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Abstract 8 

The modeling of dynamic frictional rolling contact is crucial for accurately predicting behavior and 9 

deterioration of structures under dynamic interactions such as wheel/rail, tire/road, bearings and gears. 10 

However, reliable modeling of dynamic frictional rolling contact is challenging, because it requires a careful 11 

treatment of friction and a proper consideration of the dynamic effects of the structures on the contact. This 12 

study takes the wheel-rail dynamic interaction as an example to systematically explore the core algorithms 13 

for the modeling of dynamic frictional rolling contact by way of explicit finite element analyses. The study 14 

also theoretically demonstrates that the explicit finite element method handles nonlinearities in friction, 15 

material properties, arbitrary contact geometries and boundary conditions, and fully couples the calculation 16 

of frictional rolling contact with the calculation of high-frequency structural dynamics. An indirect 17 

validation method for dynamic contact solutions is proposed. To promote the broad use of the method, this 18 

paper proposes a detailed procedure for establishing robust wheel-rail dynamic interact tion models and 19 

obtaining dynamic contact responses. The proposed procedure can also be applied to the modeling of 20 

dynamic interactions occurring to tire-road, bearings and gears.  21 

Keywords: explicit FEM; frictional rolling; wheel-rail contact; dynamic interaction. 22 

1 Introduction 23 

The problem of rolling contact is nonlinear in many aspects [1]. The modeling of dynamic rolling contact is 24 

crucial for accurately predicting behavior and deterioration of structures under dynamic interactions such as 25 

wheel/rail, tire/road, bearings and gears. A reliable dynamic rolling contact model requires a careful 26 

treatment of nonlinear frictional rolling contact and a proper consideration of the dynamic effects of the 27 

structures on the contact. Since the wheel-rail interaction due to the frictional rolling contact significantly 28 

influences the vehicle dynamics and stability [2] and the dynamic effects involved in wheel-rail interactions 29 

can be increased by high-speed rolling, a systematic study of wheel-rail dynamic interactions is highly 30 

desired, especially within the context of booming high-speed railways. This study thus takes the wheel-rail 31 

dynamic interaction as an example to systematically explore the core procedure dedicated to the modeling of 32 

dynamic frictional rolling contact. 33 

Studies on wheel-rail contact date from the 19th century. Hertz [3] was among the earliest researchers to 34 

provide an analytical solution to frictionless normal contact between elastic bodies with a half-space 35 

assumption. Mindlin [4] developed the Hertz contact theory to treat shifts of contact bodies by a tangential 36 

force within its friction limit. Wheel-rail friction rolling contact was first studied by Carter [5], who 37 

calculated creepage in the rolling direction with a 2D analytical model. Vermeulen and Johnson [6] then 38 

extended Carter’s 2D theory to 3D with pure creepage and without spin by assuming an elliptical adhesion 39 

area. 40 

With the development of the computer and computational sciences, numerical methods have increasingly 41 

been employed in the study of wheel-rail contact, and these methods are believed to be more appropriate for 42 

solving wheel-rail rolling with high complexity in contact conditions and material properties [7]. The 43 

numerical methods may be divided into two classes [8]: the boundary element method (BEM) for local 44 

analyses based on the half-space and quasi-quarter-space [9] assumptions and the finite element method 45 

(FEM) for global analyses based on general continuum mechanics. Important contributions to the BEM 46 

solutions of wheel-rail frictional rolling contact with arbitrary creepages and spin were made by Kalker [10], 47 
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whose simplified and full theories have been implemented in the extensively used computer programs 48 

FASTSIM and CONTACT, respectively. Since the BEM-based approaches discretize the surfaces of contact 49 

bodies in only the limited domain of potential contact areas, they are restricted to linear elastic contact 50 

problems [1] and fail to consider the wheel/rail dynamic effects related to contact even in non-steady state 51 

contact solutions [8]. Here, the wheel/rail dynamic effect refers to the fact that the inertia of wheel/rail 52 

material elements may influence the stress field because these elements “flow” through the deforming region 53 

[11] and may play important roles in wheel-rail impact contact and contact-induced unstable vibration [12].  54 

The FEM with a discretization of whole contact bodies has been demonstrated to be a more flexible tool for 55 

modeling frictional rolling contact with arbitrary contact geometries, possible material nonlinearities, 56 

dissipation and bifurcations and corresponding standing-wave phenomena [13]. Early finite element (FE) 57 

wheel-rail contact models have either assumed quasi-static state contact [14-16] or applied contact loads 58 

independently calculated by other simplified or multi-body dynamics models [17-19]. Because the inertia of 59 

wheel/rail material elements is not involved in the contact calculations, these studies may not consider the 60 

dynamic effects related to contact. 61 

The explicit FEM, which has been successfully applied to various nonlinear transient dynamics problems in 62 

recent decades [20], has been increasingly proposed for wheel-rail interaction studies. Zhao and Li [21] 63 

produced physical contact solutions of wheel-rail friction rolling with the explicit FEM. Wheel-rail 64 

contact was rigorously treated and the quasi-steady contact solutions obtained with the explicit FEM 65 

corresponded well to those obtained with well-established approaches, i.e., Hertz contact theory and 66 

Kalker’s CONTACT [10], in both the normal and tangential directions; effect of small geometrical 67 

spin was observed. Deng et al. [22] later used explicit FEM to study the wheel-rail frictional rolling  68 

contact solutions with large spin. The calculated explicit FE contact solutions have also been shown to 69 

be accurate via comparisons with CONTACT solutions. Investigations of wheel-rail contact 70 

characteristics using the explicit FEM include the simulations of the transient wheel-rail rolling 71 

contact in elastoplasticity [23], in the presence of rail contamination [24], under high and low adhesion 72 

conditions [25], as well as with the consideration of velocity-dependent friction [26] and thermal effects 73 

[27]. 74 

 75 

In addition to the studies of wheel-rail contact solutions [21, 22] and contact characteristics [23-28], previous 76 

studies on wheel-rail interactions with the explicit FEM also include the studies of wheel-rail impact contact 77 

(at the rail joint [29-33], squat [34-40], crossing nose [41-46] and crack [47]), studies of flange contact [12, 78 

48, 49] and track dynamic behavior [39, 50, 51]. These studies have generally employed algorithm-79 

optimized commercial programs, e.g., ANSYS/LS-DYNA and ABAQUS/Explicit, to efficiently process the 80 

large amounts of elements required in the detailed modeling of wheel/track structures and perform time 81 

integration with tiny time steps. 82 

To facilitate other researchers to perform simulations of wheel-rail dynamic interactions with those software 83 

packages or alternative explicit FEM programs, systematic perceptions of the involved algorithms and 84 

modeling knowledge should be provided. Section 2 systematically explores the core algorithms employed in 85 

the explicit FE wheel-rail interaction analyses, which represent the mathematical model and numerical 86 

solution procedure implemented in the solvers of commercial programs. In addition, this paper theoretically 87 

demonstrates that the explicit FEM is a suitable approach for modeling wheel-rail dynamic interactions. The 88 

solutions of wheel-rail dynamic interactions provided by the explicit FEM can rarely be directly validated 89 

because of the current absence of an experimental method for precisely measuring rolling contact solutions, 90 

such as contact stress and strain states, especially under dynamic conditions [47]. Considering that the 91 

explicit FEM fully couples the calculation of wheel-rail contact (converted by nodal forces, see Section 92 

4.1) with the calculation of wheel/rail dynamic responses (converted by nodal motions, see Section 4.2), 93 

an indirect validation is proposed: the reliability of the wheel-rail dynamic contact solutions may be 94 

confirmed by separately verifying the quasi-steady contact solutions and validating the wheel/rail 95 

dynamic responses. The former part has been presented in [21, 22] (e.g. Fig. 1-1 (a)), whereas the 96 

abilities of the method to reproduce wheel/track dynamic behavior have been reported in [31, 35, 37, 97 

43, 50, 51] (e.g. Fig. 1-1 (b)). 98 
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         99 

(a) contact solution [21]                        (b) hammer-excited rail vibration [31] 100 

Fig. 1-1: Direct verification and validation of the numerical results obtained with explicit FEM 101 

To promote the broad use of the method, Sections 3 and 4 propose detailed procedures for establishing 102 

robust explicit FE wheel-rail dynamic interaction models (pre-processing) and converting outputs into 103 

wheel-rail contact and dynamics solutions (post-processing), respectively. The proposed procedure can also 104 

be applied to the modeling of dynamic interactions occurring to tire-road, bearings and gears. Section 5 105 

presents a typical numerical example of wheel-rail dynamic interactions to demonstrate the effectiveness of 106 

the method. Section 6 presents the concluding remarks and discusses potential improvements in the 107 

methodology required to address controversial issues related to wheel-rail dynamic interactions, such as 108 

squeal and corrugation. As far as the authors know, this is the first systematic presentation of dynamic 109 

frictional rolling contact which combines fundamental theory (mathematical model and numerical 110 

solution procedure) with engineering practice. Since the dynamic effects involved in the interactions of 111 

contact bodies can be increased with rolling speed and load, this work is expected to benefit future 112 

researches of dynamic frictional rolling contact in the context of high-speed railways and heavy-duty 113 

bearings. 114 

2 Algorithm of the explicit finite element method 115 

This section systematically explores the core algorithms employed in the explicit FE wheel-rail interaction 116 

analyses with a focus on the mathematical model and the numerical solution procedure implemented in the 117 

solvers of commercial programs. The reviews of the algorithms are mainly based on the computational 118 

mechanics theories illustrated in the literatures [20, 52-58] and theoretical manuals of commercial explicit 119 

