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ABSTRACT  
This paper suggests a method to simulate interactions between buildings and their 
outdoor conditions at the city-scale using a coupled scheme whose physical parameters 
are entirely assessed from data of the indoor and outdoor built environment. The 
coupled scheme consists of a reduced order building energy model and a single layer 
urban canopy model. In a previous study, it was proven that physical parameters of a 
single layer urban canopy model can be assessed using measurements of the outdoor 
temperature and humidity in a street canyon. For the coupled scheme to be fully data 
driven, the next step is to demonstrate that the reduced order building energy model can 
estimate the cooling consumption and exterior wall surface temperature in good 
agreement with measurements or simulated data after being trained using machine 
learning. Indeed, results show that a multi objective genetic algorithm can find values 
for physical parameters of the reduced order building energy model. Estimates of the 
cooling consumption and exterior wall surface temperature provided by the trained 
model achieve a CV-RMSE below 10% and a RMSE lower than 2.5 Kelvin, 
respectively, with respect to data generated from EnergyPlus. The last step towards a 
full data driven coupled scheme for city-scale simulations would be to iteratively train 
the reduce order building energy model with the single layer urban canopy model and 
show the convergence and accuracy of their respective outputs. 
 
KEYWORDS 
Building energy modelling, Machine learning, 3D city modelling, Weather data 
collection, and Climate risk assessment. 
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INTRODUCTION 
Cities are the main contributors of climate change. It has been reported that they are 
responsible for more than 80% of total greenhouse gas emissions in the world 
(Hoornweg et al., 2020). This amount originates from the energy consumed by 
buildings and the combustion of fuel by cars. The building energy consumption, in 
particular, is affected by climatic hazards like urban heat islands. Inversely, urban heat 
islands are magnified because of the heat absorbed by building materials and released 
by air-conditioning systems. It is therefore crucial to understand how buildings interact 
with their outdoor conditions in a city to predict its impact on climate change. 
 
A review published by Ali et al. (2021) shows that models used to assess the energy 
consumed by buildings at the neighborhood- or city-scale ignore interactions with their 
outdoor conditions. As explained in Sezer et al. (2023), the reason is that interactions 
between buildings and their outdoor conditions are commonly simulated using a 
detailed Building Energy Model (BEM) like EnergyPlus which is coupled with an 
Urban Microclimate Model (UMM) relying on Computational Fluid Dynamics (CFD). 
Such a coupled scheme can yet be used to simulate interactions between buildings and 
their outdoor conditions at the building scale, but not at higher scales. 
 
To simulate interactions between buildings and their outdoor conditions at higher 
scales, Martin et al. (2024) made a first step by coupling detailed BEMs with a data 
driven single layer Urban Canopy Model (UCM). Using a data driven UCM, it was 
possible to consider urban morphology with the same level of detail as in CFD-based 
simulations, while estimating outdoor conditions with a higher temporal resolution. 
Despite that, Martin et al. (2017) mentioned that a detailed BEM requires at least four 
times more computational efforts than a reduced order one, that is a BEM whose 
number of variables and equations has been reduced.   
           
Consequently, it seems that a viable strategy to simulate interactions between buildings 
and their outdoor conditions at the city-scale is to couple reduced order BEMs with a 
single layer UCM as in Martin et al. (2024). At this scale, it is difficult to imagine that 
physical parameters of reduced order BEMs would be assigned manually. It implies 
that reduced order BEMs should be data driven like the UCM to perform city-scale 
simulations. With this regard, Rouchier et al. (2018) shows that physical parameters of 
a reduced order BEM can be assessed using a data driven approach. However, reduced 
order BEMs considered in this study do not consider the exterior wall surface 
temperature, which is fundamental parameter to couple the model with any UCM. 
 
