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Symbolic Regression on Network Properties

Marcus Märtens, Fernando Kuipers, and Piet Van Mieghem

Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology,

PO Box 5031, 2600 GA Delft, The Netherlands

Abstract. Networks are continuously growing in complexity, which cre-
ates challenges for determining their most important characteristics.
While analytical bounds are often too conservative, the computational
effort of algorithmic approaches does not scale well with network size.
This work uses Cartesian Genetic Programming for symbolic regression
to evolve mathematical equations that relate network properties directly
to the eigenvalues of network adjacency and Laplacian matrices. In par-
ticular, we show that these eigenvalues are powerful features to evolve
approximate equations for the network diameter and the isoperimetric
number, which are hard to compute algorithmically. Our experiments
indicate a good performance of the evolved equations for several real-
world networks and we demonstrate how the generalization power can
be influenced by the selection of training networks and feature sets.

Keywords: symbolic regression, complex networks, Cartesian Genetic
Programming

1 Introduction

One of the first and most important steps for modelling and analyzing com-
plex real-world relationships is to understand their structure. Networks are an
effective way to organize our data so that nodes describe certain actors or en-
tities, while relations are expressed as links connecting two nodes with each
other. The resulting topological representation (adjacency matrix) provides an
abstract model that is amenable for further analysis. For example, algorithms
for finding shortest paths, spanning trees or similar structures usually take the
topological representation of the network as input. Community detection algo-
rithms can cluster groups of nodes that are more connected within their group
than outside. Computing node centrality metrics allows for the identification
of important nodes or critical connections. A well-known example is Google’s
Pagerank algorithm [1], which uses the eigenvector centrality of a node in order
to assess the rank of a webpage with respect to Google’s search queries.

Eigenvector centrality [2] is interesting from a different perspective as well. It
shows that spectral network properties can improve our understanding of such
vast aggregations of data like in the world-wide web. Spectral graph theory ex-
plicitly seeks to understand the relations between eigenvalues, eigenvectors and



characteristic polynomials of various network matrices. Many links to fundamen-
tal questions of mathematics and complexity theory arise from spectral graph
theory, making this area of research both valuable and intricate. It is possible
that many topological network properties are reflected in the spectrum, only
waiting to be discovered.

This work proposes symbolic regression as a method to automatically derive
insights in the spectral domain and their corresponding topological reflections in
the network. Only a minimal number of assumptions are needed, in particular
in comparison to the frequently used procedure of curve fitting, which assumes
already a pre-knowledge of a certain function like a polynomial, exponential, etc.
In contrast, symbolic regression is guided by supervised learning for a regression
task that explicitly constructs free-form equations out of numeric features and
elementary arithmetic operations.

The topological representation may be a cumbersome feature space for ma-
chine learning techniques, if only the binary features of the adjacency matrix are
considered. Therefore, we examine the usage of features from the spectral domain
of the network. By training the symbolic regression system on a set of carefully
constructed networks, we are able to estimate target features. Consequently,
symbolic regression may assist researchers to unravel the hidden structures in
the spectral domain and to propose first-order approximations for difficult-to-
compute properties.

Our work is structured as follows: Section 2 introduces the concept of sym-
bolic regression by giving references to previous work where this technique proved
useful. Section 3 provides the necessary background in network science by in-
troducing network properties that will be used as features and targets for our
experiments. The setup of our experiments is outlined in Section 4 and their re-
sults are discussed in Section 5. We conclude with directions for future research
in Section 6.

2 Related Work

2.1 Symbolic Regression

One of the most influential works on symbolic regression is due to Michael
Schmidt and Hod Lipson [3], who demonstrated that physical laws can be de-
rived from experimental data (observations of a physical system) by algorithms,
rather than physicists. The algorithm is guided by evolutionary principles: a set
of (initially random) parameters and constants are used as inputs, which are
subsequently combined with arithmetic operators like {+,−,×,÷} to construct
building blocks of formulas. Genetic operations like crossover and mutation re-
combine the building blocks to minimize various error metrics. The algorithm
terminates after a certain level of accuracy is reached; the formulas that describe
the observed phenomenon best are delivered as output for further analysis.