FE programs [59-61]. In addition, the applicability of the explicit FEM to wheel-rail dynamic interaction 120 

analyses is demonstrated from a theoretical perspective. 121 

In the formulas presented in this paper, we mainly use index notation to represent vectors, matrices and 122 

tensors and use bold-faced variables only when the numbers of components and operations are not confusing. 123 

We use lowercase subscripts (i, j, k) for spatial components, lowercase superscripts (t) for time points, 124 

capital subscripts (M) for hourglass mode numbers, and capital superscripts (J, M, N) for nodal/element 125 

numbers.  126 

2.1 Mathematical model of wheel-rail dynamic interactions 127 

Lagrangian formulation typically used for transient structural dynamic problems is employed for wheel-rail 128 

dynamic interaction analyses. When adopting the Lagrangian formulation, the time-dependent displacement 129 �� in a fixed rectangular Cartesian coordinate system can be expressed in terms of the convected coordinates 130 �� in the same coordinate system and time � as follows: 131 

�� = ����� , �							�, � = 1,2,3                                                                    (1)	132 

A general 3D transient structural dynamics problem may then be described by constrained partial difference 133 

governing equations as follows: 134 

Momentum conservation equations:                                   ���,� + ��� = ��� �									in	Ω		�, � = 1,2,3			            (2a) 135 
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Displacement boundary conditions:                                                                   �� = ��									on	Γ�				            (2b) 136 

Traction boundary conditions:                                                                         σ� n = T�							on	Γ"					             (2c) 137 

Contact discontinuity conditions:                                                      #σ� $ − σ� &'n� = 0									on	Γ)				              (2d)     138 

Initial conditions:                                                      ����� , 0	 = *����	, �+ ���� , 0	 = ,����				in	Ω			            (2e) 139 

Material constitutive relation:                                                         �+�� = �+��#-, ., -/ , �� , ��, 0+�� , … '		            (2f) 140 

Strain-displacement relation:                                                                           0+�� = ��+ �,�+�+�,�	/2											       (2g) 141 

where ��� is Cauchy stress tensor; � is the current density; �� is the body force density; �� is the prescribed 142 

displacement boundary conditions on part of the boundary Γ�; 3� represents the components of the traction 143 

boundary conditions on part of the boundary Γ"; 4� is a unit outwardly normal to a boundary element on Γ; 144 *� and ,� are the initial displacements and velocities, respectively; and -, . and -/ are the Young’s modulus, 145 

Poisson’s ratio and tangent modulus of the material, respectively. The rate form adopted in Eqns. (2f) and 146 

(2g) may take nonlinearities into account.  147 

The displacement-based FEM (compared with the force-based FEM) is employed to solve the dynamic 148 

problem described in Eqn. (2). By removing all displacement constraints and assuming that the reactions are 149 

known, the variational governing equation can be derived by Hamilton’s principle as follows: 150 

5 ���� � − ���,� − ���	6��7Ω8 + 5 #���4� − 3�'6��7Γ +9: 5 #���$ − ���&'4�6��7Γ9; = 0      (3) 151 

Eqn. (3) is a statement of the principle of virtual work, in which 6�� is the variation of displacement. By 152 

applying the Gauss divergence theorem to convert the surface integral to the volume integral, the following 153 

is obtained: 154 

5 #���6��',� 7Ω8 = 5 #���4�'6��7< +9: 5 #���$ − ���&'4�6��7Γ9;         (4) 155 

Noting the mathematical identity: 156 

#���6��',� = ���,�6�� + ���6��,�        (5) 157 

Then, the weak form of the equilibrium equation can be derived as follows: 158 

5 ��� �6��7Ω8 + 5 ���6��,�7Ω8 = 5 ���6��7Ω8 + 5 3�6��7Γ9:       (6) 159 

To solve Eqn. (6) numerically, a spatial discretization may be used to express the equilibrium equation in 160 

terms of time-dependent nodal unknowns and base functions. A mesh of finite elements interconnected at 161 

nodal points on the reference configuration is thus superimposed, and particles are tracked through time: 162 

�� = ������=, >, ?	, �	 = @ AB�=, >, ?	��B
C

BDE ��																		�, � = 1,2,3	�7	 
where AB is the shape function in the parametric coordinates (ξ, η, ζ) and 4 is the number of nodal points 163 

defining the element. Summing over all G elements of a FE model, the semi-discrete equation of motion in 164 

the matrix notation becomes: 165 

@ HI �JKJL� 7Ω8M + I NKO7Ω8M − I �JKP7Ω − I JKQ7Γ9:,R8M STU
TDE = 0																			�8		 

where O  is the Cauchy stress vector, and OK = ��WW, �XX, �YY, �WX, �XY, �YW	 ; L�  is the nodal acceleration 166 

vector; J  is the shape matrix constructed by the shape functions; N  is the strain-displacement matrix 167 
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containing the first spatial derivatives of the shape functions; and P and Q are the prescribed body load vector 168 

and traction load vector, respectively. Because the hexahedral solid elements (4=8 in Eqn. (7)) are mostly 169 

used in explicit FE wheel-rail interaction models, we take them as examples to illustrate the theories 170 

summarized in this paper. For the hexahedral elements: 171 

J�=, >, ?	 = ZAEAEAE
A[A[………A\A\]        (8a) 172 

AB�=, >, ?	 = E\ �1 + ==B	�1 + >>B	�1 + ??B							^ = 1,2, … ,8 (8b) 173 

N�=, >, ?	 =

_̀
`̀
`̀
`̀
à bbW bbX bbYbbX bbWbbY bbXbbY bbWcd

dd
dd
dd
de
J�=, >, ?	 (8c) 174 

Note that the time dimension in Eqn. (8) is still continuous, and the semi-discrete equation of motion for a 175 

general transient structural dynamics problem may thus be rewritten in a shorthand format: 176 

fL� = Pghi − Pjki   (9) 177 

in which f, Pjki and Pghi are the mass matrix, internal force vector and external force vector, respectively, 178 

and they are defined as follows: 179 

f = @ HI �JKJ7Ω8M STU
TDE 				�9m	 

Pghi = @ HI �JKP7Ω + I JKQ7Γ9:,R8M ST 			�9n	U
TDE  

Pjki = @ HI NKO7Ω8M STU
TDE 			�9o	 

By adding two extra terms, Ppqk and r, to the right-hand side of Eqn. (9), the semi-discrete equilibrium 180 

equation for the wheel-rail dynamic interaction problem is obtained as follows: 181 

fL� = Pghi − Pjki + r + Ppqk(10) 182 

where r is the anti-hourglass vector that only occurs in the reduced integration to control the zero-energy 183 

modes, and Ppqk is the contact force vector, which can be included as a contribution to the externally applied 184 

tractions [20, 52]. These two terms will be explicated in Sections 2.5 and 2.6, respectively. 185 

2.2 Numerical solution procedure for the explicit FE wheel-rail dynamic interaction 186 

analysis  187 

2.2.1 Time discretization by central difference scheme 188 

Among the various numerical approaches developed for solving the dynamic interaction problem formulated 189 

by Eqn. (10), we focus only on the explicit integration scheme using the central difference to approximate 190 

the acceleration vector L� . The explicit schemes calculate the values of dynamic quantities at time step � + 1 191 
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based entirely on the available values at time step �. Eqn. (10) discretized by the central difference scheme at 192 

time step � may be written as follows: 193 

L� / = f&s�Pghi/ − Pjki/ + r/ + Ppqk/	   (11) 194 

The velocity and displacement vectors may then be obtained using the central difference time integration: 195 

L+ /$E/[ = L+ /&E/[ + ∆�/$E/[L� /        (12a) 196 

L/$E = L/ + ∆�/$EL+ /$E/[           (12b) 197 

where 	∆� is the time step size, which is constant in the linear analysis but may vary in the nonlinear analysis 198 

