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Physical problem: dynamic frictional rolling contact

Assumptions: not influenced by temperature, etc.
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Abstract

The modeling of dynamic frictional rolling conta&t crucial for accurately predicting behavior and
deterioration of structures under dynamic inteoadi such as wheel/rail, tire/road, bearings andsgea
However, reliable modeling of dynamic frictionallimg contact is challenging, because it requiresugeful
treatment of friction and a proper consideratiorthaf dynamic effects of the structures on the aanihis
study takes the wheel-rail dynamic interaction msex@ample to systematically explore the core algors
for the modeling of dynamic frictional rolling caut by way of explicit finite element analyses. Htedy
also theoretically demonstrates that the expliciitd element method handles nonlinearities intifyit,
material properties, arbitrary contact geometried lboundary conditions, and fully couples the dalibon

of frictional rolling contact with the calculatioof high-frequency structural dynamics. An indirect
validation method for dynamic contact solutiongisposed. To promote the broad use of the metimasl, t
paper proposes a detailed procedure for estabjjstuibust wheel-rail dynamic interact tion modelsl an
obtaining dynamic contact responses. The proposedegure can also be applied to the modeling of
dynamic interactions occurring to tire-road, begsiand gears.

Keywaords: explicit FEM; frictional rolling; wheehil contact; dynamic interaction.

1 Introduction

The problem of rolling contact is nonlinear in maspects [1]. The modeling of dynamic rolling catta
crucial for accurately predicting behavior and detation of structures under dynamic interactisosh as
wheel/rail, tire/road, bearings and gears. A rédiaynamic rolling contact model requires a careful
treatment of nonlinear frictional rolling contaatcha proper consideration of the dynamic effectshef
structures on the contact. Since the wheel-radradtion due to the frictional rolling contact sigrantly
influences the vehicle dynamics and stability [2f dhe dynamic effects involved in wheel-rail istetions
can be increased by high-speed rolling, a systenstidy of wheel-rail dynamic interactions is highl
desired, especially within the context of boominghhspeed railways. This study thus takes the wieakl
dynamic interaction as an example to systematieadptore the core procedure dedicated to the mugleli
dynamic frictional rolling contact.

Studies on wheel-rail contact date from thd' t@ntury. Hertz [3] was among the earliest reseascto
provide an analytical solution to frictionless naidntontact between elastic bodies with a half-space
assumption. Mindlin [4] developed the Hertz conthetory to treat shifts of contact bodies by a tantigl
force within its friction limit. Wheel-rail frictia rolling contact was first studied by Carter [${ho
calculated creepage in the rolling direction witl2[d analytical model. Vermeulen and Johnson [6hthe
extended Carter’s 2D theory to 3D with pure creepagd without spin by assuming an elliptical adbresi
area.

With the development of the computer and computatiaciences, numerical methods have increasingly
been employed in the study of wheel-rail contaicti tnese methods are believed to be more appregoat
solving wheel-rail rolling with high complexity iwontact conditions and material properties [7]. The
numerical methods may be divided into two clas&sthe boundary element method (BEM) for local
analyses based on the half-space and quasi-qsadee [9] assumptions and the finite element method
(FEM) for global analyses based on general contmumechanics. Important contributions to the BEM
solutions of wheel-rail frictional rolling contaaiith arbitrary creepages and spin were made byd€dliQ],
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whose simplified and full theories have been imm@atad in the extensively used computer programs
FASTSIM and CONTACT, respectively. Since the BEMs&a approaches discretize the surfaces of contact
bodies in only the limited domain of potential gttt areas, they are restricted to linear elastitaa
problems [1] and fail to consider the wheel/raihdgnic effects related to contact even in non-stesate
contact solutions [8]. Here, the wheel/rail dynareféect refers to the fact that the inertia of wired
material elements may influence the stress fietthbse these elements “flow” through the deformaygjan

[11] and may play important roles in wheel-rail mgp contact and contact-induced unstable vibrgfi@h

The FEM with a discretization of whole contact lesdhas been demonstrated to be a more flexiblgdool
modeling frictional rolling contact with arbitrargontact geometries, possible material nonlineatitie
dissipation and bifurcations and corresponding ditejawave phenomena [13]. Early finite element (FE)
wheel-rail contact models have either assumed eptatic state contact [14-16] or applied contaetdk
independently calculated by other simplified or tillibdy dynamics models [17-19]. Because the inesfi
wheel/rail material elements is not involved in ttentact calculations, these studies may not cengite
dynamic effects related to contact.

The explicit FEM, which has been successfully agptio various nonlinear transient dynamics problems
recent decades [20], has been increasingly propimsedheel-rail interaction studieZhao and Li [21]
produced physical contact solutions of wheel-railrfction rolling with the explicit FEM. Wheel-rail
contact was rigorously treated and the quasi-steadgontact solutions obtained with the explicit FEM
corresponded well to those obtained with well-estdished approaches, i.e., Hertz contact theory and
Kalker's CONTACT [10], in both the normal and tangential directions; effect of small geometrical
spin was observed. Deng et al. [22] later used eigil FEM to study the wheel-rail frictional rolling
contact solutions with large spin. The calculatedxplicit FE contact solutions have also been showm t
be accurate via comparisons with  CONTACT solutions.Investigations of wheel-rail contact
characteristics using the explicit FEM include thesimulations of the transient wheel-rail rolling
contact in elastoplasticity [23], in the presencefa@ail contamination [24], under high and low adhegn
conditions [25], as well as with the consideratioof velocity-dependent friction [26] and thermal efécts
[27].

In addition to the studies of wheel-rail contadusions [21, 22] and contact characteristics [23-P8evious
studies on wheel-rail interactions with the explFlEM also include the studies of wheel-rail impeghtact

(at the rail joint [29-33], squat [34-40], crossingse [41-46] and crack [47]), studies of flangataot [12,

48, 49] and track dynamic behavior [39, 50, 51].e3d studies have generally employed algorithm-
optimized commercial programs, e.g., ANSYS/LS-DYHAd ABAQUS/EXxplicit, to efficiently process the
large amounts of elements required in the detaibedeling of wheel/track structures and perform time
integration with tiny time steps.

To facilitate other researchers to perform simalaiof wheel-rail dynamic interactions with thoséware
packages or alternative explicit FEM programs, eysitic perceptions of the involved algorithms and
modeling knowledge should be provided. Sections2esyatically explores the core algorithms emplayed
the explicit FE wheel-rail interaction analyses,ichhrepresent the mathematical model and numerical
solution procedure implemented in the solvers ofim@rcial programs. In addition, this paper theoadity
demonstrates that the explicit FEM is a suitableragch for modeling wheel-rail dynamic interactiombe
solutions of wheel-rail dynamic interactions praddby the explicit FEM can rarely be directly valied
because of the current absence of an experimertiiooh for precisely measuring rolling contact Sohs,
such as contact stress and strain states, espeaialer dynamic conditions [47Considering that the
explicit FEM fully couples the calculation of wheelrail contact (converted by nodal forces, see Sech
4.1) with the calculation of wheel/rail dynamic reponses (converted by nodal motions, see Section)4.2
an indirect validation is proposed: the reliability of the wheel-rail dynamic contact solutions may be
confirmed by separately verifying the quasi-steadycontact solutions and validating the wheel/rail
dynamic responses. The former part has been presad in [21, 22] (e.g. Fig. 1-1 (a)), whereas the
abilities of the method to reproduce wheel/track dgamic behavior have been reported in [31, 35, 37,
43, 50, 51] (e.g. Fig. 1-1 (b)).
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(a) contact solution [21] Ythammer-excited rail vibration [31]
Fig. 1-1: Direct verification and validation of thenumerical results obtained with explicit FEM

To promote the broad use of the method, SectioasdB4 propose detailed procedures for establishing
robust explicit FE wheel-rail dynamic interactionodels (pre-processing) and converting outputs into
wheel-rail contact and dynamics solutions (postpssing), respectively. The proposed procedureatsan

be applied to the modeling of dynamic interactioasurring to tire-road, bearings and gears. Sedion
presents a typical numerical example of wheeldagilamic interactions to demonstrate the effectisers

the method. Section 6 presents the concluding #e&mand discusses potential improvements in the
methodology required to address controversial ssetated to wheel-rail dynamic interactions, sash
squeal and corrugatioAs far as the authors know, this is the first systaatic presentation of dynamic
frictional rolling contact which combines fundamentl theory (mathematical model and numerical
solution procedure) with engineering practice. Sine the dynamic effects involved in the interactionef
contact bodies can be increased with rolling speeahd load, this work is expected to benefit future
researches of dynamic frictional rolling contact inthe context of high-speed railways and heavy-duty
bearings.