In the work of Schmidt and Lipson [3], symbolic regression was able to find
hidden physical conservation laws, which describe invariants over the observed



time of physical systems in motion, like oscillators and pendulums. It is remark-
able that symbolic regression was able to evolve the Hamiltonian of the double
pendulum, a highly non-linear dynamic system [4] that undergoes complex and
chaotic motions. Also, accurate equations of motions were automatically derived
for systems of coupled oscillators.

While symbolic regression rarely deduces error-free formulas, the output may
deepen our insight in the problem and may help to eventually find exact solu-
tions. One example is the case of solving iterated functions, which asks for a
function f(x) that fulfills f(f(x)) = g(x) for some given function g(x). Despite
the simple description of the problem, there exist difficult cases for which highly
non-trivial algebraic techniques seem to be needed to find solutions.

One example is the iterated function f(f(x)) = x2 − 2, for which the best
known analytic approach to find f(x) requires the substitution of special function
forms and recognizing relations between certain Chebyshev polynomials. Again,
Schmidt and Lipson [5] were able to evolve a couple of symbolic expressions that
were so close at describing a solution, that a simple proof by basic calculus could
be inferred.

Most recently, symbolic regression has been explored in the context of gener-
ative network models by Menezes and Roth [6]. They present a stochastic model
in which each possible link has a weight computed by an evolved symbolic ex-
pression. The weight-computation-rules are executed and the resulting networks
are compared by a similarity-metric with some target networks (corresponding to
the observations of a physical system), which guides evolution to incrementally
improve the underlying generative model.

One particular benefit of symbolic regression and automatic generation of
equations is reduction of the bias introduced sometimes unknowingly by human
preferences and assumptions. Thus, it is possible for symbolic regression to dis-
cover relations that would be deemed counter-intuitive by humans. This makes
symbolic regression especially attractive for finding non-linear relationships, for
which the human mind often lacks insight and intuition.

With the exception of the deterministic FFX-algorithm by McConaghy [7],
most symbolic regression algorithms are based on Genetic Programming [8],
where an evolutionary process typically uses grammars [9, 10] to evolve expres-
sion trees. Our work can be potentially implemented by many of these Genetic
Programming variants, but we selected Cartesian Genetic Programming1 (CGP)
for reasons outlined in the following subsection.

2.2 Cartesian Genetic Programming (CGP)

CGP was originally developed by Julian Miller [11] to represent electronic circuits
on 2d-grids (hence the name Cartesian), but it soon became a general purpose
tool for genetic programming. It has been used in numerous applications, e.g.
to develop Robot Controllers [12], Neural Networks [13], Image Classifiers [14]
and Digital Filters [15]. A recent result by Vasicek and Sekanina shows how

1 http://www.cartesiangp.co.uk/resources.html
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approximate digital circuits can be efficiently evolved by CGP, giving human-
competitive results in the field of approximate computing [16]. Vasicek also shows
how CGP can be scaled to deal with a large number of parameters in order to
optimize combinatorial circuits [17].

The reason why CGP is so popular (especially for circuit design) is due to
its internal representation of the Genetic program. CGP uses a flexible encod-
ing that represents the wiring of a computational network. Each node in this
network is an arithmetic operation that needs a certain amount of inputs to
produce an output. A simple 1 + 4 evolutionary strategy changes the intercon-
nections between those nodes in order to improve a fitness function (minimizing
errors). Input parameters and constants are forward-propagated by applying
the computational nodes until output nodes are reached. At these output nodes,
the chain of mathematical operations on the inputs can be reconstructed as an
equation.

A surprising property of CGP is that only a minor fraction of nodes actually
contribute to the final computation. Similar to a human genome, only part of it
is actively used, while inactive parts are dormant, but subject to genetic drift.
This redundancy is often argued to be beneficial for the evolutionary process in
CGP (see Miller and Smith [18]). There is also evidence that CGP does not suffer
much from bloat [19], a major issue in other genetic programming techniques
that tend to produce very large program sizes even for simple tasks.

3 Networks

In this section, we formally define some network properties and notation that
will be used throughout our experiments.

3.1 Network Representations

A network is represented as a graph G = (N ,L), where N is the set of nodes
and L ⊆ N ×N is the set of links. The number of nodes is denoted by N =| N |
and the number of links by L =| L |. The set L is typically represented by an
N ×N adjacency matrix A with elements aij = 1 if node i and j are connected
by a link and aij = 0 otherwise. As we restrict ourselves to simple, undirected
networks without self-loops in this work, A is always symmetric. We call A the
topological representation of G as each element of A directly refers to a structural
element (a link) of the network. The number of all neighbors of a node i is called

its degree di =
∑N
j=1 aij .

