeded,
some fine is imposed. Users will want to avoid this fine, and will value an assignment that exceeds
this limit very low.

vi(θi ,a) =

{

∑x∈ad,i
r(x) if

R

T ∑x∈au,i
r(x) < c, with c∈ R

+

k otherwise, withk∈ R
− (3.17)

We explain in Section 3.1 that in BitTorrent, users need to upload to be able to download. To
most users, uploading is then no longer a cost. Their utilityis directly linked to their download rate:

vi(θi ,a) = ∑
x∈ad,i

r(x) (3.18)

Finally, we consider a utility function for which the costs depend on the file that is uploaded.
This is motivated by the fact that users illegally share copyrighted material, and are afraid of getting
caught. Users may want to share such files unless they are downloaded to often, for example, or
these files may be downloaded and shared automatically. We introduce the functiony that returns
the uploaded files in an agent’s upload assignmentsau,i , and the setI ⊆ F that holds the illegally
shared files agenti. The utility function then becomes:

vi(θi ,a) =

{

vi(θi ,a) = ∑x∈ad,i
r(x)−2∑x∈au,i

r(x) if y(au,i)
T

I 6= /0
vi(θi ,a) = ∑x∈ad,i

r(x)− 1
2 ∑x∈au,i

r(x) otherwise
(3.19)

From the above, we find that there are many different utility functions, with very different objec-
tives. This motivates that maximizing social welfare in a file-sharing network is a difficult task.

3.2.7 Omitted Aspects

Every model is a simplification of reality and does not incorporate all aspects of what is modelled.
Below, we list the properties we do not consider in our model:

1. Irrational behavior: we assume all agents are rational. Agents do not need to be the same, and
may have different motivations for joining the network. However, we require these motivations
to be rational, and we require the agents to try to maximize some utility function. We require
this rationality because we model the agents to choose theiractions based on the assumption
that the other agents are rational, as we motivate in Section3.2.2,

2. Network topology: in our model, all agents are connected to all other agents in the network.
P2P networks are typically implemented as overlay networkson top of the Internet. We as-
sume that the Internet provides our network with the possibilities that all agents are connected
as modelled,

3. Transfer speeds: the transfer speed for a file may be affected by the underlying network, and
not only depends on the uploading and downloading agents’ connection capacities. We ignore
this and assume that the file transfer rate is only limited by the users’ capacities,

28

Model 3.3 Agents in BitTorrent

4. File identification: we assume all files can be identified and distinguished. In reality, in file-
sharing networks it is difficult to identify files because of naming conventions applied by each
user. Additionally, files with identical names can be different because of different encodings,

5. Identification of agents: we assume it is possible for boththe brokerM as for the agents to
identify and locate other agents,

6. Costs of assignments: in our model we assume that uploading incurs a cost because it puts
load on the users Internet connection. It is very likely thatusers have other, less rational,
motivations for uploading being a cost,

7. In Section 3.1.1, we mentioned that a peer always sends therequested file piece. However,
according to the protocol, pieces are implicitly correlated with request messages, and it is
possible for an unexpected to arrive. In practice, this happens only in the end-game, when
the local peer has only a few missing pieces and does many requests to many agents. In our
model, we assume that a peer always sends the requested file piece.

3.3 Agents in BitTorrent

The previous section introduced a model for P2P file-sharingnetworks from a game-theoretic per-
spective. We modelled agents connected to the network as rational, self-interested entities that strive
to maximize their utilities, i.e. they try to download theirdesired files as fast as possible. If possible,
such rational agents may opt to manipulate the outcome in their favor, possibly at the expense of the
other connected agents. In this section, we investigate theagents in a file-sharing network in more
detail, and motivate our focus in this thesis on one particular type of agents: the lazy free-riders.

Meulpolder et al. [28] distinguish three classes of agents in BitTorrent: altruistic agents, lazy
free-riders and die-hard free-riders. The altruistic agents share files because they want to, and if all
agents were altruistic, no incentive mechanism would be necessary. The die-hard free-riders will go
to great lengths to free-ride. They have both the skills and the motivation to create or obtain cheating
clients to prevent any uploading at all. Although this is possible, in practice such behavior is not
often seen in BitTorrent [28].

However, we do find that agents go off-line immediately aftertheir download finishes, or that
they make only part of their upload connection available to the network. Such agents we refer to
as lazy free-riders: agents that free-ride whenever they can, but that will not actively search for
possibilities. Their options are limited to the options provided by the interface their network client
provides.

There is one additional class of agents: the byzantine agents. This class of agents may display
any behavior to obtain their desired files, including exploiting the file-sharing network protocol,
breaking into other users’ computers, or even breaking intotheir houses and stealing their computers.
The difference between byzantine agents and die-hard free-riders is, that the latter use the file-sharing
network to obtain their desired files. They faithfully execute the network protocol, but may not
be faithful in their actions using the protocol, for exampleby obtaining a cheating client, as we
mentioned above.

Distinguishing only four classes of agents is a simplification: in reality, there are more classes
of agents. Users in each class will be somewhere ‘between’ altruism and die-hard free-riding in
the lengths they will go to to free-ride. The actions available to the different classes of agents are
visualized in Figure 3.3. The byzantine agents have all actions at their disposal. The die-hard free-
riders’ actions are limited to all actions that can be implemented using the file-sharing network.
This includes installing or developing other clients for the network. The lazy free-riders’ actions are
confined to the actions that can be performed using the official client, and are thus a subset of the

29

3.3 Agents in BitTorrent Model

die−hard

altruistic lazy

byzantine

Figure 3.3: Available strategies for different agent classes.

die-hard free-riders’ actions. Obviously, the set of the altruistic agents’ actions is the smallest, and a
subset of all other sets of actions.

It should be noted here that the lazy free-riders and altruistic agents share the same strategy
space, as both use the official client. The altruistic agents, however, refrain from using some of the
actions available to them. One example is that downloaded files are automatically shared with the
network. A lazy free-rider will decide not to share such a file, but an altruist is intrinsically motivated
to cooperate with the network and will not consider some of the actions available to him.

Our distinction of different classes allows us to model different classes of agents differently, as
depicted in Figure 3.4. For lazy free-riders, the agent is the user. The user’s interface to the network
is the client, but, by definition, the lazy free-rider does not replace or alter this client. Therefore,
the user’s action space is limited to the actions the client has to offer. We depict this in the upper
figure in Figure 3.4. This figure applies to altruistic agentsas well, although altruistic agents will in
addition refrain from performing some of the actions available to them.

With die-hard free-riders, the agent comprises the user andthe client, its interface to the network
(the lower figure in Figure 3.4). Because the client is under the user’s control, the agent can perform
any action possible within the network.

In Section 3.2.6, we provide utility functions for a number of realistic types of users. All of these
users are lazy free-riders. This shows that there are in factmany more agent classes than the four we
distinguish here.

Previous research in BitTorrent has focused on die-hard free-riding, and identified methods that
allow an agent to download without uploading. Examples are Sirivianos et al. [46], Piatek et al. [35],
and Levin et al. [26]. However, as stated before, die-hard free-riding is hardly seen in practice. In
this thesis, we focus on lazy free-riders. We are interestedin how they can improve their utility using
only actions made available through the interface of official clients, and how this affects the utility
of the other agents in the network. Based on the model derivedin this chapter, we derive theoretical
results for this in Chapter 4. These results are experimentally verified in Chapter 5.

30

Model 3.3 Agents in BitTorrent

User Client Other agents

Agent Network

User Client Other agents

Agent Network

Figure 3.4: An altruistic user (top) interacts with its client as if it were the network. This user does not change
any settings, but instead accepts all the defaults. A lazy free-rider (bottom), on the other hand, has full control
over its client and uses its client to interact with the network. This type of user may change any setting that is
available through the interface.

31

Chapter 4

Application of the Model to BitTorrent

In Chapter 3, we developed a model of a peer-to-peer file-sharing network. The agents of such a
network derive their utility from the outcome: a single decision which specifies for every agent,
which file pieces are downloaded from which agents, and the order and transfer rate with which
these pieces are downloaded.

In this thesis, we focus on the BitTorrent file-sharing network. There, this outcome is deter-
mined distributedly, by the clients to the network. In this chapter, we investigate this outcome. In
Section 4.1, we show that the outcome groups agents on their upload capacity, and that in general,
agents barter only with agents in their group. We show that this, combined with BitTorrent’s op-
timistic unchoke policy, increases the download completion time and uploaded data volume of the
faster agents in the network, while it decreases that of the slower agents. In Section 4.2, we inves-
tigate possibilities for manipulation BitTorrent’s outcome provides, and how much agents can win
by manipulating the outcome. In Section 4.3, we extend the model with the BarterCast reputation
system, in order to identify whether agents have an incentive to use this system.

4.1 Network Composition and Outcomes

In this section, we show that in BitTorrent’s outcome, agents are grouped on their upload capacity,
and barter only with agents from their own group. We start with an overview of related literature that
observed this grouping in practice (Section 4.1.1), and then show that this follows naturally from our
model (Section 4.1.2). We use the results from our model to explain other observed phenomena in
BitTorrent’s outcome in Section 4.1.3, and draw conclusions in Section 4.1.4.

4.1.1 Clustering Phenomena

Clustering

In Chapter 3, we modeled the users of a file-sharing system as utility-maximizing agents. Agents
derive their utility from their download rate. Therefore, all agents want to download from the fastest
uploading agents in the swarm – including these fastest agents. Because agents have a limited num-
ber of upload slots, the fast agents reciprocate to their fastest uploaders, and not to the slower agents.
Because these slower agents do not receive pieces from the fastest agents, they lose their interest in
these agents and try to obtain pieces from slower uploading agents. Intuitively, this demonstrates
that agents end up bartering only with agents with similar upload capacity.

Consider a network consisting of 10 agents,a1 througha10, wherea1 has the highest upload
capacity anda10 the lowest. Every agent has 3 upload slots (with the optimistic unchoke slot ex-
cluded). In this example, all agents prefer interacting with a1 over interacting with any other agent.

33

4.1 Network Composition and Outcomes Application of the Model to BitTorrent

This means thata1 gets to decide on which agents it interacts with. Best candidates fora1 area2, a3

anda4. Agenta2 now has one upload slot dedicated toa1. Best candidates for the remaining upload
slots area3 anda4, etc. This means a cluster is formed bya1 througha4. Similarly, a5 througha8

form a cluster, anda9 clusters together witha10.
In this example, we find that agenta1 provides the best service (fastest uploads) to all peers,

and it is in its best interest to interact witha2, a3 anda4. However, these agents receive this high
quality service in exchange for their lower quality service. When agents have Equation 3.12 as utility
function (utility is download rate minus half the upload rate), a4’s utility outweighsa1’s utility. In
fact, if a1 would upload just slightly faster thana5, it would still connect toa2 througha4, and
receive the same service from them, while delivering suboptimal service.

Clustering is problematic for two reasons. First, it introduces possibilities for manipulation, as
described above. Second, since there is no data exchanged between clusters, clusters lock content. If
a9 anda10 together do not have all pieces of the file, they may never be able to finish the download.
This means that all pieces of a file must be present in every cluster to ensure that all agents can finish
their download. In practice, this means that every cluster must be connected to a seeder. Because
seeders prefer uploading to the faster leechers, it is unlikely that that will happen.

Stratification

Clustering is not a purely theoretical phenomenon. Bharambe et al. [8] and Legout et al. [25] describe
clustering from measurements in real BitTorrent systems. Both show that clusters are formed by the
faster, medium and slower peers in the network. Legout et al.find that although data is exchanged
from the faster to the slower peers, this is due to optimisticunchoking. This means that the slower
peers in the network depend on optimistic unchokes for a significant part of their pieces.

Interestingly, both find that the faster peers in a cluster upload significantly more pieces than
they download, while the slower peers in a cluster upload less than they download. However, this
does allow these faster peers to finish their download more quickly. Depending on the agent’s utility
function, this observed inequality in uploaded volume could provide the agent with an incentive to
choose its actions strategically.

What Bharambe et al. and Legout et al. observed is not the clustering as we described above,
where the network falls apart into disjoint clusters ofp+ 1 agents. Instead, they find something
similar, to which we refer asstratification, following Gai et al. [20]. For clarity, we now define the
following terms:

Definition 4.1. (Clustering)Clusteringis a process that groups agents together based on their slot
capacities.

Definition 4.2. (Segmentation) Segmentation is a clustering process whichresults in the network
being split into disjoint groups (segments) of agents. Pieces are only exchanged between segments
as a result of optimistic unchokes, not by bartering.

As a result, we refer to the clusters we described in Section 4.1.1 as segments from now on.

Definition 4.3. (Stratification) Stratification is a clustering process which results in a network in
which for every agent i∈ N, there is a range of slot capacities centered around i’s slot capacity such
that i barters exclusively with agents that have a slot capacity that falls within this range. Pieces are
only exchanged with the other agents as a result of optimistic unchokes, not by bartering.

Stratification may lead to segmentation. When segments are large, it is possible for stratification
to occur within segments.

Both Bharambe et al. [8] and Legout et al. [25] provide two explanations for stratification to
occur instead of segmentation. First is that for the segmentation into many small clusters of size

34

Application of the Model to BitTorrent 4.1 Network Composition and Outcomes

p+ 1, as we described in Section 4.1.1, all agents must have the same number of upload slots. In
BitTorrent, this number is not fixed but depends on the uploadcapacity. Both describe, based on
measurements, that this prevents segmentation, but that itdoes not prevent stratification.

The second explanation for stratification to occur is that agents do not know all other agents in
the network, as we assumed above. In Section 3.1.1, we described that agents get a random selection
of other peers in the swarm from the tracker. As a result, an agent is not able to probe all agents in the
swarm. As every agent receives a different remote peer list from the tracker, every agent will connect
to other agents and one would expect that segments will not beformed. This is true to some extent
– Bharambe et al. do not observe small segments, but have found large segments. Stratification is
observed despite the random selection of remote peers.

Until now, we assumed that agents rank other agents based solely on their upload capacity per
upload slot. However, in BitTorrent, this is only a part of how agents rank other agents: we describe
in Section 3.1.1 that a lazy free-riding agent barters only with agents that have complementary
pieces, i.e., have pieces thati does not have, and thati prefers agents with more complementary
pieces. When we incorporate this in our analysis, it is no longer possible to rank agents globally
based on their upload capacities alone, and second, it meansthat an agent’s ranking of the other
agents may change whenever it exchanges a file piece.

However, Legout et al. [25] and Bharambe et al. [8] both show from measurements that strati-
fication does occur despite this. A possible explanation is given in Legout et al., where the authors
argue that BitTorrent’s Rarest Piece First piece selectionpolicy distributes file pieces over a swarm
such that agents remain interested in other agents as long asthe transfer speed is large enough, or
until the download is almost finished and it becomes harder tofind missing pieces.

4.1.2 Clustering Explained From The Model

In the previous section, we explained intuitively how clustering and stratification arise, and gave an
overview of the literature that observed this phenomenon inpractice. We now prove that clustering
and stratification follow naturally from the models we presented in Section 3.2.

Preliminaries

In our static model, an agenti has an upload capacitycu,i and ki upload slots. This number is
with the optimistic unchoke slot included. In the following, we will often consider the upload slots
determined for bartering only. For any agenti, we denote byki,b the number of upload slotsi assigns
to bartering.

We use the static model for our analysis in this section, and extend it to the dynamic model later
in this section. Specifically, this means that agents do not changeki or cu,i. We consider a single
swarm only;N is the set of alln agents in that swarm.

The users we consider are lazy free-riders (see Section 3.3). By definition, these users use
official or mainstream clients. In the BitTorrent file-sharing network, such clients include the official
BitTorrent client and Tribler. We assume that all clients used by lazy free-riding users have the same
utility function: to maximize the download rate, given constraints specified by the user: the number
of upload slotski , and upload and download capacity. We refer to this utility function as theclient
utility function. Note that this client utility does not necessarily match the user’s utility function –
we investigate this further in Section 4.2.

Ranking

The client utility implies that agents prefer downloading from faster uploading agents over down-
loading from the others. To facilitate our reasoning in thissection, we first introduce the concept of

35

4.1 Network Composition and Outcomes Application of the Model to BitTorrent

a global rankingthat orders all agents inN based on the upload capacity they offer per upload slot.
We refer to this metric from this moment onwards asslot capacity: agenti’s slot capacity equalscu,i

ki
.

Definition 4.4. A global rankingis an order over the agents i∈ N based on their slot capacity
cu,i
ki

,

where ties have equal rank. r: N → N
+ gives an agent’s rank in the global ranking, and ri ≤ r j iff

cu,i
ki

≤
cu, j
kj

.

A higher, or better, rank corresponds to higher slot capacity. A visualizationof a ranking is
given in Figure 4.1. The lowest rank is 1; the highest rank possible isn if there are no ties. If there
are ties, we say that these agentsshare a rank.

Proposition 4.1. The global ranking is acyclic.

Proof. This follows directly from Definition 4.4.

Note that in Definition 4.4, agents are ranked on their uploadcapacity alone. In Section 3.1.1,
we described that when an agent decides on which agent to download from, it not only considers
the other agent’s upload capacity, but also its complementary pieces. Incorporating complementary
pieces results in a ranking that is no longer global, but local to each agent. In the remainder of
this section, we find that the most important property of the global ranking is that it is acyclic
(Proposition 4.1). Gai et al. [19] prove not only that a ranking based solely on complementary
pieces is acyclic, but also that any linear combination of acyclic global and complementary rankings
is acyclic. In this thesis, we ignore the additional rankingon complementary pieces, and focus on
upload capacity alone. Based on the work by Gai et al., this should not affect our results in this
section.

If an agent downloads from another agent, either through bartering or optimistic unchoking, it
discovers the other agent’s slot capacity. When all agents have interacted with each other, every
agent knows the slot capacity of every other agent in the network. Because in the static model agents
do not perform actions, their slot capacities do not change during the game and all agents have equal
knowledge.

