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Preface

This thesis project combines four different fields of research: plant growth modelling, crop cultivation
practices, remote (SAR) sensing, and mathematics. I had some basis in remote sensing and I enjoyed
a great education in mathematics. Furthermore, plant growth modelling is closely related to my back-
ground in modelling in general. However, the practice of crop cultivation practices was a new and
interesting subject for me. My thesis project has given me the challenging opportunity to learn about
and combine all four aspects. My supervisors, Frederike de Visser-Bleijenberg and prof. Arnold Heemink,
each had an expertise in one or two of the four subjects. They dived deeply into the part of my thesis
that coincides with their area of expertise, identifying weaknesses and points of improvement in that
aspect. Their encouragement has helped me to take each aspect of this project to the next level. At the
same time, juggling these different demands has occasionally been quite a challenge. Nevertheless, I am
quite proud of the final result.

In this thesis, I developed a model for RVI evolution during the growth season of a crop. As far as I could
tell, this model has no similar precedent in literature. I believe that this model and the corresponding
calibration methodology are the main contributions of this thesis to science. Yet, I am also quite proud
of the more practical contributions. Firstly, in the very last phase of my project, I put exceptional
effort into explaining different clusterings of parcels in terms of RVI behaviour and possible real-world
causes. This was quite challenging as this dipped mostly into the field of crop cultivation that I was least
familiar with. Secondly, I believe the code base I developed during the project is well-structured and
straightforward to use and maintain. This should make it easy for successors working on this project to
continue where I left off.

Yet none of this would have been possible without the many people that supported me during the process.
Firstly, I would like to thank Witteveen+Bos for giving me the opportunity to work on this project in
the first place. I would like to thank my supervisor from Witteveen+Bos Frederike for taking the time
to meet with me twice a week. These meetings were a good moment to look at the bigger picture,
preventing me from diving too deeply into side-tracks. In addition, she gave useful guidance on my weak
area of crop cultivation and pushed me in the right direction when I could no longer see a way forward.
I would also like to thank the colleagues from my little team at Witteveen+Bos Léon, Elke, Wesley,
Zelda, and of course Fredrike for making my time there enjoyable. Next, I would like to thank prof.
Arnold Heemink for supervising the project and his useful tips on my thesis report. I would also like to
thank my friends Rutger, Olav, Joris, Weronika, and Eva for keeping me company on many long thesis
days at the university. Rutger in particular made many days enjoyable and has been a great partner for
many in-depth discussions and brainstorms. Lastly, I would like to thank my family and my mother in
particular for providing some input on the ways of scientific research, and for reading a large part of my
thesis.
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Abstract

As a response to the dry summer of 2018, Witteveen+Bos developed a model for water demand predic-
tion to improve insight into water demands. Validation by water board ”Hunze en Aas” has revealed
the predictive power of the irrigation model to be very limited. For this thesis project, we developed a
methodology for the detection of irrigation of crop parcels based on the radar vegetation index (RVI)
derived from remote SAR images. This methodology can be used to improve the existing irrigation model.

To achieve this, we developed a novel model to describe the evolution of a vegetation index (such as RVI)
during the growth season. Unlike existing models, the model presented in this thesis includes the effect
of precipitation deficit, both as a temporary inhibitor of a vegetation index, and as a long-term influence
on the crop growth. The model is non-linear in many of its model parameters. Therefore, heuristic
calibration methods are unavoidable. We show that the standard calibration methods non-linear least
squares and differential evolution are outperformed by a hybrid of both methods that we specifically
designed for this application.

After calibrating the model to time series of 1167 potato parcels in the north-east of the Netherlands, we
investigate different ways to cluster the model parameters. We propose explanations for three important
clusterings through their RVI time series (speculative) environmental factors. Comparison with infor-
mation on irrigated parcels for the years 2018-2020 reveals a statistically significant correlation between
some of the clusters and irrigation. However, the variation in irrigation rate never exceeded a factor two.
Therefore, no accurate classifier can be built based on these clusters.

We recommend two important ways to improve the current implementation. Firstly, the baseline RVI
is consistently overestimated, resulting in mostly negative normalized RVI. Because of this, the model
cannot properly describe precipitation deficit-driven fluctuations in the RVI. These fluctuations are an
important part of system behaviour, so improving the estimation of the baseline RVI should be the first
priority for future research.

Secondly, the exact irrigation dates of a set of parcels will be very useful. Comparing these dates to the
corresponding RVI time series will make it possible to uncover features of the RVI evolution that are
indicators of irrigation. The model parameterization can then be tuned to optimize sensitivity to these
features.
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Nomenclature

Abbreviations

RVI Radar vegetation index. See section 2.4.

SAR Synthetic-aperture radar. Imaging technique used to create the remote sens-
ing image used in this thesis.

BRP Basisregistratie Gewaspercelen. See section 1.3

VV and VH Vertically transmitted Vertically received and Vertically transmitted Hori-
zontally received. The two polarisations in a Sentinel-1 SAR image.

GRD image Ground Range Detected image. The preprocessed Sentinel-1 product that
was used in this project, see section 2.1.2.

S1A and S1B Sentinel-1A and Sentinel-1B. The two satellites that acquire the SAR images
used in this project.

asc and dsc Ascending and descending orbit.

Linear (model) Model with g and pcrop linear.

Bilinear (model) Model with g linear and pcrop bilinear.

Exponential (model) Model with g linear and pcrop exponential.

Quadratic (model) Model with g quadratic and pcrop linear.

nllsq The non-linear least squares calibration algorithm.

difev The differential evolution calibration algorithm.

Q1, Q2, Q3 The three research questions of this thesis project, see section 1.6.

Symbols related to the model

Ccrop
1 days−1 Model parameter. Can be interpreted as the growth constant of the first

(and in some models only) phase.

Ccrop
2 days−1 Model parameter. Can be interpreted as the growth constant of the second

(and in some models only) phase.

Ccrop
3 mm Model parameter. Determines the slope of precipitation deficit dependent

growth inhibitor icropg (rd).

C4 - Constant defining the linear mapping g(pcrop).

Ccrop
4 - Model parameter in the exponential model. Multiplication of C4 and the

growth constant Ccrop
1 .

C5 and C6 - Constants defining respectively the quadratic and linear parts of the
quadratic mapping g(pcrop).

Ccrop
5 days−2 Model parameter in the quadratic model, defined as Ccrop

5 = C5(C
crop
1 )2.

Ccrop
6 days−2 Model parameter in the quadratic model, defined as Ccrop

6 = (C6C
crop
1 )2.

CC - Canopy cover in leaf area per unit ground area.

CCt - Canopy cover at the start of the leave senescence phase.

g(p) Mapping g : R→ R that maps crop abundance p to influence on vegetation
index vi − v0 in the absence of precipitation deficit.

icropg (rd) - Growth inhibitor as a result of precipitation deficit. icropg (rd) ∈ [0, 1]
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hcrop(rd) - Rain deficit dependent factor in [hcrop
min , 1] that reduces the estimate of vi−v0

by accounting for temporary influences such as crop water saturation.

hcrop
g (p, rd) Mapping of the crop abundance p to influence on vegetation index vi − v0

accounting for temporary influences such as crop water saturation.

hcrop
min - Model parameter. Minimum value of the rain deficit-dependent scaling factor

hcrop(rd). hcrop
min ∈ [0, 1].

pcrop(t) - Measure for vegetation abundance that can be interpreted as ”SAR-
responsivity” of the vegetation.

pcrop0 - Constant defined by the exponential growth phase in the model for plant
growth. Can be interpreted as the initial crop abundance at the start of the
growth season tcrop0 .

pcropg,0 days−1 Model parameter in the exponential model. Multiplication of the ”initial
crop abundance” pcrop0 (t) and the growth constant Ccrop

1 .

rd(t) mm The cumulative precipitation deficit (rain deficit). Defined with a 6-day
memory in this project.

rdcropmax mm Model parameter. The maximum rain deficit at which the crop experience
no hinder in growth.

sparcel(t) days−1 The predicted derivative crop abundance pcrop when rd = 0. In the full
model, sparcel(t) = Ccrop

1 pcrop(t) in the first phase and sparcel(t) = Ccrop
2 in

the second phase.

tcrop0 days Model parameter. Signifies the start of the growth season.

tparcel1 days Parcel-dependent start of the second growth phase.

tcrop2 days End of the growth season or time of harvest.

∆tparcel1 days Model parameter. Number of days between the start of the growth season
tparcel0 and the start of the second phase tparcel1 .

∆tcrop2 days Model parameter. Number of days between the start tcrop0 and the end tcrop2

of the growth season.

ti days Time of the vegetation index measurement vi (i ∈ {1, 2, .., n}).
ti,k days Times between ti−1 and ti at which there is a measurement of the rain deficit,

k ∈ {0, 1, ..., ni}. By definition, ti,ni+1 = ti and ti,−1 = ti−1.

tb1 days Time of the vegetation index measurement vb1.

v0 - Vegetation index for a given parcel in the absence of vegetation. In this
thesis, it is estimated for each orbit separately by averaging the first three
measurements.

vi - Vegetation index measurement of a parcel at time ti (i ∈ {1, 2, .., n}). In
principle, any vegetation index could be used, but the RVI is used in this
project.

vb1 days Observation before the first observation of the time series v1, i.e. the last of
the three observations used in the calculation of v0.

ζcropi - Random variable accounting for measurements uncertainties in vi.

ζ
′crop
i - Random variable accounting for uncertainties vi − v0, combining both mea-

surements uncertainties and integrated uncertainty in growth.

ξcrop(t) days−1 Random variable encompassing uncertainties in crop growth.

σcrop
ζ - Standard deviation in ζcropi .

σcrop
ξ m−2 Standard deviation in

∫ ti
ti−1

ξcrop(t)dt.

σ0
V V m−2 Backscatter of the VV polarisation.

σ0
V H m−2 Backscatter of the VH polarisation.
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Symbols related to the calibration

C - Vector of length M containing the model parameters.

C0 - Initial guess of the optimum C in the non-linear least squares algorithm.

Cj - Element j of C.

Ck - Estimation of optimal C at iteration k of the non-linear least squares algorithm.

Copt - Optimal C that minimizes the error statistic E(C).

Cboth - Collection of model parameters that are fitted by both the second step (differential
evolution) and the third step (non-linear least squares) of the hybrid calibration
method.

Cdifev - Collection of model parameters that are fitted by both the second step (differential
evolution) but not the third step (non-linear least squares) of the hybrid calibration
method.

Cnllsq - Collection of model parameters that are fitted by the third step (non-linear least
squares) but not the second step (differential evolution) of the hybrid calibration
method.

CR - The recombination constant of the differential evolution algorithm, see section 4.3.2.

E - Linear least squares error statistic of a fit.

f - (Vectorized) fit function as defined in section 3.3.

F - The mutation constant of the differential evolution algorithm, see section 4.3.2.

J(C) - N ×M Jacobian Matrix of f in C.

M - Number of model parameters.

M - Number of observations in v.

t days Vector containing the observation time of the observations in v.

t−1 days Vector containing the observation time of the previous observation.

v - Vector the observations.

v−1 - Vector containing the previous observation, i.e. v−1,i = vi−1.

∇C Nabla operator with respect to C
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1 Introduction and background

1.1 Water boards and the watervraagprognosetool

Extreme weather conditions are occurring increasingly frequently and more intensely as a result of climate
change. One of its manifestations is the increasing intensity of droughts, both in the Netherlands and
elsewhere. These droughts hamper yields from agriculture and damage fragile nature reserves, leading to
decreased biodiversity. Insight in water demands for its various applications can support educated priori-
tization of water supply and investments into infrastructure, minimizing the damage caused by droughts.

In the Netherlands, the surface water and groundwater levels are managed by 21 institutions called
water boards (”waterschappen”). They need to make decisions on investments in infrastructure and
prioritization of the various sources of water demand. To support this decision making, accurate estimates
of the water demand for its diverse applications can be a huge benefit. Following the summer of 2018,
several water boards engaged Witteveen+Bos to build a tool to predict water demand. This tool came
to be called the ”watervraagprognosetool”.

1.2 Irrigation model of the Landelijk Hydrologisch Model (LHM)

In the watervraagprognosetool, water demand is split up into several categories, which are modelled
separately. One of these categories is water demand by irrigation. The existing irrigation model estimates
future water demands as a function of the predicted precipitation deficit. This model is defined as

wdest =


c4 for rd30 ≤ b1

c2rd
2
30 + c1rd30 + c0 for b1 < rd30 ≤ b2

c5 for rd30 > b2,

(1.1)

where wdest (m3s−1) is the estimated water demand from irrigation per unit area of land, rd30 (mm)
is the cumulative precipitation deficit over the past 30 days, and c0 (m3s−1), c1 (m3mm−1s−1), c2
(m3mm−2s−1), c4 (m3mm−1s−1), c5 (m3mm−1s−1), b1 (mm) and b2 (mm) (b1 < b2) are model parame-
ters calibrated using data from the Landelijk Hydrologisch Model [1].

The accessibility to water supplies suitable for irrigation varies between areas, and so does the suscep-
tibility to dehydration during dry periods. Therefore, the area of interest was divided into 23 regions
according to their hydrological character. The model parameters have been estimated for each region
separately. This division is shown in figure 1. As not all water boards participated, only part of the
Netherlands is included in the area of interest.

The Landelijk Hydrologisch Model contains simulation-derived data from precipitation deficits and irri-
gation from the 101 year period between 1911 and 2011 [2]. This data was used to fit the parameters
of the assumed model of equation (1.1). To this end, land use was divided into 10 categories. These
categories can be roughly understood as different crop types. The model was calibrated separately for
each of the 10 types of land use. Together with the 23 distinct regions, the land is split up into 230
distinct groups. The model is calibrated to each of these groups separately. Many of these calibrations
were later improved upon with data from the water boards and Rijkswaterstaat [2].

The model of equation (1.1) does not take into account that not all parcels are irrigated. In reality,
many parcels are not irrigated, for various (mostly economical) reasons. The Landelijk Hydrologisch
Model provides an estimation of the percentage of area being irrigated for each of the 230 region and
land use combinations [2]. The watervraagprognosetool combines this with recent land use data from the
”Basisregistratie Gewaspercelen” (BRP) to obtain a present-day estimation for irrigated area [2]. The
BRP is a source of data that will be described in the next section.
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Figure 1: Area of interest, split up into 23 regions according to their hydrological character.

1.3 Basisregistratie Gewaspercelen (BRP)

The ”Basisregistratie Gewaspercelen” (BRP) is a governement-managed data set containing information
on the shape, location and usage of agricultural parcels in the Netherlands. Every crop field owner is
required to record each parcel into the BRP, including, among other things, the crop being cultivated.
Every year, on 15 May, a new data set is produced. As a result, a BRP data set is freely available for
every year since 2009 [3].

In the current watervraagprognosetool, the BRP is only used for calculating the area of land utilized by
different land use types in each region. During this project, the role of the BRP will become much more
important. We will attempt to measure irrigation levels for each parcel separately using remote sensing
images. Hence, the location and shape information from the BRP will be very important. In addition,
different crops are expected to have a different backscatter behaviour, so the crop type recorded in the
BRP will be required to categorize the parcels.

For the year 2019, there are a total of 259883 parcels with a centroid within the area of interest show in
figure 1. Therefore, efficiency will be an important focus in the algorithms used in this project. For this
thesis, we limit the parcels to only the two most common (other than grass) crop types: potatoes and
corn. The frequency of these crop types is shown in table 1.

Table 1: The number of parcels and total area in the 2019 Basisregistratie Gewaspercelen (BRP) for the
parcels within the area of interest.

crop type # of parcels total area (km2)
All crops 259883 7234.3
Potatoes 19727 809.5
Corn 18507 568.1
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1.4 Predictive power of the irrigation model

The watervraagprognosetool makes daily updates of its water demand estimates. Past precipitation
deficits are obtained from precipitation and evaporation data imported from the KNMI. Weather fore-
casts from the ECMWF (European Centre for Medium-Range Weather Forecasts) are used to obtain
estimations of the precipitation deficit 46 days into the future. Combining these, water demand by irri-
gation is estimated for both the past and 46 days into the future. [2]

The water board Hunze en Aas has collected irrigation data from field measurements and questionnaires
and compared these with the results of the watervraagprognosetool. Unfortunately, this assessment has
revealed that the predictive power of the irrigation model is rather low. Hence, Witteveen+Bos has been
actively searching for methods to improve the tool. This thesis is a first step in that direction.

The lack of predictive power of the current irrigation model is likely due to limitations of the irrigation
data in the Landelijk Hydrologisch Model (LHM). The LHM estimates irrigation through hydrological
simulations [4]. These simulations make use of key figures (”kengetallen”) for irrigation that originate
from an investigation by the Landbouw Economisch Instituut (LEI) [5]. These figures were based on
actual irrigated area of the years 1995, 1997 and 1999, and can therefore be considered rather outdated.
Even though the simulations of the LHM do take into account changing circumstances such as precipita-
tion and greater availability of irrigation equipment [4], a certain margin for error is still to be expected.
In addition, the LEI calculated key figures to estimate relative contributions of different crops based on
a data set from 1997 that involved only 600 out of 90000 agricultural companies of significant size [5].
As such, the LEI warns that these key figures have very limited reliability [5].

Therefore, it is unlikely that significant improvements to the predictive power can be made using only
the current sources of information. Even though more recent updates of the irrigation data produced
by the LEI exists [6], the data only contains information on total irrigated area and water usage on the
municipality scale over an entire growth season, and no distinction between crops is made. Therefore,
utilizing this data in the watervraagprognosetool would require hydrological simulations similar to the
ones performed in the LHM. Even then, it is quite uncertain this would improve predictive power, mostly
due to the low spatial and temporal resolution of the data.

Instead, to improve upon the current methodology, it was proposed to integrate estimates of irrigation
levels from remote sensing images. Irrigation behaviour can be assumed to have some degree of temporal
correlation; if a field is irrigated at some point in time, we can assume it will continue to be irrigated as
long as the rain deficit does not decrease. Hence, it should be possible to improve the predictive power
of the current model by continuously assimilating remotely sensed irrigation levels.

1.5 Crop monitoring with remote sensing

Remote sensing has increasingly been applied to monitor crop development on large scales [7,8]. Optical
images show promising correlations for this purpose. However, they are hindered by atmospheric effects,
most notably clouds [9]. On the other hand, synthetic-aperture radar (SAR) measurements experience
very little hinder from atmospheric effects, which allows one to obtain more consistent time series [10].
As a result, the body of research on harnessing remote SAR imagery for this purpose is quickly grow-
ing [11,12].

Various papers have explored the link between SAR backscatter measurements and water content or
water stress in plants. Han et al. [13] and El-Shirbeny and Abutaleb [10] obtained high correlation when
fitting SAR backscatter measurement to crop water content measurements and Crop Water Stress Index
respectively. Furthermore, a SAR image consists of multiple polarisation channels that can be combined
to obtain vegetation indices that have been used to monitor, among others, biomass [14, 15] and crop
growth [16,17]. These results clearly show the potential of using SAR backscatter to estimate crop water
content and crop water stress.
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1.6 Research questions

This thesis investigates the use of remote SAR imagery to estimate irrigation levels in the Netherlands.
Because of the requirement of practical application, freely available Sentinel-1 SAR images have been
used. Thus, the main research question is:

Q. How can Sentinel-1 SAR images be used to estimate irrigation levels of parcels in the Netherlands?

This thesis focuses on using a time series of SAR images to estimate irrigation. Therefore, the main
research question can be divided into three sub-questions:

Q1. How can the evolution of Sentinel-1 SAR measurements during the growth phase of a crop be
modelled in the presence of rain deficits?

Q2. How can the model be efficiently and reliably calibrated to a large number of parcels?

Q3. How do the values of the calibrated model parameters correlate with irrigation?

1.7 Reader’s guide

This thesis is structured as follows. In section 2, we give a description of the Sentinel-1 SAR data
used for this project, and how this data is preprocessed to obtain a time series that can be used to
calibrate the model. With this basis, we answer the first two research questions in sections 3 and 4.
In section 3, we develop a novel methodology to model SAR measurements as a function of crop type,
time and rain deficit. This is achieved by combining existing research on plant growth modelling and
remote SAR-based crop monitoring. In section 4, we propose three methods to calibrate the model: the
standard methods non-linear least squares and differential evolution, and a hybrid of both methods that
we customly designed for this problem.

Subsequently, two sections are dedicated to the optimization and validation of the calibration method
and the model. In section 5, we compare calibration methods and optimize the performance of the hybrid
method. In section 6, we investigate the importance of each model feature in the modelling of system
behaviour. Finally, we answer the last research question in section 7, where we analyze several of the
most informative clusters in the model parameters.

Next, in section 8, the system behaviour, methodology and results are discussed in more depth. In section
8.1, we propose explanations for some of the unexpected behaviour of the SAR measurements during
the growth season. In addition, we make some suggestions on how the understanding of the relation
between reality and measurements can be improved in future research. The subsequent two sections give
an overview of limitations and possible room for improvement for the calibration (section 8.2) and the
modelling (section 8.3). In the final section of the discussion, section 8.4, we discuss the clustering results
and give some suggestions on how this research can be used to improve the watervraagprognosetool. The
main conclusions are then summarized in chapter 9.
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2 Generating radar vegetation index (RVI) time se-

ries using Sentinel-1 SAR images

At the root of this project lie the Sentinel-1 SAR images. Remote sensing images are a powerful method to
gain access to enormous amounts of data. However, they are inherently noisy (speckle, see section 2.1.1)
and prone to biases due to, among others, sidelobes and topographical variations in the terrain. Therefore,
they should be treated with care. In this section, we will explain SAR imagery and how a time series of
the radar vegetation index can be derived from SAR images. In addition, we will describe the validation
data and use that to show that irrigation detection using a single image is infeasible.

2.1 Raw SAR data

2.1.1 SAR imaging technology

A satellite making synthetic-aperture radar (SAR) measurements sends out radio waves and measures
the amplitude (intensity) and phase of the returning signal. It makes these measurements in large swaths,
measuring along an axis parallel to the ground, perpendicular to the satellite’s flight path. This mea-
surement direction is called the ground range, or range for short, see figure 2. The direction of the flight
path, and therefore the direction of sequential swaths, is called azimuth.