The adjacency matrix A is not the only possible representation of a network.
Of equal importance is the Laplacian matrix Q = ∆−A, where ∆ is a diagonal
matrix consisting of the degrees di for each node i ∈ N .

A different view on the network can be derived by its eigenstructure. Given
the adjacency matrix A, there exists an eigenvalue decomposition [20]

A = XΛXT (1)



such that the columns of X contain the eigenvectors x1, x2, . . . , xN belonging to
the real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN , respectively, contained in the diagonal
matrix Λ.

While obtaining the spectral representation of the network requires computa-
tional effort by itself (usually, the network is given in its topological representa-
tion for which the eigenvalues still need to be determined), it provides a different
perspective on the network’s properties. For example, the largest eigenvalue λ1 is
linked with the vulnerability of a network to epidemic spreading processes [21].

A similar decomposition is possible for the Laplacian matrix, whose eigen-
values are denoted by µ1 ≥ µ2 ≥ . . . ≥ µN and whose real eigenvectors are
y1, y2, . . . , yN . The second smallest eigenvalue µN−1 is known as the algebraic
connectivity [22] and its corresponding eigenvector is known as Fiedler’s vector.
Spectral clustering [20] is a possible application of Fiedler’s vector.

Both eigensystems constitute the spectral representation of G. Our goal is to
describe network properties typically computed by algorithms on the topological
representation of G by simple functions consisting of elements from the spectral
representation of G. An example is the number of triangles NG in a network. A
way of computing NG is to enumerate all possible triples of nodes in a graph and
checking whether they are connected in A. However, the number of triangles can
also be expressed as

NG =
1

6
·
N∑
k=1

λ3k (2)

and is thus directly computable from the spectral representation without the
need of exhaustive enumeration (see Van Mieghem [20], art. 28 for a proof of
Equation (2)).

3.2 Network Properties

Network Diameter Many applications of networks are concerned with finding
and using shortest-path structures in networks. A path between two distinct
nodes i and j is a collection of links that can be traversed to reach i from j
and vice versa. A shortest path is a path with minimal number of links. The
diameter ρ of a network is defined as the length of the longest shortest path
in the network, i.e. the maximum over all shortest-path lengths between all
node-pairs. Algorithms that solve the all-pairs shortest path problem (like the
Floyd-Warshall algorithm) are able to compute the diameter in O(N3). While
more efficient algorithms exist for sparse networks, an exact computation of the
diameter is usually too expensive for very large networks.

There exist multiple upper bounds for the diameter [23,24], but we find the
bound of Chung et al. [25] most tight in almost all cases:

ρ ≤

 cosh−1(N − 1)

cosh−1
(
µ1+µN−1

µ1−µN−1

)
+ 1. (3)

This bound was independently derived by Van Dam and Haemers [26].



Isoperimetric Number For each subset of nodes X ⊂ N we can define the
set ∂X as the set of links that have exactly one endpoint in X and the other
endpoint in N\X. The isoperimetric number η of a network is defined as

η = min
X⊆N
|X|≤ 1

2N

|∂X|
|X|

. (4)

Essentially, the isoperimetric number is a measure related to bottlenecks in
networks. Intuitively, a low isoperimetric number indicates that the network can
be separated in two reasonably big parts by only cutting a minimum amount of
links. While the isoperimetric number is a good descriptor of network robustness,
its computation for general networks is intractable, as the computational effort
scales with the amount of possible cuts of the network. More information on the
isoperimetric number can be found in [20,27].

4 Experiments

This section describes technical details of the symbolic regression process we de-
ployed to infer equations for the network diameter and the isoperimetric number.
As symbolic regression is a supervised learning technique, we describe the sets
of networks that were used for training and testing, together with the features
we extracted for each case.

4.1 Network Diameter

In order to find a suitable formula for the network diameter, we trained CGP
on 3 different sets of networks:

– augmented path graphs,
– barbell graphs and
– the union of both.