2 Algorithm of the explicit finite element method

This section systematically explores the core dtigms employed in the explicit FE wheel-rail intetian
analyses with a focus on the mathematical modeltlamchumerical solution procedure implemented & th
solvers of commercial programs. The reviews of dlgorithms are mainly based on the computational
mechanics theories illustrated in the literatu2@, [52-58] and theoretical manuals of commerciglliei

FE programs [59-61]. In addition, the applicabildf the explicit FEM to wheel-rail dynamic interact
analyses is demonstrated from a theoretical petispec

In the formulas presented in this paper, we mairdg index notation to represent vectors, matrices a
tensors and use bold-faced variables only whemuhaers of components and operations are not dogfus
We use lowercase subscripis j( k) for spatial components, lowercase superscriptfof time points,
capital subscriptsM) for hourglass mode numbers, and capital supetscfl, M, N) for nodal/element
numbers.

2.1 Mathematical model of wheel-rail dynamic interations

Lagrangian formulation typically used for transistructural dynamic problems is employed for whadl-
dynamic interaction analyses. When adopting thedrgjan formulation, the time-dependent displacgmen
u; in a fixed rectangular Cartesian coordinate systambe expressed in terms of the convected cadsdin
Xy in the same coordinate system and tinas follows:

u; = u;(xg,t) k=123 Q)

A general 3D transient structural dynamics probieay then be described by constrained partial diffee
governing equations as follows:

Momentum conservation equations: g, + pfi = piy inQij=123 (2a)
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Displacement boundary conditions: u; =D, onTy (2b)

Traction boundary conditions: ojnj=T onT; (2¢c)
Contact discontinuity conditions: (6f —oj)ny=0  on[, (2d)
Initial conditions: w; (g, 0) = U; (xg), 1 (g, 0) = Vi(xg) inQ (2e)
Material constitutive relation: 6ij = 61 (E, v, E¢, x;, Uy, &g, .. ) (2f)
Strain-displacement relation: &j = (U +u;)/2 (29)

whereo;; is Cauchy stress tenserjs the current density; is the body force density; is the prescribed
displacement boundary conditions on part of thendawT,; T; represents the components of the traction
boundary conditions on part of the boundgryn; is a unit outwardly normal to a boundary elemamf’;0

U; andV; are the initial displacements and velocities, eespely; andt, v andE; are the Young’s modulus,
Poisson’s ratio and tangent modulus of the matemsipectively. The rate form adopted in Eqns. é2i)
(2g) may take nonlinearities into account.

The displacement-based FEM (compared with the fbased FEM) is employed to solve the dynamic
problem described in Egn. (2). By removing all thspment constraints and assuming that the reacticn
known, the variational governing equation can krévéd by Hamilton’s principle as follows:

Jo (it = 035 = pf)6wdQ + [ (o3m; — T;)Su;dl + [, (075 — 077 )n;6udl =0 (3)
Egn. (3) is a statement of the principle of virtwadrk, in whichdu; is the variation of displacement. By

applying the Gauss divergence theorem to converstinface integral to the volume integral, theciwihg
is obtained:

Jo, (0;6u;),;d = frs (01jn;)6u;ds +f1"c (o — o7 )nj6u;dr 4)
Noting the mathematical identity:
(al-j5ul-),j = aij,jé‘ui + Uij(Yui,j (5)
Then, the weak form of the equilibrium equation barderived as follows:
fQ puLSuLdQ + fQ al-j5ui,jdﬂ = fQ prSuLdQ + frs Tl5uldF (6)

To solve Eqgn. (6) numerically, a spatial discret@a may be used to express the equilibrium egoato
terms of time-dependent nodal unknowns and basgtifuis. A mesh of finite elements interconnected at
nodal points on the reference configuration is $userimposed, and particles are tracked througg: ti

= wCeEn 0= ) PVEnOu ©  Lk=123(7)
N=1

whereg" is the shape function in the parametric coordmdien, {) andn is the number of nodal points
defining the element. Summing over mllelements of a FE model, the semi-discrete equatianotion in
the matrix notation becomes:

m M
2 < f pNT NitdQ + f BTodQ — J PNTfdQ — J NTtdF> —0 @)
Q Qe Qe Tse

M=1 €

whereo is the Cauchy stress vector, and= (o, Oyy, 022, Oxy Oyz, Oz¢); W IS the nodal acceleration
vector; N is the shape matrix constructed by the shape ing;tB is the strain-displacement matrix
4
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containing the first spatial derivatives of the ghidunctions; angf andt are the prescribed body load vector
and traction load vector, respectively. Becausehtieahedral solid elementa=8 in Eqgn. (7)) are mostly
used in explicit FE wheel-rail interaction modelge take them as examples to illustrate the theories
summarized in this paper. For the hexahedral ele&snen

1 % -
ot @P®

(pl (pB

PN =+ ENA+mMA+Y) N =12,..8(8b)

r 0

x

N(n,9) = (8a)

BEnOD =y o N($,n,¢) (8c)

Note that the time dimension in Eqn. (8) is stdhtinuous, and the semi-discrete equation of mdtora
general transient structural dynamics problem rhag be rewritten in a shorthand format:

Mit = fexe — fine (9)

in whichM, fi,: andfey are the mass matrix, internal force vector anéres force vector, respectively,
and they are defined as follows:

M

M= i <f pNTNdQ> (9a)
Qe

M=1

fext = i (f pNden+f NTtdF>M (9b)
r

M=1 -Qe s,e
m M

Fine = Z < f BTadQ> 90)
Q

M=1 \"le

By adding two extra termg.,, andH, to the right-hand side of Eqgn. (9), the semiige equilibrium
equation for the wheel-rail dynamic interactionlgem is obtained as follows:

Miu =fext_fint+H+fcon(10)

whereH is the anti-hourglass vector that only occurshi@ teduced integration to control the zero-energy
modes, an¢f .,y IS the contact force vector, which can be include@ contribution to the externally applied
tractions [20, 52]. These two terms will be expigzhin Sections 2.5 and 2.6, respectively.

2.2 Numerical solution procedure for the explicit FE wheel-rail dynamic interaction
analysis

2.2.1 Time discretization by central difference same
Among the various numerical approaches developesdieing the dynamic interaction problem formuthte
by Egn. (10), we focus only on the explicit integya scheme using the central difference to appnake
the acceleration vectdr. The explicit schemes calculate the values of dyoauantities at time stapt 1

5
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based entirely on the available values at time st&on. (10) discretized by the central differencleesne at
time stept may be written as follows:

it = M_l(fextt - fintt +H" + fcont) (11)
The velocity and displacement vectors may thentteimed using the central difference time integrati
Uttl/2 = t=1/2 4 pApt+1/24t (12a)
wttl =yt 4+ Apttigt+1/2 (12b)

where At is the time step size, which is constant in thedr analysis but may vary in the nonlinear analysi
[52], and

t+1 t
Att+1/2 — At 2+At (13)

2.2.2 Procedure for the explicit FE wheel-rail dynanic interaction analyses

The equilibrium Eqgn. (11) discretized in both thgase and time domains indicates that the numerical
solutions of a wheel-rail dynamic interaction peshl are dependent on a constant mass matrix and four
time-dependent force vectors. Therefore, the nwaksgolution procedure for the explicit FE wheél-ra
dynamic interaction analysis is mainly composednass matrix and force vector calculations. A lumped
mass matrix can be constructed by a row summaibernse [62] prior to the iteration to promote the
efficiency and practicality of the explicit FEM. Fthe force vectors, the external force vegigy may be
calculated directly by the given load conditionegsSection 2.3); the internal force vedfgy contributed

by stresses may be calculated by the constitutidestrain-displacement formulations built in thereént
and material models (see Section 2.4); and thehantiglass force vectd and the contact force vector
fecon May be calculated by the Flanagan-Belytschko schi8E (see Section 2.5) and penalty contact
method [55] (see Section 2.6), respectively. Tdbleutlines a numerical procedure for the explidd F
wheel-rail dynamic interaction analysi$his procedure has been implemented in commerggliog FE
programs and used in previous wheel-rail contadtdymamics studies, although variations are passédy.,
processing contact with a “predictor-corrector rmoeth [58, 64]: 1. Predict nodal
accelerations/velocities/displacements before @gm Table 1 by assuming no contact occurs; 2dklhe
contact conditions in step (d) with the predicté&pthcement field; and 3. Enforce contact forcas @orrect

the nodal motions, i.e., the acceleration, veloaitg displacement.