Proposition 4.2. With the BitTorrent protocol, an agent knows the slot capacities of all other agents
in the network if and only if it has downloaded from all other agents.

Proof. If an agent downloaded from all other agents in the network, it knows all slot capacities
from experience. This proves the if-part. Agents exchange protocol messages and file pieces only.
Protocol messages do not include exchanging information about slot capacities, so that information
must come from experience, i.e., downloading from every other agent in the network. This proves
the only-if-part.

Proposition 4.3. If every agent employs the client utility function, knows the slot capacities of all
other agents in the network, and agents do not perform actions during the game, then all agents
employ a preference over the other agents that is equal to theglobal ranking.

Proof. Every agenti prefers an agentmover agentn if

cu,m

km
>

cu,n

kn

becausem givesi a higher utility thann, andi prefersm andn equally if their slot capacities are the
same. This is the same metric as used in the global ranking. Because agents do not perform actions,
an agent’s ranking of another agent is constant during the game.

36

Application of the Model to BitTorrent 4.1 Network Composition and Outcomes

ra
n

k

a

b c d

e

f g

h

Figure 4.1: Ranking of eight agents. Agent a is ranked best and has highest rank. Agents b, c and d are ranked
second best and have equal slot capacities. Agent h has lowest slot capacity and is ranked worst.

Bartering Relationships

Upload slots put a restriction on the number of agents to which an agent uploads simultaneously.
As a result, agents need to be strategic in who they upload to.They prefer uploading to higher-
ranked reciprocating agents as those will provide good utility in return. For downloading, there is no
such restriction, and an agent will not refuse to download even from its slowest uploaders. It will,
however, refuse to upload to the slowest uploaders, becauseit uploads to itskb,i fastest uploaders
only.

If an agentj is amongi’s fastest uploaders,i reciprocates toj. In return, j reciprocates toi if i
is amongj ’s fastest uploaders. We say that agentsi and j form abartering relationship, exchanging
pieces for a longer period of time, until eitheri or j encounters a better partner to barter with. It
follows that no agenti is in more thankb,i relationships. Note that an optimistic unchoke is not a
bartering relationship but may result in one if both agents involved reciprocate to each other.

For any agent, being in a relationship with any other agent isbetter than being in no relationship,
because then at least some utility is obtained. However, higher-ranked agents provide more utility
than lower-ranked agents. Consider three agentsa, b andc, each with one upload slot, withr(a) >
r(b) > r(c). Suppose that agentsa andc are in a bartering relationship with each other, whileb is
in no relationship. Agentb prefers to be in a relationship witha or c over its current situation and
unchokes both in the hope of forming a relationship. Agentc prefers its relationship witha because
r(a) > r(b), but a prefersb overc and breaks its relationship withc for a relationship withb. We
observe the following:

1. The broken relationship betweena andc is initiated by agentb thatproposesto a. Therefore,
b is theinitiating agent;

2. Any agent can take the initiative to propose to another agent. In BitTorrent, proposing is done
through optimistic unchokes;

3. The utility of a improved. We saya played abetter responseto b’s initiative by breaking its
current relationship for a relationship that gives it higher utility;

4. In this network of three agents,a cannot obtain higher utility. The better response was there-
fore abest response;

5. The utility ofa andb increased, whilec’s utility dropped to zero. A rational agent will never
break a relationship for a relationship that provides it lower utility. If an agent’s utility over
a given upload slot decreases, it must be because its partnerbroke the relationship playing a
better response and leaving the agent with zero utility.

37

4.1 Network Composition and Outcomes Application of the Model to BitTorrent

If a best response is mutual, i.e., both the initiating and responding agent cannot be in a relation-
ship that give it higher utility, then this relationship will not be broken.

Definition 4.5. (Stable Relationship)A stable relationship is a bartering relationship that is broken
by neither of the agents to obtain higher utility.

It is important to realize here that although initially every agent prefers bartering with the best-
ranked agents, these best-ranked agents reciprocate to best-ranked agents only. Therefore, the worse-
ranked agents do not obtain any utility from the best-rankedagents, and as a result, the higher ranked
agents are not attractive bartering partners for the worse-ranked agents so they will not form a stable
relationship.

Lemma 4.4. An agent i playing a series of better responses ends in a stable relationship.

Proof. By Proposition 4.1, the ranking is acyclic, and sinceN is a finite set, there is one highest rank
from which agents will reciprocate toi.

The stable relationship forms an important concept in the remainder of this section because it
maximizes an agent’s utility over the corresponding uploadslot. As the agents in a file-sharing net-
work are utility-maximizing agents, all agents strive to bein stable relationships. From Lemma 4.2
and Proposition 4.3, we know that when all agents in the network have interacted with all other
agents in the network, all agents rank the other agents according to the global ranking. If we can use
the global ranking to find stable relationships for all agents in the network, then we can have every
agent maximize its utility.

Network Configurations

Agents are in many relationships simultaneously. We refer to the collection of all (not necessarily
stable) bartering relationships in a network as anetwork configuration. Some configurations are
more beneficial to an agent than others, because in such a configuration it can barter with agents
with higher slot capacity, or even be in a stable relationship which maximizes its utility over the
corresponding upload slot. Every agenti prefers to be inkb,i stable relationships, because only then
its total utility is maximized.

Definition 4.6. A stable configurationis a file-sharing network in which all bartering relationships
are stable, and no additional stable relationships can be made.

An additional stable relationship is a relationship that isformed over previously unused upload
slots, so no relationship needs to be broken to enable it.

In BitTorrent, agents decide for themselves who to barter with, based on their client utility func-
tion. The following lemma shows that this way, a stable configuration is formed:

Lemma 4.5. If every agent knows the slot capacities of all other agents in the network and actions
are fixed, then a stable configuration is formed.

Proof. Assume that every agent knows the slot capacities of all other agents, and that actions are
fixed. Then, every agent knows the global ranking. Any existing stable relationships will not be
broken. An agent in an unstable relationship replaces that either by a stable relationship through a
series of better responses (Lemma 4.4), or the relationshipis broken by its partner playing a better
response. If an agenti is not in kb,i relationships, it will accept any agent to form an unstable
relationship. If no agent is willing to accept that relationship in response, no stable relationship is
possible. This leads to a configuration in which all relationships are stable and no more relationships
can be added, which by Definition 4.6 is a stable configuration.

38

Application of the Model to BitTorrent 4.1 Network Composition and Outcomes

ra
n

k

a

b

c d e
(a)

a

b

c d e
(b)

Figure 4.2: Two configurations of the same network. Every agent has 3 upload slots. Both configurations are
stable because all relationships are stable, and no additional relationships can be made. In configuration 4.2a,
agent e receives no utility. In configuration 4.2b, the relationship between c and d is broken for a relationship
between c and e, which enables an additional relationship between d and e. Now e is in two relationships and
receives utility, without lowering the other agents’ utilities.

A network can have multiple stable configurations, and in each of these configurations, an agent
can receive different utility. Consider for example the twoconfigurations of the same network in
Figure 4.2. Both configurations are stable. In Figure 4.2a, all agents are in three bartering rela-
tionships, except for agente, which is in none. Because none of the other agents have upload slots
available,ecan be in no relationships. However, we can break the stable relationship betweenc and
d for a stable relationship withc ande. This enables an extra relationship betweend ande, as shown
in Figure 4.2b. Note that, again, all relationships are stable. Agentsa throughd receive the same
utility, but nowe is in two relationships while it was in none. This configuration is clearly preferred
over the first configuration.

In the configuration in Figure 4.2a, it is possible fore to improve its utility without lowering the
utilities of any of the other agents. In Figure 4.2b, this is not possible. If we want to increasee’s
utility there, an existing relation has to be broken, lowering another agent’s utility. Adapting Leyton-
Brown and Shoham [9], we refer to configurations as the one in Figure 4.2a as a Pareto-dominated
configuration, i.e., a configuration in which some agent can be made better off without making any
other agent worse off. Formally:

Definition 4.7. (Pareto domination) Configuration cPareto dominatesconfiguration c′ if for all
i ∈ N, ui(c) ≥ ui(c′), and there exists some j∈ N for which uj(c) > u j(c′).1

The configuration in Figure 4.2b is not Pareto dominated by another configuration. Such a con-
figuration is Pareto-efficient:

Definition 4.8. (Pareto efficiency) Network configuration c isPareto efficientif there does not exist
another configuration c′ that Pareto dominates c.

A network can have multiple Pareto efficient configurations.A configuration does not need to
be stable to be Pareto efficient, as Figure 4.3 illustrates. Note that whenever an agent improves its
utility with a better response, the utility of its current bartering partner decreases. On the other hand,
not every stable configuration is Pareto efficient, as we demonstrated earlier in this section with
Figure 4.2.

There can be multiple stable configurations of a network. Theconfiguration in Figure 4.2b is
stable and Pareto efficient. If we switch agentd with agente , we find another. Without knowing the
agents’ utility functions and a concise definition of socialwelfare, it is impossible to identify a single

1We overload notation here:ui(c) is the utility agenti receives in configurationc.

39

4.1 Network Composition and Outcomes Application of the Model to BitTorrent

ra
n

k

a a

b b

c c

Figure 4.3: Two configurations of a network in which all agents employ oneupload slot. The left configuration
is unstable because a can play a better response by barteringwith b, as it does in the right configuration which
is stable. Both configurations are Pareto efficient.

best stable configuration. Instead, the notion of Pareto efficient stable configurations gives us a set
of non-comparable optima. We want the agents to reach some Pareto efficient stable configuration,
but we are indifferent about which one is reached. Whereas Lemma 4.5 proves that a stable con-
figuration is reached, the following theorem proves that we cannot guarantee that a Pareto efficient
configuration is reached.

Theorem 4.6. If a network configuration is stable but not Pareto efficient,a Pareto efficient config-
uration is never reached.

Proof. Assume a network configuration is stable but not Pareto efficient. In a stable configuration,
every agent maximizes its utility over all upload slots it uses for bartering, so no agent will break
any relationship it is in. No additional relationships can be established in a stable configuration.
Therefore, once a stable configuration is reached, it does not change, and thus will not be Pareto
efficient unless it already is.

The configuration that emerges using the distributed implementation is not necessarily optimal.
This analysis holds for the static model. Later in this section, we investigate these results for the
dynamic model. There, we find that even though this result holds for the dynamic model as well, it
is not as dramatic as it may seem at first sight.

At this point, we have shown that with a distributed implementation such as BitTorrent, a stable
configuration is reached. In the next section, we investigate stratification and segmentation in stable
configurations.

Stratification and Segmentation

We started this section with a description of two forms of clustering: segmentation (see Defini-
tion 4.2) and stratification (see Definition 4.3). With segmentation, the network is segmented into
disjoint clusters, while with stratification, agents are inbartering relationships only with peers with
similar upload capacity, but the network is not necessarilysegmented. In this section, we prove that
stratification and segmentation follow naturally from our model. We start by observing that a stable
configuration is segmented when certain conditions apply.

Theorem 4.7. In a stable configuration of a file-sharing network consisting of at least2k+1 agents,
where every agent uses k upload slots for bartering, an agenti is in bartering relationships with
agents ranked between r(i)+k and r(i)−k exclusively.

Proof. We use proof by induction. LetP be the proposition in a stable configuration as mentioned,
an agenti barters with agents ranked betweenr(i)+k andr(i)−k exclusively.

40

Application of the Model to BitTorrent 4.1 Network Composition and Outcomes

10 9 8 7 6 5 4 3 2 1

Figure 4.4: A network of 10 agents, ordered by descending rank. All agents employ 3 upload slots, which
causes the network to segment.

ra
n

k

4 4

3

1

1

1

1

1

Figure 4.5: A network where the number of upload slots varies over the agents. Numbers denote the number of
upload slots an agent has. The maximum number of upload slotsused is 4, but some agents barter with agents
5 ranks below them. Even though agents barter with similar-ranked agents as much as possible, we cannot put
a bound on the rankings of the agents any given agent is bartering with.

Base case: Pis true for agents with the highest rankn: if no ranks are shared amongst the first
k+1 ranks, agenti is in stable relationships with thek agents ranked just belowi. Otherwise, stable
relationships are formed with agents of a shared rank, andi barters with the same or fewer ranks
below it.

Induction step:AssumeP is true for ranksn througha, a > 1. Letb = a−1. Two disjoint cases
apply, for which we use case analysis.

Case 1:No agent rankedb is in a stable relationship with any agent ranked≥ a. Then, because
the configuration is stable and every agent hask upload slots, neither is any agent ranked lower than
b. Similar to the base case, agents rankedb are in relationships with agents ranked betweenb and
b−k exclusively.

Case 2:At least one agent rankedb is in a stable relationship with any agent ranked≥ a. This
means that less relationships with equally- or lower-ranked agents are possible than with Case 1,
so these agents rankedb cannot barter with more ranks than agents rankedb in Case 1. Therefore,
agents rankedb are in relationships with agents ranked betweenb andb−k exclusively.

This implies that ifP holds for some ranka, it also holds for ranka− 1. By the principle of
induction,P must be true.

We explained in Section 4.1.1 that segmentation is an extreme form of stratification. Figure 4.4
shows how segmentation emerges in a network where no ranks are shared and all agents employ the
same number of upload slots.

41

4.1 Network Composition and Outcomes Application of the Model to BitTorrent

Figure 4.6: Cumulative upload capacity in the Gnutella file-sharing network. Taken from Gai et al. [20], based
on an earlier study by Saroiu et al. [40].

The proof for Theorem 4.7 depends on all agents havingk upload slots. In BitTorrent, this is
not the case in general, because agents can specify this number themselves. Because of this, we
cannot prove stratification in networks where ranks are shared but agents can choose their number of
upload slots. In such networks, whether stratification emerges depends on the ranking of the agents,
and the number of upload slots every agent uses. An extreme example is given in Figure 4.5, where
one, three or four upload slots are used, but the order of the agents is such that some agents barter
with agents five ranks lower. However, this does not mean thatstratification does not occur as in
the above, we have demonstrated that, where possible, agents barter with agents with similar upload
capacity.

Figure 4.6 shows the results from a measurement study by Saroiu et al. [40] in the Gnutella
file-sharing network in 2002. It is clearly visible that there are a few distinct upload capacities that
are often used, while intermediate capacities are rarely used. The number of upload slots used in
BitTorrent is related to the physical upload capacity by default (see Section 4.2), which implies that
in BitTorrent networks, there is a relatively small number of ranks that are shared by many agents.
Because agents barter with agents from their own rank beforeresorting to bartering with lower-
ranked agents, in such networks, stratification is bound to occur. The network used by Legout et
al. [25] is such a network, where each of the 30 agents has one out of three possible ranks. This
motivates the following claim:

Claim 4.8. Stratification emerges in general in BitTorrent networks.

Just as with stratification, proving segmentation in general is more difficult. Figure 4.7 shows
an example of a network without shared ranks. Here, one agentcan be the cause of a segmented
network because of its choice of upload slots and its place inthe ranking.

In a network where agents share a rank, segmentation can occur even in different stable config-
urations of the same network. This means that it depends on which configuration is reached by the
distributed implementation whether the network is segmented or not. See Figure 4.8 for an exam-
ple where all agents employ 3 upload slots. Segmentation into larger segments, as in Figure 4.7, is
what has been observed in practice by Bharambe et al. [8] and Legout et al. [25], as we described in
Section 4.1.1.

Stratification Without Global Ranking

Proposition 4.3 states that when all agents have interactedwith each other, their rankings of the other
agents are equal to the global ranking. In BitTorrent, agents do not maintain a ranking. Instead,
they optimistically unchoke other agents, and barter with the agents that upload to them fastest in
the previous round. Bartering relations between two agentsi and j are sustained as long as both

42

Application of the Model to BitTorrent 4.1 Network Composition and Outcomes

3 3 4 3 3 3 3 4 3 3

3 3 4 3 3 3 3 2 3 3

Figure 4.7: Network of agents that all have a different rank. Numbers denote the number of upload slots an
agent deploys. Segmentation does not occur in the upper figure, where the third agent from the right employs
4 upload slots. In the lower figure, this agent employs 2 upload slots, which causes the network to segment. If
this agent was ranked one place lower, the network would not have segmented.

a

b

c d e

f g h
(a)

a

b

c d e

f g h
(b)

Figure 4.8: Two stable configurations of the same network in which agentsemploy 3 upload slots. Segmentation
occurs in Figure 4.8a, but not in Figure 4.8b.

agents reciprocate, but as soon as either encounters a thirdagentk that reciprocates faster, its slowest
bartering relationship is broken for relationship withk.

When the file-sharing game starts, every agenti unchokeski randomly selected peers. The
resulting configuration is arandom configuration. In this random configuration, some agentsi will
be inki relationships because they offer good slot capacity, and some agentsi will be in less thanki

relationships because some or all of the agents they unchoked encountered better bartering partners.
As time progresses, agents unchoke other agents, which enables them to engage in more bartering
relationships, or, if they are already inki relationships, to improve their bartering relationships by
playing better or best responses. Stable relationships arekept, and unstable relationships are replaced
by new, possibly stable, relationships. We say that an unstable configuration progresses towards the
stable configuration, as we already showed with Lemma 4.5. The following lemma proves that this
holds when agents do not maintain a global ranking:

Lemma 4.9. An unstable configuration progresses towards a stable configuration in the limit, even
if agents do not maintain a global ranking.

Proof. The proof for this lemma is the same as the proof for Lemma 4.5,except that agents do not
maintain a global ranking but instead unchoke other agents to discover their slot capacities. This

43

4.1 Network Composition and Outcomes Application of the Model to BitTorrent

allows them to break relationships with agents with lower slot capacity for relationships with agents
with higher slot capacity. In the limit, every agent has repeatedly unchoked every other agent in the
network so a stable configuration is reached.

Claim 4.10. Stratification occurs in the limit even if agents do not maintain a global ranking.

Proof. This follows directly from Lemma 4.9 and Claim 4.8.

