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Abstract

A well-known problem in peer-to-peer networks fige-riding where users do not share
resources in return for what they consume. Free-ridersealistinguished in two categoriedie-
hard free-ridersthat are willing to subvert the network’s protocol in orderftee-ride, andazy
free-ridersthat are reluctant to share but do follow the protocol. Anamgnt body of research
focuses on die-hard free-riders in the popular BitTorrdetdharing network, but in practice die-
hard free-riding in BitTorrent is not often observed. Laege-riding, on the other hand, is often
observed, and in this thesis we investigate whether Bi€farprovides lazy free-riders with an
incentive to share. Based on a game-theoretical model, axeeghat this is the case for some
lazy free-riders, but not for all. We then proceed to invgie the same for BarterCast, a new
distributed reputation mechanism that is added to the Bi¢Td-based Tribler network to provide
additional sharing incentives. Based on an extended verdithe same model, we prove that
BarterCast also provides incentives only to some lazy figers, but not for all. We verify these
results with simulations, and find that in practice, evendieincentives are given than our model
predicts. However, we show that lazy free-riding can prevadyain but also a loss, and that the
net result is difficult to predict, which can be seen as antamfdil incentive against free-riding.
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Chapter 1

Introduction

1.1 Problem Statement

One of the major applications of the Internet is the excharfifiees between people. It is safe to say
that anything that can be binary encoded — from researchndects to movies and music — has by
now been transferred over the Internet. Early transfer autinclude e-mail, FTP, or downloading
the file from a web page. In 1999 Napster introduced a new rdetheer-to-peer (P2P) file-sharing.
The basic idea is that a user interested in sharing or dowirigdiles runs a software program that
connects to other users, so that all users together formveorietvhere every user can download
files from any other user. Napster became popular quicklyy aer 20 million concurrent users,
but collapsed due to legal issues. Many other P2P file-shhamtworks followed, and by now file-
sharing is responsible for a major portion of all Internetffic: up to 57% in some geographic
regions [2].

Even though file-sharing networks are very popular, theg fame technological issues which
are areas of active research. Examples are how the netwstrkiigured, and searching for content
in the network. One major area of research, however, is meyrehlogically motivated: it turns out
that many users are willing to download files, but not to sliége with the other users. This phe-
nomenon is referred to deee-riding In a P2P file-sharing network, users download directly from
each other, and if users do not share files, the network hasesadi download. Most file-sharing
networks address free-riding through technological mglaunsrecently more social approaches are
investigated.

The BitTorrent file-sharing network is the most popular §kearing network today. This is partly
due to the way that it addresses free-riding: by using a t@olgical mechanism that forces users
to share a file while it is being downloaded. Research has isltloat this mechanism can be cir-
cumvented [46, 35, 26]. In other words, it is possible for arue download without sharing, or to
download faster, thereby staying online sharing for a gngrériod of time. This requires the user
to install a modified client for the BitTorrent network. Ingatice, it turns out that users hardly do
this [28]. This is not to say that users are indifferent atsharing or their download performance.
Most clients come with many settings, and message boardseoimternet are full of questions on
which settings yield optimal performance.

Following Meulpolder et al. [28], we refer to free-ridingars that go to such lengths as in-
stalling modified clients in order to free-ride die-hard free-riders while we refer to users that
are only willing to tweak their settings dazy free-riders Most current research in BitTorrent
focuses on die-hard free-riders, and investigates teahs@dutions that circumvent free-riding pre-
vention mechanisms. This is an important area of reseasdh shows how these mechanisms can
be improved upon. However, as we describe above, the reguliients are not widely adopted by
BitTorrent’s user base. In this thesis, we therefore focukaay free-riders, and the effectiveness of
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the free-riding strategies these users have at their dibpdée investigate this for BitTorrent as this
is the most popular file-sharing network today, and for B&réest [28], an additional free-riding pre-
vention mechanism that was recently added to BitTorrenhbyltibler [37] team at Delft University
of Technology.

We formulate the central research question for this thesis a

Do BitTorrent and BarterCast provide incentives to lazyefrading users to share?

To answer this research question, we develop a model of Bémbwhich allows us to study
what we call theoutcomeof a BitTorrent network. This outcome describes which uslensnload
from which other users, and directly determines any usewetbad performance. By investigating
how the outcome changes for different free-riding straegie then determine the effect on the
user’s download performance. Following that, we extendibédel with a model of BarterCast, and
study the additional free-riding strategies that BartetQdfers. We verify the results from these
studies with experiments.

1.2 Outline

We provide background information on P2P file-sharing netwoand BitTorrent in particular, in
Chapter 2. There, we also introduce the techniques we usgrimodel of the BitTorrent network.
The model itself we develop in Chapter 3. In Chapter 4, westigate BitTorrent’s outcome using
our model, and investigate theoretically whether lazy-fidang can improve a user’s performance.
In that chapter, we extend our model with BarterCast, andstigate the effect of lazy free-riding
in BarterCast. We verify the results from Chapter 4 expenitakly in Chapter 5. Finally, Chapter 6
draws conclusions and identifies directions for future aese



Chapter 2

Preliminaries

Chapter 1 introduces peer-to-peer file-sharing networid tlaeir main problem: free-riding, where
users profit from the network but do not contribute in retive also state that in this thesis, our
focus is on how individual users can improve on their dowdloampletion time by strategically
specifying their settings in the BitTorrent file-sharingwerk. We investigate these questions in the
following chapters. In this chapter, we provide prelimiearand an overview of the literature that is
relevant to this central theme.

We start with a short overview of P2P file-sharing network&eéttion 2.1. Here, we identify
some key characteristics of file-sharing networks. Se@i@rdiscusses one specific topic prevalent
in the BitTorrent file-sharing network: how files are distiiéd between the peers. This topic is of
central importance in this thesis as it allows us to answeresearch questions stated in the previous
chapter. We investigate this using a model based on gameylagfteld we introduce in Section 2.3.

2.1 P2P File-Sharing Networks

In this section, we present some key characteristics of R@RHaring networks. We elaborate
on free-riding, one of the major problems in P2P networksl, pirovide an overview of proposed
solutions to prevent free-riding.

2.1.1 Introduction
File-Sharing Networks Overview

A peer-to-peer (P2P) network is a network in which the pintiots, the peers or agehtare directly
connected to each other. Peers have an equal role, acting$olients and servers. This is different
from the more traditional client-server model, where comioation is usually to and from a central
server.

Although peers in P2P networks have an equal role, the nksaoay contain central compo-
nents, such as a superpeer maintaining an index of conngetrd. Such networks are referred to
ascentralizedP2P networks. The central components in these networkdtareapnsidered prob-
lematic because they need to be maintained and paid for, r@nal single point of failure for the
network: when the central component is unreachable, théenfeiwork is down. A P2P network
that does not have any centralized components is caliisti@butedP2P network:

Lin this thesis, the terms peers and agents are used inteezaly.
“Distributed P2P networks are also referred talesentralizedr pure P2P networks.
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P2P networks have many applications; examples are distdlromputing, task allocation, and
resource scheduling. In this thesis, our focus is on disteith P2Ffile-sharingnetworks, which
allow peers to exchange files.

The first P2P file-sharing network was Napster, which grewaari@llion users in the first 12
months after its introduction in 1999. Napster clearlysthates the problems inherent in a central-
ized network. It maintained a central catalogue of avadldibds in the network, which was shutdown
following a lawsuit filed by the Recording Industry Asso@atof America, which led to the demise
of the network as a whole [23].

Many networks that have emerged following Napter's demésspéed a decentralized or hybrid
approach to reduce both legal and technical risks from the & a central server, and to reduce
the monetary investment required to operate such a serveamgdes are Gnutella, Kazaa, and
BitTorrent. Soon after its release, a study by Adar and Hulaer[4] showed that 70% of Gnutella’s
users werdree-riding(not uploading any content) and nearly 50% of all respongge weturned by
the top 1% of all sharing hosts. From these numbers, it is thed the basic principle of all users
acting both as servers and clients was not adhered to.

The problem of free-riding is not unique to Gnutella, busasi in all file-sharing networks. As
one user’s download is another user’s upload, the netwdeksoho content if all users free-ride. A
substantial part of research in P2P file-sharing networésefore concentrates on free-riding, and
mechanisms to prevent it.

Incentives to Prevent Free-Riding

Feldman et al. [18] show, based on a simple economic modat,atP2P network can tolerate a
certain fraction of free-riders, but that it collapses ifstfraction exceeds some threshold which
depends on the level of churning (how often users join ordeghe network) and the generosity in
the user population. Mechanisms to prevent free-ridingrageiired to keep the fraction of free-
riders below that threshold, but a mechanism that elimgméte-riding completely may do more
harm than good as it may impose burdens on all users thatrrérelsystem less attractive to non-
free-riders. Every free-riding prevention mechanism ntlustefore select an optimum between its
effectiveness in preventing free-riding, and the costdtins on its users.

The main problem with preventing free-riding in a P2P netwstthat the peers are autonomous:
the client to the network is a program that runs on the usersputer, and nothing in the network
can preventthe user from e.g. specifying unwanted settorgsstalling a malicious client [31]. This
is similar to the real world, where people are autonomousmaakk their own decisions. Where in
the real world, the law prevents people from behaving malisly, this is no option in P2P networks
because peers can easily switch their identity which mdiers untraceable [18]. As an alternative,
most research focuses on offering the peers incentives tvat®them to contribute to the system.

Many networks adopted a tit-for-tat mechanism to offer irive@s: peers must upload files in or-
derto be allowed to download files. This is often referredstdigect reciprocity Whena downloads
from b, he will allow b to download files from him in return. Butifrefuses to led downloada will
not upload tdb. Although this idea sounds promising and fair in theory, liagtice there are some
problems with it. The major problems here are the large sufalee networks, combined with high
churning, and the relative anonymity of agents in the nétwdihis makes most P2P transactions
one-shot interactions between strangers that will nevestragain [6]. An additional problem is
what is callecasymmetry of interestvhen usea downloads a file from usdy, even in the unlikely
case the two do meet again for a file exchange, there is nomfearasen offers the file useb is
looking for. The probability of repeated interaction is e\&naller than that of a second encounter.

To overcome the problems of the direct reciprocity approaxtirect reciprocitywas proposed
as an alternative. To illustrate this concept with an examglippose userdownloads a file from
userb. Usera now knows that usdn participates in the network. When uderequests a file from
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userc, ¢ can ask the network including usaifor the reputation ob, and when it finds thab has

a good reputation, it will offer the requested fileo Thus, for indirect reciprocity to work, some
reputation systens needed that keeps track of the reputation of all partizipgpeers. However,

a reputation system is not trivial to implement. In the Kanatwork, for example, peers build
up a reputation score by uploading, and highly reputed peerive preferential treatment in their
downloads [6], but the client itself is responsible for ldfoasting its own reputation. Not surpris-
ingly, this was soon exploited by the Kazaa Light client whizy default broadcasts a very high
reputation value. More secure distributed mechanismsigeateoretically valid frameworks, but
are often not feasible in practice and as of yet, none of thesghanisms have successfully been
deployed [17, 28]. We investigate reputation systems helow

Reputation Systems

Because of their usefulness in attaining indirect recigypthere has been significant research on
reputation systems over the years. An overview is given mgTd7], who distinguishes between
global and local reputation systems. In a global systentyesgenti has the same reputation of
some agenj, while in a local systemi/s view of j's reputation is subjective. Both have different
computational efficiency and incentive compatibility cheteristics, and neither strictly dominates
the other. The problem with reputation systems is that thegasily manipulated, and very difficult
to implement distributedly.

Centralized reputation systems are successfully implésdén the form oprivate trackerg28].
Here, a user needs an account and shares its upload and ddvetédistics with the tracker. It can
only download if its upload/download-ratio exceeds sonmeshold. These trackers suffer from the
problems that all centralized components in a distributtsvark have; additionally, users may be
reluctant to share their statistics with some third parhg there is the possibility of inflation of
reputation [22].

Both Bachrach et al. [7] and Piatek et al. [36] propose diigted local reputation systems, specif-
ically designed for application in P2P systems. With botprapches, every agent shares its experi-
ence in dealing with other agents with a small subset of theraigents in the system. Even though
the ideas are interesting, neither of the systems has bgdoyee in practice.

Meulpolder et al. [28] propose BarterCast, a distributethlaeputation system that is based
on a similar idea, but that has been deployed in practicedrBitTorrent-based Tribler file-sharing
network. We study BarterCast in detail in this thesis, whenrwestigate whether a user can improve
on its performance by enabling or disabling BarterCast @eoto answer our research question in
Section 1.1.

Preventing Free-Riding with the Use of Currency

An alternative approach to reputation systems for attgiimdirect reciprocity is the use afirrency

A user gets some currency for uploading a file, that he candsimeorder to download another file
from a third user. Unfortunately, currency approaches ésember of practical issues as well. The
currency needs to be “signed” to distinguish valid from deufeit currency, which brings the need
for some public key infrastructure [41]. Furthermore, thestion is where the currency comes from:
is it real money, that users can bring to the network? Howascilrrency linked to the valuation
of a file, and to a network connection being used? Finally,ighhactually destroy the incentive
it strives to bring to the network: a peer that shares popmdatent can get so rich that it has no
incentive to share its content anymore [41]. The seminakvimthe use of currency is by Golle et
al. [21]. Because of its shortcomings, we do not consideusigeof currency in this thesis.
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2.1.2 The BitTorrent File-Sharing Network

Our main focus in this thesis is on the BitTorrent networktas the most popular file-sharing net-
work today [37]. BitTorrent uses direct reciprocity as andntive mechanism, but adds a twist to
increase the probability that two peers will meet again.oksithis with a mechanism calldéhr-
tering, which we describe and analyze in great detail in this thesimswer our research questions.
For now, we suffice with a short intuitive explanation.

The file to be downloaded is partitioned into small chunks. ofvdloading peep is matched
with a small set of peers, that are also downloading or uphggpieces of the same file. From this
set, p periodically selects a few peers that upload to it at the dsg/ihate, and in return it uploads
its own pieces to those selected peers. With this designs peeBitTorrent engage in multiple
interactions with a small number of peers for the duratioa fie download period. For larger files,
the number of repeated interactions is large enough to atmperation to take hold through direct
reciprocity [6].

Free-Riding in BitTorrent

Because bartering forces repeated interactions, theierngad to keep long-term state information
in the form of either reputation or currency, which simpkfile design and improves BitTorrent’s
robustness against attacks. Empirical studies found mawébrllevels of free-riding in BitTorrent
communities [6], but theoretical analysis (e.g., Shneidmaal. [42], Sirivianos et al. [46], Piatek
et al. [35], and Levin et al. [26]) has demonstrated thatiit €l be manipulated by selfish peers in
their favor, improving download times or reducing uploagetiime.

This manipulation is not possible with any common BitTotrelient. Instead, a user that wants
to perform these types of manipulation needs to downloadrastdll a modified client that sophis-
tically subverts the bartering protocol. Empirical stigdfend that the use of such clients is not
widespread [28]. Whether this means that users are not afénese clients, or that they are — for
one reason or another — not interested or not able to use thamppen question, to our knowledge.
However, this does not mean that users are not interesteéhimining their download time or re-
ducing the amount of data they upload, and are willing to &kategic actions in order to achieve
this. To give an example, the community support forum [1]tfa Vuze client is full of questions
from users asking which settings to specify for maximum qenance. We refer to such users as
lazy free-riders (as opposed to die-hard free-riders treatlling to install manipulating clients).
One of the two central questions of this thesis is whetheFdBient provides these lazy free-riders
with an incentive to share (see Section 1.1).

Adding Social Components to BitTorrent

With Pouwelse et al. [37], a new direction in offering indeas is taken. They introduce Tribler, a
file-sharing system that is based on BitTorrent. Triblelveg to bring incentives to the system by
adding social components to its network. Where users angyamaus in BitTorrent, in Tribler they
have an identity. This allows them to import friends fromeatsocial networks they participate in,
or make friends based on their tastes. They form a socialarktwiith the idea that “kinship fosters
cooperation”. This is due to the higher probability of rejeelsinteractions between users in a social
circle, and the possibility that a user may gain social statureal life by actively cooperating in
Tribler. We describe Tribler in detail in this thesis.

3Vuze is a highly configurable client for the BitTorrent netioavailable aht t p: / / wwv. vuze. con .
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2.2 Strategic Behavior in BitTorrent

Research on BitTorrent is not limited to free-riding and ipatation. Other topics include overlay

topology formation, peer discovery, and content search.th&se topics are not relevant to our
research questions, we do not cover them in this thesis. eTisghowever, one additional topic

that only recently receives attention [10]: the data disitibn in BitTorrent, which governs how the

file pieces are transmitted and distributed among peers.eAsspare connected to the Internet with
different upload- and download capacities, it will intuély be clear that strategically selecting the
right peer to download from directly improves performance.

This topic is covered by Chan et al. [10], Kumar and Ross [R4, et al. [27], and Qio and
Srikant [39]. All try to determine an optimal piece distritmn schedule, which is sometimes (e.g.,
with Ma et al.) linked to offering incentives to contribute the network. All make problematic
assumptions that limit the applicability in real P2P netigyisuch as relying on central components,
the presence of a reputation system, or non-scalable cetiputimes to determine the optimal
schedule. In a file-sharing network with millions of con@ntusers exchanging many files simul-
taneously, determining an optimal schedule on the piemes-is a daunting task.

More recent research takes a different path. Instead ofrdeteg an optimal schedule from
scratch, the data distribution in real BitTorrent swarmmgstigated, and ideas for improvement
are drawn from the results. Examples of this line of work anafambe et al. [8], Fan et al. [14],
Legout et al. [25], and Meulpolder et al. [29]. All group thegss in the network in classes (e.g.,
slow, medium, and fast peers), and show that most data isaegeld within these classes, rather
than between classes.

Our work in this thesis also follows this more recent path. d&eelop a model that allows for
different peer classes based on some metric (such as updgadity), and using that model we
determine for any peer which peer classes it is likely to béebiag with. This allows us to predict
the download completion time for a peer, and how stratelgisalecting its settings affects a peer’s
completion time. Additionally, we are able to explain, thetacally, observed phenomena from the
articles mentioned above.

2.3 Game Theory and Mechanism Design

In the previous section, we briefly mentioned that in thistheve develop a model of the BitTorrent
file-sharing network in order to answer the research queststated in Chapter 1. We model a
file-sharing network as a multi-agent system, where thetagae the actors in the system. What
exactly constitutes an agent varies: sometimes this igdirtio the client that communicates with
the network, sometimes it involves the user as well. We mtdehgents to be autonomous (i.e.,
they make their own decisions), rational (i.e., these damtéscan be motivated) and self-interested
(i.e., they want to improve their own situation, and if nexzey at the expense of other agents).

Our model heavily relies on game theory, which originallgmss from economics where it is
used to model agent behavior in markets. There, agents aedlyupeople or companies that in-
teract with each other. The market is modelled as a game endarh actor, being self-interested,
tries to maximize its own profit. As multi-agent systems ageyvsimilar to markets, Nisan and
Ronen [33] applied game theory in multi-agent settings.cBigally, they were interested in mech-
anism design, a subfield of game theory which does not dyreatidel agent behavior, but instead
asks how to design a game such that autonomous, rationaéHrdtsrested agents behave accord-
ing to the system designer’s specification. In generaljstdsne by offering incentives, as explained
in Section 2.1.1. A thorough overview of mechanism desiggivisn by Nisan [32].

Applied to BitTorrent, mechanism design would specify soneehanism that the agents interact
with, and that motivates the agents not to free-ride. Thélpro with traditional mechanism design
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is that the resulting mechanism is centralized, and thezefot a good fit for a distributed network as
BitTorrent. Feigenbaum et al. [15] investigate the posifits of designing distributed mechanisms,
but find that this is not trivial and no off-the-shelf solutioan be given. One of the problems is that
the mechanism needs to be carried out by the agents integawith that very mechanism, allowing
the agents to carry out the mechanism untruthfully in amgiteéo improve on their current situation.
Another problem is that, in general, agents need to commatmighile executing the mechanism.
First of all, this allows them to send false messages, amhsk¢he communication overhead may
be so large that it becomes intractable [16]. Distributirechmnisms is further investigated in three
articles by Parkes and Shneidman [34, 43, 44].

In our model, we consider BitTorrent as a distributed me@man This is possible because in
BitTorrent, the only mechanism is the peer selection meishawe briefly introduced in Section 2.2
and investigate in depth in this thesis. This mechanismrisezhout with minimal communication
between the nodes — although it should be noted that Levin[@64 show how this communication
can be exploited by a strategic client.

Even though mechanism design is by now an important tecknigdesigning multi-agent sys-
tems, in this thesis we only borrow some ideas from it. Ourmfacus is on modelling agent
behavior in BitTorrent networks, and for that, plain gamedtty suffices. Using game theory to that
end is common practice by now; in fact, most of the literapresented in this chapter so far borrow
from game theory.



Chapter 3

Model

Our main resultin this chapter is a model of a generic pegrer file-sharing network and its users.
In the remainder of this thesis, we apply this model to Bit&at and extend it with the BarterCast
reputation system to answer our research question fromt€hap

We start with a description of the BitTorrent file-sharingfarcol in Section 3.1, which is the ba-
sis for the BitTorrent file-sharing network. In Section 3.2 use game theory to develop a model of
a generic peer-to-peer network, and we show how to applyribiel to BitTorrent. Section 3.3 de-
scribes how we model users in BitTorrent and BarterCastgtatubrates on the distinction between
lazy and die-hard free-riders.

3.1 The BitTorrent File-Sharing Network

Our focus in this thesis is on the BitTorrent file-sharingwek, and the Tribler client in particular.
In this section, we describe both the BitTorrent protoc@di®n 3.1.1), and the Tribler client (in
Section 3.1.2).

3.1.1 The BitTorrent File-Sharing Protocol

The BitTorrent file-sharing network is one of the few P2P §ilaring networks that over the past
five years has attracted and served a very large user comnj@8]t BitTorrent in itself is only
a file-sharing protocol, which is implemented by many défgrclients. The protocol defines the
entities in the network, and the messages exchanged bethents. In this section, we describe
version 11031 [12], the current version of this protocol.

The BitTorrent network consists of the following entities:

e Thetorrent a meta-info file, which describes the file that is to be exgeah

e A tracker serverwhich keeps track of the peers exchanging the file descitbé torrent,

Theuserthat originally shared the file,

leechersthe users downloading the file ,

seedersthe users that have completed the download and stay oshiaeing the file to leech-
ers.

In the following, we describe how these entities are usetérBitTorrent network.
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A user that wants to share a fifecreates a meta-info file fof, often referred to as #rrent
file or torrent, after its extensiont orrent . Most BitTorrent clients provide the option to create a
torrent. A torrent can be created both for a single file, a$ asefor multiple files.

When creating the torrent, the file is logically split intodik sizepiecesof the same length,
typically 256 KB. The last piece may be truncated. Each pisggven an index. Then, for each
piece, the SHA-1 hadfis calculated. The torrent lists the hashes ordered by jeles.

In addition to this hash list, the torrent provides the addref thetracker server. This tracker
keeps track of all peers currently participating in the dimad, and collects statistics. It is not
involved in the actual distribution of the file content. Thadker can be @ublic tracker which is
a tracker server available for public use, opravate tracker for which a user account is needed,
managed by a central authority. Many public trackers aréabla, one of the better known is
https://thepiratebay.org/.

The torrent file is then made available to the public, ofterplaging it on a web site dedicated
to hosting torrents. Most public trackers also functionaasant providers.

A peer p that wants to download needs to obtain the torrent file. With every new download,
p randomly creates an id. Thenconnects to the trackeéy and sends its id and address docan
track p. In responset providesp with a list of peers currently exchangirfg This list of peers is
typically a subset of all peers the tracker knows, i.e. a [geot aware of all peers currently known
to the tracker. We refer to the list of peers as thmote peersand to the peer receiving the list as
thelocal peer Because peers join and leave the network continuouslygtnete peer list needs to
be kept up to date. A peer can update the list by sendimegraquesto the tracker.