Table 1: Numerical procedure for the explicit FEeehrail dynamic interaction analysis

Initialize algorithm:

« Apply initial conditionsU; andV; (by Eqgn. (2e));

o Setu /2 = 4° = 1;(xx, 0) = V;(x;,) andAt® = 0;

* Define the slave/master nodes/segments for whéaenatact pairs;
e Construct the lumped mass matMx

« Set the termination timé,,..

LOOP1t =0, 2,..., n (time step number)

(a) Apply load conditions to construct the exteffioate vectorf " (see Section 2.3);
(b) Process elements to construct the internakfeectorf;,," (see Section 2.4);

(c) Construct the anti-hourglass vectdt (see Section 2.5);

(d) Construct the wheel-rail contact force vegtgy," (see Section 2.6);

LOOP2N=1, 2,..., m (slave wheel node number)
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|. Locate the corresponding master segment orathtor slave wheel node N;
Il. Locate the wheel-rail contact point (projectiof the slave node on the master segment);
lll. Check for penetration;
IF penetration occurs,
i. Calculate the normal contact forfgg';
ii. Calculate the tangential contact forfgg’;
END IF
END LOOP2
(e) Update time step sizet*! to prevent unstable contact or integration (sexti@e2.2.3);
(f) Update nodal acceleratioii$ (by Eqn. (11));
(9) Impose displacement constraints (see Section 2.
(h) Update nodal velocitiess***/? (by Eqn. (12a));
(i) Update nodal displacementét! (by Eqn. (12b));
(1) Update structural geometries (by Eqn. (15));
(K) Update time:;,, At and check for terminatiomE ;. ; At = Ty 2 STOP
END LOOP1

Output: wheel/rail nodal force and nodal motiém ¢ andu)

The numerical solution procedure presented in Tabt®ntains two loops. The outer loop is consticte
mainly by formulating the equation of motion andvstg the equation with the central difference soke
whereas the inner loop calculates the wheel-raitazd, which is called as a subroutine at each step
prior to the updates of the structural dynamic oesps. The calculation of wheel/rail dynamics amal t
calculation of wheel-rail contact are, thereforeumed in the numerical algorithm, which providée t
theoretical basis for the indirect validation ot tlwheel-rail dynamic interaction solutions mentibrie
Section 1.

2.2.3 Stability of integration

The explicit integration scheme has a simple arat selution procedure but is conditionally stalitee
integration is only stable if the time step sizediss smaller than the critical time step size. Toairant-
Friedrichs-Lewy stability condition [65] can be ds® guarantee convergence, which requires thatiads
wave may not cross the smallest element withintone step:

At. < L./Cy4 (14)

whereAt, is the critical time step sizé; is the shortest characteristic dimension of tleeneht; and’; is
the dilatational wave speed of the material. Fosahedral elements:

Le =Vo/Aemax (143)

wherel, is the element volume, a,, ., is the largest surface area. For elastic matgbals

Ca =E@ = v)/[(1 +v)(1 - 2v)p] (14b)

Eqgn. (14b) can be simplified for one-dimensional $ids where the Poisson’s ratio is neglected, i.e.:
7
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Ca=E/p (14c)

In the calculation of wheel-rail interactions, thwbeel and rail are generally considered to be stéthl
nominal values oE=210 GPay = 0.3 andp=7800 kg/m; thus,C, is equal to approximately 6 km/s. The
critical time stepAt, characterized in inequality (14) may vary in noalir dynamic analyses because of
changes in the material parameters and/or geontéteytime stept should be correspondingly adjusted in
a conservative manner so that the condition inuaéty (14) is satisfied with certainty at all tins¢éeps. To
guarantee the stability and simultaneously decréasesolution time, a suitable scale factfrmay be
employed to control the time step, i&t,=sf X L./C4. A detailed discussion about the scale fagfor
used in the wheel-rail dynamic interaction analysigiven in Section 3.3.6.

Because the numerically obtained highest natuediuiency of a structure is bounded by the highest
frequency of any individual element in the FE dii@ation [59], as long as the elements and tirapssare
sufficiently small, an explicit FE model may inckidn its solution all the relevant vibration modafs
structures and continua and associated wave propagd23]. In addition, small time step sizes caduce

the truncation errors but increase the round-oforer By adding displacement increments to thdainit
geometries:

xt =x%+ut (15)

in the geometry updating step (step (j) in Tablgdther than to the geometries obtained at thequre time
step, solutions turn out to be much less sendititke round-off errors [59].

2.3 External force

The external force vector in Egn. (11) can be diyeconstructed by the prescribed load conditions.
Common external loads applied to wheel-rail dynamaad contact models include gravitational loads,
hammer impulse loads and driving torques. The fiigt may be regarded as the body forces and surface
nodal loads contributing to the first and secomungeof Eqgn. (9b), respectively. The driving torgige
discussed in Section 3.3.3.

2.3.1 Gravitational load

Gravitational loads are generally applied to whedlinteraction models to initialize internal fes before
proceeding with calculations of dynamic respon3é® gravitational loads are applied as body folmes
setting a fixed gravitational acceleratigras follows:

ferav = Mil <JQQPNdeQ>M = Mil <erPNTNng>M =Mg (16)

2.3.2 Hammer impulse

Hammer impulses may be applied to the explicit FRes&V/track models as surface nodal loads to
characterize the dynamic behavior of structures $8(. The prescribed surface nodal loatitheNth node

of a surface segmept’ may be converted to the traction boundary conafitias follows:

4
t=t¢n=n z eNE MY i=123 (17)
N=1

wheren; is the unit normal vector to the surface segmseg; Eqn. (26b) in Section 2.6.1. A Gaussian one-
point quadrature may then be used to conduct tiacguintegration in Eqn. (9b) as follows:

1 1
f NTtdl = J f NTt(&,n)|J|dédn = 4NTt(0,0) |J(0,0)| (18)
Ise -1/-1

in which] is the surface Jacobian matrix a{@(0,0)| approximates the element surface.
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2.4 Internal force

To construct the internal force vector given in E(ft), the strain-displacement matBxand the stress
vectore are required. Continuing to take the hexahederheht as examples, the Jacobian métréxused
to relate the displacement in the parametric coatdi system to the global coordinates system:

ClAR (0™

dx 9§

apN ap"

P2 0=712 nN=12..8(19
dy an

oV oV

L 0z | 07 |

The strain-displacement matkmay then be obtained with Eqn. (8c), and thersti@ies and stress raie
are readily calculated by applying the strain-dispiment relation and the material constitutivetiatain
Egns. (2g) and (2f), respectively. The materialstibutive relation expressed in Eqn. (2f) can libegilinear
or nonlinear. See [20] for an additional discussbthe material constitutive relations. The Caustngsses
may be calculated using explicit time integratisrf@lows:

a(t + At) = a(t) + 6At (20)

Becausdi (§,1,{)=B" g is defined over the volume, the internal forcestofictures may be updated with a
Gaussian one-point quadrature analogous to Eghaéliliows:

jﬂ G(,n,0) d0 = 86(0,0,0) (0,00)] (21)

e

in which8]J(0,0,0)| approximates the element volume.

