
 
 

Delft University of Technology

A Survey on Gradient-Domain Rendering

Hua, Binh Son; Gruson, Adrien; Petitjean, Victor; Zwicker, Matthias; Nowrouzezahrai, Derek; Eisemann,
Elmar; Hachisuka, Toshiya
DOI
10.1111/cgf.13652
Publication date
2019
Document Version
Final published version
Published in
Computer Graphics Forum

Citation (APA)
Hua, B. S., Gruson, A., Petitjean, V., Zwicker, M., Nowrouzezahrai, D., Eisemann, E., & Hachisuka, T.
(2019). A Survey on Gradient-Domain Rendering. Computer Graphics Forum, 38(2), 455-472.
https://doi.org/10.1111/cgf.13652

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/cgf.13652
https://doi.org/10.1111/cgf.13652


EUROGRAPHICS 2019
A. Giachetti and H. Rushmeier
(Guest Editors)

Volume 38 (2019), Number 2
STAR – State of The Art Report

A Survey on Gradient-Domain Rendering
†Binh-Son Hua1 †Adrien Gruson1,4 Victor Petitjean2

Matthias Zwicker3 Derek Nowrouzezahrai4 Elmar Eisemann2 Toshiya Hachisuka1

1The University of Tokyo 2Delft University of Technology 3University of Maryland, College Park 4McGill University

Abstract
Monte Carlo methods for physically-based light transport simulation are broadly adopted in the feature film production, animation
and visual effects industries. These methods, however, often result in noisy images and have slow convergence. As such, improving
the convergence of Monte Carlo rendering remains an important open problem. Gradient-domain light transport is a recent
family of techniques that can accelerate Monte Carlo rendering by up to an order of magnitude, leveraging a gradient-based
estimation and a reformulation of the rendering problem as an image reconstruction. This state of the art report comprehensively
frames the fundamentals of gradient-domain rendering, as well as the pragmatic details behind practical gradient-domain uni-
and bidirectional path tracing and photon density estimation algorithms. Moreover, we discuss the various image reconstruction
schemes that are crucial to accurate and stable gradient-domain rendering. Finally, we benchmark various gradient-domain
techniques against the state-of-the-art in denoising methods before discussing open problems.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Faithfully simulating the physical behavior of light remains a long-
standing problem in computer graphics. While Monte Carlo ap-
proaches provide an avenue to approximate solutions to this prob-
lem, existing methods still require minutes to hours to synthesize
noise-free images. Improving the performance of physically-based
rendering algorithms remains an important active research topic.

Among many others, recent advances of gradient-domain ren-
dering provide significant improvement on visual convergence
by exploiting image-space smoothness and coherence in sensor
path subspaces [LKL∗13, KMA∗15, MKA∗15]. The seminal work
on gradient-domain Metropolis light transport [LKL∗13] moti-
vated gradient-domain variants of uni- and bi-directional path trac-
ing [KMA∗15, MKA∗15], as well as gradient-domain density esti-
mation on surfaces [HGNH17, SSC∗17] and volumes [GHV∗18].
The common idea is to estimate the image gradients in addition to
the pixel intensities, and apply image reconstruction to synthesize
the final image. Gradient-domain approaches tend to be more effi-
cient than their conventional counterparts since solutions to the light
transport problem often exhibit piecewise smooth variations in the
image space: numerical estimates of the image gradients tend to be
small for a majority of pixels.

This state of the art report outlines the theoretical and practical
considerations needed when approaching gradient-domain render-
ing. After reviewing general concepts and components of gradient-

† joint first authors

domain rendering (Section 2), we discuss practical considerations
that lead to successful gradient-domain methods and the pragmat-
ics of implementing such methods. This report also serves as a
comprehensive collection of the state-of-the-art in gradient-domain
rendering. For readers who are familiar with conventional (i.e.,
primal-domain) light transport simulation, our report also includes a
tutorial on implementing a basic gradient-domain path tracer.

We detail the fundamental components behind efficient image
gradient estimation: effective shift mappings (Section 3) and their
applications to uni- and bi-directional light transport in the gra-
dient domain [KMA∗15, MKA∗15]. We follow with extensions to
gradient-domain photon density estimation [HGNH17] and gradient-
domain vertex connection and merging [SSC∗17] (Section 4). After
detailing the numerical estimation of image gradients, we describe
various approaches used to reconstruct the final image from these
gradients (Section 5). We also highlight more robust reconstruction
algorithms [MVZ16, BYM18] related to Monte Carlo image denois-
ing techniques [BRM∗16, BB17] and advanced gradient sampling
approaches (Section 6). The strengths of gradient-domain render-
ing for surface light transport have also recently been extended
to higher dimensional problems, such as that of light transport in
scenes comprising volumetric participating media [GHV∗18], tem-
poral image sequences [MKD∗16] and spectral rendering [PBE18].
Section 7 details these works. We will draw relationships to appli-
cations of gradient-domain techniques for path reusing [BPE17],
non-contiguous pixel differences [MRK∗14], and adaptive sam-
pling [LKL∗13, BYM18], before concluding with a discussion of
practical implementation details and important open problems for
future work (Section 8).

c© 2019 The Author(s)
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2. General Principles of Gradient-Domain Light Transport

We review the fundamentals of numerical image formation in the
primal and gradient domains, below.