Claim 4.10 shows that although our assumption in the previous sections that agents maintain a
global ranking does not reflect reality, stratification occurs in general in real BitTorrent networks,
given enough time. However, there are two requirements for the corollary to hold: first, the agents
must know all other agents in the network, and second, there must be enough time for the agents to
interact with all those agents in the network before the download is completed. We address these
requirements below.

We start with the first requirement. Agents receive from the tracker a random selection of all
peers in the network (see Section 3.1.1). Periodically, this list is updated when the tracker sends a
new random selection. Because all selections are random, itis safe to assume that these selections
are representative of the whole agent population. Whether an agenti can find relationships with
agents that are ranked equal to agents they would be in stablerelationships with had they known the
global ranking largely depends on the size of the network, the distribution of slot capacities over the
agents, and the number of upload slots agenti employs. Ifi cannot find such relationships, some
relationships may be with better-ranked agents and others with lower-ranked agents. This makes
it difficult to predict how utility differs for any agent whenagents do not know all agents in the
network.

The second requirement is that agents need to interact with all other agents in the network. When
the swarm consists of many agents compared to the file exchanged, this will not happen. As with the
first requirement, because agents make random connections to random selections of agents, the net
effect of this on an agent’s utility is difficult to predict.

Stratification in the Dynamic Model

At the end of the previous section, we already mentioned thatin BitTorrent, an agent’s remote peer
list is periodically updated. This is a first step of considering stratification in a dynamic network.
Until now, we assumed that actions are fixed, i.e., that agents specify an upload capacity and num-
ber of upload slots, and do not change these settings or go online or offline. That assumption is
unrealistic in practice.

Lemma 4.5 shows that an unstable configuration develops intoa stable configuration when ac-
tions are fixed and agents know the slot capacities of the other agents. Agents discover these slot
capacities iteratively. In a period between two performed actions, this allows the current configu-
ration of the network to become more stable. Whenever an action is performed, the network can
become less stable, but after that agents can establish new relationships over unused slots or improve
on unstable relationships. The network keeps on progressing towards a stable configuration, but
because actions are performed continuously, that configuration will never be reached.

Theorem 4.11. In a dynamic network, the network configuration progresses towards a stable con-
figuration in the periods where agents do not perform actions.

Proof. Assume that the network is dynamic but agents do not perform actions. Any agenti unchokes
other agents, which enablesi to improve on unstable relationships with a better or best response, or
establish a relationship where there was none. The former isa progression because an unstable rela-
tionship is replaced by a stable or otherwise closer to stable relationship; the latter is a progression

44

Application of the Model to BitTorrent 4.1 Network Composition and Outcomes

because there is a relationship where there was none, which is closer to the stable configuration in
which no additional relationships can be made.

Comparison With Stable Matching

In the above, we have shown that stratification emerges from the client utility function. Gai et al. [20]
investigate stratification from a similar point of view: they model BitTorrent as aStable Matching
problem, where agents give a preference over the other agents and the question is whether a con-
figuration exists where agents are matched to other agents such that neither wants to change the
matching. This is similar to our concept of a stable relationship. Agents are ranked on their slot ca-
pacity, and the ranking contains no ties. Based on that, theyprove that a unique stable configuration
exists, and prove that stratification occurs in this configuration when all agents use the same number
of upload slots. As with our results, they are not able to prove stratification in the general case, but
instead make it plausible.

There are two main differences between the work by Gai et al. and ours. First, we allow the
ranking to contain ties. As a result, a network can have multiple stable configurations. Addition-
ally, we show that not all stable configurations are Pareto-efficient. If a non-Pareto-efficient stable
configuration is reached, we show that a Pareto-efficient oneis never reached. This means that the
outcome in BitTorrent can be suboptimal.

Second, the work by Gai et al. relies heavily on the ranking, even though agents in BitTorrent do
not employ such a ranking but decide on who to barter with based only on perceived transfer speed
during the last round. In Section 4.1.2, we prove that the results are equivalent to those when agents
do maintain a ranking.

4.1.3 Other Observations Explained From The Model

In Section 4.1.1 we discussed Legout et al. [25] which describes stratification from observations
of individual BitTorrent clients on a closed network. In their experiment, a file is exchanged in a
network of 40 leechers and 1 seeder. The leechers are dividedinto three groups: agents 1 to 13 have
an upload limit of 20 kB/s, agents 14 to 27 have an upload limitof 50 kB/s, and agents 28 to 40 have
have an upload limit of 200 kB/s. The seeder is agent 41. The agents exchange a 113 MB file that
consists of 453 pieces of 256 kB each. Every agent sets its number of upload slots to 4.2 With this
setup, the experiment was repeated an unspecified number of times, and the results presented in the
article are averaged over all runs. In this section, we explain these results from our model.

Cluster formation

Figure 4.9, taken from the article, shows the amount of data exchanged between the agents through
regular unchokes (i.e., data sent through bartering and notthrough optimistic unchoking). Clustering
is easily recognizable in this figure from the three dark squares. Note that the total number of
unchokes is shown, which results in lighter cells for the faster peers because they finish downloading
the file faster and in this simulation, peers leave the systemas soon as download completes.3 In the
following, we explain Figure 4.9 from our model.

2The article is not clear about whether this includes the optimistic unchoke slot. Without loss of generality
we assume that the four slots are for regular bartering, and that agents have one additional slot solely dedicated
to optimistic unchoking.

3Agent 27 is clearly an outlier. According to the authors, this agent suffered from a bad network connection.
As a result, it did not finish downloading with the rest of the agents of its group, and was forced to obtain its
remaining pieces from the slowest agents.

45

4.1 Network Composition and Outcomes Application of the Model to BitTorrent

Figure 4.9: Time duration in seconds that agents unchoked each other viaa regular unchoke, averaged over
all runs (from Legout et al. [25]).

The network consists of three classes of agents, and therefore agents have one of three ranks.
Every rank is shared among thirteen agents. From our model, we would expect that the majority of
regular unchokes is between similar-ranked agents. This isindeed the case, as is clearly visible in
the figure from the three dark squares.

Additionally, two faint squares are visible above the two lower squares. This means that the
slower agents of ranks 1 and 2 unchoke agents of ranks 2 and 3, respectively. The absence of similar
squares to the right of the lower squares means that these unchokes are not reciprocated by the faster
agents. This is expected from our model: the faster peers areattractive to the slower peers, but the
reverse is not true. The slower peers try to form a relationship with the faster peers, but because the
faster peers do not reciprocate, the slower peers lose interest and stick to agents of their own rank.

Bartering relationships

From our model, we expect that the agents form bartering relationships. This would result in a figure
that is symmetric around the 45 degree line because that would mean that an agenta reciprocates to
b what it receives fromb. Indeed, we find that the figure is largely symmetric.

Stable Relationships

Not only does our model predict the formation of bartering relationships, but it also predicts that the
agents establish stable relationships given enough time, as described in Section 4.1.2. If every peer
uses four upload slots, every peer would be in four stable relationships in every run of the experiment.
Because Figure 4.9 averages the results over all runs, the existence of stable relationships can no
longer be deduced.

However, we do know that with unchoking, agents are randomlyselected. Because the exper-
iment is performed multiple times, if stable relationshipswere not formed, we would expect the
unchokes to be more evenly spread within each class. The factthat this does not happen implies that
stable relationships are indeed formed.

46

Application of the Model to BitTorrent 4.1 Network Composition and Outcomes

Figure 4.10: Total number of bytes uploaded by agents to each other, averaged over all runs (from Legout et
al. [25]).

Upload/download ratio

Bharambe et al. [8] find in measurements on simulated BitTorrent swarms that the faster peers in a
swarm upload significantly more data than the slower peers do. This simulated result is backed by
tracker logs for real torrents. Legout et al. [25] observe the same in their simulation. Bharambe et al.
argue that this results in unfairness in terms of the volume of data served, while according to Legout
et al., the difference is not unfair as long as the faster peers are able to finish their downloads sooner
than the others.

Figure 4.10 shows the data volumes in the experiment by Legout et al. Because the results are
again averaged over all runs of the experiment, it is difficult to quantify the exact data volume for any
peer from the legend. However, it is clear that the faster peers upload a substantially larger volume
of data than the slower peers. We now explain this using our model.

Assume that the network in the experiment has formed a stableconfiguration. Agents have four
bartering slots and one optimistic unchoke slot. Then, every agent is in four bartering relationships
with agents of its own rank, and downloads the exact same volume that it uploads by bartering. This
excludes the data sent over the optimistic unchoke slot to optimistically unchoked peers. As these
are randomly selected and the three classes in the experiments are of equal size, each class receives
on average 1/3 of any agent’s data sent through optimistic unchokes. With the upload ratio of fast :
medium : slow agents in the experiment set to 200 : 50 : 20 kB/s,every agent receives on average
(200+ 5+ 2)/3= 90 kB/s through optimistic unchokes. Every second a fast peer uploads 200 kB
optimistically unchoking other peers, and receives only 90kB from being unchoked. If a fast peer
uploads 5 pieces, it downloads 4 + 90/200 pieces, which results in an upload/download ratio of 1.12.
In other words, a fast peer uploads 112% of the data it downloads.

Similarly, we find that a medium peer has an upload/download ratio of 0.86, and a slow peer of
0.59. Note that the slowest peers upload slightly more than half of what a fastest peer uploads. This
complies with the observations of Bharambe et al. and Legoutet al. and provides an agent with an
incentive to specify a low slot capacity if it values low upload volume over short download times.

In the above, we assumed that the network configuration is stable. If it is not, this results in an
even higher upload/download ratio for the faster agents. This is because in an unstable configura-

47

4.1 Network Composition and Outcomes Application of the Model to BitTorrent

Figure 4.11: Cumulative distribution of the download completion time for the three different classes of leechers
(from Legout et al. [25]).

tion, a faster agent is connected to some slower agents, which means that it cannot receive a 1:1
upload/download ratio over its regular upload slots. Similarly, an unstable configuration results in
an even lower upload/download ratio for the slower agents.

From the above, we conclude that it follows naturally from our model that BitTorrent is unfair
with regard to data volume upload. This unfairness is a problem because it increases the download
time for the faster agents, as we show below in Section 4.1.3.The unfairness is caused by the
optimistic unchoking policy which randomly selects agentsto unchoke. Bharambe et al. [8] suggest
that this issue can be addressed if the tracker sends remote peer lists filled with peers of similar
ranking to the requesting peer, instead of a random selection of all peers. However, they argue that
this may cause segmentation. Note that this would be beneficial to the faster agents only, because
the slower agents will then no longer receive a significant part of their pieces from the fast agents.
The implications of this on the network need investigating.

Based on the above, we propose a novel die-hard manipulationstrategy that is effective for the
faster agents in the network, i.e., all agents with an upload/download ratio larger than 1. If, at some
point, such an agent is in bartering relationships with similar-ranked agents over all its regular upload
slots, and encounters another similar-ranked agent through optimistic unchoking,4 it can decide to
stop optimistic unchoking, and instead use the optimistic unchoke slot for regular bartering with the
newly discovered agent. This will lower its upload/download ratio towards 1, thereby decreasing its
download time.

Download Completion Time

In Section 4.1.2, we assume that agents strive to minimize their download times. In their experiment
described earlier in this section, Legout et al. [25] measure the download completion time for the
different agent classes. Their findings are presented in Figure 4.11.

In the figure, the vertical line represents the optimal completion time, which is the time the
seed finished uploading a complete copy of the file. Accordingto the authors, that time is around
650 seconds on average. However, we remark here that with a file size of 113 MB and an upload
capacity of 200 kB/s for the fastest peers, it should theoretically be possible to download the file in
565 seconds, provided that the network is in stable configuration and the file is well distributed over

4A heuristic similar to the well-known Secretary Problem could be used to select suitable agents.

48

Application of the Model to BitTorrent 4.1 Network Composition and Outcomes

the other fast peers. The figure of 565 seconds includes optimistic unchokes, so would require that
the fast agents are unchoked by fast agents only, which makesthis a theoretical lower bound only.

It is clearly visible in the figure that the fast peers complete their download well before the
medium and slow peers. Legout et al. conclude that BitTorrent’s choking algorithm fosters recipro-
cation by rewarding contributing peers, and provides agents with efficient sharing incentives. In the
following, however, we put some remarks to this conclusion.

If we look at Figure 4.11 in more detail, we find that the majority of the fast agents complete
their download in about 800 seconds. Compared to the optimalcompletion time of 650 seconds, this
is a 23% increase, and compared to the theoretical lower bound of 565 seconds, it is a 42% increase.

We now consider the slow agents in Figure 4.11. About 90% of these agents complete their
download at about 3300 seconds. If these agents would download the file completely through barter-
ing in a stable configuration, this would require them 113 MB /20 kB/s = 5650 seconds. Even though
the slow agents finish their download last, their effective download time is 58% of the theoretical
download time.

We now take a different perspective on the same issue, using our model and the results from
Section 4.1.3 in which we showed that faster peers have a larger upload/download ratio. Consider
a file consisting of 1,000 pieces exchanged by the same agentsfrom the experiment by Legout et
al. The fast peers, with an upload/download ratio of 1.12, need to upload 1,120 pieces to download
all 1,000, which accounts for a 12% longer download time compared to a bartering-only download.
The slow peers, with their upload/download ratio of 0.59, need to upload only 590 pieces, yielding
an effective download time of 59% of the time needed for a bartering-only download.5 Note how
these figures comply with the theoretical figures derived above. As we mentioned in Section 4.1.3,
the differences become even larger if the network is not in a stable configuration.

In conclusion, we find that from current BitTorrent, some form of egalitarianism emerges which
supports the slow agents at the cost of the fast agents in the network. This provides calculating users
with an incentive to tweak their settings such that their download time decreases.

4.1.4 Conclusions

We started this section with a review of the literature that observes stratification and segmentation
in real BitTorrent swarms. There, it is proposed that the client utility function (see Section 4.1.2) is
the cause of this. In Section 4.1.2, we prove that indeed bothstratification and segmentation follow
naturally from our model.

We prove that over time, a static BitTorrent network reachesa stable configuration in which no
agent can barter with higher ranked agents, and no additional bartering relationships can be made.
Where related work shows such a stable configuration to be unique, based on our ranking which
allows ranks to be shared by multiple agents, we prove that this is not the case. Multiple stable
configurations may exist, and some are Pareto dominated by others. We also prove that if a stable
configuration is not Pareto efficient, a Pareto efficient configuration is never reached. This result
seems quite dramatic, as it suggests that the outcome in BitTorrent is often suboptimal. However, it
relies on the assumption of a static network. In a dynamic network, the network configuration does
progress towards a stable configuration (which may or may notbe Pareto efficient), but because
agents perform actions continuously, this configuration isnever reached.

Similar to related literature, we are not able to formally prove that stratification emerges in
general in BitTorrent networks, but we do make a reasonable case with Claim 4.8. Our reasoning in
this section is facilitated by the concept of a global ranking. Unlike related literature, we show that
our claims hold even without this concept.

5We assume here that agents leave the network after download completes, and are replaced by agents of the
same class.

49

4.2 Equilibria Application of the Model to BitTorrent

In addition to proving stratification, our model allows us toprove that BitTorrent is unfair with
regard to data volume upload, as has been observed in relatedliterature. This unfairness supports the
slow agents in the network at the cost of the faster agents. Based on this result, we propose a novel
die-hard manipulation strategy that is effective for the faster agents in the network.

4.2 Equilibria

In Section 4.1, we showed that in a file-sharing network in which every agenti reciprocates to itski

fastest uploaders, a stable network configuration emerges.In this configuration, agents are grouped
on their slot capacities and barter only with agents with similar slot capacity. In this section, we
investigate whether this resulting configuration providesthe agents with an incentive to assign their
full physical upload capacity to the file-sharing network.

4.2.1 Different Classes of Lazy Free-Riders

In Section 3.3 we introduced lazy free-riding agents as agents that use a client that conforms to
the network’s protocol. Users use the options provided by that client’s interface strategically to
maximize their utility. In this section, we consider three different classes of lazy free-riding users:
average users, advanced users, and optimizing users.

Average Users

An average user is a user that does not have the skill, knowledge, or motivation to adjust settings in
the client interface. This includes specifying the number of upload slots used. With most clients, it is
possible to adjust the upload capacity in the main window of the interface. Therefore, we assume that
an average user can change this capacity, even though some will not be aware of how it influences its
download rate. By default, clients dedicate full upload capacity to the network. We now investigate
whether this default setting maximizes an average user’s utility.

Denote bydi agenti’s download rate. We define an average user’s utility function to be:

uaverage,i = di (4.1)

In words: the higheri’s download rate, the higher its utility. Pieces can be downloaded by
bartering, or by being optimistically unchoked.

Theorem 4.12. In a stable configuration of a network in which every agent hasEquation 4.1 as its
utility function, and where the only action available to theagents is specifying the upload capac-
ity, the strategy profile where every user specifies the full upload capacity is a dominant strategies
equilibrium.

Proof. Assume that the network configuration is stable (see Definition 4.6). Then, by Claim 4.8, an
agent barters with agents with similar upload capacity exclusively. Therefore, any agenti’s utility is
maximized by specifying full upload capacity, regardless of the slot capacities of the other agents.
Another actionx′i can either allowi to barter with the same agents, yielding equal utility, or forces
i to barter with agents with lower slot capacity, yielding lower utility. According to Definition 3.7,
this is a dominant strategies equilibrium.

A result similar to Theorem 4.12 is given by Qiu and Srikant [39], Gai et al. [20], and Fan et
al. [14], amongst others. There BitTorrent’s outcome is found to be a Nash equilibrium. There
are two differences between those results and ours. First, where the others consider the client utility
function only (see Section 4.1.2), we recognize that the user’s utility function does not need to match

50

Application of the Model to BitTorrent 4.2 Equilibria

that client utility function. In the following sections, weconsider other types of users and show that
this is an important distinction. To our knowledge, we are the first to make this distinction. Second,
they claim the equilibrium to be a Nash equilibrium (see Definition 3.4), whereas we show it to be a
dominant strategies equilibrium (Definition 3.7).