[52], and 199 

∆�/$E/[ = ∆/uvw$∆/u[         (13) 200 

2.2.2 Procedure for the explicit FE wheel-rail dynamic interaction analyses  201 

The equilibrium Eqn. (11) discretized in both the space and time domains indicates that the numerical 202 

solutions of a wheel-rail dynamic interaction problem are dependent on a constant mass matrix and four 203 

time-dependent force vectors. Therefore, the numerical solution procedure for the explicit FE wheel-rail 204 

dynamic interaction analysis is mainly composed of mass matrix and force vector calculations. A lumped 205 

mass matrix can be constructed by a row summation scheme [62] prior to the iteration to promote the 206 

efficiency and practicality of the explicit FEM. For the force vectors, the external force vector Pghi	 may be 207 

calculated directly by the given load conditions (see Section 2.3); the internal force vector Pjki contributed 208 

by stresses may be calculated by the constitutive and strain-displacement formulations built in the element 209 

and material models (see Section 2.4); and the anti-hourglass force vector r and the contact force vector 210 Ppqk  may be calculated by the Flanagan-Belytschko scheme [63] (see Section 2.5) and penalty contact 211 

method [55] (see Section 2.6), respectively. Table 1 outlines a numerical procedure for the explicit FE 212 

wheel-rail dynamic interaction analysis. This procedure has been implemented in commercial explicit FE 213 

programs and used in previous wheel-rail contact and dynamics studies, although variations are possible, e.g., 214 

processing contact with a “predictor-corrector method” [58, 64]: 1. Predict nodal 215 

accelerations/velocities/displacements before step (d) in Table 1 by assuming no contact occurs; 2. Check the 216 

contact conditions in step (d) with the predicted displacement field; and 3. Enforce contact forces and correct 217 

the nodal motions, i.e., the acceleration, velocity and displacement. 218 

Table 1: Numerical procedure for the explicit FE wheel-rail dynamic interaction analysis 219 

Initialize algorithm: 220 

• Apply initial conditions *� and ,� (by Eqn. (2e));  221 

• Set L+ &E/[ = L+ x = �+ ���� , 0	 = ,����	 and ∆�x = 0;  222 

• Define the slave/master nodes/segments for wheel-rail contact pairs; 223 

• Construct the lumped mass matrix f;  224 

• Set the termination time: 3/yz. 225 

LOOP1 � =0, 2,…, n (time step number) 226 

(a) Apply load conditions to construct the external force vector Pghi/ (see Section 2.3); 227 

(b) Process elements to construct the internal force vector Pjki/	 (see Section 2.4); 228 

(c) Construct the anti-hourglass vector 	r/ (see Section 2.5); 229 

(d) Construct the wheel-rail contact force vector Ppqk/ (see Section 2.6); 230 

     LOOP2 N=1, 2,…, m (slave wheel node number) 231 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

 I. Locate the corresponding master segment on the rail for slave wheel node N; 232 

 II. Locate the wheel-rail contact point (projection of the slave node on the master segment); 233 

 III. Check for penetration; 234 

        IF  penetration occurs, 235 

            i. Calculate the normal contact forces P{B/; 236 

        ii. Calculate the tangential contact forces P{K/; 237 

        END IF 238 

     END LOOP2 239 

(e) Update time step size ∆�/$E to prevent unstable contact or integration (see Section 2.2.3); 240 

(f) Update nodal accelerations L� / (by Eqn. (11)); 241 

(g) Impose displacement constraints (see Section 2.7); 242 

(h) Update nodal velocities L+ /$E/[ (by Eqn. (12a)); 243 

(i) Update nodal displacements L/$E (by Eqn. (12b)); 244 

(j) Update structural geometries (by Eqn. (15)); 245 

(k) Update time ∑ ∆�/$E  and check for termination: IF  ∑ ∆�/$E ≥ 3/yz � STOP 246 

END LOOP1 247 

Output: wheel/rail nodal force and nodal motion (L� , L+  and L)  248 

The numerical solution procedure presented in Table 1 contains two loops. The outer loop is constructed 249 

mainly by formulating the equation of motion and solving the equation with the central difference scheme, 250 

whereas the inner loop calculates the wheel-rail contact, which is called as a subroutine at each time step 251 

prior to the updates of the structural dynamic responses. The calculation of wheel/rail dynamics and the 252 

calculation of wheel-rail contact are, therefore, coupled in the numerical algorithm, which provides the 253 

theoretical basis for the indirect validation of the wheel-rail dynamic interaction solutions mentioned in 254 

Section 1.  255 

2.2.3 Stability of integration 256 

The explicit integration scheme has a simple and neat solution procedure but is conditionally stable: the 257 

integration is only stable if the time step size used is smaller than the critical time step size. The Courant-258 

Friedrichs-Lewy stability condition [65] can be used to guarantee convergence, which requires that a sound 259 

wave may not cross the smallest element within one time step: 260 

∆�{ ≤ �{/�� (14) 261 

where ∆�{ is the critical time step size; �{ is the shortest characteristic dimension of the element; and �� is 262 

the dilatational wave speed of the material. For hexahedral elements: 263 

�{ = ,y/�yU�W (14a) 264 

where ,y is the element volume, and �yU�W is the largest surface area. For elastic materials [59]: 265 

�� = �-�1 − .	/[�1 + .	�1 − 2.	�] (14b) 266 

Eqn. (14b) can be simplified for one-dimensional solids where the Poisson’s ratio is neglected, i.e.:  267 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

�� = ��/�  (14c) 268 

In the calculation of wheel-rail interactions, the wheel and rail are generally considered to be steel with 269 

nominal values of -=210 GPa, . = 0.3 and �=7800 kg/m3; thus, �� is equal to approximately 6 km/s. The 270 

critical time step ∆�{ characterized in inequality (14) may vary in nonlinear dynamic analyses because of 271 

changes in the material parameters and/or geometry. The time step ∆� should be correspondingly adjusted in 272 

a conservative manner so that the condition in inequality (14) is satisfied with certainty at all time steps. To 273 

guarantee the stability and simultaneously decrease the solution time, a suitable scale factor <� may be 274 

employed to control the time step, i.e., ∆� = <� × �{/��. A detailed discussion about the scale factor <� 275 

used in the wheel-rail dynamic interaction analysis is given in Section 3.3.6.  276 

Because the numerically obtained highest natural frequency of a structure is bounded by the highest 277 

frequency of any individual element in the FE discretization [59], as long as the elements and time steps are 278 

sufficiently small, an explicit FE model may include in its solution all the relevant vibration modes of 279 

structures and continua and associated wave propagations [23]. In addition, small time step sizes can reduce 280 

the truncation errors but increase the round-off errors. By adding displacement increments to the initial 281 

geometries: 282 

�/ = �x + L/ 		�15	 
in the geometry updating step (step (j) in Table 1), rather than to the geometries obtained at the previous time 283 

step, solutions turn out to be much less sensitive to the round-off errors [59].  284 

2.3 External force 285 

The external force vector in Eqn. (11) can be directly constructed by the prescribed load conditions. 286 

Common external loads applied to wheel-rail dynamics and contact models include gravitational loads, 287 

hammer impulse loads and driving torques. The first two may be regarded as the body forces and surface 288 

nodal loads contributing to the first and second terms of Eqn. (9b), respectively. The driving torque is 289 

discussed in Section 3.3.3. 290 

2.3.1 Gravitational load 291 

Gravitational loads are generally applied to wheel-rail interaction models to initialize internal forces before 292 

proceeding with calculations of dynamic responses. The gravitational loads are applied as body forces by 293 

setting a fixed gravitational acceleration � as follows: 294 

P���� = @ HI �JKP7Ω8M ST = @ HI �JKJ�7Ω8M ST = f�			�16	U
TDE

U
TDE  

2.3.2 Hammer impulse 295 

Hammer impulses may be applied to the explicit FE wheel/track models as surface nodal loads to 296 

characterize the dynamic behavior of structures [50, 51]. The prescribed surface nodal loads	at the Nth node 297 

of a surface segment �B may be converted to the traction boundary conditions as follows: 298 

Q = ���=, >	 = 4� @ AB�=, >	�B�
BDE 				i = 1,2,3			�17	 

where 4� is the unit normal vector to the surface segment; see Eqn. (26b) in Section 2.6.1. A Gaussian one-299 

point quadrature may then be used to conduct the surface integration in Eqn. (9b) as follows: 300 

I JKQ7Γ9:,R = I I JKQ�=, >	|�|7=7>E
&E

E
&E = 4JKQ�0,0		|��0,0	|			�18	 

in which � is the surface Jacobian matrix and 4|��0,0	| approximates the element surface. 301 
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2.4 Internal force 302 

To construct the internal force vector given in Eqn. (9c), the strain-displacement matrix N and the stress 303 

vector O are required. Continuing to take the hexahedral element as examples, the Jacobian matrix � is used 304 

to relate the displacement in the parametric coordinate system to the global coordinates system: 305 

_̀
`̀
`̀
a�AB���AB���AB�� cd

dd
dd
e
= �&E

_̀
`̀
`̀
a�AB�=�AB�>�AB�? cd

dd
dd
e
							^ = 1,2, … ,8	�19	 

The strain-displacement matrix N may then be obtained with Eqn. (8c), and the strain rate �+  and stress rate O+  306 

are readily calculated by applying the strain-displacement relation and the material constitutive relation in 307 

Eqns. (2g) and (2f), respectively. The material constitutive relation expressed in Eqn. (2f) can be either linear 308 

or nonlinear. See [20] for an additional discussion of the material constitutive relations. The Cauchy stresses 309 

may be calculated using explicit time integration as follows: 310 

O�� + ∆�	 = O��	 + O+ ∆�			�20	 
Because ��=, >, ?	=NKO is defined over the volume, the internal forces of structures may be updated with a 311 

