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A B S T R A C T   

Health risk assessment of environmental exposure to pathogens requires complete and up to date knowledge. 
With the rapid growth of scientific publications and the protocolization of literature reviews, an automated 
approach based on Artificial Intelligence (AI) techniques could help extract meaningful information from the 
literature and make literature reviews more efficient. The objective of this research was to determine whether it 
is feasible to extract both qualitative and quantitative information from scientific publications about the 
waterborne pathogen Legionella on PubMed, using Deep Learning and Natural Language Processing techniques. 
The model effectively extracted the qualitative and quantitative characteristics with high precision, recall and F- 
score of 0.91, 0.80, and 0.85 respectively. The AI extraction yielded results that were comparable to manual 
information extraction. Overall, AI could reliably extract both qualitative and quantitative information about 
Legionella from scientific literature. Our study paved the way for a better understanding of the information 
extraction processes and is a first step towards harnessing AI to collect meaningful information on pathogen 
characteristics from environmental microbiology publications.   

1. Introduction 

Human exposure to pathogens in the environment poses risks to 
public health (Hrudey and Hrudey, 2004). Health risk assessments are 
used to prevent or manage these risks and support decisions, for example 
on safe system design or emergency response. Exposure assessment is a 
first step in which knowledge about pathogen characteristics and their 
exposure routes are combined to estimate the exposure of the population 
to pathogens. With the fast-growing rate of scientific publications, such 
information is contained in a constantly increasing volume of text and 
journal articles. The conventional way is to generate review papers and 
meta-analyses to collate the published information, analyze the body of 
information in a comprehensive and integrated manner, and conduct 
such meta-analyses in an increasingly structured framework (Page et al., 
2021). This process is time-consuming, labor-intensive and requires an 
expert that knows where to look and what to search for. The increasing 
rate of those publications has created a need for more efficient and 
extensive methods to collect all meaningful information for health risk 
assessment from various sources. 

In recent years, automated approaches using Artificial Intelligence 
(AI) have been explored to systematically extract structured information 

from the ever-expanding body of scientific publications. Experts and 
curators in the field of biomedical sciences have been using AI and in 
particular Information Extraction (IE) techniques to extract information 
from Electronic Health Records (EHR) and Randomized Control Trials 
(RCT) (Cohen and Hersh, 2005; Meystre et al., 2008). Using text mining 
techniques (and consequently IE), Machine Learning (ML) and Natural 
Language Processing (NLP), experts extract information related to study 
characteristics such as disease-drug associations from EHR and RCT 
(Chen et al., 2008; Chung and Coiera, 2007; Kang et al., 2019; Uzuner 
et al., 2010). Kiritchenko et al. (2010), provided ExaCT, an IE system 
that extracts 21 key trial characteristics from publications and helps 
curators review and collect information from RCT (using a user inter-
face). Their approach was based on ML using a Support Vector Machine 
(SVM) model for their sentence classification as well as rule-based 
techniques to extract exact values from segments within a text. A 
similar approach was adopted by Patrick and Li (2010), who used a 
multistage ML-based method with 2 different statistical classifiers 
namely SVM and Conditional Random Fields (CRF) and rule-based 
methods, they achieved an almost-optimal result (relative to other 
participants) for automated extraction of medication information from 
clinical notes. Although in the field of biomedical sciences, using such 
techniques (AI, IE, ML, and NLP) to extract information from text 
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documents has become a well-established approach; the development of 
similar applications in the field of environmental microbiology is still 
lagging and more complex because of the arbitrary and diverse form and 
structure in which the information is contained in case studies, reviews, 
and publications. The desired information is more scattered and com-
plex compared to the structured information often contained in RCT and 
EHR. The less structured organization of the information requires an 
improved AI system that unravels the complexity of words and sentences 
by “understanding” and capturing the syntactic and semantic context of 
their surrounding words prior to the classification task. 