Manipulation Possibilities for Average Users

The proof for Theorem 4.12 already shows that in the dominantstrategies equilibrium, there is some
room for an agent to manipulate: if it decreases its upload capacity with an amount small enough
to stay connected to the same bartering partners, its utility will not decrease. This equilibrium is
a weak equilibrium, as defined in Section 3.2.2. With Equation 4.1 as utility function, the agent’s
utility will not increase either, so the user has no incentive to do so. For such an incentive, the utility
function needs to incorporate an upload component. Denote by r i agenti’s upload rate. Then, such
a utility function is:

uaverage,i = αdi −βr i ,α,β ∈ R
+ (4.2)

whereα andβ are some arbitrary positive constants. We make the following observation for a
network where all users have this utility function:

Observation 4.13. In a stable configuration of a network in which every agent hasEquation 4.2
as its utility function, and where the only action availableto the agents is specifying the upload
capacity, the dominant strategies equilibrium from Theorem 4.12 is not reached.

We motivate this with an example. Assume an agenti with Equation 4.2 as its utility function,
and common priorP over the types of the other agents. This distribution includes the distribution of
upload bandwidths over the other agents. Assume for simplicity that that distribution is uniform over
[0,M], whereM is some maximum upload capacity.P also contains the probability for an agent to
be interested in the contenti is interested in, or, in other words,P allowsi to make an estimate on the
swarm size for the file it wants to download. Based on this information,i can calculate its expected
utility ui = EP[ui(θi ,xi ,s−i(θ−i))] because, on average, it will be bartering with theki agents whose
slot capacities are closest toi’s slot capacity. Ifi lowers its upload capacity (i playsx′i instead ofxi),
its slot capacity drops proportionally, thereby decreasing the termβr i . As long asi’s slot capacity is
larger than that of the first agent ranked below it,i barters with the same agents as before, and the
termαdi is unchanged. Therefore, its total utility increases. If wedenote byδ =

cu,i
ki

− (
cu,i
ki

)′, then

with the uniform distribution over the upload capacitiesi can lower its slot capacity withδ = M
n to

obtain its maximized utility with minimal uploaded data.
We are not aware of any literature in which such behavior is described. Intuitively, this behavior

seems unlikely, and we give four possible explanations for this:

1. Equation 4.2 is an unrealistic utility function, or in practice,β is so small compared toα that
the actual increase in utility from manipulation is marginal;

2. If uploaded volume were part of the utility function, thenexpected utility would increase with
this form of manipulation. However, actual utility may differ from expected utility, which ren-
ders this form of manipulation unattractive to risk-averseusers. The user is certain that utility
increases only when the manipulation is carried out repeatedly. For a user that downloads spo-
radically, the uncertainty of whether utility will actually increase may provide an incentive to
not manipulate. This motivates looking into a repeated equilibrium as found in the Repeated
Prisoners Dilemma [6]. Then, specifying all upload capacity can motivate others to do the
same as they will benefit from that in future downloads. This,however, seems unlikely in our
situation;

51

4.2 Equilibria Application of the Model to BitTorrent

Upload capacity (kB/s) # Upload slots Slot capacity (kB/s)
16 3 5.3
32 3 10.7
64 5 12.8
96 6 16
128 8 16
256 10 25.6

Table 4.1: Upload capacity and default number of upload slots in the Vuze BitTorrent client, taken from [3].
Resulting slot capacity is also listed.

3. There is another reason for expected utility to differ from actual utility, which is explained
from thebounded rationalityof the users. By that, we mean that users have limits to the
information they can have, cognitive limitations of their minds, and a finite amount of time
to make decisions, especially when, as in our setting, the common priorP is enormous. The
expected utility can be based on wrong information, wrong beliefs, or wrong calculations.
This especially holds in the case of the average user, that may very well not be aware of the
connection between upload capacity and download rate;

4. Manipulation as we described above requires effort: information on bandwidth distributions
must be gathered, estimates must be made, and settings must be adjusted. Such costs should
be included into the utility function, because too much effort outweighs the benefits of manip-
ulation. This makes manipulation less attractive;

Advanced Users

An advanced user is a user that is willing to change any of the settings we listed in Section 3.2.2. In
particular, this means that an advanced user can tweak the maximum upload capacity and number of
upload slots. Just as an average user, an advanced user strives to minimize its download time, or to
maximize download rate, and therefore it has Equation 4.1 asits utility function.

Because an advanced user can change its number of upload slots, it is more flexible in deter-
mining which, and how many, agents it barters with than an average user. We illustrate this with an
example. Consider a network in which every agent has a slot capacity of 25 kB/s. Agenti enters this
network with a total upload capacity of 100 kB/s. Ifi employs three upload slots, it will receive 75
kB/s through bartering, whereas it receives 100 kB/s with four upload slots.

In Section 4.1.2, we presented Figure 4.6, which shows the distribution of upload capacities
measured in the Gnutella file-sharing network in 2002. It is clearly visible that there are a few distinct
upload capacities that are often used, while intermediate capacities are rarely used. Combined with
our results in Section 4.1, large layers of users with the same slot capacity are expected, if we assume
that all users use the same number of upload slots. However, the number of upload slots that a client
(not the user) specifies by default increases with the total upload capacity. Table 4.1 lists these
settings for the Vuze BitTorrent client.6 Because the resulting slot capacities are different, segments
are still expected.

In Section 4.1.1, following Legout et al. [25], we discussednetworks in which peers have one of
three different upload capacities. In order to demonstratestrategies available to advanced users, we
now consider a similar network, in which agents have an upload capacity of 64, 128 or 256 kB/s. We
assume that the agents follow the guidelines of the Vuze client, resulting in the agents employing
5, 8 or 10 upload slots, respectively, with a respective slotcapacity of 12.8, 16 and 25.6 kB/s. As a

6Vuze (http://www.vuze.com) is among the most popular BitTorrent clients today.

52

Application of the Model to BitTorrent 4.2 Equilibria

result, the network will be grouped into three layers. In large networks, it is safe to assume that there
are sufficient agents in every layer for a new agent to barter with.

Consider an agenti that joins the swarm. Assumecu,i = 256 kB/s, andki = 10, i.e., the default
value. Then,i barters with 10 other agents with the same upload capacity, andui = di = 10·25.6=
256. If i specifiesk′i < 10, its slot capacity rises, but it still connects to the agents with slot capacity
25.6 kB/s because no agents are ranked higher, and its utility does not increase. Ifk′i > 10, i’s slot
capacity decreases. Takek′i = 15 as an example, yielding a slot capacity of 17 kB/s, just above the
slot capacity in the middle layer.i then connects to the agents in the middle layer, andu′i = 15·16=
240< ui . In general, if cu,i

k′i
equals the slot capacity in one of the layers, thenu′i = ui; otherwise,

u′i < ui . If c′u,i < cu,i , theni connects to lower-ranked agents and its utility decreases.This example
motivates Theorem 4.14 below. In order to prove that theorem, first we define what we mean by a
large network.

Definition 4.9. A large networkis a network consisting of so many agents that an agent can expect
to be bartering with agents from one rank only.

Theorem 4.14. In a stable configuration of a large network in which every agent has Equation 4.1
as its utility function, and agents can specify their uploadcapacity and number of upload slots,
specifying full upload capacity and default number of upload slots is a Bayesian-Nash equilibrium.

Proof. Assume a stable network in which the conditions mentioned hold. Then, by Definition 4.9
and Claim 4.8, an agenti expects a finite number of layers, each of which is shared by multiple
agents. Denote byu∗i the utility i obtains if it specifies full upload capacity and default number of
upload slotsk∗i .

If an agenti specifies upload capacityc′u,i other than full capacitycu,i , it will barter either with the
same, or with lower-ranked agents, becausec′u,i < cu,i because of physical constraints. This yields a
utility equal to or lower thanu∗i .

If i specifies upload capacityc′u,i ≤ cu,i and k′i 6= k∗i upload slots, then two disjoint cases are
possible:

Case 1: If there is a layer in which the upload capacity equals
c′u,i
k′i

, then i’s expected utility is

exactlyc′u,i ≤ u∗i ;
Case 2:If there is no such layer, theni’s slot capacity is larger than that of the agents it barters

with, and thereforei’s expected utility is smaller thanu∗i .
Therefore, with any combination ofc′u,i andk′i , i’s expected utility is smaller than, or equal to,u∗i .

For any agenti ∈ N, strategysi that results ini specifyingcu,i andki providesi with highest expected
utility. By Definition 3.6, this is a Bayesian-Nash equilibrium.

Theorem 4.14 does not hold if an agent cannot expect to barterwith equally-ranked agents ex-
clusively, as the following theorem shows.

Theorem 4.15.In a stable configuration of a smaller network in which every agent has Equation 4.1
as its utility function, and agents can specify their uploadcapacity and number of upload slots, an
equilibrium is not reached.

Proof. We use proof by example.
Consider a network consisting of an agenti and 11 other agents. Agenti has a physical upload

capacity of 200 kB/s, which it divides evenly over itski upload slots. Agents 1 through 11 have a
slot capacity of 5,10,20,30, . . . ,100 kB/s. We expect that in a stable configuration of such a small
swarm, an agent is connected to the agents with slot capacitycentered around its own slot capacity.
Table 4.2 shows the outcome, andi’s utility. We find that here, it is beneficial fori to choosek′i
strategically. Maximum expected download rate is obtainedwith 6 upload slots; however, this is

53

4.2 Equilibria Application of the Model to BitTorrent

Upload slots Slot capacity Barters with Download rate
1 200 100 100
2 100 90, 100 190
3 67 50, 60, 70 180
4 50 30, 40, 50, 60 180
5 40 20, 30, 40, 50, 60 200
6 33 10, 20, 30, 40, 50, 60 210
7 29 5, 10, 20, 30, 40, 50 155

Table 4.2: Agent i has physical upload capacity of 200 kB/s, and joins a network of 11 other agents that have a
slot capacity of5,10,20,30, . . . ,100kB/s, respectively. For every number of upload slots ki , we specify i’s slot
capacity, the slot capacities of the agents that i connects to, and resulting expected utility.

based on the assumption that when 6 slots are employed,i will connect to the six agents with slot
capacity centered around its own slot capacity, i.e., agents with slot capacities 10 through 60. If the
agent with slot capacity 60 has all its upload slots assignedto other agents,i is forced to barter with
the agent with slot capacity 5 instead, which would result inui = 155. Using 2 upload slots is a
safer choice, as that results in a marginally smaller download rate of 190, but with high probability
becausei then has a slot capacity of 100 kB/s which makes it the best-ranked agent.

From the proof for Theorem 4.15 we find that the utility obtained by the user can vary substan-
tially: from a download rate of 100 with one upload slot, to 210 with six upload slots. However,
the gain fully depends on the number of agents in the swarm andthe distribution of bandwidth over
these agents, both of which are difficult to predict before joining the swarm. In general, the smaller
the swarm, the more skewed the bandwidths are distributed over the agents, and the more gain can
be obtained by selecting an optimal number of upload slots. But, as the proof above shows, speci-
fying another number of upload slots may result in very low utility. Joining a smaller swarm with
any number of upload slots holds the risk that this number yields suboptimal utility. The larger the
swarm, the smaller this risk, and according to Theorem 4.14,it is no longer a risk when the network
is large, according to Definition 4.9. For the smaller swarm,a user may be best of by joining the
swarm first with the default number of upload slots, observing the upload rates of the other agents
in the swarm, and then calculating the optimal number of upload slots. However, this will be too
much of an effort for most users, especially considering that agents join and leave the network con-
tinuously, which means that the calculations have to be repeated multiple times. In Chapter 5, we
elaborate on this issue and suggest a BitTorrent client thatdynamically performs such calculations.

4.2.2 Long-Term Seeding Incentive

With the utility for both average and advanced users directly tied to the download rate, it follows
directly that neither of these users obtain any utility whenthe download is finished. Figure 3.2
shows two examples of utility where we assume that full utility is obtained when the download
finishes. Another option is Figure 4.12, where utility accumulates until the download completes and
full utility is reached.

From all these examples, we find that BitTorrent offers no long-term seeding incentive to average
and advanced users. When their downloads complete, these users obtain no utility from seeding the
downloaded file; instead any user that has a utility functionwith a negative upload component, such
as Equation 4.2, has an incentive to go offline directly afterthe download finishes.

In the following section, we discuss the BarterCast reputation mechanism that has been added to
the Tribler client to provide users with a long-term seedingincentive.

54

Application of the Model to BitTorrent 4.3 BarterCast

0 1 2 3 4 5 6
0

1

2

3

Figure 4.12: Download starts at t= 1 and finishes at t= 4. After t= 4, no data is downloaded, so no additional
utility is obtained.

4.2.3 Conclusions

We started this section by defining two different classes of lazy free-riders: average users, and ad-
vanced users. We show that a user has room for manipulation ifits utility function incorporates an
upload component. However, in most practical situations, we find that this room is small and in
practice it is not used.

Related literature has found that if specifying upload capacity is the only action available to users,
specifying full upload capacity is a Bayesian-Nash equilibrium. Instead, we find that it is a dominant
strategies equilibrium, which is a stronger equilibrium asit does not depend on the assumption of a
common prior that is shared amongst all agents in the network.

If agents can specify their number of upload slots in addition to specifying their upload ca-
pacity, we show that specifying full upload capacity and thedefault number of upload slots is a
Bayesian-Nash equilibrium. However, this does require that the network is large, because it depends
on whether agents can expect to be bartering with equally ranked agents exclusively. In smaller net-
works, where that expectation is not met, we show that an equilibrium is not reached and that agents
can gain or lose substantial amounts of utility, dependent on their settings. Unfortunately, it is diffi-
cult for an agent to determine which settings will provide maximum utility, and for most users, the
effort of performing these calculations will outweigh the possible gain in utility by deviating from
the default settings.

Finally, and unsurprisingly, we show that current BitTorrent does not provide an incentive for
users to stay online after their download has finished. An additional mechanism is needed to provide
this incentive, and this is the subject of the next section.

4.3 BarterCast

Our results in the previous section show that BitTorrent needs additional mechanisms to provide
users with a long-term seeding incentive. One such mechanism is the BarterCast reputation mecha-
nism. In this section, we investigate whether a user has an incentive to use BarterCast in a network
where all agents use BarterCast.

We introduce and describe BarterCast in Section 4.3.1. In Section 4.3.2, we investigate whether
using BarterCast is an equilibrium strategy. In Section 4.3.3, we draw conclusions. We verify the
theoretical results from this chapter with experiments in the following chapter.

4.3.1 Introduction

In Section 4.2.2, we showed that even though BitTorrent provides incentives for users to upload
while downloading, there is no incentive for users to stay online and seed the file after their download

55

4.3 BarterCast Application of the Model to BitTorrent

has completed. BitTorrent relies on altruistic peers to keep content available, which is problematic
especially for content in which few peers are interested.

In Section 2.1.1 we gave an overview of proposed solutions tothis problem, which are all based
on reputation systems that keep track of an agent’s contribution to the network with respect to its
consumption. Centralized reputation systems exist in the form of private communities that ban peers
who upload little compared to what they download. A study by Andrade et al. [5] finds that in such
communities, more peers share their content than in public communities, which results in higher
download performance and more available content. The downside of such communities is that they
have a central point of failure, considerable administration and management overhead, and require
user’s trust in an unknown authority with respect to privacysensitive information [28]. As an alter-
native, distributed reputation systems have been proposed, but none of these have been successfully
deployed in practice because research has focused on systems that cannot be manipulated, thereby
sacrificing practical feasibility for attractive theoretical properties.

Taking another approach, Meulpolder et al. [28] introduce BarterCast. Here, attractive theoretical
properties may be sacrificed for practical feasibility. BarterCast is a fully distributed reputation
mechanism that is deployed in practice in the Tribler network. This is possible because it does not
compute a globally consistent reputation score for any agent. Instead, reputation in BarterCast is
modeled after reputation in human communities, where everyperson has a subjective reputation for
every other person in the community, that is based on direct experience and information obtained
from other people. Because it is based on incomplete information, such reputation is not globally
consistent.

In BarterCast, the data volume that an agent has received from another agent in the past is taken
as that agent’s direct experience. Every agenti maintains a private history as a set of triples(j,
up, down)that represents the amount of data measured in kB thati exchanged withj. This private
history is shared with all other agents in the network known to i. From the private histories thati
receives from the other agents, it constructs a subjective sharing history from which it determines
the net contribution of peers thati did not interact with itself. It does this by constructing a graph,
where the agents are the vertices. Edges between vertices are directed and have a capacity, where
the capacity of the edge betweeni and j represents the data volume thati has uploaded toj. If i
evaluates an agentj that it had no direct experience with, it calculates the maximum flow over the
graph from j to i, using the Ford-Fulkerson algorithm (see Meulpolder et al.[28] for details). This
way, j ’s contribution is bound by the reputation of the agents thatreportedj ’s contribution toi. Note
that an agenta may exaggerate another agentb’s reputation to an agentc, but this has limited effect
becausec boundsb’s reputation by its direct experience witha.

The sharing history is private toi and not shared with other agents. Becausei is not necessarily
informed of all j ’s up- and downloads, the net contributionbi(j) of j according toi is subjective.
Frombi(j), the subjective reputation valueRi(j) of agentj according toi is calculated as follows:

Ri(j) =
arctan(bi(j))

π/2
(4.3)

The arctan-function is used for two reasons. First, it limits the resulting reputation between -1
and 1. Second, it has the effect that the difference between,for example, 0 and 100 MB is more
significant than the difference between 1000 and 1100 MB. This ensures that a modest contribution
of a new or neutral peer significantly effects its reputation.