SAR Measurements are split into up to four parts: VV, VH, HV and HH. These are the result of the
different polarisations of a radar wave. VH stands for Vertically transmitted, Horizontally received, and
similarly for the other three. The strength of the signal in one of the polarisation channels of an image
channel depends on the surface type being observed. The Sentinel-1 images that will be used in this
project only contain the VV and VH channels. VV is most sensitive to rough surfaces, whereas VH is
most sensitive to volume scatters, such as the canopies of trees [18]. This suits this project well, as we
want to measure the abundance of greenery against a rough-surface background.

In our application, we are only interested in the amplitude and not the phase, as that represents how
well a certain location reflects the radio wave. The reflective properties of a plant-filled area depend on
the water content in the plants [19]. Hence, in a dry period, it should be possible to distinguish crops
that are regularly irrigated from crops that are not.

One of the challenges in working with SAR data, is that the amplitudes are inherently subjected to a
noise-like effect called speckle. Speckle is the result of constructive and destructive interference from
multiple distributed scatters within a resolution cell [20]. Because of its importance, several steps in the
preprocessing of SAR imagery aim to reduce the speckle noise, as described in sections 2.1.2 and 2.2.6.
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Figure 2: Schematic of satellite observation direction and corresponding range and azimuth coordinate
system.

2.1.2 Sentinel-1 GRD images

For this project, European Space Agency’s Sentinel-1 data was used, mostly because it is freely avail-
able. An additional advantage of Sentinel-1 imagery is their high revisit time. There are two separate
Sentinel-1 satellites, Sentinel-1A (S1A) and Sentinel-1B (S1B). Each satellite revisits any point on the
equator twice every 12 days, once in an ascending orbit (asc) and once in a descending orbit (dsc).
Combined, they form 4 different orbits, one for each direction per satellite. Hence, a single location
in the Netherlands is covered by either 4 or 8 images every 12 days, depending on whether the point
happens to be positioned in an overlapping area of two different parts of the orbit [21]. Figure 3 shows
the coverage of the 12 different stacks that cover part of the Northern Netherlands.

A downside of Sentinel-1 imagery is that their spatial resolution is somewhat low. Senintel-1 has a spatial
resolution of 2.7 m to 3.5 m (range, depends on looking angle) by 22 m (azimuth) [21] compared to, for
instance, a 1 m resolution for the paid images from TerraSAR-X [22]. An additional downside of lower
spatial resolution is that the interference from speckle becomes more dominant, as speckle scales with
resolution cell size.

The European Space Agency offers several different kinds of Sentinel-1 products, all derived from the
same raw image. For this project, Ground Range Detected (GRD) images were used. GRD data is
derived from the amplitude of the raw image (the phase is discarded), which suits our application well.
Two preprocessing steps have been performed on the raw images to generate the GRD images: multi-
looking and projection to ground range using an Earth ellipsoid model [21]. Projection to ground range is
used to estimate the geolocation of the satellite image, and will be described in more detail in section 2.2.5.

Multilooking is a relatively simple operation. It downsamples the image by averaging adjacent pixels
to reduce the speckle noise [23]. In GRD images, multilooking is also used to create an approximately
square pixel spacing. After multilooking, the pixel spacing is 10 m by 10 m, whereas the spatial resolu-
tion is 20.4 m by 22.5 m (range by azimuth; note that multilooking reduces spatial resolution) [21]. The
multilooking is anisotropic: 5 looks are taken in range (i.e. blocks of 5 pixels are averaged), whereas only
1 look is taken in azimuth.
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(a) Ascending images (b) Descending images

Figure 3: Coverage of the Sentinel-1 stack of the area of interest (Northern Netherlands). Note that
each rectangle consists of two adjacent images, for a total of twelve separate images, six ascending and

six descending.

2.2 SAR image preprocessing

To improve the quality of the data, the SAR images will be subjected to several preprocessing steps.
The preprocessing procedures used in literature vary. Filipponi (2019) made an overview of common
preprocessing steps for GRD data [24]. These steps mostly overlap with those (occasionally) used by
literature on crop monitoring. Each of these steps will be explained in more detail in the subsections
below. They are: orbit calibration [13,25], thermal noise removal [13,25], calibration towards β0, σ0, γ0
or the DN (radiometric calibration) [10, 13, 25, 26], speckle noise removal [13, 26] (explicitly skipped by
Kaplan et al. [25] ”to retain spatial resolution”), and geometric correction [13,25,27]. The specific type
of geometric correction was specified only by Kaplan et al. [25] (Range Doppler Terrain Correction).
Lastly, the only step suggested by Filipponi but not reflected in literature is border noise removal.

In this project, we will apply orbit calibration, thermal noise removal, border noise removal, calibration
towards σ0, and geometric correction. Speckle noise removal will be skipped. In the subsections below,
every preprocessing step is described, along with an explanation why we chose (not) to use it. All
preprocessing steps will be applied using version 8.0.0 of the SNAP toolbox of the European Space
Agency (via the python package snappy).

2.2.1 Orbit calibration

Remote sensing images usually have a corresponding file containing their orbit state vector information.
This is used to estimate the incidence angle and geolocation of the measurements. However, the orbit
file initially included in a Sentinel-1 product is not very accurate. A few days to weeks after the product
has been made available, a more precise orbit file is made available. In the orbit calibration step, these
improved orbit files are downloaded so that they can be used in subsequent processing steps [23].

2.2.2 Border noise removal

During some of the initial processing performed to generate the GRD product, ”no-value” artefacts can
be produced near the edges of the image, especially in the range direction. Pixels in these artefacts are
filled with (near) zero values instead of a ”no-value” (like null) [23]. Our Area of interest is so large that
there will inevitably be some polygons near the border of many images. Hence, it is important to mask
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the erroneous pixels to avoid the zeros from affecting our results. The border noise removal preprocessing
step implements the algorithm designed in [28] which does exactly this.

2.2.3 Thermal noise removal

The measurements contain a constant additive noise from two sources: thermal noise on the sensor itself
and standard emission from the surface of the earth. The additive noise gives a positive bias to the
signal. That is to say, measured values will on average be higher than the noiseless signal. Therefore, a
correction needs to be performed to remove the bias from the measurements. [29]

The magnitude of the noise becomes range and azimuth dependent during corrections for the variation
in instrument gain. Hence, the noise in the final product is both range and azimuth dependent. The
magnitude of the noise over the image can be modeled and validated with images over regions with
very low backscatter such as oceans. The European Space Agency provides such noise predictions with
each product. These values are used in the Thermal Noise Removal preprocessing step to subtract the
expected noise field from the image. [29]

2.2.4 Radiometric calibration

The raw GRD data comes in a 16-bit data representation called ”Digital Numbers” (DN). The DN is a
scaling of the original measurements that was applied to make optimal use of the 16-bit data represen-
tation [30]. The radiometric calibration step reverts this scaling and optionally applies a new scaling to
obtain one of three products: β0 (beta-nought), σ0 (sigma-nought) or γ0 (gamma-nought) [23].

β0 is the product if no new scaling is applied [30], and is therefore a direct measurement of the radar
brightness. It can be useful if terrain effects are handled separately (for example with the SNAP terrain
flattening operator), which is usually the better approach when there is a lot of topography in the region
of interest [23].

σ0 is a correction on β0 given by σ0 = β0 sin(θx,y), where θx,y is the local incidence angle [30]. The larger
the incidence angle, the larger the projection of a SAR beam onto the earths surface, resulting in a lower
illumination per square meter. Transformation to σ0 appropriately scales the β0 image to account for
the illumination area.

γ0 is a correction on β0 given by γ0 = β0 tan(θx,y). This scales with the distance travelled by the beam
through some layer above the earth. Therefore, γ0 is most suitable for volume scatters (scatterers that
scatter the signal as the beam travels through it), such as the dense foliage in a rainforest [30].

There is no great foliage to be expected on farmland, so γ0 is not very suitable for this project. Further-
more, we do not separately correct for terrain effects as the area of interest (the Netherlands) does not
have a lot of topography. Therefore, σ0 is the most appropriate calibration.

2.2.5 Geometric correction

Initially, SAR measurements are projected on the ellipsoid approximation of the earth’s surface. This
means that location estimation will be distorted when there are topographical variations in the ter-
rain [23], see figure 4. This distortion can be corrected by using terrain height information from a digital
elevation model.

Over land, the most accurate method for geometric correction is the Range Doppler Terrain Correction
developed by Small and Schubert [31]. This algorithm works as follows. Points in the digital elevation
model are selected within a region of interest (possibly resampling them to an appropriate density). For
each point, the corresponding azimuth time and slant range are calculated using information on the orbit.
The azimuth time and slant range are mapped to pixel coordinates (Ia, Ir) within the image. Finally, a
new image is created by resampling values in the image to the derived points (Ia, Ir).

8



Figure 4: Schematic of distortion to geolocation caused by topographical variations. During ellipsoid
projection, point B will be estimated at B’ instead of B”. Taken from [23]

2.2.6 Speckle filtering

SAR images inherently posses an approximately multiplicative noise called speckle. Speckle is caused by
interference from separate scatterers within an observation cell. These scatterers can add either destruc-
tively or constructively, leading to the dark and light spotted pattern in SAR images [32].

Speckle filtering is a preprocessing step that aims to reduce the speckle by means of one of four filters.
The most commonly applied are the boxcar filter and refined Lee filter [23]. The boxcar filter is especially
useful for homogeneous regions, but it blurs sharp edges and point scatterers [23]. On the other hand,
the refined Lee filter uses an adaptive, non-square window to preserve edges in the image. Hence, this
filter is most practical when the image is used for pattern or object detection [33].

In this project, the location of parcel edges is a given (see section 1.3). In addition, only the average
vegetation density over a parcel is of interest. This averaging step compensates for speckle, so there is
no need to introduce blur or bias by applying a speckle filter in an earlier step.

2.3 Selecting image pixels within a parcel

In order to fit the evolution of SAR measurements over a parcel to a model, the set of images during the
growth season needs to be reduced to a single value per parcel per image. In section 2.3.1, we will develop
our own variation of a ray tracing algorithm, to efficiently select pixels within a polygon from an image.
In section 2.3.2, we will validate the ray tracing algorithm, as well as the geolocalization estimated by
the geometric correction preprocessing step (section 2.2.5).

2.3.1 Raster ray tracing algorithm

Existing Python packages for selecting points contained in a polygon, such as
matplotlib.path.mplPath.Path.contains points and shapely.geometry.Polygon.contains, seemed inadequate
as they make no use of the raster format of the SAR images. These methods use a ray tracing algorithm,
which loops over all edges for each point in the image. Therefore, they are at least O(Pi)O(Ep), where
Pi is the number of points in the image, and Ep is the number of edges in the polygon. We can crop the
image to around the polygon first, so realistically, this will reduce to O(xp)O(yp)O(Ep), where xp and
yp are the x and y dimension of the polygon.

Making use of the raster format of SAR images, we developed our own variation to the ray tracing
algorithm that reduces this to O(xp)(O(Ep) +O(yp)). This goes as follows. First, the polygons are
transformed into the row, column coordinates of the raster image. Then the pseudocode in algorithm
1 finds all integer points within the polygon. Note that in this pseudocode, some edge cases were left
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out for brevity, such as vertical edges (x1 = x2 so roc = ∞) and a vertex with an integer x-coordinate
(which could count for 0 or 1 crossings).

Algorithm 1 Raster ray tracing algorithm

for edge in edges do
x1, x2, y1, y2 ← edge.vertices
roc ← (y2 - y1) / (x2 - x1)
for integer x between x1, x2 do

y ← roc * (x - x1) + y1
edge crossings[x].insert(y)

end for
end for
for x, crossings in edge crossings do

crossings.sort()
i ← 0
while i < length(crossings) do

for integer y between crossings[i], crossings[i+1] do
interior points.insert([x, y])

end for
i ← i + 2

end while
end for

2.3.2 Validating geolocation and pixel selection

The validity of the geolocation of SAR images calculated by the geometric correction preprocessing step
(section 2.2.5) and the ray tracing algorithm (section 2.3.1) is paramount. Hence, they need proper
validation. This is relatively straightforward: select a parcel that is somewhat visible in the satellite
image, and use the ray tracing algorithm on the polygon of that parcel. Plot the selected pixels and
compare this to validate that (roughly) the correct pixels were selected. The result is shown in figure 5.

Recognizing the parcel in figure 5b, it is clear that the pixel selection in generated by the ray-tracing
algorithm in figure 5a is near ideal. Hence, we can conclude that the ray-tracing algorithm works as
expected, and that the geolocation generated by the geometric correction is close to perfect. In contrast,
the positioning projected by ArcGis Pro [34] is off by about 20 pixels, or 200 meters (resolution 10x10
meters), see figure 5c. This can be explained by the absence of the orbit calibration and geometric
correction steps in the raw GRD image (see section 2.1.2) that was used to generate this figure. In
addition, ArcGis Pro itself might not be able to make perfect use of the Ground Control points that are
used to define the georeferencing in the raw GRD image.
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Figure 5: (a) Pixels selected by the ray tracing algorithm after geometric correction and (b) the same
plot in the context of the surrounding pixels. The polygon and the raw GRD image as displayed in
ArcGIS Pro [34] is shown in (c). From the shape visible in the SAR image, we can tell that the

geolocation determined by the python script is very close to perfect, even though ArcGis Pro is off by
around 20 pixels.

2.4 Radar vegetation index (RVI)

There are many different combinations of the polarisation channels of a SAR image that give some
measure of the ”abundance” of foliage [12]. Researchers have investigated the potential of backscat-
ter ratio [14, 17], radar vegetation index (RVI) [12, 35] and more complicated constructions such as the
dual-pol radar vegetation index (DpRVI) [36]. The RVI is particularly well-established [37], and has
the advantage that (unlike e.g. the optical NDVI) it increases linearly with crop growth throughout the
entirety of the growth phase [38]. This is useful, because a natural decay in growth can be difficult to
distinguish from influence of precipitation deficits.

It would be interesting to compare the performance of different vegetation indices for our application.
However, in this thesis, there are already plenty of dimensions for optimization, as we will see in the
next two sections on modelling and calibration. Therefore, we will limit ourselves to the RVI. Note that
though we will only use the RVI in our data analysis, the modelling and calibration methodology we
develop in later sections is generic and should work for any vegetation index.
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The RVI is defined for the VH and VV polarisations as [39,40]

RVI =
4σ0

V H

σ0
V V + σ0

V H

, (2.1)

where σ0
V H (m−2) and σ0

V V (m−2) are the backscatter for VH and VV polarisation respectively. Note
that RVI is unitless. In this project, the RVI will be calculated pixel-wise and subsequently averaged
over each parcel.

2.5 Validation data

The water board Hunze en Aas has kindly provided validation data for this project. For a region of the
Netherlands, outlined in the left of figure 6, they provided shapefiles for the dry summers of 2018, 2019
and 2020 describing all areas that were irrigated at least once during that summer. This is depicted
in the right of figure 6. There are a decent set of parcels falling both within and outside the irrigated
regions (as defined by the location of their centroid), as shown in table 2.

Note that, though useful, this validation data is fairly limited as an ”irrigated” parcel could have been
irrigated only once, or every few days throughout the summer. We cannot expect to distinguish a time
series of a parcel that has been irrigated only once from one that has not been irrigated at all. In fact,
each of the dry years had a period of irrigation prohibition where most of the irrigated parcels probably
received limited irrigation. These were defined as follows:

• 16-07-2018 up to and including 12-08-2018: irrigation only allowed at night from 19:00 until 7:00

• 30 and 31 July 2019: no irrigation allowed

• 07-08-2020 up to and including 12-08-2020: irrigation only allowed at night from 19:00 until 7:00.

These prohibitions might cause anomalies in the data that confuses our models. For this reason, we will
be using data from 2019, which only had a very short irrigation prohibition, to optimize and validate
our calibration procedure and model parameterization (see sections 5 and 6). On the other hand, the
prohibition periods could provide a source of information if the irrigation prohibition periods turn out
to be identifiable in the remote sensing data. However, we will not go investigate that in this thesis.

Table 2: The number of parcels and total area in the 2019 Basisregistratie Gewaspercelen (BRP) for the
parcels within the validation region.

crop type # irrigated parcels irrigated area (km2) # unirrigated parcels unirrigated area (km2)
All crops 1033 65.71 2922 140.83
Potatoes 349 25.62 818 47.54
Corn 66 4.07 208 11.08
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Figure 6: Left: location of the validation region provided by Hunze en Aas. Right: the irrigated areas
for the summer of 2019 along with the parcels according to the BRP. Note that we only have

information on irrigation about parcels inside the validation region.

2.6 Single image irrigation detection

Ideally, a classifier would be able to distinguish irrigated from unirrigated parcels within a single image.
Using multiple images will almost inevitably cause a delay in irrigation detection. One might expect
a single-image classifier to feasibly achieve decent performance in extremely dry periods, as irrigated
parcels should have a far greater crop abundance. We can very simply verify this for the validation data
(see section 2.5) by plotting the average and standard deviation of the RVI (radar vegetation index) over
irrigated and unirrigated parcels respectively. This is shown for potato parcels in the dry months of July
and August 2018, 2019 and 2020 in figure 7.

Noteworthy is that the irrigated parcels of 2018 seem to consistently surpass the unirrigated parcels
from around half July onwards. However, even then, the difference between average RVI of irrigated and
unirrigated parcels is only a fraction of the standard deviation. This is even more pronounced in the early
images of 2018 and the images of the other years. Clearly, it will be impossible to create a classifier that
is capable of reproducing the validation data reasonably well based on only this information. Therefore,
in the remainder of this thesis, we will develop a methodology to classify parcels based on a time series
of SAR images.
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Figure 7: Average (dots) and standard deviation (bars) of the radar vegetation index (RVI) over parcels
in the validation region for the dry months of July and August of the years 2018, 2019 and 2020. Every

dot represents a single image. Note that the average RVI over irrigated parcels of 2018 seems to
consistently surpass that of their counterparts for the latter part of 2018. Yet, the difference between the

average RVI of irrigated and unirrigated parcels is still insignificant compared to their standard
deviation.

2.7 Generating RVI time series

We have built a processing chain that downloads Sentinel-1 GRD images, preprocesses them, selects the
pixels contained in each polygon and calculates the average RVI. Finally, these values are written to a
database to await further analysis. To determine which part of the year is relevant for the project, we
will look at the typical growth season of potatoes and corn.

In the Netherlands, most potatoes are sown in April and harvested in September or October [41]. Sim-
ilarly, corn is usually sown near the end of April and has to be harvested (by law) before the first of
October [42]. To avoid having to take into account the abrupt disappearance of the signal after the
harvest, we will end our data analysis at the first of September. Hence, the time series we will use to
fit the models will start at the beginning of April and end at the first of September. In addition, a
one-month buffer of images before the start of the growth season will be used to generate a baseline
measurement (more details in section 3.2).

Therefore, with the processing chain described above, all images over the Netherlands for the years 2018-
2021 between March 1 and September 1 were processed. This yielded 4 time series (one per year) for
each parcel, where each time series consists of a single value for each image covering the relevant parcel.
We will develop a model to describe these time series in the next section. An example of a time series is
shown in figure 8.
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Each time series consists of images from four different orbits. In figure 8, the time series of each orbit
is plotted separately. Notice that there are clear differences between the orbits. For instance, the S1A
and S1B ascending orbits (blue and green lines) are fairly consistently above the other two. A large part
of the differences between orbits is the result of difference incidence angles. The projection to ground
range and geometric correction steps of the preprocessing (sections 2.1.2 and 2.2.5) apply a correction
for incidence angle, but these are clearly not perfect. As the time series of the four orbits are clearly
distinct, they will cause an important distortion if not treated properly. In the next section, we will
develop a methodology that allows us to model the four orbits as a single time series.

Figure 8: Example of a time series of the RVI of a single parcel during the year 2019. The four orbits
are plotted separately.
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3 Mathematical modelling of vegetation indices dur-

ing the growth phase

In this section, we will develop a model that characterizes the behaviour of SAR-derived vegetation
indices as a function of rain deficits and moment in the growth phase. As far as we can tell, there is no
precedent in literature for a model that describes the behaviour of SAR-derived vegetation indices as a
function of rain deficits and growth phase. Hence, we will construct a novel model by combining and
expanding upon existing research in related fields. The hypothesis is that the calibration of this model to
measurements over unirrigated and (regularly) irrigated parcels will yield distinct clusters in the model
parameters. A classifier can then be built based on these clusters.

The derivation of the model consist of two parts. Firstly, in section 3.1, a model for plant growth will
be derived based on existing plant growth models from literature. Secondly, in section 3.2, a model to
map a state of plant growth to an expected vegetation index will be proposed. Finally, we will formulate
several parameterizations of the model with varying degrees of complexity in section 3.3. All parameter
units will be left out for brevity, but they can be found in the nomenclature.

3.1 Plant growth model

A large volume of research has shown correlation between SAR-derived vegetation indices and multiple
vegetation characteristics like biomass [15, 43] vegetation water content [16, 36, 37] and canopy cover or
leaf area index [37]. Hence, the growth model described in this section is not for any of these vege-
tation characteristics in particular, but rather an unspecified combination of all that one can interpret
as the ”SAR-responsitivity” of the vegetation. This will be labeled as time-dependent parameter pcrop(t).

Plant growth models that assume ideal circumstances generally consist of two phases. The first phase is
an exponential phase which can be described as [44,45]

pcrop(t)
∣∣
rd=0

= pcrop0 eC
crop
1 (t−tparcel

0 ), (3.1)

where tparcel0 is the parcel-dependent start of the growth season, and pcrop0 and Ccrop
1 are crop-dependent

constants. rd is the rain deficit, so rd = 0 (or rd ≤ 0) signifies ideal circumstances in terms of precipita-
tion. This model will be developed for any definition of the rain deficit. However, in this thesis, we will
be using the cumulative rain deficit with a 6-day memory. This was visually estimated from RVI time
series like figure 8 and visualisations of the different length rain deficits.