After it receives the remote peer list, a local peer conntctseers on this list. A connection
starts with a handshake in which peers exchange their idsr tfat, the peers exchange a bit vector,
in which each bit represents whether the correspondingdered by index) is present or not.

A peerais interestedn peerb whenb has pieces tha does not have; otherwise it islinter-
ested A peerais chokedby peerb whenb decides not to send any datadolf b is willing to send
data toa, a is unchokedy b. This happens wheahas pieces thdt does not have. All connections
start out choked and uninterested. A local peer notifies atemeer when the remote peer gets
choked or unchoked, or when the local peer becomes intdresteninterested in it.

A local peer that is unchoked by a remote pa&an requesa for a specific piece. In return,
a will send the piece to the local peer. When the local peer detep the download of a piece, it
notifies its remote peers that it now has this specific piece.

The local peer is free to decide which pieces it requestsjratiteory each implementation of
the protocol could employ a different piece selection stggt Examples of a piece selection strategy
are downloading pieces in order, or randomly selecting ivpiece to download. In practice, many
clients, including the official BitTorrent clieAtind Tribler, adopt thRarest Piece FirsfRPF) piece
selection strategy [25], and this is the piece selecticmtesly we consider in this thesis. With this
strategy, each peer maintains a list of the pieces with thet leumber of copies among its remote
peers, and pieces from this list are requested first. Thigmizes the probability that pieces become
unavailable when a single peer goes offline.

A local peer is also free to decide which peers it chokes ohakes. Choking has two benefits.
First, TCP congestion control behaves poorly when sendiugg many connections at once, so a
local peer achieves better upload performance when upigadia limited number of peers simul-
taneously. Second, the protocol designers hope that, frenclioking algorithm, a tit-for-tat-ish
behavior will emerge where agents upload file pieces prapwtto what they download. The idea

1SHA-1 is the first version of the Secure Hash Algorithm, a togpaphic message digest algorithm. See
http://wwv. w3. org/ Pl CS/ DSi g/ SHAL_1_0. ht mi for more details.

2The official BitTorrent client is developed by BitTorrenficl, and freely available fromt t p: / / ww.
bittorrent.con.
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behind the latter is that a local peer unchokes remote pesrsvfhich it can download at high rate,
and chokes the slower uploading peers, thus motivatingeimete peers to upload at high rate.
The specification provides five criteria a good choking athar should meet:

. The number of simultaneous uploads should be capped éat §8P performance,
. Quickly choking and unchokindilrillation) should be avoided,

. It should reciprocate to peers who let it download,

A W ON P

. It should try out unused connections once in a while to findifothey might be better than
the currently used ones. This is knownaggimistic unchoking

5. the algorithm should work well both in a network consigtemtirely of clients implementing
the algorithm, and in a network consisting mostly of cliemglementing the algorithm.

As with the piece selection strategy, every protocol immatation can create an implementation
of a choking algorithm. In this thesis, we confine ourseleethe currently deployed choking algo-
rithm in the official BitTorrent client and Tribler. This adgithm avoids fibrillation by only changing
who is choked every ten seconds. This ten second periodoigrall and we say that a new round
starts whenever the choking algorithm is executed.

Two choking algorithms are in use. One is employed when tiee issa leecher, and the other
when the user is a seeder. When leeching, reciprocation amber of uploads capping is imple-
mented by unchoking a few peers from which the local peerlfmbést download rates, and that are
interested. Peers with better upload rates are unchoked/hen they become interested the worst
uploaders get choked. This is known aggular unchokeOptimistic unchoking is implemented by
unchoking a randomly selected peer every three rounds,diega of it's upload rate, in the hope of
finding better peers.

When seeding, the agent bases its decision on who to uncimoke apload rate rather than its
download rate, and prefers peers to which it can uploaddaste

Although BitTorrent is famous for its tit-for-tat-idbartering(the exchange of file pieces between
downloading peers), this behavior is not specified in théqmal. The protocol only specifies which
messages can be send between clients. The bartering erfrergethe limited number of upload
slots an agent has, and the choking algorithm. As a resuligant is given an incentive to upload
while it is downloading. When the other agents in the netwam bartering, it is in any agent’s
best interest to participate in bartering, as an agent shiaée-riding only receives pieces by being
optimistically unchoked.

3.1.2 Tribler

The BitTorrent file-sharing protocol we described in thevpyas section introduces bartering of
file pieces as a technical incentive to share files: high teaimates can only be achieved by users
that contribute pieces of the downloaded file. Where a laoyégnm of the research in file-sharing
networks (and in P2P networks in general) focuses on teahinicentives, Pouwelse et al. [37] in-
troduce Tribler, a BitTorrent client based on a social P2RdHaring paradigm that “exploits social
phenomena by maintaining social networks and using thesantent discovery, content recommen-
dation, and downloading.” The authors argue that the prolafree-riding can be alleviated when
users are considered social partners that tend to coopethtthe social group they belong to.

At the basis, Tribler is a client for the BitTorrent netwonkdathus implements the BitTorrent
specification. The social components are added on top ofitiferBent layer. Using Tribler, users
can find users with similar interests and add these as cenfHuis way, a social network is formed.
In the future, it will become possible to expand this netwaykmporting contacts from other social

11
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networks (e.g. MSN or GMail). This requires each peer to lkepermanent identifier (PermiID), be-
cause otherwise it cannot be identified by its contacts whejadins the network after a disconnect.
This permanent PermID is used as the randomly generatetfidesuggested by the BitTorrent
protocol.

The social network provides Tribler users with new funcgility unavailable from traditional
BitTorrent clients. This includes content discovery (fites be downloaded from contacts without
the need for torrents), suggesting users with similar @ges; give recommendations for files based
on a user’s taste, and cooperative downloading (peers frential network assist each other in
downloading, resulting in higher transfer rates). In thissis, our focus is on a new feature intro-
duced in Tribler in 2009: the BarterCast reputation mectrarf28]. This provides both a technical
and a social incentive to users to be online sharing files edem not downloading, thus improving
the availability of files in the network. We describe Bartas€Cin detail in Section 4.3.

3.2 Model of a P2P File-Sharing Network

Based on our discussion of BitTorrent and Tribler in the pres section, in this section we define
a formal model of a P2P file-sharing network based on gameyh&dis model models peer-to-
peer file-sharing networks in general, and BitTorrent irtipalar. We use the model derived in this
section in the remainder of this thesis to gain insight intser's download performance, and what
options are available to users to improve this performakide extend this model in Section 4.3 to
determine how the BarterCast reputation mechanism affeetdownload performance and options
for improvement.

In Section 3.2.1, we state the objectives and requiremdrasR2P file-sharing network, and
define the problem description for such networks. Secti@23defines a static model, followed
by an example in Section 3.2.3. Based on that static modetjodbe3.2.4 introduces a dynamic
model that takes into account that agents may join or leazanétwork, change files they request
or share, etc. This is followed by a discussion of how ager#tg benefit from using the network
(Section 3.2.6). Finally, we list what aspects of file-shgmetworks we omitted from our model.

3.2.1 Problem Description

Users join a file-sharing network to download files, and itsifego assume that they want to down-
load these files as quickly as possible. The user’s benefit fising the network increases with
higher transfer rates. We refer to this benefit asility, which we formally define in Section 3.2.2.
For now, we just assume that utility is linked to its downlgate, and that a user wants to max-
imize its utility. The actual utility a user receives is @ifént for each user. Utility is negatively
influenced by the costs of using the network, which will gafigrconsist of files a user needs to
upload. A technical motivation for this is that uploadingéilaffects a user’'s download capacity,
while a more emotional motivation is that, where possibgpde prefer to receive things without
doing something in return. However, as one agent’s downadother agent’s upload, uploading
files is required for the network to function. A file-sharingtwork that offers requested content for
download at high speeds is attractive to users, as long deetiefits of using the network outweigh
the costs.

Since the end of the 1990s, many P2P file-sharing networks begn introduced. Pouwelse
et al. [38] find that of these networks, BitTorrent is one of flew that, over the past years, has
consistently managed to attract millions of users. In thielar they argue for four requirements a
P2P file-sharing system must have to be attractive to usedssizow that BitTorrent has all these
properties to some extent. The requirements are:
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1. High availability: the system must be available to useosinof the time. Additionally, files
that are available in the network should constantly be akégl

2. File integrity: the files must be as advertised, and nat fakanipulated, or unplayable,

3. The network must be able to deal with flash crowds. A flaswdris the phenomenon that
occurs when new popular content first enters the network sunahiinediately requested by
a large number of users. This generates a burst of networktaand traffic which may
negatively affect the system’s performance,

4. The system must offer users a relatively high downloaddpe

In this thesis, we look at file availability indirectly wherevinvestigate the BarterCast reputation
system, and investigate the download speed that is offerduet users. In BitTorrent, this is ad-
dressed by the assignment policy: BitTorrent’s decisiomvbith agent downloads which file from
which agents, and at which rate. We described BitTorrenti@itlin Section 3.1.1, and describe
there how clients make a selection of which clients to upltwadr to download from. We refer
to the result of this selection as an assignment, and el&bonrait in the remainder of this thesis.
In this section, we confine ourselves to the idea behind Bi€Fd’'s assignment policy, as given by
Cohen [11]: “The strategy for allocating upload which seenust likely to make peers happy with
their download rates is to make each peer’s download ratedpogional to their upload rate.”

The idea that an agent’s download should be proportionastogload has been suggested and
implemented before, e.g. in Kazaa, and is fair in that it éembsers to benefit from the network,
but requires the users to participate proportionally whi metwork in return.

Many users connect to BitTorrent simultaneously, and eddhese users has its own utility
function. In general, it will not be possible to maximize gvaser’s utility. Anincrease of one user’s
utility may come at the expense of that of another user. Hewéwollowing the last requirement, the
network must be attractive to all users. We refer to thisativeness asocial welfare and it is our
goal, as system designers, to maximize this social welfacgder to make the system attractive to
users. At this point, we do not restrict ourselves to oneifipetefinition of utility or social welfare.

If we assume, as we do in the beginning of this section, thiit/s linked to a user’s transfer
rate, one example of a social welfare function would be toimae the sum of the agents’ utilities,
i.e. maximizing the sum of all transfer speeds. This, howdagenot effective when transfer rates
greatly vary and social welfare is maximized when all usexgetvery low transfer speeds except for
one agent that has an exceptionally high transfer speedichn & network, a more suitable social
welfare function would be a function that minimizes the déizin of the agents’ transfer speeds from
the average transfer speed.

When we want the user’s download rate to be proportionaktapioad rate, we affect his user
utility as we force him to upload. However, the proportiotyatonstraint ensures that, depending
on a user’s utility function, a positive utility can be olstad from using the network. Additionally,
many users will understand that it is fair to contribute teeéwork that offers benefits in return, and
will rather contribute to the network then leave it if they @iven the choice.

The assignment policy determines for every user the uiilitgceives. As a result, users may
attempt to free-ride by manipulating the assignment poli¢ys would result in an increased utility
for these users at the expense of the other agents in thersy$teat is an unwanted situation, so
we require the assignment policy to be non-manipulable kyatlients. In the remainder of this
section, we derive a a model for a file-sharing network. Wethisanodel to investigate BitTorrent’s
assignment policy.

13
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3.2.2 Static Model

In this section, we derive a model for a file-sharing netwofkis model is not specific for one
particular file-sharing network, but rather applies to §itearing networks in general. Section 3.2.5
demonstrates how this model can be applied to the BitTofilersharing network. We extend the
model derived in this Section in Section 3.2.4, and the two@i®are used in the remainder of this
thesis as tools to analyze file-sharing networks.

Preliminaries

We distinguish the following entities in our model:
1. Theagentshat wish to exchange files using the file-sharing network,

2. Thelnternet which is used as an underlay network. All communicatiomdeeh the agents is
physically transferred over the Internet,

3. Thenetwork connectionsver which agents are connected to the Internet,

4. Thefile-sharing networlthat is formed by the agents using this file-sharing netvegkbtocol
to communicate, using the Internet as an underlay network,

5. Thefilesthat are available to the agents to exchange in the filersinagtwork,

6. Themechanisnthat determines for every agent which files it can download,faom which
agents.

The model we derive in this section is static. By that, we nteamthings: first, that all entities
are fixed. No elements are added or removed from any set, fetwonections do not change, etc.
Second, this means that when actions need to be perfornmdatk performed before the game
starts and will not be changed during the game. An exampl@ aection is an agent sharing a file,
or specifying which portion of its Internet connection isadable for the file-sharing network. In
Section 3.2.4, we introduce dynamic aspects into our mautlramove the assumption we make
here that everything is fixed.

A file sharing network is about exchanging files. Agents btmthe network a set of files they
wish to share, and maintain a list of files they wish to dowdlo&Ve assume that there is some
mechanismM that, based on which files are available, which files are r&tgde and the agents’
network connections, decides for any agent at what speeowhidads a file piece from which
agent, and when this download starts. Intuitively, one ¢anktof such a mechanism as some
broker that makes this decision. How exactly the mechanésimplemented depends on the file-
sharing network. In BitTorrent, as we described in Sectidni3 this decision is implemented by
the BitTorrent clients. See Section 3.2.5 for an applicatibour model to BitTorrent.

Network

Denote byN a set ofn agents. Every ageite N is connected to the Internet with some network
connection, and is capable of participating in the file-stzanetwork, i.e. it can send the file-sharing
network’s protocol messages over the network connectidhetdnternet. Through the file-sharing
network, every agentcan reach every other agent it wants.

The connection to the Internet provides agents with bothpoad connection and a download
connection to the file-sharing network. Both types of cotioas have a data transfer rate, or capac-
ity, which is expressed in bytes per second. This capacitynited by the capacity of the physical



Model 3.2 Model of a P2P File-Sharing Network

connection to the Internet. The capacities for the uploatldownload connections of an agent to
the file-sharing network are given loy andcgy, respectively:

ci:N—R*F (3.1)

cqg:N—R* (3.2)

An agent has a number ofload slots which determines the maximum number of peers the
agent will upload to simultaneously. See Section 3.1.1 forexetails. The upload slots are given
by the functionk:

k:N— N* (3.3)

Files

Agents in the network request files and share files for dovehiigeother agents. Denote [5; the
set of files shared by ageintand byFg; the set of files requested by The set of shared files in the

network is then denoted by = U Fsi. Similarly, Fr= | Fri is the set of requested files. Finally,
ieN
denote byF the collection of aII the files considered in the netwolfk= Fs|JFr. Note that some

requested files may not be shared or even available in theortetw

Files can be transferred in small pieces, as is the case ToBént (see Section 3.1.1). A file
f € F is a set of file piecep € P. How exactly files are divided into pieces depends on the ordtw
in question.

Download Assignment

In a file-sharing network, many agents are connected. Evgeptamay share multiple files, or
request multiple files. Multiple agents may request the simé, and multiple agents may offdr
The brokeM we introduced in Section 3.2.2 considers all agents, thetfiey request and share, and
their network connections, and based on this informatiasidées which file pieces are exchanged
by which agents, the rate of the transfer, and the time atiwthis transfer starts. We refer to such a
decision as download assignmentvhich is a collection ofcheduled piece exchang®%e add one
restriction to a download assignment: an agent is assignydone download for every file piece,
i.e., it is not possible for an agent to download one piecenfroultiple peers, or from one peer at
multiple times and/or at multiple rates.

We consider time as an infinite series of discrete time st€ps:{0,1,2,...}, and then formally
define a download assignment as follows:

Definition 3.1. A download assignmeig a set of 5-tuplegng, p, Ny, r,t), where:
e ng € N is the downloading agent,
e p € P the downloaded file piece,
e ny € N the uploading agent; i ng,
e r ¢ R* is the rate in bytes/second at which the transfer takes pflace

3In the remainder of this chapter, we use the substtiptdenote a function or variable for an agen§o,
Fs, is the set of files shared by agenandcyj = cy(i), etc.
“In this thesis, we definB* as{x € R | x > 0}, andR{ as{x€ R | x> 0}.

15
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e t € T is the time at which the download starts.
In any download assignment, the combinatioirgf, p) is unique.

Denote byfT the set of all possible combinations of piece exchanges: 2N*PxNxR xT the
power set of all piece exchanges. Every elemeil @6 a possible download assignment. Based on
its information on the network and connected ageMtghooses one assignment outtbthat best
meets its objective (see Section 3.2.1). This assignmeuwifggs all piece exchanges in the network,
and we refer to that set as thatcome

Agent Types

For every agent, there will be possible outcomese I that are more beneficial than others. In
one outcome, an agent can download all requested files, fongbe, while in another this is not
possible, and yet another outcome may dictate the agentdadimore files than other outcomes.
Every agent wantsM to select an outcome that maximizésutility.

The mechanisnM does not know which files an agenhas stored on its computer, and which
of these files are actually shared byOnly i itself is informed of this information. We say that
agents havprivate information Another example of private information is the upload angidload
capacities an agent has available. An agent performs achiased on this private information:
request and share files, and make upload and download oapaeitable to the network. The
outcome decided on byl depends on these actions: if for example an agent decidds sbare a
file f, it may not be available in the network and cannot be assitmad agent requestiniy This
means that an agent can influence the outcome by choosirgidgasstrategically.

An agent’s private information is modelled by itgpe for each agent, there is a set of types
©;. One of thesed; € G, isi’s type and modelss private information. A user’s type models many
things, including:

1. The type of content the user is interested in. For exanguition movies, disco music, etc,
2. The cost of uploading,
3. The effects of altruism: will sharing a file increase a isdeappiness?

4. A user's willingness to free-ride, and to what extend a usgk free-ride.

Actions

Based on its type, an agent perforaetionsin order to reach its goal: maximizing its utility. The
actions available to an agent depend on the file-sharinganktifferent agents may have different
actions at their disposal, which is modeled by a agent'®adpace:

x:N— 2% (3.4)

Here, X is the set of all actions available in the network’s protod®lery agent has an action
spaceX; C X.

We enumerate the actions available to users in the BitTormemwork in Section 3.2.5. In gen-
eral, the actions include sharing and requesting files, padifying the upload and download ca-
pacity somewhere between zero and the physical capaciheditk.

By giving every agent a set of actions, we imply that différagents may have different actions
at their disposal. We elaborate on this in Section 3.3, wieralistinguish different classes of
agents, and define for every agent class what actions aflafaesaio the agents in that class.
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Outcome

M'’s goal is to consider all agents’ actions and from thoseemigine an outcome that satisfies some
objective. An example of such an objective is given in SecBc2.1: to maximize the average
transfer rate, keeping for each agent download in propottoupload. The mechanism thus can
be thought of as some protocol that specifies possible acind implements an outcome based on
these actions. The outcome is determined using an outcamsédn:

g: X1 X...xXqg— M (3.5)

It is important to realize that in our static model, the outenis static as well. We assume all
agents choose their actions (i.e., share files, request$i¢sipload and download capacity, etc.),
and that those actions do not change. The outcome is thenlfagstl upon that information. This
means that a downloading agent will seed its downloadeddiesrding to the seeding strategy it
selected. As the sl is static, in this model agents do not leave the network #ffiteir download
completes, but they may opt to not seed the downloaded filehwias the same effect.

Utility

Section 3.2.1 introduced an agent’s utility as some measitiee benefit it receives from using
the network. We are now ready to give a formal definition ofityti From the above, it will be
obvious that this utility depends on an agent's type, whigbtares its preferences, and the outcome,
which specifies which files are exchanged at which rates. Fyeageni € N, we define its utility
function as:

Uy:0ixMN-—-~R (3.6)

Some realistic utility functions in Tribler are given in $ien 3.2.6. As a small illustration of a
utility function, think of a function that returns the sumaif download rates for an agent: the faster
the outcome allows the agent to download, the higher itgyuffbom that outcome will be.

We assume that an agent receives its utility when downloatptetes. A seeding agent receives
utility when it stops seeding.

Strategies

An agent’s utility indirectly depends on all agents’ acBphecause the joint set of actions determines
the outcome. Any agetitonly knows its own private typ8;, and chooses its own actiof € X;.
Although the other agents’ types are not known their actions (which are based on these unknown
types) do affect’s utility. As i tries to maximize its utility, it needs to select an acticomfrits action
space that will achieve just that. The decision on whichoactd choose is made by an agent’s
strategy functionwhich chooses an action based on the agent’s type:

S: 0 — X (3.7)
The strategy functios; in turn is an element of the agent’s strategy function sggcehich is
specified in the agent’s type.
Static Game

An agent’s typeb; captures’s private information. In a file-sharing network, althoughs private
information, other agents may have some belief about it.dBégth, for example, is not uniformly
distributed over Internet users, because Internet provioffer a limited set of subscriptions, some
of which are more popular than others. An agent can therefaiee an informed guess about the
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capacities of the network connections of the other agentsotifer example is that some files are
very popular and, depending on the file’s age, probably retgdeby many agents or available from
many agents. This may influence an agent’s decision on whehare or request a file, if at all.
This information is publicly available, and we assume thieagents share the same informatin.
Then, the agent’s types are drawn from a probability distiéim over the types. We refer to this
distribution as @ommon priorover the types, and denote this By

P:0—[0,1], (3.8)

With® =01 x ... x Op.
With the above, we define file-sharing aBayesian gameavhich Leyton-Browne and Shoham [9]
define as follows:

Definition 3.2. A Bayesian gamis a tuple (N, X, S@, P, u, g), where:
e N is a set of n agents,

e X =X; x...x X, is the set of actions available to the agents,

S=S§ x...x Sy is the set of strategies available to the agents,

e O =0 x...0,is the set of type spaces available to the agents

P is the common prior defined above,
e u=(ug,...,Un) is the vector of the agents’ utility functions,
e g is the outcome function from Equation 3.5.

For this game, we assume the following:

One-shot game: We assume file-sharing isane-shot gameBy that, we mean that every execu-
tion of the game stands on itself and no information or sttearried from one execution of the
game to the other. Effectively, this corresponds to a gameishexecuted only once.

Game proceedings: At the beginning of the game, all agents simultaneously he# strategy
function to choose their actions. Actions are fixed aftenpaihosen. When all actions are chosen,
M decides on an outcome, according to which the file transfexéguted. The game ends when
all file transfers are completed as specified in the outconeeaBse actions are fixed, and per the
assumption of a static network in which no agents leave theark as we explained in Section 3.2.2,
the game will always end.

Solution Concepts

Every agenti in the network has a strategy function, which chooses therathati expects will
maximize its utility. By doing soi affects the other agents’ utilities. Another user antitegaon
that and adapts its actions, which in turn affects the othents’ utilities, etc. This way, the agents’
actions are intricately interwoven.

We refer to the tuples,..., s}, which contains one strategy for every agent, asrategy
profile. Every agent selects a strategy that provides it with mawimtility. If every agent selects

SThis is a very limiting assumption, but we make it to be ablegiply the main ideas from Bayesian games
later in this section. Most (but not all) work in game theorgkms this assumption [9].
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such a strategy, and no agent can select a different strafégyut lowering its utility, then we refer

to that strategy profile as aquilibrium It is our goal, as system designers, that every agent select
a strategy that has it specify full upload capacity and loegding times. Therefore, we need to
design an equilibrium in which every agent selects suchagesyy.

Different types of equilibria exist, and in this thesis wenfine ourselves to the three that are
most used: the Nash equilibrium, the Bayesian-Nash equilih and the Dominant Strategies-
equilibrium [32]. The equilibria differ by the assumptiahgy require an agent to make of the other
agents in the network.

The most influential solution concept in game theory is theMNaquilibrium [9]. Before we
define this equilibrium, we first define whatkeest responsés for an agent. We defing_; =
{s1,...,5-1,5+1,--.,5} as the strategy profilewithouti’s strategy. We can then write= (s,s_).

If all agents other thanplay s_i, i needs to determine the strategy that provides it with masimu
utility: his best response.