2.1. Monte Carlo Rendering

The foundation of physically-based light transport on surfaces is
captured by the rendering equation [Kaj86]: given a light path x =
x0 . . .x` of length ` in the path space P (the points x0 lies on an
emitter and x` on a sensor), the intensity Ip of pixel p is defined as

Ip =
∫
P

hp(x) f (x)dx , (1)

where f (x) is the measurement contribution function and hp(x) is
the reconstruction filter at pixel p. Commonly used Monte Carlo
integration approximates this integral as

〈Ip〉=
1
N

N

∑
k=1

hp(xk) f (xk)

p(xk)
, (2)

where the estimate 〈Ip〉 for pixel p is computed using N path samples
xk from a probability density function p(x) defined over the measure
of the path space P . Under reasonable constraints for p(x), this
estimator is unbiased and the expected squared-error is proportional
to the estimator’s variance which vanishes as N→∞.

In practice for finite N, this error manifests as noise in the image.
A simple approach to reduce this noise is to increase N, however
this suffers from the slow O(1/

√
N) convergence of Monte Carlo

integration: e.g., quadrupling N only reduces the error by a factor
of two. As such, reducing the error for fixed N remains an active
problem, despite its long history in physically-based rendering.

We focus on gradient-domain rendering, a family of methods
that exploit image-space pixel coherence to accelerate Monte Carlo
rendering. Here, the basic idea is to estimate image gradients in addi-
tion to pixel intensities, and then to reconstruct the final image using
these gradients. The use of image gradients has been studied widely
in computer vision and graphics, mainly for image editing [PGB03],
image-based rendering [KLS∗13], image filtering [Bha09], and sur-
face reconstruction applications [ACR05], as well as in relevant
fields such as tomography in medical imaging [MSKN17]. Readers
can refer to the excellent course by Agrawal and Raskar for more
technical details [AR07]. The common concept of such existing
work and gradient-domain rendering is that they all share a recon-
struction step based on the gradients. Unlike existing work on image
gradients, however, gradient-domain rendering needs to estimate
image gradients efficiently based on the rendering equation.

2.2. Gradient-Domain Rendering

Figure 1 illustrates the general concept of gradient-domain rendering.
Conventional Monte Carlo rendering estimates pixel intensities by
averaging the contribution of many sampled paths. Gradient-domain
rendering is built on top of this process by adding two important
tweaks: shift mapping, a path-space mapping function that generates
a correlated path from a provided input path to build an efficient
estimator of the difference of a pixel pair (i.e., image gradients), and
image-space reconstruction that acts as a filtering process of the
estimated values to obtain the final image.

Shift mapping 

Image reconstruction

Base path: Offset path: 

Final image

Gradient imagesThroughput image

Throughput
sampling

Gradient
sampling

Figure 1: The general concept of gradient-domain: First, a base
path is generated with a conventional rendering algorithm like path
tracing. Second, shift mapping (Section 3) is used to generate the
offset path. The measurement contribution function is evaluated to
create primal and gradient images. In the end, an image reconstruc-
tion process (Section 5) is used to generate the final image.

A naive approach o estimate the image gradient between two
pixels (i.e. the difference of the pixel intensities) is to estimate
Equation 1 independently at each pixel and subsequently take the
difference. The variance of this naive estimator is simply the sum of
the variance of the two pixels, which means that this extra estimation
does not bring any benefit in terms of estimation error, and it will
therefore not lead to any improvement in the estimation of the final
image. Shift mapping in gradient-domain rendering instead exploits
path correlation between two pixels p and q, resulting in a lower
variance estimator of image gradients. Using shift mapping, we can
define the intensity of the neighboring pixel q of pixel p as

Ip
q =

∫
P

hq(Tpq(x)) f (Tpq(x))
∣∣∣∣dTpq(x)

dx

∣∣∣∣dx , (3)

where Tpq is a path-space function (shift mapping function) that
transforms a path through pixel p (base path) into a path through
pixel q (offset path). The Jacobian determinant

∣∣∣ dTpq(x)
dx

∣∣∣ accounts
for the change of integration domain from p to q. As we estimate
pixel q using paths from pixel p shifted exactly by one pixel, the
reconstruction filter at pixel q can be defined as hq(Tpq(x)) = hp(x).

The shift mapping function Tpq is designed such that the base path

c© 2019 The Author(s)
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x and offset path Tpq(x) are as similar as possible. Using Equation 3,
we can write the difference between two pixels as

∆pq = Ip
q −Ip =

∫
P

hp(x)
(

f (Tpq(x))
∣∣∣∣dTpq(x)

dx

∣∣∣∣− f (x)
)

dx . (4)

Since the shift mapping function Tpq implies Tpq(x) ≈ x, the inte-
grand in Equation 4 becomes zero almost everywhere. Applying
Monte Carlo integration to this integral thus leads to a low variance
estimator of image gradients, when compared to directly taking
finite differences of the pixel intensities.

Given estimated gradients, computing the final image is an image-
space reconstruction problem. A typical solution uses image-space
Poisson reconstruction [BCCZ08], which finds an image that best
fits the estimated pixel intensities and gradients [LKL∗13]:

I = argmin
I
‖Dx(I)−Gx‖n

n +‖Dy(I)−Gy‖n
n +λ‖I− I0‖n

n , (5)

where Dx and Dy are horizontal and vertical image gradients com-
puted using finite difference, Gx and Gy are gradients estimated with
shift mapping, I0 is the noisy Monte Carlo image, and λ controls
the similarity between the reconstruction and the noisy image. Typ-
ical norms used for reconstruction are n = 2 and n = 1. Existing
solvers [She94] can be applied to solve this optimization problem.

Relevance to Path-Space Gradients. The concept of gradients of
light transport paths has been explored well in the literature. In
classical ray tracing, ray differentials [Ige99] is developed to track
the distance between two neighboring rays for texture filtering. Path
differentials [SW01] is an extension of ray differentials to arbitrary
sampled paths with diffuse and glossy interactions. However, as the
path footprints are only approximated by analytical gradients, both
techniques never require to trace two actual paths.