2.5 Hourglass control

Explicit FE wheel-rail interaction analyses havegmlly adopted the one-point quadrature schemasEq
(18) and (21)) for the sake of computational e#indy, which may also avoid the shear locking is3ine
one-point reduced integration, however, leads tarisps zero-energy modes or “hourglass” modes for
hexahedral and quadrilateral elements. For hexahetkments, the hourglass modes are present wienev
diagonally opposite nodes have identical velogitidsich give zero strain rates according to Eqg).(Zhe
anti-hourglass force vectdf is thus introduced in Eqn. (10) to avoid the umdéde hourglass modes from
growing large and destroying solutions. An orthagdfilanagan-Belytschko hourglass control schemg [63
may be used in the explicit FE wheel-rail dynanmteiaction analysis. The anti-hourglass forcesgaren

by:

8
1 i .
H=flh =5 0npCaV? Y (lr)vii 1=123; M =1234 (22)
N=1

whereQy, is the hourglass coefficient, and the nodal vélesil" are the sum of the hourglass figtfj
and the linear portion of the nodal velocitigy:

“N _ N _ N N
u =u' =uyg + Uy (22a)

The hourglass shape vectof$ are defined in terms of the hourglass base veEfpigiven in Table 2:

8
i =Th-ol ) 't @2

N=1

Table 2. Hourglass base vectors for hexahedralezigsn
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Node (N) | TV ry ry ry
1 1 1 1 -1
2 1 -1 -1 1
3 -1 -1 1 -1
4 -1 1 -1 1
5 -1 -1 1 1
6 -1 1 -1 -1
7 1 1 1 1
8 1 -1 -1 -1

Note that the hourglass shape vecigdfsare orthogonal to the linear velocity fielfl;y, which makes the
anti-hourglass force vectgf), also orthogonal to the linear velocity fieid|y and is necessary for
accurately detecting an hourglass. Therefore, theghass control scheme avoids transferring entrgyr
from the rigid body and uniform strain modes.

Flanagan-Belytschko hourglass control scheme givdoy Eqgn. (22) is in viscous form: the calculated
anti-hourglass force is proportional to the componets of the nodal velocity contributing to hourglass
modes. This method is more suitable for dynamic ptdems with high velocity/strain rate. In contrast,
the stiffness-form hourglass control scheme calcules the anti-hourglass forces proportional to the
components of the nodal displacement contributingat hourglass modes. The stiffness-form scheme can
reduce total accumulated hourglass deformation and preferred for low rate problems. In addition to
Flanagan-Belytschko scheme, other hourglass contrahethods such as Belytschko-Bindeman [66],
Puso [67] and Jabareen-Rubin [68] have also been jplemented in the explicit FE commercial
programs [59, 60]. To estimate the effects of diffent hourglass control schemes, the ratio of the
hourglass energy (i.e. the work done by the anti-hwglass force) over the internal energy may be
checked. As a general guideline, the hourglass eggrshould not exceed 10% of the internal energy.

2.6 Contact algorithm

Because of its iterative nature [20, 52], the pgnadntact algorithm is considered to be suitablesblving
explicit FE contact problems and has been broadiggsed to enforce the wheel-rail contact condsass
indicated in Table 1, the penalty contact algoritten be straightforwardly implemented in the expk&
programs as a subroutinBenetration is allowed and represents the key d¢optnalty method [20]. The
penalty algorithm checks each slave node for patietr through the master surfaddne contact surface
with coarser mesh or with stiffness higher than itsounterpart is usually treated as the master surfee.
This study refers to the wheel surface as the staviace and to the rail surface as the masteaseirthe
symmetry of the approach eliminates any bias in ¢hbice [59].

2.6.1 Normal contact

In a wheel-rail contact simulation, a slave wheedlenis seldom in exact contact with a master radlen
Instead, the slave wheel node usually “contactseégment composed of four rail surface nodes. Aheac
time step, the contact segments on the rail surfi@eel to be searched for. For an arbitrary slave i
defined on the prospective wheel contact surfageneed first locate the closest master node andesdg
on the rail surface. As shown schematically in Rig. (a), the slave node; ¢ denoted as a red spot, and its
closest master nodeNis stored by segments (8=1,2,3,4). If the nodes Mand N, do not coincide, Ncan

be shown to lie in one of the segmentsi& the following tests:

(c;xs) - (c;*Xciz1) >0, (c;xs8) ' (sXc;41)>0 i=1234 (23)

The vectorg; andc;,, are along the edges of &d point outwards from J\l and the vectos is the
projection of the vector beginning at,/dnd ending at Nonto the closest segment {8 this demonstration).
The inequalities of Eqn. (23) ensure that the wects between the vectots andc; ., and is thus located
within the segment;Sif the inequalities are not satisfied, anotheisteasegment containingNwill be
checked. The algorithm does not limit the numbersefments containing /N and the master segment
determined at the previous time step is preferiytthecked at each time step.

10
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Fig. 2-1: Parametric representation of wheel-raritact

The “contact point” Nis the projection of the slave wheel nodedd the master rail segment, (@ this
demonstration). The determined master segment h&direar parametric representation in a local
coordinate system as follows:

3
rEm =) fENE @8
i=1

4
fEm =) Ve =123 Q4
N=1

1

wherer(&,n) represents the master segméntgpresents unit direction vectors; arfirepresents the nodal
coordinates of the nodes contained by the segrbety be a vector drawn to the slave node The contact
point N, with coordinategé,, n.) on the master segment can be determined by satjgfye following:

or
a_f Eerne) - [g - r(fc:nc)] =0 (25a)

or : =0 (25b
%(fc'nc) [g - r(fc:nc)] - ( )

The coordinateg¢,,n.) in Egns. (25a) and (25b) may be solved numeriaaillly Newton-Rapson iterations.
Since the method may diverge with distorted elesg®], a careful treatment of mesh in the whettl-ra
contact region, especially in the solution zonehighly desirable. Penetration of the slave whemden
through its master rail segment may then be judhyeal scalat:

l=n-[g-r&,n)] (26a)

— ny( )= arxar (’)rxar 26b
If I > 0, no penetration occurs and nothing will be dofie<i 0, an interface force vectgt., normal to the
master segment will be applied to the contact pantd its magnitude is proportional to the amount o
penetration:

fon = —lkn (260)

Hence, interface springs may be assumed betwegetiadrating slave wheel nodes and rail conta¢acair
as shown in Fig. 2-1 (b), and the penalty contaptifg) stiffness is intrinsically the combination of a
geometrical penalty term and a velocity penaltytgs8]. For the hexahedral elements containingrhster
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segments used in the wheel-rail contact surfdcesay be given in terms of the bulk moduKis the
element volum& and the face aredas follows:

_ faKA?

k
|4

(26d)

wherefs; is a scale factor for the penalty contact stiffnélhe choice of its value in wheel-rail interaatio
simulations will be discussed in Section 3.3.1. Ela@al and opposite contact forces distributed tiver

master segment nodg$ ..., may also be obtained as follows:

flnaster = _(p](fc'nc)ch J=1234 (27)

The penalty contact algorithm implemented in thpliek FEM can treat an arbitrarily shaped surfége
representing the surface with a faceted mesh.

2.6.2 Tangential contact
The Coulomb friction law is available to solve tivbeel-rail tangential contact. A trial tangentiantact
nodal forcef* at time steg + 1 may be defined as follows:

f=fo' —kAe (28a)

wheref ;' is the tangential contact force calculated at titegt; k is the penalty contact stiffness; ahel
is the incremental movement of the slave wheel raboleg the rail surface:

Ae = r* 1 et — vt (EEY)  (28D)

The traction boungl,,,4° at time steg in the Coulomb friction law is the product of theagnitude of the
normal forcef . at the same time step and the coefficient ofitnc{COF)u:

fboundt = MIcht| (28¢)

The tangential contact force at time step 1 may thus be written as follows:

( f* if If*l < fbound“-1
t+1 — \ 28d
fCT fboundt+1f . * t+1 ( )
lT lf |f I >fbound

The COFu, which is considered a constant in the classicall@nb’s law, may vary with various factors in
wheel-rail contact such as sliding speed, contee$gure, surface lubrication or contamination, hmegs,
temperature, and humidity [26]. Section 2.2.2 destrated that the explicit FEM couples the calcalanf
wheel/rail dynamic responses with the calculatibwioeel-rail contact in the time domain. Thus, ociy-
dependent Coulomb’s law with a functional COF may itmplemented in the explicit FEM. The COF
updated at each time step may be expressed in tdriing static and dynamic friction coefficiepsandyu,
respectively, a decay constanand wheel-rail relative sliding velocitiés,; between the slave nodes and
master segments at the same time step as follows:

1= pg + (s — pg)e el (29a)
i, -Ae/At  (29D)

The decay constaatdescribes how fast the static coefficient appreathe dynamic coefficient and may be
determined by fitting the measured results [26]cd&ese the wheel-rail contact forces can be phygical
interpreted as externally applied tractions [2(), H2e contact force vector required in Egn. (113ynbe
expressed as follows:

12
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Fan' = Y (| W Fant 4 1) (30

M=1 \"'ce

The traditional division of an elastic contact desb into a normal problem and a tangential problem
based on an assumption that the friction transchitttween elastic contact bodies has a negligilfiieeince
on the normal contact solutions [69]. In the explEM, the normal and tangential contacts arewated
successively and dependently at each time steghwhinecessary for solving inelastic contact protd.
Studies with the explicit FEM [22, 23] have indiedtthat the tangential elastoplastic wheel-railtaon
solutions have noticeable effects on the normaltgwis: an increase in tangential force increasastip
flow, and the contact patch tends to become largsize and shifts forward more.