This study aimed to evaluate the feasibility and performance of using 
an IE model to extract both qualitative and quantitative information 
about the waterborne pathogen Legionella from scientific publications. 
Legionella was selected since it is frequently associated with outbreaks 
via different water sources, many (types of) publications are available, 
and scientists and experts would like to have as much high quality in-
formation as possible to support decision making (van Heijnsbergen 
et al., 2015; Walser et al., 2014) and risk assessment (Papadakis et al., 
2018). 

To capture the information on Legionella as it is arbitrarily expressed 
in scientific literature, Deep Learning approach was developed in this 
study (instead of using the conventional classifiers used in ML), coupled 
with a rule-based technique. The quality of the extracted qualitative and 
quantitative information on Legionella was assessed using the evaluation 
metrics of precision, recall and F-score (Kiritchenko et al., 2010), along 
with a comparison between the system extraction and a human (manual) 
extraction. 

2. Materials and method 

2.1. Information keywords 

The desired information (hereafter referred to as “information key-
words”) about Legionella was selected as general, explicit, and repro-
ducible (waterborne) pathogen characteristics of both a qualitative and 
a quantitative nature (Table 1). 

2.2. Selection of publications 

50 peer-reviewed scientific publications about Legionella were 
manually selected from the search engine PubMed and used for the 
implementation of the IE task. We specifically aimed to extract infor-
mation from peer-reviewed scientific publications, since this better 

warrants the quality of the text that we use for data extraction. The type 
of selected publications includes both scientific reviews and case studies 
on waterborne outbreaks, covering the different aspects of research on 
Legionella. A systematic review of the literature was performed adopting 
the Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses (PRISMA) guidelines (Liberati et al., 2009). The selection of 
publications was made considering their relevance to Legionella as well 
as their maximum possible reference to the desired Information Key-
words (IK). The list of selected publications, the search terms, along with 
the flow diagram that describes the search process and the exclusion 
criteria can be found in the supplementary material. 

2.3. Template filling of the information 

Template filling is an efficient approach (especially when the content 
of a text document describes an event or a situation) to extract infor-
mation in a comprehensive, structured form. The process of template 
filling includes identifying and locating predefined entities and filling in 
their template slots. Table 2 depicts an example of template filling. The 
algorithm behind the template filling should be able to fill in the slots for 
both qualitative and quantitative information. However, not every slot 
can always be filled since it is possible that some IK might not be 
addressed in the text document. The IK vary in terms of their structure. 
Some consist of straightforward information such as “incubation 
period”, and others, such as “Route of transmission” or “Environmental 
habitat” consist of lengthy, more vague, and free text information. 

2.4. Information extraction task 

2.4.1. Labeling and training the data 
The first step of the IE task was to manually label the scientific 

publications. The labeling of data is part of the custom-trained NER 
model that requires a token-level classification, and it helps assess 

Abbreviations 

AI Artificial Intelligence 
BERT Bidirectional Encoder Representations from 

Transformers 
CRF Conditional Random Fields 
DL Deep Learning 
EHR Electronic Health Records 
IE Information Extraction 
IK Information Keywords 
ML Machine Learning 
NER Named Entity Recognition 
NLP Natural Language Processing 
PRISMA Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses 
RCT Randomized Control Trials 
Regex Regular expressions 
RNN Recurrent Neural Networks 
SVM Support Vector Machine  

Table 1 
The desired extracted information (Information Keywords) from scientific 
publications regarding the waterborne pathogen Legionella. Incubation period is 
quantitative information whereas the rest information keywords are qualitative.  

Information keywords Description 

Incubation period The time elapsed between exposure to a pathogenic 
organism and symptom onset 

Symptoms The change in normal functions of a person indicating the 
presence of a disease 

Clinical 
manifestations 

The medical conditions of a patient after infection by the 
pathogen 

Sources of exposure Places or objects that spread the pathogen 
Route of 

transmission 
Route via which an individual became exposed to the 
pathogen 

Environmental 
habitat 

The environment/water system in which the pathogen 
grows 

Species Unit of classification and taxonomic rank of an organism  

Table 2 
Example of template filling extracting information from a scientific publication.  