Illumination gradients are used in irradiance caching [WRC88]
and its extensions [WH92, KGPB05, GBP07, JDZJ08] to position
cache points for interpolating high-quality indirect illuminations. It
is also used for bias and variance estimation in progressive photon
mapping [HJJ10]. The theory of the first- and second-order deriva-
tives of specular paths [CA00] was also studied, which leads to ro-
bust techniques for perturbing specular paths such as manifold explo-
ration [JM12] and half-vector space exploration [KHD14, HKD15].
Path derivatives can also be computed with automatic differentiation
together with the sampling of geometric edges [LADL18].

Path-space gradients differ fundamentally different from gradients
in gradient-domain rendering. The latter is interested in estimating
pixel intensity differences by manipulating paths. These differences
are essentially intensity gradients in pixel-discretized image space,
and thus they have little relevance to gradients in path space, despite
the overloaded “gradient-domain” naming.

2.3. Proof-of-Concept Gradient-Domain Path Tracer

We now apply the basic ideas we introduced and derive a simple path
tracer in the gradient domain. This path tracer generally follows the
process of conventional path tracing: we trace paths through each
pixel starting from the camera. To turn it into a gradient-domain path
tracer, we need to implement: shift mapping to estimate gradients
(Equation 3 and 4) as well as image reconstruction (Equation 5). We
list these steps in Algorithm 1, and are explained below.

Shift Mapping. One simple shift mapping simply reuses the same
set of random numbers to generate correlated paths. We call this shift
mapping random sequence replay. This idea was first explored in
Metropolis light transport in the primary sample space [KSKAC02]
and in the pixel dependency tests for filtering [CSKKA02]. The
same shift mapping is also used for temporal gradient-domain ren-
dering [MKD∗16]. The assumption here is that path samples with
the same random numbers are likely to be similar in the path space.
Let x be a path that is successfully sampled by path tracing in pixel p,
and all the random numbers that are used to generate x are recorded
as u. Random sequence replay generates the offset path x′ = Tpq(x)
by tracing through the offset pixel q using path tracing with u′ = u.
To achieve u′ = u, every time a random number is requested by path
tracing, we take the number from u instead of running a random
number generator.

After generating x′, we need to evaluate the Jacobian determinant
in order to evaluate Equations 3 and 4. Following the derivation by
Kelemen et al. [KSKAC02], the Jacobian determinant in this case is

∣∣∣∣dx′

dx

∣∣∣∣= ∣∣∣∣dx′

du′

∣∣∣∣ ∣∣∣∣du′

du

∣∣∣∣ ∣∣∣∣du
dx

∣∣∣∣= p(x)
p(Tpq(x))

. (6)

The contribution of the offset path is thus simplified to

f (Tpq(x))
p(x)

∣∣∣∣dTpq(x)
dx

∣∣∣∣= f (Tpq(x))
p(x)

p(x)
p(Tpq(x))

=
f (Tpq(x))
p(Tpq(x))

, (7)

meaning we just need to divide the offset measurement contribution
function f (Tpq(x)) by the offset path probability density p(Tpq(x)),
as if it was sampled by path tracing pixel q. The gradient estimator
for Equation 4 is

〈∆pq〉=
1
N

N

∑
k=1

hp(xk)

(
f (xk)

p(xk)
− f (Tpq(xk))

p(Tpq(xk))

)
. (8)

Note that there are two strategies to estimate the difference between
pixel p and q: sampling a base path through pixel p and shifting it
to pixel q and vice versa. In this simple implementation, we perform
both strategies and weigh each strategy with a constant factor of 0.5.
The contribution of the base paths of each pixel are still accumulated
to obtain an image due to conventional Monte Carlo rendering
(called the primal image). Putting all the steps together leads to the
function simpleGradientPathTracing() in Algorithm 1.

Reconstruction. After sampling the primal image and the horizon-
tal and vertical gradients, we solve for the final image. In this section,
we explain an iterative solver based on control variates [RJN16] that
has similar effects to the L2-norm case in Equation 5. This solver
first redefines the pixel intensity Ip as the sum of the neighboring
pixel intensity Iq and the image gradient (Ip− Iq):

Ip = Ip +(Iq− Iq) = Iq +(Ip− Iq) . (9)

Using this definition, we can decompose the pixel intensity estimator
〈Ip〉 into the gradient estimator 〈Ip− Iq〉 and another pixel intensity
estimator 〈Iq〉:

〈Ip〉= 〈Iq〉+ 〈Ip− Iq〉 . (10)

Considering the image I as unknown values and the gradient esti-
mates as fixed constants, this formulation defines I as a fixed point

c© 2019 The Author(s)
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PT (relMSE: 4.42.10-3) Simple G-PT (relMSE: 2.77.10-3)

Relative Error0.0 > 0.05

Figure 2: Equal-time comparison between path tracing and the
proof-of-concept gradient-domain path tracing in Section 2.3. With
random sequence replay shift mapping and the iterative solver for
image reconstruction that are straightforward to implement (Al-
gorithm 1), the convergence is improved up to 2×. Using more
sophisticated shift mapping and image reconstruction techniques
lead to even faster convergence (see Sections 3, 4, 5).

of a function F: I = F(I). Typically, such an equation allows us to
retrieve I in an iterative process, where F is consecutively applied
to I:

I(n+1)
p = I(n)q + 〈Ip− Iq〉 , (11)

where I(0) is initialized by the primal-domain image obtained by
Monte Carlo rendering and I(n) is the resulting image at iteration
n. Note that the estimated gradients 〈Ip− Iq〉 are kept fixed during
the iterations. From Equation 11, we see that the reconstruction
converges to an image that have the gradients equal to the estimated
gradients when n→∞.