The augmented path graphs were generated by iteratively adding random links
to a simple path graph of N nodes. With each additional link, there is a chance
to lower the diameter of the network. Following this procedure, it is possible to
generate a set of relatively sparse graphs of constant node-size with uniformly
distributed diameters.

A barbell graph B(a, b) is generated by taking two cliques of size a and
connecting them with a path graph of size b. The total number of nodes is
N = 2a+ b. The diameter ρ(B(a, b)) is always b+ 3. Adjusting the length of the
path graph allows for generating graphs of different diameters. Changing the size
of the cliques allows for creating graphs with the same diameter, but different
number of nodes. We sample again such that the network diameter is uniformly
distributed within the set of all barbell graphs. Compared with augmented path
graphs, barbell graphs are (in general) denser networks.



The set of mixed graphs is the union of the set of augmented path graphs
and barbell graphs. See Figure 1 for examples of these networks and Table 1 for
a summary of all sets of networks for the experiments.

One reason why we have chosen these sets of networks instead of, for example,
Erdős-Rényi (ER) random graphs [28], is to control the distribution of our target
feature, the network diameter. Preliminary experiments have shown that too
little variance in our target feature will push CGP to converge to a constant
function, which does not include any information about the relation between
spectral features and the target that we want to extract. For an ER graph
of N nodes and with link probability p, Bollobás [28] showed that, for fixed
p and N large, ρ can only have one of two possible neighboring values with
high probability. Thus, sampling uniform diameters for the random graph model
requires careful adjustment of N and p, where we found the usage of augmented
paths and barbell graphs more convenient.

For the supervised learning of CGP, each set of networks was separated in
a 60% training and a 40% test set. Table 2 gives an overview of the various
parameters we set for CGP. In preliminary experiments, we changed each of
these parameters independently from another and found the settings of Table 2
to provide the most useful results in terms of fitness and formula complexity. A
more thorough parameter tuning approach is needed for maximum performance,
but is outside the scope of this work. For the meaning of these parameters, see
Miller [11]. Effective tuning of CGP was researched by Goldman and Punch [29].

Fig. 1. Example of the barbell graph B(6, 2) with ρ = 5 on top and an augmented
path graph with ρ = 4 at the bottom.

In our experiments, we tried a vast selection of different features to evolve
formulas. To keep this section organized, we report only results derived from two
of the most generic, but useful, sets of features:

A) N,L, λ1, λ2, λ3, λN
B) N,L, µ1, µN−1, µN−2, µN−3.

Additionally, the natural numbers 1, . . . , 9 were provided as network inde-
pendent constants for CGP to adjust evolved terms appropriately.



Table 1. Properties of network sets.

aug. path barbell mixed

networks 1672 1675 3347

nodes N = 70 7 ≤ N ≤ 667 7 ≤ N ≤ 667

diameter 2 ≤ ρ ≤ 69 4 ≤ ρ ≤ 70 2 ≤ ρ ≤ 70

avg. link density 0.04845 0.36985 0.20910

Table 2. Parameterisation of CGP.

parameter value

fitness function sum of absolute errors

evolutionary strategy 1+4

mutation type and rate probabilistic (0.1)

node layout 1 row with 200 columns

levels-back unrestricted

operators +,−,×,÷, ·2, ·3,
√
·, log

number of generations 2 · 105

The choice of feature sets A and B provides a reasonable trade-off between
formula complexity and fitness. While selecting the complete spectrum of eigen-
values as features is possible, we observed that it leads to a high formula com-
plexity without providing considerable improvements in fitness. Additionally,
the largest adjacency (smallest Laplacian) eigenvalues are the ones that are sug-
gested to have the strongest influence on network properties [20]. Lastly, since
the number of nodes in our network instances is not (in every case) constant,
giving the complete spectrum would mean that several features would be missing
in networks with low number of nodes. It is unclear, how an appropriate substi-
tution of the missing features should be realized. Thus, some of the discovered
formulas could be inapplicable for some networks.