Agents use their subjective reputations of the other agentswhen they unchoke other agents.
Meulpolder et al. [28] describe how this reputation can be used by agents under two different policies
to enforce participation. The first is theban-policy, under which an agent does not upload to agents
with a reputation below a certain threshold (the article considers -0.3, -0.5 and -0.7). The second
policy is therank-policyunder which all agents are served, but those with high reputation first. The
idea is that this motivates agents to seed a downloaded file, as that will boost their reputation and

56

Application of the Model to BitTorrent 4.3 BarterCast

make for faster subsequent downloads. Based on simulationsand measurements in real swarms,
Meulpolder et al. find that BarterCast is effective in distinguishing free-riders from altruists. In
the following, we investigate whether individual users receive best performance in a swarm if they
enable BarterCast.

4.3.2 Incentive to Use BarterCast

Introduction

In this section, we include BarterCast in the BitTorrent model we developed in Chapter 3.2. In the
remainder of this section, by BitTorrent we refer to the BarterCast-enhanced BitTorrent network,
while byplain BitTorrentwe refer to BitTorrent without BarterCast.

The BarterCast reputation mechanism we described in the previous section is fully distributed:
every agent calculates its own subjective history and shares its private history with the agents it
knows. Because agents are autonomous, it is possible for an agent to send messages that do not
conform to the BarterCast specification, or to send false reports. However, as we motivated in
Section 3.3, in this thesis our focus is on lazy free-riding agents, i.e., agents that will not develop or
install clients with such behavior. These agents use the interface to enable or disable the BarterCast
mechanism. If this is enabled, we assume that the BarterCastmechanism is faithfully executed.

With BarterCast added to our network, agents in a file-sharing network with BarterCast have an
extra actionxi,b ∈ Xi,b available that models the enabling or disabling of the BarterCast mechanism.

Equation 3.5 is the outcome function that takes all agents’ actions and from that calculates an
outcome that determines which file chunks are exchanged by which agents. In Section 3.2.5, we
described that in plain BitTorrent, this outcome function is implemented distributedly by the agents,
with every agent uploading file pieces to its best-reciprocating agents. Chapter 4.1 explained how
this implementation leads to stratification and identifies equilibria of the agents’ strategies.

With BarterCast added to our network, the distributed implementation of the mechanism that de-
termines the outcome changes. Agents that use BarterCast nolonger unchoke their best-reciprocating
agents, but instead unchoke the agents that best comply withtheir participation policy.7 Note that
besides the implementation of the mechanism and the set of actions available to an agent, our model
remains unchanged.

Preliminaries

In Section 4.3.1, we mention that Meulpolder et al. [28] consider two policies: the ban-policy and
the rank-policy. We investigate the incentive for a user to employ BarterCast with either of these
two policies in a network where all agents use that policy. Our goal is to show that using BarterCast
with one of these policies is an equilibrium strategy, because then BarterCast’s intended long-term
seeding incentive can be achieved.

BarterCast is developed to provide a long-term seeding incentive, and keeps a reputation score
of an agent’s participation in multiple swarms. In our analysis, we therefore consider a setting where
the agents have been active before in other swarms, in which they built up a reputation score. We
focus on one swarm only, and keep any agent’s reputation score constant, because the data volume
exchanged in this swarm is negligible compared to its previously exchanged volume. We assume
that all agents in the swarm use the same policy.

As in Section 4.2, we model the agents to have one of a distinctnumber of upload capacities.
We assign reputation scores to the agents according to some normal distribution, so that there is no
correlation between an agent’s upload capacity and its reputation score. We address this later in this
section.

7We assume that there is only one policy, or, equivalently, that agents cannot select the policy used.

57

4.3 BarterCast Application of the Model to BitTorrent

Under the ban-policy, agents with a reputation below some threshold are not served, while the
other agents are treated as in plain BitTorrent. The effectsof this on the outcome are easily predicted:
the agents with a too low reputation are not served by the other agents, and can only barter with each
other. In a network where all agents, the seeders included, use BarterCast with the ban-policy, those
agents will not finish their downloads. For the agents with reputation above the threshold, nothing
changes. An agent that switches to plain BitTorrent bartering cannot improve on its completion
time: if its reputation is too low, it cannot download from the other agents, while if its reputation is
sufficient, it barters as it would with the ban-policy enabled. As a result, using BarterCast with the
ban-policy is clearly a Bayesian-Nash equilibrium strategy.

Whether using BarterCast with the rank-policy is an equilibrium strategy as well is more difficult
to predict, and we focus on that in the remainder of this section.

Ranking and Stratification

The outcome in plain BitTorrent fully depends on the rankingof slot capacities. In Section 4.1.2, we
showed that even though agents do not actually maintain sucha ranking of the other agents in the
network, the outcome is equivalent to the outcome in a network where agents do have such a rank.
We also showed (Section 4.1.2) that this ranking is a global ranking. This global ranking is the main
cause of stratification in plain BitTorrent networks.

Agents that use the rank-policy no longer rank agents on their slot capacity, but instead on their
reputation score. From this point on, we refer to the rankingon slot capacity as thecapacity ranking,
and to the ranking on reputation score as thereputation ranking. Note that with the reputation
ranking used with the rank-policy, it is not the downloadingagent that ranks its uploaders, but
the uploading agent that ranks its downloaders. An uploading agenti selects, from all agents that
uploaded toi over the past round, theki agents with highest reputation, and reciprocates to those
agents. Those agents do the same, and for each of those agents, if i is among its uploaders with
highest reputation, it reciprocates toi and a bartering relationship is formed.

For now, we assume that an agent’s reputation in BarterCast is global, i.e.,Ri(j) = c for all agents
i ∈ N, i 6= j and−1 < c < 1, and drop this assumption later in this section. Then, all agents rank the
other agents using the same metric, and all agents have the same reputation ranking over the other
agents. As in plain BitTorrent, this is a global ranking.

Following our reasoning in Section 4.1.2, we expect the network configuration to progress to-
wards a stable configuration. However, in this context, thismeans that agents with similar reputation
scores, and not similar slot capacities, are in bartering relations with each other. The network is
stratified on reputation scores.

In plain BitTorrent, the resulting stratified stable configuration allowed us to identify equilibria
with regard to upload capacity and number of upload slots used. In the following, we investigate
whether the outcome of the BarterCast-enhanced BitTorrentprovides users with an incentive to use
BarterCast.

Equilibrium

Above, we showed that using the rank-policy in BarterCast-enhanced BitTorent, a stable configu-
ration is reached which is stratified on reputation scores. In other words, all agents are bartering
exclusively with agents with similar reputation.

Because we expect no correlation between reputation score and upload capacity (as motivated
earlier in this section), in the stable configuration, an agent expects to be bartering with agents
randomly drawn from all agent classes present in the swarm. In Sections 4.1.3 and 4.2, we show
that this causes unfairness with respect to uploaded data volume and completion times: faster agents
upload much more than they download, and could finish their download sooner if they could barter

58

Application of the Model to BitTorrent 4.3 BarterCast

-1 0 1
reputation (r)

fr
a
ct
io
n
o
f
a
g
en

ts
a 0 lmax

slot capacity (l)

fr
a
ct
io
n
o
f
a
g
en

ts

l i

Figure 4.13: Distribution of the agents over the reputation scores (left) and slot capacities (right).

with other fast agents exclusively. The reverse holds for the slower agents. BitTorrent’s outcome
under the rank-policy is therefore beneficial for the sloweragents, at the expense of the faster agents.
We now investigate whether agents have an incentive to switch from using the ban-policy to plain
BitTorrent bartering, in an attempt to improve their completion time.

In a network where all agents use the rank-policy, an agenti with high reputation score can barter
with any agentj it wants, becausej will always reciprocate. Agenti can improve its download rate
by turning off its rank policy and switching to plain BitTorrent bartering, thereby favoring agents
with high upload capacity. An agent with low reputation, on the other hand, can only barter with
other agents with low reputation. In order to improve on its completion time, it needs to find good
bartering partners among the other low reputation agents. Whether this is possible depends on the
fraction of lower reputation scores in the swarm, and the size of the swarm. The lower the agent’s
reputation, the more time it needs to explore the network to find suitable bartering candidates.

In order to formally proof this, we first define a large BarterCast network.

Definition 4.10. A large BarterCast networkis a network consisting of so many agents that an agent
can expect to be bartering with agents with similar reputation exclusively.

Theorem 4.16. In a stable configuration of a large BarterCast network, where:

1. all agents use the rank policy,

2. the reputation ranking does not fully correspond to the capacity ranking,

using the rank policy is not a Bayes-Nash equilibrium strategy for an agent with high reputation.

Proof. Assume a stable configuration of a large BarterCast network for which the conditions men-
tioned hold. Denote byi an agent with high reputation. In the stable configuration,i barters with
agents with similar reputation. Because of condition 2,i expects these agents to have different up-
load capacities. Ifi turns off its rank policy and switches to plain BitTorrent bartering,i can unchoke
fast agents only. Those agents reciprocate because they usethe rank policy andi has high reputa-
tion. Therefore,i improves its expected utility and by Definition 3.6, using the rank policy is not a
Bayes-Nash equilibrium strategy.

We verify this result experimentally in the following chapter.
Three questions arise from Theorem 4.16. The first is what exactly constitutes a high, or high

enough, reputation. Second is whether this is a sustainablestrategy. Third is the question how large
the expected gain is from disabling the rank policy.

To determine what a high (enough) reputation is for the manipulation to be successful, we first
recognize that the manipulation succeeds for an agent with the reputation of 1 because it can barter

59

4.3 BarterCast Application of the Model to BitTorrent

with any agent in the swarm. The lower the agent’s reputation, the lower the probability that it can
find bartering partners with higher slot capacity than with the rank policy enabled, over all its upload
slots. Figure 4.13 (left) shows some distributionR(r) of the reputation scores over the agents. For an
agent with reputation scorea, the aforementioned probability is then given by Equation 4.4, which
gives the fraction of the agents that that agent can barter with:

a
Z

−1

Rt(r)dr (4.4)

A user that knows its reputation score can thus calculate theprobability that switching to plain
bartering will decrease its download completion time. Notethat this is an upper bound, because an
agent needs time to explore the network in order to find the better bartering partners.

To answer the second question, we recognize that in order to gain from disabling the rank policy,
first the user needs to build up a high reputation, then turn off the rank policy in order to download
faster. Following our analysis in Section 4.1.3, an agent downloads the same volume it uploads if
it barters with agents with equal slot capacity exclusively. If such an agent has high reputation, its
reputation remains high and it can successfully continue downloading with disabled rank policy.
However, if it barters with faster agents, it will download more than it uploads, causing its reputation
to drop. That requires the user to enable the rank policy again to boost its reputation.

Consider the right part of Figure 4.13, which shows some distribution L(l) of the agents over
the slot capacities (l) of the agents. The probability that switching to plain bartering is a sustainable
strategy is the probability that an agent with slot capacityl i =

cu,i
ki

barters with agents with lower slot
capacity. This probability is given by

l i
Z

0

L(l)dl (4.5)

This shows that the higher an agent’s slot capacity, the longer it can profit from switching to
plain bartering. In the above, we have seen that faster agents increase their reputation at a higher rate
because they barter with slower agents more. Combined, we find that switching to plain bartering is
attractive for fast agents with high reputation. These are exactly the agents that we expect to profit
from switching.

This leaves us with the last question: what is the expected gain for an agent? With BarterCast
enabled, we approximate agenti’s download rate byki l̄ , wherel̄ represents the weighted average of
slot capacities in the swarm. Denotei’s reputation bya. Then, Equation 4.4 represents the fraction
of the agents thati can barter with. Then,i’s gain is bounded by:

lmax

a
Z

−1

D(r)dr− l̄ (4.6)

This shows that the larger an agent’s reputation, the higherits gain.

Subjective Reputation

In the above, we assumed that all agents have the same rankingover the agents: a global ranking.
However, as described in Section 4.3.1, BarterCast is inherently subjective and globally inconsistent.

An agenti using BarterCast bases its reputation of another agentj on its direct experience withj,
and information aboutj obtained from others. Meulpolder et al. [28] reason that by approximation
every peer has a reputation score for every other peer in the network. We therefore ignore the
possibility thati has no information onj at all.

60

Application of the Model to BitTorrent 4.3 BarterCast

This leaves the possibility thati’s reputation of j is either too high or too low. Meulpolder et
al. show, based on simulations, that the average of all agents i ∈ N\{ j} of j is a good representation
of j ’s real behavior. More research is needed to determine the variance of j ’s reputation among all
other agents, but lacking that, our assumption of a global ranking is plausible.

Relationship Between Reputation And Upload Capacity

At the beginning of this section, we assume that there is no relationship between an agent’s reputation
and its upload capacity. We are not aware of any research thatinvestigates a possible relationship,
but our results in Section 4.1.3 suggest that such a relationship is plausible.

Faster agents upload more than they download, and the difference becomes larger if they are not
in equal relationships, as is the case when BarterCast with the rank policy is added to BitTorrent.
Therefore, when a fast agent completes its download, it has boosted its reputation. A slow agent,
on the other hand, uploads less than it downloads and its reputation decreases. After download
completes, that agent needs to seed the file in order to boost its reputation again. In line with our
finding in Section 4.3.2, this shows that the long-term seeding incentive offered by the rank policy
is stronger for the slower agents.

The above also shows that it is easier for a fast agent to obtain a high reputation. That implies
that there is a correlation between reputation and relativeslot capacity, rendering our assumption of
no relationship between the two invalid. That, in turn, would decrease the difference in download
rate for a fast agent between bartering under the rank policyand plain bartering, possibly moving
enabling the rank policy more towards an equilibrium strategy. We leave analyzing this possibility
for future research.

4.3.3 Conclusions

BarterCast is a reputation mechanism that is added to the Tribler network to provide agents with a
long-term seeding incentive. It keeps a reputation score for every agent, and allows agents to base
their unchoking decisions on that. Meulpolder et al. [28] suggest two unchoking policies that are
based on the BarterCast reputation: the ban-policy and the rank-policy. In this section, we investigate
whether users have an incentive to use BarterCast in a network where all other users do so.

We find that using the ban-policy is a Bayesian-Nash equilibrium, as no user can benefit from
not using it if all other users do. Using the rank policy, on the other hand, is not an equilibrium
strategy for the fast agents – these can improve on their download completion time by switching
to plain bartering. For these fast agents, we find that switching is a sustainable strategy as well, as
those agents continue to keep their reputations high. Additionally, we find that the long-term seeding
incentive using the rank policy is stronger for the slower agents than for the faster agents.

We verify experimentally whether these findings hold in practice in the following chapter.

61

Chapter 5

Experiments

In the previous chapter, we used our model from Chapter 3 to predict the outcome of the BitTor-
rent mechanism, i.e., to predict which agent classes an agent is likely to be bartering with. This
allowed us to both predict and explain observed phenomena like stratification and segmentation,
skewed upload/download ratios, and download completion times. For some types of users, under
some circumstances, we show that the BitTorrent file-sharing game is in a Nash equilibrium. Using
the BarterCast reputation mechanism with the rank policy isan equilibrium strategy for the slower
agents, but not for the fastest. In this chapter, we verify these results with simulations.

Section 5.1 describes the setup of our experiments. Section5.2 investigates our claims on strat-
ification in BitTorrent networks. This is followed by an analysis on the formation of bartering rela-
tionships in Section 5.3. Section 5.4 verifies the outcome ofour prediction on download completion
times. In Section 5.5, we consider the special case of small swarms. In Section 5.6, we investigate
whether the Nash equilibria we identified in Section 4 exist in practice. Section 5.7 investigates
whether using BarterCast is an equilibrium strategy. Finally, in Section 5.8, we draw conclusions.

5.1 Experiment Setup

For our experiments, we use TriblerSim 1.0, a simulator thatis developed by Michel Meulpolder at
the Tribler group of Delft University of Technology [30]. This simulator features a full implementa-
tion of the BitTorrent protocol and simulates BitTorrent swarms on a single computer.

We run our experiments on two types of swarms: swarms with 5% seeders, and with 45% seed-
ers. With our experiments on the swarms with 5% seeders, our goal is to demonstrate the validity
of our model and our claims in Section 4 on stratification and bartering relationships. In our model,
we did not consider seeders. We add seeders to the network in our experiments to ensure that all file
pieces are available in the swarm. To prevent agents from downloading from the seeders extensively,
all seeders have very low upload capacity.

The second types of experiments, on swarms with 45% seeders,are motivated by a study by
Dán and Carlsson [13], who performed measurements on 1,690BitTorrent trackers and investigated
about 330,000 swarms. They find that on one particular date in2008, 21 million leechers and 17
million seeders participate in 3.3 million unique swarms – roughly 45% seeders per swarm.

Their study also finds that that are few very large swarms, andmany small swarms; the distribu-
tion of swarm sizes is given in Figure 5.1. Based on this, we run our simulations on swarms of 20,
50, and 200 agents.

As we explained in Section 4.1.2, different agents may have different upload capacities. For
every swarm, we define the same six classes of upload capacities and distribute the agents evenly
over these classes. The composition of the swarms is given inTable 5.1. Agents with more upload

63

5.2 Stratification Experiments

Upload capacity (KB/s)
Leechers Swarm 256 512 1024 2048 4096 8192
(%) size s l s l s l s l s l s l
45 20 1 2 1 2 2 2 1 2 1 2 2 2

50 3 5 3 5 4 5 3 5 3 5 4 5
200 13 20 13 20 14 20 13 20 13 20 14 20

5 20 1 3 0 3 0 3 0 3 0 3 0 3
50 2 8 0 8 0 8 0 8 0 8 0 8

Table 5.1: Swarm sizes and number of seeders (s) and leechers (l) per upload capacity, in swarms with 5% and
45% seeders.

Upload capacity (KB/s) Upload slots Slot capacity
256 3 85
512 5 102
1024 8 128
2048 10 205
4096 12 341
8192 14 585

Table 5.2: Number of upload slots used with given slot capacity, and theresulting slot capacity. Note that both
upload capacity and slot capacity increase at every step, but slot capacity increases at a slower rate.

capacity have more upload slots, in line with most BitTorrent implementations (see Section 3.1.1).
In our simulations, we use the same settings as the Vuze client. Refer to Table 5.2 for these settings,
and to Section 4.2.1 for more information on this.