2.6.3 Contact stability
The contact-based critical time step determinedthy penalty contact algorithm is proportional to

min{\/%}, wherem’ (J=1,2) is essentially the mass attached to the cbrigpring” andk is the penalty

contact stiffness given in Eqn. (26d). The timgstzeAt used in the explicit FEM should not exceed the
contact-based critical time step to avoid contastability. The easiest method of increasing thetaxd-
based critical time step is to scale down the fggmantact stiffness.

2.7 Displacement constraints

Suitable displacement constraints are necessadfinatl as essential boundary conditions in the
mathematical model of wheel-rail dynamic interacsi@nd are largely applied to structural boundasiesh

as the inner end of wheel half-axles, the rail emadd the rail bottom surfaces (see Section 3.3H4gse
constraints can be imposed by setting the constlaacceleration components to zero [59]. Since the
prescribed nodal displacement constraints are igghosthe local coordinate system, an orthogondtima

Q constructed by the normalized unit vectors inltoal axes needs to be employed to transform tieag)l
nodal acceleration vectoii’ (for node N) updated by Eqn. (11) to the locateysas follows:

i = QitN i=1,2,3(31a)

After the constrained acceleration components areed, the modified vectoig,; can be transformed
back to the global system:

iN = QTN i =1,2,3(31b)

whereii; in Eqn. (31b) is the finally updated nodal accaien vector of the time step, which will furthez b
integrated to approximate the nodal velocities disglacements by Eqgns. (12a) and (12b).

2.8 Summary of the algorithms

By systematically exploring the core algorithms éypd in the explicit FE wheel-rail interaction &rses,
this section enhances the understanding of theicexplE wheel-rail interaction studies and shows th
applicability of the explicit FEM to the wheel-radynamic interaction analyses from a theoretical
perspective. The advantages of using the explEiakgorithm to solve the wheel-rail dynamic intdiacs
may thus be summarized as follows:

« The explicit FEM couples the calculation of whedl/rstructural dynamic responses with the
calculation of wheel-rail contact, which makes thelicit FEM a suitable approach for solving
wheel-rail dynamic interactions and provides a tbgcal basis for the indirect validation of the
wheel-rail dynamic contact solution.

« The explicit FEM is capable of treating nonlineiast in materials, geometry and boundary
conditions. The implemented penalty contact alporitcan handle arbitrarily shaped contact
surfaces, and it calculates normal and tangentialact successively and dependently at each time
step, which is necessary for solving inelastic inaié contact problems.

« By avoiding the need for matrix evaluation, assgndid decomposition as required by implicit
integration algorithms, the explicit procedure iBmputationally attractive for analyzing high-
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frequency dynamic problems of short duration, eisigovhen the total dynamic response time that
must be modeled is only a few orders of magnitodgér than the stability critical time step, which
is frequently the case in wave propagation analyg8e8p The explicit wheel-rail FE model may
include in its solution all the relevant vibratiomodes of structures and continua and associated
wave propagations.

The conditionally stable explicit FEM is, howeviess efficient than the implicit FEM for static dgurium
analyses or low-frequency dynamics problems ladtamga much longer time period [47]. Implicit-exgti
sequential approaches may thus be employed to tamiboth the solution time and the dynamic effects
induced by the initialization of wheel-rail intetemn analysis. The implicit-explicit sequential apach
involves performing an implicit static equilibriumnalysis followed by an explicit transient dynamics
analysis. The modeling procedure is elaboratedémext section.

3 Modeling procedure

This section discusses how to establish robusti@xplE wheel-rail dynamic interaction models. Ashia
explicit FE wheel-rail dynamic interaction modelyrzontain a half-track model and a half-wheelseteho
with its share of the sprung mass of a car bodyaabdgie. We can divide the modeling procedure timtee
stages in a physical sequence: Stage 1. build vemektail models; Stage 2. let the wheel and mite into
contact and achieve static equilibrium; and StagdéeBthe wheel roll along the rail. The commercial
programs ANSYS/LS-DYNA were employed to demonstthte modeling procedure, and other programs
with implementations of implicit-explicit sequeritiapproaches, such as ABAQUS/Explicit, may also be
applied.

3.1 Modeling of wheel and rail structures

3.1.1 Geometry modeling

The geometries of wheels and rails, including thatact profiles, should be modeled as realistically
possible because they may influence both the stralctlynamic properties and contact solutions. The
detailed nominal geometries of a wheel radial sactind a rail cross section may initially be crdatea
graphical software (e.g., AutoCAD; see Fig. 3-).(Bpsed on these geometries, the wheel and raines
can subsequently be generated in the pre-proceBEirmpftware (e.g., ANSYS; see Fig. 3-1 (b)) bytiog

the wheel radial section with respect to the céfitra of the wheel axle and extruding the railss®ection
longitudinally. The wheel/rail volumes are suggddie be generated after meshing the wheel radidilose
and rail cross section for modeling convenience.

(a) Generated in AutoCAD (b) Generated in ANSYS
Fig. 3-1: Modeling of the wheel and rail geometries

3.1.2 Mesh

Adequately fine mesh is needed for a robust FE imadleinteraction model, especially when precise
contact solutions and high-frequency dynamics ared. Zhao and Li [21] report that the elemer¢ sif
approximately 1/20 of the minor axis of the contpetch tends to provide accurate contact solutions,
whereas approximately 1/10 of the minor axis mapdmeptable for many engineering problems. To obtai

14



493
494
495
496
497
498
499
500
501
502
503

504
505

506

507
508

509
510
511
512
513
514

515
516
517
518
519

an optimal mesh in the sense of cost effectiveardsacceptable error, a partially refined mesthas/s in
Fig. 3-2 may vyield a better approximate solutioB][Fine special discretization should be concéatran
the prospective contact regions. Another meshinthatebalancing the efficiency and accuracy of cointa
solutions uses the surface-based tie constrainteftioe the mesh in the contact regions [42, Tlje
tetrahedral or wedge elements with triangular faceswhich have indeterminate contact condition at
the corners, are not suitable for analyzing contacproblems and should be avoided by remeshing the
model [60]. In addition, remeshing may be employetb adjust mesh size [21] or the position of solutio
zone [12] of an explicit FE contact model. Fig. 3-8hows the explicit FE model used to study wheeldta
contact transition from single point to two points.Because the contact transition occurs at different
rail locations with different prescribed angles ofattack (AoA), the position of solution zone is adjsted
by remeshing the rail model to capture the contadransition process.

(a) Mesh of rail cross section (b) Me$kwbeel tread  (c) Overview of wheel & rail meshe

Fig. 3-2: Wheel and rail meshes

solution zone (AoA=15 mRad)
\

solution zone (AoA=25 mRad)
\

Fig. 3-3: Remesh rail model to adjust the positioof solution zone

The mesh-determined time step of explicit integratin (Egn. (14)) may be increased by mass scaling.i.
scale up the mass of a model non-physically, to rede simulation time. One simple method of the mass
scaling is to artificially increase the material desity (Eqn. (14b)). Note that the mass scaling ity
justifiable when it has insignificant influence onthe solution, which is usually the case for quasiatic
analyses. For dynamic analyses where an accurate ssadistribution is critical to the solution, the
added penetrations and kinetic energy should be cafully checked when applying the mass scaling.