The second phase varies between model types. Biomass can be modelled with linear growth after the
exponential phase [44]. On the other hand, the canopy cover CC(t) enters an exponentially decreasing
phase due to leaf senescence [45]. The latter can be described by [45]

CC(t)
∣∣
rd=0

= CCt1

(
1− 0.05

(
eC(t−t1) − 1

))
, (3.2)

where CCt1 is the canopy cover at the start of the senescence phase t1, and C is some constant. However,
the canopy cover is only one contributor to pcrop, and equation (3.2) can be reasonably approximated
as linear for C(t− t1) ∼ 1. Therefore, we will use a linear approximation to describe the second phase.
Thence, an idealized expression for pcrop is given by

pcrop(t)
∣∣
rd=0

=

{
pcrop0 eC

crop
1 (t−tparcel

0 ) for tparcel0 ≤ t ≤ tparcel0 +∆tcrop1

pcrop0 eC
crop
1 ∆tcrop1 + Ccrop

2 (t− tparcel0 −∆tcrop1 ) for tparcel0 +∆tcrop1 ≤ t ≤ tparcel0 +∆tcrop2 ,

(3.3)

where tparcel0 is the start and tparcel0 +∆tcrop2 (harvest) is the end of the growth season, tparcel0 +∆tcrop1

is the start of the linear phase, and pcrop0 , Ccrop
1 and Ccrop

2 are constants. Here and later, any constants,
functions or distributions of random variables marked ”crop” are assumed to be crop-dependent and
parcel-independent. Similarly, the marking ”parcel” indicates the parameter is assumed to vary per
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parcel. To derive a more accurate description of pcrop that includes adverse circumstances (which will be
limited to water deficits in this case), we will first write the above as a differential equation. Including
a random variable ξcrop(t) to encompass uncertainties in crop growth, we obtain

dpcrop

dt

∣∣∣
rd=0

=

{
Ccrop

1 pcrop(t) + ξcrop(t) for tparcel0 ≤ t ≤ tparcel0 +∆tcrop1

Ccrop
2 + ξcrop(t) for tparcel0 +∆tcrop1 < t ≤ tparcel0 +∆tcrop2 .

(3.4)

The relationship between crop growth and water supply has mostly been explored with a focus on yield.
The Food and Agriculture Organization of the United Nations (FAO) demonstrated that yield influence
of water deficits is growth phase dependent [46]. They differentiated five growth phases, establishment,
vegetative, flowering, yield formation and ripening. The yield is usually a fruit-like part of the plant,
which makes the phases related to fruit formation relatively important. In our project, mostly biomass
and canopy formation are relevant, and hence, this phase distinction does not make much sense. There-
fore, we will use the commonly applied [46] simplification that water deficit has a linear influence on the
differential equation of pcrop. Furthermore, we assume that water deficit does not influence the moment
of transition to the linear phase nor the distribution of ξcrop(t). This results in

dpcrop

dt
=

{
icropg (rd(t))Ccrop

1 pcrop(t) + ξcrop(t) for tparcel0 ≤ t ≤ tparcel0 +∆tcrop1

icropg (rd(t))Ccrop
2 + ξcrop(t) for tparcel0 +∆tcrop1 < t ≤ tparcel0 +∆tcrop2 ,

pcrop(0) = pcrop0

(3.5)

where growth inhibitor icropg : R→ [0, 1] is given by

icropg (rd(t)) =


1 for rd(t) ≤ rdcropmax

1− rd(t)−rdcrop
max

Ccrop
3

for rdcropmax < rd(t) < rdcropmax + Ccrop
3

0 for rd(t) ≥ rdcropmax + Ccrop
3 .

(3.6)

Here, rdcropmax is the maximum rain deficit at which plant growth is uninhibited and Ccrop
3 is a crop-

dependent constant.

3.2 Mapping growth stage to vegetation index

In the absence of irrigation, a vegetation index measurement vi at time ti (i ∈ {1, 2, .., N}) can be
modeled as

vi =


v0 for ti ≤ tparcel0

v0 + hcrop
g (pcrop(ti), rd(ti)) + ζcropi for tparcel0 < ti ≤ tparcel0 +∆tcrop2

v0 for ti > tparcel0 +∆tcrop2 ,

(3.7)

where v0 is the vegetation index before the start of the growth season tparcel0 and after the end tparcel0 +
∆tcrop2 ; pcrop(ti) describes the plant growth as per equation (3.5); hcrop

g (p, rd) : R2 → R maps the growth
stage p to the expected influence on vegetation index vi − v0, accounting for temporary influences such
as crop water saturation; and ζcropi is a random variable encompassing measurement uncertainties. In
the rest of this section, the cases before and after the growth season will be left out to ease notation.

Under the assumption that crop-dependent differences in SAR response to crop growth can be captured
within the crop abundance pcrop(t), crop-independent g : R→ R can be defined as

g(p) ≡ hcrop
g (p, 0). (3.8)

We will assume that hcrop
g can be separated as hcrop

g (p, rd) = hcrop(rd)g(p). Here, the precipitation
deficit dependent factor hcrop(rd) : R → [hcrop

min , 1] monotonously decreases from 1 at rd = 0 to some
factor 0 ≤ hcrop

min ≤ 1 as rd→∞. Hence, equation (3.7) reduces to

vi = v0 + hcrop(rd(ti))g(p
crop(ti)) + ζcropi . (3.9)
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We will take two steps to allow us to combine the measurements from the four different orbits (see
figure 8). Firstly, the offset v0 will be defined separately for each orbit. To reduce noise, v0 will be esti-
mated as the average of the first three measurements of each orbit. This is also the reason we processed
an additional month before the start of the growth season (see section 2.7). Since every orbit visits at
least once every 12 days, it will take at most 36 days of measurements to define each v0.

Secondly, the differences between the orbits can be further reduced by expressing vi in terms of vi−1.
Here, vi−1 is the previous measurement from the same orbit. As additional benefits, this also reduces
the influence from outliers and the accumulation of error from (orbit-dependent) drift.

The difference between two subsequent measurements can be written as

vi − vi−1 = (hcrop(rd(ti))− hcrop(rd(ti−1)))g(p(ti−1))+

hcrop(rd(ti))(g(p(ti))− g(p(ti−1))) + ζcropi − ζcropi−1 .
(3.10)

where we define t0 = tparcel0 . Note that the expected growth of the first measurement is therefore

dependent on the exact location of the start of growth season tparcel0 . We can write equation (3.9) for
vi−1 as

g(pcrop(ti−1)) =
1

hcrop(rd(ti−1))
(vi−1 − v0 − ζcropi−1 ). (3.11)

Substituting this into equation (3.10)

vi − vi−1 =

(
hcrop(rd(ti))

hcrop(rd(ti−1))
− 1

)
(vi−1 − v0 − ζcropi−1 )+

hcrop(rd(ti))(g(p(ti))− g(p(ti−1))) + ζcropi − ζcropi−1 ,

(3.12)

or

vi − v0 =
hcrop(rd(ti))

hcrop(rd(ti−1))
(vi−1 − v0)+

hcrop(rd(ti))(g(p(ti))− g(p(ti−1)))−
hcrop(rd(ti))

hcrop(rd(ti−1))
ζcropi−1 + ζcropi .

(3.13)

We can write

g(p(ti))− g(p(ti−1)) =

∫ ti

ti−1

g′(pcrop(t))
dpcrop

dt
(t)dt. (3.14)

Substituting equation (3.5),

g(p(ti))− g(p(ti−1)) ≈



∫ ti

ti−1

g′(pcrop(t))
(
Ccrop

1 icropg (rd(t))pcrop(t) + ξcrop(t)
)
dt

for tparcel0 ≤ ti ≤ tparcel0 +∆tcrop1∫ ti

ti−1

g′(pcrop(t))
(
Ccrop

2 icropg (rd(t)) + ξcrop(t)
)
dt

for tparcel0 +∆tcrop1 < ti−1 ≤ tparcel0 +∆tcrop2 .

(3.15)

For the edge case ti−1 < tparcel0 +∆tcrop1 < ti we have

g(p(ti))− g(p(ti−1)) ≈
∫ tparcel

0 +∆tcrop1

ti−1

g′(pcrop(t))
(
Ccrop

1 icropg (rd(t))pcrop(t) + ξcrop(t)
)
dt+∫ ti

tparcel
0 +∆tcrop1

g′(pcrop(t))
(
Ccrop

2 icropg (rd(t)) + ξcrop(t)
)
dt

(3.16)
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To ease notation, we define sparcel(t) : R→ R as

sparcel(t) =

{
Ccrop

1 pcrop(t) for tparcel0 ≤ t ≤ tparcel0 +∆tcrop1

Ccrop
2 for tparcel0 +∆tcrop1 < t ≤ tparcel0 +∆tcrop2 .

(3.17)

Equation (3.13) can be written as

vi − v0 =
hcrop(rd(ti))

hcrop(rd(ti−1))
(vi−1 − v0)+

hcrop(rd(ti))

∫ ti

ti−1

g′(pcrop(t))
(
icropg (rd(t))sparcel(t) + ξcrop(t)

)
dt− hcrop(rd(ti))

hcrop(rd(ti−1))
ζcropi−1 + ζcropi ,

(3.18)

In the integral over ti−1 to ti, we can approximate pcrop(t) ≈ pcrop(ti−1). This results in

vi − v0 =
hcrop(rd(ti))

hcrop(rd(ti−1))
(vi−1 − v0)+

hcrop(rd(ti))g
′ (pcrop(ti−1))

(
sparceld (ti−1)

∫ ti

ti−1

icropg (rd(t))dt+

∫ ti

ti−1

ξcrop(t)dt

)
− hcrop(rd(ti))

hcrop(rd(ti−1))
ζcropi−1 + ζcropi ,

(3.19)
where, to cover the edge case from equation (3.16)

sparceld (ti−1) =


(
tparcel0 +∆tcrop1 − ti−1

)
sparcel(ti−1) +

(
ti −

(
tparcel0 +∆tcrop1

))
sparcel(ti)

for ti−1 < tparcel0 +∆tcrop1 < ti

sparcel(ti−1) for all other i.

(3.20)

Let ti,k for k ∈ {0, 1, ..., ni} with ti−1 ≤ ti,0 < ti,1 < .. < ti,ni
≤ ti, be the times between ti−1 and ti at

which we have a measurement of the rain deficit. The integral over icropg can then be estimated as∫ ti

ti−1

icropg (rd(t))dt ≈
ni∑
k=0

1

2
(ti,k+1 − ti,k−1)i

crop
g (rd(ti,k)), (3.21)

where we define ti,ni+1 = ti and ti,−1 = ti−1 for convenience.

Assuming {ζcropi } are independently identically normally distributed with ζcropi ∼ N (0, (σcrop
η )2) and

similarly,
∫ ti
ti−1

ξcrop(t)dt ∼ N (0, (σcrop
ξ )2) we can write

vi − v0 =
hcrop(rd(ti))

hcrop(rd(ti−1))
(vi−1 − v0)+

hcrop(rd(ti))g
′ (pcrop(ti−1)) s

parcel
d (ti−1)

(
ni∑
k=0

1

2
(ti,k+1 − ti,k−1)i

crop
g (rd(ti,k))

)
+ ζ

′crop
i ,

(3.22)

where

ζ
′crop
i ∼ N

(
0,

(
hcrop(rd(ti))

hcrop(rd(ti−1))
+ 1

)
(σcrop

η )2 + hcrop(rd(ti))g
′ (pcrop(ti−1)) (σ

crop
ξ )2

)
. (3.23)

Finally, for pcrop(ti−1) we will make an estimate based on the previous measurement vi−1. This can be
obtained from equation (3.9),

g(pcrop(ti−1)) ≈
vi−1 − v0

hcrop(rd(ti−1))
. (3.24)

In the expression for vi−v0 in equation (3.22), the remaining unknowns are the model parameters Ccrop
1 ,

Ccrop
2 , ∆tcrop1 , ∆tcrop2 , tparcel0 (all contained in sparceld ), Ccrop

3 , rdcropmax (both contained in icropg ) and pcrop0

(from the initial condition of pcrop(t), see equation (3.5)), and the functions hcrop and g. In the next
section, we will discuss the different parameterizations of hcrop, g and some simplifications of pcrop that
will be used to calibrate the model to the data.
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3.3 Simplifications and model parameterizations

SAR-derived vegetation indices are a considerably noisy indicator of plant growth. In addition, a single
growth season only consists of several tens of measurements. As a result, the model is quite prone to
overfitting. Therefore, we will be evaluating several different parameterizations for hcrop and g, as well
as simplifications to icropg and the differential equation of pcrop(t). In total, there will be 16 different

combinations. In addition to those, we will also assess whether it is best to fit ∆tcrop2 and tparcel0 , or to
just assume the growth season starts/ends at the first/last measurement of the time series. Note that
we specifically chose our measurement interval in section 2.7 to avoid the need of fitting ∆tcrop2 . This is
useful, because, as we will see in sections 5.1 and 6.2, fitting ∆tcrop2 results in a considerable increase of
computation time, and significantly increases the risk of overfitting.

For icropg , we will be using one simplification to equation (3.6). rdcropmax can be interpreted as the highest
rain deficit for which the crop experiences no hinder to growth. This might be reasonably approximated
to zero, indicating that as soon as there is a rain deficit, the crop growth will experience some inhibition.
Hence, we will be using two forms for icropg : one where rdcropmax is a model parameter, and one where
rdcropmax = 0.

There seems to be no research about hcrop(rd(t)). Hence, we will be using two simple expressions. The
first is that rain deficits have no temporary influence on vegetation index, i.e.

hcrop = 1. (3.25)

The second is a linear relationship:

hcrop(rd(t)) =


1 for rd(t) ≤ rdcropmax

1− rd(t)−rdcrop
max

Ccrop
3

(1− hcrop
min ) for rdcropmax < rd(t) < rdcropmax + Ccrop

3

hcrop
min for rd(t) ≥ rdcropmax + Ccrop

3 .

(3.26)

where 0 ≤ hcrop
min ≤ 1 is a model parameter. Here, we reduced the dimensionality of the fit space by assum-

ing that hcrop follows the same form as icropg , with the only difference that it goes from 1 to hcrop
min instead 0.

For g and pcrop, we will evaluate four different parameterizations. The first is the simplest model that
rests on the assumption that the vegetation index linearly increases throughout the entire growth phase
(and that g and pcrop are both linear individually). This assumption is supported by the findings of [38].
This results in

g′(pcrop(ti))s
parcel
d (ti) = Ccrop

1 . (3.27)

Note that here, Ccrop
2 = Ccrop

1 and g′ is constant because g is linear. We can expand this slightly by
approximating the exponential part of pcrop as linear, allowing pcrop to be bilinear, i.e.

g′(pcrop(ti))s
parcel
d (ti) =

{
Ccrop

1 for tparcel0 ≤ ti ≤ tparcel0 +∆tcrop1

Ccrop
2 for tparcel0 +∆tcrop1 < ti ≤ tparcel0 +∆tcrop2 .

(3.28)

Here, we left out the edge case of equation (3.20) for brevity.

For the third expression for g and pcrop, we will use the most general exponential-linear format for pcrop,
but keep g linear. Again leaving out the edge case, we get

g′(pcrop(ti))s
parcel
d (ti) =

{
Ccrop

1 pcrop(ti−1) for tparcel0 ≤ ti ≤ tparcel0 +∆tcrop1

Ccrop
2 for tparcel0 +∆tcrop1 < ti ≤ tparcel0 +∆tcrop2

(3.29)

where, from equation (3.24),

pcrop(ti−1) ≈ pcrop0 +
1

C4

(
max(0, vi−1 − v0)

hcrop(rd(ti−1))

)
. (3.30)
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where C4 is a crop-independent model parameter, and negative vi−1 − v0 are set to zero to ensure
pcrop(ti−1) ≥ pcrop0 . When the model is calibrated for each crop separately, as is the case in this
project, it becomes more sensible to combine Ccrop

1 with C4 and pcrop0 . Defining pcropg,0 = Ccrop
1 pcrop0 and

Ccrop
4 = C4

Ccrop
1

we obtain

g′(pcrop(ti))s
parcel
d (ti) =

{
pcropg,0 + 1

Ccrop
4

(
max(0,vi−1−v0)
hcrop(rd(ti−1))

)
for tparcel0 ≤ ti ≤ tparcel0 +∆tcrop1

Ccrop
2 for tparcel0 +∆tcrop1 < ti ≤ tparcel0 +∆tcrop2

(3.31)
Fourthly, we will go back to linear pcrop but use a quadratic for g:

g(pcrop) = C5(p
crop − pcrop0 )2 + C6(p

crop − pcrop0 ). (3.32)

A non-linear g has some support in the findings of [37]. We will assume g is strictly increasing over the
entire range of pcrop. Inverting the quadratic equation we obtain

pcrop(ti−1) ≈ pcrop0 +
−C6 +

√
C2

6 + 4C5
max(0,vi−1−v0)
hcrop(rd(ti−1))

2C5
, (3.33)

where negative vi−1 − v0 are set to zero to ensure pcrop(ti−1) ≥ pcrop0 , the ”+” in front of the square
root (rather than a minus) is the result of the strictly increasing property of g, and we substituted
equation (3.24) for g(pcrop). Furthermore, the combination C6, C5 (and hmin if applicable) has to be

such that C2
6 + 4C5

max(0,vi−1−v0)
hcrop(rd(ti−1))

≥ 0 for all i. Substituting this into g′ yields

g′(pcrop(ti))s
parcel
d (ti) = Ccrop

1

√
C2

6 + 4C5
max(0, vi−1 − v0)

hcrop(rd(ti−1))
. (3.34)

Again, we combine model parameters, in this case Ccrop
1 with C6 and C5. Ccrop

1 > 0, so we can take it
into the root and define Ccrop

6 = (C6C
crop
1 )2 and Ccrop

5 = C5(C
crop
1 )2. We thus obtain

g′(pcrop(ti))s
parcel
d (ti) =

√
Ccrop

6 + 4Ccrop
5

max(0, vi−1 − v0)

hcrop(rd(ti−1))
. (3.35)

The requirement for a real solution to the square root becomes Ccrop
6 +4Ccrop

5
max(0,vi−1−v0)
hcrop(rd(ti−1))

≥ 0 for all i.

During the calibration procedure, it will be difficult to prevent the algorithm from trying solutions where
one of the data points gives a complex root. Therefore, to ensure that the algorithm does not converge
to a complex solution while simultaneously guiding the algorithm back to domain with real solutions, we
define

g′(pcrop(ti))s
parcel
d (ti) =


√
Ccrop

6 + 4Ccrop
5

max(0,vi−1−v0)
hcrop(rd(ti−1))

for Ccrop
6 + 4Ccrop

5
max(0,vi−1−v0)
hcrop(rd(ti−1))

≥ 0

109
(
Ccrop

6 + 4Ccrop
5

max(0,vi−1−v0)
hcrop(rd(ti−1))

)
for Ccrop

6 + 4Ccrop
5

max(0,vi−1−v0)
hcrop(rd(ti−1))

< 0.

(3.36)
The factor 109 should ensure that no significantly complex values are feasible. We chose to set an outlying
value for g′(pcrop(ti))s

parcel
d (ti), rather than for the error statistic (section 4.1) directly, for convenient

integration with the surrounding algorithms.

Most of the model parameters (are assumed to) obey certain bounds, which are given by

Ccrop
1 , Ccrop

3 , Ccrop
4 , Ccrop

6 pcropg,0 > 0,

rdcropmax ≥ 0,

0 ≤ hcrop
min ≤ 1,

tparcel0 ≤ July 17,

∆tcrop1 ≥ 15 days,

∆tcrop2 ≥ 45 days,

(3.37)
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Ccrop
2 is entirely free. Ccrop

5 is entirely free, except for the limitation that Ccrop
6 +4Ccrop

5
max(0,vi−1−v0)
hcrop(rd(ti−1))

≥ 0

for all i.

The bounds on tparcel0 , ∆tcrop1 and ∆tcrop2 were chosen so that there are at least 45 days in the growth sea-
son and at least 15 days in the first phase. A lower bound to the length of the second phase is difficult to
implement as the upper bound for ∆tcrop1 would depend on tparcel0 and ∆tcrop2 . Hence, it has been left out.

In total, we have four expressions for the combination of g and pcrop, and two each for icropg and hcrop.

Adding the two times two possibilities for whether to fit tparcel0 and ∆tcrop2 , there are a total of 64
model parameterizations, ranging from two to nine model parameters. Rather than investigating the
performance of each, we take a single base case and separately explore the variation(s) of each variable.

As a base case, we have chosen to calibrate only tparcel0 and use the simplest form everything else, i.e.

• g, pcrop linear, rdcropmax = 0, hcrop = 1, tparcel0 variable, ∆tcrop2 fixed.

We did not fix tparcel0 in the base case, because tparcel0 is necessary to ensure that the model is actually
calibrated to the part of the data that reflects the behaviour we are looking for, as will be shown in
section 6. The combinations we will be investigating (in addition to the base case) are:

• linear, tparcel0 fixed,

• linear, hcrop
min variable ,

• linear, rdcropmax variable,

• linear, ∆tcrop2 variable,

• bilinear

• exponential

• quadratic

where unmentioned parameters are set to their base case. Note how we abbreviated g linear, pcrop lin-
ear/bilinear/exponential and g quadratic, pcrop linear; these abbreviations shall be used in the remainder
of this report. These eight parameterizations of the model (including the base case) shall be referred to
as the ”basic model parameterizations”. These parameterizations will be used in sections 5 and 6 where
we validate and compare the calibration approaches and different model parameterizations.
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4 Calibration methods for the vegetation index model

The model parameters proposed in the previous section are assumed to vary between crops or parcels.
Therefore, they need to be estimated using a calibration procedure. Other than tparcel0 , the model pa-
rameters are all assumed to be crop-dependent and parcel-independent. Hence, these parameters need
to be calibrated for each crop type using all data for all years over all parcels that cultivate that crop.
However, instead of that approach, we will be calibrating the data from each parcel for each year sep-
arately. The estimations for the model parameters can then be used in a cluster analysis to see if it is
possible to identify different behaviour types, such as irrigated and non-irrigated parcels.

In this section, we will explain the three algorithms we will use to calibrate the model parameters to an
RVI time series. To make this more convenient, we will first give a proper mathematical definition of
the optimization problem and introduce more appropriate notation in section 4.1.