We specify upload capacity only, and assume that an agent’s download capacity is unlimited.
Even though this is a simplification, in reality download capacity is a number of times larger than
upload capacity and is not considered a bottleneck.

In the swarms with 45% seeders, all agents enter the swarm simultaneously. Leechers have no
pieces of the file, while seeders have the full file available.Because, as we found in Section 4.2.2,
leechers have no long-term seeding incentive, a leecher leaves the swarm as soon as its download
completes.

In the swarms with 5% seeders, the simulator is in steady-state mode. Here, all agents are created
with a random number of file pieces available. A leecher leaves the swarm when its download
completes, and its place is taken by another leecher with thesame upload capacity but no file pieces.
In our results in the remainder of this section, we only consider agents that finish the download.

There is one swarm only. In this swarm, one of two files can be exchanged; one of 512 MB and
the other of 2048 MB. In the following, we refer to the former as asmall file, and to the latter as a
large file. Each file is divided into pieces of 1024 kB each. All experiments are run ten times and
the results of these runs are aggregated.

5.2 Stratification

The main result of Section 4 is Claim 4.10, which states that stratification occurs in general in
a BitTorrent network. In order to verify this claim, we introduce theStratification Index. The
stratification index takes the average over all agents of thenumber of stable relationships an agent
is in, divided by the number of bartering slots. If a network has a stratification index of 1, then

64

Experiments 5.2 Stratification

Figure 5.1: Swarm size as function of swarm rank. Figure taken from [13].

all agents are in equal relationships (a bartering relationship with an agent with the same upload
capacity) over all their bartering slots, and the network isfully stratified. A lower index means that
some agents are in unequal relationships and that there are bartering relationships between agent
classes.

We now formally define this index. First, we defineei(t) as the number of equal relationships
that agenti is in at timet, andn(t) as the number of leechers present in the network at timet. Recall
from Section 3 thatki is the number of upload slots for agenti.

Definition 5.1. TheStratification Indexof a BitTorrent network at any time t∈ T is given by

1
n(t)

n(t)

∑
i=0

ei(t)
ki

.

Figures 5.2 (a) and (b) show the stratification index of the networks with 5% seeders. As men-
tioned in the previous section, agents leave these networkswhen their download completes, and
their place is taken by a new agent with the same upload capacity. From our model, we expect the
stratification index to decrease at such an event, because relationships are broken. After the event,
we expect the index to rise again until the next event. Indeed, we find (in all figures in Figure 5.2)
that the index drops or raises up to 30% in a few rounds.

Surprisingly, the index in the network with the large file is consistently some 80% higher than in
the network with the small file. Our model provides no explanation for this phenomenon. As we do
expect from our model, the trend of the index increases slightly over time, indicating a progression
towards a stable relationship. However, even after 750 rounds, the index is just over 0.3, indicating
that only about13 of the slots is used for equal relationships. This is not the strong stratification
that our model predicts. One possible explanation for this is that because of the Rarest Piece First
selection strategy, our assumption of a global ranking on upload capacity alone is not valid. Another
explanation is that the difference in upload slots used (14 for the fastest, versus 3 for the slowest)
causes the faster agents to connect to so many agents that they must resort to lower-ranked agents.
We investigate this further in the following section.

Figures 5.2 (c) through (f) show the stratification index of the networks with 45% seeders, where
agents leave the network as their download completes, but nonew agents join. In the larger networks
with the small file, the index has a strong increasing trend aswe expect from our model. However,
the results in the networks with 5% seeders suggest that progression towards a stable configuration
is not as strong as the model predicts, and there is another reason for the stratification index to rise
to rise this high in the networks with many seeders. From our model, we expect the faster agents
to finish their download sooner. We validate this in Section 5.4. This would provide an additional

65

5.2 Stratification Experiments

Round

S
tr

at
ifi

ca
tio

n
In

de
x

0.0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120 140

(a) 5% seeders, swarm size 50, file size 512 MB

Round

S
tr

at
ifi

ca
tio

n
In

de
x

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400 500 600 700

(b) 5% seeders, swarm size 50, file size 2048 MB

Round

S
tr

at
ifi

ca
tio

n
In

de
x

0.0

0.1

0.2

0.3

0.4

0 5 10 15

(c) 45% seeders, swarm size 50, file size 512 MB

Round

S
tr

at
ifi

ca
tio

n
In

de
x

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70

(d) 45% seeders, swarm size 50, file size 2048
MB

Round

S
tr

at
ifi

ca
tio

n
In

de
x

0.0

0.1

0.2

0.3

0.4

0 5 10 15

(e)45% seeders, swarm size 200, file size 512 MB

Round

S
tr

at
ifi

ca
tio

n
In

de
x

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70

(f) 45% seeders, swarm size 200, file size 2048
MB

Figure 5.2: Stratification index per round for different networks.
66

reason for the index to increase near the end of file exchange in these networks: because fewer agent
classes are present, any agent is more likely to be barteringwith an equal agent. This does not hold
in the swarms with 5% seeders because there all agent classesremain present.

In the networks where the large file is exchanged, the index more than doubles in the first 20
rounds, similar to the networks with the smaller file, but then halves over the next 20 rounds. This
is when the fastest agents start leaving the network (again,see Section 5.4). When this happens,
the remaining slower agents need to find new bartering partners, and explore the network, thereby
breaking stable relationships. The index then rises quickly, until the next class of agents leaves the
network, etc. This shows that dynamic aspects as agents leaving the network have a significant
impact on the its stratification, as we predicted in Section 4.1.2.

Figure 5.3 provides another look at stratification. Here, wedisplay the fraction of data that is
uploaded from every agent class to all agent classes over allruns.

From our model, we expect that every class allocates most data to itself. Instead, we find that
the three fastest classes group together and allocate most data to each other. Similarly, the slowest
three classes allocate most data among themselves. Agents in both groups hardly seem to distinguish
their own class at all. The slowest agents with upload capacity of 256 KB are the exception, as they
hardly receive any data from the two classes above them, eventhough they upload the majority of
their data to these classes. They are forced to get their datafrom the seeders in the network. These
results are statistically significant with 95% confidence level, based on an independent two-sample
t-test with equal variance.1

Figure 5.3 shows that in the swarms with the small file, all classes upload most of their data to
the faster classes. With the larger file, the results are morein line with the model, as the majority of
the data is uploaded to the own class. This suggests that the small file is downloaded too fast for the
agents to find stable relationships before the download completes.

In line with our earlier finding, Figure 5.3 shows that stratification is not as strong as predicted
by our model.

5.3 Bartering Relations

In the previous section, we found that stratification does occur, but not as strong as we predicted.
Stratification relies on stable relationships between equal agents, and in this section we investigate
the relationships in the different networks.

Figure 5.4 shows the average number and average length of relationships in three different net-
works. In the first two networks, a large file is exchanged in a network with 45% seeders in swarms
of 50 and 200 agents. As the trend in these figures is the same, we perform the third experiment is
in a swarm of 200 agents only. Here, a small file is exchanged ina swarm with 5% seeders.

First we discuss the experiments with 45% seeders in Figures5.4 (a) through (d). Based on our
model, we expect that agents have stable relationships withagents of their own class, which would
result in few, but long-lasting, equal relationships. In practice, we find that that is not true. In the
swarm of 200 agents (figures (c) and (d)), we find that the two fastest classes (agents with upload
capacities of 4096 and 8192 kB/s) group together and have relatively few, but longest relationships
with each other. This is remarkable, because the fastest agents have 14 upload slots, and there are
20 leechers in each class. Based on these numbers, we would expect every agent to be able to barter
with its own class exclusively.

In the swarm of 50 agents (figures (a) and (b)), the three fastest classes barter most among each
other, which makes sense because the three classes togetherthose hold 15 leechers. Because the
fastest agents cannot find all their relationships in their own class, they resort to bartering with lower

1This is what we mean bystatistically significantin the remainder of this chapter.

5.3 Bartering Relations Experiments

From

F
ra

ct
io

n
up

lo
ad

ed
 to

0.0

0.2

0.4

0.6

0.8

1.0

256 512 1024204840968192

Upload cap. (KB)

256

512

1024

2048

4096

8192

(a) 5% seeders, small file, swarm size 50

From
F

ra
ct

io
n

up
lo

ad
ed

 to

0.0

0.2

0.4

0.6

0.8

1.0

256 512 1024204840968192

Upload cap. (KB)

256

512

1024

2048

4096

8192

(b) 5% seeders, small file, swarm size 200

From

F
ra

ct
io

n
up

lo
ad

ed
 to

0.0

0.2

0.4

0.6

0.8

1.0

512 1024 2048 4096 8192

Upload cap. (KB)

256

512

1024

2048

4096

8192

(c) 5% seeders, large file, swarm size 50

From

F
ra

ct
io

n
up

lo
ad

ed
 to

0.0

0.2

0.4

0.6

0.8

1.0

256 512 1024204840968192

Upload cap. (KB)

256

512

1024

2048

4096

8192

(d) 45% seeders, small file, swarm size 50

From

F
ra

ct
io

n
up

lo
ad

ed
 to

0.0

0.2

0.4

0.6

0.8

1.0

256 512 1024204840968192

Upload cap. (KB)

256

512

1024

2048

4096

8192

(e) 45% seeders, small file, swarm size
200

From

F
ra

ct
io

n
up

lo
ad

ed
 to

0.0

0.2

0.4

0.6

0.8

1.0

256 512 1024204840968192

Upload cap. (KB)

256

512

1024

2048

4096

8192

(f) 45% seeders, large file, swarm size 50

From

F
ra

ct
io

n
up

lo
ad

ed
 to

0.0

0.2

0.4

0.6

0.8

1.0

256 512 1024204840968192

Upload cap. (KB)

256

512

1024

2048

4096

8192

(g) 45% seeders, large file, swarm size
200

Figure 5.3: Average fraction of data uploaded to all agent classes over all rounds, broken down by uploading
agent class.

68

Experiments 5.3 Bartering Relations

Partner’s upload capacity

A
ve

ra
ge

 n
um

be
r

of
 r

el
at

io
ns

0

5

10

15

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(a)

Partner’s upload capacity

R
el

at
io

ns
hi

p
le

ng
th

 (
ro

un
ds

)

0

10

20

30

40

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(b)

Partner’s upload capacity

A
ve

ra
ge

 n
um

be
r

of
 r

el
at

io
ns

0

5

10

15

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(c)

Partner’s upload capacity

R
el

at
io

ns
hi

p
le

ng
th

 (
ro

un
ds

)

0

10

20

30

40

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(d)

Partner’s upload capacity

A
ve

ra
ge

 n
um

be
r

of
 r

el
at

io
ns

0

20

40

60

80

100

120

140

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(e)

Partner’s upload capacity

R
el

at
io

ns
hi

p
le

ng
th

 (
ro

un
ds

)

0

2

4

6

8

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(f)

Figure 5.4: Average number (left) and length (right) of relationships in three different networks. The top figures
show the results for a network of 50 agents, 45% seeders, and alarge file. In the middle figures, parameters
are the same except for the swarm size which is 200. The bottomfigures show the results for a network of 200
agents, 5% seeders, and a small file. Note that the units are different for these figures.

69

5.4 Download Completion Times Experiments

classes. Agents in the lower classes happily reciprocate, and as a result assign their upload slots to a
class other than their own. These results are significant.

The agents with upload capacities of 1024 (and 2048 in the large swarm) do have longest rela-
tionships with equal agents. This is because the best-ranked agents barter mostly among themselves,
so those agents are the best-ranked agents among the remaining agents. These results are statistically
significant.

For the remaining slowest agents, we find that they have shortrelationships with any class. The
slowest agents have only few upload slots available, and whenever they are optimistically unchoked
by a faster agent, they break an equal relationship reciprocating to that agent. As a result, they
are unable to form long-lasting relationships. This also explains why the slowest agents have the
largest average number of relationships. Note that in this experiment, no agents join the network.
When the faster agents leave the network as their download completes, the slower agents remain and
relationships become more equal. This means that the averages are skewed over time, and average
relationship length is for the slowest agents is shorter when all agent classes are present.

We find that all agent classes have significantly largest number of relationships with agents of
their own class, or one class higher or lower. This suggests that stratification does not happen strictly
within one class, but between an agent’s own class, and one class higher and lower.

Next, we discuss the experiment in the network with 5% seeders. Here, we find that every class
has more relationships with the faster classes. The fastestthree classes have the longest relationships
amongst these three classes, and again the fastest agents donot seem to distinguish between the
fastest three classes. The slowest agents have short relationships with all classes. This is statistically
significant.

The difference between the two is that in the latter network,new agents join the swarm as agents
complete their download. In the former two networks, the faster agents leave the network sooner
than the slower agents, forcing the slower agents to barter with each other. In the latter network, the
slow agents are unable to form relationships because there are always more attractive faster agents
present.

In the above, we found that one possible explanation that stratification is not as strong as our
model suggests is that the faster agents connect to slower agents because they have so many upload
slots. To verify whether this is the case, we ran an experiment in a network of 50 agents, 5% seeders,
and a small file, where all agents have 5 upload slots. The results of this are in Figure 5.5 and show
that then, all agents have longest relationships with theirown classes. However, the results are not
entirely convincing, because the fastest agents have equalrelationship length with their own class
and one class lower, and the class of 2,048 KB has most relationships with the fastest two classes.
Still, the results are more in line with our model.

Another possible explanation for the observed behavior is the Rarest Piece First piece selection
strategy (see Section 3.1). This could render a slower agentmore attractive than a faster agent
because it has rarer file pieces. In order to verify this, we replaced the Rarest Piece First strategy
with a random piece selection strategy. Figure 5.5 shows theresults of this for a network of 5%
seeders, 50 agents, and a small file as well. We find that that the difference is small: all agent classes
have most and longest relationships with the fastest agents, instead of with their own class.

We conclude that the major reason for the observed low stratification is the large number of
upload slots for the faster agents.

5.4 Download Completion Times

In Section 4.1.3, we calculate the download completion timefor different agent classes based on
the assumption of a stable configuration. We repeated these calculations for the networks from our
experiments, and list the results in Table 5.3. The actual results from our experiments are provided

70

Experiments 5.4 Download Completion Times

Partner’s upload capacity

A
ve

ra
ge

 n
um

be
r

of
 r

el
at

io
ns

0

20

40

60

80

100

120

140

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(a) Number of relations

Partner’s upload capacity

R
el

at
io

ns
hi

p
le

ng
th

 (
ro

un
ds

)

0

2

4

6

8

10

12

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(b) Length of relations

Partner’s upload capacity

A
ve

ra
ge

 n
um

be
r

of
 r

el
at

io
ns

0

20

40

60

80

100

120

140

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(c) Number of relations

Partner’s upload capacity

R
el

at
io

ns
hi

p
le

ng
th

 (
ro

un
ds

)

0

2

4

6

8

10

12

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(d) Length of relations

Partner’s upload capacity

A
ve

ra
ge

 n
um

be
r

of
 r

el
at

io
ns

0

20

40

60

80

100

120

140

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(e) Number of relations

Partner’s upload capacity

R
el

at
io

ns
hi

p
le

ng
th

 (
ro

un
ds

)

0

2

4

6

8

10

12

256

1K 8K

512

1K 8K

1024

1K 8K

2048

1K 8K

4096

1K 8K

8192

1K 8K

(f) Length of relations

Figure 5.5: Number and length of relationships in a network with 5% seeders, swarm size 50, and file size 512
MB. Upper figures show results with Rarest Piece First piece selection strategy. Middle figures show results
with random piece selection strategy. Bottom figures show results when all agents have 5 upload slots.

71

5.5 Small Swarms Experiments

File size
Upload capacity (KB/s) 512 MB 2048 MB

256 2000 8000
512 1000 4000
1024 500 2000
2048 250 1000
4096 125 500
8192 62.5 250

Table 5.3: Prediction of download completion (s) time for different upload capacities and file sizes, based on
the assumption of a stable configuration.

in Figure 5.6. The difference between the calculated and actual results is dramatic, and indicates that
the network configuration is far from stable.

Because of its large network size of 200 agents, we would expect that agents in the network from
Figure 5.6 (b) would find equal relationships, resulting in astable configuration. However, the fastest
agents are four times slower than predicted, while the slowest agents are almost five times faster. This
follows naturally from the network configuration not being stable, as explained in Section 4.1.3.

There are two other observations from Figure 5.6. First, we notice the dramatic impact that
seeders have on the download performance: compare Figure 5.6 (a) with (d), or (b) with (e) and find
that a download can be completed 20 times faster with 45% seeders instead of 5%. This result is
statistically significant.

The second observation is that the differences in download completion times are much larger in
the networks with many seeders: in figure (f), the fastest agents finish their download 2.8 times as
fast as the slowest, while in figure (d), this factor is only 1.5. This is also statistically significant.
This is an incentive for agents to specify their full download capacity in swarms with many leechers.

In the networks with 5% seeders, the fastest three classes have roughly equal completion time,
but that of the slowest classes is different. In the other networks, however, we find that the difference
in completion times of the fastest and slowest two classes are not always statistically significant. This
is explained by our finding in the previous section that agents form relatively many relationships with
neighboring classes.

5.5 Small Swarms

In the above, we presented the results for relatively large swarms of 50 and 200 agents. In the latter
swarms, we expected every agent to be bartering with agents from its own class only, but we found
that this is not the case. In this section, we discuss resultsfor very small swarms. As we described
in Section 4.2.1, in a small swarm all agents barter with eachother and stratification cannot occur.

The results of these experiments are in Figure 5.7. As expected, the stratification index is very
low: below 0.1. The fastest agents are connected to all otheragents because of their large number
of upload slots. As a result, all classes reciprocate to these agents the most. This is most dramatic
for the slowest agents, because they have only few upload slots, and therefore upload the majority of
their data to the fastest agents. Except for the slowest agents, all agents take the same time to finish
their download. This is exactly what we expect from our model.