For this reason, as a second step towards a full data driven coupled scheme to perform 
simulation of interactions between buildings and their outdoor conditions at the city-
scale, this paper aims at defining a reduced order BEM that can be coupled with a single 
layer UCM and whose physical parameters can be assessed using a comprehensive 
machine learning approach. The reduced order BEM is tested using simulated data that 
were generated from EnergyPlus models of several buildings in Singapore.     
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METHODOLOGY 
Figure 1 illustrates the workflow for generating reduced order BEMs to simulate 
interactions between buildings and their outdoor conditions at the city scale. The 
workflow first consists of input data that can potentially be extracted from a city digital 
twin platform, including a 3D city model, weather measurements, and building energy 
data. From the 3D city model, a sequence of EnergyPlus models of various buildings is 
generated, and then manually or automatically calibrated using energy data. Outputs 
provided by each EnergyPlus model are used to train a corresponding reduced order 
model. EnergyPlus models and their corresponding reduced order models use the same 
weather data to specify their boundary conditions. Trained reduced order models could 
then be coupled with the data driven UCM defined in Martin et al. (2024) to simulate 
interactions between buildings and their outdoor conditions at the neighborhood scale. 
For city scale simulations, the training procedure would need to be repeated over 
several group of buildings in the 3D city model for generating a sequence of coupled 
schemes. From the building energy consumption and outdoor conditions assessed from 
simulations, it would be possible to better assess climate risk of a city. 
 

 
Figure 1. Workflow to generate reduced order models for city scale simulations of 

interactions between buildings and their outdoor conditions. 
 
In this study, the Baselining, Evaluating, Action, and Monitoring (BEAM) digital twin 
platform was used to extract input data for generating reduced order models of buildings 
in a university campus of Singapore (see Figure 2). Among extracted input data, there 
is the geometry of five buildings, A, B, C, D, and E expressed with LOD 1.3 using the 
CityJSON format. Thermal properties of each building were specified from the study 
conducted by Martin et al. (2017) on typical office buildings in Singapore. The platform 
also contains weather data collected at 40 locations and the cooling consumption of 
each building. 
 
As shown in Figure 3, reduced order models consist of a lumped thermal network that 
can predict the cooling consumption and exterior wall surface temperature of buildings. 
The lumped thermal network can be expressed as a linear state space model in which: 
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state variables are the exterior wall surface temperature (𝑇!,#$%), the interior wall surface 
temperature (𝑇!,&'%), and the internal mass temperature (𝑇(); input variables are the 
indoor temperature (𝑇&), the outdoor temperature (𝑇)*%), the sky temperature (𝑇!+,), the 
incident solar radiation (𝑄!)-∗ = 𝛼/01𝐾/01 + 𝛼/21𝐾/21), the sensible internal heat gains 
(𝐻&34), the indoor specific humidity (𝑞&), and the latent internal heat gains (𝐿𝐸&34); and 
Outputs variables are the exterior wall surface temperature (𝑇!,#$%), the sensible cooling 
load (𝐻!,!), and the latent cooling load (𝐿𝐸!,!). The reduced order model assumes that 
indoor temperature and specific humidity remains constant at specific setpoints. Thus, 
it is considered that the cooling system extract the exact amount of heat to keep the 
indoor of the building at constant conditions. 𝐻&34 and 𝐿𝐸&34 are determined based 
on schedules of the occupancy, artificial light, and electric equipment.  
 

 
Figure 2. Case study seen from the BEAM platform, a digital twin platform of NUS 
campus (CDE 2024). 
 

 
Figure 3. Sensible and latent thermal networks for assessing the cooling consumption 

and exterior wall surface temperature of a building (i.e. reduced order model). 
    
Resistances, capacitances, and fractions of solar radiations (𝛼/01  and 𝛼/21 ) of 
reduced order models are assessed using a non-dominated sorting genetic algorithm, a 
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comprehensive machine learning approach. The multi-objective functions were defined 
based on the CV-RMSE between estimated and target building energy consumption 
and the RMSE for the exterior wall surface temperature. It was optimized using a 
population size of 100, 25 offsprings, and 100 generations. Lower and upper bounds 
correspond to physical limits of reduced order models’ parameters. 
 
RESULTS AND DISCUSSION 
Figure 4 shows the cooling consumption in buildings A, B, C, D, and E as estimated by 
EnergyPlus models after manual calibration and this predicted by reduced order models 
after being trained on a 1-month (8%) and 3-month (25%) sample. From this result, it 
seems that a reduced order model trained on a larger sample does not necessarily predict 
the cooling consumption with a lower error. While the error made by a reduced order 
model trained on a larger sample appears to be diminished in the case of building A, it 
looks to be slightly or highly increased in all other cases. It implies that a reduced order 
model does not need to be trained on a large sample to accurately predict the cooling 
consumption in a building located in Singapore. 
   

 
Figure 4. Cooling consumption of buildings A,B,C,D, and E as measured from meters 

and estimated by EnergyPlus (E+) models and reduced order (RO) models. 
 