Information keywords Results 

Species Legionella pneumophila 
Incubation period 

(days) 
2–14 

Symptoms Headache, myalgia, asthenia, anorexia, fever, cough, 
chills, dyspnea, arthralgia 

Route of transmission Inhalation, micro aspiration, direct contact with surgical 
wounds 

Environmental 
habitat 

Aquatic habitats, water distribution systems 

Clinical 
manifestation 

Legionnaires’ disease, atypical pneumonia, Pontiac fever 

Source of exposure Water supply, infectious aerosols, cooling towers, hot 
tubs, potting soil  
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whether a specific world within a sentence is relevant to a specific IK. 
Relevant words are those who are assigned to one of the IK labels, 
whereas irrelevant tokens are those who have no meaning to the la-
beling process and are assigned the label “O”.1 Fig. 1 serves as an 
example of the labeling process. 

Next, the training and classification of labeled data was necessary so 
that the system will learn to correctly assign the right labels to words 
within sentences. This step was implemented using Python program-
ming language (Van Rossum and Drake Jr, 1995) and the Spacy library 
(Honnibal, M., & Montani, 2017). The selection of Spacy library was 
made mainly because this tool is suitable for NLP tasks utilizing word 
embedding methods as well as Recurrent Neural Networks (RNN) for 
multiclass classification. 

2.5. Overall architecture 

Fitting the overall architecture into a general workflow resulted in 
the following process (Fig. 2). 

2.5.1. Text pre-processing 
Although scientific publications come in various document standards 

and formats, the 50 selected scientific publications were extracted from 
the PubMed search engine in a PDF format. The first step of the pre-
processing process was the conversion of PDF files to text files so that 
they can be recognized and processed as raw data. Next, all the sections 
from the text documents that are irrelevant to the IE task were removed 
automatically. That includes references, editors’ notes, and acknowl-
edgments. It was decided that the summary of publications should also 
be excluded since the contained information can be found in the 
remaining sections of the text. To detect these sections (“References”, 
“Acknowledgements”, and “Summary”) we assumed a consistency in the 
way the headings were expressed in the scientific publications before 
applying a rule-based keyword matching technique to filter them out. 
The cleaning process also included the conversion of all uppercase let-
ters to lowercase, and removal of punctuation. The last step was the 
tokenization of words to facilitate the labeling process as well as the 
implementation of the model itself. 

2.5.2. Rule-based techniques 
For the IK “incubation period”, regex pattern-matching was selected 

using a specific module embedded in Python (Kuchling, 2002). The in-
formation is in numeric form and follows a certain pattern in the text (e. 
g. “the incubation period was 2 to 14 days”, “the incubation ranges between 
2 to 14 days prior to symptom onset”). After isolating the sentences con-
taining the word “incubation” from the text, a set of regular expressions 
was applied to every sentence for the extraction of digits or a range of 
digits that correspond to the number of days of the incubation period. 
For IK “symptoms” and “species”, a pool parsing technique was adopted. 
Since the results of these 2 IK are finite and known, a pool with all the 
potential symptoms and species associated with Legionella was created. 
Then, during parsing of unseen text, several n-grams were matched each 
time to the pools to determine if any of the potential symptoms and 
species of the pool can also be found in the text document of interest. For 
the creation of the symptoms and species pool, all the potential symp-
toms and species (both pathogenic and non-pathogenic) associated with 
Legionella and Legionnaire’s disease were collected after exploring the 
literature. 

2.5.3. Supervised technique 
For the remaining of IK, a supervised technique was used since the 

information to be extracted was neither confined within a finite set nor 
could be represented in a certain pattern of strings (as in the case of IK 

“incubation period”, “symptoms”, and “species”). The extraction of such 
information was therefore only possible by understanding the semantic 
pattern and relationship of the tokens2 within a text document. Specif-
ically, a custom-trained NER model using word embedding and RNNs 
was implemented. During the training process, after embedding the 
tokens (words) into a sequence of vectors (numerical representation of 
text), bidirectional RNNs were used to take the semantic context into 
consideration by encoding the vectors into a context-sensitive sentence 
matrix. Next, to improve the power of the model the system used an 
attention mechanism where the previously produced matrix was 
reduced to a sentence vector by selecting the most “appropriate” infor-
mation (after applying weights to every token based on their impor-
tance). In the last step, after all text was converted to a single vector, the 
system was able to predict the classes of every token. This four-step 
formula named: “Embed, encode, attend, predict” is the fundamental 
approach adopted in Spacy library for NER and more documentation can 
be found in Honnibal (2016). 