We now consider the center pixel c = (x,y) and four neigh-
bors including right r = (x+ 1,y), bottom b = (x,y+ 1), left l =
(x−1,y), and top t = (x,y−1) to perform this reconstruction step.
Since each pixel has four neighbors, shifting the
base path from pixel c to its neighbors leads to
the following four gradient estimators (as illus-
trated in the inline figure):

∇Xc = 〈Ir− Ic〉 ∇Xl = 〈Ic− Il〉 (12)

∇Yc = 〈Ib− Ic〉 ∇Yt = 〈Ic− It〉 .

In addition to the trivial identity 〈Ic〉= 〈Ic〉, Equation 10 establishes
four identities for 〈Ic〉 using each one of the four neighbors. We
simply take the average of these five identities to obtain

〈Ic〉=
1
5
(〈Ic〉+(〈Ir〉−∇Xc)+(〈Il〉+∇Xl) (13)

+(〈Ib〉−∇Yc)+(〈It〉+∇Yt)) .

1 function simpleGradientPathTracing()
2 (P,Gx,Gy) = initialize images with zeros
3 for k := 1 to N do
4 foreach pixel sample (x,y) do
5 u = random_numbers()
6 base = radiance(u,x,y)
7 P[x,y] += base
8 Gx[x−1,y] += 0.5∗ (base− radiance(u,x−1,y))
9 Gy[x,y−1] += 0.5∗ (base− radiance(u,x,y−1))

10 Gx[x,y] += 0.5∗ (radiance(u,x+1,y)−base)
11 Gy[x,y] += 0.5∗ (radiance(u,x,y+1)−base)
12 end
13 end
14 P /= N,Gx /= N,Gy /= N
15 I = reconstruct(P,Gx,Gy)

16 return I
17 end

18 function reconstruct(P,Gx,Gy)

19 initialize final image I = P, temporary image J
20 for i := 1 to max iterations do
21 foreach pixel (x, y) do
22 v = I[x,y]
23 v += I[x−1,y]+Gx[x−1,y]
24 v += I[x,y−1]+Gy[x,y−1]
25 v += I[x+1,y]−Gx[x,y]
26 v += I[x,y+1]−Gy[x,y]
27 J[x,y] = v/5
28 end
29 I = J
30 end
31 return I
32 end

Algorithm 1: Implementation of a proof-of-concept gradient-
domain path tracer (Section 2.3). Shift mapping can be imple-
mented by simply reusing base path random numbers. This
requires minimal changes to existing path tracers as only a func-
tion that can construct the path and evaluate its contribution from
a set of random samples is needed. This simplicity is achieved
at the cost of moderate correlation for the base and offset paths.

which leads to the iterative update of I(n)c as

I(n+1)
c =

1
5
(I(n)c +(I(n)r −∇Xc)+(I(n)l +∇Xl) (14)

+(I(n)b −∇Yc)+(I(n)t +∇Yt)) .

Empirically, using 30 to 50 iterations works well to reconstruct a
1280×720 image. This reconstruction algorithm is implemented as
the second function reconstruct(P,Gx,Gy) in Algorithm 1.

Discussion. The gradient-domain path tracer we detail here is de-
signed to provide an easy-to-implement baseline prototype in order
to better understand the basic concepts of gradient-domain render-
ing. This simplified gradient-domain path tracer already results in
a speedup compared to primal-domain path tracing in some scenes
(Figure 2), however it far from optimal in many important aspects.
First, random sequence replay often fails to produce similar offset
paths. The offset path from random sequence replay can diverge
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(a) Random sequence replay

(d) Manifold exploration

Primary 
samples

0 1

1

Normal vector

(b) Half-vector copy

Half-vector

(c) Path reconnection

Connectable (diffuse)

Not connectable (specular)

Figure 3: Illustration of existing shift mapping techniques. Shift
mapping generates a correlated offset path (green) from a base path
(black) so that their contribution difference is a good estimate of the
underlying pixel gradient.

from a base path when the offset path hits a surface with a BSDF
different from that on the base path. Section 3 introduces more so-
phisticated shift mapping functions in path space to achieve better
correlation. Second, unidirectional path tracing is not the only tech-
nique that can be implemented in gradient-domain. Section 4 details
how to incorporate bidirectional light transport techniques which
are more robust to various scene configurations. Finally, the simple
iterative solver we explained here might result in visual artifacts
such as bright spots due to have noisy gradients. Image reconstruc-
tion from gradients is indeed a non-trivial task, and robust image
reconstruction solutions are introduced in Section 5.

3. Shift Mapping

Shift mapping is a deterministic perturbation in the path space which
transforms a base path into an offset path. Ideally, one would like
to make the integrand of Equation 4 small for any x, such that the
variance of its Monte Carlo estimator also becomes small. Shift
mapping achieves this by making offset paths Tpq(x) highly cor-
related with base paths x. This section categorizes and discusses
existing shift-mapping techniques which be adopted for building
various integrators in the later sections. Figure 3 illustrates the shift
mapping techniques that we discuss below.

To simplify our exposition, we assume that shift mapping is
always successful and that offset paths can always be generated. In
practice, there is no such guarantee since offset paths might not hit
an object, or the BSDF evaluation approaches zero. We will discuss
how to robustly deal with these scenarios later in Section 3.5.

3.1. Random Sequence Replay

For completeness, we briefly review random sequence replay from
Section 2, below. The idea of random sequence replay [MKD∗16] is
to generate an offset path by repeating the same set of random num-
bers that were used to generate its associated base path (Figure 3(a)).
This approach enables each vertex in the offset path to be generated
using existing path sampling techniques. Equation 6 shows how to
calculate the Jacobian determinant of this shift mapping.