72

Experiments 5.5 Small Swarms

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

500

1000

1500

256 512 1024 2048 4096 8192

(a) 5% seeders, small file, swarm size 50

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

500

1000

1500

256 512 1024 2048 4096 8192

(b) 5% seeders, small file, swarm size 200

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

2000

4000

6000

8000

512 1024 2048 4096 8192

(c) 5% seeders, large file, swarm size 50

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

60

80

100

120

140

160

180

256 512 1024 2048 4096 8192

(d) 45% seeders, small file, swarm size 50

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

60

80

100

120

140

160

180

256 512 1024 2048 4096 8192

(e) 45% seeders, small file, swarm size
200

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

200

300

400

500

600

700

256 512 1024 2048 4096 8192

(f) 45% seeders, large file, swarm size 50

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

200

300

400

500

600

700

256 512 1024 2048 4096 8192

(g) 45% seeders, large file, swarm size
200

Figure 5.6: Mean download completion time per agent class in different networks. Note that the units vary per
file and swarm size.

73

5.6 Equilibria Experiments

Round

S
tr

at
ifi

ca
tio

n
In

de
x

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700

(a) Stratification index

From

F
ra

ct
io

n
up

lo
ad

ed
 to

0.0

0.2

0.4

0.6

0.8

1.0

256 512 1024204840968192

Upload cap. (KB)

256

512

1024

2048

4096

8192

(b) Fraction of data uploaded to all agent classes

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

2000

4000

6000

8000

256 512 1024 2048 4096 8192

(c) Completion time

Figure 5.7: Results of a small swarm of 20 agents, with 20 agents, in whicha large file is exchanged.

5.6 Equilibria

Theorem 4.12 states that in a stable configuration of a large network2, specifying full upload capacity
is a dominant strategy. Figure 5.8 shows the download completion time for an agent in a swarm of
20 and 50 agents as a function of its upload capacity.

Figure 5.8 (a) shows the result for a swarm of 20 agents. As expected from our earlier results in
this section, a user gets no increase in utility because all agents finish roughly at the same time. In the
larger network of figure (b), however, we find that a user with an upload capacity larger than 4000
kB/s can specify an upload capacity of 4000 kB/s without an increase in completion time. As we
found before, the network configuration is not stable which results in specifying full upload capacity
not being a dominant strategy.

As we explain in Section 4.2, average users only specify the upload capacity and do not change

2See Definition 4.9

74

Experiments 5.6 Equilibria

(a) Swarm size 20 (b) Swarm size 50

Figure 5.8: Download completion time as a function of upload capacity ina network with 45% seeders, in
which a small file is exchanged. Data from all ten runs aggregated.

Deviation of upload slots

C
om

pl
et

io
n

tim
e

(s
)

110

120

130

140

150

−2 −1 0 1 2

Upload cap

256

512

1024

2048

4096

8192

(a) Swarm size 50

Deviation of upload slots

C
om

pl
et

io
n

tim
e

(s
)

100

110

120

130

140

150

160

−2 −1 0 1 2

Upload cap

256

512

1024

2048

4096

8192

(b) Swarm size 200

Figure 5.9: Download completion time as a function of the deviation of the number of upload slots specified. A
deviation of 0 represents the suggested setting from Table 5.2. A deviation of -2 represents two slots less, and a
deviation of +2 represents two upload slots more. Experiments are performed in a network with 45% seeders,
in which a small file is exchanged. Data from all ten runs aggregated.

other settings. Advanced users, on the other hand, may change any setting, including the number of
upload slots. With Theorem 4.14, we prove that specifying the suggested number of upload slots is
a Bayes-Nash equilibrium strategy in a stable configurationof a large network.

Figure 5.9 shows the download completion times for an agent in a swarm of 50 and 200 agents,
who deviates from the specified number of upload slots by one or two. We find that the results are
wildly varying, depending on swarm size and upload capacity. For most combinations, however, it

75

5.7 BarterCast Experiments

is possible to obtain lower download completion time (thereby increasing utility) by specifying the
right number of upload slots. From our limited experiment, this increase can be up to 15%. This
shows that when a configuration is not stable, specifying thesuggested number of upload slots is
not a dominant strategy. In an unstable configuration, agents barter with agents from other ranks.
Deviating from the default number of upload slots allows some agents to barter with additional
agents, while it allows other agents to barter with higher-ranked agents – both increase an agent’s
utility. However, the results show that it is also possible that because of the deviation, an agent
barters with fewer, or lower-ranked agents, which decreases its utility.

These results show that an advanced user can increase its utility by carefully selecting the up-
load capacity and number of upload slots. The problem here isthat it is difficult to predict before
joining the network what number of upload slots will providethe best utility, as we explained in Sec-
tion 4.2.1, and the cost of performing these calculations manually will outweigh the gain in utility
for many users. However, a BitTorrent client that dynamically adapts its configuration to the network
observed can achieve better download performance for its user. Such a client could calculate which
agents it could connect to for a certain range of upload slots, and select the number that provides
best utility accordingly. More research is needed to determine whether this strategy would lead the
agents to an equilibrium, or whether it forces them to keep changing this number, in a network where
all agents use this client.

5.7 BarterCast

In Section 4.3, we described the BarterCast reputation system that is added to Tribler to provide
agents with a long-term seeding incentive. Agents can use the reputation kept by BarterCast to
decide on which agents to unchoke. The reputation score can be evaluated using different policies,
and we described the rank-policy in detail. Our main result of that section is Theorem 4.16, which
states that in a network where all agents use the rank-policy, an agent with high reputation can
improve on its download performance by disabling that policy and switching to plain BitTorrent
bartering instead. In this section, we verify this result with simulations, along with two other results
from Section 4.3.

5.7.1 Simulation Setup

The setup for the experiments in this section builds on the setup described in Section 5.1. The
unchoking mechanism of the agents (both leechers and seeders) is extended so that an agent either
uses the rank policy, or plain bartering. In our experiments, an agent uses one policy only during its
lifetime.

We simulate an agent’s participation in a single swarm. Using BarterCast, an agent’s contri-
butions in multiple swarms are considered, and the agent’s contributions in the single swarm we
simulate are negligible compared to the contributions it did during its lifetime. This implies that an
agent’s reputation remains almost constant in a single swarm. In our simulation, we therefore keep
any agent’s reputation constant. Instead of fully implementing BarterCast into the simulator, this
allows us to simulate the rank policy with a simpler setup, aswe describe in the following.

Every agent knows its own contributions, and can calculate its own reputation score using Equa-
tion 4.3. We refer to this reputation as the agent’sreal reputation. We randomly provide every agent
with a real reputation between -1 and 1. BarterCast does not keep global reputation scores. Instead,
every agent has its own subjective view on the reputations ofthe other agents. We simulate this by
providing each agenti with a reputation score for every other agentj, which is randomly drawn
from the normal distribution aroundj ’s real reputation with a standard deviation of 0.2 (10% of the
interval between -1 and 1).

76

Experiments 5.7 BarterCast

The simulations are run with the simulator in steady-state mode (see Section 5.1). The swarm
consists of 103 agents. There are three seeders to guaranteethat all pieces are available, each with an
upload capacity of 256 KB/s. The 99 leechers in the swarm are equally divided over the three upload
capacities of 512, 2048, and 8192 KB/s. Each of these 102 agents uses the rank-policy. Finally,
there is a single agent that uses plain bartering,3 to verify our claim that this agent can improve its
download rate if it has high reputation.

For every experiment, the single agent has a fixed upload capacity of 512, 2048 or 8192 KB/s
(the same classes as the other agents), and a real reputationof -1, -0.85, -0.7, -0.5, 0, 0.5, or 0.95.
The simulation for each combination of upload capacity and reputation score is run ten times, and
the results of these runs are aggregated.

The file exchanged is 1 GB, and we simulate 3,500 seconds to allow even the slowest agents to
finish their downloads. Contrary to our setup described in Section 5.1, the number of upload slots for
an agent does not depend on its upload capacity, but is fixed onfive slots instead. This is to eliminate
any effects the number of upload slots can have on completiontime.

5.7.2 Expected Results

We verify three hypotheses. First, to investigate whether agents have an incentive to have a high
reputation, we examine whether download completion times decrease with increasing reputation,
as we expect from Section 4.3. In the remainder of this section, we refer to this incentive as the
reputation incentive.

Second, we verify Theorem 4.16, which states that an agent with high reputation improves on its
completion time if it switches from using the rank policy to plain bartering, as that allows it to barter
with the fastest agents, instead of with a random selection of agents. This is to investigate whether
agents have an incentive to actually use BarterCast for their unchoking decisions, and we refer to
this incentive as theunchoking incentive.

If BarterCast provides agents with both the unchoking incentive and the reputation incentive,
then every rational agent will use BarterCast and and strivefor a high reputation value. The latter it
can only achieve by uploading more than it downloads, which means that BarterCast is successful
in providing a long-term seeding incentive.

The final hypothesis we verify is that, because all agents barter with a random selection of agents,
there is no correlation between upload capacity and completion time. This would justify our reason-
ing in Section 4.3 that the capacity ranking used in BitTorrent is replaced by the reputation ranking
when BarterCast is added to the network.

5.7.3 Completion Time and Reputation

We start by examining our first hypothesis: whether in this network, download completion times are
decreasing with increasing reputation. Figure 5.10 shows the completion time for the agents that
use the rank policy only. The blue line shows the average completion time, and clearly verifies our
hypothesis.

Download completion times decrease most for increasing lower reputations. The difference
between minimal and neutral reputation is a factor of 25. If an agent’s reputation increases from
0 to 0.5, it has a 41% decrease of completion time, while the decrease is only 7% if its reputation
increases from 0.5 to 1. There is a strong incentive to improve on a negative reputation, but the
incentive to improve on an already positive reputation is not nearly as strong.

3Recall from Section 4.3 that we refer to BitTorrent’s default unchoking mechanism asplain bartering. We
say that agentsuse the rank-policyif they unchoke agents based on their BarterCast reputationscore evaluated
with the rank-policy.

77

5.7 BarterCast Experiments

Figure 5.10: The blue line shows the average download completion time as afunction of reputation value
for agents using the rank policy. As we expect, completion time is monotonically decreasing with increasing
reputation, although differences are not as significant forreputations above 0.

5.7.4 Improving Completion Time by Switching to Bartering

We now verify the second hypothesis: that an agent with high reputation can improve its completion
time by switching to plain bartering in a network with different agent classes. The results from our
experiments are given in Figure 5.11.

Shown in that figure are scatter plots of the completion time for the seven real reputation values
for which we ran simulations (see Section 5.7.1), jittered around the corresponding reputation value
to increase readability. Blue dots show completion times for the agents using the rank policy, and red
dots or plain bartering agents. Blue and red lines connect the averages of the corresponding values.

Our simulations ran for 3,500 seconds, which proved too short as none of the plain bartering
agents with a real reputation value of -1 and only a fraction of those with reputation of -0.85 finished
their download completely in that period. For the other realreputation values, 3,500 seconds was
sufficient. For the agents with reputation of -1 and -0.85, weextrapolated completion times by
considering their downloaded volume and the correspondingdownload time. We did this for both
bartering agents and agents using the rank policy. Because agents need time to explore the network,
extrapolating results from agents that downloaded only a small fraction of the file may produce
skewed results. Therefore, we only considered agents that downloaded at least 512 MB of the
1,024 MB file. Because completion times depend on reputationvalue (see the previous section), the
number of data points for each evaluated reputation score varies: from 1017 for a reputation of -1
to 2258 for a reputation of 1. For the lowest reputations of -1and -0.85, the original simulations
provided so few points that we ran those simulations an additional 10 times and aggregated the
results.

The top figure shows the completion time for agents with a reputation between 0 and 1. Con-
firming Theorem 4.16, an agent with real reputation of 1 improves its completion time by switching
to bartering, but only by 2%. This result is not statistically significant, based on an independent
two-sample t-test with equal variance and 95% confidence level (p-value is 0.18). For larger files,
we expect a bigger improvement because the agent has more time to explore the network and to
profit from its better bartering partners.

Peers with a reputation of 0 and 0.5 improve more on their completion time if they switch from
using the rank policy to plain bartering: up to 31% for an agent with a real reputation of 0. These
results are statistically significant, with p-values below10−6. The results contradict Theorem 4.16,

78

Experiments 5.7 BarterCast

Reputation

C
om

pl
et

io
n

tim
e

(s
)

0

50

100

150

200

250

300

350

0.0 0.5 1.0

Reputation

C
om

pl
et

io
n

tim
e

(s
)

0

1000

2000

3000

4000

5000

6000

−1.00 −0.85 −0.70 −0.50 0.00

Figure 5.11: The blue line shows the download completion time for agents using the rank policy, while the red
line shows completion time for an agent switching to plain bartering. Confirming Theorem 4.16, the bartering
agent with high reputation improves on its completion time,but by a meager 2% only. Contradicting that
theorem, the improvement holds for agents with a reputationover -0.7, even though the theory predicts that
these agents do not profit from switching to bartering. An agent needs a real reputation of below -0.7 for that
to happen.

which predicted improvements only for agents with high reputation. This is explained from the
fact that the file is exchanged in under 70 seconds, or seven rounds. Agents using the rank policy
query the reputation system in order to decide who to unchoke. Bartering agents, on the other hand,
optimistically unchoke all agents they are aware of, and as aresult they are faster in exploring the
network. We expect that larger files will result in higher completion times for plain bartering agents
with neutral reputation.

The bottom figure in Figure 5.11 shows the results for agents with negative reputation. All dif-
ferences between the averages for bartering or using the rank policy here are statistically significant,
with p-values below 10−6. From this figure, we find that an agent needs a real reputationbelow -0.7
before using the rank policy gives it better performance than bartering. However, the difference is
considerable: 32% for a reputation of -1. Bartering agents with the lowest reputations hardly receive
any pieces in return for their optimistic unchokes. However, if their reputation is -0.7 or above, their
reputation is high enough to be served. We expect the pivot point, that is now between -0.85 and
-0.7, to shift to a higher reputation value with increasing file size, because then the agents using the

79

5.8 Conclusions Experiments

Upload capacity

C
om

pl
et

io
n

tim
e

(s
)

60

80

100

120

140

160

180

256 512 1024 2048 4096 8192

Figure 5.12: Completion time by peer class in a network where all agents use BarterCast with the rank-policy,
and reputation scores are normally distributed over the agents. Download completion time does not depend on
upload capacity.

rank policy have more time to explore the network to find higher reputed agents.

5.7.5 Upload Capacity and Download Completion Time

We now verify the final hypothesis we formulated in Section 5.7.2: whether download completion
time depends on an agent’s upload capacity. Because we want to compare our result with a similar
experiment in Section 5.4, we use a different setup than the one we described in the previous section.
In this experiment, the swarm consists of 27 leechers and 23 seeders, evenly divided over six peer
classes as in Section 5.4, exchanging a 512 MB file. The reputation scores are randomly distributed
over the agents. All agents use the rank-policy. The resultsare given in Figure 5.12.

Download completion times are roughly equal for each of the peer classes. The figure shows
different median completion times; however, none of these differences are statistically significant,
with a p-value of at least 0.16.

If we compare Figure 5.12 with Figure 5.6 (d), which shows thecompletion times in the same
network, with all agents using plain bartering, we find that the rank-policy indeed changes the out-
come of the network, as completion time no longer depends on upload capacity.

5.8 Conclusions

In this section, we presented the results from our experiments on the validity of the outcome of our
model. The major result is that while stratification does occur in practice, it is not as strong as we
expect with only about 30% of the bartering slots used for equal relationships. This means that the
network configuration is far from stable. We do find that the fastest agent classes barter significantly
with neighboring fast classes, which suggests that stratification is stronger in the fastest classes.
However, contrary to what our model predicts, we find that these fastest classes distinguish little
amongst each other. The main reason for this is their large number of upload slots, which allows
them to barter to their own class, as well as one class lower.

The network not nearly reaching a stable configuration has major impact on user utility. We show
in Section 5.4 that the fastest agents are four times slower than predicted, while the slowest agents
are almost five times faster. This has a downside and an upside: it makes the network attractive to

80

Experiments 5.8 Conclusions

slower agents, but provides no incentive to the faster agents to specify full upload capacity. Even
for the slower agents, the difference in download completion time is often not statistically signifi-
cant from that of a neighboring class. Thus, even the slowestagents have no incentive to specify
their full upload capacity. However, when many seeders are present, fast agents’ utilities increase
dramatically. If download capacity were linked to upload capacity, this would provide that incentive.

An unstable network configuration also results in specifying the suggested number of upload
slots not being a dominant strategy. As a result, an advanceduser can gain up to 15% (in our ex-
periments; possibly more in other networks) in download performance by manipulating the number
of upload slots. Figure 5.9 shows that the actual benefit of manipulating upload slots is difficult to
predict, and may result in increased or decreased performance. Therefore, this may not be a practi-
cal form of manipulation for advanced users. However, it does show that using a (not yet existing)
BitTorrent client which dynamically adapts its configuration on the network it is bartering in in order
to achieve the best download performance can result in increased performance. Whether an equi-
librium exists in a stable or unstable network with multiplesuch clients (and whether the agents’
actions will converge to that equilibrium if it exists) is aninteresting question for future research.

We verified whether using the rank-policy, download completion time is independent of upload
capacity. We find that this is indeed the case, and that completion time decreases with increasing
reputation. However, where the difference in completion time for an agent with lowest and neutral
real reputation is very large, for neutral and high reputation it is not nearly as large, and for reputation
values of 0.5 and 1 it is negligible. This means that there is astrong incentive for agents to have
positive reputation, but the incentive to improve on an already positive reputation is small.

We verified whether an agent with highest reputation of 1 can improve on its download time if
it switches to plain bartering in a network where all other agents use the rank policy. Our results
confirm this, although the gain is 2% only and not statistically significant. We expect this gain
to increase with increasing file size, as then the agents havemore time to profit from the faster
bartering partners. Contradicting our theoretical results, the increase holds for all other agents with
a real reputation of -0.7 and above, and those results are statistically significant.