2.5.4. Post-processing of results 
After the supervised and rule-based techniques had completed their 

task, the extracted information filled the slots of a pre-defined template 
comprised of the desired IK. The extracted information might consist of 
repeated words or words that have the same semantic meaning but differ 
in the length of characters in the text. For example, the slot of IK 
“Clinical Manifestation” may have both “Legionnaires Disease” and 
“Legionnaire’s disease” in the template. Although the semantic meaning 
is the same, the two extracted sequences differ slightly (apostrophe). 
Therefore, to avoid extracting duplicate information, we used the Lev-
enshtein distance, a string metric that measures the pattern similarity -or 
to put it differently- the differences between words and/or sequences of 
words (Levenshtein, 1966). Using the Levenshtein Python C extension 
module, the system decided whether or not to keep the extracted similar 
words in the template (Necas, D., Ohtamaa, M., Haapala, 2014). 

2.6. Evaluation of the performance 

The last step was the evaluation of the model output. To get an un-
biased performance of the model, a 5-fold cross-validation method was 
implemented. After the system was trained by feeding it with 40 text 
documents (80% of total publications), the NER model was tested by 
using a set of 10 “unseen” testing data (20% of total publications). This 
process was repeated 5 times, each time with a separate set of training 
and testing data. For every iteration, the manually labeled values were 
compared with the predicted values for every IK in a so-called confusion 
matrix. Next, the evaluation metrics of precision, recall, and F-score 
were calculated to describe the performance of the model for that 
particular fold of data, and the metrics of all the folds were averaged to 
get the overall performance of the model. 

The analytic approach of precision, recall, and F-score was adopted 
(Kiritchenko et al., 2010) and it was applied both to the system and to 
every IK separately after averaging the values through every fold (5 it-
erations). When it comes to classification tasks, precision is a metric that 
quantifies the number of correct positive predictions from all returned 
positive predictions. It is therefore the number of true positives divided 
by the number of true positives plus false positives (Equation (1)). 

Precision=
TP

TP + FP
(1) 

Recall, on the other hand, is a metric that quantifies the number of 
correct positive predictions made of all positive predictions that could 
have been made by the system. Specifically, it is the number of true 

1 The choice of the word “O" is a default option and it means that all the 
words irrelevant to the IK are automatically assigned to the label “O". 

2 Tokenization: In a sequence of characters within a text document, tokeni-
zation is the process of chopping up the sequence into pieces (words), named 
tokens (Webster and Kit, 1992). 
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positives divided by the number of true positives plus false negatives 
(Equation (2)). 

Recall=
TP

TP + FN
(2) 

The F-score (Equation (3)) is the harmonic mean of precision and 
recall. It is a way to combine both analytic metrics into a single score 
that captures both properties (Olson and Delen, 2008). 

F = 2*
Precision*Recall

Precision + Recall
(3) 

Choosing the right number of scientific publications for the training 
of the model was an important decision to make. Usually, the amount of 
data required to build a good DL model depends on the complexity of the 
problem (in our case extracting words and excerpts of information from 
unstructured scientific publications) and the quality of the training data. 
Regarding DL, the hypothesis is that the more quality data used to train a 

model, the higher is the performance (Mitsa, 2019). The impact of the 
number of publications used for training the IE model on the quality of 
the results was investigated. We created 5 folders containing 10, 20, 30, 
40, and 50 publications randomly selected from the 50 papers that had 
been selected previously and performed a 5-fold Cross-validation in 
every folder. 