Profiles with geometric irregularities are gensgralbnsidered in the wheel-rail impact contact satiohs
[34-38, 43]. One example of the measured rail tmpase with geometric irregularities at an insutiatail
joint (IRJ) is shown in Fig. 3-4. The rail surfageometric irregularities measured by Railprof [&7]
HandySCAN [72] may be imposed on the originally sthosurface of the model by adjusting the nodal
coordinates in the input files of the dynamic assd\solver.
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(a) Nominal geometry (b) Applying the measured geometry
Fig. 3-4: Measured geometry applied to a wheeltated rail joint impact model [31]

3.1.3 Modeling of other components and model paraners

In addition to the wheel and rail, other train/fkaammponents such as the car body, primary suspensi
sleepers, fastenings and ballast, may be modeledifferent study purposes. The sleepers may aéso b
modeled with hexahedral elements as well as difteneaterial properties than those used in theaiadl
wheel models; the ballast is generally built asnrgpdamper pairs with a fixed foundation; and thsténing
models may significantly influence the track dynanbehavior, whose modeling techniques were
comprehensively discussed in [39, 50]. Becausedhd&ody and the bogie frame have a negligibleigrite

on high-frequency wheel-rail dynamic interactior8][ they are normally simplified as mass elements
connected to the wheelset by the primary suspengtbrparallel linear springs and viscous dampers.

The explicit FE wheel and rail models generally @ideither elastic or elastoplastic steel with naahin
values as the material; and the sleeper modelsallgrimdopt elastic timber or concrete as the malri
although inelastic models can be conveniently uBetause the parameters used in fastening andstalla
models can rarely be directly measured in the fitldy are generally calibrated by fitting the Siated
frequency response functions to the measured vidle$1]. Typical values of the parameters empioye
the explicit FE wheel-rail interaction models canfound in [36, 37].

3.2 Modeling of static contact

A wheel-rail static equilibrium analysis may be fpemed to obtain the deformation of structures edusy
the gravitational load, which will subsequently bensidered the initial conditions for the wheel-rai
dynamic interaction analyses. The augmented Lagargpntact algorithm is recommended for the wheel-
rail static contact analysis, which is intrinsigathn iterative series of penalty methods with auwttn
updates of penalty values [74]. The contact paiihaistatic COF needs to be defined, and it caneisthe
wheel and rail surface nodes that may be withirsthic wheel-rail contact patch.

In the wheel-rail static contact analysis, the mailds, half-wheel-axle ends and car body should be
constrained in the lateral (Ux) and longitudinak)UWlirections. To prevent the wheel model from il
rolling, its central radial section (normal to thail longitudinal direction) can be constrained the
longitudinal direction (Uz); see Fig. 3-5. By apply the gravitational load, the static contact 8ohs can

be obtained. Fig. 3-6 shows the distribution of teetical components of the stresses on a pieaaibf
model that was in contact with the wheel model Biadic contact analysis. An elliptic contact pateim be
clearly seen at the top of the rail.

16



552
553

554
555
556
557

558
559
560
561
562
563
564
565
566

567
568

569
570
571
572

573
574
575
576
577
578
579
580
581
582

Fig. 3-5: Displacement constraints Fig. 3-6: Static contact solution

3.3 Modeling of dynamic interactions

As indicated by the numerical solution procedurespnted in Table 1, definitions of the wheel-ralling
contact pair, the initial conditions, and the loadd displacement boundary conditions are requiced t
proceed with an explicit FE wheel-rail dynamic natetion analysis.

3.3.1 Rolling contact pair

A rolling contact pair needs to be defined in tHeeel-rail transient frictional rolling calculatioiio employ
the penalty contact algorithm introduced in Secfd$ the master and slave segments of the ratlomgact
pair defined on the rail top and wheel tread shawddtain the whole prospective rolling contact oegi
however, the defined contact regions should beves| @s possible to reduce the computation costseth
by contact searching. One example of the contant gefined for an explicit FE wheel-rail dynamic
interaction analysis is shown in Fig. 34A. LS-DYNA, a three-dimensional ‘box’ may be defired to
reduce the contact-associated computational time $. Only the elements inside the box are active for
contact searching.

slave nodes
on the wheel tread

~

master nodes
on the rail top

Fig. 3-7: Contact pair defined for the explicit RBeel-rail dynamic interaction analysis

Either constant or variable COFs may be used ineltal rolling simulations. Zhao and Li [26] stedi
wheel-rail dynamic contact solutions that implenegint velocity-dependent COF and concluded that the
velocity-dependent COF may mimic a more realistiotact condition and provide a less regular adimesio
slip distribution pattern compared with the cons@OF.

Sections 2.6.1 and 2.6.3 mentioned that the saaterfof the penalty contact stiffnegg plays an important
role in the penalty contact algorithrdeally, a sufficiently high and low contact stiéss is required so that
the penetration and slip distance are acceptabbll sand the problem can be well-behaved in terms of
convergence, respectively. Fig. 3-8 compares theeltail contact solutions obtained with differesctle
factors of the penalty contact stiffnegg=1, 0.5 and 0.1. The contact pressure magnitudemdicated by
contour lines, and the tangential stresses aredtetli by red arrows. The arrows point in the dioast of

the tangential stresses, and their lengths areopiopal to the magnitude. This figure shows thathw
decreasing scale factfy; (from Fig. 3-8 (a) to (c)), the obtained contaatgh areas increases while the
contact pressure decreases. A valugof 1 is recommended for wheel-rail dynamic interactioralyses.
The contact solutions provided Iy = 1 are consistent with those obtained by the Henami theory and
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CONTACT [21, 22]; moreover, when applying 1 mm oee finer wheel/rail surface mesh¢gg,> 1 may
require the time step size to be scaled down forpegational stability, which decreases the efficieaf the
explicit integration.
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Fig. 3-8: Contact solutions with differefi; values (contour graph unit: MPa)

3.3.2 Initial conditions

By applying the implicit-explicit sequential analysthe initial nodal displacements of the whedl-ra
transient rolling simulation can be obtained bywhesel-rail static equilibrium analysis illustratedSection
3.2. The initial nodal velocities of the wheel iath rotation and forward translation should be gribgd,
and the value of the applied wheel rotational vijoequals the quotient of the applied translatiomdocity
and the wheel radius. The equivalent translatiowalal velocities should also be applied to the arim
suspensions and sprung mass because they trawarfotogether with the wheel.

3.3.3 Load boundary conditions

In addition to the gravitational load illustrated $ection 2.3.1, the driving torque is another Widesed
load boundary condition in the simulation of wheadl-tractive frictional contact [34-38, 43]. Becauthe
hexahedral elements used to construct wheel mbasks only translational freedom, the Hughes-LiuL{H-
beam elements [75] degenerated from the hexaheldmkent can be employed to take the externallytecter
torque. As shown schematically in Fig. 3-9, foulHheam elements with length are used. Thé value
should not be too small because the critical titap size of the H-L beam element for integratiab#ity is

Aty_; = L/\/E/p. Each H-L beam element consists of three no¢ggs1/2,3,4), J and K. Nodeg- I, and J
are all attached to the wheel model and locatatiédrsame plang. Node J is the driven node located at the
wheel axial center and shared by the four beamegiesnNode K is also shared by the four beam ele&anen
and it is required to define the axis system ofmbe&dement. The vector pointing from K to J is noirtoa
planeS. A driving torqueM; in planeSis applied to the driven node J, and its directtodetermined by the
right-hand rule.

|

(98]

Fig. 3-9: Driving torque applied to four H-L beatements

Driven by the torque, the wheel rolls along thé wath a consequently generated longitudinal créepe

F; between the wheel and rail, which satisfies theaiireqent that the traction coefficiept is less than
the COFu. The traction coefficient is distinguished frone tBOF in wheel-rail rolling contact studies by its
definition in Eqgn. (32):
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Hr=gp-<Ht (32)
N
whereF, andFy are the longitudinal and normal contact forcespeetively, ang: is the overall COF of the
contact pair that limits the traction force traned in the contact. The overall COF may be diffiefeom
the local COF at certain nodes when the velocifyetieent friction is considered [26]. In additiohet
traction coefficient may be assumed to be congtardgtationary rolling, whereas it varies with tinme
dynamic rolling because of vibration, and its noahivalue is proportional to the applied drivinggoe (Egn.

(32)).