In conclusion, we find that BarterCast with the rank policy provides a reputation incentive, i.e.,
agents have an incentive to improve on their reputation by sharing more than they download. How-
ever, this incentive strongly decreases once reputation has reached a positive value. For this incentive
to work, all agents in the network need to use the rank policy for their unchoking decisions. From
our simulations, we find that agents with a real reputation of-0.7 and above improve on their com-
pletion time by switching to plain BitTorrent unchoking instead. BarterCast with the rank policy
does not provide all agents with an unchoking incentive. This raises the question whether the repu-
tation incentive is still provided if some fraction of the agents does not use BarterCast, and for what
fraction the incentive disappears. We leave this for futureresearch.

Meulpolder et al. [28] find that the rank policy is not very effective in preventing free-riding.
The results above confirm this finding. The rank policy could be more effective if the incentive to
improve on positive reputations were stronger, and if thereare no users that have an incentive to turn
off BarterCast. How to accomplish this is an open question for future research.

81

Chapter 6

Conclusions and Recommendations

The central question of this thesis is formulated in Section1.1: do BitTorrent and BarterCast provide
incentives to lazy free-riding users to share? To answer this question, we used game theory to model
agents in a generic P2P file-sharing network. We applied thismodel to BitTorrent, and used the
model to predict the outcome of the BitTorrent network. Following that, we extended the model
with BarterCast and predicted the outcome for the extended network as well. This allowed us to
answer the central question. We verified the results from ouranalysis experimentally.

In this chapter, we review our work in this thesis. In Section6.1 we discuss our conclusions, and
in Section 6.2 we identify viable directions for future research.

6.1 Conclusions

In this section, we answer our central research question.
We start by investigating BitTorrent’s incentives. We usedthe model we developed in Chapter 3

to investigate the effects of different lazy free-riding strategies, and verified our results experimen-
tally. We come to the following conclusions:

1. BitTorrent offers an incentive to share to users whose actions are limited to specifying their
upload capacity, as they achieve best results from the network if they dedicate their full upload
capacity to the network (Theorem 4.12);

2. For users whose actions additionally include specifyingthe number of upload slots, BitTorrent
offers an incentive to share only in a network that is large enough that, for every agent, there
are multiple agents with similar upload capacity (Theorems4.14 and 4.15);

3. Experiments show that the two theoretical results above are not as strong in practice, because
there peers join and leave the network continuously. Conclusion 1 holds for the slower fraction
of the agents only; the faster agents are not given an incentive to dedicate their full upload
capacity to the network. Even in large enough networks, Conclusion 2 could not be verified
experimentally.

Prior work, such as Qiu and Srikant [39], Gai et al. [20], and Fan et al. [14], found a result that
is similar to Conclusion 1, but with an important distinction: in their work, the result depends on the
knowledge and beliefs that an agent has of the other agents inthe network. In our work, the result is
independent of any prior knowledge or beliefs, which makes it a stronger one.

Conclusions 2 and 3 show that BitTorrent does not provide an incentive to share to all users.
Users can significantly improve on their download completion times by selecting the optimal num-
ber of upload slots. This optimal number depends on the upload capacities and number of upload

83

6.2 Recommendations Conclusions and Recommendations

slots the other users in the network selected. These are unknown before joining the swarm, and a
miscalculation can result in significantly larger completion times. This limits the applicability of this
lazy free-riding strategy.

Next, we study BarterCast’s incentives. We distinguish twodifferent incentives: to get a good
reputation score by uploading more data than downloading (the reputation incentive), and to use in-
formation provided by BarterCast to determine who to uploadto (the unchoking incentive). Barter-
Cast only provides an incentive to share if it provides both the reputation and the unchoking incen-
tive. We come to the following conclusions:

4. BarterCast provides an unchoking incentive to low-reputed agents, but not to highly reputed
agents (Theorem 4.16), as the latter can improve on their completion time by not using Barter-
Cast;

5. We show experimentally that Conclusion 4 is partially true in practice: the unchoking incen-
tive is provided to the 15% lowest reputed agents, while the remainder of the agents is better
off not using BarterCast;

6. We show experimentally that BarterCast provides a reputation incentive because download
time decreases with increasing reputation.

It is BarterCast’s goal to provide a long-term seeding incentive, so that agents continue sharing a
file long after they have downloaded it. In a network where allusers decide who to upload to based
on BarterCast’s information, it is the reputation incentive that provides long-term seeding incentive.
However, because BarterCast offers no unchoking incentive, not all users will be using BarterCast.
This limits the applicability of the reputation incentive,and thereby decreases BarterCast’s long-term
seeding incentive.

In conclusion, we find that both BitTorrent and BarterCast are not fully incentive compatible for
lazy free-riders. The efforts needed for lazy free-riding in BitTorrent are substantial because a user
needs to calculate and specify its optimal settings, while the benefits are unsure. In practice, we
expect that these two factors combined deter users to free-ride lazily, and as such can be seen as an
additional incentive not to free-ride.

6.2 Recommendations

From our work follow, in our opinion, some interesting issues that could be addressed in future work:

• In Section 3.2, we model P2P file-sharing as a static one-shotgame, and extend this to a
dynamic game. In experiments, we find that the dynamic aspects of P2P file-sharing affect the
outcome more than we expect. It would be interesting to investigate whether using elements
from online or repeated mechanism design in our model would make for a better fit between
theory and practice;

• In this thesis, our focus is on lazy free-riders. However, our work identifies two novel die-hard
free-riding strategies, in Sections 4.1.3 and 5.6. For bothstrategies, the effectiveness needs to
be evaluated, as well as their effect on the network and the other users’ completion times;

• BarterCast is the first successfully deployed distributed reputation mechanism. In this thesis,
we considered lazy free-riding in BarterCast only: using BarterCast, or not. We expect that
BarterCast will be used in more settings than file-sharing alone, and that it will be subject
to more die-hard free-riding attempts. We propose to assessBarterCast’s vulnerability to die-
hard free-riding and to investigate its incentive compatibility in order to identify possible room
for improvements;

84

Conclusions and Recommendations 6.2 Recommendations

• We evaluated the rank policy in combination with BarterCast, and found that although peers
have a strong incentive to have a reputation that is at least neutral, the incentive to improve
on a positive reputation is not that strong. In addition, some agents have an incentive to not
use the rank policy. Intuitively, the rank policy seems morefair and better applicable than
the more successful ban-policy. It would be interesting to identify how the rank policy can
be adjusted so that the incentive to improve on a positive reputation is stronger, whether that
incentive still holds if some fraction of the agents does notuse BarterCast, and how all agents
can be given an incentive to use BarterCast;

• One of the motivations for considering lazy free-riders in this thesis is that even though die-
hard free-riding clients for BitTorrent are available, their use is not wide-spread. In the Kazaa
network, on the other hand, a successful die-hard free-riding client caused the demise of the
network. It would be interesting to determine why die-hard clients do not catch on in BitTor-
rent. This study will be psychological more than technical,but is likely to provide BitTorrent’s
system designers with valuable insights on the effectiveness of their product.

85

Bibliography

[1] Vuze community forums. Retrieved May 30, 2010, fromhttp://forum.vuze.com.

[2] BitTorrent still king of P2P traffic. Retrieved May 30, 2010, fromhttp://torrentfreak.
com/bittorrent-still-king-of-p2p-traffic-090218/, February 2009.

[3] Good settings - VuzeWiki. Retrieved May 30, 2010, fromhttp://wiki.vuze.com/index.
php/Good_settings, 2009.

[4] Eytan Adar and Bernardo A. Huberman. Free riding on Gnutella. First Monday, 5, October
2000.

[5] Nazareno Andrade, Miranda Mowbray, Aliandro Lima, Gustavo Wagner, and Matei Ripeanu.
Influences on cooperation in bittorrent communities. InP2PECON ’05: Proceedings of the
2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems, pages 111–115, New
York, NY, USA, 2005. ACM.

[6] Moshe Babaioff, John Chuang, and Michal Feldman.Algorithmic Game Theory, chapter In-
centives in Peer-to-Peer Systems, pages 593–611. Cambridge University Press, 2007.

[7] Yoram Bachrach, Ariel Parnes, Ariel Procaccia, and Jeffrey Rosenschein. Gossip-based ag-
gregation of trust in decentralized reputation systems.Autonomous Agents and Multi-Agent
Systems, 2008.

[8] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and improving a BitTorrent
network’s performance mechanisms. InINFOCOM 2006. 25th IEEE International Conference
on Computer Communications. Proceedings, pages 1–12, April 2006.

[9] Kevin L. Brown and Yoav Shoham.Essentials of Game Theory: A Concise, Multidisciplinary
Introduction. Morgan and Claypool Publishers, 2008.

[10] Jonathan S. K. Chan, Victor O. K. Li, and King-Shan Lui. Performance comparison of schedul-
ing algorithms for peer-to-peer collaborative file distribution. Selected Areas in Communica-
tions, IEEE Journal on, 25(1):146–154, 2007.

[11] B. Cohen. Incentives build robustness in BitTorrent. In Proc. of the Workshop on Economics
of Peer-to-Peer Systems, 2003.

[12] Bram Cohen. The BitTorrent protocol specification, version 11031. Retrieved May 30, 2010,
from http://www.bittorrent.org/beps/bep_0003.html, January 2008.

87

BIBLIOGRAPHY

[13] György Dán and Niklas Carlsson. Dynamic swarm management for improved BitTorrent per-
formance. InProc. International Workshop on Peer-to-Peer Systems (IPTPS ’09), Boston, MA,
USA, April 2009.

[14] Bin Fan, Dah M. Chiu, and John Lui. The delicate tradeoffs in BitTorrent-like file sharing
protocol design. InICNP ’06: Proceedings of the Proceedings of the 2006 IEEE Interna-
tional Conference on Network Protocols, pages 239–248, Washington, DC, USA, 2006. IEEE
Computer Society.

[15] Joan Feigenbaum, Michael Schapira, and Scott Shenker.Algorithmic Game Theory, chapter
Distributed Algorithmic Mechanism Design, pages 363–384.Cambridge University Press,
2007.

[16] Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism design: recent results
and future directions. InDIALM ’02: Proceedings of the 6th international workshop onDis-
crete algorithms and methods for mobile computing and communications, pages 1–13, New
York, NY, USA, 2002. ACM.

[17] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang.Robust incentive techniques for
peer-to-peer networks. InEC ’04: Proceedings of the 5th ACM conference on Electronic
commerce, pages 102–111, New York, NY, USA, 2004. ACM.

[18] Michal Feldman, Christos Papadimitriou, John Chuang,and Ion Stoica. Free-riding and white-
washing in peer-to-peer systems. InPINS ’04: Proceedings of the ACM SIGCOMM workshop
on Practice and theory of incentives in networked systems, pages 228–236, New York, NY,
USA, 2004. ACM.

[19] Anh-Tuan Gai, Dmitry Lebedev, Fabien Mathieu, Fabien de Montgolfier, Julien Reynier, and
Laurent Viennot. Acyclic preference systems in P2P networks. In Euro-Par 2007 Parallel
Processing, pages 825–834. Springer Berlin / Heidelberg, 2007.

[20] Anh-Tuan Gai, Fabien Mathieu, Fabien D. Montgolfier, and Julien Reynier. Stratification in
P2P networks, Application to BitTorrent. InProceedings of ICDCS’07, International Confer-
ence on Distributed Computing Systems 2007, Toronto Canada, 2007. IEEE Computer Society.

[21] Philippe Golle, Kevin Leyton-Brown, Ilya Mironov, andMark Lillibridge. Incentives for shar-
ing in peer-to-peer networks. InWELCOM ’01: Proceedings of the Second International
Workshop on Electronic Commerce, pages 75–87, London, UK, 2001. Springer-Verlag.

[22] David Hales, Rameez Rahman, Boxun Zhang, Michel Meulpolder, and Johan Pouwelse. Bit-
Torrent or BitCrunch: Evidence of a credit squeeze in BitTorrent? InWETICE ’09: Proceed-
ings of the 2009 18th IEEE International Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises, pages 99–104, Washington, DC, USA, 2009. IEEE Computer
Society.

[23] Ramayya Krishnan, Michael D. Smith, and Rahul Telang. The economics of peer-to-peer
networks. The Journal of Information Technology Theory and Application (JITTA), 5(3):31–
44, 2003.

[24] Rakesh Kumar and Keith Ross. Optimal peer-assisted filedistribution: Single and multi-class
problems. InIEEE Workshop on Hot Topics in Web Systems and Technologies (HOTWEB),
2006.

88

BIBLIOGRAPHY

[25] Arnaud Legout, Nikitas Liogkas, Eddie Kohler, and Lixia Zhang. Clustering and sharing in-
centives in BitTorrent systems.SIGMETRICS Perform. Eval. Rev., 35(1):301–312, 2007.

[26] Dave Levin, Katrina Lacurts, Neil Spring, and Bobby Bhattacharjee. BitTorrent is an auc-
tion: analyzing and improving BitTorrent’s incentives. InSIGCOMM Comput. Commun. Rev.,
volume 38, pages 243–254, New York, NY, USA, 2008. ACM.

[27] Richard T. B. Ma, Sam C. M. Lee, John C. S. Lui, and David K.Y. Yau. Incentive and
service differentiation in P2P networks: a game theoretic approach.IEEE/ACM Trans. Netw.,
14(5):978–991, October 2006.

[28] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips. Bartercast: A practical ap-
proach to prevent lazy freeriding in P2P networks. InProc. of the 6th International Workshop
on Hot Topics in Peer-to-Peer Systems (Hot-P2P’09) in conjunction with IPDPS 2009, May
2009.

[29] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips. Modeling and analysis of
bandwidth-inhomogeneous swarms in BitTorrent. In S.N., editor, Proc. of IEEE P2P 2009,
pages 232–241, Los Alamitos, USA, September 2009. IEEE Computer Society.

[30] Michel Meulpolder. TriblerSim 1.0. Retrieved May 30, 2010, fromhttp://tribler.org/
trac/wiki/P2PSimulator, 2010.

[31] Seth James Nielson, Scott A. Crosby, and Dan S. Wallach.A taxonomy of rational attacks.
In Miguel Castro and Robbert van Renesse, editors,IPTPS, volume 3640 ofLecture Notes in
Computer Science, pages 36–46. Springer, 2005.

[32] Noam Nisan.Algorithmic Game Theory, chapter Introduction to Mechanism Design (For Com-
puter Scientists), pages 209–242. Cambridge University Press, 2007.

[33] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behav-
ior, 35(1-2):166–196, April 2001.

[34] David C. Parkes and Jeffrey Shneidman. Distributed implementations of Vickrey-Clarke-
Groves mechanisms. InAAMAS ’04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 261–268, Washington, DC, USA, 2004.
IEEE Computer Society.

[35] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy, and Arun Venkatara-
mani. Do incentives build robustness in BitTorrent? InProceedings of 4th Usenix Symposium
on Networked Systems Design and Implementation (NSDI), Cambridge, MA, USA, April 2007.

[36] Michael Piatek, Tomas Isdal, Arvind Krishnamurthy, and Thomas Anderson. One hop repu-
tations for peer to peer file sharing workloads. InNSDI’08: Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, pages 1–14, Berkeley, CA,
USA, 2008. USENIX Association.

[37] J. A. Pouwelse, P. Garbacki, Wangand, J. Yang, A. Iosup,D. Epema, M. Reinders, M. R. van
Steen, and H. J. Sips. Tribler: A social-based based peer to peer system. In5th Int’l Workshop
on Peer-to-Peer Systems (IPTPS), Feb 2006.

[38] Johan A. Pouwelse, Pawel Garbacki, Dick H. J. Epema, andHenk J. Sips. The Bittorrent P2P
file-sharing system: Measurements and analysis. In Miguel Castro and Robbert van Renesse,
editors,IPTPS, volume 3640 ofLecture Notes in Computer Science, pages 205–216. Springer,
2005.

89

BIBLIOGRAPHY

[39] Dongyu Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like peer-to-peer
networks. InSIGCOMM ’04: Proceedings of the 2004 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 367–378, New York,
NY, USA, 2004. ACM Press.

[40] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. A measurement study of peer-to-
peer file sharing systems. InMultimedia Computing and Networking (MMCN), San Jose, CA,
USA, January 2002.

[41] Sven Seuken. Distributed online mechanism design: Improving incentive compatibility in
peer-to-peer file-sharing networks. Unpublished draft version, 2007.

[42] J. Shneidman, D. Parkes, and L. Massoulie. Faithfulness in internet algorithms. InProc.
SIGCOMM Workshop on Practice and Theory of Incentives and Game Theory in Networked
Systems (PINS’04), Portland, OR, USA, September 2004.

[43] Jeffrey Shneidman and David C. Parkes. Specification faithfulness in networks with rational
nodes. InPODC ’04: Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 88–97, New York, NY, USA, 2004. ACM.

[44] Jeffrey Shneidman, David C. Parkes, and Margo Seltzer.Overcoming Rational Manipulation
in Distributed Mechanism Implementations. Technical Report TR-12-03, Harvard University,
Cambridge, MA, USA, 2003.

[45] Yoav Shoham and Kevin Leyton-Brown.Multiagent Systems: Algorithmic, Game-Theoretic,
and Logical Foundations. Cambridge University Press, New York, 2009.

[46] Michael Sirivianos, Jong H. Park, Rex Chen, and XiaoweiYang. Free-riding in BitTorrent
networks with the large view exploit. InIPTPS, 2007.

[47] Jie Tang. Informativeness and incentive compatibility for reputation systems. Bachelor thesis,
Harvard College, Cambridge, MA, USA, 2008.

[48] Dimitrios Vassilakis and Vasilis Vassalos. An analysis of peer-to-peer networks with altruistic
peers.Peer-to-Peer Networking and Applications, 2(2):109–127, 2009.

90