A similar observation can be made on predictions of the daily average exterior wall 
surface temperature as illustrated in Figure 5. In addition to that, it appears in cases of 
buildings C, D, and E that an overprediction of the wall surface temperature results in 
an underprediction of the cooling consumption. It means that in buildings where 
internal heat gains are more difficult to evaluate the training procedure seems to face 
some challenges in inferring proper physical parameters for the reduced order models. 
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Figure 5. Average daily exterior wall surface temperature of buildings A,B,C,D, and 

E estimated by EnergyPlus (E+) models and reduced order (RO) models. 
 
Table 1 describes the accuracy achieved by EnergyPlus models of buildings A, B, C, 
D, and E after manual calibration and this obtained by their respective reduced order 
models after being trained on a 1-month (8%) and 3-month (25%) sample. All 
EnergyPlus models could be calibrated under a CV-RMSE of 15% against 
measurements of the monthly cooling consumption. Certain EnergyPlus models, like 
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those of buildings C and D, were more difficult to calibrate due to some uncertainties 
on the internal heat gains. It explains why reduced order models of these buildings 
achieve a lower accuracy than others. Despite these difficulties, the results show that it 
is possible to train a reduced order model that can predict the cooling consumption and 
exterior wall surface temperature with a CV-RMSE lower than 15% and a RMSE lower 
than 3 K, respectively, against outcomes of EnergyPlus models. It implies that reduced 
order models could potentially replace detailed models in the coupled scheme defined 
by Martin et al. (2024) for simulations of interactions between buildings and their 
outdoor conditions. This assertion would need to be confirmed by checking the 
convergence and accuracy of outcomes given by reduced order models when coupled 
with a data-driven UCM. 
 
Table 1. Accuracy of the cooling consumption and exterior wall surface temperature 
as estimated by EnergyPlus (E+) models and reduced order (RO) models. 
Building Cooling consumption Wall surface temperature 

CV-RMSE (in %) RMSE (in K) 
E+ RO (8%) RO(25%) RO (8%) RO(25%) 

A 8.96 7.76 1.95 7.68 2.87 
B 11.78 8.92 12.91 1.60 2.07 
C 6.30 23.58 21.28 2.21 4.94 
D 14.79 4.44 19.24 2.50 5.03 
E 7.06 16.10 16.75 1.39 3.42 

 
CONCLUSION 
This paper showed a reduced order BEM whose physical parameters are assessed using 
a comprehensive machine learning approach. It consists of a multi objective genetic 
algorithm that optimizes the discrepancy of the cooling consumption and exterior wall 
temperature as predicted by the reduced order model and estimated by an EnergyPlus 
model. Before testing the reduced order models, EnergyPlus models of five buildings 
in Singapore were calibrated against measurements of the cooling consumption.   
 
Results first showed that the procedure to train reduced order BEMs might vary from 
buildings to buildings. Reduced order models appear to achieve a better accuracy when 
trained on larger samples of the cooling consumption and exterior wall surface 
temperature of certain buildings and not others. As variations of the cooling 
consumption and exterior wall surface temperature depend on outdoor conditions, it is 
expected that reduced order models should not need to be trained on a large sample in 
a tropical climate like the one experienced in Singapore. However, the sample size 
needed to train reduced order models should certainly be larger in a seasonal climate, 
where outdoor conditions vary more than in a tropical climate. In the future, it would 
therefore be recommended to evaluate the accuracy achieved by reduced order models 
in different climates in addition to various buildings.     
 
It also appeared that a good understanding of internal heat gains is crucial to train 
reduced order models. Indeed, internal heat gains highly determine the cooling 
consumption within a building. Incorrect assumptions on internal heat gains could thus 
result in an improper assessment of physical parameters of the reduced order models 
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using machine learning. To solve this problem, the machine learning algorithm used to 
train reduced order models should give less importance to predictions of the cooling 
consumption when internal heat gains are highly uncertain. The priority should be to 
ensure that reduced order models can properly evaluate variations of the cooling 
consumption caused by outdoor conditions of buildings, instead of its absolute values. 
 
Finally, it was observed that reduced order models can predict the cooling consumption 
and exterior wall surface temperature in good agreement with those estimated by a 
calibrated EnergyPlus model. Ultimately, reduced order models should be trained on 
measurements of the cooling consumption and exterior wall surface temperature rather 
than estimates provided by other models. After being trained, reduced order models 
could be incorporated in the coupled scheme define by Martin et al. (2024), which 
would also include thermal images and atmospheric weather data as input. 
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