Since the evolutionary procedures of CGP to optimize the fitness of the
evolved expressions are stochastic, we deployed multiple runs for each combina-
tion of feature and network set. We aggregated those multiple runs into batches,
as the test-environment was implemented to run on a computational cluster.
Each batch consisted of 20 runs of CGP for a specific set of features. Out of
those 20 runs, only the one with the best (lowest) fitness is reported. The fitness
is the sum of absolute errors on the test instances of the corresponding set of
networks. More formally, if ρ̂G is the estimate on the diameter ρG of network G
given by the evolved formula ρ̂ and Gtest is the set of all networks for testing,
the fitness f(ρ̂) is defined as:

f(ρ̂) =
∑

G∈Gtest

|ρG − ρ̂G|. (5)



Furthermore, we define the approximation error e(ρ̂) as the average deviation
from the diameter over the complete test set:

e(ρ̂) =
∑

G∈Gtest

|ρG − ρ̂G|
|Gtest|

. (6)

We present the results over 100 batches for each combination of feature and
network test set in Table 3.

Table 3. Experimental results for the network diameter.

networks feature set avg. fitness min. fitness min. approx. error

aug. path
A 3694.98750 3404.53700 5.08899

B 842.89691 778.98900 1.16441

barbell
A 1.66654 0.00900 0.00001

B 50.53473 < 10−5 < 10−5

mixed
A 5313.91179 4500.68900 3.36123

B 1462.61943 1134.34100 0.84716

4.2 Isoperimetric Number

The training set of networks for the isoperimetric number η had to be limited to
relatively small networks, since the computation of η becomes intractable even
for general medium-sized networks. Thus, we decided to exhaustively enumerate
all networks of size N = 7, for which the computation was still practical. This
set consists of 1046 non-isomorphic networks, which we randomly split into a
training set of 627 and a test set of 419 networks. We applied the same parameters
to CGP as shown in Table 2, with one exception: we created 100 batches for each
of the following sets of operators:

1. +,−,×,÷,
√
·, log

2. +,−,×,÷, ·2, log
3. +,−,×,÷,

√
·

4. +,−,×,÷, ·2.

Since we have only networks of size N = 7, we can select the full spectrum
as our features, resulting in the following feature sets:

A’) N,L, λ1, λ2, λ3, λ4, λ5, λ6, λ7
B’) N,L, µ1, µ2, µ3, µ4, µ5, µ6.

Since the smallest Laplacian eigenvalue µN always equals 0, µ7 = 0 and is
thus not included as a feature. Additionally, we provided the natural numbers
1, 2 and 3 as constants. Each batch consisted of 5 independent runs from which
only the best one is reported.



Feature set A’ delivered on average much better results than feature set B’.
The best result was found with feature set A’ and operator-set +,−,×,÷, ·2, log,
although not all of these operators appear:

η̂1 =
L− λ22 − 2
λ2

2 + 5
(7)

Although Equation (7) is short (low complexity), it had still the best fitness
(53.215) of all evolved formulas. The approximation of η on the test set is shown
in Figure 2.

0 50 100 150 200 250 300 350 400
network instance number

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

exact isoperimetric number η

approximation

Fig. 2. All 419 networks from the test set ordered by their actual isoperimetric num-
ber ascending from left to right. The red crosses show the approximation given by
Equation (7).

5 Discussion

In the previous section, we evolved approximate equations for hard to compute
network properties. The approximation errors were largely dependent on the
used networks for training and testing. For example, the best equations for the
diameter found for barbell networks have almost no error, while noticeable errors
exist for augmented path and mixed network. This raises two questions:

– how is the quality of the approximate equations influenced by the pre-
selected networks and

– how do the approximate equations generalize to other networks?

To give answers, we compute already established analytical equations from the
literature as reference points for quality and provide appropriate selections of



networks which were not involved in the generation process of the evolved equa-
tions.

5.1 Network Diameter

As a measure for the quality of our evolved equations, we compare their estimates
of diameter ρ to the upper bound given by Equation (3). An upper bound and an
approximation are different: while the bound is always above the real diameter,
approximations may be above or below without any guarantees. Yet, we believe
the bound can mark a reference point for a qualitative comparison in addition
to the exact diameter itself.

As additional networks, we selected 12 real-world data sets available at net-
workrepository.com [30], where more information, interactive visualization and
analytics can be found. While these networks should only be viewed as exam-
ples, they might give an idea about the applicability of the presented technique.
To eliminate the selection-bias and gather significant results, one would need
to sample the network space in a representative and meaningful way, which is
notoriously difficult. For example, simple network generators like Erdős-Rényi
random graphs or the Barabási-Albert model are not sufficient, as they will only
allow to sample certain degree distributions. Consequently, we restrict ourselves
to examples.