Gaussian one-point quadrature analogous to Eqn. (18) as follows: 312 

I ��=, >, ?	8M 7Ω = 8��0,0,0		|��0,0,0	|				�21	 
in which 8|��0,0,0	| approximates the element volume. 313 

2.5 Hourglass control 314 

Explicit FE wheel-rail interaction analyses have generally adopted the one-point quadrature scheme (Eqns. 315 

(18) and (21)) for the sake of computational efficiency, which may also avoid the shear locking issue. The 316 

one-point reduced integration, however, leads to spurious zero-energy modes or “hourglass” modes for 317 

hexahedral and quadrilateral elements. For hexahedral elements, the hourglass modes are present whenever 318 

diagonally opposite nodes have identical velocities, which give zero strain rates according to Eqn. (2g). The 319 

anti-hourglass force vector r is thus introduced in Eqn. (10) to avoid the undesirable hourglass modes from 320 

growing large and destroying solutions. An orthogonal Flanagan-Belytschko hourglass control scheme [63] 321 

may be used in the explicit FE wheel-rail dynamic interaction analysis. The anti-hourglass forces are given 322 

by: 323 

r = ��TB = 14 � ¡���,y
[¢ @�\

BDE �+ �£T	B£TB								� = 1,2,3; 	¥ = 1,2,3,4		�22	 
where � ¡ is the hourglass coefficient, and the nodal velocities �+ �B are the sum of the hourglass field L+ ¦§B  324 

and the linear portion of the nodal velocities L+ ¨©ªB : 325 

�+ �B = L+ B = L+ ¦§B + L+ ¨©ªB 	�22m	 
The hourglass shape vectors £TB are defined in terms of the hourglass base vectors ГTB  given in Table 2: 326 

£TB = ГTB − A�B @ �+ �B\
BDE ГTB 									�22n	 

Table 2. Hourglass base vectors for hexahedral elements 327 
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Node (N) ГEB Г[B 		Г¢B Г�B 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
-1 
-1 
-1 
-1 
1 
1 

1 
-1 
-1 
1 

-1 
1 
1 
-1 

1 
-1 
1 
-1 
1 
-1 
1 
-1 

-1 
1 

-1 
1 
1 
-1 
1 

-1 

Note that the hourglass shape vectors £TB are orthogonal to the linear velocity field L+ ¨©ªB , which makes the 328 

anti-hourglass force vector ��TB  also orthogonal to the linear velocity field L+ ¨©ªB  and is necessary for 329 

accurately detecting an hourglass. Therefore, the hourglass control scheme avoids transferring energy to or 330 

from the rigid body and uniform strain modes. 331 

Flanagan-Belytschko hourglass control scheme given by Eqn. (22) is in viscous form: the calculated 332 

anti-hourglass force is proportional to the components of the nodal velocity contributing to hourglass 333 

modes. This method is more suitable for dynamic problems with high velocity/strain rate. In contrast, 334 

the stiffness-form hourglass control scheme calculates the anti-hourglass forces proportional to the 335 

components of the nodal displacement contributing to hourglass modes. The stiffness-form scheme can 336 

reduce total accumulated hourglass deformation and is preferred for low rate problems. In addition to 337 

Flanagan-Belytschko scheme, other hourglass control methods such as Belytschko-Bindeman [66], 338 

Puso [67] and Jabareen-Rubin [68] have also been implemented in the explicit FE commercial 339 

programs [59, 60]. To estimate the effects of different hourglass control schemes, the ratio of the 340 

hourglass energy (i.e. the work done by the anti-hourglass force) over the internal energy may be 341 

checked. As a general guideline, the hourglass energy should not exceed 10% of the internal energy.   342 

2.6 Contact algorithm 343 

Because of its iterative nature [20, 52], the penalty contact algorithm is considered to be suitable for solving 344 

explicit FE contact problems and has been broadly proposed to enforce the wheel-rail contact constraints. As 345 

indicated in Table 1, the penalty contact algorithm can be straightforwardly implemented in the explicit FE 346 

programs as a subroutine. Penetration is allowed and represents the key to the penalty method [20]. The 347 

penalty algorithm checks each slave node for penetration through the master surface. The contact surface 348 

with coarser mesh or with stiffness higher than its counterpart is usually treated as the master surface. 349 

This study refers to the wheel surface as the slave surface and to the rail surface as the master surface; the 350 

symmetry of the approach eliminates any bias in this choice [59]. 351 

2.6.1 Normal contact  352 

In a wheel-rail contact simulation, a slave wheel node is seldom in exact contact with a master rail node. 353 

Instead, the slave wheel node usually “contacts” a segment composed of four rail surface nodes. At each 354 

time step, the contact segments on the rail surface need to be searched for. For an arbitrary slave node Ns 355 

defined on the prospective wheel contact surface, we need first locate the closest master node and segment 356 

on the rail surface. As shown schematically in Fig. 2-1 (a), the slave node Ns is denoted as a red spot, and its 357 

closest master node Nm is stored by segments Si (i=1,2,3,4). If the nodes Ns and Nm do not coincide, Ns can 358 

be shown to lie in one of the segments Si via the following tests: 359 

�¬� × ­	 ∙ �¬� × ¬�$E	 > 0		,	     �¬� × ­	 ∙ �­ × ¬�$E	 > 0							� = 1,2,3,4       (23) 360 

The vectors ¬�  and ¬�$E  are along the edges of Si and point outwards from Nm, and the vector ­ is the 361 

projection of the vector beginning at Nm and ending at Ns onto the closest segment (S2 in this demonstration). 362 

The inequalities of Eqn. (23) ensure that the vector ­ is between the vectors ¬� and ¬�$E and is thus located 363 

within the segment Si. If the inequalities are not satisfied, another master segment containing Nm will be 364 

checked. The algorithm does not limit the number of segments containing Nm, and the master segment 365 

determined at the previous time step is preferentially checked at each time step. 366 
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   367 

(a)                                                                                (b) 368 

Fig. 2-1: Parametric representation of wheel-rail contact 369 

The “contact point” Nc is the projection of the slave wheel node Ns on the master rail segment (S2 in this 370 

demonstration). The determined master segment has a bilinear parametric representation in a local 371 

coordinate system as follows: 372 

°�=, >	 = @ ���=, >	±�
¢

�DE 					�24	 
���=, >	 = @ AB�=, >	��B

�
BDE 									� = 1,2,3	�24m	 

AB�=, >	 = 14 �1 + ==B	�1 + >>B						^ = 1,2,… ,4		�24n	 
where °�=, >	 represents the master segment; ±� represents unit direction vectors; and ��B represents the nodal 373 

coordinates of the nodes contained by the segment. Let ² be a vector drawn to the slave node Ns. The contact 374 

point Nc with coordinates �={ , >{	 on the master segment can be determined by satisfying the following:  375 

�°�= �={ , >{	 ∙ [² − °�={ , >{	] = 0			�25m	 
�°�> �={ , >{	 ∙ [² − °�={ , >{	] = 0			�25n	 

The coordinates 	�={ , >{	 in Eqns. (25a) and (25b) may be solved numerically with Newton-Rapson iterations. 376 

Since the method may diverge with distorted elements [59], a careful treatment of mesh in the wheel-rail 377 

contact region, especially in the solution zone, is highly desirable. Penetration of the slave wheel node 378 

through its master rail segment may then be judged by a scalar ³: 379 

³ = ´ ∙ [² − °�={ , >{	]					�26m				 
´ = 4��={ , >{	 = ��°�= × �°�>	/ µ�°�= × �°�>µ				�26n	 

If ³ ≥ 0, no penetration occurs and nothing will be done; if ³ < 0, an interface force vector P{B normal to the 380 

master segment will be applied to the contact point, and its magnitude is proportional to the amount of 381 

penetration: 382 

P{B = −³�´		�26o	 
Hence, interface springs may be assumed between the penetrating slave wheel nodes and rail contact surface 383 

as shown in Fig. 2-1 (b), and the penalty contact (spring) stiffness � is intrinsically the combination of a 384 

geometrical penalty term and a velocity penalty term [58]. For the hexahedral elements containing the master 385 
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segments used in the wheel-rail contact surfaces, � may be given in terms of the bulk modulus · , the 386 

element volume , and the face area � as follows: 387 

� = �̧ ¹·�[, 	�267	 
where �̧ ¹ is a scale factor for the penalty contact stiffness. The choice of its value in wheel-rail interaction 388 

simulations will be discussed in Section 3.3.1. The equal and opposite contact forces distributed over the 389 

master segment nodes PU�º/yz»  may also be obtained as follows: 390 

PU�º/yz» = −A»�={ , >{	P{B					¼ = 1,2,3,4							�27	 
The penalty contact algorithm implemented in the explicit FEM can treat an arbitrarily shaped surface by 391 

representing the surface with a faceted mesh. 392 

2.6.2 Tangential contact 393 

The Coulomb friction law is available to solve the wheel-rail tangential contact. A trial tangential contact 394 

nodal force P∗ at time step � + 1 may be defined as follows: 395 

P∗ = P{K/ − �∆¾							�28m	 
where P{K/ is the tangential contact force calculated at time step �; � is the penalty contact stiffness; and ∆¾ 396 

is the incremental movement of the slave wheel node along the rail surface: 397 

∆¾ = °/$E�={/$E, >{/$E	 − °/$E�={/, >{/										�28n	 

The traction bound �¿ÀÁC�/ at time step � in the Coulomb friction law is the product of the magnitude of the 398 

normal force P{B/ at the same time step and the coefficient of friction (COF) Â: 399 