Definition 3.3. (Best response) Agent st responsi® the strategy profiles is a strategy 5€ §
such that us',s_i) > ui(s,s_i) for all strategies s€ S.°

Note that the best response is not necessarily unique, afplawdtrategies may result in the
same utility.

In general, an agentdoes not know which profils_; the other agents will play. However,
if every strategys in the strategy profiles is a best response to the other strategigs then no
agent has an incentive to choose another action as thatlwdlya decrease its utility. Therefore,
this is a stable strategy profile, which motivates the termildgium. Specifically, this is the Nash
equilibrium, which Leyton-Brown and Shoham [9] formallyfufe as follows:

Definition 3.4. (Nash equilibrium) A strategy profile s isNash equilibriunif, for all agents|, sis
a best response to s

We distinguish betweestrict andweakNash equilibria. In the former;s utility obtained by
playings is unique, while in the latter it is not.

In the Bayesian game we defined above (Definition 3.2), thestype distributed over the agents
according to the distributioR. As a result, an agent does not know what its utility will beentit
playss; instead, it expects some utility based BnWe denote thigxpected utilityfor agenti by
EUi(s). Because the meaning of expected utility is intuitivelyat)evhile the formal definition is
convoluted, we do not formally define this here but insteddrrthe reader to Leyton-Brown and
Shoham [9] for a formal definition. Next, we define the bespoese in a Bayesian game:

Definition 3.5. (Best response in a Bayesian game) The set of agem$sresponsds a strategy
profile s_j is given by BRs_i) = argmaxcs EUi(s,s-).

This allows us to define the Nash-equilibrium in a Bayesiamgawhich is referred to as the
Bayes-Nash equilibrium:

Definition 3.6. (Bayes-Nash equilibrium) A strategy profile s iBayes-Nash equilibriun, for all
agentsi, s€ BR(s.).

Sometimes, an ageinhas a strategy that yields a greater utility than any of its other strategie
for any strategy profile of the remaining agents. Such aegyeis adominant strategylf this is the
case, then always playss, regardless oP. A special form of Nash equilibrium is the Dominant

6Note that we are a little loose in notation here, as formafiyagent’s utility is a function of its type and

the outcome. However, this is justified here as the strateggses the agent’s actions based on its type, which
in turn determine the outcome.
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Figure 3.1: Example of a file-sharing network with one seeder (S), aneketleechers (A, B, and C). Arrows
indicate connections to and from the network. Capacitiesgawen next to the connections.

Strategies equilibrium, in which every strategy is a domtrstrategy. Based on Shoham and Leyton-
Brown [45], we define this as follows:

Definition 3.7. (Dominant Strategies equilibrium) A strategy profile s i©Daminant Strategies
equilibrium, if, for all agents i, sis a dominant strategy.

In Section 3.2.1, we motivated that we do not want the outctniee manipulable. It will now
be clear how an agent may try to manipulate the outcome tonits aglvantage: by sharing only
few files it has available, or making only a fraction of its egdi capacity available to the network,
for example. This way, it avoids uploading while it may beeatd download files nonetheless.
Because the files that an agent can share, or its maximumdipdqeacity, are private information,
it is impossible for the mechanism to verify an agent’s adiand check whether it manipulates.
However, we do know that the agents are rational and theyotrpaximize their utility. If it is
possible to design the mechanism such that it implemgriEquation 3.5) in some equilibrium,
then an agent maximizes its utility by playing the equilifoni strategy (assuming the other agents
are rational and do the same). We thus need to make sureithagthlibrium strategy is the desired
strategy from our perspective.

3.2.3 Static Model Example

In this section we provide a small example to illustrate tadicmodel we just defined. In Figure 3.1
a file-sharing network is given, with one swarm consistintpaf agents: a seed&rand leechera,
B, andC. All agents have an upload connection to the network (ouhaamow) and a download con-
nection from the network (inward arrow). For every conmatthe capacity is listed. All capacities
are in kB per second. Every agent makes its full connectipaciy available to the network. For
simplicity, we define every file piece to be 1 kB in size. Thea tlonnection capacity corresponds
to the number of pieces that can be sent over the connectmmeisecond. Finally, every agent has
two upload slots.

The file considered in this swarm fs which consists of three pieceb:= {p1, p2, ps}. Initially,
the seeder has all three pieces available (i.e., the coenfilet while the leechers have none. The
leechers decide to seed the downloaded file after their dmtitompletes.

We assume that the leeching agents have the same type. Tilitgifunctions are also the same,
and the faster download completes, the higher utility is:
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[Time]| pr | p2 | ps |
0 S—-A| S—B
S—C
1 A—B B A S—A
S—C
2 A—B
3 S—C

Table 3.1: Assignment from g for the network in Figure 3.1. Each row shatwvhat time the corresponding
piece is sent from the uploading to the downloading agent.

Agent | Utility
S| 0.6
Al 05
B| 0.33
C| 0.25

| Social welfare:] 1.68 ]

Table 3.2: Utilities and social welfare for the outcome in Table 3.1.

1
At

whereAt is the number of seconds it takie® complete its download in outcorme

With the above utility function, the seeder would never reea@ny utility because it does not
download anything. Vassilakis and Vassalos [48] distisbuivo ways a seeding peer may receive
utility, and we adopt one here: utility is proportional teethploaded volume. The seeder’s utility
function is then defined as:

Uj (ei s T[)

number of uploaded pieces
Us(Bs, TO) = 1% P

A possible outcome decided on byis given in Table 3.1, which could be an outcome in a real
BitTorrent swarm. Because agertandB have the largest download capacity availaeyefers
to upload to those agents. It sends different pieces to ehttfem to ensure a good diversity of
the pieces in the system. At 1, Soptimistically unchoke€ and sends ipy, and it sendgs to
its fastest downloadeh. BecauseA andB have different pieces available locally, they can start
bartering and they exchange and pz. A has now completed its download. It stays online as a
second seeder, sendipg to B, which allowsB to finish its downloadS sends the final two pieces
toC.

The utilities for the agents and social welfare arising frihis download assignment are given
in Table 3.2.

We find that, with the given utility functions and outcomd, agents obtain a positive utility.
However, other outcomes are possible as well. Suppose ttlgemism’s objective is to minimize the
deviation of the average download time, or, in other wordlfiave all agents finish their downloads
roughly at the same time. An outcome satisfying that objeas given in Table 3.3 shows. Here,
all agents finish their download after 2.

Obviously, with the alternative assignment all leechingratg have the same utility, as is shown
in Table 3.4. The seeder’s utility does not change with tiei& mssignment, but social welfare is
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[Time][ pr | p2 | p3 |
0 S—»C| S—B
1 S—-B|B—-A|S—C
C—A
2 A—C | S—A
S—B

Table 3.3: Alternative outcome allows all agents to finish simultarsiyu

Agent | Utility
S| 0.6
A | 0.33
B| 0.33
C| 0.33

| Social welfare:] 1.6 ]

Table 3.4: Utilities and social welfare for the alternative outcomerfr Table 3.3.

slightly lower than with the previous assignment.

In this example, all agents made full connection capaciajlable to the network. Suppose that
B would have refused to upload, so it would set its upload daptczero. This would have had an
impact on both outcomes. In both outcomBsendsp; to A att = 1, which is impossible without
upload capacity. As a resulj cannot finish its download aftér= 1. Assuming the seeder would
send the missing piece #g utility for B would be the same in both outcomes, Big utility would
drop significantly: from 0.5 to 0.33 in the first outcome, armhfi 0.33 to 0.25 in the second. In the
first assignment}'s refusal to upload would cause social welfare to drop fro681o0 1.61. In the
latter, social welfare rises slightly from 1.6 to 1.61, altigh the mechanism’s objectives are better
met with the original outcome. This shows the effect one #g@manipulation can have on social
welfare and the other agents’ utilities.

3.2.4 Towards a Fully Dynamic Model

The model we defined in Section 3.2.2 describes a static ganvehich the agents choose their
actions at the beginning of the game and these actions a fiixehe remainder of the game.
This is a major simplification of reality in P2P file-sharingtworks, which are inherently dynamic:
agents join and leave the network continuously, new filesaalded to the network, shared files
are removed, etc. In this section, we add dynamic aspectsetstatic model. Although a fully
dynamic model gives a good representation of reality, it mlag needlessly complicate the model.
We therefore choose to review the aspects that can be dyndiis allows us to use the simpler
static model with only the dynamic aspects that are of istere

In the following sections, we first define the dynamic gamelama it relates to the static game.
Then, we investigate what aspects of the static model arardimin reality and how they can be
modelled in a dynamic fashion. We do this in order of impoc&nwe start with the files that are
requested and shared, as agents will typically change #feseeach successful download. We then
proceed to agents joining and leaving the network. Aftet, te consider agents that change their
network capacity. Finally, we investigate the dynamic aspef the utility function. Any aspects
we omitted from this model are listed in Section 3.2.7.
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The Dynamic Game

In Section 3.2.2, we defined the static model as a Bayesiae gahis is not changed in this section
where we make the model dynamic. As in the static model, theegansists of a set of agents, each
of which have action and type spaces, a utility function, amdmmon prior over the agent types.

The other assumptions we made in Section 3.2.2 no longer Riel replace those with the
following assumptions.

Dynamic game: For the static model, we defined a static game in which agguesify their
actions once at the beginning, after which the actions aesglfand the mechanism determines an
outcome. In our dynamic model, we remove this limiting asstiom and instead allow the agents
to perform actions continuously.

Game proceedings: As we describe above, in the dynamic model, agents can perfew actions
at any time. For example, agents go offline at some point gothrthe network later, or when a
new movie comes out, agents will request that. As a reswdtgdme does not end. Agents can
exchange files whenever they wish, and do not need to waitlfsaasfers to complete whenever a
new file is shared or requested. Because the outcome depertials actions the agents perform, a
new outcome needs to be determined whenever an actiondasrped.

Types and Strategies: The dynamic model runs for an extended period of time. Ovatrtime,
possibly many years, an agent’s type and strategies cargehafie choose not to include this in
our model to not make it overly complex. Instead, we assuraeah agent’s type, and its strategy
function, are fixed.

History and agent memory: We assume that the agents have a limited memory available. Ho
exactly memory is limited depends on the particular file stfganetwork under consideration.

Dynamic Actions In the dynamic model, agents have all actions at their depasin the static
model. Additionally, they can join or leave the network. Tétions available to the agents in
BitTorrent are enumerated in Section 3.2.5.

Download Assignment and Outcome

We keep our definitions of a download assignment and outc@aénjtion 3.1). A download as-
signment may be scheduled in the future. This may happerexample, because the uploading
agent is not yet online at some timgor its upload connection is currently filled to capacity. At
any timet, an outcome can be calculated based on the informatioraslaiat timet. This out-
come includes download assignments that start immedjaslyell as assignments scheduled in
the future.

0: X1 X...xXgxT =T (3.9
In the dynamic model, agents can perform actions continyoAs every action influences the
outcome, this means that an outcome becomes invalid wheaeation is performed. When that
happens, a new outcome is determined, which is valid urgihéxt action is performed.
Utility
As in the static model, in the dynamic model we assume thagehkr receives its utility when the
download completes, because an incomplete download isassahd has no value to the user. This
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Figure 3.2: Utility changes over time. Downloads complete at® and t= 1.

may be a simplification of reality: one can imagine that a vsegives a small utility when it notices
a download for a movie has completed, but receives fulltytilthen the movie is actually being
watched. Because that is outside the scope of this modegmweze that possibility.

It is different for a seeder, as a seeder uploads pieces antenessarily a complete file. We
therefore assume that a seeder receives its altruistity wfter every uploaded piece. As a result,
a leecher receives no utility while downloading but alliitiwvhen download completes, while a
seeder receives utility for every uploaded file piece but tildyuwhen the seeded file is uploaded
completely.

The question is then how long utility lasts. We assume tlat)6th seeders and leechers, it does
not last forever, but somehow decreases over time. Two elesmpthis are depicted in Figure 3.2,
which shows utility that is constant for some time interadter which it disappears, and utility that
gradually decreases. How exactly utility decreases isifipgdn an agent'’s utility function and
depends on the outcome. We redefine the utility functionc¢oriporate time:

U:0ixMNxT—-R (3.10)

3.2.5 Model Applied To BitTorrent

The static and dynamic models we presented in Sections 8@ 3.2.4, respectively, are generic
models that can be applied to file-sharing networks in géndnathis thesis, our focus is on the
BitTorrent file-sharing network. In this section, we applyranodels to BitTorrent. We use the
BitTorrent terminology as introduced in Section 3.1.

Remote Peers and Swarms

In BitTorrent, a file is identified by thet or r ent -file, which also enumerates the pieces and lists the
tracker server. Agents that exchange a fileither by leeching or seeding it, announce themselves
to the tracker server. From the tracker, a leecher receigeteation of other agents currently ex-
changing the file. As a result, any agent is aware of only aetudfthe other peers exchanging the
file. To model this, in the static model we supply every agentN with the subseN;; C N\{i};

the agents in this set ars remote peers. This does not suffice in the dynamic modehuxse the
remote peer list is updated periodically from the trackempeers may go offline. In the dynamic
model, an agent’s remote peers at any moment in time are bivéme functiorr:

rNxT—2N (3.11)

Because the remote peer list is received from the trackex éartain file, it only contains peers
exchanging that file. The group of all agents exchanging daé is referred to as a swarm. In our
model, we identify a swarm by grouping the outcome by file -hegroup represents a swarm.



Model 3.2 Model of a P2P File-Sharing Network

In a swarm, agents barter for file pieces, which is expressezlii model as one download
assignment for a specific piece, followed (in time) by uplaasignments for that same piece.

Although, in the static model, it is possible to express ipldtswarms in the network, we choose
to consider a single swarm only. This is justified becausdiifiorrent, no state information is
exchanged between swarms. An agent enters a new swarm wihglknowledge of the other
agents in the swarm. Even if an agent encounters an agemtéréa with before, it will exchange
pieces only when the agent reciprocates pieces in the nemrswa

In the dynamic model, this no longer holds, because we allpsnts to request and share new
files, or stop sharing a file. This implies that they join onvea swarm. However, as in the static
model, we do assume that agents do not take bartering infarm@iom one swarm to another.
When an agent encounters an agent it bartered with beforoiher swarm, that agent is treated as
if it were a stranger, and a regular optimistic unchokeamés a bartering session. This is exactly as
specified in the protocol.

Implementation Of The Mechanism

In our model we assume a mechanibfithat decides on the outcome. Intuitively, we thought of
M there as some broker. In BitTorrent, such a broker does rist. ebnstead, the mechanism is
implemented by the agents themselves: a distributed ingaiaion.

The mechanism executes the outcome gu{&quation 3.5) to determine which file pieces are
exchanged by which agents. The outcome rule takes as inpaictions performed by the agents,
i.e., the files they share and download (in other words, whigarms they are in), their upload and
download capacities, number of upload slots, and seediategy. This is the same in BitTorrent,
as we describe in Section 3.1.1. There, an ageptimistically unchokes an ageptnd sends it a
file piece. The transfer speed of this file piece is givembypload capacity per upload slot, afisl
download capacity. lifis amongj’s fastest uploaderg,will reciprocate by sending a piece backto
Then, if j is among’s fastest uploaderswill reciprocate and a bartering relationship is estalalish
until eitheri or j encounters a better bartering partner. In a barteringagssvery agent decides
for itself which file piece it requests from which barteringrimer; in general, the Rarest Piece First
policy is used to make this decision.

We see here how an agent’s actions influence the outcomengaidre upload capacity avail-
able, for example, allows an agent to barter with faster agtilog agents.

One final word on the memory of the agents. BitTorrent bartegroceeds in rounds, and an
agent sends pieces to the agents that sent it most pieces jmetious round. An agent does not
take any information from earlier rounds into account. Werdiiore limit an agent’s memory to be
limited to one round.

Actions in BitTorrent

As we described in Section 3.2.5, the BitTorrent protocquiees an agent to specify an upload
and download capacity, and number of upload slots. Thesadi@ns that the user will perform,
typically by adjusting settings in the interface of its BitTent client.

Different clients allow a user to specify different setndylost clients include settings to specify
upload and download rate, and some clients include settemgumber of upload slots as well. Some
clients, such as Vuze, allow the user to control most of itsav@r, while others, such as Tribler,
offer a limited number of settings to the user.

In this thesis, we consider the settings that can be set frost nlients, and we limit ourselves
to those settings that influence the outcome. Below is aflidteosettings we consider:

1. Upload rate: Specifies the maximum upload rate (from zero to unlimiteddusy BitTor-
rent, expressed in KB/s. Distinguishes between uploadwvhtsn downloading and when not
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downloading. The upload rate is set to unlimited by default,

2. Download rate: Specifies the maximum download rate, from zero to unlimigxgyressed in
KB/s. The download rate is set to unlimited by default,

3. Upload slots: Specifies the number of upload slots used,
4. Seeding options:The user can choose one out of four options to select itsrsgstiategy:

a) Seed until the upload/download-ratio exceeds 1. Thissiglefault option in BitTorrent,
and has as effect that a local peer will upload as much as ihbhaas,

b) Unlimited seeding,
¢) Seed for a specified amount of time,

d) No seeding.

Note that for these options to be effective, the user neelist@ the client running after the
download completes.

In the dynamic model, agents can join or leave the networkeds w

At any moment in time, for every setting available to the usemething is specified: either
explicitly by the user, or implicitly in the form of some defa setting. We refer to specifying a
combination of settings above as performingaation

Specifying one single setting, such as the number of upltmd, sve refer to as performing a
subaction For every setting above, we introduce a subaction sp&eeXi 4, Xi x, andX; e, respec-
tively. Then, for every agert we introduce a set of action§, which is the Cartesian product of
Xiu, Xi.d, Xi k, @andX; e. Finally, byx; we denote the action played by agent; € X;.

As we mentioned in Section 3.2.2, every agent has a set afmacét its disposal, and this set
depends on the agent’s type. We elaborate on this in Sect&nvBiere we group the agents in
different classes based on their action space.

When the dynamic model is applied, not all settings may bakgrelevant. For example, if our
goal is to investigate the effect of sharing and requestlag in agent utility, we are not interested
in the number of upload slots at any moment in time. For thisoa, we specifically allow only
some of the subactions to be dynamic, while the remainingaidns are static. Such a model is
only partially dynamic.

Of the six settings, the subactions of sharing and requgeétes will be performed most often,
as new content comes available all the time, or users delese fi

Specifying upload and download rates will be performed fe=guently. This specifically holds
for specifying the number of upload slots, which usuallyl wé set once by more advanced users,
while the majority of the users will not set it at all but use tefault value. However, as we show in
Section 4.1, setting the number of upload slots stratdgicah have a significant impact on utility,
which calculating advanced users may use to their advantdgeh users will also change their
upload and download speed more frequently than other users.

Finally, in practice, users will not often change their Segdstrategy. We show the reason
for this in Section 4.1: the other subactions influencetutil a different way than the seeding
strategy subaction does. Therefore, the utility derivedifthis subaction can be considered more
constant than the utility derived from the other subactiomsich is more dependent on the file
being downloaded and the agents downloading that file. Ofsepit is our goal to motivate agents
to choose a sharing setting here.
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3.2.6 Utility Functions

In Sections 3.2.2 and 3.2.4, we introduced an agent'syfilihction as a function that, given an
agents type, calculates some measure of the benefit an ageivias from the mechanism’s outcome.
In this section, we consider utility functions in BitTortén more detail and provide some examples.

Measurements have shown that in practice, users are nettiatshare files. Apparently, upload-
ing incurs them a cost. We can model this with a simple utilityction.

Consider a function that values the benefit of the downloadfité at some rate twice as much as
the cost of uploading at the same rate. In other words, thistfon returns the sum of all download
rates, minus half the sum of all upload rates. We need sonaiootto formally describe this
function. Denote bya an assignmenta € 1. Denote byay; the subset of in whichi is the
downloading agent. Similarly, denote lay; the subset of in whichi is the uploading agent.
We introduce the functiom: T— R* that outputs the transfer rate of a download assignment, i.e
r(ng, f,nz, p) = p. The utility function is then:

vi(6;,a) = z z(x)—:—zL z Z(x) (3.12)
XEay | XEay

Obviously, this example is simplified, in that it does notcdiminate between files that have
or have not been requested, all transfer rates are valueglledor all files, etc. However, one
recognizes these factors can all be expressed in a utilitgtion.

The utility function above makes two unrealistic assumpioFirst, it assumes that the higher
the transfer rate, the higher the utility. Second, it assuthat users are carefully observing their
upload rate. We first address the first assumption. It is redsle to assume that the user will
become saturated at some point. This is easier to see in tiendy model: after downloading
movies constantly for 30 days the user may want to actualtglwsome movies, and downloading
yet another movie will only marginally increase its utilitfyat all.

However, the same may hold for download rates: the increfastlity may diminish with the
transfer rate. We could express this by making the benefits gggarithmically instead of linearly
with the transfer rate. The same will then apply to the costsen uploading at a substantial rate,
extra uploads may impose less of a cost. The above utilitgtion would then become:

1
vi(6;,a) = log <1+X;dir(x)> -3 log <1erezaUi r(x)) (3.13)

When we do consider download (and upload) volumes, we asthab¢he increase of utility
decreases with the downloaded volume, and vice versa famtli@ded volume:

vi(6i,a) = log (/two 3 r(x)) —%Iog (/two 3 r(x)) (3.14)

€aqj Cay,i

The second assumption of Equation 3.12 is that users wousdutly observe their upload rates.
In practice, this will not be the case. Users will notice whiegy are uploading, and that may reduce
their utility compared to not uploading with some constant:

a Sxeag; F(X)  1f Sxea, F(X) =0
vi(8i,a) = { xeag; F(X) —C otherwise, withc € R* (3.15)
Similarly, the costs can relate to the fraction of uploadacdly used. If only a small portion is
used, this does not affect the utility. If a large portion &2d, utility is negative as no matter how
much is downloaded, the costs of using that much capaciopisigh. For upload rates in between,
utility drops with some constant:
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Yxeagi (X)) i Yxea, 1(X) < %
Vi(81,8) = ¢ Syeay, M) —C if %< Syeq, 1(X) < 4 e RT (3.16)
c otherwise, withc € R~

Another example of a utility function is motivated by podsibontract terms an ISP may impose.
With some contracts, users are allowed to upload only a firemlat of data. When this is exceeded,
some fine is imposed. Users will want to avoid this fine, andlwailue an assignment that exceeds
this limit very low.

o ) Txeaq; T(X) if J7 Txea, F(X) <C withce RT
i(81,2) = { K otherwise, withk € R~ .17

We explain in Section 3.1 that in BitTorrent, users need toaghto be able to download. To
most users, uploading is then no longer a cost. Their utdlilirectly linked to their download rate:

V@)= ¥ r(x) (3.18)
Xeaq i

Finally, we consider a utility function for which the costsmknd on the file that is uploaded.
This is motivated by the fact that users illegally share cigtyted material, and are afraid of getting
caught. Users may want to share such files unless they arelabmed to often, for example, or
these files may be downloaded and shared automatically. ¥Melirce the functioty that returns
the uploaded files in an agent’s upload assignmagtsand the set C F that holds the illegally
shared files agemt The utility function then becomes:

(61.8) = { i(81,8) = Sucay, () ~25xca, (X) if Y(aui) N1 #0 (3.19)

Vi(61,8) = Tyeaq T(X) = 3 Yxea,; '(X)  otherwise

From the above, we find that there are many different utilityctions, with very different objec-
tives. This motivates that maximizing social welfare in a-Bharing network is a difficult task.