Another form of evaluation was to select new publications (beyond 
the 50 that were used before) and compare the system’s performance on 
IE with a manual extraction process (the conventional way where a 
human extracts information from text documents). We selected a set of 
10 new scientific publications related to Legionella and incorporated 
them in the IE module. The same publications were processed by a 
human expert for manual extraction of the IK and the results were 
compared to assess the usefulness of the proposed approach on 
extracting information from Legionella scientific publications. 

Fig. 1. Example of the labeling process. The labels “Env. Habitat”, “Clin. Manifestation”, and “Symptoms” are assigned to their respective words, whereas the 
remaining irrelevant words have been assigned to the label “O”. 

Fig. 2. The workflow of the IE task starts with the input of publication. Next, the publication gets converted to text, cleaned, and tokenized as part of the pre- 
processing step. The next part includes the supervised and rule-based techniques for the extraction of information. Finally, the output of this process gets filled 
in a template as part of the post-processing step. More can be found in chapters 2.5.1 -2.5.4. 

Fig. 3. a) System performance under different number of publications. b) System performance and standard deviation for precision under different number of 
publications. 
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3. Results 

3.1. Influence of the number of publications on evaluation metrics 

Fig. 3a shows that by increasing the number of publications, all 
metrics improved and the standard deviation of cross-validation 
regarding precision in Fig. 3b decreased overall (the standard devia-
tion for recall and F-score can be found in the supplementary material). 
That means that by increasing the number of training data (publications) 
the model generalizes and thus, there is a smaller variation in its per-
formance. These 2 interpretations go in line with the original hypothesis 
and since the standard deviation of precision remained constant for 3 
consecutive increments of publications, we decided that 50 publications 
were an adequate and feasible starting point for the creation of the 
model. All further results were generated using 50 publications to train 
the model. 

3.2. Evaluation of the supervised and rule-based extraction 

For the supervised technique with custom-trained NER, the infor-
mation on “Clinical manifestations”, “Environmental habitat”, “Route of 
transmission” and “Source of exposure” was extracted from the 50 
publications. After performing a 5-fold cross validation to test the 
model, Table 3 shows the results of the 1st folder in a confusion matrix. 
The confusion matrix compares the actual with the predicted IK labels, 
indicating that the custom-trained NER technique was able to correctly 
predict the labels in the majority of the tokens. The only label that 
seemed to have mislabeled many features was the label “O" (which 
contains all the irrelevant words in a document). That “confusion” was 
expected to a certain extent since there was an imbalance between the 
label “O" and the rest of the IK (15897 tokens assigned to label “O" versus 
2404 assigned to the rest of the IK) in the testing data. Considering that 
the desired information was generally organized in a complex and sparse 
manner within the text, it was expected to see false negatives. The label 
“O” affected and captured some of the words that should have been 
assigned to other labels. Another set of IK mislabeling their tokens were 
the “Source of exposure” and “Environmental habitat”. This “confusion” 
was also expected since in many scientific publications the meaning of 
these two IK was often mixed and misinterpreted (i.e. "The source of 
exposure of Legionella was 2 cooling towers”, " Legionella can grow and 
survive in cooling towers”). We see in this example that cooling towers 
can be labeled both as “Source of exposure” and “Environmental 
habitat” and therefore it was difficult for the system to always make 
correct predictions. 

For the extraction of the information on “Incubation period”, “Spe-
cies”, and “Symptoms” with rule-based techniques, almost all of the 
tokens were correctly labeled to their respective IK (Table 4). One IK 
that mislabeled some tokens, resulting in false negative results, was the 
“Incubation period”. Looking into the testing dataset, this happened 
because in some publications, although the authors were describing the 
incubation period, they did not mention specifically the word “incuba-
tion” and therefore the regex rules did not apply. Another IK that mis-
labeled some tokens was the “Symptoms”. Out of 521 tokens describing 
symptoms, 20 of them were not assigned correctly, probably because 
during the pool parsing technique, the respective pool did not contain 

those specific symptoms. 
The classification reports in Tables 5 and 6, give an overview of the 