�¿ÀÁC�/ = ÂÃP{B/Ã							�28o	 
The tangential contact force at time step � + 1 may thus be written as follows: 400 

P{K/$E =
ÄÅÆ
ÅÇ P∗																		��	|P∗| ≤ �¿ÀÁC�/$E	

�¿ÀÁC�/$EP∗|P∗| 											��	|P∗| > �¿ÀÁC�/$E										�287	 
The COF Â, which is considered a constant in the classical Coulomb’s law, may vary with various factors in 401 

wheel-rail contact such as sliding speed, contact pressure, surface lubrication or contamination, roughness, 402 

temperature, and humidity [26]. Section 2.2.2 demonstrated that the explicit FEM couples the calculation of 403 

wheel/rail dynamic responses with the calculation of wheel-rail contact in the time domain. Thus, a velocity-404 

dependent Coulomb’s law with a functional COF may be implemented in the explicit FEM. The COF 405 

updated at each time step may be expressed in terms of the static and dynamic friction coefficients Âº and Â�, 406 

respectively, a decay constant o and wheel-rail relative sliding velocities L+ zyÈ between the slave nodes and 407 

master segments at the same time step as follows: 408 

Â = Â� + �Âº − Â�	É&{|L+ ÊMË|	�29m	 
	L+ zyÈD∆¾/∆�				�29n	 

The decay constant o describes how fast the static coefficient approaches the dynamic coefficient and may be 409 

determined by fitting the measured results [26]. Because the wheel-rail contact forces can be physically 410 

interpreted as externally applied tractions [20, 52], the contact force vector required in Eqn. (11) may be 411 

expressed as follows: 412 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

Ppqk/ = @ HI JK�P{B/ + P{K/	7Γ9;,R ST 			�30	U
TDE  

The traditional division of an elastic contact problem into a normal problem and a tangential problem is 413 

based on an assumption that the friction transmitted between elastic contact bodies has a negligible influence 414 

on the normal contact solutions [69]. In the explicit FEM, the normal and tangential contacts are calculated 415 

successively and dependently at each time step, which is necessary for solving inelastic contact problems. 416 

Studies with the explicit FEM [22, 23] have indicated that the tangential elastoplastic wheel-rail contact 417 

solutions have noticeable effects on the normal solutions: an increase in tangential force increases plastic 418 

flow, and the contact patch tends to become larger in size and shifts forward more. 419 

2.6.3 Contact stability 420 

The contact-based critical time step determined by the penalty contact algorithm is proportional to 421 

min	{ÎUÏ� }, where G» (J=1,2) is essentially the mass attached to the contact "spring" and � is the penalty 422 

contact stiffness given in Eqn. (26d). The time step size ∆� used in the explicit FEM should not exceed the 423 

contact-based critical time step to avoid contact instability. The easiest method of increasing the contact-424 

based critical time step is to scale down the penalty contact stiffness �. 425 

2.7 Displacement constraints 426 

Suitable displacement constraints are necessarily defined as essential boundary conditions in the 427 

mathematical model of wheel-rail dynamic interactions and are largely applied to structural boundaries, such 428 

as the inner end of wheel half-axles, the rail ends and the rail bottom surfaces (see Section 3.3.4). These 429 

constraints can be imposed by setting the constrained acceleration components to zero [59]. Since the 430 

prescribed nodal displacement constraints are imposed in the local coordinate system, an orthogonal matrix 431 Q constructed by the normalized unit vectors in the local axes needs to be employed to transform the global 432 

nodal acceleration vectors �� �B (for node N) updated by Eqn. (11) to the local system as follows: 433 

��ÒÓÔ�B = ��� �B 																	� = 1,2,3	�31m	 

After the constrained acceleration components are zeroed, the modified vectors ��ÒÓÔ�B  can be transformed 434 

back to the global system: 435 

�� �B = �K��ÒÓÔ�B 														� = 1,2,3	�31n	 
where �� � in Eqn. (31b) is the finally updated nodal acceleration vector of the time step, which will further be 436 

integrated to approximate the nodal velocities and displacements by Eqns. (12a) and (12b). 437 

2.8 Summary of the algorithms 438 

By systematically exploring the core algorithms employed in the explicit FE wheel-rail interaction analyses, 439 

this section enhances the understanding of the explicit FE wheel-rail interaction studies and shows the 440 

applicability of the explicit FEM to the wheel-rail dynamic interaction analyses from a theoretical 441 

perspective. The advantages of using the explicit FE algorithm to solve the wheel-rail dynamic interactions 442 

may thus be summarized as follows: 443 

• The explicit FEM couples the calculation of wheel/rail structural dynamic responses with the 444 

calculation of wheel-rail contact, which makes the explicit FEM a suitable approach for solving 445 

wheel-rail dynamic interactions and provides a theoretical basis for the indirect validation of the 446 

wheel-rail dynamic contact solution.  447 

• The explicit FEM is capable of treating nonlinearities in materials, geometry and boundary 448 

conditions. The implemented penalty contact algorithm can handle arbitrarily shaped contact 449 

surfaces, and it calculates normal and tangential contact successively and dependently at each time 450 

step, which is necessary for solving inelastic wheel-rail contact problems.  451 

• By avoiding the need for matrix evaluation, assembly and decomposition as required by implicit 452 

integration algorithms, the explicit procedure is computationally attractive for analyzing high-453 
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frequency dynamic problems of short duration, especially when the total dynamic response time that 454 

must be modeled is only a few orders of magnitude longer than the stability critical time step, which 455 

is frequently the case in wave propagation analyses [70]. The explicit wheel-rail FE model may 456 

include in its solution all the relevant vibration modes of structures and continua and associated 457 

wave propagations. 458 

The conditionally stable explicit FEM is, however, less efficient than the implicit FEM for static equilibrium 459 

analyses or low-frequency dynamics problems lasting for a much longer time period [47]. Implicit-explicit 460 

sequential approaches may thus be employed to minimize both the solution time and the dynamic effects 461 

induced by the initialization of wheel-rail interaction analysis. The implicit-explicit sequential approach 462 

involves performing an implicit static equilibrium analysis followed by an explicit transient dynamics 463 

analysis. The modeling procedure is elaborated in the next section. 464 

3 Modeling procedure 465 

This section discusses how to establish robust explicit FE wheel-rail dynamic interaction models. A basic 466 

explicit FE wheel-rail dynamic interaction model may contain a half-track model and a half-wheelset model 467 

with its share of the sprung mass of a car body and a bogie. We can divide the modeling procedure into three 468 

stages in a physical sequence: Stage 1. build wheel and rail models; Stage 2. let the wheel and rail come into 469 

contact and achieve static equilibrium; and Stage 3. let the wheel roll along the rail. The commercial 470 

programs ANSYS/LS-DYNA were employed to demonstrate this modeling procedure, and other programs 471 

with implementations of implicit-explicit sequential approaches, such as ABAQUS/Explicit, may also be 472 

applied. 473 

3.1 Modeling of wheel and rail structures 474 

3.1.1 Geometry modeling 475 

The geometries of wheels and rails, including the contact profiles, should be modeled as realistically as 476 

possible because they may influence both the structural dynamic properties and contact solutions. The 477 

detailed nominal geometries of a wheel radial section and a rail cross section may initially be created in a 478 

graphical software (e.g., AutoCAD; see Fig. 3-1 (a)). Based on these geometries, the wheel and rail volumes 479 

can subsequently be generated in the pre-processing FE software (e.g., ANSYS; see Fig. 3-1 (b)) by rotating 480 

the wheel radial section with respect to the central line of the wheel axle and extruding the rail cross section 481 

longitudinally. The wheel/rail volumes are suggested to be generated after meshing the wheel radial section 482 

and rail cross section for modeling convenience. 483 

 484 

  485 

(a) Generated in AutoCAD                            (b) Generated in ANSYS 486 

Fig. 3-1: Modeling of the wheel and rail geometries 487 

3.1.2 Mesh 488 

Adequately fine mesh is needed for a robust FE wheel-rail interaction model, especially when precise 489 

contact solutions and high-frequency dynamics are desired. Zhao and Li [21] report that the element size of 490 

approximately 1/20 of the minor axis of the contact patch tends to provide accurate contact solutions, 491 

whereas approximately 1/10 of the minor axis may be acceptable for many engineering problems. To obtain 492 
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an optimal mesh in the sense of cost effectiveness and acceptable error, a partially refined mesh as shown in 493 