3.2.7 Omitted Aspects

Every model is a simplification of reality and does not inagie all aspects of what is modelled.
Below, we list the properties we do not consider in our model:

1. Irrational behavior: we assume all agents are rationgénis do not need to be the same, and
may have different motivations for joining the network. Hower, we require these motivations
to be rational, and we require the agents to try to maximinpessutility function. We require
this rationality because we model the agents to choosedhtons based on the assumption
that the other agents are rational, as we motivate in Se8tiha,

2. Network topology: in our model, all agents are conneateglitother agents in the network.
P2P networks are typically implemented as overlay networksop of the Internet. We as-
sume that the Internet provides our network with the polisds that all agents are connected
as modelled,

3. Transfer speeds: the transfer speed for a file may be edfést the underlying network, and
not only depends on the uploading and downloading agentsiextion capacities. We ignore
this and assume that the file transfer rate is only limitechieysers’ capacities,



Model 3.3 Agents in BitTorrent

4. File identification: we assume all files can be identified distinguished. In reality, in file-
sharing networks it is difficult to identify files because aining conventions applied by each
user. Additionally, files with identical names can be diffierbecause of different encodings,

5. ldentification of agents: we assume it is possible for hbéhbrokerM as for the agents to
identify and locate other agents,

6. Costs of assignments: in our model we assume that uplpautinrs a cost because it puts
load on the users Internet connection. It is very likely thsg¢rs have other, less rational,
motivations for uploading being a cost,

7. In Section 3.1.1, we mentioned that a peer always send®tluested file piece. However,
according to the protocol, pieces are implicitly corretateith request messages, and it is
possible for an unexpected to arrive. In practice, this kapmnly in the end-game, when
the local peer has only a few missing pieces and does mangsejio many agents. In our
model, we assume that a peer always sends the requeste@die pi

3.3 Agents in BitTorrent

The previous section introduced a model for P2P file-shametworks from a game-theoretic per-
spective. We modelled agents connected to the networkiasagtself-interested entities that strive
to maximize their utilities, i.e. they try to download thdisired files as fast as possible. If possible,
such rational agents may opt to manipulate the outcome infihver, possibly at the expense of the
other connected agents. In this section, we investigatadkeats in a file-sharing network in more
detail, and motivate our focus in this thesis on one pauictylpe of agents: the lazy free-riders.

Meulpolder et al. [28] distinguish three classes of agemBitTorrent: altruistic agents, lazy
free-riders and die-hard free-riders. The altruistic agshare files because they want to, and if all
agents were altruistic, no incentive mechanism would bessary. The die-hard free-riders will go
to great lengths to free-ride. They have both the skills &ediotivation to create or obtain cheating
clients to prevent any uploading at all. Although this is gibke, in practice such behavior is not
often seen in BitTorrent [28].

However, we do find that agents go off-line immediately aftexir download finishes, or that
they make only part of their upload connection availablen® network. Such agents we refer to
as lazy free-riders: agents that free-ride whenever thay lsat that will not actively search for
possibilities. Their options are limited to the optionsyaded by the interface their network client
provides.

There is one additional class of agents: the byzantine agdihiis class of agents may display
any behavior to obtain their desired files, including exiagi the file-sharing network protocol,
breaking into other users’ computers, or even breakingh® houses and stealing their computers.
The difference between byzantine agents and die-hardifilees is, that the latter use the file-sharing
network to obtain their desired files. They faithfully exezthe network protocol, but may not
be faithful in their actions using the protocol, for example obtaining a cheating client, as we
mentioned above.

Distinguishing only four classes of agents is a simplifimatiin reality, there are more classes
of agents. Users in each class will be somewhere ‘betwetnisth and die-hard free-riding in
the lengths they will go to to free-ride. The actions avdéai the different classes of agents are
visualized in Figure 3.3. The byzantine agents have albastat their disposal. The die-hard free-
riders’ actions are limited to all actions that can be impated using the file-sharing network.
This includes installing or developing other clients foe tietwork. The lazy free-riders’ actions are
confined to the actions that can be performed using the dffitent, and are thus a subset of the
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byzantine

Figure 3.3: Available strategies for different agent classes.

die-hard free-riders’ actions. Obviously, the set of thieugtic agents’ actions is the smallest, and a
subset of all other sets of actions.

It should be noted here that the lazy free-riders and aticuégyents share the same strategy
space, as both use the official client. The altruistic agdmtwever, refrain from using some of the
actions available to them. One example is that downloadesl! fite automatically shared with the
network. A lazy free-rider will decide not to share such a filet an altruist is intrinsically motivated
to cooperate with the network and will not consider some efabtions available to him.

Our distinction of different classes allows us to modeleafiint classes of agents differently, as
depicted in Figure 3.4. For lazy free-riders, the agentésuber. The user’s interface to the network
is the client, but, by definition, the lazy free-rider doed replace or alter this client. Therefore,
the user’s action space is limited to the actions the cliastto offer. We depict this in the upper
figure in Figure 3.4. This figure applies to altruistic ageagsvell, although altruistic agents will in
addition refrain from performing some of the actions ava#zo them.

With die-hard free-riders, the agent comprises the usettandlient, its interface to the network
(the lower figure in Figure 3.4). Because the client is underuser’s control, the agent can perform
any action possible within the network.

In Section 3.2.6, we provide utility functions for a numbérealistic types of users. All of these
users are lazy free-riders. This shows that there are imfaoly more agent classes than the four we
distinguish here.

Previous research in BitTorrent has focused on die-hamdricing, and identified methods that
allow an agent to download without uploading. Examples &iei&nos et al. [46], Piatek et al. [35],
and Levin et al. [26]. However, as stated before, die-hagd-fiding is hardly seen in practice. In
this thesis, we focus on lazy free-riders. We are interestbdw they can improve their utility using
only actions made available through the interface of offidli@nts, and how this affects the utility
of the other agents in the network. Based on the model deitivibds chapter, we derive theoretical
results for this in Chapter 4. These results are experirignexified in Chapter 5.
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(St [Greragen

Agent Network

| Other agent}s

Agent Network

Figure 3.4: An altruistic user (top) interacts with its client as if it veethe network. This user does not change
any settings, but instead accepts all the defaults. A laafider (bottom), on the other hand, has full control
over its client and uses its client to interact with the nekwvdl his type of user may change any setting that is
available through the interface.
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Chapter 4

Application of the Model to BitTorrent

In Chapter 3, we developed a model of a peer-to-peer filerghaetwork. The agents of such a
network derive their utility from the outcome: a single d#gan which specifies for every agent,
which file pieces are downloaded from which agents, and theraand transfer rate with which
these pieces are downloaded.

In this thesis, we focus on the BitTorrent file-sharing netwoThere, this outcome is deter-
mined distributedly, by the clients to the network. In thigpter, we investigate this outcome. In
Section 4.1, we show that the outcome groups agents on thleiad capacity, and that in general,
agents barter only with agents in their group. We show that tombined with BitTorrent’s op-
timistic unchoke policy, increases the download compietime and uploaded data volume of the
faster agents in the network, while it decreases that oflthvees agents. In Section 4.2, we inves-
tigate possibilities for manipulation BitTorrent’s outne provides, and how much agents can win
by manipulating the outcome. In Section 4.3, we extend thdehwith the BarterCast reputation
system, in order to identify whether agents have an incemiwse this system.

4.1 Network Composition and Outcomes

In this section, we show that in BitTorrent’s outcome, ageare grouped on their upload capacity,
and barter only with agents from their own group. We starbhait overview of related literature that
observed this grouping in practice (Section 4.1.1), and #ew that this follows naturally from our
model (Section 4.1.2). We use the results from our model padx other observed phenomena in
BitTorrent’s outcome in Section 4.1.3, and draw conclusionSection 4.1.4.

4.1.1 Clustering Phenomena
Clustering

In Chapter 3, we modeled the users of a file-sharing systentilag-maximizing agents. Agents
derive their utility from their download rate. Therefordl,agents want to download from the fastest
uploading agents in the swarm — including these fastesttagBacause agents have a limited num-

ber of upload slots, the fast agents reciprocate to thaigdasploaders, and not to the slower agents.

Because these slower agents do not receive pieces fromstiestfagents, they lose their interest in
these agents and try to obtain pieces from slower uploadiegta. Intuitively, this demonstrates
that agents end up bartering only with agents with simildoag capacity.

Consider a network consisting of 10 agerds,throughaio, wherea; has the highest upload
capacity andhp the lowest. Every agent has 3 upload slots (with the optimistchoke slot ex-
cluded). In this example, all agents prefer interactindait over interacting with any other agent.
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This means thad; gets to decide on which agents it interacts with. Best catd&ifora; areay, az
andas. Agentay now has one upload slot dedicatedjo Best candidates for the remaining upload
slots areaz anday, etc. This means a cluster is formed doythroughas. Similarly, a5 throughag
form a cluster, andyg clusters together withyy.

In this example, we find that ageat provides the best service (fastest uploads) to all peers,
and it is in its best interest to interact with, az andas. However, these agents receive this high
quality service in exchange for their lower quality servidgéhen agents have Equation 3.12 as utility
function (utility is download rate minus half the uploadegiy’s utility outweighsa;’s utility. In
fact, if a; would upload just slightly faster thaas, it would still connect toa, throughay, and
receive the same service from them, while delivering subugltservice.

Clustering is problematic for two reasons. First, it intwods possibilities for manipulation, as
described above. Second, since there is no data exchangesbbeclusters, clusters lock content. If
ag andayp together do not have all pieces of the file, they may never beetalfinish the download.
This means that all pieces of a file must be present in evesgarlto ensure that all agents can finish
their download. In practice, this means that every clustestrbe connected to a seeder. Because
seeders prefer uploading to the faster leechers, it is elgltkat that will happen.

Stratification

Clustering is not a purely theoretical phenomenon. Bhaesthl. [8] and Legout et al. [25] describe
clustering from measurements in real BitTorrent systenash Bhow that clusters are formed by the
faster, medium and slower peers in the network. Legout dinal.that although data is exchanged
from the faster to the slower peers, this is due to optimigtichoking. This means that the slower
peers in the network depend on optimistic unchokes for afgignt part of their pieces.

Interestingly, both find that the faster peers in a clustdoagb significantly more pieces than
they download, while the slower peers in a cluster uploasl tiean they download. However, this
does allow these faster peers to finish their download mackiyuDepending on the agent’s utility
function, this observed inequality in uploaded volume dquiovide the agent with an incentive to
choose its actions strategically.

What Bharambe et al. and Legout et al. observed is not théecing as we described above,
where the network falls apart into disjoint clusterspf 1 agents. Instead, they find something
similar, to which we refer astratification following Gai et al. [20]. For clarity, we now define the
following terms:

Definition 4.1. (Clustering)Clusteringis a process that groups agents together based on their slot
capacities.

Definition 4.2. (Segmentation) Segmentation is a clustering process whalits in the network
being split into disjoint groups (segments) of agents. &seare only exchanged between segments
as a result of optimistic unchokes, not by bartering.

As a result, we refer to the clusters we described in Sectibrd 4s segments from now on.

Definition 4.3. (Stratification) Stratification is a clustering process watiresults in a network in
which for every agenté& N, there is a range of slot capacities centered around it Gigpacity such
thati barters exclusively with agents that have a slot céydhat falls within this range. Pieces are
only exchanged with the other agents as a result of optiisichokes, not by bartering.

Stratification may lead to segmentation. When segmentsage,lit is possible for stratification
to occur within segments.

Both Bharambe et al. [8] and Legout et al. [25] provide two larptions for stratification to
occur instead of segmentation. First is that for the segatiemt into many small clusters of size
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p-+ 1, as we described in Section 4.1.1, all agents must haveathe aumber of upload slots. In
BitTorrent, this number is not fixed but depends on the upkeguhcity. Both describe, based on
measurements, that this prevents segmentation, but thag st not prevent stratification.

The second explanation for stratification to occur is thatrag do not know all other agents in
the network, as we assumed above. In Section 3.1.1, we Hedc¢hat agents get a random selection
of other peers in the swarm from the tracker. As a result, anig not able to probe all agents in the
swarm. As every agent receives a different remote peerdisi the tracker, every agent will connect
to other agents and one would expect that segments will nfdrbeed. This is true to some extent
— Bharambe et al. do not observe small segments, but have fatge segments. Stratification is
observed despite the random selection of remote peers.

Until now, we assumed that agents rank other agents baselgt sal their upload capacity per
upload slot. However, in BitTorrent, this is only a part ofthagents rank other agents: we describe
in Section 3.1.1 that a lazy free-riding agent barters onityr\@gents that have complementary
pieces, i.e., have pieces thatloes not have, and thaprefers agents with more complementary
pieces. When we incorporate this in our analysis, it is ngéwrpossible to rank agents globally
based on their upload capacities alone, and second, it ntkahan agent’s ranking of the other
agents may change whenever it exchanges a file piece.

However, Legout et al. [25] and Bharambe et al. [8] both shawnfmeasurements that strati-
fication does occur despite this. A possible explanationvisrgin Legout et al., where the authors
argue that BitTorrent’s Rarest Piece First piece selegiaity distributes file pieces over a swarm
such that agents remain interested in other agents as laihg &snsfer speed is large enough, or
until the download is almost finished and it becomes hardéntbmissing pieces.

4.1.2 Clustering Explained From The Model

In the previous section, we explained intuitively how chrsig and stratification arise, and gave an
overview of the literature that observed this phenomengmagtice. We now prove that clustering
and stratification follow naturally from the models we pretegl in Section 3.2.

Preliminaries

In our static model, an agemthas an upload capacity,; andk; upload slots. This number is
with the optimistic unchoke slot included. In the followinge will often consider the upload slots
determined for bartering only. For any agéntre denote b¥;  the number of upload slotsissigns
to bartering.

We use the static model for our analysis in this section, atehel it to the dynamic model later
in this section. Specifically, this means that agents do hahgek; or c,;. We consider a single
swarm only,N is the set of alh agents in that swarm.

The users we consider are lazy free-riders (see Section Bg)definition, these users use
official or mainstream clients. In the BitTorrent file-shayinetwork, such clients include the official
BitTorrent client and Tribler. We assume that all clientediby lazy free-riding users have the same
utility function: to maximize the download rate, given ctaits specified by the user: the number
of upload slots;, and upload and download capacity. We refer to this utilitydtion as thelient
utility function Note that this client utility does not necessarily match tiser’s utility function —
we investigate this further in Section 4.2.

Ranking

The client utility implies that agents prefer downloadimgrh faster uploading agents over down-
loading from the others. To facilitate our reasoning in g@stion, we first introduce the concept of
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aglobal rankingthat orders all agents iN based on the upload capacity they offer per upload slot.
We refer to this metric from this moment onwardssés capacity agent’s slot capacity equal%%i.

Definition 4.4. A global rankings an order over the agentsd N based on their slot capacifzfﬂ,
where ties have equal rank.. N — NT gives an agent’s rank in the global ranking, and<rr; iff

Cu,i Cu,j
K S%-

A higher, or better, rank corresponds to higher slot capacity. A visualizatbma ranking is
given in Figure 4.1. The lowest rank is 1; the highest ranlsjis isn if there are no ties. If there
are ties, we say that these agestiare a rank

Proposition 4.1. The global ranking is acyclic.
Proof. This follows directly from Definition 4.4. O

Note that in Definition 4.4, agents are ranked on their uplosgahcity alone. In Section 3.1.1,
we described that when an agent decides on which agent tolaladvfrom, it not only considers
the other agent’s upload capacity, but also its complemgpiaces. Incorporating complementary
pieces results in a ranking that is no longer global, butllet@aach agent. In the remainder of
this section, we find that the most important property of thebgl ranking is that it is acyclic
(Proposition 4.1). Gai et al. [19] prove not only that a ramkbased solely on complementary
pieces is acyclic, but also that any linear combination gthc global and complementary rankings
is acyclic. In this thesis, we ignore the additional rankimgcomplementary pieces, and focus on
upload capacity alone. Based on the work by Gai et al., thisilshnot affect our results in this
section.

If an agent downloads from another agent, either througtetiag or optimistic unchoking, it
discovers the other agent’s slot capacity. When all agesne imteracted with each other, every
agent knows the slot capacity of every other agent in theortvBecause in the static model agents
do not perform actions, their slot capacities do not changimd the game and all agents have equal
knowledge.

Proposition 4.2. With the BitTorrent protocol, an agent knows the slot capesiof all other agents
in the network if and only if it has downloaded from all othgeats.

Proof. If an agent downloaded from all other agents in the netwdrknows all slot capacities
from experience. This proves the if-part. Agents excharrgéopol messages and file pieces only.
Protocol messages do not include exchanging informationtaglot capacities, so that information
must come from experience, i.e., downloading from evergo#iyent in the network. This proves
the only-if-part. O

Proposition 4.3. If every agent employs the client utility function, knowe $tot capacities of all
other agents in the network, and agents do not perform astthuring the game, then all agents
employ a preference over the other agents that is equal tgltiel ranking.

Proof. Every agent prefers an agemh over agenh if

Cum _ Cun
_ > _
km = kn
becausen givesi a higher utility tham, andi prefersm andn equally if their slot capacities are the

same. This is the same metric as used in the global rankintauBe agents do not perform actions,
an agent’s ranking of another agent is constant during theega O
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Figure4.1: Ranking of eight agents. Agent a is ranked best and has higdmds Agents b, ¢ and d are ranked
second best and have equal slot capacities. Agent h hastisleésapacity and is ranked worst.

rank

Bartering Relationships

Upload slots put a restriction on the number of agents to lvhit agent uploads simultaneously.
As a result, agents need to be strategic in who they uploadbey prefer uploading to higher-
ranked reciprocating agents as those will provide goodyutil return. For downloading, there is no
such restriction, and an agent will not refuse to downloaghdvom its slowest uploaders. It will,
however, refuse to upload to the slowest uploaders, becauptads to itsky; fastest uploaders
only.

If an agentj is among’s fastest uploaders reciprocates tq. In return, reciprocates toif i
is amongj’s fastest uploaders. We say that agerasd j form abartering relationshipexchanging
pieces for a longer period of time, until eithieor j encounters a better partner to barter with. It
follows that no agent is in more tharky; relationships. Note that an optimistic unchoke is not a
bartering relationship but may result in one if both agemislived reciprocate to each other.

For any agent, being in a relationship with any other agemfter than being in no relationship,
because then at least some utility is obtained. Howeveneniganked agents provide more utility
than lower-ranked agents. Consider three agantsandc, each with one upload slot, witt{a) >
r(b) > r(c). Suppose that agenasandc are in a bartering relationship with each other, wibilis
in no relationship. Agenlb prefers to be in a relationship witlhor ¢ over its current situation and
unchokes both in the hope of forming a relationship. Agamtefers its relationship with because
r(a) > r(b), buta prefersb overc and breaks its relationship withfor a relationship witrb. We
observe the following:

1. The broken relationship betwearandc is initiated by agent thatproposego a. Therefore,
b is theinitiating agent

2. Any agent can take the initiative to propose to anothentade BitTorrent, proposing is done
through optimistic unchokes;

3. The utility ofa improved. We saw played abetter response b's initiative by breaking its
current relationship for a relationship that gives it high#lity;

4. In this network of three agentscannot obtain higher utility. The better response was there
fore abest response

5. The utility ofa andb increased, while’s utility dropped to zero. A rational agent will never
break a relationship for a relationship that provides itdowtility. If an agent’s utility over
a given upload slot decreases, it must be because its parwier the relationship playing a
better response and leaving the agent with zero utility.
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If a best response is mutual, i.e., both the initiating aspoading agent cannot be in a relation-
ship that give it higher utility, then this relationship ilot be broken.

Definition 4.5. (Stable Relationship) stable relationship is a bartering relationship that isoken
by neither of the agents to obtain higher utility.

It is important to realize here that although initially eyegent prefers bartering with the best-
ranked agents, these best-ranked agents reciprocateét@hked agents only. Therefore, the worse-
ranked agents do not obtain any utility from the best-rardgahts, and as a result, the higher ranked
agents are not attractive bartering partners for the wasked agents so they will not form a stable
relationship.

Lemma 4.4. An agent i playing a series of better responses ends in aestatdtionship.

Proof. By Proposition 4.1, the ranking is acyclic, and siftes a finite set, there is one highest rank
from which agents will reciprocate o O

The stable relationship forms an important concept in timeaiader of this section because it
maximizes an agent’s utility over the corresponding uplslatl As the agents in a file-sharing net-
work are utility-maximizing agents, all agents strive toibestable relationships. From Lemma 4.2
and Proposition 4.3, we know that when all agents in the nétwave interacted with all other
agents in the network, all agents rank the other agentsdiogpo the global ranking. If we can use
the global ranking to find stable relationships for all agentthe network, then we can have every
agent maximize its utility.

Network Configurations

Agents are in many relationships simultaneously. We reféh¢ collection of all (not necessarily
stable) bartering relationships in a network aseswork configuration Some configurations are
more beneficial to an agent than others, because in such @uaiion it can barter with agents
with higher slot capacity, or even be in a stable relatiomstiich maximizes its utility over the
corresponding upload slot. Every agéptefers to be irk,; stable relationships, because only then
its total utility is maximized.

Definition 4.6. A stable configuratiors a file-sharing network in which all bartering relationgisi
are stable, and no additional stable relationships can belena

An additional stable relationship is a relationship th&bisned over previously unused upload
slots, so no relationship needs to be broken to enable it.

In BitTorrent, agents decide for themselves who to bartén Maased on their client utility func-
tion. The following lemma shows that this way, a stable camrfigjon is formed:

Lemma 4.5. If every agent knows the slot capacities of all other agemthé network and actions
are fixed, then a stable configuration is formed.

Proof. Assume that every agent knows the slot capacities of allr@ents, and that actions are
fixed. Then, every agent knows the global ranking. Any exgsgtable relationships will not be
broken. An agent in an unstable relationship replaces ittadreby a stable relationship through a
series of better responses (Lemma 4.4), or the relationstipken by its partner playing a better
response. If an agenmtis not inky; relationships, it will accept any agent to form an unstable
relationship. If no agent is willing to accept that relasbip in response, no stable relationship is
possible. This leads to a configuration in which all relasioips are stable and no more relationships
can be added, which by Definition 4.6 is a stable configuration O
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Figure 4.2: Two configurations of the same network. Every agent has Zadmiots. Both configurations are
stable because all relationships are stable, and no additioelationships can be made. In configuration 4.2a,
agent e receives no utility. In configuration 4.2b, the relaship between ¢ and d is broken for a relationship
between ¢ and e, which enables an additional relationshivéen d and e. Now e is in two relationships and
receives utility, without lowering the other agents’ uids.

rank

A network can have multiple stable configurations, and ihad¢hese configurations, an agent
can receive different utility. Consider for example the teanfigurations of the same network in
Figure 4.2. Both configurations are stable. In Figure 4.8aagents are in three bartering rela-
tionships, except for agerf which is in none. Because none of the other agents havediplots
available e can be in no relationships. However, we can break the statdganship betweeaand
d for a stable relationship witbhande. This enables an extra relationship betwdemde, as shown
in Figure 4.2b. Note that, again, all relationships arelstaBgentsa throughd receive the same
utility, but noweis in two relationships while it was in none. This configuoatis clearly preferred
over the first configuration.

In the configuration in Figure 4.2a, it is possible &to improve its utility without lowering the
utilities of any of the other agents. In Figure 4.2b, this ¢ possible. If we want to increass
utility there, an existing relation has to be broken, lowgranother agent’s utility. Adapting Leyton-
Brown and Shoham [9], we refer to configurations as the onégurE 4.2a as a Pareto-dominated
configuration, i.e., a configuration in which some agent camiade better off without making any
other agent worse off. Formally:

Definition 4.7. (Pareto domination) Configuration Bareto dominatesonfiguration ¢ if for all
i €N, u(c) > ui(c), and there exists somesjN for which y(c) > uj(c’).t

The configuration in Figure 4.2b is not Pareto dominated tottsr configuration. Such a con-
figuration is Pareto-efficient:

Definition 4.8. (Pareto efficiency) Network configuration cRareto efficienif there does not exist
another configuration’ahat Pareto dominates c.