evaluation metrics of the system for the supervised and rule-based 
techniques. For the custom-trained NER in Table 5, the overall score 
of the system has a precision, recall, and F-score of 0.91, 0.80, and 0.85 
respectively. While the precision score is high for IE tasks, the recall 
score of 0.80 leaves room for improvement (Patrick and Li, 2010; Kir-
itchenko et al., 2010). As explained earlier, the label “O” influenced to a 
certain extent the recall score of all individual IK (too many False 
Negatives for all IK), which resulted in a low overall score. The IK with 
the lowest metrics (both precision and recall) is the “Environmental 
habitat”. This is because sometimes the environmental habitat of 
Legionella can also be presented as its source of exposure and vice versa. 
For the remaining IK, both precision and recall scores are high numbers. 

For the rule-based techniques, as it was expected, the evaluation 
metrics for all IK are high with an overall precision and recall of 1 and 
0.91 respectively. 

3.3. Alternative evaluation with new publications 

3.3.1. Improving the regex rules 
After comparing the IE results with the human extraction, we iden-

tified a few setbacks on the proposed rule-based technique. Specifically, 
during the extraction of IK “Incubation period”, the system could not 
distinguish the semantic difference between the actual incubation 
period of Legionella in patients prior to symptom onset, and the number 
of days required for the growth of colonies on solid media in a laboratory 
environment (a scientific publication can include both, i.e. “L. gormanii 
and L. wadsworthii isolates resulted in no visible growth after 96 h incubation 
in BYE broth”). Although both instances describe incubation period, 
their semantic is different. Therefore, a new set of rules was added that 

Table 3 
Confusion matrix of the custom-trained NER performance.  

Predicted labels 

Actual labels Information keywords Clin. Man/on Env. habitat O Route of transmission Source of Exposure 
Clin. Man/on 637 0 88 0 0 
Env. habitat 3 207 58 0 9 
O 32 31 15517 2 91 
Route of transmission 1 0 20 92 1 
Source of Exposure 2 19 273 1 984  

Table 4 
Confusion matrix of the rule-based techniques.  

Predicted labels 

Actual 
labels 

Information 
keywords 

Incubation 
period 

O Species Symptoms 

Incubation 
period 

70 20 0 0 

O 0 46226 0 2 
Species 0 1 1011 0 
Symptoms 0 20 0 501  

Table 5 
Classification report of the system’s performance for the custom-trained NER.  

Classification report Precision Recall F- 
score 

Total number of actual 
labels 

Clinical 
Manifestation 

0.95 0.88 0.91 725 

Environmental 
habitat 

0.81 0.73 0.77 286 

Route of 
transmission 

0.97 0.81 0.88 114 

Source of exposure 0.91 0.79 0.85 1279 
Average 0.91 0.80 0.85 –  
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would exclude all mentions of Legionella associated with laboratory 
results. 

3.3.2. Comparing the system with a human extraction 
The alternative evaluation of the model (input of 10 new publica-

tions into the model and comparison with a human extraction) shows 
that the model returned results similar to the human extraction and 
extracted most of the IK from the text document. The classification 
report in Table 7 supports this argument. Although the sample is small 
and conclusions cannot be drawn, the evaluation metrics of both pre-
cision and recall are high. Table 8 depicts the extraction of information 
(and comparison) for 2 publications as example. The rest of the com-
parison tables can be found in the supplementary material. 

4. Discussion 

4.1. Evaluation of the IE model 

The proposed IE model demonstrated very good performance on a set 
of 7 information keywords and extracted both quantitative and quali-
tative information regardless of the complexity of the targeted infor-
mation. After testing it with 50 testing publications (10 publications per 
5 folds of cross-validation) from various aspects of research on Legionella 
(scientific reviews and outbreak reports) the system was able to extract 
meaningful information. For the set of IK, both supervised and rule- 
based techniques were needed. The results of the evaluation metrics 
showed that the IE approach can adequately extract the desired infor-
mation from scientific publications regarding the waterborne pathogen 
Legionella. Overall, the IE system identified and extracted the targeted IK 
with high precision (0.91) and provides proof of concept for automated 
extraction of this type of information from scientific publications. The 
lower recall score (0.80) indicated that the IE model missed some of the 
information. While the system’s performance was not perfect and there 
is room for improvement, it is comparable with other IE tasks from 
biomedical sciences. In Kiritchenko et al. (2010), the results of precision 
and recall were 0.93 and 0.91 respectively whereas in Patrick & Li 
(2010), their precision had a score of 0.89 and recall 0.82. Finally, 
although not focused on NER, an IE task from tables in biomedical 
literature had 0.94 score for both precision and recall (Milosevic et al., 
2019). 