3.2. Half-Vector Copy

While random sequence replay is simple and general, reusing ran-
dom numbers does not necessarily lead to highly correlated paths. A
more effective solution is to directly manipulate path space samples,
exposing more direct control over inter-path correlation.

One such idea is to contrain the same half-vector at each path
vertex [KMA∗15] (Figure 3(b)). Given a base path of the form
(x0 . . .xk−1xkxk+1 . . .) and a partial offset path (x′0 . . .x

′
k−1x′k), to

determine the offset vertex x′k+1 by preserving the half-vectors, we
should have

h =
ωi +ωo

‖ωi +ωo‖
=

ω
′
i +ω

′
o

‖ω′i +ω′o‖
= h′ , (15)

where ωo,ω
′
o,ωi,ω

′
i are the outgoing (from vertex k to vertex k−1)

and incoming directions (from vertex k to vertex k+1) at the base
and offset vertex k. As ωo, ωi, and ω

′
o are known, one can solve

for direction ω
′
i . We can determine vertex x′k+1 by tracing a ray

from x′k toward the direction ω
′
i . Please refer to Kettunen et al.’s

supplement [KMA∗15] for the Jacobian determinant derivation.

3.3. Path Reconnection

While half-vector copy provides more direct control over the shape
of the offset path, the offset paths are still generated from scratch
and no vertices are shared between the base and the offset paths.
This is not only computationally expensive, but also results in sub-
optimal path correlation. Path reconnection addresses this issue by
connecting the offset path back to the base path. When successful,
it enables reuse of all the vertices on the base path after the point
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of reconnection. The idea of path reconnection can be dated back
to the early work by Bekaert et al. [BSH02] in the name of path
reusing for Monte Carlo path tracing.

Consider a base path x = (x0 . . .xbxb+1 . . .) where x0 is on the
camera, and the partially constructed offset path x′ = (x′0 . . .x

′
b) us-

ing random replay or half-vector copy. Path reconnection improves
correlation by connecting the offset path vertex x′b to xb+1 (Fig-
ure 3(c)). After vertex xb+1, all the vertices of the base and offset
paths are the same. The Jacobian determinant for reconnection is
simply one in the area measure [KMA∗15].

Path reconnection is applicable only when the BSDFs at xb, xb+1
and x′b+1 do not significantly differ. Specular or highly-glossy BS-
DFs at those vertices often lead to paths with zero throughput, thus
we classify vertices whose BSDFs are “diffuse” enough as con-
nectable. For path reconnection to be efficient, all the vertices xb,
xb+1, and x′b+1 need to be connectable In gradient-domain path
tracing [KMA∗15], a threshold on the BSDF roughness is used to
classify a vertex as connectable or not.

3.4. Manifold Exploration

A common scenario in complex light transport is the existence
of consecutive specular vertices between two connectable ver-
tices. A more sophisticated shift mapping is required to handle
such specular chains. Suppose that the base path has the form
x = (x0 . . .xb . . .xc . . .) where xb and xc are connectable and vertices
between xb and xc are specular. Jakob et al. [JM12] proposed mani-
fold exploration that can be applied to connect a partial offset path
(x′0 . . .x

′
b) to xc (Figure 3(d)). Similar to half-vector copy, manifold

exploration preserves all half-vectors on the specular chain during
offset path generation. The main difference is that the half-vectors
serve as constraints that define an implicit path space for which the
vertices of the specular chain can be searched for using a Newton
solver.

While manifold exploration leads to more robust shift mapping
for base paths that contain specular or glossy vertices, it is usually
computationally expensive. Our experience is that it is good to
balance the use of manifold exploration with the shift failure rate.
Sometimes it could be cheaper to let the shift fail and sample the
gradients with finite differences on the primal domain to trade for
more rendering passes.

3.5. Practical Issues

We discuss a few important practical considerations, next.

Forward and Backward Shift. As we briefly mentioned in Sec-
tion 2.3, one can generally estimate gradients in two different ways.
For a base pixel p and an offset pixel q, the gradient ∆pq can be
estimated by shifting a base path from p to q (forward shift), or
vice versa (backward shift). When a base path can be shifted to an
offset path and vice versa, this shift mapping is called reversible.
Therefore, Equation 4 can be extended to a weighted sum of two

Reversible path space

Reversible path

Irreversible path

Path space Irreversible path space

Apply shift mapping Apply finite difference 
with primal

Base 
pixel

Offset 
pixel

Figure 4: Reversible and irreversible paths are handled separately
in gradient estimation in Equation 16. Only a subspace in the in-
tegral domain has bijective shift mapping, i.e., a base path can be
shifted into an offset path using a forward shift, and applying the
backward shift on the offset path results in the same base path. When
both base and offset paths belong to this subspace, Equation 16 re-
sults in low-variance estimation of the gradients. When one of the
paths does not fall into this subspace, the gradients are simply esti-
mated by taking the finite difference on pixel values of the primal
domain.

gradient estimates:

∆pq =
∫
P

hp(x)wpq(x)
(

f (Tpq(x))
∣∣∣∣dTpq(x)

dx

∣∣∣∣− f (x)
)

dx

+
∫
P

hq(x)wqp(x)
(

f (x)− f (Tqp(x))
∣∣∣∣dTqp(x)

dx

∣∣∣∣)dx ,
(16)

where wpq and wqp are the weights of the forward and backward
shift mapping. The first integral corresponds to shifting base path
from p to q. The second integral corresponds to the reversed case
from q to p. A simple strategy is to weigh both shifts equally (i.e.,
wpq(x) = wqp(x) = 0.5).