4.1 Formulation of the optimization problem

Let v ∈ RN be the vector of N observed vegetation indices and t ∈ RN the corresponding observation
times. In addition, we define v−1 ∈ RN and t−1 ∈ RN as the observations and observation times of the
previous measurement in the same orbit. That is to say,

t =


t1
t2
t3
...
tN

 , t−1 =


tb1
t1
t2
...

tN−1

 , v =


v1
v2
v3
...
vN

 , v−1 =


vb1
v1
v2
...

vN−1

 , (4.1)

where vb1 and tb1 are the observation and observation time of the measurement before v1, i.e. one of the
three measurements that is used in the definition of v0. Note that this is defined for each of the four orbits
separately. That is to say, for the first i with vi in the second orbit, element i of v−1 is vb2 instead of vi−1.

Let C ∈ RM be the vector of the M model parameters. Let the elements of C be denoted by Cj

for j ∈ {1, 2, ...,M}. A given parameterization of the model can be denoted in vectorized format as
f(t, t−1,v−1,C) : RN × RN × RN × RM → RN .

In this thesis, we will be using a least squares error statistic to define the calibration optimization prob-
lem. The optimization problem can be formulated as:

Find C such that the error statistic

E(C) = ||v − f(t, t−1,v−1,C)||22 (4.2)

is minimal.

Here, || · ||22 is the square of the Euclidean norm.

Solving this optimization problem is not quite straightforward, because each of the model parameteri-
zations is nonlinear in at least one of the model parameters. In addition, the derivative of the model
parameterization with respect to its model parameters is discontinuous for many of the parameters (for

instance, tparcel0 ). This is cause to suspect that derivative-based methods, such as gradient descent meth-
ods, might not converge to the most optimal solution. The alternative is a more stochastic algorithm
such as differential evolution.

For this calibration problem, we will assess non-linear least squares (derivative-based), differential evolu-
tion (stochastic; little reliance on differentiability), and a hybrid between both methods that we customly
designed for this problem. For this, the ”curve fit” and ”differential evolution” from the scipy.optimize
package will be used.
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4.2 Non-linear least squares

4.2.1 Algorithm

(Non-linear) least squares is designed for the error statistic with Euclidian norm || · ||22. The set of
optimal model parameters Copt minimizes the error statistic. Therefore, at this point, the derivatives to
the model parameters are zero, i.e.

∇CE(Copt) = ∇C||v − f(t, t−1,v−1,Copt)||22 = 0, (4.3)

where 0 ∈ RM is the length M zero vector, ∇C is the gradient operator with respect to C, i.e.

∇C =


∂

∂C1
∂

∂C2

...
∂

∂CM

 . (4.4)

The expression can be rewritten as follows:

∇C||v − f(t, t−1,v−1,Copt)||22 = ∇C

(
(v − f(t, t−1,v−1,Copt))

T
(v − f(t, t−1,v−1,Copt))

)
= 2

(
∇C (v − f(t, t−1,v−1,Copt))

T
)
(v − f(t, t−1,v−1,Copt))

= −2
(
∇C (f(t, t−1,v−1,Copt))

T
)
(v − f(t, t−1,v−1,Copt)) = 0.

(4.5)

The Jacobian Matrix J(C) ∈ RN×M of f is given by

J(C) = ∇T
Cf(t, t−1,v−1,C) =

(
∂

∂C1
f(t, t−1,v−1,C), ...,

∂

∂CM
f(t, t−1,v−1,C)

)
. (4.6)

Note that f(t, t−1,v−1,C) ∈ RN and therefore ∂
∂Cj

f(t, t−1,v−1,C) ∈ RN . Equation (4.5) can then be

written as

−2JT (Copt) (v − f(t, t−1,v−1,Copt)) = 0. (4.7)

When f is linear in the model parameters C, equation (4.7) reduces to a closed-form matrix equation.
When f is non-linear in the model parameters C, no general closed form solution exists. Non-linear least
squares refers to a heuristic method that iteratively approaches a (local) minimum of the error statistic.

The iterative process goes as follows. Given an estimation of the parametersCk, a subsequent (improved)
estimation Ck+1 is produced by solving equation (4.7) for a linearization of f(t, t−1,v−1,Copt) around
Ck. The linearization is given by the first order Taylor polynomial:

f(t, t−1,v−1,Copt) ≈ f(t, t−1,v−1,C
k) + J(Ck)(Copt −Ck), (4.8)

where we directly expressed the sum over the derivatives as a matrix multiplication with the Jacobian
matrix J(Ck). Replacing Copt by the next estimation Ck+1 and substituting into equation (4.7) gives
an expression for Ck+1

− 2JT (Ck)
(
v − f(t, t−1,v−1,C

k)− J(Ck)(Ck+1 −Ck)
)
= 0, (4.9)

where the Jacobian transpose JT (Copt) is also approximated using Ck. This can be written as

JT (Ck)J(Ck)(Ck+1 −Ck) = JT (Ck)
(
v − f(t, t−1,v−1,C

k)
)
. (4.10)

Hereafter, Ck+1 can be obtained through a simple linear system solver. Starting from an initial guess C0,
subsequent estimations Ck can be obtained by iteratively solving this linear system, until the difference
between succeeding Ck is deemed sufficiently small.
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4.2.2 Limitations and use case

The main limitation of non-linear least squares is that convergence to the global minimum is only guar-
antied if both the space of C and the function E(C) are convex. For our problem, C is convex, but E(C)
is usually not. This can cause several problems for the algorithm. Firstly, the algorithm can converge
to a local minimum that is not a global minimum (every local minimum of a convex function is a global
minimum). If the initial guess C0 lies in the attraction region of a local minimum, then the algorithm
will converge that way. Hence, the result can vary for different choices of the C0.

For the set of model parameterizations we treat here, f is most jagged in tparcel0 , ∆tcrop1 and ∆tcrop2 .
This is especially the case for ∆tcrop2 . ∆tcrop2 defines the ends of the growth season without a transition

region. This means that as soon as tparcel0 +∆tcrop2 passes a measurement vi, the model’s estimation for
that measurement will drop discontinuously to zero. As a result, small changes to ∆tcrop2 do not change

the error statistic when tparcel0 +∆tcrop2 lies in between two measurements. Therefore, the local derivative
∂f

∆tcrop2
is zero almost everywhere. As a result, ∆tcrop2 will almost surely converge within a single iteration.

For tparcel0 and ∆tcrop1 we prevented this by avoiding the common simplification that tparcel0 and tparcel0 +

∆tcrop1 coincide with a measurement. This was achieved for tparcel0 in equation (3.10), where we defined

the first interval of the growth season to start at tparcel0 instead of the time of the last measurement
before the growth phase. For ∆tcrop1 , we explicitly defined a transition in equation (3.16).

However, even this improved implementation has a limitation. Because measurements are taken at a
discrete set of times, the approximation of derivative ∂f

tparcel
0

is, in almost all cases, only influenced by

the measurement directly succeeding tparcel0 . Therefore, ∂f

tparcel
0

has a discontinuity whenever tparcel0 co-

incides with a measurement. As a result, any measurement that is best modelled by the constant model
before the growth season can form a local minimum for tparcel0 if the subsequent measurement is best

modelled by the first growth season. For example, tparcel0 can converge to an isolated, seemingly good
measurement, even though the measurement is followed by a set of measurements that conform badly
to the growth model. However, because these subsequent measurements do not influence ∂f

tparcel
0

, they do

not prevent convergence. The exact same logic holds for ∆tcrop1

These problems are mostly resolved with the differential evolution algorithm, which comes at the cost of
a greater number of evaluations of f .

4.3 Differential evolution

4.3.1 Algorithm

Differential evolution [47] is an evolutionairy algorithm that creates new candidate solutions by combining
existing ones. These candidate solutions are passed to the cost function and the algorithm keeps track
of the best solution. The cost function is treated as a black box and can have any form. The differential
evolution algorithm is given in pseudocode in algorithm 2.
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Algorithm 2 Differential evolution. Modified after [47]. CR ∈ [0, 1] and F ∈ [0, 2] are chosen by the
user. Clist is initialised with random samples of C selected with Latin hypercube sampling.

while not <<Termination criterion>> do
for C in Clist do

C1, C2, C3 ← random elements from Clist\C
k ← random ∈ {1, 2, ...,m}
for each i in {1, 2, ...,m} do

r ← random number in (0, 1)
if r > CR or i == k then

Cnewi ← C1i + F (C2i − C3i)
else

Cnewi ← Ci

end if
end for
if E(Cnew) < E(C) then

Replace C by Cnew in Clist
end if

end for
end while

4.3.2 Parameter choices and use case

Before initialisation, the parameters CR and F and the method for sampling the parameter space to
generate the initial candidate solutions have to be chosen.

CR ∈ [0, 1] is called the recombination constant. A low recombination constant means a slower, but more
thorough search of the parameter space. As our problem is relatively smooth in most model parameters,
the somewhat higher CR = 0.7 will be used.

F ∈ [0, 2] is called the mutation constant. A low F speeds up convergence, but decreases the search
radius. Storn and Price (1997) [47] recommend taking F = 0.5 initially and increasing it if premature
convergence occurs. New developments since the initial publication by Storn and Prince have shown that
allowing F to take a different random value at every generation significantly improves the performance
of the algorithm [48, 49]. For this project, the ”dithering” technique proposed by Dapak and Ludwig
(2014) [49] will be used, where F is taken from a uniform distribution at every generation. Following
the initial recommendation by Storn and Prince, F will be uniformly distributed in the interval [0.5, 1].

Finally, the initial set of candidate solutions needs to be generated. The Latin hypercube sampling
algorithm will be used to perform the sampling at initialisation. It requires a desired number of candidate
solutions as well as finite bounds to each of the model parameters. The number of candidate solutions
is generally recommended to scale with the dimensionality of the problem [47], so we will use 15M
candidate solutions (where M is the dimensionality, i.e. the number of model parameters in C). It
is important to choose the finite bounds broadly enough so that the globally best solution is almost
guaranteed to fall within the bounds, as the algorithm has very limited capabilities of searching outside
of these bounds. For most parameters, the cost function increases steeply outside of the range of feasible
solutions. Hence, candidate solutions will quickly converge towards the range of feasible solutions, even
when they are initialized very far away due to a broad definition of bounds. As such, making these
bounds extremely broad will not very considerably slow down convergence. Therefore, we will extend
the bounds from equation (3.37) as follows:
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0 < Ccrop
1 < 1,

0 < Ccrop
3 , Ccrop

4 , Ccrop
6 < 108,

0 < pcropg,0 < 104,

−0.15 < Ccrop
2 < 0.15,

103 < Ccrop
5 < 103,

0 ≤ rdcropmax ≤ max
i∈{1,2,..,n}

(rd(ti)),

0 ≤ hcrop
min ≤ 1,

tparcel0 ≤ July 17,

∆tcrop1 ≥ 15 days,

∆tcrop2 ≥ 45 days,

(4.11)

Here, the upper limit of rdcropmax was set to the highest value for the rain deficit rd that occurred in the
given year, as rdcropmax > maxi(rd(ti)) is equivalent to rdcropmax = maxi(rd(ti)). Large values for rd(ti) are

in the order 101. Hence, 1 − rd(ti)
Ccrop

3
≈ 1 if Ccrop

3 ≥ 108. Therefore, allowing larger values for Ccrop
3 will

not significantly improve the results. The limits for Ccrop
1 , Ccrop

2 , Ccrop
4 , Ccrop

5 and pcropg,0 were empirically
estimated by applying non-linear least squares to potato parcels. Note that the limits of Ccrop

1 and
Ccrop

2 make sense, as the RVI usually ranges between 2.4 and 3.2. Hence, differences between subsequent
measurements are expected to be at most order 1.

4.4 The hybrid method

4.4.1 Algorithm

The error statistic E is actually smooth with a single, global minimum in many of its model parame-
ters. For these parameters, non-linear least squares will perform much better than differential evolution.
Hence, it makes sense to design a hybrid method that takes advantage of the properties of non-linear
least squares for the parameters that are most suited for it, and use a differential evolution approach for
the parameters that are not. Here, we will develop our own algorithm that does exactly this, and taylor
it to our application.

We will achieve this by setting a set of parameters to a fixed value while performing one of the fit
methods on the remaining parameters. By alternating between the two methods, using complementary
(possible overlapping) parameter sets, a good estimate of the optimal solution can be achieved. The
parameters are thus divided into three complementary, disjoint sets: Cdifev for parameters that are best
fitted with differential evolution only, Cboth for parameters that get the best fit when non-linear least
squares is applied using an initial estimate from differential evolution, and Cnllsq for parameters that
are best fitted with non-linear least squares and that do not significantly benefit from (or are harmed
by) an initial estimate from differential evolution. Note that differential evolution searches the entire pa-
rameter space, and therefore has no real use for an initial estimate from earlier iterations of either method.

Ideally, both methods would be alternatingly performed multiple times until some convergence require-
ment is achieved. However, to limit computation time, the computationally expensive differential evolu-
tion will be performed only once.

To make optimal use of the single differential evolution, a decent initial ”guess” for Cnllsq is obtained
with non-linear least squares first. The computation time of non-linear least squares is only weakly
dependent on number of parameters. Hence, to improve the initial estimate for Cnllsq, all parameters
(i.e. Cdifev ∪Cboth ∪Cnllsq) will be fitted in this first iteration.

Subsequently, differential evolution is applied on Cdifev ∪Cboth, while the parameters in Cnllsq remains
fixed at the initial guess produced by the first non-linear least squares step. The bounds from equa-
tion (4.11) are used here.
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Finally, the parameters in Cdifev are fixed to the values obtained with differential evolution. A final
non-linear least squares step is then performed on Cnllsq ∪ Cboth. In this final step, results for Cnllsq

and Cboth from respectively the first iteration of non-linear least squares and the differential evolution
step, are used as initial estimates for each parameter. Using these estimates can speed up convergence
and, in the case of Cboth, help non-linear least squares avoid local minima.

4.4.2 Parameter configuration

Through understanding of the model parameterizations and the error statistic, we can make a good a
priori guess which parameters are suited and unsuited for a non-linear least squares approach.

Firstly, the phase boundaries tparcel0 , ∆tcrop1 and ∆tcrop2 make a sharp transition from one phase to the
next. In fact, as we described in section 4.2.2, the error function is constant for ∆tcrop2 between mea-
surements, with a sharp discontinuity at the measurements themselves. Though we made sure the error
statistic is continuous in ∆tparcel0 and tparcel1 (see section 4.2.2), the derivative of the error function still
has a discontinuity at every measurement. Therefore, it will be very difficult for non-linear least square
to converge properly for any of these parameters. We can conclude that tparcel0 , ∆tcrop1 and ∆tcrop2 are
almost certainly unsuited for fitting with non-linear least squares, and will therefore be set to a fixed
value in the last step of the hybrid algorithm.

Secondly, the model parameterization is obviously smooth in Ccrop
1 , Ccrop

2 , Ccrop
4 , Ccrop

5 , Ccrop
6 and pcropg,0 .

With a little more work, one can see it is also smooth in hcrop
min : for each i and with fixed rdcropmax and Ccrop

3 ,

the value
[
max

(
hcrop
min , 1−

rd(ti−1)−rdcrop
max

Ccrop
3

(1− hcrop
min )

)]
increases linearly (from some value between 0 and

1) to 1 as hcrop
min goes from 0 to 1. Therefore, these seven parameters are likely best fitted with non-linear

least squares.

Lastly, for the parameters Ccrop
3 and rdcropmax, the model parameterization is neither completely smooth,

nor obviously sufficiently jagged to make the a priori assumption that it can only be fitted with dif-

ferential evolution. The derivative to Ccrop
3 has a discontinuity wherever

rd(ti−1)−rdcrop
max

Ccrop
3

= 1 for some

i. However, the derivative to Ccrop
3 is some combination of all terms i for which

rd(ti−1)−rdcrop
max

Ccrop
3

< 1.

Therefore, it is plausible that these discontinuities are relatively minor, and the model parameterization
is smooth enough to get a good performance with non-linear least squares. Similarly, the derivative
to rdcropmax has a discontinuity wherever rdcropmax = rd(ti−1) for some i, in addition to the discontinuities

at
rd(ti−1)−rdcrop

max

Ccrop
3

= 1. Again, the derivative to rdcropmax is a combination, in this case of all terms i for

which rdcropmax < rd(ti−1) and
rd(ti−1)−rdcrop

max

Ccrop
3

< 1. Hence, for both parameters, there is some hope that

non-linear least squares gives a good performance, but it is equally plausible that differential evolution
will be necessary to get a decent fit. Therefore, we will simply run tests with Ccrop

3 and rdcropmax in each
of the three options, Cdifev, Cboth and Cnllsq, to see which performs best.

Similarly, we will validate the a priori assumptions for the other 10 parameters by comparing the quality
of the fits produced under this assumption with the quality of the fits produced with the given parameter
in Cboth. For these tests, we shall use the 2019 data of the 1167 potato parcels in the validation region
described in 2.5, rather than all (potato) parcels in the Netherlands, to reduce computation time. As we
will show in section 5.3, the (in some sense) optimal parameter configuration is:

Ccrop
2 , Ccrop

3 , Ccrop
4 , rdcropmax, p

crop
g,0 ∈ Cnllsq

tparcel0 ,∆tcrop1 ,∆tcrop2 , Ccrop
5 , Ccrop

6 ∈ Cdifev.
(4.12)

In addition, Ccrop
1 ∈ Cnllsq for linear pcrop, and Ccrop

1 ∈ Cboth for bilinear pcrop (Cboth = ∅ in other
cases). See respectively sections 8.2.1 and 8.2.2 for a discussion why Ccrop

1 ∈ Cboth and Ccrop
5 , Ccrop

6 ∈
Cdifev turned out to yield considerably better results.
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5 Validation and optimization of the calibration

methodology

This section contains the results of three validation steps designed to verify and optimize the hybrid
calibration method developed in section 4.4. First, in section 5.1, we show that the hybrid calibration
method yields superior calibrations to both differential evolution and non-linear least squares for all
model parameterizations. Second, in section 5.2, we investigate the consistency of the hybrid method by
comparing the results of multiple independent applications to the same data. Third, in section 5.3, we
demonstrate that the parameter configuration we proposed in section 4.4.2 is an (in some sense) optimal
trade-off between optimality of the results and computational expense.

In this section, we will be using histograms such as the one in figure 9 to compare the quality of the
results of different approaches. These histograms display the relative difference in least squares error
statistic (see equation (4.2)) of the results of two separate calibration attempts. Negative values mean
that the algorithm on the left of the minus (see label x-axis) outperforms the other, and vice versa. This
is a rather uncommon approach to quantify differences in algorithm performance (the author has not
seen it before). More commonly employed are single-valued approaches such as mean or median error
statistics, or number of parcels where one method outperforms the other.

The downside of statistics based on the median or number of parcels is that they are biased towards
methods that perform slightly better in most cases, but yield a much more significantly inferior result
on a (small or major) minority of parcels. This, for example, could be the case when comparing non-
linear least squares to differential evolution on a function with multiple minima, where our initial guess
is (slightly) more likely to fall within the region of attraction of the global minimum. Non-linear least
squares will converge closer to the global minimum than differential evolution, but differential evolution
is much less likely to get stuck in a local minimum.

On the other hand, a mean quality statistic can be biased towards methods with a small number of very
large outliers. Plotting complete histograms will visualize such differences and allow one to be properly
informed of trade-offs when making decisions.

5.1 Comparison between calibration methods

In section 4, we described three approaches to calibrating the model parameters in the model: non-
linear least squares, differential evolution and the hybrid method. In this section, we will compare the
performance of these calibration methods by comparing the least squares error statistic (equation (4.2))
of the fits generated by each method over a large number of parcels. To keep computation time to a
manageable level, only the 2019 data of the 1167 potato parcels of the validation region (see section 2.5)
were used.

The time used to calibrate the model parameterizations to these 1167 parcels is shown in table 3 for
each of the methods. Clearly, non-linear least squares is considerably faster than both others, and
the hybrid method considerably outperforms differential evolution in terms of computation time. The
quadratic method is unexpectedly slow for differential evolution. It only contains four model parameters,
compared to six for the exponential model. Clearly, this forms a bad case for differential evolution. We
will propose an explanation and possible directions for improvement in section 8.2.2 of the discussion.
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Table 3: Computation time of non-linear least squares (nnlsq), differential evolution (difev) and the
hybrid method to calibrate the 1167 potato parcels in the validation region for each of the basic model

parameterizations. The number of degrees of freedom (DOF) is also given. The computation time of the
hybrid is further split up into its three steps (see section 4.4).

model parameterization DOF nllsq (s) difev (s) hybrid (nllsq 1, difev, nllsq 2) (s)
linear 2 107 1010 107 (107, -, -)

linear; tparcel0 variable 3 136 1068 275 (133, 80, 62)

linear; h, tparcel0 variable 4 264 2205 552 (290, 168, 94)

linear; rdcropmax, t
parcel
0 variable 4 187 1658 374 (187, 90, 97)

linear; rdcropmax, h, t
parcel
0 variable 5 303 3661 865 (413, 244, 208)

linear; ∆tcrop2 , tparcel0 variable 4 177 2973 789 (169, 534, 86)

bilinear; tparcel0 variable 5 289 3074 1891 (280, 1523, 88)

exponential; tparcel0 variable 6 926 8589 1597 (933, 527, 137)

quadratic; tparcel0 variable 4 190 9896 7246 (196, 6998, 52)

Figure 9 shows the relative difference between the error statistics for the simple case pcrop and g linear
and all other parameters fixed. This model parameterization only contains model parameters Ccrop

1 and
Ccrop

3 , both of which are in Cnllsq, so the hybrid method is equivalent to non-linear least squares for
this case. Therefore, only the comparison between differential and non-linear least squares is made.
Interestingly, non-linear least squares yields consistently better results than differential evolution for this
model. This demonstrates that Ccrop

1 and Ccrop
3 , are properly placed in Cnllsq.

Figure 9: Comparison between the performance of differential evolution (difev) and non-linear least
squares (nllsq) for the model parameterization with pcrop and g linear, all other model parameters fixed.
The x-axis shows the relative difference in error statistic of the calibration result of both methods. The
middle, thinner bar contains values within 10−9 of zero, reflecting parcels where there was no significant
difference in fit quality. The relative difference is mostly positive, showing that non-linear least squares

outperforms differential evolution on this model.