The alternative evaluation of the IE model confirmed the validity of 
our approach: when comparing the system’s results with the manual 
extraction in 10 new publications on Legionella, the IE system returned 
similar results for all 7 IK. Although in some cases the IE model extracted 

irrelevant information for some of the IK, considering the complexity of 
the desired information, the results of the proposed IE model were of 
sufficiently high quality. 

4.2. Limitations and recommendations 

Although the proposed approach showed promising results, it is 
accompanied by limitations. The main limitation stems from the very 
nature of the study’s objective. IE tasks have not been implemented for 
data extraction on waterborne pathogens from scientific publications 
before. Therefore, there is still no relevant work to allow for a 
comprehensive comparison with the results of the proposed IE model. 
Although the proposed approach is based on similar work applied to 
biomedical data extraction using ML approaches, an established open- 
access benchmark dataset related to waterborne pathogens data 
extraction utilizing DL methods is missing. Considering the plethora of 
methods available in the literature for AI-data extraction using ML and 
DL methods, it is recommended that other approaches should also be 
tested. 

Considering the proposed approach, the complexity of some of the IK 
is another limitation which resulted in missing some of the information 
(lower recall score). It was relatively easy to extract straightforward 
information, but when the desired information was unstructured, 
lengthy, or vague, the system sometimes failed to correctly identify its 
label. For example, for the IK “Clinical manifestation”, the system would 
potentially have to target and extract words such as “Legionnaires’ 
disease”, “Pontiac Fever”, and “pneumonia”. The problem, in this case, 
is that the targeted fragment of words can be mentioned anywhere in a 
text document, each time in a different semantic context. Another lim-
itation was the choice of pool parsing technique for the IK “Symptoms”. 
Although the pool of symptoms included a variety of symptoms (more 
than 40), it was limited only to the symptoms collected manually from 
the literature. That means that there could be symptoms that the IE 
model would fail to recognize simply because they were not included in 
the respective pool. To tackle this limitation, an enrichment of the 
symptoms pool is recommended by incorporating all symptoms listed in 
the National Library of Medicine’s Unified Medical Language System 
(UMLS) associated with the waterborne pathogen Legionella (Bod-
enreider, 2004). Finally, although the choice of regex rules showed good 
results, it also presented some difficulties in the information extraction 
process. The inability of the IE model to extract the incubation period in 
sentences where the word “incubation” is not mentioned, indicated the 
need for a slightly different approach. Instead of first isolating the word 
“incubation” from the whole text prior to applying the regex rules, it is 
recommended to first perform a sentence-level classification, extracting 
the sentences that contain the relevant information, and then apply the 
regex rules in the sentences that have been classified correctly. Doing 
that can ensure that all the values of the IK “Incubation period” can be 
extracted from the text. 

4.3. Potential applications of IE tasks 

Experts can use the IE model to extract high quality information in 
substantially less time (compared to the conventional way) for meta- 
analysis purposes. A meta-analysis can help recognize patterns, enrich 
the knowledge on Legionella (or other pathogens), and/or generate hy-
potheses. For example, by gathering information from multiple scientific 
publications (reviews and/or outbreak reports) regarding the incubation 
period of Legionella, it would be possible to create a distribution curve of 
the incubation time. Other examples are to collect and categorize 
various transmission pathways, or to identify the most common symp-
toms based on their frequency in Legionella outbreaks. Finally, by 
measuring the frequency of reported Legionellosis (the clinical mani-
festation of Legionella infection) case studies associated with exposure 
events, it is possible to estimate the likelihood of sources of exposure. All 
of these meta-analysis examples demonstrate the potential and 

Table 6 
Classification report of the system’s performance for the rule-based techniques.  