Fig. 3-2 may yield a better approximate solution [13]. Fine special discretization should be concentrated on 494 

the prospective contact regions. Another meshing method balancing the efficiency and accuracy of contact 495 

solutions uses the surface-based tie constraints to refine the mesh in the contact regions [42, 71]. The 496 

tetrahedral or wedge elements with triangular faces, which have indeterminate contact condition at 497 

the corners, are not suitable for analyzing contact problems and should be avoided by remeshing the 498 

model [60]. In addition, remeshing may be employed to adjust mesh size [21] or the position of solution 499 

zone [12] of an explicit FE contact model. Fig. 3-3 shows the explicit FE model used to study wheel-rail 500 

contact transition from single point to two points. Because the contact transition occurs at different 501 

rail locations with different prescribed angles of attack (AoA), the position of solution zone is adjusted 502 

by remeshing the rail model to capture the contact transition process. 503 

   504 

       (a) Mesh of rail cross section    (b) Mesh of wheel tread    (c) Overview of wheel & rail meshes               505 

Fig. 3-2: Wheel and rail meshes 506 

 507 

Fig. 3-3: Remesh rail model to adjust the position of solution zone 508 

The mesh-determined time step of explicit integration (Eqn. (14)) may be increased by mass scaling, i.e. 509 

scale up the mass of a model non-physically, to reduce simulation time. One simple method of the mass 510 

scaling is to artificially increase the material density (Eqn. (14b)). Note that the mass scaling is only 511 

justifiable when it has insignificant influence on the solution, which is usually the case for quasi-static 512 

analyses. For dynamic analyses where an accurate mass distribution is critical to the solution, the 513 

added penetrations and kinetic energy should be carefully checked when applying the mass scaling. 514 

Profiles with geometric irregularities are generally considered in the wheel-rail impact contact simulations 515 

[34-38, 43]. One example of the measured rail top surface with geometric irregularities at an insulated rail 516 

joint (IRJ) is shown in Fig. 3-4. The rail surface geometric irregularities measured by Railprof [37] or 517 

HandySCAN [72] may be imposed on the originally smooth surface of the model by adjusting the nodal 518 

coordinates in the input files of the dynamic analysis solver. 519 
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 520 

(a) Nominal geometry                                       (b) Applying the measured geometry  521 

Fig. 3-4: Measured geometry applied to a wheel-insulated rail joint impact model [31] 522 

3.1.3 Modeling of other components and model parameters 523 

In addition to the wheel and rail, other train/track components such as the car body, primary suspension, 524 

sleepers, fastenings and ballast, may be modeled for different study purposes. The sleepers may also be 525 

modeled with hexahedral elements as well as different material properties than those used in the rail and 526 

wheel models; the ballast is generally built as spring-damper pairs with a fixed foundation; and the fastening 527 

models may significantly influence the track dynamic behavior, whose modeling techniques were 528 

comprehensively discussed in [39, 50]. Because the car body and the bogie frame have a negligible influence 529 

on high-frequency wheel-rail dynamic interactions [73], they are normally simplified as mass elements 530 

connected to the wheelset by the primary suspension with parallel linear springs and viscous dampers.  531 

The explicit FE wheel and rail models generally adopt either elastic or elastoplastic steel with nominal 532 

values as the material; and the sleeper models normally adopt elastic timber or concrete as the materials, 533 

although inelastic models can be conveniently used. Because the parameters used in fastening and ballast 534 

models can rarely be directly measured in the field, they are generally calibrated by fitting the simulated 535 

frequency response functions to the measured values [50, 51]. Typical values of the parameters employed in 536 

the explicit FE wheel-rail interaction models can be found in [36, 37]. 537 

3.2 Modeling of static contact 538 

A wheel-rail static equilibrium analysis may be performed to obtain the deformation of structures caused by 539 

the gravitational load, which will subsequently be considered the initial conditions for the wheel-rail 540 

dynamic interaction analyses. The augmented Lagrangian contact algorithm is recommended for the wheel-541 

rail static contact analysis, which is intrinsically an iterative series of penalty methods with automatic 542 

updates of penalty values [74]. The contact pair with a static COF needs to be defined, and it consists of the 543 

wheel and rail surface nodes that may be within the static wheel-rail contact patch. 544 

In the wheel-rail static contact analysis, the rail ends, half-wheel-axle ends and car body should be 545 

constrained in the lateral (Ux) and longitudinal (Uz) directions. To prevent the wheel model from undesired 546 

rolling, its central radial section (normal to the rail longitudinal direction) can be constrained in the 547 

longitudinal direction (Uz); see Fig. 3-5. By applying the gravitational load, the static contact solutions can 548 

be obtained. Fig. 3-6 shows the distribution of the vertical components of the stresses on a piece of rail 549 

model that was in contact with the wheel model in a static contact analysis. An elliptic contact patch can be 550 

clearly seen at the top of the rail. 551 
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            552 

Fig. 3-5: Displacement constraints                         Fig. 3-6: Static contact solution 553 

3.3 Modeling of dynamic interactions  554 

As indicated by the numerical solution procedure presented in Table 1, definitions of the wheel-rail rolling 555 

contact pair, the initial conditions, and the load and displacement boundary conditions are required to 556 

proceed with an explicit FE wheel-rail dynamic interaction analysis.  557 

3.3.1 Rolling contact pair 558 

A rolling contact pair needs to be defined in the wheel-rail transient frictional rolling calculation. To employ 559 

the penalty contact algorithm introduced in Section 2.6, the master and slave segments of the rolling contact 560 

pair defined on the rail top and wheel tread should contain the whole prospective rolling contact region; 561 

however, the defined contact regions should be as small as possible to reduce the computation costs caused 562 

by contact searching. One example of the contact pair defined for an explicit FE wheel-rail dynamic 563 

interaction analysis is shown in Fig. 3-7. In LS-DYNA, a three-dimensional ‘box’ may be defined to 564 

reduce the contact-associated computational time [59]. Only the elements inside the box are active for 565 

contact searching. 566 

 567 

Fig. 3-7: Contact pair defined for the explicit FE wheel-rail dynamic interaction analysis 568 

Either constant or variable COFs may be used in wheel-rail rolling simulations. Zhao and Li [26] studied 569 

wheel-rail dynamic contact solutions that implemented a velocity-dependent COF and concluded that the 570 

velocity-dependent COF may mimic a more realistic contact condition and provide a less regular adhesion-571 

slip distribution pattern compared with the constant COF. 572 

Sections 2.6.1 and 2.6.3 mentioned that the scale factor of the penalty contact stiffness �̧ ¹ plays an important 573 

role in the penalty contact algorithm. Ideally, a sufficiently high and low contact stiffness is required so that 574 

the penetration and slip distance are acceptably small and the problem can be well-behaved in terms of 575 

convergence, respectively. Fig. 3-8 compares the wheel-rail contact solutions obtained with different scale 576 

factors of the penalty contact stiffness: �̧ ¹=1, 0.5 and 0.1. The contact pressure magnitudes are indicated by 577 

contour lines, and the tangential stresses are indicated by red arrows. The arrows point in the directions of 578 

the tangential stresses, and their lengths are proportional to the magnitude. This figure shows that with 579 

decreasing scale factor �̧ ¹ (from Fig. 3-8 (a) to (c)), the obtained contact patch areas increases while the 580 

contact pressure decreases. A value of �̧ ¹ = 1 is recommended for wheel-rail dynamic interaction analyses. 581 

The contact solutions provided by �̧ ¹ = 1 are consistent with those obtained by the Hertz contact theory and 582 
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CONTACT [21, 22]; moreover, when applying 1 mm or even finer wheel/rail surface meshes, �̧ ¹ > 1 may 583 

require the time step size to be scaled down for computational stability, which decreases the efficiency of the 584 

explicit integration.  585 

 586 

(a) Contact stress (�̧ ¹=1)           (b) Contact stress (�̧ ¹=0.5)           (c) Contact stress (�̧ ¹=0.1) 587 

Fig. 3-8: Contact solutions with different �̧ ¹ values (contour graph unit: MPa) 588 

3.3.2 Initial conditions 589 

By applying the implicit-explicit sequential analysis, the initial nodal displacements of the wheel-rail 590 

transient rolling simulation can be obtained by the wheel-rail static equilibrium analysis illustrated in Section 591 

3.2. The initial nodal velocities of the wheel in both rotation and forward translation should be prescribed, 592 

and the value of the applied wheel rotational velocity equals the quotient of the applied translational velocity 593 

and the wheel radius. The equivalent translational nodal velocities should also be applied to the primary 594 

suspensions and sprung mass because they travel forward together with the wheel.  595 