A network can have multiple Pareto efficient configuratioAsconfiguration does not need to
be stable to be Pareto efficient, as Figure 4.3 illustratexe that whenever an agent improves its
utility with a better response, the utility of its currentteing partner decreases. On the other hand,
not every stable configuration is Pareto efficient, as we dhestnated earlier in this section with
Figure 4.2.

There can be multiple stable configurations of a network. ddwiguration in Figure 4.2b is
stable and Pareto efficient. If we switch agdntith agente, we find another. Without knowing the
agents’ utility functions and a concise definition of sogialfare, it is impossible to identify a single

Iwe overload notation herej (c) is the utility ageni receives in configuration.
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Figure4.3: Two configurations of a network in which all agents employ wplead slot. The left configuration
is unstable because a can play a better response by bartwiithgb, as it does in the right configuration which
is stable. Both configurations are Pareto efficient.

best stable configuration. Instead, the notion of Paretoiefii stable configurations gives us a set
of non-comparable optima. We want the agents to reach sone¢oR&ficient stable configuration,
but we are indifferent about which one is reached. Whereasna 4.5 proves that a stable con-
figuration is reached, the following theorem proves that esenot guarantee that a Pareto efficient
configuration is reached.

Theorem 4.6. If a network configuration is stable but not Pareto efficienBareto efficient config-
uration is never reached.

Proof. Assume a network configuration is stable but not Pareto efficiln a stable configuration,

every agent maximizes its utility over all upload slots iesigor bartering, so no agent will break
any relationship it is in. No additional relationships camdstablished in a stable configuration.
Therefore, once a stable configuration is reached, it doeshange, and thus will not be Pareto
efficient unless it already is. O

The configuration that emerges using the distributed implgation is not necessarily optimal.
This analysis holds for the static model. Later in this settiwe investigate these results for the
dynamic model. There, we find that even though this resuti$fidr the dynamic model as well, it
is not as dramatic as it may seem at first sight.

At this point, we have shown that with a distributed impletagion such as BitTorrent, a stable
configuration is reached. In the next section, we investigahtification and segmentation in stable
configurations.

Stratification and Segmentation

We started this section with a description of two forms ofstdwing: segmentation (see Defini-

tion 4.2) and stratification (see Definition 4.3). With segwa¢gion, the network is segmented into

disjoint clusters, while with stratification, agents aréartering relationships only with peers with

similar upload capacity, but the network is not necessagtymented. In this section, we prove that
stratification and segmentation follow naturally from ousael. We start by observing that a stable
configuration is segmented when certain conditions apply.

Theorem 4.7. In a stable configuration of a file-sharing network consigtir at leas2k+ 1 agents,
where every agent uses k upload slots for bartering, an agmsnin bartering relationships with
agents ranked betweeliy+k and r(i) — k exclusively.

Proof. We use proof by induction. L& be the proposition in a stable configuration as mentioned,
an agent barters with agents ranked betwea#r) + k andr (i) — k exclusively.
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Figure 4.4: A network of 10 agents, ordered by descending rank. All agentploy 3 upload slots, which
causes the network to segment. e
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Figure4.5: A network where the number of upload slots varies over thatag&lumbers denote the number of
upload slots an agent has. The maximum number of uploadisetsis 4, but some agents barter with agents
5 ranks below them. Even though agents barter with simiauked agents as much as possible, we cannot put
a bound on the rankings of the agents any given agent is bagievith.

Base case: s true for agents with the highest rankif no ranks are shared amongst the first
k+ 1 ranks, ageritis in stable relationships with tHeagents ranked just belowOtherwise, stable
relationships are formed with agents of a shared rank,i daiters with the same or fewer ranks
below it.

Induction step:AssumeP is true for ranks througha, a > 1. Letb = a— 1. Two disjoint cases
apply, for which we use case analysis.

Case 1:No agent ranked is in a stable relationship with any agent ranked. Then, because
the configuration is stable and every agentkapload slots, neither is any agent ranked lower than
b. Similar to the base case, agents rankette in relationships with agents ranked betwbemd
b — k exclusively.

Case 2:At least one agent rankddis in a stable relationship with any agent ranked. This
means that less relationships with equally- or lower-ran&kgents are possible than with Case 1,
so these agents rankbatannot barter with more ranks than agents rartkedCase 1. Therefore,
agents ranked are in relationships with agents ranked betweamdb — k exclusively.

This implies that ifP holds for some ranlg, it also holds for ranka— 1. By the principle of
induction,P must be true. O

We explained in Section 4.1.1 that segmentation is an extfenm of stratification. Figure 4.4

shows how segmentation emerges in a network where no raakfiared and all agents employ the
same number of upload slots.
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Figure4.6: Cumulative upload capacity in the Gnutella file-sharingmatk. Taken from Gai et al. [20], based
on an earlier study by Saroiu et al. [40].

The proof for Theorem 4.7 depends on all agents hakingload slots. In BitTorrent, this is
not the case in general, because agents can specify thisenuh@mselves. Because of this, we
cannot prove stratification in networks where ranks areeshbint agents can choose their number of
upload slots. In such networks, whether stratification g@&depends on the ranking of the agents,
and the number of upload slots every agent uses. An extreame@e is given in Figure 4.5, where
one, three or four upload slots are used, but the order ofghata is such that some agents barter
with agents five ranks lower. However, this does not meandfnatification does not occur as in
the above, we have demonstrated that, where possible saggmér with agents with similar upload
capacity.

Figure 4.6 shows the results from a measurement study byiuSar@l. [40] in the Gnutella
file-sharing network in 2002. It is clearly visible that teeare a few distinct upload capacities that
are often used, while intermediate capacities are raradg.u3he number of upload slots used in
BitTorrent is related to the physical upload capacity byadéf(see Section 4.2), which implies that
in BitTorrent networks, there is a relatively small numbéranks that are shared by many agents.
Because agents barter with agents from their own rank beés@rting to bartering with lower-
ranked agents, in such networks, stratification is boundcctwio The network used by Legout et
al. [25] is such a network, where each of the 30 agents has wihef dthree possible ranks. This
motivates the following claim:

Claim 4.8. Stratification emerges in general in BitTorrent networks.

Just as with stratification, proving segmentation in genisrmore difficult. Figure 4.7 shows
an example of a network without shared ranks. Here, one agenbe the cause of a segmented
network because of its choice of upload slots and its platiedmanking.

In a network where agents share a rank, segmentation canegeu in different stable config-
urations of the same network. This means that it depends achwlbnfiguration is reached by the
distributed implementation whether the network is segetotr not. See Figure 4.8 for an exam-
ple where all agents employ 3 upload slots. Segmentatioranger segments, as in Figure 4.7, is
what has been observed in practice by Bharambe et al. [8] agdUt et al. [25], as we described in
Section 4.1.1.

Stratification Without Global Ranking

Proposition 4.3 states that when all agents have interagthaéach other, their rankings of the other
agents are equal to the global ranking. In BitTorrent, eg€ot not maintain a ranking. Instead,
they optimistically unchoke other agents, and barter withagents that upload to them fastest in
the previous round. Bartering relations between two agieatsl j are sustained as long as both



Application of the Model to BitTorrent 4.1 Network Compiasitand Outcomes

‘VAW\ ey~
OmOmOmOOmOmOmOmOm6

o O ® 0
Figure 4.7: Network of agents that all have a different rank. Numbersotiethe number of upload slots an
agent deploys. Segmentation does not occur in the uppeefigirere the third agent from the right employs

4 upload slots. In the lower figure, this agent employs 2 uplkdats, which causes the network to segment. If
this agent was ranked one place lower, the network would ae¢ lsegmented.

\ i
() (b)
"0 (e G"@ (®

D OO, W

Figure4.8: Two stable configurations of the same network in which agemfdoy 3 upload slots. Segmentation
occurs in Figure 4.8a, but not in Figure 4.8b.

agents reciprocate, but as soon as either encounters agfgindk that reciprocates faster, its slowest
bartering relationship is broken for relationship with

When the file-sharing game starts, every ageahchokesk; randomly selected peers. The
resulting configuration is eandom configurationin this random configuration, some agentsill
be ink; relationships because they offer good slot capacity, antesagents will be in less thark;
relationships because some or all of the agents they undresi@untered better bartering partners.
As time progresses, agents unchoke other agents, whichesrthbm to engage in more bartering
relationships, or, if they are already knrelationships, to improve their bartering relationships b
playing better or best responses. Stable relationshigeateand unstable relationships are replaced
by new, possibly stable, relationships. We say that an blestanfiguration progresses towards the
stable configuration, as we already showed with Lemma 4.5.félfowing lemma proves that this
holds when agents do not maintain a global ranking:

Lemma 4.9. An unstable configuration progresses towards a stable cordigpn in the limit, even
if agents do not maintain a global ranking.

Proof. The proof for this lemma is the same as the proof for Lemmaeké&ept that agents do not
maintain a global ranking but instead unchoke other agentistover their slot capacities. This
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allows them to break relationships with agents with lowet shpacity for relationships with agents
with higher slot capacity. In the limit, every agent has egpdly unchoked every other agent in the
network so a stable configuration is reached. O

Claim 4.10. Stratification occurs in the limit even if agents do not maimta global ranking.
Proof. This follows directly from Lemma 4.9 and Claim 4.8. O

Claim 4.10 shows that although our assumption in the prevéaetions that agents maintain a
global ranking does not reflect reality, stratification ascin general in real BitTorrent networks,
given enough time. However, there are two requirementshiicorollary to hold: first, the agents
must know all other agents in the network, and second, therst be enough time for the agents to
interact with all those agents in the network before the domahis completed. We address these
requirements below.

We start with the first requirement. Agents receive from tiagker a random selection of all
peers in the network (see Section 3.1.1). Periodicallg, liki is updated when the tracker sends a
new random selection. Because all selections are randasnsdtfe to assume that these selections
are representative of the whole agent population. Whethexgenti can find relationships with
agents that are ranked equal to agents they would be in s&hteonships with had they known the
global ranking largely depends on the size of the networkdiktribution of slot capacities over the
agents, and the number of upload slots agemhploys. Ifi cannot find such relationships, some
relationships may be with better-ranked agents and othiéhslewer-ranked agents. This makes
it difficult to predict how utility differs for any agent wheagents do not know all agents in the
network.

The second requirement is that agents need to interact vithar agents in the network. When
the swarm consists of many agents compared to the file exelatigs will not happen. As with the
first requirement, because agents make random conneatioasdom selections of agents, the net
effect of this on an agent’s utility is difficult to predict.

Stratification in the Dynamic Model

At the end of the previous section, we already mentionedithBitTorrent, an agent’s remote peer
list is periodically updated. This is a first step of considgrstratification in a dynamic network.
Until now, we assumed that actions are fixed, i.e., that aggpecify an upload capacity and num-
ber of upload slots, and do not change these settings or goeoni offline. That assumption is
unrealistic in practice.

Lemma 4.5 shows that an unstable configuration developsistable configuration when ac-
tions are fixed and agents know the slot capacities of ther afpents. Agents discover these slot
capacities iteratively. In a period between two performetibas, this allows the current configu-
ration of the network to become more stable. Whenever aora@iperformed, the network can
become less stable, but after that agents can establistefai@nships over unused slots or improve
on unstable relationships. The network keeps on progmgdsimards a stable configuration, but
because actions are performed continuously, that configaraill never be reached.

Theorem 4.11. In a dynamic network, the network configuration progressestds a stable con-
figuration in the periods where agents do not perform actions

Proof. Assume that the network is dynamic but agents do not perfotiores. Any agentunchokes
other agents, which enablet improve on unstable relationships with a better or begioase, or
establish a relationship where there was none. The fornagpiegression because an unstable rela-
tionship is replaced by a stable or otherwise closer to staflationship; the latter is a progression
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because there is a relationship where there was none, whithder to the stable configuration in
which no additional relationships can be made. O

Comparison With Stable Matching

In the above, we have shown that stratification emerges fineraltent utility function. Gai et al. [20]
investigate stratification from a similar point of view: theodel BitTorrent as &table Matching
problem, where agents give a preference over the other agedtthe question is whether a con-
figuration exists where agents are matched to other agealstbat neither wants to change the
matching. This is similar to our concept of a stable relagidp. Agents are ranked on their slot ca-
pacity, and the ranking contains no ties. Based on that,gh@ye that a unique stable configuration
exists, and prove that stratification occurs in this configion when all agents use the same number
of upload slots. As with our results, they are not able to pretvatification in the general case, but
instead make it plausible.

There are two main differences between the work by Gai etral.curs. First, we allow the
ranking to contain ties. As a result, a network can have pialtable configurations. Addition-
ally, we show that not all stable configurations are Paréfioient. If a non-Pareto-efficient stable
configuration is reached, we show that a Pareto-efficieni®never reached. This means that the
outcome in BitTorrent can be suboptimal.

Second, the work by Gai et al. relies heavily on the rankimgnghough agents in BitTorrent do
not employ such a ranking but decide on who to barter withdaséy on perceived transfer speed
during the last round. In Section 4.1.2, we prove that thelteare equivalent to those when agents
do maintain a ranking.

4.1.3 Other Observations Explained From The Model

In Section 4.1.1 we discussed Legout et al. [25] which dbserstratification from observations
of individual BitTorrent clients on a closed network. In ithexperiment, a file is exchanged in a
network of 40 leechers and 1 seeder. The leechers are divittetthree groups: agents 1 to 13 have
an upload limit of 20 kB/s, agents 14 to 27 have an upload k0 kB/s, and agents 28 to 40 have
have an upload limit of 200 kB/s. The seeder is agent 41. Tkatagexchange a 113 MB file that
consists of 453 pieces of 256 kB each. Every agent sets itbeuai upload slots to 4.With this
setup, the experiment was repeated an unspecified numberes, tand the results presented in the
article are averaged over all runs. In this section, we éxjpleese results from our model.

Cluster formation

Figure 4.9, taken from the article, shows the amount of dathanged between the agents through
regular unchokes (i.e., data sent through bartering anthnmitgh optimistic unchoking). Clustering
is easily recognizable in this figure from the three dark sggia Note that the total number of
unchokes is shown, which results in lighter cells for thédapeers because they finish downloading
the file faster and in this simulation, peers leave the systesoon as download complefer the
following, we explain Figure 4.9 from our model.

2The article is not clear about whether this includes thenaigtic unchoke slot. Without loss of generality
we assume that the four slots are for regular bartering, lzeitchgents have one additional slot solely dedicated
to optimistic unchoking.

3Agent 27 is clearly an outlier. According to the authorss tgent suffered from a bad network connection.
As a result, it did not finish downloading with the rest of thgeats of its group, and was forced to obtain its
remaining pieces from the slowest agents.
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Figure 4.9: Time duration in seconds that agents unchoked each othea xeégular unchoke, averaged over
all runs (from Legout et al. [25]).

The network consists of three classes of agents, and therafents have one of three ranks.
Every rank is shared among thirteen agents. From our mo@elyauld expect that the majority of
regular unchokes is between similar-ranked agents. Thiglesed the case, as is clearly visible in
the figure from the three dark squares.

Additionally, two faint squares are visible above the twardéo squares. This means that the
slower agents of ranks 1 and 2 unchoke agents of ranks 2 aagi#atively. The absence of similar
squares to the right of the lower squares means that thebekesare not reciprocated by the faster
agents. This is expected from our model: the faster peerataeetive to the slower peers, but the
reverse is not true. The slower peers try to form a relatipnsith the faster peers, but because the
faster peers do not reciprocate, the slower peers losesttand stick to agents of their own rank.

Bartering relationships

From our model, we expect that the agents form barteringjoakhips. This would result in a figure
that is symmetric around the 45 degree line because thatimoeén that an ageatreciprocates to
b what it receives fronb. Indeed, we find that the figure is largely symmetric.

Stable Relationships

Not only does our model predict the formation of barteringtienships, but it also predicts that the
agents establish stable relationships given enough tisméescribed in Section 4.1.2. If every peer
uses four upload slots, every peer would be in four stabéioziships in every run of the experiment.
Because Figure 4.9 averages the results over all runs, thteese of stable relationships can no
longer be deduced.

However, we do know that with unchoking, agents are rand@®lgcted. Because the exper-
iment is performed multiple times, if stable relationshipsre not formed, we would expect the
unchokes to be more evenly spread within each class. Thehtdhis does not happen implies that
stable relationships are indeed formed.
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Figure 4.10: Total number of bytes uploaded by agents to each other, gedraver all runs (from Legout et
al. [25]).

Upload/download ratio

Bharambe et al. [8] find in measurements on simulated Bi€Ffdrswarms that the faster peersin a
swarm upload significantly more data than the slower peerdtis simulated result is backed by
tracker logs for real torrents. Legout et al. [25] obserngegame in their simulation. Bharambe et al.
argue that this results in unfairness in terms of the volufiata served, while according to Legout
et al., the difference is not unfair as long as the fasteraer able to finish their downloads sooner
than the others.

Figure 4.10 shows the data volumes in the experiment by Liegfaal. Because the results are
again averaged over all runs of the experiment, it is diffitutjuantify the exact data volume for any
peer from the legend. However, it is clear that the fasterpepload a substantially larger volume
of data than the slower peers. We now explain this using owaihno

Assume that the network in the experiment has formed a staipifiguration. Agents have four
bartering slots and one optimistic unchoke slot. Then,yeagent is in four bartering relationships
with agents of its own rank, and downloads the exact saman@that it uploads by bartering. This
excludes the data sent over the optimistic unchoke slot tionggiically unchoked peers. As these
are randomly selected and the three classes in the expésiarenof equal size, each class receives
on average 1/3 of any agent’s data sent through optimistibakes. With the upload ratio of fast :
medium : slow agents in the experiment set to 200 : 50 : 20 sty agent receives on average
(200+ 5+ 2)/3 =90 kB/s through optimistic unchokes. Every second a fast pplwads 200 kB
optimistically unchoking other peers, and receives onlkBdrom being unchoked. If a fast peer
uploads 5 pieces, it downloads 4 + 90/200 pieces, whichtsesuhn upload/download ratio of 1.12.
In other words, a fast peer uploads 112% of the data it dowdsloa

Similarly, we find that a medium peer has an upload/downla#id of 0.86, and a slow peer of
0.59. Note that the slowest peers upload slightly more tladfiroti what a fastest peer uploads. This
complies with the observations of Bharambe et al. and Legbalk and provides an agent with an
incentive to specify a low slot capacity if it values low uatbvolume over short download times.

In the above, we assumed that the network configuration lidestéf it is not, this results in an
even higher upload/download ratio for the faster agentss iBhbecause in an unstable configura-
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Figure4.11: Cumulative distribution of the download completion timetfi three different classes of leechers
(from Legout et al. [25]).

tion, a faster agent is connected to some slower agentshwhéans that it cannot receive a 1:1
upload/download ratio over its regular upload slots. Sanhyl an unstable configuration results in
an even lower upload/download ratio for the slower agents.

From the above, we conclude that it follows naturally fronn model that BitTorrent is unfair
with regard to data volume upload. This unfairness is a prolidecause it increases the download
time for the faster agents, as we show below in Section 4.Il8 unfairness is caused by the
optimistic unchoking policy which randomly selects agantanchoke. Bharambe et al. [8] suggest
that this issue can be addressed if the tracker sends reraetdigts filled with peers of similar
ranking to the requesting peer, instead of a random seteofiall peers. However, they argue that
this may cause segmentation. Note that this would be bealdficthe faster agents only, because
the slower agents will then no longer receive a significant pitheir pieces from the fast agents.
The implications of this on the network need investigating.

Based on the above, we propose a novel die-hard manipukttistegy that is effective for the
faster agents in the network, i.e., all agents with an ughiagnload ratio larger than 1. If, at some
point, such an agent s in bartering relationships with lsirmianked agents over all its regular upload
slots, and encounters another similar-ranked agent thropgmistic unchokind, it can decide to
stop optimistic unchoking, and instead use the optimistichwke slot for regular bartering with the
newly discovered agent. This will lower its upload/dowrdaatio towards 1, thereby decreasing its

download time.

Download Completion Time

In Section 4.1.2, we assume that agents strive to minimiie download times. In their experiment
described earlier in this section, Legout et al. [25] meashe download completion time for the
different agent classes. Their findings are presented ur€ig.11.

In the figure, the vertical line represents the optimal catiph time, which is the time the
seed finished uploading a complete copy of the file. Accortiinpe authors, that time is around
650 seconds on average. However, we remark here that with sifié of 113 MB and an upload
capacity of 200 kB/s for the fastest peers, it should thézaky be possible to download the file in
565 seconds, provided that the network is in stable configurand the file is well distributed over

4A heuristic similar to the well-known Secretary Problem Icdoe used to select suitable agents.
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the other fast peers. The figure of 565 seconds includes mitmnchokes, so would require that
the fast agents are unchoked by fast agents only, which ntlaises theoretical lower bound only.

It is clearly visible in the figure that the fast peers comgpliteir download well before the
medium and slow peers. Legout et al. conclude that BitTé'sehoking algorithm fosters recipro-
cation by rewarding contributing peers, and provides ageith efficient sharing incentives. In the
following, however, we put some remarks to this conclusion.

If we look at Figure 4.11 in more detail, we find that the majodf the fast agents complete
their download in about 800 seconds. Compared to the optiomapletion time of 650 seconds, this
is a 23% increase, and compared to the theoretical lowerdolB65 seconds, it is a 42% increase.

We now consider the slow agents in Figure 4.11. About 90% e$dhagents complete their
download at about 3300 seconds. If these agents would dad e file completely through barter-
ing in a stable configuration, this would require them 113 N2B kB/s = 5650 seconds. Even though
the slow agents finish their download last, their effectiogvdload time is 58% of the theoretical
download time.

We now take a different perspective on the same issue, usinghodel and the results from
Section 4.1.3 in which we showed that faster peers have arlapjoad/download ratio. Consider
a file consisting of 1,000 pieces exchanged by the same afyentghe experiment by Legout et
al. The fast peers, with an upload/download ratio of 1.12drte upload 1,120 pieces to download
all 1,000, which accounts for a 12% longer download time carag to a bartering-only download.
The slow peers, with their upload/download ratio of 0.5%d® upload only 590 pieces, yielding
an effective download time of 59% of the time needed for advamg-only download®. Note how
these figures comply with the theoretical figures derivedrabés we mentioned in Section 4.1.3,
the differences become even larger if the network is not ifalals configuration.

In conclusion, we find that from current BitTorrent, somenfiarf egalitarianism emerges which
supports the slow agents at the cost of the fast agents irethrk. This provides calculating users
with an incentive to tweak their settings such that their dioad time decreases.

4.1.4 Conclusions

We started this section with a review of the literature thagerves stratification and segmentation
in real BitTorrent swarms. There, it is proposed that thentlutility function (see Section 4.1.2) is
the cause of this. In Section 4.1.2, we prove that indeed $tadftification and segmentation follow
naturally from our model.

We prove that over time, a static BitTorrent network reacnetable configuration in which no
agent can barter with higher ranked agents, and no additi@mtering relationships can be made.
Where related work shows such a stable configuration to bguenibased on our ranking which
allows ranks to be shared by multiple agents, we prove thatishnot the case. Multiple stable
configurations may exist, and some are Pareto dominatedheysot\We also prove that if a stable
configuration is not Pareto efficient, a Pareto efficient gufition is never reached. This result
seems quite dramatic, as it suggests that the outcome inrBitit is often suboptimal. However, it
relies on the assumption of a static network. In a dynamiwork, the network configuration does
progress towards a stable configuration (which may or maybadPareto efficient), but because
agents perform actions continuously, this configuratiareiger reached.

Similar to related literature, we are not able to formallpye that stratification emerges in
general in BitTorrent networks, but we do make a reasonatsle with Claim 4.8. Our reasoning in
this section is facilitated by the concept of a global ragkibnlike related literature, we show that
our claims hold even without this concept.