A sudden exertion of driving torque may bring sfigaint excitation to the wheel-rail rolling system.
gradually increased driving torque is thus suggeste avoid excitation as much as possible [28] and
minimize the dynamic relaxation process (see Sec8@.5). A functional driving torqué®l;(t) is
investigated here and is expressed as follows:

Mg T
My () = 7(1—cos(t—0t)>,t<t0 (33)

MO ,tZtO

whereM, is the maximum value of the torque amdis the duration required to readh. Fig. 3-10
graphically shows the loading function with=20 kN-m and,=6 ms. Fig. 3-11 compares the calculated
wheel-rail normal loads and creep forces with tppliaations of the loading function in Eqgn. (33)daa
constant driving torqu#f,(t)=20 kN-m. This figure shows that the functionalviiry torque significantly
damps the undesired excitation on the creep favbereas it has less, if any, effect on the noried |

30 ‘ ‘ ‘ ‘ T ‘ 150 T ‘ ‘ T ‘ T

N
)]

he]
[=]

—normal load (M(t))
—normal load (MO)
—creep force (M(t))

— | ——creep force (Mo)

-
[=]

Moment [KN-m]
o
Contact force [kN]

[&)]

(=]

Time [ms] Time [ms]
Fig. 3-10: Functional driving torque  Fig. 3-Farces obtained with different torque functions

3.3.4 Displacement boundary conditions

Different displacement boundary conditions may pgliad to the explicit FE wheel-rail interaction deds
according to different research objectives. Whendtinuctural dynamics are of less concern or gstasidy-
state contact solutions are desired, the bottorfaseirof the rail foot may be fully constrained asthe
models presented in [21, 22]. When the dynamicceffenust be considered and captured, a more dktaile
modeling of the track substructure is necessary & 35, 37, 43, 47, 50, 51]. The fastening models
simplified as spring-damper pairs may be constdiinethe lateral and longitudinal directions if prihe
vertical dynamics are of concern [51]. More compbexindary conditions are required when solid raid-p
representations of rail fastenings are used [5@faBse the ballast has less influence on the whiel-
dynamic contact solutions, it is normally consteginn both the lateral and longitudinal directiamsl fixed

at the foundation.

When only a half wheelset is modeled, the inner @nithe wheel half-axle can be constrained in #teral
direction to keep the rolling wheel from topplingen. The ends of the finite-length rail models geaerally
constrained in the lateral and longitudinal direeti, which may cause reflective waves that infleetie
solutions, especially when the track models areffitgently long. A numerical experiment conduciaed76]
indicated that a FE track model with a length ofn2@ considered sufficiently long to reduce thiduence
of wave reflection, whereas a length of 10 m mayetrengineering requirements for reproducing the
measured axle box acceleration. Non-reflective Hamn conditions have also been implemented in icerta
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commercial FE programs [59, 60], and their applicaton wheel-rail dynamic interactions is currently
under development.

3.3.5 Dynamic relaxation

In the analysis of wheel-rail dynamic interactioag;ertain length of rolling distance from the whiedial

position to the solution zone is necessary to ddrmposcillations caused by the wheel/rail initisldmatic
and potential energy from imperfect static equilibr [22, 77]. This process is called dynamic retexa
Because the wheel-rail rolling contact physicabkgites vibrations of the structures and waves inticoa,
the quasi-steady state may be considered to bewathby the dynamic relaxation when the oscillaiare
damped out to less than 10% of the static valugs The wheel-rail dynamic interaction solutiondabed
after the process of the dynamic relaxation caauiput for post-processing.

3.3.6 Time step control

As mentioned in Section 2.2.3, a scale fasfois employed to control the time step and to guaethe
stability of the explicit integration, arsf = 0.9 has been widely used in previous explicit FE wira#|
interaction studies. Applying smaller time stepshia explicit FEM may produce better accuracy asmed

in [20]. Fig. 3-12 compares the contact solutiobamed withsf=0.9 and 0.6 (used for explosive problems),
whereF,, F;, andu are the amplitudes of the contact pressure, sudhear stress, and COF, respectively.
The excellent consistency of the results obtainill different value okf indicates that a scale factor of 0.9
is acceptable for wheel-rail interaction analysey] it guarantees integration stability and sirmdtausly
decreases the solution time.

600
— as —E—an,u (sf=0.9)
o 400} _f;‘n‘_. I_'D'D. 1 |—=—F, (sf=0.9)
= L B t
@ F n an,u (sr=0.6)
2 I f o _
& 200 1\':r (sf=0.6)

3 ""'1.

320 325 330 335
Longitudinal [mm]

Fig. 3-12: Comparison of contact stresses caladilaith sf=0.9 and 0.6

4 Solution analyses

The previous section proposes pre-processing krmeléor the explicit FE wheel-rail dynamic interaat
analysis; this section introduces post-processpmyaaches to converting the output of numericagj@ms
for wheel/rail nodal forces and nodal motidm® wheel-rail contact and dynamics solutions.

4.1 Contact solutions

The wheel-rail contact solutions of interest geteranclude the contact patch area, normal and ishea
contact stresses, and micro-slip and adhesiordstpbutions within the contact patch. These sohd can

be obtained by post-processing the nodal force reowthl motion simulated by the wheel-rail dynamic
interaction models.

4.1.1 Contact patch area and stresses

The contact patch area may be determined withsriadal forces: a surface node is in contactifrthdal
force in the direction normal to the local surfag@on-zero [12, 21, 22]. Hence, the first stefoisonvert
the output surface nodal forces in the global coateé system into those in the local coordinatdesys
Because inertia force is included in the dynamilygses, the force of a surface node outside theacomay
be small but non-zero; thus, a non-zero threshmigl,(0.001 N) is used in practice to determinetidrea
node is in contact. Fig. 4-1 shows one examplé®ftheel and rail nodes in contact determined isyrthe.
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688  Fig. 4-1: Wheel and rail nodes in the contact pafely. 4-2: Nodal forces converted into contaststes

689  The contact stresses, including the surface nostnass and shear stress, may be calculated withoithe
690 forces in the local coordinate system. For the g#lyeused quadrilateral segments:

M fi
o =) —
! 412
J=1

i=123 (34)

691 wheres is the contact stress vector on th#h segment of the wheel/rail surface and the spatial
692 components, with = 1,2,3 representing the normal, lateral and longitudidakections in the local
693  coordinate system, respectiveﬁ/;v” is the local nodal force vector, with= 1,2,3,4 representing the
694  number of the nodes constructing segniéras shown schematically in Fig. 4-2; drid the dimension of
695 the quadrilateral segment. According to Newtonisdttaw, the contact stresses may be calculated wit
696  either the wheel nodal forces or rail nodal fordag. 4-3 compares the contact stresses calcukitadthe

697  wheel and rail nodal forces and indicates thatcth@ce has negligible influence on the calculatentact
698  stresses.

= 500
o
= 400} st (rai
o +Fn 1t (rail)
% 300! +Ft (ra.'!)
S ——F xu (wheel)
8 200/ n
» _*_Fr (wheel)
8 100}
=
=5 3
75 380 385 390 395 400
699 Longitudinal [mm]
700 Fig. 4-3: Contact stresses calculated with the Wéwee rail nodal forces

701  4.1.2 Micro-slip distribution

702  The micro-slip refers to the tangential relativdoegy between two particles in contact. As expiainn
703  Section 2.6.1, a rail surface contact node is #gtiracontact with the “contact point” rather thanwheel
704  surface node; thus, interpolations are requirecbtovert the velocities of wheel nodes into the eities of
705 the “contact points”. Fig. 4-4 schematically shawength-weighted linear interpolation scheme. it &-4
706  (a), the red cross represents an arbitrary raieigdand the four blue spodg,; (i = 1,2,3,4) represent the
707  four wheel nodes composed of the wheel surface eegim contact with the rail nodg.. Another blue spot
708  overlapping the red cross in Fig. 4-4 (b) denokesihterpolated “contact poinN,, on the wheel surface
709 and in contact with rail nodg,; andl; (i = 1,2,3,4) indicates the distances from the “contact poMy}’to
710 the four sides of the wheel surface contact segment
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713 Fig. 4-4: Interpolated wheel nodal coordinate/magioto rail

714  We may obtain the interpolated velocitieg of the “contact point'N,, by the length-weighted linear
715  interpolation as follows:

V., =
Y (L + 1)U+ 1)

716  wherev;(i = 1,2,3,4) represents the nodal velocities of the wheel ndidgs The micro-slips,, may then be
717  calculated as follows:

(35)

Sp =Vy — Uy (36)

718  wherew,. are the nodal velocities of the rail nadg The length-weighted linear interpolation schemalso
719  applicable to the calculations for the displacemaanteleration and vertical coordinate (normalhi® lbcal
720 contact surface) of the “contact points” on the ®&theThe accuracy of the length-weighted linear
721  interpolation scheme may conveniently be estimbjedomparing the wheel vertical coordinates betore
722  after interpolation. Fig. 4-5 shows that the intdaped wheel surface formed by the “contact points”
723 overlaps the original wheel surface, indicating tha interpolation scheme is reliable. In additioate that
724  the calculated wheel-rail contact patch is notIblat saddle shapet@his result confirms that FEM drops
725 the half-space assumption and the non-flat contagtatch may cause geometric spin. The geometric
726  spin calculated with the explicit FEM is discusseth [21, 22].