A more efficient weighting scheme is to use multiple importance
sampling (MIS) [VG95b]:

wpq(x) =
p(x)

p(x)+ p(Tpq(x))
∣∣∣ dTpq(x)

dx

∣∣∣ . (17)

In the case of reversible shifts, we can apply this MIS weight to
combine the gradient estimation of both the forward and backward
strategies. The forward shift uses wpq and the backward shift uses
wqp based on the same formulation. In Section 2.3, we set the
weights for the forward and backward shift equally to 0.5. In fact,
this value can also be interpreted as a special case in Equation 17
when random sequence replay is used. In this case, the Jacobian
determinant in Equation 6 cancels out the offset path probability
density, leaving only the base path probability terms in Equation 17,
which results in value 0.5.

Unsuccessful Shift Mapping. In practice, shift mapping is not
always reversible and there is no guarantee that the mapping is
bijective. For example, a base path can be mapped to an offset path
that cannot be sampled (i.e., the probability density to generate
the offset path using the traditional Monte Carlo path sampling is
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(a) Random replay

relMSE: 1.06.10-2

Time: 111 sec 

(b) Random replay
+ path reconnection

relMSE: 0.88.10-2

Time: 44 sec 

(c) Half-vector copy 
+ path reconnection

relMSE: 0.97.10-2

Time: 43 sec 

Figure 5: Equal-sample comparison of different shift mappings for
gradient-domain path tracing provides the following observations.
(1) With path reconnection, the base and offset paths become more
correlated, which reduces variance in gradient estimates. Path re-
connection also helps lower the overhead of shift mapping once the
offset path merges into the base path. (2) Random sequence replay
has very competitive performance to half-vector copy when used
with path reconnection.

zero). In such cases, shift mapping is marked as unsuccessful and
irreversible, and Equation 17 is no longer applicable. To handle this
case, one can set the weights of both forward and backward shift
mapping to 1, and return zero as the contribution of the offset path.
Equation 16 then degenerates into computing the finite difference
by the contributions of the base paths at pixel p in the first integral,
and the base paths at pixel q in the second integral. Figure 4 further
explains reversibility by illustrating the path space at the base and
offset pixels.

Combined Shift Mapping. Generally speaking, no single shift
mapping method works well for all the cases. For example, random
sequence replay and half-vector copy can maintain specular chains
effectively but do not take path correlation into account. Path recon-
nection maximizes correlation but might result in zero-contribution
offset paths since it does not consider BSDFs during the shift. In
practice, shift mapping used in gradient-domain light transport algo-
rithms combine multiple approaches.

For example, the original gradient-domain path trac-
ing [KMA∗15] employed half-vector copy with the combination
of path reconnection. As an alternative, combining random
sequence replay with path reconnection is a simple but effective
approach to improve robustness of shift mapping, when the scene
contains a mix of specular and diffuse objects. In gradient-domain
photon density estimation [HGNH17] and its volumetric rendering
version [GHV∗18], path reconnection is used with half-vector copy
to shift density estimation paths.

Figure 5 compares the performance of three possible shift map-
pings for gradient-domain path tracing: random sequence replay,
random sequence replay with path reconnection, and half-vector
with path reconnection. We observe that applying path reconnection
with either a random sequence replay or a half-vector copy improves
path correlation, and so serves to reduce the variance of gradient

estimates. Furthermore, it also reduces the computational cost due
to vertex reuse. Lastly, we do not observe any noticeable difference
in the effectiveness of random sequence replay and half-vector copy.

4. Path Sampling Techniques

While we initially focused on path tracing in Section 2, gradient do-
main rendering is also amenable to more sophisticated light transport
algorithms. We begin with unidirectional path tracing, following
the original gradient-domain path tracing [KMA∗15] work, before
detailing bidirectional path tracing and photon density estimation
in the gradient-domain [MKA∗15, HGNH17, SSC∗17]. Figure 6
summarizes typical base and offset path configurations for each of
these gradient-domain light transport methods.

4.1. Unidirectional Path Tracing

Unlike our simplified version in Section 2, the original gradient-
domain path tracing algorithm [KMA∗15] uses half-vector copy to
shift a specular chain from the base to the offset path. Path recon-
nection is applied when we encounter two consecutive connectable
vertices on the base path. Anderson et al. [ALLD17] provide a more
compact implementation of gradient-domain path tracing, where
the path probability density is evaluated using automatic differen-
tiation, at the cost of runtime efficiency. Figure 6(a) illustrates the
original algorithm of gradient-domain path tracing. Compared to
our simplified version, the original shift mapping is much more
efficient due to the use of the combination of half-vector copy and
path reconnection.

4.2. Bidirectional Path Tracing

We briefly review the foundations of bidirectional path tracing before
discussing its gradient-domain variant [MKA∗15]. In bidirectional
path tracing [LW93, VG95a], subpaths are traced from both the
camera and light, with vertices connected between the two subpaths
form complete paths. Since a path can be generated by multiple
sampling strategies depending on how two subpaths are connected,
one needs to weigh the contribution of the paths properly, which is
usually given by multiple importance sampling [VG95b].