SWe assume here that agents leave the network after downtwapletes, and are replaced by agents of the
same class.
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In addition to proving stratification, our model allows uspimve that BitTorrent is unfair with
regard to data volume upload, as has been observed in rétatature. This unfairness supports the
slow agents in the network at the cost of the faster agentsedBan this result, we propose a novel
die-hard manipulation strategy that is effective for thetdéa agents in the network.

4.2 Equilibria

In Section 4.1, we showed that in a file-sharing network inclwtgévery agenitreciprocates to it§;
fastest uploaders, a stable network configuration emetgekis configuration, agents are grouped
on their slot capacities and barter only with agents withilsinslot capacity. In this section, we
investigate whether this resulting configuration provittessagents with an incentive to assign their
full physical upload capacity to the file-sharing network.

4.2.1 Different Classes of Lazy Free-Riders

In Section 3.3 we introduced lazy free-riding agents as @gvat use a client that conforms to
the network’s protocol. Users use the options provided lay thient’s interface strategically to
maximize their utility. In this section, we consider thraffatent classes of lazy free-riding users:
average users, advanced users, and optimizing users.

Average Users

An average user is a user that does not have the skill, kngw|ed motivation to adjust settings in
the clientinterface. This includes specifying the numbertoad slots used. With most clients, it is
possible to adjust the upload capacity in the main windoweinterface. Therefore, we assume that
an average user can change this capacity, even though stimetdie aware of how it influences its
download rate. By default, clients dedicate full uploadazfy to the network. We now investigate
whether this default setting maximizes an average uselityut

Denote byd; agenti’s download rate. We define an average user’s utility fumctiobe:

Uaveragé = O (4.1)

In words: the highei's download rate, the higher its utility. Pieces can be doaded by
bartering, or by being optimistically unchoked.

Theorem 4.12. In a stable configuration of a network in which every agentlBgsation 4.1 as its
utility function, and where the only action available to thgents is specifying the upload capac-
ity, the strategy profile where every user specifies the futbad capacity is a dominant strategies
equilibrium.

Proof. Assume that the network configuration is stable (see Dafimiti6). Then, by Claim 4.8, an
agent barters with agents with similar upload capacitywesicely. Therefore, any ageits utility is
maximized by specifying full upload capacity, regardlesthe slot capacities of the other agents.
Another actiorx] can either allow to barter with the same agents, yielding equal utility, océs

i to barter with agents with lower slot capacity, yielding Evutility. According to Definition 3.7,
this is a dominant strategies equilibrium. O

A result similar to Theorem 4.12 is given by Qiu and Srikarft][33ai et al. [20], and Fan et
al. [14], amongst others. There BitTorrent's outcome isnfibtio be a Nash equilibrium. There
are two differences between those results and ours. Fingirerthe others consider the client utility
function only (see Section 4.1.2), we recognize that thesigglity function does not need to match
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that client utility function. In the following sections, ve®nsider other types of users and show that
this is an important distinction. To our knowledge, we amefilst to make this distinction. Second,
they claim the equilibrium to be a Nash equilibrium (see O#éin 3.4), whereas we show it to be a
dominant strategies equilibrium (Definition 3.7).

Manipulation Possibilities for Average Users

The proof for Theorem 4.12 already shows that in the domistaategies equilibrium, there is some
room for an agent to manipulate: if it decreases its uplog@aciady with an amount small enough
to stay connected to the same bartering partners, itsyutiiit not decrease. This equilibrium is

a weak equilibrium, as defined in Section 3.2.2. With Equefidl as utility function, the agent’s

utility will not increase either, so the user has no incentivdo so. For such an incentive, the utility
function needs to incorporate an upload component. Denotedgenti’s upload rate. Then, such

a utility function is:

Uaverage = 00 — Bri,a,B € R* (4.2)

wherea andf3 are some arbitrary positive constants. We make the follgwinservation for a
network where all users have this utility function:

Observation 4.13. In a stable configuration of a network in which every agent Bgsation 4.2
as its utility function, and where the only action availalbtethe agents is specifying the upload
capacity, the dominant strategies equilibrium from Theor 12 is not reached.

We motivate this with an example. Assume an agemith Equation 4.2 as its utility function,
and common prioP over the types of the other agents. This distribution inekithe distribution of
upload bandwidths over the other agents. Assume for siihplieat that distribution is uniform over
[0,M], whereM is some maximum upload capacify.also contains the probability for an agent to
be interested in the conteint interested in, or, in other wordB,allowsi to make an estimate on the
swarm size for the file it wants to download. Based on thisrimfation,i can calculate its expected
utility u; = Ep[ui(6;,X,5-i(6_;))] because, on average, it will be bartering with khagents whose
slot capacities are closestite slot capacity. Ifi lowers its upload capacity playsx instead ofx;),
its slot capacity drops proportionally, thereby decreg#ire termfBr;. As long ad’s slot capacity is
larger than that of the first agent ranked below karters with the same agents as before, and the
termad; is unchanged. Therefore, its total utility increases. Ifdemote byd = % — (%)/, then
with the uniform distribution over the upload capacitiesn lower its slot capacity with = % to
obtain its maximized utility with minimal uploaded data.

We are not aware of any literature in which such behavior $£dked. Intuitively, this behavior
seems unlikely, and we give four possible explanationsHis: t

1. Equation 4.2 is an unrealistic utility function, or in ptae,[3 is so small compared to that
the actual increase in utility from manipulation is mardjna

2. If uploaded volume were part of the utility function, thexpected utility would increase with
this form of manipulation. However, actual utility may difffrom expected utility, which ren-
ders this form of manipulation unattractive to risk-avassers. The user is certain that utility
increases only when the manipulation is carried out repatEor a user that downloads spo-
radically, the uncertainty of whether utility will actuglincrease may provide an incentive to
not manipulate. This motivates looking into a repeatedldgitim as found in the Repeated
Prisoners Dilemma [6]. Then, specifying all upload capacén motivate others to do the
same as they will benefit from that in future downloads. Thésyever, seems unlikely in our
situation;
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Upload capacity (kB/s) # Upload slots| Slot capacity (kB/s)
16 3 5.3
32 3 10.7
64 5 12.8
96 6 16
128 8 16
256 10 25.6

Table 4.1: Upload capacity and default number of upload slots in theeMBi¢Torrent client, taken from [3].
Resulting slot capacity is also listed.

3. There is another reason for expected utility to diffendractual utility, which is explained
from the bounded rationalityof the users. By that, we mean that users have limits to the
information they can have, cognitive limitations of theimahs, and a finite amount of time
to make decisions, especially when, as in our setting, thenoon priorP is enormous. The
expected utility can be based on wrong information, wronliefs®e or wrong calculations.
This especially holds in the case of the average user, thatvery well not be aware of the
connection between upload capacity and download rate;

4. Manipulation as we described above requires effort:rmédion on bandwidth distributions
must be gathered, estimates must be made, and settings enadjusted. Such costs should
be included into the utility function, because too much gffatweighs the benefits of manip-
ulation. This makes manipulation less attractive;

Advanced Users

An advanced user is a user that is willing to change any ofattengs we listed in Section 3.2.2. In
particular, this means that an advanced user can tweak tkienona upload capacity and number of
upload slots. Just as an average user, an advanced uses triminimize its download time, or to
maximize download rate, and therefore it has Equation 4itk aility function.

Because an advanced user can change its number of uploadislstmore flexible in deter-
mining which, and how many, agents it barters with than amameuser. We illustrate this with an
example. Consider a network in which every agent has a shetaity of 25 kB/s. Ageni enters this
network with a total upload capacity of 100 kB/s.i Employs three upload slots, it will receive 75
kB/s through bartering, whereas it receives 100 kB/s witir fgpload slots.

In Section 4.1.2, we presented Figure 4.6, which shows theilalition of upload capacities
measured in the Gnutella file-sharing network in 2002. Ileady visible that there are a few distinct
upload capacities that are often used, while intermedigpadities are rarely used. Combined with
our results in Section 4.1, large layers of users with theesslot capacity are expected, if we assume
that all users use the same number of upload slots. Howéeanumber of upload slots that a client
(not the user) specifies by default increases with the tqiad capacity. Table 4.1 lists these
settings for the Vuze BitTorrent clieAtBecause the resulting slot capacities are different, satgne
are still expected.

In Section 4.1.1, following Legout et al. [25], we discussetiworks in which peers have one of
three different upload capacities. In order to demonssaitgegies available to advanced users, we
now consider a similar network, in which agents have an upt@g@acity of 64, 128 or 256 kB/s. We
assume that the agents follow the guidelines of the Vuzatglresulting in the agents employing
5, 8 or 10 upload slots, respectively, with a respectivecdpacity of 12.8, 16 and 25.6 kB/s. As a

6Vuze (t t p: // wwv. vuze. com) is among the most popular BitTorrent clients today.



Application of the Model to BitTorrent 4.2 Equilibria

result, the network will be grouped into three layers. lig&networks, it is safe to assume that there
are sufficient agents in every layer for a new agent to baritér w

Consider an agemtthat joins the swarm. Assunug; = 256 kB/s, and; = 10, i.e., the default
value. Thenj barters with 10 other agents with the same upload capaaitiiia= d; = 10-25.6 =
256. Ifi specifie < 10, its slot capacity rises, but it still connects to the agevith slot capacity
25.6 kB/s because no agents are ranked higher, and ity diilés not increase. K > 10, i’s slot
capacity decreases. Take= 15 as an example, yielding a slot capacity of 17 kB/s, jusvatibe
slot capacity in the middle layerthen connects to the agents in the middle layer,§rd15- 16 =
240< u;. In general, if% equals the slot capacity in one of the layers, thfs- u;; otherwise,

U < ui. If ¢j; < cyj, theni connects to lower-ranked agents and its utility decreaBess. example
motivates Theorem 4.14 below. In order to prove that theofest we define what we mean by a
large network.

Definition 4.9. A large networkis a network consisting of so many agents that an agent cagcéxp
to be bartering with agents from one rank only.

Theorem 4.14. In a stable configuration of a large network in which everym@geas Equation 4.1
as its utility function, and agents can specify their uplaagpacity and number of upload slots,
specifying full upload capacity and default number of uplgéots is a Bayesian-Nash equilibrium.

Proof. Assume a stable network in which the conditions mentiondd.hbhen, by Definition 4.9
and Claim 4.8, an agemtexpects a finite number of layers, each of which is shared bijipteu
agents. Denote by the utility i obtains if it specifies full upload capacity and default niemof
upload slot:*.

If an agent specifies upload Capaci% other than full capacitgy;, it will barter either with the
same, or with lower-ranked agents, becani§e< cu, because of physical constraints. This yields a
utility equal to or lower thamns’.

If i specifies upload capacity,; < cy; andk # ki upload slots, then two disjoint cases are
possible: '

Case 1:If there is a layer in which the upload capacity equ%}is theni’s expected utility is
exactlyc,; < uf;

Case 2:If there is no such layer, thdis slot capacity is larger than that of the agents it barters
with, and therefor&s expected utility is smaller thau .

Therefore, with any combination of ; andk!, i’s expected utility is smaller than, or equal t,

For any agenite N, strategys that results in specifyingc,; andk; provides with highest expected
utility. By Definition 3.6, this is a Bayesian-Nash equililom. O

Theorem 4.14 does not hold if an agent cannot expect to baittelequally-ranked agents ex-
clusively, as the following theorem shows.

Theorem 4.15.1n a stable configuration of a smaller network in which eveggmat has Equation 4.1
as its utility function, and agents can specify their upleaagacity and number of upload slots, an
equilibrium is not reached.

Proof. We use proof by example.

Consider a network consisting of an ageand 11 other agents. Agehtas a physical upload
capacity of 200 kB/s, which it divides evenly over ksupload slots. Agents 1 through 11 have a
slot capacity of 510,20,30,...,100 kB/s. We expect that in a stable configuration of such dlsma
swarm, an agent is connected to the agents with slot capzeritered around its own slot capacity.
Table 4.2 shows the outcome, arsl utility. We find that here, it is beneficial farto choosek/
strategically. Maximum expected download rate is obtawét 6 upload slots; however, this is
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Upload slots| Slot capacity Barters with Download rate
1 200 100 100
2 100 90, 100 190
3 67 50, 60, 70 180
4 50 30, 40, 50, 60 180
5 40 20, 30, 40, 50, 60 200
6 33 10, 20, 30, 40, 50, 6( 210
7 29 5, 10, 20, 30, 40, 50 155

Table4.2: Agent i has physical upload capacity of 200 kB/s, and joinetavork of 11 other agents that have a
slot capacity 05,10,20,30,...,100kB/s, respectively. For every number of upload slgtsve specify i's slot
capacity, the slot capacities of the agents that i connextand resulting expected utility.

based on the assumption that when 6 slots are employetl,connect to the six agents with slot
capacity centered around its own slot capacity, i.e., ag@ith slot capacities 10 through 60. If the
agent with slot capacity 60 has all its upload slots assign@dher agents,is forced to barter with
the agent with slot capacity 5 instead, which would resulliis= 155. Using 2 upload slots is a
safer choice, as that results in a marginally smaller doadhiate of 190, but with high probability
becausethen has a slot capacity of 100 kB/s which makes it the bedtegagent. O

From the proof for Theorem 4.15 we find that the utility ob&rby the user can vary substan-
tially: from a download rate of 100 with one upload slot, t@24ith six upload slots. However,
the gain fully depends on the number of agents in the swarnttendistribution of bandwidth over
these agents, both of which are difficult to predict befomeifmg the swarm. In general, the smaller
the swarm, the more skewed the bandwidths are distributedtbe agents, and the more gain can
be obtained by selecting an optimal number of upload slotg, & the proof above shows, speci-
fying another number of upload slots may result in very loditut Joining a smaller swarm with
any number of upload slots holds the risk that this numbddgisuboptimal utility. The larger the
swarm, the smaller this risk, and according to Theorem 4t istno longer a risk when the network
is large, according to Definition 4.9. For the smaller swaanuser may be best of by joining the
swarm first with the default number of upload slots, obseytive upload rates of the other agents
in the swarm, and then calculating the optimal number of aghlslots. However, this will be too
much of an effort for most users, especially consideringdgants join and leave the network con-
tinuously, which means that the calculations have to beategemultiple times. In Chapter 5, we
elaborate on this issue and suggest a BitTorrent clienttyr@mically performs such calculations.

4.2.2 Long-Term Seeding Incentive

With the utility for both average and advanced users diyaatd to the download rate, it follows
directly that neither of these users obtain any utility wiiea download is finished. Figure 3.2
shows two examples of utility where we assume that full tytiis obtained when the download
finishes. Another option is Figure 4.12, where utility acediames until the download completes and
full utility is reached.

From all these examples, we find that BitTorrent offers nglterm seeding incentive to average
and advanced users. When their downloads complete, thesealstain no utility from seeding the
downloaded file; instead any user that has a utility functiith a negative upload component, such
as Equation 4.2, has an incentive to go offline directly @fterdownload finishes.

In the following section, we discuss the BarterCast retanechanism that has been added to
the Tribler client to provide users with a long-term seedirggntive.
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Figure4.12: Download starts at & 1 and finishes at£ 4. Aftert= 4, no data is downloaded, so no additional
utility is obtained.

4.2.3 Conclusions

We started this section by defining two different classesioy free-riders: average users, and ad-
vanced users. We show that a user has room for manipulatitnuifility function incorporates an
upload component. However, in most practical situations,fiwd that this room is small and in
practice it is not used.

Related literature has found that if specifying upload cépas the only action available to users,
specifying full upload capacity is a Bayesian-Nash eqtiilitm. Instead, we find that it is a dominant
strategies equilibrium, which is a stronger equilibriumtatoes not depend on the assumption of a
common prior that is shared amongst all agents in the network

If agents can specify their number of upload slots in additio specifying their upload ca-
pacity, we show that specifying full upload capacity and da¢ault number of upload slots is a
Bayesian-Nash equilibrium. However, this does requiretti@network is large, because it depends
on whether agents can expect to be bartering with equalkehagents exclusively. In smaller net-
works, where that expectation is not met, we show that aribguim is not reached and that agents
can gain or lose substantial amounts of utility, dependerheir settings. Unfortunately, it is diffi-
cult for an agent to determine which settings will provideximaum utility, and for most users, the
effort of performing these calculations will outweigh thesgible gain in utility by deviating from
the default settings.

Finally, and unsurprisingly, we show that current BitTerrdoes not provide an incentive for
users to stay online after their download has finished. Aiitiathél mechanism is needed to provide
this incentive, and this is the subject of the next section.

4.3 BarterCast

Our results in the previous section show that BitTorrentdsesgdditional mechanisms to provide
users with a long-term seeding incentive. One such meamasithe BarterCast reputation mecha-
nism. In this section, we investigate whether a user has@ntive to use BarterCast in a network
where all agents use BarterCast.

We introduce and describe BarterCast in Section 4.3.1. ¢ticBe4.3.2, we investigate whether
using BarterCast is an equilibrium strategy. In Section3}.&e draw conclusions. We verify the
theoretical results from this chapter with experimentinfollowing chapter.

4.3.1 Introduction

In Section 4.2.2, we showed that even though BitTorrent iges/incentives for users to upload
while downloading, there is no incentive for users to stdinerand seed the file after their download
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has completed. BitTorrent relies on altruistic peers tgpkaentent available, which is problematic
especially for content in which few peers are interested.

In Section 2.1.1 we gave an overview of proposed solutiotisisgproblem, which are all based
on reputation systems that keep track of an agent’s cotiwitbto the network with respect to its
consumption. Centralized reputation systems exist indhm bf private communities that ban peers
who upload little compared to what they download. A study mdéade et al. [5] finds that in such
communities, more peers share their content than in publiencunities, which results in higher
download performance and more available content. The ddem$ such communities is that they
have a central point of failure, considerable administraind management overhead, and require
user’s trust in an unknown authority with respect to privaepsitive information [28]. As an alter-
native, distributed reputation systems have been propbsédone of these have been successfully
deployed in practice because research has focused on systatitannot be manipulated, thereby
sacrificing practical feasibility for attractive theorl properties.

Taking another approach, Meulpolder et al. [28] introduaet®& Cast. Here, attractive theoretical
properties may be sacrificed for practical feasibility. ®aCast is a fully distributed reputation
mechanism that is deployed in practice in the Tribler nekwdthis is possible because it does not
compute a globally consistent reputation score for any tageistead, reputation in BarterCast is
modeled after reputation in human communities, where gpergon has a subjective reputation for
every other person in the community, that is based on divgotrgence and information obtained
from other people. Because it is based on incomplete infoomasuch reputation is not globally
consistent.

In BarterCast, the data volume that an agent has receiveddnmther agent in the past is taken
as that agent’s direct experience. Every agemiintains a private history as a set of triplgs
up, down)that represents the amount of data measured in kB #sathanged withj. This private
history is shared with all other agents in the network knowin tFrom the private histories that
receives from the other agents, it constructs a subjeciigersy history from which it determines
the net contribution of peers thiatid not interact with itself. It does this by constructing rajgh,
where the agents are the vertices. Edges between verteeliracted and have a capacity, where
the capacity of the edge betwekeand j represents the data volume thdtas uploaded tg. If i
evaluates an ageijtthat it had no direct experience with, it calculates the mmaxn flow over the
graph fromj to i, using the Ford-Fulkerson algorithm (see Meulpolder ef2d] for details). This
way, j’s contribution is bound by the reputation of the agentstbpbrted;j’s contribution tol. Note
that an agerd may exaggerate another agéistreputation to an ageut but this has limited effect
because bounddsb’s reputation by its direct experience wish

The sharing history is private icand not shared with other agents. Becausenot necessarily
informed of all j’s up- and downloads, the net contributibrij) of j according ta is subjective.
Fromb;(j), the subjective reputation vali®(j) of agentj according td is calculated as follows:

. arctargbi(j))

The arctan-function is used for two reasons. First, it kntite resulting reputation between -1
and 1. Second, it has the effect that the difference betwleerxample, 0 and 100 MB is more
significant than the difference between 1000 and 1100 MBs &hsures that a modest contribution
of a new or neutral peer significantly effects its reputation

Agents use their subjective reputations of the other agehtn they unchoke other agents.
Meulpolder et al. [28] describe how this reputation can lelusy agents under two different policies
to enforce participation. The first is th@n-policy under which an agent does not upload to agents
with a reputation below a certain threshold (the articlesiders -0.3, -0.5 and -0.7). The second
policy is therank-policyunder which all agents are served, but those with high réputéirst. The
idea is that this motivates agents to seed a downloaded dilénad will boost their reputation and
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make for faster subsequent downloads. Based on simulatiotisneasurements in real swarms,
Meulpolder et al. find that BarterCast is effective in digtirshing free-riders from altruists. In
the following, we investigate whether individual userseaige best performance in a swarm if they
enable BarterCast.

4.3.2 Incentive to Use BarterCast
Introduction

In this section, we include BarterCast in the BitTorrent mlosle developed in Chapter 3.2. In the
remainder of this section, by BitTorrent we refer to the Betast-enhanced BitTorrent network,
while by plain BitTorrentwe refer to BitTorrent without BarterCast.

The BarterCast reputation mechanism we described in theguesection is fully distributed:
every agent calculates its own subjective history and shiéseprivate history with the agents it
knows. Because agents are autonomous, it is possible fogemt &0 send messages that do not
conform to the BarterCast specification, or to send falsentep However, as we motivated in
Section 3.3, in this thesis our focus is on lazy free-ridiggrats, i.e., agents that will not develop or
install clients with such behavior. These agents use tleefatde to enable or disable the BarterCast
mechanism. If this is enabled, we assume that the Barteractanism is faithfully executed.

With BarterCast added to our network, agents in a file-sigaratwork with BarterCast have an
extra actiorx; , € X; p available that models the enabling or disabling of the B@ast mechanism.

Equation 3.5 is the outcome function that takes all agemtsoas and from that calculates an
outcome that determines which file chunks are exchanged lighvetyents. In Section 3.2.5, we
described that in plain BitTorrent, this outcome functisimnplemented distributedly by the agents,
with every agent uploading file pieces to its best-reciptiogaagents. Chapter 4.1 explained how
this implementation leads to stratification and identifiggikbria of the agents’ strategies.

With BarterCast added to our network, the distributed im@atation of the mechanism that de-
termines the outcome changes. Agents that use BarterClastger unchoke their best-reciprocating
agents, but instead unchoke the agents that best complytiveithparticipation policy. Note that
besides the implementation of the mechanism and the setioha@vailable to an agent, our model
remains unchanged.

Preliminaries

In Section 4.3.1, we mention that Meulpolder et al. [28] ¢dastwo policies: the ban-policy and
the rank-policy. We investigate the incentive for a userrtpkoy BarterCast with either of these
two policies in a network where all agents use that policyr @nal is to show that using BarterCast
with one of these policies is an equilibrium strategy, beeathen BarterCast’s intended long-term
seeding incentive can be achieved.

BarterCast is developed to provide a long-term seedingiiinge and keeps a reputation score
of an agent’s participation in multiple swarms. In our asadywe therefore consider a setting where
the agents have been active before in other swarms, in whaghhuilt up a reputation score. We
focus on one swarm only, and keep any agent'’s reputatior morstant, because the data volume
exchanged in this swarm is negligible compared to its preslioexchanged volume. We assume
that all agents in the swarm use the same policy.

As in Section 4.2, we model the agents to have one of a digtimetber of upload capacities.
We assign reputation scores to the agents according to sommahdistribution, so that there is no
correlation between an agent’s upload capacity and itsa¢ipa score. We address this later in this
section.