158 wheel node

. = "contact point"

g 157.9  rail node

= 157.8

8

5 1567.7

2 i

157.6.
10
0 00 o

727 Lateral [mm] Longitudinal [mm]
728 Fig. 4-5: Coordinates/positions of wheel and railles

729  4.1.3 Adhesion-slip distribution
730 The division of the adhesion and slip regions ia tiontact patch is an important feature of thedifmal
731  rolling contact. The slip region can be distingedhfrom the adhesion region either by comparing the
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surface shear streBswith the traction boungd|F,| or by calculating the micro-slig, within the contact
patch. A node is in a slip region if:

H|Fy| = |Fe| < er or |Snl > & (38)

whereer andeg are the tolerances of the two approaches. A vall:3 percent of the maximal tangential
nodal force in the contact patch is suggestedfg21, 26, 28], whereas a value of 0.05 m/s is ssiggkfor

& [26]. For a robust wheel-rail dynamic interactiomdel, the calculated adhesion-slip distribution
determined by both approaches should be consistdneach other.

4.2 Structural dynamics

To obtain the structural dynamic responses, whiehganerally the vibration acceleration and velodhe
nodes enclosed by the part of the structure ofresteneed to be selected. The structural vibration
accelerationsig,,., for example, may then be calculated by averatfirgaccelerations of the nodes enclosed
by the structural part in the global coordinateteysii” :

n
. 1 .
Uger = ; Z uN (39)

N=1

wheren is the total number of nodes enclosed by the stracpart.Fig. 4-6 compares the simulated and
measured hammer-excited rail acceleration at diffegnt locations along the rail. The legend of each
graph indicates the distance from the hammer excitoon point to the response location. Each
simulation result (red curves) is the average of # accelerations of the nodes in the vicinity (withi

about 1 cm) of the response location.
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Fig. 4-6: Comparison of the simulated and measuredammer-excited rail vibrations (Blue curves:
measurements; Red curves: simulations) [31]

5 Numerical example

This section provides a numerical example of sitimgawheel-rail impact at a typical IRJ (see Figl)s
This numerical example demonstrates that the ekdiEM is capable of handling arbitrary contact
geometries, nonlinear material properties, and ehynaffects.
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755
756 Fig. 5-1: Typical IRJ in the Dutch railway network

757  To obtain the dynamic contact solutions betweeallang wheel and the target IRJ shown in Fig. Sw&,
758  performed three simulations by varying the matearad/or geometric parameters of one explicit FEelhe
759 rail interaction model. Simulation 1 adopted arsetawheel/rail material and the nominal rail getmnéFig.
760  3-4 (a)); simulation 2 used elastoplastic matexial nominal geometries; and simulation 3 usedagéesttic
761  material and the measured IRJ geometry (Fig. 3 Hor each simulation, the contact solutionshoéé
762  consecutive output time steps are displayed in %iB.to show the main characteristics of the whiél-
763  dynamic interactions.

5 5 5
T O 0
E
©
' =
-
-10 L t2 N
. . —» rolling direction . —>» rqlling direction ‘ .
1285 1290 1295 1300 1305 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350
764 Longitudinal [mm] Longitudinal [mm] Longitudinal [mm]
765 (a) Simulation 1 (elastic material and nominal getry): elliptical contact patch
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767 (b) Simulation 2 (elastoplastic material and nomhgeometry): “egg-shaped” contact patch
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769 (c) Simulation 3 (elastoplastic material & measugedmetry): non-steady-state contact patch
770 Fig. 5-2: Evolution of the wheel-rail contact pressobtained by three different simulations
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In Fig. 5-2 (a) and (b), excluding the discontinsiaontact in the middle graphs, the wheel-rail @ont
solutions obtained with both elastic (simulationab)d elastoplastic (Simulation 2) models show tmaes
characteristics as those reported in [22, 23]. Ttwtact patches simulated with the elastic modekha
elliptical shapes, whereas those with the elasstiplanodel have “egg” shapes. The amplitudes of the
contact pressures are located approximately imilele of the contact patches for the elastic dageshift
forward and are reduced by the plastic deformaf@mthe elastoplastic case. The contact patch areas
simulated with the nominal geometry in Fig. 5-2 &4ad (b) basically remain steady and increasesimall
extent during impact, whereas simulation 3 withrieasured geometry in Fig. 5-2 (c) provides muchemo
pronounced non-steady-state contact solutionsinhuilation 3, the contact patch shape, which isheeit
elliptical nor “egg-shaped”, and the pressure iistron vary considerably with time due to the @t
geometric irregularities and wheel-rail impact.

In addition, impact wave patterns were producedhaywheel-IRJ dynamic interaction simulations. One
example produced by simulation 3 is shown in Fig, Svhich confirms that the explicit FE wheel-rail
interaction analysis may take dynamic effects adoount.
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Fig. 5-3: Impact wave pattern produced by the wiiRélinteraction simulation

6 Conclusions and future work

This paper has systematically explored the corerdéiigns employed in the explicit FE wheel-rail irgtetion
analyses and theoretically demonstrated that tipdceéxFEM is a suitable approach for solving dynam
frictional rolling contact by fully coupling the kcaulation of frictional rolling contact with the lzaulation of
high-frequency structural dynamics. An indirectigdgation method for dynamic contact solutions hasnbe
proposed. The reliability of the wheel-rail dynanmteraction solutions can be confirmed by sepérate
verifying the quasi-steady-state contact solut@gainst Hertz contact theory and CONTACT and vélhda
the structural dynamic responses with measureméontpromote the broad use of the method, gaper
has also proposed procedures for establishing taxpdicit FE wheel-rail dynamic interaction modeaisd
converting outputs into solutions of rolling corttand dynamic responses. The summarized algoritnds
the proposed procedures can also be applied tmtlgeling of dynamic interactions occurring to ticad,
bearings and gears.

The explicit FEM is considered a promising appro&xlexplaining certain enigmas in railway research,
such as squeal and corrugation, whose generati@manisms are closely related to both the wheel-rail
frictional rolling and wheel/track dynamic behaviéiuture work required for these potential appiarag
may include the following aspects.

e A half wheelset model may not accurately simulate meel-rail contact when the dynamics of
the other half wheelset is not negligible. A full Wweelset model considering full dynamics of
wheel-rail contact has been presented in [43] toraulate wheel-turnout contact. A full wheelset
model may also be employed in future studies to fiably calculate unstable wheel vibration
during curving motions.

« Solid rail-pad representations with proper matepelameters proposed in [50] may be adopted in
future studies of wheel-rail dynamic interactiors improve the accuracies of the lateral and
longitudinal dynamics simulations.

e Wave phenomena induced by wheel-rail dynamic ictemas must be further investigated.
Experimental validation of the waves simulated bg proposed explicit FE models should be
conducted.
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In addition, an explicit FEM solver dedicated te tanalysis of wheel-rail dynamic interactions may b
developed in the future. The computation cost ipeeted to be reduced by eliminating redundant
conditional statements in the general-purposedi@xplE commercial programs, and the newly develbpe
solver may also provide more convenience and flgtyito amendments to the algorithm. The penalty
contact algorithm with nonlinear [78] or functionanalty contact stiffness, the dynamic contacoratigms
developed for more sensitive and realistic tangémbntact solutions, and the coupling with mutidip
dynamics analyses may be implemented for futuré/ses of wheel-rail dynamic interactions.
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Systematically explore the core procedure for sgmhubf dynamic rolling contact
Dynamic analyses with nonlinearities in materiaoetry and boundary conditions
Couple calculation of friction rolling with calculan of structural dynamics

Apply the procedure to the modeling of nonlineaeelkrail dynamic interactions

Capture dynamic contact responses — wheel-raqatimduced waves