We expect that the equations with the lowest fitness give the best results.
Because feature set B consistently outperformed feature set A in terms of fitness,
we analyzed the approximations given by the best equations of feature set B.
The explicit equations are:

N −
1− 1

(L−N)
3
2

6− 6

(L−N)
3
2√

L−N + 4
√
L−N

− 2
√
L−N − 1√

L−N
(8)

log (2LµN−3 + 6) + 6

log
(
LµN−3 +

√
5
√

1
µN−1

) +
√

5

√
1

µN−1
+ 3
√

82

√
1

729LµN−2µN−3 − 5
(9)

√√√√√N +
45µN−3

(µN−1 + µN−3)
2 + log

(
216

(µN−1 + µN−3)
2

)
− 16

9µN−3
+

8 4
√
µN−3

LµN−1µN−2

(10)
The numerical values are all listed together with some basic properties of

our validation networks in Table 4. First, we observe that Equation (8) performs
extremely poorly by giving huge overestimations of ρ, despite its fitness of almost
0 for the networks of the original test set. The reason is that Equation (8) was
evolved on barbell graphs only, which have a fixed and symmetric structure. In
particular, the difference N − L, which is a frequent subterm of the formula, is



higher in the dense barbell graphs compared to the rather sparse networks of our
validation set. Thus, Equation (8) seems to be overfitted to the class of barbell
graphs.

Equation (9) was evolved only on augmented path graphs and provides a
much better approximation of ρ for our validation networks. This might be the
case since the validation networks are more similar to the sparse augmented path
graphs than to the dense barbell graphs. A visual comparison of the approxima-
tion of Equation (9) is given by Figure 3.

Adding the barbell graphs to the training set, like in the evaluation of Equa-
tion (10), shows that the accuracy of the approximation of ρ increases by roughly
10%, which must be the effect of the barbell graphs adding a selective force to-
wards accuracy on more denser networks. Moreover, it seems that CGP focused
on finding a good approximation for the augmented path graphs in the mix
rather than considering to find an equation for both classes of networks. In the
majority of the cases, ρ is still overestimated a little, but by far not as much as
by the upper bound in Equation (3).

Table 4. Diameter on validation networks.

name N L ρ Eq. (9) Eq. (8) Eq. (10) Eq. (3)

ca-netscience 379 914 17 21 333 24 160

bio-celegans 453 2025 7 7 374 8 104

rt-twitter-copen 761 1029 14 16 728 18 126

soc-wiki-Vote 889 2914 13 10 799 12 133

ia-email-univ 1133 5451 8 6 1002 8 58

ia-fb-messages 1266 6451 9 7 1122 10 96

web-google 1299 2773 14 29 1222 35 336

bio-yeast 1458 1948 19 19 1414 22 208

tech-routers-rf 2113 6632 12 14 1979 17 237

socfb-nips-ego 2888 2981 9 52 2869 61 2466

web-edu 3031 6474 11 36 2914 40 663

inf-power 4941 6594 46 98 4860 110 749

5.2 Isoperimetric Number

The quality of the equations approximating the isoperimetric number will be
related to the Cheeger inequality (see Mohar [27]) that gives us bounds in relation
to the algebraic connectivity µN−1 and the maximum degree dmax of the network
G:

µN−1
2
≤ η ≤

√
µN−1(2dmax − µN−1) (11)

Since our equations were evolved by an exhaustive enumeration of all non-
isomorphic networks of N = 7, we are interested how their quality of fit will



ca-netscience ρ= 17
ρ̂= 21

ub= 160

bio-celegans ρ= 7
ρ̂= 7

ub= 104

rt-twitter-copen ρ= 14
ρ̂= 16

ub= 126

soc-wiki-Vote ρ= 13
ρ̂= 10

ub= 133

ia-email-univ ρ= 8
ρ̂= 6

ub= 58

ia-fb-messages ρ= 9
ρ̂= 7

ub= 96

web-google ρ= 14
ρ̂= 29

ub= 336

bio-yeast ρ= 19
ρ̂= 19

ub= 208

tech-routers-rf ρ= 12
ρ̂= 14

ub= 237

socfb-nips-ego ρ= 9
ρ̂= 52

ub= 2466

web-edu ρ= 11
ρ̂= 36

ub= 663

inf-power ρ= 46
ρ̂= 98

ub= 749

Fig. 3. Red circles: approximate diameter ρ̂ by Equation (9) relative to the network
diameter ρ as a black circle. All network diameters are scaled in each network to have
unit-length in the figure. All values are rounded to the next integer. The upper bound
Equation (3) values are given as ub in blue (too large to plot).