Figure 10 shows a comparison of the performance between the hybrid method and respectively differen-
tial evolution (left) and non-linear least squares (right), for the model parameterization with g and pcrop

linear with only tparcel0 variable (top), and for the same model parameterization with also tcrop1 variable.
To keep this section concise, only the figures of two of the remaining basic model parameterizations are
included in this section, see figure 10. Similar figures for the rest of the basic model parameterizations
are included in appendix A.1.
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The function for tparcel0 was included because it nicely illustrates the behaviour of the rest of the model pa-
rameterizations. In all model parameterizations, the hybrid method outperforms non-linear least squares
on almost all parcels. This can be seen in figures 10b and 10d, where the bars on the right of zero are
all close to zero. These bars indicate the parcels where non-linear least squares gave a better result than
the hybrid method, which almost never happens.

Figure 10a shows that the hybrid method and differential evolution give very similar performance for
this model parameterization. Both give a better result than the other on approximately half the parcels.
For the model parameterizations in appendix A.1 all give either similar results, or the hybrid method
(significantly) outperforms differential evolution.

The only exception is the model parameterization including ∆tcrop2 , as depicted in figure 10c. Though

the results are again pretty similar, large differences in quality
(

|Ehybrid−Edifev|
Ehybrid+Edifev

> 10−2
)

are actually

slightly more commonly in favor of differential evolution than vice versa. An explanation of why this is
so is presented in section 8.2.1 of the discussion.

Even so, the performance of differential evolution is only slightly better than that of the hybrid method.
Therefore, it is unlikely to be worth the nearly four fold increase in computational complexity (see table
3). Hence, we can conclude that the hybrid method is the most suitable method for the calibration of
the model.

(a) (b)
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(c) (d)

Figure 10: Comparison between the performance of the three calibration methods for two of the basic
model parameterizations. In each row, the left and right subfigures show the relative difference in error

statistics respectively between the hybrid method and differential evolution and between differential
evolution and non-linear least squares. The 2019 data from the 1167 potato parcels in the validation
region described in section 2.5 was used for these images. The middle, thinner bar contains values
within 10−9 of zero, reflecting parcels where there was no significant difference in fit quality. Similar

images for the other basic model parameterizations are given in appendix A.1.

5.2 Consistency of the hybrid calibration method

In the previous section, we found that the hybrid method gives a much better performance than either
of the other methods. To get a measure for the consistency of the results of the hybrid method, the
algorithm can be executed twice on the same data set. The variance in the error statistic can be used
to estimate the confidence level that a calculated result is the optimal one. In addition, this gives a
measure for the base variation in the algorithm’s outcome. This will help to interpret the results of the
next subsection, where we validate the parameter configuration of the hybrid method.

The results of the variation in error statistic between two executions of the hybrid method are shown
in figure 11. One figure was made for each of the basic model parameterizations; i.e. one for each the
four forms of pcrop and g as well as for each of the model parameters hcrop

min , rdcropmax and ∆tcrop2 . As
expected, model parameterizations with more parameters show greater variation as it becomes more
difficult to search the higher dimensional parameter space. Especially the results using ∆tcrop2 , a bilinear
or quadratic model parameterization (figures 11d, 11e and 11f), and, to a lesser extent, the exponential
model parameterization (figure 11f) seem unstable. An explanation of why this is likely so is presented
for each case in the subsection of section 8.2 of the discussion.
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(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 11: Relative difference in error statistic between two iterations of the hybrid method. The 2019
data from 1167 potato parcels in the validation region described in section 2.5 was used for these

images. The fits were made with the model parameterization indicated in the title of each figure. The
middle, thinner bar contains values within 10−9 of zero, reflecting parcels where there was no significant

difference in fit quality between the two iterations.

5.3 Validating the parameter configuration of the hybrid method

This section contains a comparison between the parameter configuration for the hybrid method we pro-
posed in section 4.4.2, and a configuration where one of the parameters was moved to Cboth. Ccrop

1 is
treated separately for the linear and bilinear model parameterizations, because its fitting behaviour is
considerably different in a two-phase model compared to the single-phase linear pcrop. For the more
complicated cases of Ccrop

3 , rdcropmax, C
crop
5 , Ccrop

6 and Ccrop
1 in the bilinear and exponential case, a full

comparison between C ∈ Cnllsq, C ∈ Cdifev and C ∈ Cboth has been included. To avoid bloating this
section, a large part of the (less interesting) figures is contained in appendix A.2.

Figure 12 shows several figures for the comparison between the default parameter configuration and one
with one parameter moved to Cboth. The parameters hcrop

min ,∆tcrop2 ,∆tcrop1 , Ccrop
4 , pcrop0 and Ccrop

1 (linear
case) all result in histograms approximately symmetrical around zero. One example is show in figure
12a. This means that the performance of these parameters is similar in their proposed configuration
and in Cboth. A such, the proposed configuration can be considered optimal for these parameters, as
additional parameters in Cboth result in an increase in computation time, especially for the parameters
originally in Cnllsq.

The cases tparcel0 ∈ Cdifev (figure 12b) and Ccrop
2 , pcrop0 ∈ Cnllsq (figures 12c and 29f of appendix A.2)

actually give a better performance than in Cboth. tparcel0 is such a bad case for non-linear least squares
that the algorithm has more trouble converging to the optimum when it is given an initial guess for
tparcel0 close to the optimum than when it is simply kept fixed. On the other hand, Ccrop

2 , pcrop0 ∈ Cboth

does not actually hamper the quality of the estimate of Ccrop
2 or pcrop0 itself. After all, the last non-linear

least squares is still performed, but it now uses an estimate generated by differential evolution, which is
very unlikely to be a significant detriment to its quality. Instead, the addition of one extra dimension
in the parameter space of differential evolution makes it more difficult for it to converge to the global
optimum. As a result, the other parameters calibrated in the differential evolution step get an inferior
estimate for part of the parcels.

For exponential pcrop, we see that Ccrop
2 ∈ Cboth (figure 12d) yield a better quality than Ccrop

2 ∈ Cnllsq.
Note that the relatively large variation in error statistic (i.e. few values around zero and a peak around
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10−2 on both sides) is an inherent quality of these models, as shown in section 5.2. For this parameter,
there is a trade-off between quality of the result and computation time. Depending on how important
computational complexity is, one might opt for the (slight) improvement in quality that is obtained with
Ccrop

2 ∈ Cboth. However, this methodology is designed for usage on the 260 thousand parcels in Nether-
lands, so the considerable increase in computation time is not worth the rather limited improvement in
quality. Hence, opted for Ccrop

2 ∈ Cnllsq in this thesis project.

(a) (b)

(c) (d)

Figure 12: Validation of the parameter configuration (i.e. the choice of sub-algorithm used to fit each
parameter within the hybrid method) of the hybrid method for the model parameters Ccrop

1 (with linear

pcrop), tparcel0 and Ccrop
2 . Similar figures for Ccrop

4 , pcropg,0 ,∆tcrop1 and ∆tcrop2 are given in figure 29 of
appendix A.2. Each subfigure shows an investigation of the configuration of one model parameter
C ∈ C. The x-axis shows the relative difference between the error statistics of fits generated by the
hybrid method with C ∈ Cboth and either C ∈ Cnllsq or C ∈ Cdifev, depending on the a priori guess
formulated in section 4.4.2 (see label in the x-axis). The 2019 data from 1167 potato parcels in the

validation region described in section 2.5 was used for these images. The basic model parameterizations
were used for this investigation, i.e. t0 was fitted in each figure, but the models were otherwise kept in
the simplest form that included the relevant parameter. In each histogram, negative values signify that
the a priori assumption gave a better result than C ∈ Cboth, whereas positive values signify the opposite.
The middle, thinner bar contains values within 10−9 of zero, representing parcels where there was no

significant difference in fit quality.
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A similar, but more elaborate investigation is made for the parameters Ccrop
3 (bilinear and exponential

case), Ccrop
3 , rdcropmax, C

crop
5 and Ccrop

6 in figure 13 and figure 30 of appendix A.2. In these figures, every
row of two subfigures is dedicated to a single parameter C ∈ C. The subfigures on the right compare
the quality of the results for C ∈ Cdifev with C ∈ Cnllsq, where negative values mean C ∈ Cdifev is
outperforming C ∈ Cnllsq. The subfigures on the left compare the quality of the results for C ∈ Cboth

with C ∈ Cdifev where negative values mean C ∈ Cboth is outperforming C ∈ Cdifev.

Ccrop
3 and rdcropmax are performing approximately equally in all cases. Therefore, Ccrop

3 , rdcropmax ∈ Cnllsq is
most suitable as that results in the lowest computational complexity.

Figure 13b shows that Ccrop
1 with bilinear pcrop gives considerably superior performance in Cdifev than in

Cnllsq. An even better performance is achieved with Ccrop
1 ∈ Cboth, as show in figure 13a. Clearly, Ccrop

1

has to be calibrated in at least the differential evolution step to get a decent performance. Furthermore,
calibrating one additional parameter in the non-linear least squares step does not have a significant im-
pact on computational complexity. Therefore, Ccrop

1 ∈ Cboth is the best choice, as we already claimed in
in equation (4.12). An explanation of why Ccrop

1 ∈ Cnllsq gives poor performance is given in section 8.2.1.

Figure 13d shows that Ccrop
5 gives hugely better performance in Cdifev than in Cnllsq. In addition,

figure 13c shows a slightly better performance for Ccrop
5 ∈ Cdifev than Ccrop

5 ∈ Cboth. A very similar
result is obtained for Ccrop

6 in figures 30e and 30f. This validates the claim in equation (4.12), that
Ccrop

5 , Ccrop
6 ∈ Cdifev is the most optimal choice. This result was unexpected, because as described in

section 4.4.2, we thought the error statistic would be mostly smooth with few minima, which should imply
that non-linear least squares gives a good performance. Yet, these results demonstrate the opposite. An
explanation of this is given in section 8.2.2.

(a) (b)
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(c) (d)

Figure 13: Investigation of the parameter configuration (i.e. the choice of sub-algorithm used to fit a
given parameter within the hybrid method) of the hybrid method for the more convoluted model

parameters Ccrop
1 (with bilinear pcrop) and Ccrop

5 . Similar figures for Ccrop
3 , rdcropmax and Ccrop

6 are given
in figure 30 of appendix A.2. Each row of two subfigures shows an investigation of the configuration of
one these model parameters C ∈ C. The x-axis shows the relative difference between the error statistics
of fits generated by the hybrid method with C ∈ Cboth and C ∈ Cdifev (left), and between C ∈ Cdifev

and C ∈ Cnllsq (right). The 2019 data from 1167 potato parcels in the validation region described in
section 2.5 was used for these images. t0 was fitted in all figures, but the fits were otherwise kept in the

simplest form that included the relevant parameter. In each histogram, negative values signify that
C ∈ Cboth gives better performance than C ∈ Cdifev (left) or that C ∈ Cdifev gives better performance
than C ∈ Cnllsq (right), whereas positive values signify the opposite. The middle, thinner bar contains
values within 10−9 of zero, representing parcels where there was no significant difference in fit quality.
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6 Assessing to what extend model features reflect

the behaviour of the RVI

In this section, The different features of the model will be investigated on whether they properly model
the behaviour of the RVI. To this end, a good visualisation of the RVI time series can be very useful.
Unfortunately, a simple plot of the (normalized) RVI is chaotic and noisy, even when averaged over a
large set of parcels. An example of this was presented in figure 7. Only near the very end of this thesis
project did we manage to develop a better method to visualize this. We achieved this by smoothing the
time series specifically over the orbits. To be more precise, a smoothed time series is generated by taking
the average of interpolated (normalized) RVI values of each orbit. Note that this smoothing is purely
used in visualisation, and not during the calibration.

This works surprisingly well. A smoothed time series reveals clear patterns in the RVI that have obvious
correlations with the cumulative rain deficit. This visualisation would have actually been useful during
the development of the model, but unfortunately, we only formulated this approach after generating
most of the results. As such, this section will start with an analysis of the smoothed time series of
normalized RVI measurements, to see what can be learned in terms of model formulation. Subsequently,
in section 6.2, we will investigate the contribution to the quality of the fit of the various model extensions.

6.1 Average behaviour all parcels

In figure 14, the smoothed normalized RVI time series of each year is plotted, along with the 6-day
cumulative rain deficit. These images make four phenomena clearly visible.

The first phenomenon is the significant drop in RVI in the first month after mid-March. In the formu-
lation of the model, the definition of v0 rested on the assumption that the parcels are empty before the
growth season. This would imply that the RVI is at a zero-measurement level before the growth season,
increasing from that level as the growth season advances. Obviously, this assumption was naive. In
reality, most fields are covered by a catch crop during most of the winter [50]. The drop in RVI is most
likely caused by the destruction of the catch crop before the start of the growth season.

This can cause problems in several aspects of our modelling. Firstly, hcrop
g was defined (equation (3.7))

under the assumption that vi−1 − v0 > 0. As this is clearly not the case, this has consequences for the
fit of hcrop

min , as will be investigated in more detail in section 7.2. Secondly, the quadratic and exponential
models include an estimate of pcrop(ti−1), which assumes positivity of vi−1 − v0 (equation 3.30). For
negative vi−1 − v0, the exponential and quadratic models reduce to the bilinear and linear model re-
spectively (see equations (3.31) and (3.35)), where pcropg,0 and Ccrop

6 take the role of growth constant Ccrop
1 .

In addition, the drop in RVI makes the start of growth season tparcel0 very important. In the models we

defined without tparcel0 , the entirety of the measurements are assumed to be part of the growth season (or
until the end of the growth season if ∆tcrop2 is included). This means the drop in RVI will be included,
which will heavily bias the fit of growth constant Ccrop

1 towards zero (negative Ccrop
1 is not allowed).

This is not the behaviour we want to model with Ccrop
1 . Therefore, tparcel0 should be part of any model

to avoid this period.

The second phenomenon is the very clear correlation with rain deficit. Every time the rain deficit drops
to near-zero, the RVI either increases, often rapidly, or a downward trend is momentarily abated. Given
this, it seems that the scaling factor hcrop(rd(t)) is actually a very important part of the system. Unfortu-
nately, due to the mostly negative vi−1−v0, h

crop(rd(t)) is not yet able to properly model this behaviour
of RVI. Sections 8.3.1 and 8.3.3 will go into more detail how the methodology can be improved to make
full use of hcrop to accurately model the rain deficit-driven oscillations in RVI.

Thirdly, there does not seem to be a very significant growth. In each time series, increases in RVI almost
exclusively occur at drops in the rain deficit. When the rain deficit increases again, the RVI drops back
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to close its original value. Any long-term increase in RVI is dwarfed by the magnitude of the bumps
caused by the fluctuating rain deficit. This is bad news for the model developed in this thesis, as most
of it is dedicated to modelling this apparently insignificant growth in RVI. A similar lack of growth can
be found in the time series of corn, see appendix B.2. Section 8.1.2 contains a more elaborate discussion
of what this means for the model.

Fourthly, no indication of harvest is visible. Remember that we intentionally end the time series at the
end of August to avoid the harvest (see section 2.7). This means that including end of growth season
∆tcrop2 in the model should not be necessary. Even so, we will still include some basic processing with
∆tcrop2 in the next subsection.

Appendix B.1 includes similar time series separated by irrigated or non-irrigated according to the vali-
dation data of 2018, 2019 and 2020. Peculiarly, there seem to be no very significant differences between
the RVI time series of irrigated and non-irrigated parcels. We will discuss this in more detail in section
8.1.3.

(a)

(b)
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(c)

(d)

Figure 14: Average time series over all potato parcels in the validation region for each year.

6.2 Comparison between model parameterizations

In this section, we investigate how the various features of the different model parameterizations con-
tribute to modelling the behaviour of the RVI. To this end, scatter plots were made to correlate quality
improvement obtained with a certain model extension with the values of the parameters it introduces.
This visualizes consistency and magnitude of the improvements, as well as trends where certain values
of the parameters tend to imply better quality of the fit. The latter is useful, because it can be used to
identify features in the RVI time series that causes the behaviour of the model. Furthermore, it can give
an indication that the quality improvement is the result of overfitting rather than a reflection of system
behaviour.

Appendix A.3 contains the scatter plots for the quadratic and exponential model, along with a short
explanation. These were excluded from the main text as their results are heavily skewed by the mostly
negative RVI, as we explained in section 6.1. For the other basic model parameterizations, the scatter
plots are given in figure 15.

In figure 15a, we see that tcrop0 yields a small (compared to, for instance, the improvement with tcrop0 ,
see figure 15d), but consistent and significant, improvement in quality. 353 out of the 362 parcels
that yield no improvement (quality difference smaller than 10−7) compared to the base function have
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Ccrop
1 < 10−7 ≈ 0. Such a small Ccrop

1 implies that there is no significant difference in the model before

and after tparcel0 .

The parcels that do yield an increased quality with tparcel0 form two clusters: one before 1 May, and one
between 12 May and 9 June. These correlate precisely with the periods of high rain deficit in 2019, as
well as the corresponding dips in RVI, see figure 14b. This makes sense: after tparcel0 , the model predicts

growth, so the optimal fit is obtained with tparcel0 right before the increase in RVI coupled with the low

rain deficit periods. This also demonstrates that tparcel0 achieves the main reason we included it in the
model: avoiding the RVI drop in the first month of the measurements.

Figure 15b shows that the calibration converges to hcrop
min = 1 for most parcels. However, there is a cloud of

337 parcels where hcrop
min < 0.99 yields a considerable improvement in quality. In section 7.2, we will inves-

tigate what makes these parcels unique, and explain why hcrop
min = 1 is optimal for the majority of parcels .

Similarly, for the model including rdcropmax (figure 15c), roughy half the parcels either show no improvement
(line in the middle), and/or converge to rdcropmax = 0, which is equivalent to fitting no rdcropmax at all. Slightly
under half the parcels actually show an improvement in quality with a non-zero rdcropmax. However, these
parcels do not cluster around a single value of rdcropmax, even though we would expect potato parcels to
behave similarly in this aspect. In addition, the improvement in quality is not very large, compared to,
for instance, the improvement that can be obtained with hcrop

min for some of the parcels, see figure 15b.
Combining these clues, we conclude that the improvement obtained with rdcropmax is more likely caused by
overfitting than an actual reflection of system behaviour.

Figure 15d demonstrates that adding ∆tcrop2 to the model gives a consistent and considerable improve-
ment to the quality of the fit. However, a very high density of ”improved” fits lie just above the lower
bound at ∆tcrop2 = 45. This means that only a very short part of the time series is fitted with the growth
model. The remaining rest gets estimated as constant. Looking at figure 14b, this makes sense. The last
two months of the RVI measurements do not contain a significant growth. Therefore, it fits the constant
model quite well. On the other hand, the most significant growth happens before the peak around 15
June. Hence, the 30 to 60 day period before that is a good fit to the growth model. This is the reason why
most parcels are best calibrated with ∆tcrop2 between 45 and 60 days. Clearly, ∆tcrop2 is not actually used
to fit the end of the growth season, but rather the greatest peak in rain deficit-dependent RVI fluctuations.

Lastly, scatter plots for tcrop1 and Ccrop
2 of the bilinear model are shown in figures 15e and 15f. This model

gives an even more dominant improvement than ∆tcrop2 . However, the mechanism is similar. ∆tcrop1 is
very close to its minimum of 15 days. In addition, Ccrop

2 is negative for most parcels, which happens to be
a good fit for the drop in RVI after the peak around 15 June. Clearly, the model is calibrated towards the
fluctuations in RVI rather than actual growth of the crops. However, that does not mean that this gives
no valuable information. After all, the magnitude of these oscillations can be an indicator of irrigation
and other environmental factors. Therefore, we will further analyze the results of the bilinear model
parameterization in section 7.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Comparison of the performance of the basic model parameterizations. Similar figures for the
exponential and quadratic model parameterizations are given in appendix A.3. Each parameterization is
compared to the base case (pcrop and g linear, tcrop0 variable and all other parameters fixed). The quality
improvement obtained with a certain model extension is plotted against the value of the parameters that

it introduces. This way, any correlations between improved quality and the value of the model
parameters is visualised.
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7 Clustering parcels

In the previous two sections, we validated the calibration method and analyzed the relationship between
the various model features and the behaviour of the RVI. In this section, we will be studying the scatter
plots of different model parameter combinations to identify meaningful clusters. In this context, a cluster
can be considered meaningful if it is caused by any kind of difference in system behaviour. In principle,
clusters could exist in any combination of a model’s model parameters. However, it is difficult to visualize
clusters in higher dimensional spaces. The visualisation of a cluster can facilitate the physical interpre-
tation. In addition, there is no reason to believe that complicated combinations of model parameters
will yield meaningful clusters. As such, the clustering has been performed visually for combinations of 1
or 2 parameters.

There are 52 combinations of 2 parameters for the basic model parameterizations alone. Rather than
cluttering this section with a large number of scatter plots only the three most meaningful clusterings will
be discussed here. A subset of the remaining figures along with a small explanation of some interesting
features is included in appendix C.3.

7.1 Clusters based on Ccrop
1 and Ccrop

3

Figure 16a shows the scatter plot between Ccrop
1 and Ccrop

3 of the base model parameterization (pcrop

and g linear with tparcel0 variable and all other parameters fixed). Here we can identify six clusters, as
labeled in figure 16b. Interestingly, cluster 3 seems to be separated by a diagonal line.

(a) (b)

Figure 16: (a) Scatter plot between Ccrop
1 and Ccrop

3 for the base model parameterization, i.e. pcrop and

g linear with tparcel0 variable and all other parameters fixed. For the image, values Ccrop
1 < 10−10 were

set to 10−10. In the scatter plot, one can clearly identify six clusters. These are marked in (b) for 2019,
where the labels in the legend will be used as identifiers for these clusters.

Table 4 shows the number of parcels in each cluster for each year, along with the irrigation rate accoring
to the validation data (see section 2.5). We can calculate the p-value of the irrigation rates by using a
t-test with null hypothesis that the irrigation probability is equal for a given cluster and the remaining
parcels. This p-value is larger than 0.05 for all but three clusters: 2018, cluster 2 has p-value 0.0364,
2020 clusters 0 and 1 have p-values 2.28 · 10−4 and 4.58 · 10−3 respectively. For brevity, the rest of this
section will focus on the significant clusters of 2018 and 2020, as these yield the most interesting results.
A similar analysis for the 2019 and 2020 clusters is given in appendix C.1
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Curiously, though the irrigation rate of especially cluster 0 in 2020 can be considered statistically sig-
nificantly different from the average, this is not significantly reflected in the parcels of the same cluster
in different years (though note that the average irrigation rate over all parcels is higher in 2020). To
further investigate the difference between cluster 0 and cluster 1 of 2020, the average time series of both
clusters are shown in figure 17.