3.3.3 Load boundary conditions 596 

In addition to the gravitational load illustrated in Section 2.3.1, the driving torque is another widely used 597 

load boundary condition in the simulation of wheel-rail tractive frictional contact [34-38, 43]. Because the 598 

hexahedral elements used to construct wheel models have only translational freedom, the Hughes-Liu (H-L) 599 

beam elements [75] degenerated from the hexahedral element can be employed to take the externally exerted 600 

torque. As shown schematically in Fig. 3-9, four H-L beam elements with length L are used. The � value 601 

should not be too small because the critical time step size of the H-L beam element for integration stability is 602 ∆�Õ&Ò = �/�-/�. Each H-L beam element consists of three nodes: Ij (j=1,2,3,4), J and K. Nodes I1~ I4 and J 603 

are all attached to the wheel model and located in the same plane S. Node J is the driven node located at the 604 

wheel axial center and shared by the four beam elements. Node K is also shared by the four beam elements, 605 

and it is required to define the axis system of beam element. The vector pointing from K to J is normal to 606 

plane S. A driving torque ¥K in plane S is applied to the driven node J, and its direction is determined by the 607 

right-hand rule.  608 

 609 

Fig. 3-9: Driving torque applied to four H-L beam elements 610 

Driven by the torque, the wheel rolls along the rail with a consequently generated longitudinal creep force 611 ÖÒ 	 between the wheel and rail, which satisfies the requirement that the traction coefficient 	ÂK is less than 612 

the COF 	Â. The traction coefficient is distinguished from the COF in wheel-rail rolling contact studies by its 613 

definition in Eqn. (32): 614 
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	ÂK = ÖÒÖB < Â							�32	 
where ÖÒ and ÖB are the longitudinal and normal contact forces, respectively, and Â is the overall COF of the 615 

contact pair that limits the traction force transmitted in the contact. The overall COF may be different from 616 

the local COF at certain nodes when the velocity-dependent friction is considered [26]. In addition, the 617 

traction coefficient may be assumed to be constant in stationary rolling, whereas it varies with time in 618 

dynamic rolling because of vibration, and its nominal value is proportional to the applied driving torque (Eqn. 619 

(32)). 620 

A sudden exertion of driving torque may bring significant excitation to the wheel-rail rolling system. A 621 

gradually increased driving torque is thus suggested to avoid excitation as much as possible [28] and 622 

minimize the dynamic relaxation process (see Section 3.3.5). A functional driving torque ¥K��		  is 623 

investigated here and is expressed as follows: 624 

 ¥K��	 = ×TØ[ H1 − oÙ< ÚÛ//ØÜS , � < �x¥x													, � ≥ �x
												�33	   

where ¥x  is the maximum value of the torque and �x  is the duration required to reach ¥x . Fig. 3-10 625 

graphically shows the loading function with ¥x=20 kN·m and �x=6 ms. Fig. 3-11 compares the calculated 626 

wheel-rail normal loads and creep forces with the applications of the loading function in Eqn. (33) and a 627 

constant driving torque ¥K��	=20 kN·m. This figure shows that the functional driving torque significantly 628 

damps the undesired excitation on the creep force, whereas it has less, if any, effect on the normal load. 629 

            630 
Fig. 3-10: Functional driving torque    Fig. 3-11: Forces obtained with different torque functions 631 

3.3.4 Displacement boundary conditions  632 

Different displacement boundary conditions may be applied to the explicit FE wheel-rail interaction models 633 

according to different research objectives. When the structural dynamics are of less concern or quasi-steady-634 

state contact solutions are desired, the bottom surface of the rail foot may be fully constrained as in the 635 

models presented in [21, 22]. When the dynamic effects must be considered and captured, a more detailed 636 

modeling of the track substructure is necessary [12, 34, 35, 37, 43, 47, 50, 51]. The fastening models 637 

simplified as spring-damper pairs may be constrained in the lateral and longitudinal directions if only the 638 

vertical dynamics are of concern [51]. More complex boundary conditions are required when solid rail-pad 639 

representations of rail fastenings are used [50]. Because the ballast has less influence on the wheel-rail 640 

dynamic contact solutions, it is normally constrained in both the lateral and longitudinal directions and fixed 641 

at the foundation. 642 

When only a half wheelset is modeled, the inner end of the wheel half-axle can be constrained in the lateral 643 

direction to keep the rolling wheel from toppling over. The ends of the finite-length rail models are generally 644 

constrained in the lateral and longitudinal directions, which may cause reflective waves that influence the 645 

solutions, especially when the track models are insufficiently long. A numerical experiment conducted in [76] 646 

indicated that a FE track model with a length of 20 m is considered sufficiently long to reduce the influence 647 

of wave reflection, whereas a length of 10 m may meet engineering requirements for reproducing the 648 

measured axle box acceleration. Non-reflective boundary conditions have also been implemented in certain 649 
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commercial FE programs [59, 60], and their application on wheel-rail dynamic interactions is currently 650 

under development.  651 

3.3.5 Dynamic relaxation 652 

In the analysis of wheel-rail dynamic interactions, a certain length of rolling distance from the wheel initial 653 

position to the solution zone is necessary to damp the oscillations caused by the wheel/rail initial kinematic 654 

and potential energy from imperfect static equilibrium [22, 77]. This process is called dynamic relaxation. 655 

Because the wheel-rail rolling contact physically excites vibrations of the structures and waves in continua, 656 

the quasi-steady state may be considered to be achieved by the dynamic relaxation when the oscillations are 657 

damped out to less than 10% of the static values [12]. The wheel-rail dynamic interaction solutions obtained 658 

after the process of the dynamic relaxation can be output for post-processing.  659 

3.3.6 Time step control 660 

As mentioned in Section 2.2.3, a scale factor <� is employed to control the time step and to guarantee the 661 

stability of the explicit integration, and <� = 0.9 has been widely used in previous explicit FE wheel-rail 662 

interaction studies. Applying smaller time steps in the explicit FEM may produce better accuracy as reported 663 

in [20]. Fig. 3-12 compares the contact solutions obtained with <�=0.9 and 0.6 (used for explosive problems), 664 

where ÖC, Ö/, and Â are the amplitudes of the contact pressure, surface shear stress, and COF, respectively. 665 

The excellent consistency of the results obtained with different value of <� indicates that a scale factor of 0.9 666 

is acceptable for wheel-rail interaction analyses, and it guarantees integration stability and simultaneously 667 

decreases the solution time. 668 

  669 

Fig. 3-12: Comparison of contact stresses calculated with <�=0.9 and 0.6 670 

4 Solution analyses 671 

The previous section proposes pre-processing knowledge for the explicit FE wheel-rail dynamic interaction 672 

analysis; this section introduces post-processing approaches to converting the output of numerical programs 673 

for wheel/rail nodal forces and nodal motions into wheel-rail contact and dynamics solutions. 674 

4.1 Contact solutions 675 

The wheel-rail contact solutions of interest generally include the contact patch area, normal and shear 676 

contact stresses, and micro-slip and adhesion-slip distributions within the contact patch. These solutions can 677 

be obtained by post-processing the nodal force and nodal motion simulated by the wheel-rail dynamic 678 

interaction models. 679 

4.1.1 Contact patch area and stresses  680 

The contact patch area may be determined with surface nodal forces: a surface node is in contact if the nodal 681 

force in the direction normal to the local surface is non-zero [12, 21, 22]. Hence, the first step is to convert 682 

the output surface nodal forces in the global coordinate system into those in the local coordinate system. 683 

Because inertia force is included in the dynamic analyses, the force of a surface node outside the contact may 684 

be small but non-zero; thus, a non-zero threshold (e.g., 0.001 N) is used in practice to determine whether a 685 

node is in contact. Fig. 4-1 shows one example of the wheel and rail nodes in contact determined by this rule. 686 
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     687 

Fig. 4-1: Wheel and rail nodes in the contact patch   Fig. 4-2: Nodal forces converted into contact stresses 688 

The contact stresses, including the surface normal stress and shear stress, may be calculated with the nodal 689 

forces in the local coordinate system. For the generally used quadrilateral segments:  690 

��T = @ ��T»
4³[

�
»DE 									� = 1,2,3		�34	 

where ��T  is the contact stress vector on the Mth segment of the wheel/rail surface and the spatial 691 

components, with � = 1,2,3  representing the normal, lateral and longitudinal directions in the local 692 

coordinate system, respectively; ��T»  is the local nodal force vector, with ¼ = 1,2,3,4  representing the 693 

number of the nodes constructing segment ¥ as shown schematically in Fig. 4-2; and ³ is the dimension of 694 

the quadrilateral segment. According to Newton's third law, the contact stresses may be calculated with 695 

either the wheel nodal forces or rail nodal forces. Fig. 4-3 compares the contact stresses calculated with the 696 

wheel and rail nodal forces and indicates that the choice has negligible influence on the calculated contact 697 

stresses. 698 

 699 

Fig. 4-3: Contact stresses calculated with the wheel and rail nodal forces 700 

4.1.2 Micro-slip distribution  701 

The micro-slip refers to the tangential relative velocity between two particles in contact. As explained in 702 

Section 2.6.1, a rail surface contact node is actually in contact with the “contact point” rather than a wheel 703 

surface node; thus, interpolations are required to convert the velocities of wheel nodes into the velocities of 704 

the “contact points”. Fig. 4-4 schematically shows a length-weighted linear interpolation scheme. In Fig. 4-4 705 

(a), the red cross represents an arbitrary rail node NÞ and the four blue spots Nß�	�� = 1,2,3,4	 represent the 706 

four wheel nodes composed of the wheel surface segment in contact with the rail node NÞ. Another blue spot 707 

overlapping the red cross in Fig. 4-4 (b) denotes the interpolated “contact point” Nß on the wheel surface 708 

and in contact with rail node NÞ; and ³� 	�� = 1,2,3,4	 indicates the distances from the “contact point” Nß to 709 

the four sides of the wheel surface contact segment. 710 
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 711 