"We assume that there is only one policy, or, equivalentt, digents cannot select the policy used.
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Under the ban-policy, agents with a reputation below somestiold are not served, while the
other agents are treated as in plain BitTorrent. The effe#fdtss on the outcome are easily predicted:
the agents with a too low reputation are not served by the atlpents, and can only barter with each
other. In a network where all agents, the seeders includedBarterCast with the ban-policy, those
agents will not finish their downloads. For the agents witbutation above the threshold, nothing
changes. An agent that switches to plain BitTorrent bargedannot improve on its completion
time: if its reputation is too low, it cannot download fronetbther agents, while if its reputation is
sufficient, it barters as it would with the ban-policy enablés a result, using BarterCast with the
ban-policy is clearly a Bayesian-Nash equilibrium strgteg

Whether using BarterCast with the rank-policy is an eqtiililm strategy as well is more difficult
to predict, and we focus on that in the remainder of this eacti

Ranking and Stratification

The outcome in plain BitTorrent fully depends on the ranlohglot capacities. In Section 4.1.2, we
showed that even though agents do not actually maintain @awahking of the other agents in the
network, the outcome is equivalent to the outcome in a nétwidrere agents do have such a rank.
We also showed (Section 4.1.2) that this ranking is a gla@ting. This global ranking is the main
cause of stratification in plain BitTorrent networks.

Agents that use the rank-policy no longer rank agents on i capacity, but instead on their
reputation score. From this point on, we refer to the rankimglot capacity as theapacity ranking
and to the ranking on reputation score as t&putation ranking Note that with the reputation
ranking used with the rank-policy, it is not the downloadexgent that ranks its uploaders, but
the uploading agent that ranks its downloaders. An uplapdgent selects, from all agents that
uploaded ta over the past round, thie agents with highest reputation, and reciprocates to those
agents. Those agents do the same, and for each of those,afénssamong its uploaders with
highest reputation, it reciprocatesitand a bartering relationship is formed.

For now, we assume that an agent’s reputation in Barter€ghilval, i.e.R(j) = cfor all agents
i €N,i=# jand—1<c<1,and drop this assumption later in this section. Then gahés rank the
other agents using the same metric, and all agents haveniersgputation ranking over the other
agents. As in plain BitTorrent, this is a global ranking.

Following our reasoning in Section 4.1.2, we expect the nstweonfiguration to progress to-
wards a stable configuration. However, in this context,tigsins that agents with similar reputation
scores, and not similar slot capacities, are in barteritgioms with each other. The network is
stratified on reputation scores.

In plain BitTorrent, the resulting stratified stable configtion allowed us to identify equilibria
with regard to upload capacity and number of upload slotsl.use the following, we investigate
whether the outcome of the BarterCast-enhanced BitToprewvides users with an incentive to use
BarterCast.

Equilibrium

Above, we showed that using the rank-policy in BarterCastamced BitTorent, a stable configu-
ration is reached which is stratified on reputation scoresother words, all agents are bartering
exclusively with agents with similar reputation.

Because we expect no correlation between reputation soore@Eoad capacity (as motivated
earlier in this section), in the stable configuration, anrigexpects to be bartering with agents
randomly drawn from all agent classes present in the swam®ettions 4.1.3 and 4.2, we show
that this causes unfairness with respect to uploaded datmeand completion times: faster agents
upload much more than they download, and could finish theimiiead sooner if they could barter
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Figure 4.13: Distribution of the agents over the reputation scores Ylefid slot capacities (right).

with other fast agents exclusively. The reverse holds ferdlower agents. BitTorrent’s outcome
under the rank-policy is therefore beneficial for the sloagents, at the expense of the faster agents.
We now investigate whether agents have an incentive to lswiiiten using the ban-policy to plain
BitTorrent bartering, in an attempt to improve their contiole time.

In a network where all agents use the rank-policy, an aigeith high reputation score can barter
with any agent it wants, becausgwill always reciprocate. Agentcan improve its download rate
by turning off its rank policy and switching to plain BitT@mt bartering, thereby favoring agents
with high upload capacity. An agent with low reputation, de bther hand, can only barter with
other agents with low reputation. In order to improve on dmpletion time, it needs to find good
bartering partners among the other low reputation agentsethi¢r this is possible depends on the
fraction of lower reputation scores in the swarm, and the sizzhe swarm. The lower the agent’s
reputation, the more time it needs to explore the networkni uitable bartering candidates.

In order to formally proof this, we first define a large Bartas€network.

Definition 4.10. Alarge BarterCast netwoik a network consisting of so many agents that an agent
can expect to be bartering with agents with similar reputatexclusively.

Theorem 4.16. In a stable configuration of a large BarterCast network, wher
1. all agents use the rank policy,
2. the reputation ranking does not fully correspond to theazity ranking,
using the rank policy is not a Bayes-Nash equilibrium stggtior an agent with high reputation.

Proof. Assume a stable configuration of a large BarterCast netwmriwhich the conditions men-
tioned hold. Denote byan agent with high reputation. In the stable configuratidmrters with
agents with similar reputation. Because of conditioh &pects these agents to have different up-
load capacities. lifturns off its rank policy and switches to plain BitTorrenttesing,i can unchoke
fast agents only. Those agents reciprocate because thélgausenk policy and has high reputa-
tion. Thereforej improves its expected utility and by Definition 3.6, using tlank policy is not a
Bayes-Nash equilibrium strategy. O

We verify this result experimentally in the following chapt

Three questions arise from Theorem 4.16. The first is whattlgxeonstitutes a high, or high
enough, reputation. Second is whether this is a sustaistdaliegy. Third is the question how large
the expected gain is from disabling the rank policy.

To determine what a high (enough) reputation is for the maatn to be successful, we first
recognize that the manipulation succeeds for an agent héthaputation of 1 because it can barter
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with any agent in the swarm. The lower the agent’s reputattenlower the probability that it can
find bartering partners with higher slot capacity than wiith tank policy enabled, over all its upload
slots. Figure 4.13 (left) shows some distributi(m) of the reputation scores over the agents. For an
agent with reputation scoie the aforementioned probability is then given by Equatigh @hich
gives the fraction of the agents that that agent can bartar wi

/ RY(r)dr (4.4)
]

A user that knows its reputation score can thus calculatgtbleability that switching to plain
bartering will decrease its download completion time. Nbt this is an upper bound, because an
agent needs time to explore the network in order to find thiebkartering partners.

To answer the second question, we recognize that in ordeitdigm disabling the rank policy,
first the user needs to build up a high reputation, then turthefrank policy in order to download
faster. Following our analysis in Section 4.1.3, an agemirdoads the same volume it uploads if
it barters with agents with equal slot capacity exclusivéysuch an agent has high reputation, its
reputation remains high and it can successfully continuenttmading with disabled rank policy.
However, if it barters with faster agents, it will downloadra than it uploads, causing its reputation
to drop. That requires the user to enable the rank policynatgaboost its reputation.

Consider the right part of Figure 4.13, which shows someibigion L(l) of the agents over
the slot capacitied) of the agents. The probability that switching to plain bartg is a sustainable
strategy is the probability that an agent with slot capdci:&y% barters with agents with lower slot
capacity. This probability is given by

li
/L(I)dl (4.5)
0

This shows that the higher an agent’s slot capacity, thedoitgcan profit from switching to
plain bartering. In the above, we have seen that faster ag@rease their reputation at a higher rate
because they barter with slower agents more. Combined, @&fat switching to plain bartering is
attractive for fast agents with high reputation. These apety the agents that we expect to profit
from switching.

This leaves us with the last question: what is the expectedfgaan agent? With BarterCast
enabled, we approximate agestdownload rate b;l, wherel represents the weighted average of
slot capacities in the swarm. Dend®reputation bya. Then, Equation 4.4 represents the fraction
of the agents thatcan barter with. Theri;s gain is bounded by:

a
Imax/D(r)dr—I_ (4.6)
-1
This shows that the larger an agent’s reputation, the higheggin.

Subjective Reputation

In the above, we assumed that all agents have the same rankénghe agents: a global ranking.
However, as described in Section 4.3.1, BarterCast is @ttilgrsubjective and globally inconsistent.
An agent using BarterCast bases its reputation of another ajgemits direct experience with

and information abouj obtained from others. Meulpolder et al. [28] reason thatiyyraximation
every peer has a reputation score for every other peer inehgork. We therefore ignore the
possibility that has no information orj at all.
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This leaves the possibility thas reputation ofj is either too high or too low. Meulpolder et
al. show, based on simulations, that the average of all ageri¥l\ {j} of j is a good representation
of j's real behavior. More research is needed to determine thenee ofj’s reputation among all
other agents, but lacking that, our assumption of a glolvding is plausible.

Relationship Between Reputation And Upload Capacity

At the beginning of this section, we assume that there islatioaship between an agent’s reputation
and its upload capacity. We are not aware of any researclintegtigates a possible relationship,
but our results in Section 4.1.3 suggest that such a rekdtiprs plausible.

Faster agents upload more than they download, and theatifferbecomes larger if they are not
in equal relationships, as is the case when BarterCast héhank policy is added to BitTorrent.
Therefore, when a fast agent completes its download, it bastked its reputation. A slow agent,
on the other hand, uploads less than it downloads and itda&mu decreases. After download
completes, that agent needs to seed the file in order to hisastputation again. In line with our
finding in Section 4.3.2, this shows that the long-term segdicentive offered by the rank policy
is stronger for the slower agents.

The above also shows that it is easier for a fast agent torobthigh reputation. That implies
that there is a correlation between reputation and relatatecapacity, rendering our assumption of
no relationship between the two invalid. That, in turn, wbdecrease the difference in download
rate for a fast agent between bartering under the rank palicyplain bartering, possibly moving
enabling the rank policy more towards an equilibrium stratdVe leave analyzing this possibility
for future research.

4.3.3 Conclusions

BarterCast is a reputation mechanism that is added to tieTmetwork to provide agents with a
long-term seeding incentive. It keeps a reputation scarevery agent, and allows agents to base
their unchoking decisions on that. Meulpolder et al. [28gest two unchoking policies that are
based on the BarterCast reputation: the ban-policy andtilepolicy. In this section, we investigate
whether users have an incentive to use BarterCast in a rietiare all other users do so.

We find that using the ban-policy is a Bayesian-Nash equiliby as no user can benefit from
not using it if all other users do. Using the rank policy, or tither hand, is not an equilibrium
strategy for the fast agents — these can improve on their ldadrcompletion time by switching
to plain bartering. For these fast agents, we find that switcts a sustainable strategy as well, as
those agents continue to keep their reputations high. Adhdilly, we find that the long-term seeding
incentive using the rank policy is stronger for the slowegratg than for the faster agents.

We verify experimentally whether these findings hold in picgcin the following chapter.

61






Chapter 5

Experiments

In the previous chapter, we used our model from Chapter 3edigrthe outcome of the BitTor-
rent mechanism, i.e., to predict which agent classes ant égékely to be bartering with. This
allowed us to both predict and explain observed phenoméeastratification and segmentation,
skewed upload/download ratios, and download completimesi For some types of users, under
some circumstances, we show that the BitTorrent file-sgagame is in a Nash equilibrium. Using
the BarterCast reputation mechanism with the rank poli@nigquilibrium strategy for the slower
agents, but not for the fastest. In this chapter, we veriégéresults with simulations.

Section 5.1 describes the setup of our experiments. Sestbimvestigates our claims on strat-
ification in BitTorrent networks. This is followed by an apsiks on the formation of bartering rela-
tionships in Section 5.3. Section 5.4 verifies the outconmuofprediction on download completion
times. In Section 5.5, we consider the special case of swallrss. In Section 5.6, we investigate
whether the Nash equilibria we identified in Section 4 exispiactice. Section 5.7 investigates
whether using BarterCast is an equilibrium strategy. Bmal Section 5.8, we draw conclusions.

5.1 Experiment Setup

For our experiments, we use TriblerSim 1.0, a simulatorighdeveloped by Michel Meulpolder at
the Tribler group of Delft University of Technology [30]. ®simulator features a full implementa-
tion of the BitTorrent protocol and simulates BitTorrentssms on a single computer.

We run our experiments on two types of swarms: swarms with &ders, and with 45% seed-
ers. With our experiments on the swarms with 5% seeders, aalrig to demonstrate the validity
of our model and our claims in Section 4 on stratification aaddring relationships. In our model,
we did not consider seeders. We add seeders to the netwouk &xperiments to ensure that all file
pieces are available in the swarm. To prevent agents frormidaaing from the seeders extensively,
all seeders have very low upload capacity.

The second types of experiments, on swarms with 45% seeatersnotivated by a study by
Dan and Carlsson [13], who performed measurements on B&B@rrent trackers and investigated
about 330,000 swarms. They find that on one particular da2®@8, 21 million leechers and 17
million seeders participate in 3.3 million unique swarmsughly 45% seeders per swarm.

Their study also finds that that are few very large swarmsaaidy small swarms; the distribu-
tion of swarm sizes is given in Figure 5.1. Based on this, weawr simulations on swarms of 20,
50, and 200 agents.

As we explained in Section 4.1.2, different agents may hafferent upload capacities. For
every swarm, we define the same six classes of upload cagsaaitd distribute the agents evenly
over these classes. The composition of the swarms is giv&alite 5.1. Agents with more upload
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Upload capacity (KB/s)
Leechers| Swarm 256 512 1024 2048 4096 8192
(%) size| s I s I s I S I S I S I
45 2121|2221 |2|1]2]|]2]|2
50/ 3| 5|3|5|4|5|3|5(3|5]|4)|5
200(13|20| 13| 20|14 | 20| 13| 20|13|20| 14| 20
5 2130|303 |]0|3(0|3|]0]/3
50/ 2808|080 8|0|8)|0) 8

Table5.1: Swarm sizes and number of seeders (s) and leechers (I) peadipapacity, in swarms with 5% and
45% seeders.

Upload capacity (KB/s)| Upload slots| Slot capacity
256 3 85
512 5 102
1024 8 128
2048 10 205
4096 12 341
8192 14 585

Table 5.2: Number of upload slots used with given slot capacity, anddhelting slot capacity. Note that both
upload capacity and slot capacity increase at every stepslot capacity increases at a slower rate.

capacity have more upload slots, in line with most BitTotriemplementations (see Section 3.1.1).
In our simulations, we use the same settings as the Vuze.chesfer to Table 5.2 for these settings,
and to Section 4.2.1 for more information on this.

We specify upload capacity only, and assume that an agemsldad capacity is unlimited.
Even though this is a simplification, in reality download aaity is a number of times larger than
upload capacity and is not considered a bottleneck.

In the swarms with 45% seeders, all agents enter the swarnitaimously. Leechers have no
pieces of the file, while seeders have the full file availaBecause, as we found in Section 4.2.2,
leechers have no long-term seeding incentive, a leecheedehe swarm as soon as its download
completes.

In the swarms with 5% seeders, the simulator is in steadg-stade. Here, all agents are created
with a random number of file pieces available. A leecher Isahe swarm when its download
completes, and its place is taken by another leecher witkah® upload capacity but no file pieces.
In our results in the remainder of this section, we only coasagents that finish the download.

There is one swarm only. In this swarm, one of two files can lmhanged; one of 512 MB and
the other of 2048 MB. In the following, we refer to the formerasmall filg and to the latter as a
large file Each file is divided into pieces of 1024 kB each. All experittseare run ten times and
the results of these runs are aggregated.

5.2 Stratification

The main result of Section 4 is Claim 4.10, which states thattifcation occurs in general in
a BitTorrent network. In order to verify this claim, we inthace theStratification Index The
stratification index takes the average over all agents ofhthmber of stable relationships an agent
is in, divided by the number of bartering slots. If a netwodsla stratification index of 1, then
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Figure5.1: Swarm size as function of swarm rank. Figure taken from [13].

all agents are in equal relationships (a bartering relatigmwith an agent with the same upload
capacity) over all their bartering slots, and the networkilly stratified. A lower index means that
some agents are in unequal relationships and that thereaateribg relationships between agent
classes.

We now formally define this index. First, we defiagt) as the number of equal relationships
that agent is in at timet, andn(t) as the number of leechers present in the network atttirRecall
from Section 3 thak; is the number of upload slots for agent

Definition 5.1. TheStratification Indexof a BitTorrent network at any timeg T is given by

1 Yel)

t
nt) & ki

>3
—

Figures 5.2 (a) and (b) show the stratification index of thevoeks with 5% seeders. As men-
tioned in the previous section, agents leave these netwoinks their download completes, and
their place is taken by a new agent with the same upload dgp&com our model, we expect the
stratification index to decrease at such an event, becalsm®mnships are broken. After the event,
we expect the index to rise again until the next event. Indesedfind (in all figures in Figure 5.2)
that the index drops or raises up to 30% in a few rounds.

Surprisingly, the index in the network with the large file ansistently some 80% higher than in
the network with the small file. Our model provides no exptamafor this phenomenon. As we do
expect from our model, the trend of the index increasestijigiver time, indicating a progression
towards a stable relationship. However, even after 750dsuthe index is just over 0.3, indicating
that only about% of the slots is used for equal relationships. This is not theng stratification
that our model predicts. One possible explanation for thihat because of the Rarest Piece First
selection strategy, our assumption of a global ranking doagbcapacity alone is not valid. Another
explanation is that the difference in upload slots used (t4He fastest, versus 3 for the slowest)
causes the faster agents to connect to so many agents thabtisé resort to lower-ranked agents.
We investigate this further in the following section.

Figures 5.2 (c) through (f) show the stratification indexteff hetworks with 45% seeders, where
agents leave the network as their download completes, buewagents join. In the larger networks
with the small file, the index has a strong increasing trende@sxpect from our model. However,
the results in the networks with 5% seeders suggest thatgssign towards a stable configuration
is not as strong as the model predicts, and there is anotagomdor the stratification index to rise
to rise this high in the networks with many seeders. From oodeh we expect the faster agents
to finish their download sooner. We validate this in Sectioh T his would provide an additional
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reason for the index to increase near the end of file excharthese networks: because fewer agent
classes are present, any agent is more likely to be barteithgan equal agent. This does not hold
in the swarms with 5% seeders because there all agent ctassam present.

In the networks where the large file is exchanged, the indesertttan doubles in the first 20
rounds, similar to the networks with the smaller file, butrtalves over the next 20 rounds. This
is when the fastest agents start leaving the network (agam Section 5.4). When this happens,
the remaining slower agents need to find new bartering partaad explore the network, thereby
breaking stable relationships. The index then rises quickitil the next class of agents leaves the
network, etc. This shows that dynamic aspects as agentmdethe network have a significant
impact on the its stratification, as we predicted in Sectidn4

Figure 5.3 provides another look at stratification. Here,digplay the fraction of data that is
uploaded from every agent class to all agent classes ovensll

From our model, we expect that every class allocates moattdatself. Instead, we find that
the three fastest classes group together and allocate miastadeach other. Similarly, the slowest
three classes allocate most data among themselves. Agdmahigroups hardly seem to distinguish
their own class at all. The slowest agents with upload céypat256 KB are the exception, as they
hardly receive any data from the two classes above them,teeeigh they upload the majority of
their data to these classes. They are forced to get theifidetethe seeders in the network. These
results are statistically significant with 95% confidenaglgbased on an independent two-sample
t-test with equal varianck.

Figure 5.3 shows that in the swarms with the small file, albsts upload most of their data to
the faster classes. With the larger file, the results are indiree with the model, as the majority of
the data is uploaded to the own class. This suggests thatiléfe is downloaded too fast for the
agents to find stable relationships before the download tetegp

In line with our earlier finding, Figure 5.3 shows that sfiia#ition is not as strong as predicted
by our model.

5.3 Bartering Relations

In the previous section, we found that stratification doesugdout not as strong as we predicted.
Stratification relies on stable relationships between kagents, and in this section we investigate
the relationships in the different networks.

Figure 5.4 shows the average number and average lengthatibredhips in three different net-
works. In the first two networks, a large file is exchanged ir@vork with 45% seeders in swarms
of 50 and 200 agents. As the trend in these figures is the saepexiorm the third experiment is
in a swarm of 200 agents only. Here, a small file is exchangadsimarm with 5% seeders.

First we discuss the experiments with 45% seeders in Figude&@) through (d). Based on our
model, we expect that agents have stable relationshipsagihts of their own class, which would
result in few, but long-lasting, equal relationships. lagice, we find that that is not true. In the
swarm of 200 agents (figures (c) and (d)), we find that the twtef classes (agents with upload
capacities of 4096 and 8192 kB/s) group together and haa#welly few, but longest relationships
with each other. This is remarkable, because the fastestsabave 14 upload slots, and there are
20 leechers in each class. Based on these numbers, we waadtexery agent to be able to barter
with its own class exclusively.

In the swarm of 50 agents (figures (a) and (b)), the threedaslasses barter most among each
other, which makes sense because the three classes todpetbehold 15 leechers. Because the
fastest agents cannot find all their relationships in thein olass, they resort to bartering with lower

1This is what we mean bstatistically significantn the remainder of this chapter.
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classes. Agents in the lower classes happily reciprocateaa a result assign their upload slots to a
class other than their own. These results are significant.

The agents with upload capacities of 1024 (and 2048 in tlgelawarm) do have longest rela-
tionships with equal agents. This is because the best-taatkents barter mostly among themselves,
so those agents are the best-ranked agents among the megragents. These results are statistically
significant.

For the remaining slowest agents, we find that they have shlationships with any class. The
slowest agents have only few upload slots available, andhexres they are optimistically unchoked
by a faster agent, they break an equal relationship recirar to that agent. As a result, they
are unable to form long-lasting relationships. This alspl&xs why the slowest agents have the
largest average number of relationships. Note that in tkieement, no agents join the network.
When the faster agents leave the network as their downloagletes, the slower agents remain and
relationships become more equal. This means that the sa®eag skewed over time, and average
relationship length is for the slowest agents is shortemndieagent classes are present.

We find that all agent classes have significantly largest rarmobrelationships with agents of
their own class, or one class higher or lower. This sugghatsstratification does not happen strictly
within one class, but between an agent’s own class, and ase higher and lower.

Next, we discuss the experiment in the network with 5% seeddéere, we find that every class
has more relationships with the faster classes. The fdktest classes have the longest relationships
amongst these three classes, and again the fastest agemt$ sikem to distinguish between the
fastest three classes. The slowest agents have shomnskifs with all classes. This is statistically
significant.

The difference between the two is that in the latter netwoeky agents join the swarm as agents
complete their download. In the former two networks, thegaagents leave the network sooner
than the slower agents, forcing the slower agents to baitbraach other. In the latter network, the
slow agents are unable to form relationships because therd\says more attractive faster agents
present.

In the above, we found that one possible explanation thatifitation is not as strong as our
model suggests is that the faster agents connect to slowatslgecause they have so many upload
slots. To verify whether this is the case, we ran an experiinennetwork of 50 agents, 5% seeders,
and a small file, where all agents have 5 upload slots. Thédtsesthis are in Figure 5.5 and show
that then, all agents have longest relationships with their classes. However, the results are not
entirely convincing, because the fastest agents have eglasibnship length with their own class
and one class lower, and the class of 2,048 KB has most nedtilos with the fastest two classes.
Still, the results are more in line with our model.

Another possible explanation for the observed behavidrésRarest Piece First piece selection
strategy (see Section 3.1). This could render a slower agen¢ attractive than a faster agent
because it has rarer file pieces. In order to verify this, vaeed the Rarest Piece First strategy
with a random piece selection strategy. Figure 5.5 showsebelts of this for a network of 5%
seeders, 50 agents, and a small file as well. We find that thdiffierence is small: all agent classes
have most and longest relationships with the fastest agestead of with their own class.

We conclude that the major reason for the observed low fit@tton is the large number of
upload slots for the faster agents.

5.4 Download Completion Times
In Section 4.1.3, we calculate the download completion tioredifferent agent classes based on

the assumption of a stable configuration. We repeated ttaselations for the networks from our
experiments, and list the results in Table 5.3. The actwallt®from our experiments are provided
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File size
Upload capacity (KB/s) 512 MB | 2048 MB
256 2000 8000
512 1000 4000
1024 500 2000
2048 250 1000
4096 125 500
8192 62.5 250

Table 5.3: Prediction of download completion (s) time for differentagal capacities and file sizes, based on
the assumption of a stable configuration.

in Figure 5.6. The difference between the calculated ansbatsults is dramatic, and indicates that
the network configuration is far from stable.