To perform bidirectional path tracing in the gradient domain, one
might consider simply applying manifold exploration shift mapping
to each complete light path in a family of connected subpaths.
While this approach is straightforward, Manzi et al. [MKA∗15]
showed that this is computationally too costly. They thus proposed
to ignore connections that involve specular light transport, for the
following reason. Consider a complete base path that we can shift
using manifold exploration [JM12]: using only diffuse-diffuse
vertex connections to generate base paths, we can guarantee that
reconnection always occurs at the third diffuse vertex on the
complete light path, counting from the camera towards the light,
denoting these first three diffuse vertices as xa, xb, and xc (see
Figure 6; with the vertex, xa always on the camera). By carefully
weighting path sampling strategies using multiple importance
sampling, we can still obtain unbiased estimators even if we ignore
some connections. Manzi et al. classified the strategies according to
three cases:
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(b) Gradient-domain bi-directional path tracing

(a) Gradient-domain path tracing (c) Gradient-domain photon density estimation

Case 1

Case 2

Case 3

Case 1

c
Case 2

(d) Gradient-domain vertex connection and merging

R

M
H

R

M

H R

H M

H

H

H

M Connectable (diffuse)

Not connectable (specular)

H: Half-Vector Copy

M: Manifold Exploration

R: Path ReconnectionHalf-vector

Figure 6: Base and offset paths in typical algorithms of gradient domain light transport simulation. For clarity, we demonstrate the shift in
slightly different scene setups, when needed, with shift mapping labeled when it occurs. A combination of shift mappings is used: half-vector
copy (H), reconnection (R), and manifold exploration (M). (a) Half-vector copy shifts the specular chain before reconnection occurs. (b)
Bidirectional path tracing always has reconnection at the third connectable vertex, i.e., vertex c. The dashed line represents where vertex
connection occurs. (c) The camera subpath is shifted with half-vector copy, and the light subpath is shifted with manifold exploration. (d)
Vertex connection and merging technique further considers density estimation when reconnection occurs.

1. vertices xb and xc are sampled on the camera subpath,
2. a vertex xb is the last vertex of the camera subpath, or
3. light tracing, i.e., connections from the light subpath to the eye.

Figure 6 illustrates that we can cache the result of shift mapping and
its Jacobian determinant for the camera subpath ending at xb and
the camera subpath ending at xc in the first and second cases. Only
paths in the third case have to be shifted separately, which is more
expensive.

We emphasize that this approach by Manzi et al. is not the only
manner in which one can implement gradient domain bidirectional
path tracing. A simpler alternative proposed in their work is to only
shift the camera subpath, and then attempt to connect it to the base
light subpath, i.e., only performing case two from Figure 6b. They,
however, showed that this simple approach is less efficient in prac-
tice. Another alternative is to apply Russian roulette, probabilistic
connection [PRDD15], or the matrix formulation [CBH∗18] to pick
a path among all possible connections and then shift only this path.
Further investigations and evaluations could lead to more insights
and lightweight implementations of bidirectional path tracing inte-
grators in the gradient domain.

4.3. Photon Density Estimation

An important class of integrators in light transport simulation is
based on photon density estimation [Jen01, HJ09]. This class of in-
tegrators is well known to be able to sample complex light transport
such as specular-diffuse-specular (SDS) interactions.

Hua et al. [HGNH17] proposed gradient-domain photon density
estimation using a hybrid shift mapping to separately treat the cam-
era subpath, the density kernel, and the light subpath (Figure 6(c)).
Their shift mapping comprises three steps: first, the offset camera
subpath is computed, followed by the offset photon, and finally the
offset light subpath. Offset photons are generated such that the rela-
tive position between a gather point and photon remains unchanged
during shift mapping. Gradient-domain photon density estimation
is compatible with progressive radius reduction schemes [HJ09]
and leads to a consistent estimator. Gruson et al. [GHV∗18] later
extend this algorithm to volume rendering, on which we elaborate
in Section 7.1.

4.4. More Advanced Algorithms

Sun et al. [SSC∗17] extended gradient-domain bidirectional path
tracing with photon density estimation under the unified light trans-
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port framework [GKDS12,HPJ12]. They built upon the bidirectional
integrator by Manzi et al. [MKA∗15]. The difference is that, in ad-
dition to vertex-vertex connection, density estimation can also be
applied at connectable vertices to generate complete paths. As sug-
gested by Manzi et al. [MKA∗15], the shift mapping used in Sun et
al. [SSC∗17] can be narrowed down to a few cases, each of which
can be implemented efficiently. Figure 6(d) illustrates such cases
and relates them to the corresponding cases in gradient-domain bidi-
rectional path tracing [MKA∗15]. The photon density estimation
component of Sun et al. [SSC∗17] is quite similar to that in gradient-
domain photon density estimation [HGNH17], except that they did
not conserve the relative photon positions in the kernel during shift.
This difference becomes negligible when the kernel size shrinks
during progressive photon density estimation.

It would be interesting to see more sophisticated integrators being
ported to the gradient domain to achieve even more robust gradient
sampling. For example, as mentioned by Sun et al. [SSC∗17], a
potential extension is to bring Markov chain Monte Carlo with
bidirectional estimators [ŠOHK16] to the gradient domain. Another
interesting extension is to establish connections from local path
space perturbation techniques for Markov chain Monte Carlo [JM12,
KHD14, HKD15] to shift mapping since such techniques could
explore the path space that corresponds to neighbor pixels.

4.5. Comparative Study

To paint a clearer picture of how different gradient-domain light
transport algorithms work, we gathered all the publicly available im-
plementations of gradient-domain light transport algorithms into the
same framework, and performed a comprehensive equal-time com-
parison. The resulting framework is publicly available at https:
//github.com/gradientpm/gradient-mts. Shift map-
ping of each one of the light transport algorithms is as described in
their original publications. Figure 7 shows the results of our numer-
ical experiments. We selected the SPONZA, BATHROOM, BOOK-
SHELF and TORUS scenes, and rendered each scene with primal-
and gradient-domain light transport algorithms. We use the same re-
construction technique for all the algorithms based on the L1-norm
Poisson reconstruction shown in Equation 5. The error metric is
relative MSE. In the BOOKSHELF scene, we discarded 0.01% of the
highest error pixels in the reconstructed image due to the corruption
from strong light paths that reach the light through specular-only
interactions. Note that this only affects the metric, not the reconstruc-
tion itself. Comparisons using the SSIM metric [WBSS04] could
be found in our supplemental document. It also includes a relative
speed comparison by plotting the time of a single rendering iteration
for each technique.