(a) Before interpolation                    (b) After interpolation 712 

Fig. 4-4: Interpolated wheel nodal coordinate/motions into rail 713 

We may obtain the interpolated velocities àá  of the “contact point” Nß  by the length-weighted linear 714 

interpolation as follows: 715 

àá = ³[³�àE + ³E³�à[ + ³[³¢à¢ + ³E³¢à��³E + ³[	�³¢ + ³�	 								�35	 

where à��� = 1,2,3,4	 represents the nodal velocities of the wheel nodes Nß�. The micro-slip ­´ may then be 716 

calculated as follows: 717 

­´ = àá − à°							�36	 
where à° are the nodal velocities of the rail node NÞ. The length-weighted linear interpolation scheme is also 718 

applicable to the calculations for the displacement, acceleration and vertical coordinate (normal to the local 719 

contact surface) of the “contact points” on the wheel. The accuracy of the length-weighted linear 720 

interpolation scheme may conveniently be estimated by comparing the wheel vertical coordinates before and 721 

after interpolation. Fig. 4-5 shows that the interpolated wheel surface formed by the “contact points” 722 

overlaps the original wheel surface, indicating that the interpolation scheme is reliable. In addition, note that 723 

the calculated wheel-rail contact patch is not flat but saddle shaped. This result confirms that FEM drops 724 

the half-space assumption and the non-flat contact patch may cause geometric spin. The geometric 725 

spin calculated with the explicit FEM is discussed in [21, 22]. 726 

 727 

Fig. 4-5: Coordinates/positions of wheel and rail nodes  728 

4.1.3 Adhesion-slip distribution  729 

The division of the adhesion and slip regions in the contact patch is an important feature of the frictional 730 

rolling contact. The slip region can be distinguished from the adhesion region either by comparing the 731 
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surface shear stress Ö/ with the traction bound Â|ÖC| or by calculating the micro-slip <C within the contact 732 

patch. A node is in a slip region if: 733 

Â|â´| − |âQ| < 0K																Ùã																					|­´| > 0º													�38	 
where 0K and 0º are the tolerances of the two approaches. A value of 0.3 percent of the maximal tangential 734 

nodal force in the contact patch is suggested for 0K [21, 26, 28], whereas a value of 0.05 m/s is suggested for 735 0º  [26]. For a robust wheel-rail dynamic interaction model, the calculated adhesion-slip distribution 736 

determined by both approaches should be consistent with each other. 737 

4.2 Structural dynamics 738 

To obtain the structural dynamic responses, which are generally the vibration acceleration and velocity, the 739 

nodes enclosed by the part of the structure of interest need to be selected. The structural vibration 740 

accelerations L� ­Q°, for example, may then be calculated by averaging the accelerations of the nodes enclosed 741 

by the structural part in the global coordinate system L� B: 742 

L� ­Q° = 14 @ L� BC
BDE 									�39	 

where 4 is the total number of nodes enclosed by the structural part. Fig. 4-6 compares the simulated and 743 

measured hammer-excited rail acceleration at different locations along the rail. The legend of each 744 

graph indicates the distance from the hammer excitation point to the response location. Each 745 

simulation result (red curves) is the average of the accelerations of the nodes in the vicinity (within 746 

about 1 cm) of the response location.  747 

 748 

Fig. 4-6: Comparison of the simulated and measured hammer-excited rail vibrations (Blue curves: 749 

measurements; Red curves: simulations) [31] 750 

5 Numerical example 751 

This section provides a numerical example of simulating wheel-rail impact at a typical IRJ (see Fig. 5-1). 752 

This numerical example demonstrates that the explicit FEM is capable of handling arbitrary contact 753 

geometries, nonlinear material properties, and dynamic effects.  754 
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 755 

Fig. 5-1: Typical IRJ in the Dutch railway network 756 

To obtain the dynamic contact solutions between a rolling wheel and the target IRJ shown in Fig. 5-1, we 757 

performed three simulations by varying the material and/or geometric parameters of one explicit FE wheel-758 

rail interaction model. Simulation 1 adopted an elastic wheel/rail material and the nominal rail geometry (Fig. 759 

3-4 (a)); simulation 2 used elastoplastic material and nominal geometries; and simulation 3 used elastoplastic 760 

material and the measured IRJ geometry (Fig. 3-4 (b)). For each simulation, the contact solutions of three 761 

consecutive output time steps are displayed in Fig. 5-2 to show the main characteristics of the wheel-IRJ 762 

dynamic interactions.  763 

 764 

(a) Simulation 1 (elastic material and nominal geometry): elliptical contact patch 765 

 766 

(b) Simulation 2 (elastoplastic material and nominal geometry): “egg-shaped” contact patch 767 

 768 

(c) Simulation 3 (elastoplastic material & measured geometry): non-steady-state contact patch 769 

Fig. 5-2: Evolution of the wheel-rail contact pressure obtained by three different simulations 770 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 

 

In Fig. 5-2 (a) and (b), excluding the discontinuous contact in the middle graphs, the wheel-rail contact 771 

solutions obtained with both elastic (simulation 1) and elastoplastic (Simulation 2) models show the same 772 

characteristics as those reported in [22, 23]. The contact patches simulated with the elastic model have 773 

elliptical shapes, whereas those with the elastoplastic model have “egg” shapes. The amplitudes of the 774 

contact pressures are located approximately in the middle of the contact patches for the elastic case but shift 775 

forward and are reduced by the plastic deformation for the elastoplastic case. The contact patch areas 776 

simulated with the nominal geometry in Fig. 5-2 (a) and (b) basically remain steady and increase to a small 777 

extent during impact, whereas simulation 3 with the measured geometry in Fig. 5-2 (c) provides much more 778 

pronounced non-steady-state contact solutions. In simulation 3, the contact patch shape, which is neither 779 

elliptical nor “egg-shaped”, and the pressure distribution vary considerably with time due to the contact 780 

geometric irregularities and wheel-rail impact. 781 

In addition, impact wave patterns were produced by the wheel-IRJ dynamic interaction simulations. One 782 

example produced by simulation 3 is shown in Fig. 5-3, which confirms that the explicit FE wheel-rail 783 

interaction analysis may take dynamic effects into account. 784 

 785 

Fig. 5-3: Impact wave pattern produced by the wheel-IRJ interaction simulation 786 

6 Conclusions and future work 787 

This paper has systematically explored the core algorithms employed in the explicit FE wheel-rail interaction 788 

analyses and theoretically demonstrated that the explicit FEM is a suitable approach for solving dynamic 789 

frictional rolling contact by fully coupling the calculation of frictional rolling contact with the calculation of 790 

high-frequency structural dynamics. An indirect validation method for dynamic contact solutions has been 791 

proposed. The reliability of the wheel-rail dynamic interaction solutions can be confirmed by separately 792 

verifying the quasi-steady-state contact solutions against Hertz contact theory and CONTACT and validating 793 

the structural dynamic responses with measurements. To promote the broad use of the method, this paper 794 

has also proposed procedures for establishing robust explicit FE wheel-rail dynamic interaction models and 795 

converting outputs into solutions of rolling contact and dynamic responses. The summarized algorithms and 796 

the proposed procedures can also be applied to the modeling of dynamic interactions occurring to tire-road, 797 

bearings and gears. 798 

The explicit FEM is considered a promising approach to explaining certain enigmas in railway research, 799 

such as squeal and corrugation, whose generation mechanisms are closely related to both the wheel-rail 800 

frictional rolling and wheel/track dynamic behavior. Future work required for these potential applications 801 

may include the following aspects. 802 

• A half wheelset model may not accurately simulate wheel-rail contact when the dynamics of 803 

the other half wheelset is not negligible. A full wheelset model considering full dynamics of 804 

wheel-rail contact has been presented in [43] to simulate wheel-turnout contact. A full wheelset 805 

model may also be employed in future studies to reliably calculate unstable wheel vibration 806 

during curving motions.  807 

• Solid rail-pad representations with proper material parameters proposed in [50] may be adopted in 808 

future studies of wheel-rail dynamic interactions to improve the accuracies of the lateral and 809 

longitudinal dynamics simulations.  810 

• Wave phenomena induced by wheel-rail dynamic interactions must be further investigated. 811 

Experimental validation of the waves simulated by the proposed explicit FE models should be 812 

conducted. 813 
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In addition, an explicit FEM solver dedicated to the analysis of wheel-rail dynamic interactions may be 814 

developed in the future. The computation cost is expected to be reduced by eliminating redundant 815 

conditional statements in the general-purposed explicit FE commercial programs, and the newly developed 816 

solver may also provide more convenience and flexibility to amendments to the algorithm. The penalty 817 

contact algorithm with nonlinear [78] or functional penalty contact stiffness, the dynamic contact algorithms 818 

developed for more sensitive and realistic tangential contact solutions, and the coupling with multi-body 819 

dynamics analyses may be implemented for future analyses of wheel-rail dynamic interactions. 820 
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