There are two interesting differences between these time series, both of which are rather subtle. Firstly,
and most importantly, the RVI of cluster 0 remains roughly constant between approximately 22 March
and 25 April, whereas the RVI of cluster 1 is steadily decreasing in the same period. Probably as a result
of this, the RVI of cluster 1 remains consistently lower until the beginning of July. Secondly, the RVI of
cluster 1 has a larger dip in the first half of August. Both these phenomena coincide with a period of high
rain deficit. This explains the high Ccrop

3 of cluster 0; the RVI of these parcels has a higher derivative
than the ones of cluster 1. More importantly though, the lack of decrease in RVI during periods of high
rain deficit could be caused by irrigation. This gives some support to the validity of the validation data.
Yet, it remains questionable why this is only visible during the first and the last rain deficit peaks. This
is especially so since we have some reason to believe that there is a catch crop on the parcels until the
last week of April (see section 6.1). This will be discussed in more depth in section 8.4.1.

Table 4: The number of parcels and percentage of parcels that received irrigation according to the
validation data (see section 2.5) in each of the clusters defined in figure 16b. Note that there is no

irrigation data for 2021.

2018 2019 2020 2021
Cluster # parcels % irrigated # parcels % irrigated # parcels % irrigated # parcels

0 322 28.26 275 29.09 136 47.79 32
1 494 26.52 209 32.06 887 31.68 426
2 207 20.77 228 28.95 39 28.21 484
3 84 23.81 92 31.52 37 35.14 125
4 30 16.67 192 26.56 2 0.0 31
5 30 23.33 171 32.75 1 0.0 12
all 1167 25.45 1167 29.91 1102 33.58 1111

(a)
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(b)

Figure 17: Average time series of parcels in the two large clusters in Ccrop
1 and Ccrop

3 of 2020, see table

4 and figure 19. The vertical green line marked t0 represents the median of tparcel0 in each cluster. The

spread in tparcel0 is quite large, so the accuracy of this indication is limited.

The average time series of cluster 0, 1 and 2 of 2018 are plotted in figure 18. Clusters 0 and 1 are
actually pretty close to the time series that was kept in mind while designing the model. After the initial
drop in RVI (which is not part of the model), the RVI increases for the entire growth season, as was
originally expected. In addition, the RVI shows a rapid increase and subsequent decrease every time
the rain deficit drops to (near) zero, a phenomenon that hcrop was designed for. Lastly, the growth rate
decreases in cluster 1 during the long drought of the end of June to the beginning of August 2018. This
effect is modelled by the growth inhibitor icropg and is governed by the model parameter Ccrop

3 . This is
also exactly the difference between cluster 0 and 1. Cluster 0 seem to grow uninhibitedly during the
drought, which is best modelled by a very high Ccrop

3 .

Cluster 2 is even more extreme than cluster 1: its RVI decreases during the drought of July. This is best
modelled by an even lower Ccrop

3 , so that the model expects no growth during times of high rain deficit.
This matches with the (small) correlation between these clusters and irrigation that was found in table
4. Cluster 2 has less overlap with the irrigation validation data, and correspondingly it suffers the most
from rain deficits. Once again, this gives some support to the validity of the validation data. However,
the correlation is far too weak to build a classifier based on only this information.

(a)
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(b)

(c)

Figure 18: Average time series of parcels in the three large clusters in Ccrop
1 and Ccrop

3 of 2018, see

table 4 and figure 19. The vertical green line marked t0 represents the median of tparcel0 in each cluster.

The spread in tparcel0 is quite large, so the accuracy of this indication is limited.

7.2 Clusters based on hcrop
min

Figure 19: Definition of clusters in hcrop
min .

In section 6.2, we found that hcrop
min < 1

compared to hcrop
min = 1 leads to an im-

proved fit quality for only a minority of the
parcels. To investigate why this is the case,
the parcels are clustered according to their
hcrop
min value and the quality of the fit com-

pared to the base case h = 1. This
is depicted in figure 19. The time se-
ries of the normalized RVI, averaged over the
parcels in each cluster are plotted in figure
20.

The RVI time series show one important difference
between the two clusters. In cluster 0, the RVI
decreases rapidly by approximately 0.3 in the first
month after 19-03. On the other hand, the parcels in cluster 1 only decrease by about 0.1 in the same
period. After the end of April, the RVI behaves nearly identically for both clusters.
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This effect reveals an error in our approach for hcrop. Remember that the model scales the estimate of
vi − v0 with the fraction 0 ≤ hcrop

min ≤ hcrop(rd(t)) ≤ 1, where hcrop ↓ hcrop
min as rd(t) → ∞ (see equation

(3.9)). The rationale behind this was that vi−v0 decreases as rd(t) increases. However, for many parcels,
v0 > vi for most i. As a result, hcrop causes the modelled vi − v0 to increase rather than decrease, as
the vi − v0 are negative. Because of this, hcrop

min < 1 causes the model to predict higher measurements
during rain deficits, exactly the opposite of what happens in practice. This is the reason the calibration
algorithm converges to hcrop

min = 1 for the majority of parcels.

The smaller set of parcels in cluster 1 have a positive normalized RVI during the period of low rain deficit
(where RVI peaks). These can be accurately modelled by hcrop. Unfortunately, the magnitude of hcrop

min

will be mostly determined by the average normalized RVI (i.e. how positive or negative the RVI is on
average) instead of actual correlation with the rain deficit. Therefore, it is unlikely that this clustering
will contain useful information on differences between parcels. In section 8.3.3 we will discuss how the
application of hcrop in the model can be improved.

(a)

(b)

Figure 20: Average time series of 2019 of parcels in each of the clusters of hcrop
min as defined in figure 19.

The vertical green line marked t0 represents the median of tparcel0 in each cluster.

Table 5 gives the number of parcels in each cluster as well as the percentage of irrigated parcels (accord-
ing to the validation data). A t-test with null hypothesis that the irrigation probability is equal for both
clusters can be used to obtain a p-value for the clustering-irrigation correlation. Somewhat unexpectedly,
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there is a statistically significant correlation (p-value 2.08 · 10−6) between this clustering and irrigation.
A priori we might have expected hcrop

min = 1 (cluster 0) to correlate with irrigation, as a higher hcrop
min

indicates rain deficit independence, which can be the result of irrigation. However, as just discovered,
hcrop
min = 1 indicates a drop in RVI in the first set of measurements rather than an independence of rain

deficits.

Instead, we can postulate that the difference in drop in RVI itself might be the result of a difference in
irrigation. As can be seen in figure 20a, the negative derivative of the RVI has three peaks around the
first three peaks of the rain deficit (a slight delay can be caused by the smoothing). These parts are the
biggest difference with figure 20b, where these negative peaks in derivative are far less pronounced. This
is peculiar, as we believe this first period of decrease in RVI to be caused by the destruction of a catch
crop before the potatoes are planted (see section 6.1).

Table 5: The number of parcels and percentage of parcels that received irrigation according to the
validation data (see section 2.5) in each of the clusters defined in figure 19.

2019
Cluster # parcels % irrigated

0 829 33.53
1 337 20.77
all 1167 29.91

7.3 Clusters based on tparcel0 +∆tcrop1 and Ccrop
2

For the bilinear basic model parameterization (i.e. g linear, pcrop bilinear, tcrop0 variable and other model

parameters constant), the most interesting clusters can be found in Ccrop
2 and tparcel0 +∆tcrop1 .

Figure 21 shows scatter plots between tparcel0 and ∆tcrop1 for the years 2019 and 2020. There are some

very clear diagonal lines, indicating that tparcel1 = tparcel0 +∆tcrop1 tends to cluster around certain values.

Evidently, rather than the start of the second growth phase tparcel1 being determined by a crop-dependent
but parcel-independent ”duration of the first growth phase”, the transition to the second growth phase
is fitted to specific moments in time. Note that this does not necessarily mean that there is an actual
growth phase transition at that moment; it can also be the result of synchronous environmental factors,
such as rainfall.

The clusters for Ccrop
2 are simple. As shown in figure 22, Ccrop

2 can be separated in two qualitatively
different clusters: Ccrop

2 > 0 and Ccrop
2 < 0. Apparently, there is a distinction between parcels that have

a decreasing RVI in the latter part of the time series (i.e. the part that gets marked as the second growth
phase), and parcels that experience growth instead.

In this section, only the years 2019 and 2020 are investigated. This has two reasons. Firstly, 2018 and
2021 are less homogeneous in tparcel1 (see appendix C.2). Secondly, Ccrop

2 < 0 for the majority of parcels
in 2019, whereas Ccrop

2 > 0 for the majority of parcels in 2020, as we will see in table 6. Therefore, it
will be informative to investigate the difference between these years.
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(a) (b)

Figure 21: Scatter plots between parameters tparcel0 and ∆tcrop1 for the years 2019 and 2020. The model

parameterization used to generate these images is defined by bilinear pcrop with tparcel0 variable and all

other parameters fixed. The clear diagonal lines indicate that tparcel0 +∆tcrop1 tends to cluster.

Parcels can be divided into six clusters based on their tparcel1 and Ccrop
2 . The definition of the clusters

is depicted in figure 22. For each of these clusters, the number of parcels as well as the percentage of
irrigated parcels (according to the validation data) are given in table 6. A t-test with null hypothesis
that the irrigation probability is equal for both clusters can be used to obtain a p-value for the clustering-
irrigation correlation. Only two clusters have a statistically significant variation (p-value smaller than
0.05) from the mean irrigation rate: cluster 0 (p-value 6.71 · 10−4) cluster 3 (p-value 8.38 · 10−3) of 2020
and cluster 5 (p-vaue 1.06 · 10−2).

(a) (b)

Figure 22: Definition of clusters in the combination of Ccrop
2 and tparcel1 = tparcel0 +∆tcrop1 .
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Table 6: The number of parcels and percentage of irrigated parcels (according to the validation data) in
each of the clusters defined in figure 22.

2019 2020
Cluster # parcels % irrigated # parcels % irrigated

0 8 25.0 217 24.88
1 233 30.04 64 37.5
2 45 31.11 374 33.16
3 696 31.47 292 39.38
4 26 30.77 120 35.83
5 159 22.64 35 28.57
all 1167 29.91 1102 33.58

An explanation for why parcels can be divided into these six clusters can be found by looking at the av-
erage time series of each cluster. These average time series are shown in figures 23 to 26 for cluster 0 to 3
respectively, and cluster 5 from 2019 and cluster 4 from 2020 are shown in 27. Cluster 0, 2 and 4 for 2019
and cluster 5 for 2020 are very sparsely populated and will be left out of this investigation. In all these fig-
ures, the medians of tparcel0 and tparcel1 = tparcel0 +∆tcrop1 of are marked by a green and yellow vertical line.

Figure 23 shows the average time series of the parcels in cluster 0 for 2020. In this figure, the start of the
second growth phase coincides with the bump in normalized RVI at the beginning of May. This makes
sense, because the first phase then has strictly increasing RVI, which yields a good fit with our model.
On the other hand, the peak at the first of June is slightly lower than the RVI at the end of year, which
is the reason positive Ccrop

2 . This is also explains why there are almost no parcels in this cluster for 2019.
August 2019 ended with a period of rain deficit, which cased RVI to decrease. As a result, the RVI at
the end of August almost never exceeds the peak at the start of May.

Figure 24 shows the average time series of the parcels in cluster 1 for 2019 and 2020. Parcels in cluster 1
have a negative Ccrop

2 and a tparcel1 = tparcel0 +∆tcrop1 that coincides with the RVI peak at the beginning
of May, similar to cluster 0 of 2020. Unlike cluster 0, however, the bump around 15 June decreases as
much as it increases in both 2019 and 2020. As a result, the latter part of the time series is approximately
level with the dip in the middle of May. Because of this, the most optimal fit can be achieved by placing
the phase transition at the peak of the first bump, and fitting a negative slope to the end of the year.
The period of monotonous increase before the peak then allows a very accurate fit for the first part of
the growth season.

Interestingly, in both years, cluster 1 has a significantly higher normalized RVI than the average (see
figures 14b and 14c) for the majority of the time series. This can mainly be attributed to a significant
increase in RVI between approximately 22 April and 3 May (2019) and 12 April and 24 April (2020) that
is absent in cluster 0. This period of increase in RVI is peculiar, as it mostly coincides with a high rain
deficit, especially for 2020.

One can feasibly hypothesize that this period of increase might be the result of irrigation. This could also
(partly) explain the difference that causes the actual difference in model parameters: the behaviour of
the bump in the middle of June. The crop is less hampered by the drought due to the irrigation, resulting
in a more fully grown crop by the time rain in June falls. As a result, the crop does not experience a very
significant growth in June, but only a temporary increase in water content. Once the drought returns,
the RVI reverts to its old value as the crop water content decreases. On the other hand, unirrigated crops
in cluster 0 make a growth spurt when enough water is available in June. The RVI then never drops
down to the RVI from before the rain, as the crop growth is not reverted in the subsequent drought.
Comparing this hypothesis with the validation data, we find that cluster 1 does indeed show a slightly
above average irrigation rate, but it is not statistically significant. On the other hand, cluster 0 of 2020
does have a significantly lower irrigation rate, which lends a measure of support to this hypothesis.
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Figure 23: Average time series of parcels of cluster 0 as defined in figure 22. The vertical green line
marked t0 and the vertical yellow line marked t1 represent the medians of respectively tparcel0

tparcel1 = tparcel0 +∆tcrop1 in this cluster.

(a)

(b)

Figure 24: Average time series of parcels of cluster 1 as defined in figure 22. tparcel0 and

tparcel1 = tparcel0 +∆tcrop1 are the medians of the corresponding model parameters in this cluster.
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Figures 25 and 26 show the average time series of the parcels of respectively cluster 2 for 2020 and 3
for 2019 and 2020. The start of the second growth phase tcrop1 coincides with the RVI peak in June for
each of the other three time series. The drop in RVI after the peak in the middle of June is considerably
larger for cluster 3 parcels than cluster 2 parcels. As a result, parcels in cluster 3 are best modelled by
negative Ccrop

2 , reflecting the drop in RVI after the peak around June 15. On the other hand, the RVI
of cluster 2 climbs more in the latter half of August than it dropped between June 15 and August 15.
As such, a positive Ccrop

2 is a better fit to these parcels

A possible explanation why the parcels in cluster 3 experience a more significant drop when the rain
deficit once again accumulates at the end of June, is that the parcels in cluster 2 received irrigation
after this point, whereas the parcels of cluster 3 did not. Once again, there is some agreement in the
validation data. Cluster 3 has a greater irrigation level to a (barely) statistically significant level (p-value
4.89 · 10−3). However, both clusters still have a significant number of both irrigated and non-irrigated
parcels, so we cannot conclude that the difference between parcels is caused by irrigation alone.

(a)

Figure 25: Average time series of parcels of cluster 2 as defined in figure 22. tparcel0 and

tparcel1 = tparcel0 +∆tcrop1 are the medians of the corresponding model parameters in this cluster.

(a)
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(b)

Figure 26: Average time series of parcels of cluster 3 as defined in figure 22. The vertical green line
marked t0 and the vertical yellow line marked t1 represent the medians of respectively tparcel0

tparcel1 = tparcel0 +∆tcrop1 in this cluster.

Figure 27 shows the average time series of the parcels in cluster 5 for 2019 and cluster 4 for 2020. Both
these are cluster for very high tparcel1 = tparcel0 +∆tcrop1 . However, cluster 5 has negative Ccrop

2 whereas
cluster 4 has positive Ccrop

2 . Remember that cluster 4 in 2019 and cluster 5 in 2020 are both almost

empty. An explanation can be found by comparing figure 27a and 26b. For both clusters, tparcel1 is so
high that only a small set of measurements fall into the second phase. For 2019, the rain deficit peaks
at the end of August, whereas for 2020 it remains flat at zero in the corresponding period. As a result,
the RVI decreases in the last few measurements of 2019, while it increases in late August 2020. This dif-
ference in the rain deficit of this period causes the difference in the sizes of clusters 1 and 4 of these years.

It is difficult to find out why the parcels in these clusters converge to such a high tparcel1 . One reason
might be the relatively low bump at the beginning of May (compared to the other clusters), especially
for 2019. Yet, the difference with clusters 0 and 1 does not seem significant enough to fully explain this.
Hence, it is not unlikely that the calibration algorithm converged to a local minimum for cluster 4 and
5 while the global minimum was actually near cluster 0 or elsewhere. Alternatively, cluster 0 could be
the result of convergence to a local minimum, with the real optimum being near cluster 2 or 5.
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(a)

(b)

Figure 27: Average time series of parcels of cluster 5 for 2019 and cluster 4 for 2020, as defined in
figure 22. The vertical green line marked t0 and the vertical yellow line marked t1 represent the medians

of respectively tparcel0 tparcel1 = tparcel0 +∆tcrop1 in this cluster.

We have found that four out of six clusters in tparcel1 = tparcel0 + ∆tcrop1 are caused by the two peaks
in May and June. This is to be expected, because they represent the most significant change in the
derivative of RVI. This means that rather than actually modelling a 2-phase growth season, the bilinear
fit is calibrated to the rain-deficit induced fluctuations in RVI. This can actually still be useful, as these
fluctuations are likely to correlate with environmental factors such as irrigation. More will be discussed
on this in section 8.1.2.

Looking at the average time series of 2018 and 2021 in figure 14a and 14d, it becomes clear why the
clusters in tparcel1 are less well-defined for 2018 and 2021. Where the time series of 2019 and 2020 have
two clear bumps around the middle of the time series, 2021 has multiple smaller bumps (and one clear

valley), and 2018 has no significant bumps after the beginning of May. Hence, optimal tparcel1 is more
diverse and more susceptible to noise than in 2019 and 2020.
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8 Discussion

In this section, we will discuss some of our findings in more depth. This section consists of four parts.

In section 8.1, we will discuss possible causes of some of the important features of the behaviour of the
RVI. Due to our lack of validation data, we have know way to validate the hypotheses we propose here.
Therefore, we make some suggestions how future research can investigate these phenomena and further
the understanding of the behaviour of the RVI.

In section 8.2, we discuss why the calibration algorithms give such poor performance for the two-phase
models (bilinear and exponential) and especially the quadratic model. In addition, we make some sug-
gestions on how to refine the implementation to reduce computation time and improve the consistency
of the results.

In section 8.3 we discuss some of the limitations of the current model and its implementation. We then
make some suggestions which model features are the most useful and how to further improve the related
parameterization.

Finally, in section 8.4, we discuss the most important feature of the clusterings: its correlation with the
precipitation deficit. We discuss possible explanations for the statistically significant correlation that
was obtained earlier, and show some of the problems with these hypotheses. Lastly, we give an outline
on how an irrigation classifier can be utilized to improve the watervraagprognosetool.

8.1 Behaviour of RVI during the growth season

In this section, we will discuss three of the most important, unexpected features of the behaviour of
the RVI: the high correlation with rain deficit (section 8.1.1), the lack of long-term growth of the RVI
(section 8.1.2), and the lack of obvious correlation with the irrigation data (section 8.4.1). For each, we
will discuss possible causes and make some suggestions how these causes can be investigated in future
research.

The main conclusion of this section is that in order to detect the subtle differences in RVI caused by
irrigation, the model and methodology need to be tuned to very specifically look for these differences. In
order to do that, a better understanding of how environmental factors influence the RVI is needed. To
achieve this, future research is best served by collecting some more detailed data on what is happening
in the fields, either through field experiments or through closer collaboration with the farmers.

8.1.1 Correlation with rain deficit

One of the most promising findings of this thesis is the correlation between RVI (radar vegetation index)
and rain deficit. In the formulation of the model, we postulated that vegetation water content might
have a strong correlation with rain deficit. As SAR backscatter is responsive to water in the plant, the
backscatter and RVI should similarly correlate with the rain deficit. Scaling factor hcrop(rd(t)) was de-
signed to model this effect. Unfortunately, this did not yet work as intended due to a flaky definition of v0.

As made visible in the smoothed RVI time series (see figure 14), almost all of the large changes in RVI
correlate precisely with, and are therefore probably caused by, changes in the rain deficit. This is such a
dominant confirmation of our hypothesis that the influence of rain deficit on plant water content should
be visible in a remote SAR image, that it calls for a critical analysis of the cause of these fluctuations.
This is even more so because crop growth seems to have barely any influence on the RVI. There are two
alternative explanations for the correlation between rain deficit and RVI.

Firstly, the clouds that are inevitably more present during a rainy season might influence the measure-
ments. Note that one or two positive outliers (possibly caused by clouds) will be visualised as a smooth
bump due to the smoothing applied on the time series. Even though atmospheric effects are filtered
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during the image preprocessing, this is not perfect, especially when the clouds cover the majority of the
image. However, the bumps in the RVI cover much longer time periods than what could feasibly be
caused by clouds. For instance, the June bump of 2019 and 2020 consists of about 12 subsequent, visibly
increased measurements. The influence of clouds can be further investigated by comparing the RVI over
areas without vegetation in with images of high rain deficit.

Secondly, the soil moisture can affect the RVI. As was explained in section 2.1.1, backscatter measure-
ments are a combination of scatter from the vegetation and scatter from the soil. As such, changes in
soil composition are likely to have an influence on the measurements. Especially for a crop like potatoes
that does not have a very abundant biomass above the ground, the contribution of soil will be relatively
more pronounced. If the soil moisture is the main driving force of changes in RVI, one would expect
the fluctuations to decrease in magnitude during the growth season, as the crop canopy becomes more
abundant. Indeed, this effect is somewhat visible in the time series of figure 14. However, the deflation
of the magnitude of RVI fluctuations is much more significant in the time series of corn parcels, as can
be seen in figure 33 of appendix B.2. As corn has a much more abundant canopy than potatoes, a larger
part of the soil signal is blocked by the vegetation. As a result, the fluctuations in RVI show a much
greater decrease in magnitude for corn parcels than for potato parcels.