Because of its large network size of 200 agents, we wouldaxpat agents in the network from
Figure 5.6 (b) would find equal relationships, resulting siable configuration. However, the fastest
agents are four times slower than predicted, while the dbagents are almost five times faster. This
follows naturally from the network configuration not beinglde, as explained in Section 4.1.3.

There are two other observations from Figure 5.6. First, w#ca the dramatic impact that
seeders have on the download performance: compare Figufa)awith (d), or (b) with (e) and find
that a download can be completed 20 times faster with 45%eseédastead of 5%. This result is
statistically significant.

The second observation is that the differences in downloatptetion times are much larger in
the networks with many seeders: in figure (f), the fastesheginish their download 2.8 times as
fast as the slowest, while in figure (d), this factor is onlg.1This is also statistically significant.
This is an incentive for agents to specify their full dowrd@apacity in swarms with many leechers.

In the networks with 5% seeders, the fastest three classesrbaghly equal completion time,
but that of the slowest classes is different. In the othewaeks, however, we find that the difference
in completion times of the fastest and slowest two classesa@tralways statistically significant. This
is explained by our finding in the previous section that ag/éarm relatively many relationships with
neighboring classes.

5.5 Small Swarms

In the above, we presented the results for relatively lavggems of 50 and 200 agents. In the latter
swarms, we expected every agent to be bartering with agentsifs own class only, but we found
that this is not the case. In this section, we discuss refarltgery small swarms. As we described
in Section 4.2.1, in a small swarm all agents barter with edbbr and stratification cannot occur.

The results of these experiments are in Figure 5.7. As eggettie stratification index is very
low: below 0.1. The fastest agents are connected to all atipents because of their large number
of upload slots. As a result, all classes reciprocate toetlagents the most. This is most dramatic
for the slowest agents, because they have only few uplotg] alad therefore upload the majority of
their data to the fastest agents. Except for the slowestisgahagents take the same time to finish
their download. This is exactly what we expect from our model
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5.6 Equilibria

Theorem 4.12 states that in a stable configuration of a lagtyear, specifying full upload capacity
is a dominant strategy. Figure 5.8 shows the download cdmopléme for an agent in a swarm of
20 and 50 agents as a function of its upload capacity.

Figure 5.8 (a) shows the result for a swarm of 20 agents. Asaggd from our earlier results in
this section, a user gets no increase in utility becausgaiits finish roughly at the same time. In the
larger network of figure (b), however, we find that a user withugload capacity larger than 4000
kB/s can specify an upload capacity of 4000 kB/s without amdase in completion time. As we
found before, the network configuration is not stable whéaguits in specifying full upload capacity
not being a dominant strategy.

As we explain in Section 4.2, average users only specify pheaa capacity and do not change

2See Definition 4.9
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deviation of +2 represents two upload slots more. Experisare performed in a network with 45% seeders,

in which a small file is exchanged. Data from all ten runs aggted.

other settings. Advanced users, on the other hand, may elamgsetting, including the number of
upload slots. With Theorem 4.14, we prove that specifyirggiiggested number of upload slots is
a Bayes-Nash equilibrium strategy in a stable configuraifanlarge network.

Figure 5.9 shows the download completion times for an ageatswarm of 50 and 200 agents,
who deviates from the specified number of upload slots by one@ We find that the results are
wildly varying, depending on swarm size and upload capa€ity most combinations, however, it
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is possible to obtain lower download completion time (thgrincreasing utility) by specifying the
right number of upload slots. From our limited experimehts increase can be up to 15%. This
shows that when a configuration is not stable, specifyingstimgested number of upload slots is
not a dominant strategy. In an unstable configuration, ageatter with agents from other ranks.
Deviating from the default number of upload slots allows soagents to barter with additional
agents, while it allows other agents to barter with higletked agents — both increase an agent's
utility. However, the results show that it is also possiliiattbecause of the deviation, an agent
barters with fewer, or lower-ranked agents, which decredsautility.

These results show that an advanced user can increasdifjshyticarefully selecting the up-
load capacity and number of upload slots. The problem hetteaisit is difficult to predict before
joining the network what number of upload slots will provitie best utility, as we explained in Sec-
tion 4.2.1, and the cost of performing these calculationsualy will outweigh the gain in utility
for many users. However, a BitTorrent client that dynantycadiapts its configuration to the network
observed can achieve better download performance fordts 8sich a client could calculate which
agents it could connect to for a certain range of upload ,skotd select the number that provides
best utility accordingly. More research is needed to deiteerwhether this strategy would lead the
agents to an equilibrium, or whether it forces them to kegmging this number, in a network where
all agents use this client.

5.7 BarterCast

In Section 4.3, we described the BarterCast reputatioresyshat is added to Tribler to provide
agents with a long-term seeding incentive. Agents can usedputation kept by BarterCast to
decide on which agents to unchoke. The reputation scoreeavdiuated using different policies,
and we described the rank-policy in detail. Our main restthat section is Theorem 4.16, which
states that in a network where all agents use the rank-pa@ityagent with high reputation can
improve on its download performance by disabling that godad switching to plain BitTorrent

bartering instead. In this section, we verify this resulhwgimulations, along with two other results
from Section 4.3.

5.7.1 Simulation Setup

The setup for the experiments in this section builds on thepsdescribed in Section 5.1. The
unchoking mechanism of the agents (both leechers and s}éslextended so that an agent either
uses the rank policy, or plain bartering. In our experimeatsagent uses one policy only during its
lifetime.

We simulate an agent’s participation in a single swarm. g$arterCast, an agent’s contri-
butions in multiple swarms are considered, and the ageatisributions in the single swarm we
simulate are negligible compared to the contributionsdtdliring its lifetime. This implies that an
agent’s reputation remains almost constant in a singlerawhr our simulation, we therefore keep
any agent’s reputation constant. Instead of fully impletimgnBarterCast into the simulator, this
allows us to simulate the rank policy with a simpler setupyagiescribe in the following.

Every agent knows its own contributions, and can calcutatevin reputation score using Equa-
tion 4.3. We refer to this reputation as the agerg® reputation We randomly provide every agent
with a real reputation between -1 and 1. BarterCast doesewgt global reputation scores. Instead,
every agent has its own subjective view on the reputationiseobther agents. We simulate this by
providing each ageritwith a reputation score for every other aggnthich is randomly drawn
from the normal distribution arounjks real reputation with a standard deviation of 0.2 (10% ef th
interval between -1 and 1).
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The simulations are run with the simulator in steady-stabelen(see Section 5.1). The swarm
consists of 103 agents. There are three seeders to guattzaita# pieces are available, each with an
upload capacity of 256 KB/s. The 99 leechers in the swarmaually divided over the three upload
capacities of 512, 2048, and 8192 KB/s. Each of these 102tagees the rank-policy. Finally,
there is a single agent that uses plain bartefitmyerify our claim that this agent can improve its
download rate if it has high reputation.

For every experiment, the single agent has a fixed uploaccitypd 512, 2048 or 8192 KB/s
(the same classes as the other agents), and a real reputttibn0.85, -0.7, -0.5, 0, 0.5, or 0.95.
The simulation for each combination of upload capacity ayltation score is run ten times, and
the results of these runs are aggregated.

The file exchanged is 1 GB, and we simulate 3,500 secondsaw ellen the slowest agents to
finish their downloads. Contrary to our setup described otiSe 5.1, the number of upload slots for
an agent does not depend on its upload capacity, but is fixédeoslots instead. This is to eliminate
any effects the number of upload slots can have on complétian

5.7.2 Expected Results

We verify three hypotheses. First, to investigate whetlgengs have an incentive to have a high
reputation, we examine whether download completion tinexgehse with increasing reputation,
as we expect from Section 4.3. In the remainder of this sectie refer to this incentive as the
reputation incentive

Second, we verify Theorem 4.16, which states that an agéntigh reputation improves on its
completion time if it switches from using the rank policy tain bartering, as that allows it to barter
with the fastest agents, instead of with a random selecti@gents. This is to investigate whether
agents have an incentive to actually use BarterCast for timeihoking decisions, and we refer to
this incentive as thanchoking incentive

If BarterCast provides agents with both the unchoking itigerand the reputation incentive,
then every rational agent will use BarterCast and and stoivea high reputation value. The latter it
can only achieve by uploading more than it downloads, whietams that BarterCast is successful
in providing a long-term seeding incentive.

The final hypothesis we verify is that, because all agentebaith a random selection of agents,
there is no correlation between upload capacity and coioplétme. This would justify our reason-
ing in Section 4.3 that the capacity ranking used in BitTotie replaced by the reputation ranking
when BarterCast is added to the network.

5.7.3 Completion Time and Reputation

We start by examining our first hypothesis: whether in thiswoek, download completion times are
decreasing with increasing reputation. Figure 5.10 shtmscompletion time for the agents that
use the rank policy only. The blue line shows the average &stiop time, and clearly verifies our
hypothesis.

Download completion times decrease most for increasingilawputations. The difference
between minimal and neutral reputation is a factor of 25.nlfagent’s reputation increases from
0 to 0.5, it has a 41% decrease of completion time, while tleeedese is only 7% if its reputation
increases from 0.5 to 1. There is a strong incentive to impi@v a negative reputation, but the
incentive to improve on an already positive reputation isrmearly as strong.

3Recall from Section 4.3 that we refer to BitTorrent’s defamichoking mechanism adain bartering We
say that agentsse the rank-policyf they unchoke agents based on their BarterCast reputstiore evaluated

with the rank-policy.
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Figure 5.10: The blue line shows the average download completion time fasion of reputation value
for agents using the rank policy. As we expect, completime s monotonically decreasing with increasing
reputation, although differences are not as significantréputations above 0.

5.7.4 Improving Completion Time by Switching to Bartering

We now verify the second hypothesis: that an agent with reglutation can improve its completion
time by switching to plain bartering in a network with diféart agent classes. The results from our
experiments are given in Figure 5.11.

Shown in that figure are scatter plots of the completion tiorétie seven real reputation values
for which we ran simulations (see Section 5.7.1), jitteramliad the corresponding reputation value
to increase readability. Blue dots show completion timestfe agents using the rank policy, and red
dots or plain bartering agents. Blue and red lines connechtikrages of the corresponding values.

Our simulations ran for 3,500 seconds, which proved tootsi®mnone of the plain bartering
agents with a real reputation value of -1 and only a fractidhase with reputation of -0.85 finished
their download completely in that period. For the other reglutation values, 3,500 seconds was
sufficient. For the agents with reputation of -1 and -0.85,extrapolated completion times by
considering their downloaded volume and the correspondignload time. We did this for both
bartering agents and agents using the rank policy. Becagsgsaneed time to explore the network,
extrapolating results from agents that downloaded only allsfraction of the file may produce
skewed results. Therefore, we only considered agents thahldaded at least 512 MB of the
1,024 MB file. Because completion times depend on reputatbre (see the previous section), the
number of data points for each evaluated reputation scatesvdrom 1017 for a reputation of -1
to 2258 for a reputation of 1. For the lowest reputations o&ntl -0.85, the original simulations
provided so few points that we ran those simulations an madit 10 times and aggregated the
results.

The top figure shows the completion time for agents with atamn between 0 and 1. Con-
firming Theorem 4.16, an agent with real reputation of 1 impgaits completion time by switching
to bartering, but only by 2%. This result is not statistigadignificant, based on an independent
two-sample t-test with equal variance and 95% confidenas [@vvalue is 0.18). For larger files,
we expect a bigger improvement because the agent has maddiexplore the network and to
profit from its better bartering partners.

Peers with a reputation of 0 and 0.5 improve more on their detigp time if they switch from
using the rank policy to plain bartering: up to 31% for an dgeith a real reputation of 0. These
results are statistically significant, with p-values beldv®. The results contradict Theorem 4.16,
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Figure5.11: The blue line shows the download completion time for agesitgyuhe rank policy, while the red
line shows completion time for an agent switching to plairtérdng. Confirming Theorem 4.16, the bartering
agent with high reputation improves on its completion tifngt by a meager 2% only. Contradicting that
theorem, the improvement holds for agents with a reputatier -0.7, even though the theory predicts that
these agents do not profit from switching to bartering. Amageeeds a real reputation of below -0.7 for that
to happen.

which predicted improvements only for agents with high tafian. This is explained from the
fact that the file is exchanged in under 70 seconds, or sewardso Agents using the rank policy
guery the reputation system in order to decide who to unchB&gering agents, on the other hand,
optimistically unchoke all agents they are aware of, and @&salt they are faster in exploring the
network. We expect that larger files will result in higher qaation times for plain bartering agents
with neutral reputation.

The bottom figure in Figure 5.11 shows the results for ageiitswegative reputation. All dif-
ferences between the averages for bartering or using thepdity here are statistically significant,
with p-values below 10°. From this figure, we find that an agent needs a real reputagtmw -0.7
before using the rank policy gives it better performance thartering. However, the difference is
considerable: 32% for a reputation of -1. Bartering ageiitts the lowest reputations hardly receive
any pieces in return for their optimistic unchokes. Howegifeheir reputation is -0.7 or above, their
reputation is high enough to be served. We expect the piviot,pihat is now between -0.85 and
-0.7, to shift to a higher reputation value with increasiig $ize, because then the agents using the
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Figure5.12: Completion time by peer class in a network where all ageresBasterCast with the rank-policy,
and reputation scores are normally distributed over therageDownload completion time does not depend on
upload capacity.

rank policy have more time to explore the network to find higleputed agents.

5.7.5 Upload Capacity and Download Completion Time

We now verify the final hypothesis we formulated in Section.®. whether download completion
time depends on an agent’s upload capacity. Because we avaairtpare our result with a similar
experimentin Section 5.4, we use a different setup thanrikex@ described in the previous section.
In this experiment, the swarm consists of 27 leechers an@&@8ess, evenly divided over six peer
classes as in Section 5.4, exchanging a 512 MB file. The réputscores are randomly distributed
over the agents. All agents use the rank-policy. The reaudtgjiven in Figure 5.12.

Download completion times are roughly equal for each of teerlasses. The figure shows
different median completion times; however, none of théfferénces are statistically significant,
with a p-value of at least 0.16.

If we compare Figure 5.12 with Figure 5.6 (d), which showsdbmpletion times in the same
network, with all agents using plain bartering, we find tle tank-policy indeed changes the out-
come of the network, as completion time no longer dependtwad capacity.

5.8 Conclusions

In this section, we presented the results from our expettisnamthe validity of the outcome of our
model. The major result is that while stratification doesurdn practice, it is not as strong as we
expect with only about 30% of the bartering slots used foratgelationships. This means that the
network configuration is far from stable. We do find that thetdat agent classes barter significantly
with neighboring fast classes, which suggests that staatifin is stronger in the fastest classes.
However, contrary to what our model predicts, we find thaséhfastest classes distinguish little
amongst each other. The main reason for this is their largebeu of upload slots, which allows
them to barter to their own class, as well as one class lower.
The network not nearly reaching a stable configuration hgsmmapact on user utility. We show

in Section 5.4 that the fastest agents are four times sldvesr predicted, while the slowest agents
are almost five times faster. This has a downside and an ugsiakkes the network attractive to
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slower agents, but provides no incentive to the faster agengpecify full upload capacity. Even
for the slower agents, the difference in download comptetime is often not statistically signifi-

cant from that of a neighboring class. Thus, even the sloagshts have no incentive to specify
their full upload capacity. However, when many seeders egegnt, fast agents’ utilities increase
dramatically. If download capacity were linked to uploa@asity, this would provide that incentive.

An unstable network configuration also results in specgytine suggested number of upload
slots not being a dominant strategy. As a result, an advansexdcan gain up to 15% (in our ex-
periments; possibly more in other networks) in downloadgrarance by manipulating the number
of upload slots. Figure 5.9 shows that the actual benefit afipugating upload slots is difficult to
predict, and may result in increased or decreased perfaendrherefore, this may not be a practi-
cal form of manipulation for advanced users. However, itsdsl@ow that using a (not yet existing)
BitTorrent client which dynamically adapts its configueattion the network it is bartering in in order
to achieve the best download performance can result inaseceperformance. Whether an equi-
librium exists in a stable or unstable network with multiglech clients (and whether the agents’
actions will converge to that equilibrium if it exists) is areresting question for future research.

We verified whether using the rank-policy, download completime is independent of upload
capacity. We find that this is indeed the case, and that cdiopléme decreases with increasing
reputation. However, where the difference in completiometifor an agent with lowest and neutral
real reputation is very large, for neutral and high repaotatt is not nearly as large, and for reputation
values of 0.5 and 1 it is negligible. This means that theresgr@ng incentive for agents to have
positive reputation, but the incentive to improve on anadsepositive reputation is small.

We verified whether an agent with highest reputation of 1 ogprove on its download time if
it switches to plain bartering in a network where all otheemtg use the rank policy. Our results
confirm this, although the gain is 2% only and not statistycaignificant. We expect this gain
to increase with increasing file size, as then the agents tmare time to profit from the faster
bartering partners. Contradicting our theoretical restlte increase holds for all other agents with
a real reputation of -0.7 and above, and those results argtistlly significant.

In conclusion, we find that BarterCast with the rank policg\pdes a reputation incentive, i.e.,
agents have an incentive to improve on their reputation lyish more than they download. How-
ever, this incentive strongly decreases once reputatisndahed a positive value. For this incentive
to work, all agents in the network need to use the rank pobeytHeir unchoking decisions. From
our simulations, we find that agents with a real reputatiof0df and above improve on their com-
pletion time by switching to plain BitTorrent unchoking tead. BarterCast with the rank policy
does not provide all agents with an unchoking incentivesTaises the question whether the repu-
tation incentive is still provided if some fraction of theeads does not use BarterCast, and for what
fraction the incentive disappears. We leave this for futesearch.

Meulpolder et al. [28] find that the rank policy is not veryegffive in preventing free-riding.
The results above confirm this finding. The rank policy cowddhiore effective if the incentive to
improve on positive reputations were stronger, and if tlxeeano users that have an incentive to turn
off BarterCast. How to accomplish this is an open questiofiifture research.
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Chapter 6

Conclusions and Recommendations

The central question of this thesis is formulated in Sectidn do BitTorrent and BarterCast provide
incentives to lazy free-riding users to share? To answsighéstion, we used game theory to model
agents in a generic P2P file-sharing network. We appliedriudel to BitTorrent, and used the
model to predict the outcome of the BitTorrent network. &wihg that, we extended the model
with BarterCast and predicted the outcome for the exten@ddark as well. This allowed us to
answer the central question. We verified the results fronaoatysis experimentally.

In this chapter, we review our work in this thesis. In Secohwe discuss our conclusions, and
in Section 6.2 we identify viable directions for future raseh.

6.1 Conclusions

In this section, we answer our central research question.

We start by investigating BitTorrent’s incentives. We utfeel model we developed in Chapter 3
to investigate the effects of different lazy free-ridingasegies, and verified our results experimen-
tally. We come to the following conclusions:

1. BitTorrent offers an incentive to share to users whosea&tare limited to specifying their
upload capacity, as they achieve best results from the meiithey dedicate their full upload
capacity to the network (Theorem 4.12);

2. For users whose actions additionally include specifyfiireghumber of upload slots, BitTorrent
offers an incentive to share only in a network that is largeugh that, for every agent, there
are multiple agents with similar upload capacity (Theordmg and 4.15);

3. Experiments show that the two theoretical results abov@at as strong in practice, because
there peers join and leave the network continuously. Caimhul holds for the slower fraction
of the agents only; the faster agents are not given an ineetdgidedicate their full upload
capacity to the network. Even in large enough networks, @simn 2 could not be verified
experimentally.

Prior work, such as Qiu and Srikant [39], Gai et al. [20], aadh Et al. [14], found a result that
is similar to Conclusion 1, but with an important distinetian their work, the result depends on the
knowledge and beliefs that an agent has of the other agetits imetwork. In our work, the result is
independent of any prior knowledge or beliefs, which makeasstronger one.

Conclusions 2 and 3 show that BitTorrent does not providenaaritive to share to all users.
Users can significantly improve on their download completimes by selecting the optimal num-
ber of upload slots. This optimal nhumber depends on the dptapacities and number of upload
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slots the other users in the network selected. These areowmkbefore joining the swarm, and a
miscalculation can result in significantly larger compettimes. This limits the applicability of this
lazy free-riding strategy.

Next, we study BarterCast's incentives. We distinguish tifterent incentives: to get a good
reputation score by uploading more data than downloadimgréputation incentive), and to use in-
formation provided by BarterCast to determine who to uplwa@dhe unchoking incentive). Barter-
Cast only provides an incentive to share if it provides bb#hreputation and the unchoking incen-
tive. We come to the following conclusions:

4. BarterCast provides an unchoking incentive to low-regtgents, but not to highly reputed
agents (Theorem 4.16), as the latter can improve on theipkion time by not using Barter-
Cast;

5. We show experimentally that Conclusion 4 is partiallyetiu practice: the unchoking incen-
tive is provided to the 15% lowest reputed agents, while éimeainder of the agents is better
off not using BarterCast;

6. We show experimentally that BarterCast provides a rejouténcentive because download
time decreases with increasing reputation.

Itis BarterCast's goal to provide a long-term seeding itiwzenso that agents continue sharing a
file long after they have downloaded it. In a network wherauiaéirs decide who to upload to based
on BarterCast’s information, it is the reputation inceetikiat provides long-term seeding incentive.
However, because BarterCast offers no unchoking inceniivieall users will be using BarterCast.
This limits the applicability of the reputation incentiamd thereby decreases BarterCast's long-term
seeding incentive.

In conclusion, we find that both BitTorrent and BarterCastrast fully incentive compatible for
lazy free-riders. The efforts needed for lazy free-ridindgitTorrent are substantial because a user
needs to calculate and specify its optimal settings, whiéelienefits are unsure. In practice, we
expect that these two factors combined deter users to iledazily, and as such can be seen as an
additional incentive not to free-ride.

6.2 Recommendations
From our work follow, in our opinion, some interesting isstieat could be addressed in future work:

¢ In Section 3.2, we model P2P file-sharing as a static onegdioe, and extend this to a
dynamic game. In experiments, we find that the dynamic aspé&2P file-sharing affect the
outcome more than we expect. It would be interesting to tiyate whether using elements
from online or repeated mechanism design in our model wowkenfor a better fit between
theory and practice;

¢ In this thesis, our focus is on lazy free-riders. Howeverwaork identifies two novel die-hard
free-riding strategies, in Sections 4.1.3 and 5.6. For buttiegies, the effectiveness needs to
be evaluated, as well as their effect on the network and tier atsers’ completion times;

e BarterCast is the first successfully deployed distribuggmitation mechanism. In this thesis,
we considered lazy free-riding in BarterCast only: usingt&ast, or not. We expect that
BarterCast will be used in more settings than file-sharimg&l and that it will be subject
to more die-hard free-riding attempts. We propose to afdaterCast’s vulnerability to die-
hard free-riding and to investigate its incentive comghtiytin order to identify possible room
for improvements;
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¢ We evaluated the rank policy in combination with BarterCasd found that although peers
have a strong incentive to have a reputation that is at leagral, the incentive to improve
on a positive reputation is not that strong. In addition, s@agents have an incentive to not
use the rank policy. Intuitively, the rank policy seems mfaie and better applicable than
the more successful ban-policy. It would be interestingdentify how the rank policy can
be adjusted so that the incentive to improve on a positivategjon is stronger, whether that
incentive still holds if some fraction of the agents doesus# BarterCast, and how all agents
can be given an incentive to use BarterCast;

¢ One of the motivations for considering lazy free-ridershis tthesis is that even though die-
hard free-riding clients for BitTorrent are available,ithese is not wide-spread. In the Kazaa
network, on the other hand, a successful die-hard freagidiient caused the demise of the
network. It would be interesting to determine why die-hdidnts do not catch on in BitTor-
rent. This study will be psychological more than technibat,is likely to provide BitTorrent’s
system designers with valuable insights on the effectisgétheir product.
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