differ with N . However, as pointed out before, the computation of the exact
value for η is in general only feasible for very small networks. Consequently,
we cannot use any of the validation-networks from Table 4. Instead we decided
to sample random networks of N = 20 nodes and links from 22 ≤ L ≤ 190.
In total, we generated 4984 non-isomorphic connected networks with roughly
uniformly distributed link densities by a variant of the ER random graph model.
In these networks, the isoperimetric number η ranges from 0.2 to 10.0, while in
our training set η was between 0 and 4.

Surprisingly, Equation (7) deduced from all networks with N = 7 nodes is
performing poorly on the set of random networks, as shown by the green dots in
Figure 4. The estimates are most of the time not even below the bound of the
Cheeger inequality, shown in grey. By analyzing the sum of absolute errors on
this new set of networks, we found that from all evolved formulas, the following
equation for the isoperimetric number gives the best performance:

η̂2 =
1

N2

(
L

(
µ1

µ2
+ µ2

)
− 1

)
. (12)

We observe that for over 98% of the random networks, the estimate of Equa-
tion (12) was within (1 ± 0.2) · η. Since this equation incorporates not only
spectral features, but also N and L, we believe it generalizes better to networks
of different size other than those used in the training set. Additionally, our ex-



periments show that a low fitness value does not necessarily correspond to good
generalization. Out of the 800 batches used to find a formula for η, only 259
returned expressions that did not create artifacts (like square roots of negative
numbers or divisions by zero, which CGP evaluates to 0 by definition). While
Equation (7) ranked first with a fitness of 53.215, Equation (12) was one of the
unranked expressions, since on some of the unconnected networks of the training
set, µ2 was 0, while µ2 = 0 did never appear for the connected random networks.

It is also noteworthy that Equation (12) seems to slightly overestimate η
as soon as networks with η > 4 are encountered. This does not seem to be a
coincidence, as 4 was the maximum value for η in the training set.

Fig. 4. A set of 4984 random networks with N = 20 ordered by their isoperimetric
number (blue). The grey area corresponds to the Cheeger inequalities given by Equa-
tion (11). The lower bound coincides with η and the red approximation formula for the
last 100 networks, as they are all fully connected.

6 Conclusion

Our experiments provide a first demonstration that symbolic regression can be
applied to analyze networks. For the first time, to the best of our knowledge, an
automated system has inferred approximate equations for network properties,
which otherwise would have required a high algorithmic effort to be determined.
Although these equations are not rigorously proven and might be cumbersome
for humans to comprehend, they are able to exploit the hidden relationships
between the topological and the spectral representation of networks, which has
been elusive to analytical treatment so far.

We do not expect that symbolic regression at the current level will substi-
tute researchers deriving meaningful equations, but we do believe that symbolic



regression can be a meaningful tool for these researchers. As the proposed tech-
niques are not biased by human preconceptions, unexpected results might pro-
vide inspiration and stimulating starting points for the development of formal
proofs or more accurate formulas. While this lack of bias can be an advantage,
the proposed system nevertheless allows for the incorporation of a priori expert
knowledge. If certain features and operators are suspected to be correlated to
an unknown target quantity, their usage can be enforced easily.

Understanding which conditions give rise to equations with a high gener-
alization power for networks will be the main challenge for the future. While
a good fitness of an equation does not necessarily imply a high generalization
power, our experiments indicate that symbolic regression is clearly able to pro-
duce equations that are reasonably accurate for unknown networks. In order to
prevent overfitting to the training set and to increase this generalization power,
selecting a good set of networks for training seems to be the key. This makes
symbolic regression especially appealing when dealing with networks that can
be characterized by their structural and degree-related properties, like scale-free
or small-world networks. As networks with such properties are ubiquitous, dis-
covering explicit relations between their features will pave the way for a deeper
insight into our increasingly connected environments.
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