The ratio between the contribution of soil moisture and vegetation water content can be estimated in a
small-scale field test where water is injected rapidly in a dry field. In principle, the contribution to the
change in RVI of plant water content should be delayed compared to that of soil moisture. Therefore,
the effect on the RVI of both components can be estimated by measuring the evolution of the radio
backscatter in the minutes following the injection. Since measurements need to be taken on the second
to minute scale, a stationary radar will need to be used. Though the limited size of the antenna limits
spatial resolution, this should not be a problem due to the proximity of the area of interest. Furthermore,
to get a decent separation between the contribution of vegetation water content and soil moisture, the
water should probably be injected considerably faster than regular irrigation systems do. To further
increase precision, this can be combined with measurements of the plant water content with a second to
minutes interval.

This experiment can help improve the understanding of the underlying mechanisms influencing the RVI.
This is useful, because soil moisture is just as much an indicator of irrigation as high vegetation water
content. Thus, regardless of the mechanism, irrigated parcels can be expected to have smaller rain
deficit-dependent oscillations than unirrigated parcels. In addition, the RVI fluctuations as a result of
rain deficits are modelled by hcrop, which also acts as a filter for these fluctuations. The remaining model
parameters can then be used to model vegetation behaviour such as growth.

8.1.2 Lack of growth of the RVI

One of the most important assumptions in the development of the model was that RVI would increase
during the growth season. However, this was not at all clear in the data. One might hypothesize that
crop growth becomes significant only in August or later. The time series of 2018 and 2020 give some
support for this as they show some significant increase in the month of August (see figures 14a and 14c).
However, this also coincides with the a decrease in rain deficit, so it might be a temporary increase
similar to the earlier bumps in RVI. In addition, above-ground biomass of potato plants typically peak
in July or August [51].

Another possibility is that the growth is simply dwarfed by the rain-dependent fluctuations in RVI.
This hypothesis is problematic because the RVI is literally designed to have a good correlation with
vegetation abundance, and to decorrelate as much as possible with environmental factors such as soil
moisture. Furthermore, there is an additional problem: how come the RVI drops so significantly during
the first month after 19 March? As we mentioned in section 6.1, we believe this drop in RVI is likely
caused by the presence of a catch crop that is destroyed before the potatoes are planted. The destruc-
tion usually happens chemically or mechanically [52]. In both cases, it takes time for the biomass to
break down into the soil, so it makes sense for the drop in RVI to be spread over a month-long time period.
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What is intriguing is the magnitude of the drop. Especially in 2018 and 2019, the RVI falls much further
than either the rain deficit-dependent fluctuations, or the increase in the growth period of the main crop.
This would seem to imply that the presence of a catch crop has greater influence on the RVI than potato
plants do. From this, it seems to be possible for plant biomass to impact the RVI more than rain deficit
can. This suggests an interesting direction for future research: studying the growth in RVI during the
growth phase of the catch crop. This can help to improve understanding of RVI development during the
growth phase of a crop, which in turn can provide insight into why the growth of potato and corn plants
are barely visible in the RVI time series.

In this thesis, data analysis was performed on images from March up to and including August. We
decided to use no images after August to reduce the necessity of fitting ∆tcrop2 , and because rain deficits
are most significant in the summer months. However, the downside of this is that the information on
the remaining part of the year could have provided some additional insight in the development of RVI.
Thus, a useful next step for future research would be to process the remaining images of one or more
years. This can contribute to the understanding of the RVI development.

Development and validation of irrigation detection methodology would become significantly easier with
a better understanding of the relation between vegetation abundance and RVI. In this section, we made
some suggestions that are easy to implement as they only require readily available data. However, these
will merely help to identify some correlation between the data and environmental factors. Ideally, to
identify proper causation in these systems, future research should perform field experiments similar to
the experiments suggested in the previous section.

8.1.3 Correlation with irrigation data

A priori, we expected to see several differences in the behaviour of the RVI of irrigated and non-irrigated
parcels: lower correlation with rain deficits (i.e. lower magnitude of rain deficit-dependent bumps in RVI)
and a greater growth that is less abated by rain deficits. However, the smoothed time series averaged
over irrigated parcels (according to the validation data) show almost no difference with those averaged
over non-irrigated parcels, see appendix B.1.

In none of the years, the bumps in the RVI are significantly abated for the irrigated parcels. Only the
2018 time series shows some behaviour that is in line with our expectations: the growth in the dry
period of July is larger for the irrigated parcels than for their counterparts. In section 7.1, we saw this
behaviour reflected in the lower irrigation rate of cluster 2 in 2018 in table 4. This gives some hope that
rain deficit-dependent growth is visible in RVI time series, and can be detected by our methodology.
However, no such things seem visible in 2019 and 2020. In addition, the correlation between irrigation
and cluster 2, though statistically significant, is far too weak to build a proper classifier.

This is the main reason we doubt the validity, or at least the utility, of the validation data. Though
there clearly seems to be some correlation with RVI, it is not consistent enough. Remember that the
validation data marks parcels that have been irrigated at least once during the year. This provides a
possible explanation why they do not yield a consistent difference in the RVI time series: some parcels
could have been irrigated less frequently and/or in different periods of the year than others.

On the other hand, the validation data is not ambiguous on the non-irrigated parcels. These parcels
have supposedly not been irrigated once in the entire year. Hence, none of these parcels should show
behaviour similar to a parcel that received regular irrigation. Hence, it should be possible to identify
clear clusters with a very high rate of irrigation. There are no such clusters in the results of this project.
Of course, the methodology still has quite a lot of room for improvement, as we will discuss in sections
8.2 and 8.3. Therefore, these clusters might still appear when the methodology is optimized further.

So far, this project has mostly assumed that irrigation behaves very similarly to rain. Parcels that receive
irrigation in periods of drought are expected to behave as if the rain deficit remained at a low level. Yet,
it is very possible that that is actually not quite the case. For example, water injection by irrigation
might be more gradual than rainfall, resulting in lower (but perhaps more consistent) soil moisture. As
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we also postulated that soil moisture is the main driving force behind the rain deficit-coupled oscillations
in RVI, this could explain why the magnitude of these oscillations is no smaller for irrigated parcels
compared to non-irrigated parcels

To investigate exactly how irrigation influences SAR measurements, more precise irrigation data is
needed. Ideally, future research would perform some proper field experiments where multiple parcels
are given varying levels of irrigation. More realistically, precise dates of irrigation can be obtained for a
set of parcels through close collaboration with farmers. Coupling knowledge of irrigation dates and/or
levels with RVI measurements, it might be possible to identify features of the RVI time series that are
indicators of irrigation. The model parameterization can then be tuned to optimize sensitivity to these
features, which will greatly improve correlations between clusters and irrigation.

8.2 Calibration

In sections 5.1 and 5.2 we found that the two-phase model parameterizations (i.e. the bilinear and
exponential models) and the quadratic model give poor performance both in computation time and
consistency of their results. In this section, we will discuss why this is the case and give some suggestions
on how the implementation can be improved to improve performance. However, due to the lack of growth
in RVI, the linear model will probably be more useful than the more advanced models discussed here.
We will further elaborate on this in section 8.3.2.

8.2.1 Two-phase model parameterizations

The bilinear and, to a lesser extend, the exponential model parameterizations show a high variance in
the results when the model is calibrated to the same data multiple times. This phenomenon is shown
in figure 11e and 11f. Clearly, the hybrid method developed in this thesis is not capable of reliably
converging to the global minimum. In addition, in section 5.3, we found that Ccrop

1 ∈ Cboth gives hugely
better performance than Ccrop

1 ∈ Cnllsq. Normally, one would expect the non-linear least squares steps
to be able to accurately fit Ccrop

1 , because the error statistic is smooth in Ccrop
1 with a single, global

minimum. Yet, this is not the case here.

The reason for these phenomena and for why the two-phase models are such a difficult case for calibration
is because tparcel0 and ∆tcrop1 are heavily coupled with most of the other parameters. That is to say, for

the bilinear model, the value of tparcel0 and ∆tcrop1 has a large impact on the location of the optimum
in Ccrop

1 and Ccrop
2 , and vice versa. This causes problems for the step-by-step calibration of the hybrid

method, which can be understood as follows.

When Ccrop
1 ∈ Cnllsq, t

parcel
0 and ∆tcrop1 are fitted in the differential evolution step using an estimate

for the rest of the parameters generated by an initial non-linear least squares. This estimate is almost
certainly not optimal, as made clear by the performance of non-linear least squares in figure 28f of ap-
pendix A.1. Given the sub-optimal estimate for Ccrop

1 ∈ Cnllsq, the optimum for tparcel0 and ∆tcrop1 are
unlikely to be at the global optimum of the system. As a result, even if differential evolution finds the
”optimal” tparcel0 and ∆tcrop1 given the guesses for the other parameters, these will not necessarily be
good estimates of their globally optimal values. Subsequently, the last non-linear least squares step can
only settle for a sub-optimal Ccrop

1 and Ccrop
2 , as the estimates for tparcel0 and ∆tcrop1 are rather poor.

Therefore, it is not surprising Ccrop
1 ∈ Cboth gives a better performance than Ccrop

1 ∈ Cnllsq. This

allows the differential evolution step to look for the joint optimum of tparcel0 , ∆tcrop1 and Ccrop
1 rather

than looking for each separately. However, this is also a problem, as every additional parameter in
differential evolution not only slows down the algorithm (see table 3), but also reduces the likelihood
of it finding the global optimum. The latter is actually demonstrated by the difference in fit quality
between Ccrop

2 ∈ Cnllsq and Ccrop
2 ∈ Cboth, see figure 12c. Even though the above argumentation why

Ccrop
1 ∈ Cboth outperforms Ccrop

1 ∈ Cnllsq also holds for Ccrop
2 (to a lesser extent, as it only depends on

tparcel0 +∆tcrop1 ), the exact opposite is happening when Ccrop
2 ∈ Cboth and Ccrop

2 ∈ Cnllsq are compared.
As mentioned, in section 5.3, the cause of this is that the additional parameter in differential evolution
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makes it more difficult for the algorithm to find the optimum. This is also the reason the hybrid method
considerably outperforms differential evolution for this case, see figure 28e of appendix A.1.

In addition to the two-phase models, the model including ∆tcrop2 suffers a similar problem. ∆tcrop2 is very
similar to ∆tcrop1 in terms of calibration, as the end of growth phase is basically a phase transition itself.
Thus, Ccrop

1 has a similar dependence on ∆tcrop2 as it does on ∆tcrop1 in the bilinear model. However, the
∆tcrop2 model has one less model parameter than the bilinear model. As a result, differential evolution
by itself actually gives a decent performance. In fact, the parcels where differential evolution and the

hybrid method give a large difference in quality
(

|Ehybrid−Edifev|
Ehybrid+Edifev

> 10−2
)
are actually more commonly

in favor of differential evolution than vice versa, as we saw in figure 10c. Clearly, differential evolution
has a better chance of avoiding local minima, because it can simultaneously calibrate the interdependent
Ccrop

1 and ∆tcrop2 .

8.2.2 Quadratic model parameterization

In section 5.1, we saw that the quadratic model is a bad case for our calibration methods. Linear least
squares gives a results of very poor quality (figure 28j). On the other hand, differential evolution and
the hybrid method are terribly slow (see table 3); considerably slower than they are for the exponential
method, which has 6 parameters instead of 4. Furthermore, the results of the hybrid method are con-
siderably inconsistent (see figure 11g), and differential evolution is likely no better.

These problems are probably caused by the artificial bound on Ccrop
5 and Ccrop

6 that ensures the solution
is real (see equation (3.35)). The RVI is often decreasing or approximately constant. As a result, in many
cases, the optimal values for Ccrop

5 and Ccrop
6 lie precisely on this bound as this implies zero growth.

Along the bound, the error statistic can still change. However, the gradient in the direction of the bound
is usually much steeper than the gradient along the bound. As a result, each calibration algorithm will
swiftly converge to the bound. After this point, convergence becomes more difficult, as there is only a
narrow region along the bound that has negative gradient.

The bound on Ccrop
5 and Ccrop

6 defines a linear curve from the origin into the top left quadrant of
(Ccrop

5 , Ccrop
6 ) space (i.e. the quadrant Ccrop

5 < 0 and Ccrop
6 > 0). The bound requires Ccrop

5 and Ccrop
6

to remain above this boundary. The way the bound is enforced (equation (3.36)) introduces a large
discontinuity in the derivative of the error statistic along the boundary. When the optimum is close
to the boundary line, differential evolution will experience difficulty converging towards it, as it has to
follow the curve through (Ccrop

5 , Ccrop
6 ) space. Due to the recombination constant CR (see section 4.3.2),

differential evolution is much better at following a gradient down one parameter, than at having to find
the exact direction of a curve that is a combination of two.

To be more precise, a step (∆Ccrop
5 ,∆Ccrop

6 ) with either ∆Ccrop
5 = 0 or ∆Ccrop

6 = 0 (but not both)
has probability of in the order of CR (exact value depending on the number of parameters and CR).
This allows the algorithm to swiftly converge when there is a gradient in the direction of any of the
parameters. Similarly, a step (∆Ccrop

5 ,∆Ccrop
6 ) with both ∆Ccrop

5 ̸= 0 and ∆Ccrop
6 ̸= 0 has probability

in the order of (1 - CR). However, for (∆Ccrop
5 ,∆Ccrop

6 ) to be near parallel to some curve defined by
the bound on Ccrop

5 and Ccrop
6 , C1+F (C2−C3) (see algorithm 2) has to to be close to the direction of

the line. It can take a large number of iterations before this occurs, which is the reason the calibration
of the quadratic model takes much longer than other models of at least as many parameters (see table 3).

There are several possible ways to improve this. Firstly, one could attempt rotating the parameter space
so that the bound falls in the direction of one of the parameters instead. However, this would mean
Ccrop

6 > 0 would no longer be in the direction of one of the parameters, which is likely to give similar
problems. Thus, it would be better to twist the parameter space by setting

C
′crop
5 = Ccrop

6 + 4Ccrop
5

max(0, vi−1 − v0)

hcrop(rd(ti−1))
. (8.1)

In the space of (C
′crop
5 , Ccrop

6 ), the bounds reduce to Ccrop
5 > 0 and Ccrop

6 > 0, which can be much more
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easily enforced by the algorithm.

Secondly, one can try to make the increase in error statistic in the artificial bound more gradual (equation
(3.36)). By adding a small slope to the error statistic that goes from the direction of the bound, one can
ensure the optimum is always in the real domain, while simultaneously allowing the algorithm to step
into the domain of non-real solutions, which can considerably ease convergence.

Thirdly, the algorithm can be split into two steps. In the first step, the calibration is run with a relatively
loose stopping criterion. If this converges to near the bound of Ccrop

5 and Ccrop
6 ), the calibration is

repeated, but it only looks for solutions on the bound, thus reducing the parameter space by one. This
is a smooth error function, which should yield fast convergence with any of the calibration methods.

8.3 The vegetation index model

In this section, we will discuss how the parameterization and the implementation of the model can be
improved to better reflect system behaviour. The most important conclusion is that the utilization of
hcrop needs to be improved. This will allow better modelling of the rain deficit dependent oscillations
in RVI. The implementation of hcrop can be improved in two ways. Most importantly, the estimation
of v0 needs to be improved to prevent negative values for the normalized RVI (section 8.3.1). Secondly,
the parameterization of hcrop can be expanded to more accurately reflect system behaviour. The latter
can be worthwhile because the rain deficit dependent fluctuations in RVI play such a dominant role in
system behaviour.

8.3.1 Normalization of RVI

As shown in section 6.1, the assumption of that parcels are empty before the start of the growth season
was incorrect for most parcels. In reality, most parcels show a large drop in RVI right before the potatoes
are planted. As we explained in section 6.1, this drop is likely caused by the presence of a catch crop that
is destroyed right before the main crop is planted. This skewed the results of this thesis as the model
was not prepared to handle time series with mostly negative vi − v0. As a consequence, three aspects of
the model did not function as intended.

Firstly, and most importantly, the modelling of rain deficit-induced temporary drops in RVI by hcrop

did not be fitted to most of the data. This is especially problematic, because the rain deficit-coupled
increases and decreases of RVI could be clearly recognized in the time series.

Secondly and thirdly, the exponential and quadratic model reduced to the equivalent of the linear model.
Therefore, the results from these models could not be contribute to improving the understanding of
system behaviour. ”Fortunately”, the time series gave no indication in the data that either model would
be a good fit to the data.

Because of the importance of hcrop, one of the most important improvements to the model is to find
an alternative definition of the normalized RVI that avoids negative values. There are several possible
approaches for this.

One method is to find a better way to define vcrop0 . An important note here is that vcrop0 is one of the
method used to properly combine the measurements from the four different orbits, so it would be a large
advantage to preserve this property. v0 can be defined on one of three different scales.

Firstly, one can take the minimum of the RVI time series as v0. As this is quite sensitive to outliers, it
is probably better to use some low percentile instead. This can then be further offset with a constant,
as this effectively weighs down near-zero vi − v0 values in the fit of hcrop. A good offset is probably
best determined empirically. Secondly, one can expand the previous method by using data from multiple
years in the definition of v0. It is reasonable to assume v0 remains constant over a specific parcel for
multiple years.
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Thirdly, one can attempt to set a standard for v0 that is applicable on all parcels. This is the most
complicated approach, as it will require some research to validate spatial coherence of v0 and to identify
environmental factors that have a significant influence on v0. For instance, v0 is probably dependent on
soil type, as that is the largest contributor to SAR backscatter in the absence (or even in the presence)
of vegetation.

An alternative to estimating v0 is the introduction of an orbit-dependent offset that equalizes the average
vi of each orbit. In addition to that, this offset can be used to decrease the RVI to a level that is optimal
for hcrop, either with a fixed offset for all parcels, or a fixed average vi after the offset. This is similar to
the offset suggested as an extension to v0 earlier, and it is probably best to determine the optimal offset
empirically.

8.3.2 Modelling growth of RVI

One of the most important assumptions during the development of model, was that RVI increases during
the growth season as a result of crop growth. However, as we discussed in section 8.1.2, this was not
at all clear in the data. As a result, our models were largely overfitting the data. The bilinear model
found optimal moments of phase transitions around bumps in the RVI that are much more likely to
be caused by temporary mechanisms rather than long-term crop growth. These fits can actually be
informative, as the size and duration of the bumps can be an indicator of environmental factors such as
irrigation. However, this is obviously not what these models were designed for. To achieve that aim, it
would be more effective to design model features around these phenomena, as we attempted to realize
with hcrop

min . In fact, due to the very limited growth, using any growth model beyond linear (with some
growth inhibitor icropg (rd)) does not make sense.

Hence, our recommendations for this model is to use the linear model that was developed in this thesis.
Develop new model features (or extent existing ones) to model phenomena that now seem to make two-
phase parameterizations like the bilinear model useful. Suggestions for this will be given in the section
8.3.3. An additional benefit of the linear model is that the two-phase models are much more difficult to
calibrate, as we discussed in section 8.2.1.

8.3.3 Scatter modifier hcrop

As hcrop is of such importance, we will give some suggestions on how it can be further extended in the
future.

Firstly, an important area of optimization is the definition of the rain deficit rd(t). In this thesis a cumu-
lative rain deficit with a 6-day memory was used. Cumulative rain deficit is usually defined with a longer
memory. The watervraagprognosetool (WVP) itself uses a 30-day memory, while the KNMI calculates
it since the beginning of the growth season [53]. We chose for a relatively short memory, because a
visual inspection of the data revealed that the RVI tended to correlate better with the derivative of the
30-day rain deficit than with the rain deficit itself. This choice, however, has received no further atten-
tion in this thesis. As such, there is likely some room for optimization. A visual inspection of the time
series seems to imply that the RVI correlates better with an even shorter memory cumulative rain deficit.

In addition, rain deficit has been capped at zero, as we assumed that a negative rain deficit (i.e. a
precipitation surplus) would have no significant impact on crop growth or vegetation water content.
However, the RVI seems to be increasing for some time even after the rain deficit has become zero (see
figure 14). This makes sense under the hypothesis that soil moisture has a large influence on RVI, as soil
moisture can probably still increase significantly after the six day rain deficit has hit zero. Therefore, it
is possible the accuracy of hcrop will improve when the definition of the rain deficit allows negative values.

Secondly, hcrop
min is currently defined using the same model parameters as the growth inhibitor icropg . This

helps reduce computational complexity of calibration. However, the fluctuations in RVI that correlate
with rain deficit are much more dominant than any growth visible in the time series. As such, it is likely
that hcrop

min and the RVI fluctuations will be dominant in the calibration of Ccrop
3 and rdcropmax. This can be
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a problem if the fluctuations in RVI are not of particular interest, for instance because they are possibly
caused by soil moisture rather than vegetation water content (see section 8.1.1). In that scenario, hcrop

min

can be used as a filter for these fluctuations. This way, the aspects of the model modelling growth will
correlate better with the long-term trends instead of the short-term rain deficit interactions.

Thirdly, the utility of rdcropmax can use some further research. In this project, we quickly sidelined this
parameter when it did not yield a very significant improvements in figure 15c. However, it might give
better results when the normalized RVI is defined such that it is mostly positive instead of negative. In
addition, using a separate rdcropmax for hcrop

min and for the growth modelling can further improve its perfor-
mance. Furthermore, if the rain deficit is allowed negative values, rdcropmax will almost certainly be needed
to put a cap how large the influence of a precipitation surplus can be.

Lastly, hcrop
min is currently defined as a modification factor to the vegetation’s impact on the RVI. However,

if our earlier hypothesis is true that the fluctuations in RVI have more to do with soil moisture, they
would be modelled more accurately with an additive term. In fact, it might be even more accurate
to model it the other way around: an additive term that is dampened by vegetation size. After all,
vegetation reduces the backscatter signal from the soil. This effect is visible in the RVI time series of
mostly 2021 for potatoes (figure 14d) and those of all years corn parcels (figure 33 in appendix B.2). In
these images, the magnitude of the rain deficit-correlated bumps reduces during the growth season. This
is exactly the opposite of the original expectation that such fluctuations should be caused by crop water
content, but it fits perfectly in the soil moisture hypothesis.