Classification 
report 

Precision Recall F- 
score 

Total number of actual 
labels 

Incubation period 1 0.78 0.88 90 
Species 1 1 1 1012 
Symptoms 1 0.96 0.98 521 
Average 1 0.91 0.95 –  

Table 7 
Classification report of the custom-trained NER on the 10 new publications.  

Classification report Precision Recall F-score 

Clinical Manifestation 0.76 0.91 0.81 
Environmental habitat 0.63 0.92 0.71 
Route of transmission 0.66 0.89 0.72 
Source of exposure 0.68 0.87 0.75 
Incubation period 1 0.75 0.83 
Species 1 1 1 
Symptoms 1 0.72 0.82 
Average 0.82 0.87 0.81  
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importance of using AI and specifically IE tasks to automatically extract 
high-quality information from scientific publications. 

4.4. Future research 

Future research should focus on improving the overall performance 
of the proposed approach. A hybrid system (a combination of the pro-
posed DL method with another discriminative classifier such as CRF or 
SVM) could potentially improve the system’s overall performance as 
previous research has shown (Lê, T., & Burtsev, 2019; Patrick and Li, 
2010). For example, assigning the NER task to the custom-trained NER 
developed here and then coupling it with another classifier to classify 
relationships between entities could potentially further unravel the 
complexity of some of the IK. Another approach would be to consider 
using another DL approach, namely the Bidirectional Encoder Repre-
sentations from Transformers (BERT). Based on the so-called Trans-
former neural network, this technique has gained attention and has 
become a ubiquitous baseline in NLP tasks, since it examines the context 
of words in both directions within a sentence (Kalyan et al., 2021). 

4.4.1. Extrapolate the process to other pathogens and/or fields 
Although this paper is focused on the waterborne pathogen Legion-

ella, the IK are generic for waterborne pathogens. The good results with 
Legionella indicate that the IE model could also be successful for other 
waterborne pathogens, although many of those are not uniquely 
waterborne, but also spread via other matrices (food) or via person-to- 
person contacts, adding more complexity. The ability of DL methods 

(coupled with rule-based techniques) to unravel the complexity of in-
formation found in scientific publications enables experts to create more 
custom-train NER models using sufficient and representative training 
data from other waterborne pathogens publications. The proposed 
approach also enables scientists from different scientific domains to 
explore the power of using AI to extract complex, qualitative, or quan-
titative information from scientific publications. For example, the use of 
IE could be tested for the ability to extract functions such as inactivation 
rates (at different temperatures), disinfection kinetics, or log removal 
values of pathogens from various treatment processes found in scientific 
case studies. 

5. Conclusions 

This paper aimed to evaluate the feasibility and performance of a 
newly developed IE model to extract both qualitative and quantitative 
information from scientific publications about the waterborne pathogen 
Legionella. For the IE model, we adopted a combination of supervised 
(custom-trained NER model) and rule-based (regex pattern-matching, 
and pool parsing) techniques. The evaluation metrics showed a satis-
factory performance for extraction of both qualitative and quantitative 
information: the custom-trained NER model had an overall F-score of 
0.85, and the rule-based techniques had an F-score of 0.95. The IE model 
returned similar results with the manual extraction indicating that the 
extracted information is of high quality, and it can be further used by 
experts who seek to extract meaningful information from scientific 
publications using AI. 

Table 8 
Comparison between the system’s performance and manual extraction of IK from 2 publications (Beauté et al., 2020; Couturier et al., 2020). Red highlighted shade 
= erroneous results. Red bold font = Missed result (either by the IE model or by the manual extraction). 
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Overall, this study indicates that IE can provide an efficient and 
adequate approach for extracting qualitative and quantitative informa-
tion on waterborne pathogen characteristics from the complex body of 
environmental microbiology literature. Scientists and experts can 
therefore begin to harness the power of Artificial Intelligence and Deep 
Learning techniques in this science field. 
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