8.3.4 End of growth season ∆tcrop2

An interesting extension to the research would be to lengthen the time series with September and October.
The additional data from the remainder of the growth season will improve the calibration of the model
parameters, possibly revealing differences between parcels that were not visible before. However, this is
also tricky to handle, as the harvest will almost certainly be included into the time series. This can skew
the calibration if not handled properly, for instance by causing underestimation of the growth constant.
Therefore, the end of the growth season ∆tcrop2 will become more important. However, fitting ∆tcrop2

is similarly somewhat risky, as the lack of growth in RVI might cause optimal tparcel2 = tcrop0 + ∆tcrop2

estimate to be long before the harvest. This phenomenon was very clear when fitting ∆tcrop2 to the 2019
data in figure 15d.

A possible solution to this problem is to set strict bounds on tparcel2 . For most parcels, harvest will not

happen before September [41]. Therefore, setting September 1 as a lower bound to tparcel2 makes sense.
However, this is a little difficult to enforce in our current calibration approach, as we fit ∆tcrop2 instead of

tparcel2 . This makes it easy to set a minimum bound on the length of the growth season, but more difficult

to set a bound to the tparcel2 itself. If both bounds are needed, a diagonal bound in (tparcel0 ,∆tcrop2 ) space
will appear, which might cause similar problems to the ones we found for the quadratic model (see section
8.2.2).

8.4 Parcel clustering

In this section, we discuss possible causes for the correlation between the clustering and the irrigation
validation data (section 8.4.1). Here, we conclude that more detailed irrigation data is necessary to
validate that the correlation is actually caused by irrigation, rather than a mutual correlation with some
environmental factor. Lastly, we will give an outline how a decently accurate irrigation classifier can be
used to improve the irrigation prediction of the watervraagprognosetool in section 8.4.2.

8.4.1 Correlation with irrigation data

In each of the three clusterings that were discussed in section 7, there was some statistically significant
correlation between the clusters and the irrigation validation data. Unfortunately, these differences in
irrigation rate never exceed a factor two, meaning that any classifier based on these clusters will have
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very limited performance.

As we have seen, the clusters were mostly unrelated to any of the system features a certain model feature
was designed for. Instead, either the rain deficit-driven oscillations in RVI or relatively short differences
the derivative in RVI was what caused the distinctions. As a result, there was no directly obvious way
to explain correlations between model parameters and irrigation data. Nevertheless, for each case, we
managed to formulate a hypothesis on how irrigation might have caused the differences in time series
between different clusters. However, these differences are much more subtle and short-lived than we
had initially expected. Furthermore, if these differences are actually caused by irrigation, then one
would expect a much larger difference in irrigation rate. Though this is an indication that our hypothe-
ses linking irrigation to RVI behaviour is flawed, it can also be the validation data itself that is inaccurate.

In addition, for cluster 0 in (Ccrop
1 , Ccrop

3 ) (figure 17a), the clustering based on hcrop
min (figure 20), and

cluster 1 in (tparcel1 , Ccrop
2 ) (figure 24), the hypothesis was based on a difference in drop in RVI in the

first month of the time series. However, we believe that decrease in RVI was caused by the destruction
of a catch crop. This would imply that the parcels were irrigated while a catch crop was on it, or even
after the process of destroying the catch crop had already started. This does not seem likely. A hypo-
thetical explanation might be that the potato plants were planted while the catch crop biomass was still
decomposing (i.e. the biomass was still visible to the SAR image). The subsequent decrease in RVI was
caused by the further decomposition of the catch crop, but irrigation might have already taken place for
the newly planted potatoes. This hypothesis could be tested in future research by collaborating more
closely with the farmers, to obtain data on the exact dates of planting, irrigation and destruction of the
catch crops.

In the case that these differences are not caused by irrigation, an alternative hypothesis for the correlation
with irrigation rate is needed. One possibility is that the irrigation validation data correlates with other
environmental factors such as soil type or behaviour of the farmer, which in turn might cause the
differences between the RVI time series. It is not unlikely such correlation exists, because the irrigation
data is spatially correlated as can be seen in figure 6. This would also explain the low rate correlation. For
example, the areas indicated by the validation data might have a slightly higher percentage of a certain
soil type, but the difference is unlikely to be an order of magnitude. In the specific example of soil type,
this hypothesis can be tested by comparing clustering with a soil map. However, this investigation is
outside of the scope of this thesis.

8.4.2 Employment in the watervraagprognosetool

This project is a step towards improving the predictive power of the irrigation model in the watervraag-
prognosetool developed by Witteveen+Bos. In many of the previous sections of the discussion, we gave
reccomendations on how to improve the current methodology so that it can be used to classify irrigated
and non-irrigated parcels. If a classifier is developed that achieves a decent performance, it can be used
to improve the predictive power of the existing irrigation predictor in multiple ways.

Firstly, the information on the irrigation behaviour of recent years can be used to improve the irrigation
model. Currently, the irrigation model is based on data from the period 1911-2011. More recent and
more detailed data on irrigation can help to update and improve the model.

Secondly, continuous classifications of parcels during a growth season can be assimilated into a model
to improve its predictive power. One can feasibly assume that irrigation of a parcel has a high degree
of temporal coherence. If a field is irrigated at one point during a drought, it will likely continue to
be irrigated as long as the drought persists (or until harvest). Hence, the information of which parcels
received irrigation in recent weeks, should be usable to significantly improve to the prediction of future
irrigation rates.

The performance of this second approach is largely dependent on the length of time series necessary
to build an accurate classifier. This is a large advantage of the first approach. There, the irrigation
estimates can be based on the time series of the entire growth season (or the entire year, if the remaining
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months prove to be useful). Furthermore, both methods can also be combined. Improving the model
with time series from previous years is useful even when irrigation data of the current year is subsequently
assimilated. In addition, the assimilation procedure itself can be optimized using the data from previous
years. Therefore, the most logical first step is to build a classifier based on an entire growth season. This
can be used with data from recent years to improve the model. Subsequently, research can investigate
the possibility of further improving the model with irrigation data from the current year.

64



9 Conclusion

In this thesis, we investigated possibilities to detect irrigation of crop parcels by using remotely sensed
SAR images. We showed that irrigation detection based on a single image is infeasible. Instead, we
developed a methodology to classify parcels based on a time series of radar vegetation index (RVI)
measurements. This is achieved by modelling the evolution of RVI measurements, and clustering the
parcels based on calibration estimates of the model parameters. In this section, we summarize the main
conclusions of this thesis, structured according to the research questions posed in the introduction.

Q1. How can the evolution of Sentinel-1 SAR measurements during the growth phase of a crop be
modelled in the presence of rain deficits?

We successfully derived a model for the growth of RVI as a result of plant growth, taking into account the
influence of rain deficit. Our implementation this model has one important flaw. The RVI measurements
are normalized according to an estimated baseline RVI. The baseline RVI is consistently overestimated,
resulting in mostly negative normalized RVI. This is problematic, because multiple model features were
parameterized assuming positive normalized RVI. Most importantly, with the current parameterization,
the model cannot properly describe precipitation deficit-driven fluctuations in the RVI when the normal-
ized RVI is negative. These fluctuations are paramount to model system behaviour, so the first priority
for future research should be to improve the estimation of the baseline RVI.

Furthermore, an investigation of average RVI time series revealed an obstacle within the measurements
themselves. Here, we found that changes in the RVI are dominated by precipitation deficit dependent
fluctuations rather than plant growth. In addition, the influence of irrigation on the RVI is very subtle.
To develop an accurate classifier, it is important to uncover the features of the RVI time series that are
indicators of irrigation. To this end, future research is best served by collecting exact irrigation dates of
several parcels.

Q2. How can the model be efficiently and reliably calibrated to a large number of parcels?

The model has discontinuities in its derivatives with respect to multiple model parameters. Because of
this, reliably calibrating the model is difficult. Therefore, we customly designed a calibration method
for this problem that combines the standard methods non-linear least squares and differential evolution.
In this method, dubbed the hybrid method, only the parameters that perform poorly in non-linear
least squares are calibrated using the more computationally expensive differential evolution. The hybrid
method yields fairly consistent and qualitatively good results in reasonable computation time, especially
for some of the simpler model parameterizations.

Q3. How do the values of the calibrated model parameters correlate with irrigation?

We calibrated multiple different model parameterizations to RVI measurements of 1167 potato parcels
in a validation region. Several clusterings of the model parameters showed statistically significant corre-
lation with the irrigation validation data. The variation in irrigation rate never exceeded a factor two, so
it is not yet possible to build an accurate classifier based on these clusters. Nevertheless, this correlation
indicates that the methodology is sound. With more detailed irrigation data and an improved estimation
of v0, it might be possible to achieve a decent classification performance with this methodology.
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Appendices

A Additional figures for model and calibration method

validation

A.1 Method comparison for the basic fit functions

(a) (b)

(c) (d)
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(e) (f)

(g) (h)
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(i) (j)

Figure 28: Comparison between the performance of the three calibration methods for the basic fit
functions. In each row, the left and right subfigures respectively show the relative difference in error
statistics between the hybrid method and differential evolution and between differential evolution and
non-linear least squares. The fit functions for tparcel0 variable and tcrop2 variable have been left out as
they are treated in section 5.1. The 2019 data from the 1167 potato parcels in the validation region

described in section 2.5 was used for these images. The middle, thinner bar contains values within 10−9

of zero, reflecting parcels where there was no significant difference in fit quality.

A.2 Hybrid parameter configuration validation

(a) (b)
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(c) (d)

(e)
(f)

Figure 29: Validation of the parameter configuration (i.e. the choice of sub-algorithm used to fit each
parameter within the hybrid method) for the fit parameters Ccrop

4 , pcropg,0 ,∆tcrop1 and ∆tcrop2 . See section
5.3 for an analysis of these figures. Each subfigure shows an investigation of the configuration of one fit
parameter C ∈ C. The x-axis shows the relative difference between the error statistics of fits generated
by the hybrid method with C ∈ Cboth and either C ∈ Cnllsq or C ∈ Cdifev, depending on the a priori
guess formulated in section 4.4.2 (see also label in the x-axis). The 2019 data from 1167 potato parcels
in the validation region described in section 2.5 was used for these images. The basic fit functions were
used for this investigation, i.e. t0 was fitted in each figure, but the models were otherwise kept in the

simplest form that included the relevant parameter. In each histogram, negative values signify that the a
priori assumption gave a better result than C ∈ Cboth, whereas positive values signify the opposite. The

middle, thinner bar contains values within 10−9 of zero, representing parcels where there was no
significant difference in fit quality.
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(a) (b)

(c) (d)
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(e) (f)

Figure 30: Investigation of the parameter configuration (i.e. the choice of sub-algorithm used to fit a
given parameter within the hybrid method) of the hybrid method for the more convoluted fit parameters
Ccrop

3 , rdcropmax and Ccrop
6 . See section 5.3 for an analysis of these figures. Each row of two subfigures

shows an investigation of the configuration of one these fit parameters C ∈ C. The x-axis shows the
relative difference between the error statistics of fits generated by the hybrid method with C ∈ Cboth and
C ∈ Cdifev (left), and between C ∈ Cdifev and C ∈ Cnllsq (right). The 2019 data from 1167 potato
parcels in the validation region described in section 2.5 was used for these images. t0 was fitted in all
figures, but the fits were otherwise kept in the simplest form that included the relevant parameter. In
each histogram, negative values signify that C ∈ Cboth gives better performance than C ∈ Cdifev (left)
or that C ∈ Cdifev gives better performance than C ∈ Cnllsq (right), whereas positive values signify the
opposite. The middle, thinner bar contains values within 10−9 of zero, representing parcels where there

was no significant difference in fit quality. Notice that performance is almost equal in all cases for
rdcropmax and Ccrop

3 . On the other hand, non-linear least squares performs much more poorly than the
other two for Ccrop

5 and Ccrop
6 .

A.3 Comparison between fit functions

Figure 31 shows scatter plots that correlate quality improvement obtained with a certain model extension
with the values of the parameters it introduces. In figures 31a- 31d, we see that the exponential model
gives a consistent, significant increase of the fit quality compared to the base, linear case. However, this
is similar to the bilinear case we described in section 6.2. ∆tcrop1 is very close to the minimum of 15 days.
This indicates that the model is only fitted to a very short part of the time series.

Note the peculiar horizontal lines in Ccrop
4 in figure 31c. The error function actually keeps decreasing as

Ccrop
4 →∞. However, the derivative will go so close to zero that non-linear least squares believes it has

converged. The lines are a result of a fixed number of steps before convergence is achieved.

In figures 31e and 31f, the scatter plots for the quadratic method are shown. We see some very clear
clusters with |Ccrop

5 | > 101 that mostly yield a worse quality than the linear base case. This happens
because the normalized RVI vi−v0 is almost exclusively negative for these parcels. As a result, the second
term in the square root of equation (3.35) becomes zero, which reduced the model to the linear model.
However, due to the additional fit parameter Ccrop

5 , this model is more difficult to fit for differential
evolution, leading to a lower quality in most cases.
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(a) (b)

(c) (d)

(e) (f)

Figure 31: Comparison of the performance of the basic fit functions. Each model is compared to the
base case with pcrop and g linear, tcrop0 variable and all other parameters fixed. The quality is plotted

against the value of the parameters that were added to model compared to the base case. This way, any
correlations between improved quality and the value of the fit parameters is visualised.
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B Additional time series

B.1 Time series of potato parcels separated by irrigation

(a)

(b)
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(c)

(d)

(e)
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(f)

Figure 32: Average time series of parcels for the years 2018, 2019 and 2020, grouped by whether they
are marked as irrigated by the validation data. The line marked t0 represents the median in each cluster

of tparcel0 according to the base fit function (pcrop, g linear, tparcel0 variable, the other fit parameters
constant).

B.2 Average time series of corn parcels

(a)
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(b)

(c)

(d)

Figure 33: Average time series over all corn parcels in the validation region for each year.
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C Additional clustering investigations

C.1 Analysis of clusters based on Ccrop
1 and Ccrop

3 in 2019 and
2021

C.1.1 2019

Figure 34 shows the average time series of the six clusters in Ccrop
1 and Ccrop

3 of 2019. These six clusters
are defined in figure 19. The number of parcels in each cluster and correlation with irrigation is given in
table 4 of section 7.1.

The most interesting feature of the clusters of 2019 is the considerable size of the cluster 4 and 5. These
clusters are characterized by Ccrop

1 < 10−6. This can be explained as follows. In figures 34e and 34f, we

see that the median tparcel0 is significantly higher than that of the other clusters. In fact, it lies behind
the bump in RVI around the middle of June. After this point, the RVI remains approximately constant,
which explains the low Ccrop

1 . Indeed, the RVI of the other years does not remain this constant during
the last section of the growth phase. Hence, these years will not have a significant number of parcels
similar to cluster 4 and 5 of 2019.

For the other clusters, it seems the distinction is largely made based on the position of tcrop0 . Cluster 1,
with lower Ccrop

3 than cluster 0, avoids the bump at the beginning of April, as the steep slope lies within
a region of non-zero (though not particularly high) rain deficit. Similarly, clusters 2 and 3, with even
lower Ccrop

3 , avoid the increase in RVI right after the April bump, as that coincides with a period of high
rain deficit. It seems that the clusters with low Ccrop

3 correlate with greater inhibition of RVI during the
rain deficits in May and April. This would be consistent with our similar findings for 2018 and 2020.
However, it is not supported by the correlation the irrigation validation data, as can be seen in table 4.

(a)
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(b)

(c)

(d)
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(e)

(f)

Figure 34: Average time series of parcels in all six clusters in Ccrop
1 and Ccrop

3 of 2019, see figure 16 for

their definition. The line marked t0 represents the median of tparcel0 in each cluster.

C.1.2 2021

Figure 35 shows the average time series of the three significant clusters in Ccrop
1 and Ccrop

3 of 2021.
These clusters are defined in figure 19. The number of parcels in each cluster and correlation with irriga-
tion is given in table 4 of section 7.1. Note that cluster 3 is almost a factor 4 smaller than clusters 1 and 2.

tparcel0 clearly seems to accumulate around the minima of of the time series. Yet, the deep valley around
the 20 April seems to be largely avoided. This is likely because the RVI starts increasing there before
the cumulative rain deficit goes down. The rest of the time series very nicely obeys that it only increases
while precipitation deficit is low. Hence, a low Ccrop

3 can provide a good fit to this data. This is also the
reason cluster 0 is so small in this year. The correlation with rain deficit is high, meaning that there will
be very few parcels that are best modelled such a high Ccrop

3 .

This high correlation with precipitation deficit might actually be an indication that very little irrigation
had taken place in 2021. This year was much wetter than the three previous years, so little irrigation
was probably necessary. Hence, this result is in line with our expectations.
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(a)

(b)

(c)

Figure 35: Average time series of parcels in the three significant clusters in Ccrop
1 and Ccrop

3 of 2021,
see figure 16 for their definition. The size of the clusters is given in table 4 The line marked t0

represents the median of tparcel0 in each cluster.

84



C.2 clusters based on tparcel0 +∆tcrop1 and Ccrop
2 in 2018 and 2021

Figure 36 shows that the clustering of tparcel0 +∆tcrop1 is much less significant in especially 2018 than it
was in 2019 and 2021 (see figure 21). Figure 37 shows the same definition for the clustering we used for
2019 and 2020. Clearly, this clustering makes much less sense for 2018 and 2021 than it does for the other
two years. Especially in 2021, cluster 3 clearly consists of two groups in tparcel1 , which could arguably be
combined with the adjacent clusters. This further demonstrates what we already discovered in section
7.3: clusters in tparcel1 vary each year. To be more precises, they mostly correlate with precipitation
deficit, as the precipitation deficit dependent fluctuations in RVI have the most dominant influence over
the model calibration.

The number of parcels in each cluster is given in 7. The irrigation rate of 2018 has two cluster with
statistically significant (p-value < 0.05) deviation from the mean: cluster 2 (p-value 9.45 · 10−3) and
cluster 3 (p-value 1.57 · 10−2). However, the clusters are rather small and therefore not all that useful.

(a) (b)

Figure 36: Scatter plots between parameters tparcel0 and ∆tcrop1 for the years 2018 and 2021. The model

parameterization used to generate these images is defined by bilinear pcrop with tparcel0 variable and all

other parameters fixed. Especially for 2018, the diagonal lines indicating clustering of tparcel0 +∆tcrop1

are much more diverse than the ones for 2019 and 2020 in figure 21.
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(a) (b)

Figure 37: Definition of clusters in the combination of Ccrop
2 and tparcel1 = tparcel0 +∆tcrop1 for 2018 and

2021.

Table 7: The number of parcels and percentage of irrigated parcels (according to the validation data) in
each of the clusters defined in figure 37. Note that there is no irrigation data for 2021.

2018 2021
Cluster # parcels % irrigated # parcels

0 4 0.0 127
1 87 19.54 497
2 116 35.34 64
3 135 18.52 274
4 450 26.89 35
5 375 24.8 113
all 1167 25.45 1111

C.3 Parameters with less meaningful clusters

Figure 38 shows the two scatter plots of the base case (pcrop, g linear, tparcel0 variable) that were not

investigated in section 7.1. Here, we see that tparcel0 has no significant correlation with either of the other
model parameters.
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(a) (b)

Figure 38: Scatter plots of all combinations of the three parameters of the base fit function: pcrop and g
linear with tparcel0 variable and all other parameters fixed. The scatter plot between Ccrop

1 and Ccrop
3 is

given in figure 16b.

Figure 39 shows scatter plots for linear pcrop and g with tparcel0 and rdcropmax variable and all other param-
eters fixed. These figures show some interesting features of calibration using rdcropmax.

Firstly, comparing figure 39a to figure 16a, we see that the addition of rdcropmax has made the gap the
four clusters in Ccrop

1 > 10−6 collapse into 1. The gap around 100 has disappeared, and both extremely
high Ccrop

3 and extremely low Ccrop
3 no longer seems to occur. This makes some sense, as rdcropmax offers

an alternative method to handle measurements that correlate poorly with precipitation deficit. This
allows values for Ccrop

3 around 100, which indicate very high correlation with precipitation deficit. This
indicates that Ccrop

3 might be much better capable of modelling the correlation with rain deficit when
rdcropmax is part of the model as well. Hence, it can be interesting for future research to further investigate
the usage of rdcropmax, especially once the definition of v0 has been fixed to allow proper modelling with hcrop.

Secondly, figure 39c shows some interesting arcs in (Ccrop
3 , rdcropmax). These can be understood as follows:

as rdcropmax increases, the same behaviour is best modelled with a lower Ccrop
3 . Hence, these arcs all

model a very similar behaviour. This seems to imply that the correlation with rain deficits is even more
homogeneous than figure 39a would suggest. For instance, 2021 seems to be divisible in about three
different behaviour types, along with a large cluster at rdcropmax ≈ 0.
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(a) (b)

(c)

Figure 39: Scatter plots of all combinations of the three parameters Ccrop
1 , Ccrop

3 and rdcropmax of the fit

function defined by pcrop and g linear with tparcel0 and rdcropmax variable and all other parameters fixed.

Figure 40 shows scatter plots for linear pcrop and g with tparcel0 and hcrop
min variable and all other parame-

ters fixed. The thorough investigation of the behaviour of hcrop
min in section 7.2 revealed some interesting

features of the RVI time series, as well as a statistically significant correlation with the irrigation vali-
dation data. Yet, it shows no correlation with Ccrop

1 in figure 40b. On the other hand, figure 40c shows
some clear vertical lines in (Ccrop

3 , hcrop
min ) for h

crop
min < 1, while Ccrop

3 has much greater spread hcrop
min = 1.

This is to be expected, as hcrop depends on Ccrop
3 when hcrop

min < 1.

Interestingly, comparing figure 40a to figure 16a, the cluster for very small Ccrop
3 has disappeared. This

seems to indicate that most of these parcels are calibrated by hcrop
min < 1. Yet, cluster 3 of 2019 (figure

34d) does not show the same behaviour as the hcrop
min < 1 cluster in figure 20b; i.e. it does not at all have

a relatively high normalized RVI for most of the time series. One possibility is that hcrop
min is simply very

close to 1 for these parcels, which is enough to push Ccrop
3 up to one of the higher clusters.
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(a) (b)

(c)

Figure 40: Scatter plots of all combinations of the three parameters Ccrop
1 , Ccrop

3 and hcrop
min of the fit

function defined by pcrop and g linear with tparcel0 and hcrop
min variable and all other parameters fixed.
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