In general, gradient-domain rendering converges faster than the
primal-domain counterpart as expected. This observation aligns
well with the experiments published in previous work [KMA∗15,
MKA∗15, HGNH17, SSC∗17]. The improvement ranges from a few
times to an order of magnitude depending on the scene configuration.
We generally found that gradient-domain rendering works well when
paths can be efficiently sampled and shifted at the same time. In
some cases, however, gradient-domain rendering did not outperform
traditional Monte Carlo rendering due to high overhead. For exam-
ple, in the TORUS scene, only a small subset of sampling strategies

in VCM is efficient. Performing shift mapping with all sampling
strategies makes gradient-domain rendering very expensive, result-
ing in G-VCM being less efficient than VCM. Sun et al. [SSC∗17]
also made similar observations in their G-VCM algorithm.

In terms of implementation effort, we found that gradient-domain
path tracing [KMA∗15] is the easiest to implement. All the other
techniques are far more challenging to implement because they are
built on top of the manifold exploration shift mapping that requires
differential geometry [JM12]. We also speculate integrating gradient-
domain algorithms to a production rendering system is not an easy
task because of complex material models and custom shaders that
have to be made compatible with shift mapping. Investigating how
to integrate gradient-domain algorithm into a production rendering
system is interesting future work.

5. Image Reconstruction

Image reconstruction is an important step in gradient-domain ren-
dering, after sampling pairs of correlated paths. We summarize the
tradeoffs across exiting reconstruction approaches, below. At a high-
level, two major reconstructions strategies have been applied to this
problem: the first is Poisson image reconstruction with regulariza-
tion [LKL∗13, MVZ16], and the second is iterative optimization
based on control variates [RJN16]. We briefly explain these two
approaches, as well as relating the control variates approach to a
broader class of denoising techniques applied to Monte Carlo ren-
dering [BRM∗16, CKS∗17, BVM∗17, VRM∗18]. This relationship
has yet to be discussed in the literature and we believe that our new
observation here will lead to future, crosspolinating research.

5.1. Poisson Image Reconstruction

As we have learned in Equation 5, solving the final image can be
formulated as a Poisson reconstruction problem. The formula was
first proposed by Lehtinen et al. [LKL∗13] that reconstruct the image
from its primal and gradient estimation. To facilitate discussion, we
repeat Equation 5 here:

I = argmin
I
‖Dx(I)−Gx‖n

n +‖Dy(I)−Gy‖n
n +λ‖I− I0‖n

n , (18)

where n takes the value of 1 or 2 individually to define the norm.
With L2-norm, this problem becomes the classical Poisson recon-
struction problem [BCCZ08]. To solve this optimization, we can set
the derivative of the cost to zero, which is essentially solving the
following linear system of equations:

(D>x Dx +D>y Dy +λ)I = D>x Gx +D>y Gy +λI0 , (19)

where the images and gradients here are vectorized to 1D and the
functions Dx and Dy are discretized into matrix form. Equation 18
with L1-norm can be solved by casting the optimization as an itera-
tive re-weighted least squares problem [LKL∗13].

Kettunen et al.’s frequency analysis [KMA∗15] provides insights
on how reconstruction with gradients can improve convergence: their
work shows that gradient sampling has lower variance than intensity
sampling due to the variance being proportional to the signal’s
energy. More accurate gradient estimates translate to better high-
frequency signals when the gradients are integrated to reconstruct
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Figure 7: Equal-time rendering of primal- and gradient-domain methods for the SPONZA, BATHROOM, BOOKSHELF and TORUS scenes. For
scenes dominated by diffuse light transport, such as SPONZA, gradient-domain methods significantly outperform their primal counterparts. In
more complex scenarios such as the BATHROOM and BOOKSHELF scenes, the performance of gradient-domain methods depends on: (1) how
efficient is the primal counterpart to render the scene and (2) the cost of performing shift mapping. For scenes containing a lot of SDS paths,
such as the TORUS scene, the methods using photon density estimation outperformed the others. For all the rendering results, please refer to
our supplemental document.

the image. However, as gradients do not contain much information
about the low frequency component of the signal, it is generally
better to recover this component from a primal-domain simulation,
which results in the Poisson reconstruction in Equation 18.

In general, L2-norm reconstruction is more convenient to imple-
ment, but it is quite sensitive to outliers. A spike in the gradients
can yield a local bright spot in the image because the reconstruc-
tion step tries to explain such an erroneous gradient via final pixel
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L2 reconstruction Uniform reconstruction

L1 reconstruction Weighted reconstruction

relMSE: 4.44.10-2
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Figure 8: Comparison of image reconstruction approaches. L2-
norm Poisson reconstruction [LKL∗13] and uniform control vari-
ates [RJN16] results in visual artifacts. L1-norm Poisson recon-
struction is more robust in discarding the visual artifacts but exhibit
strong energy loss, i.e., the image might appear darker. Weighted
control variates [RJN16] performs the best here despite of some
minor artifacts near the edges.

intensities. L1-norm reconstruction is more robust in this situation
because it this large error influences the norm by its absolute value
instead of the squared value. Manzi et al. [MVZ16] proposed to
add local patch constraints using auxiliary images such as albedo
and normal maps to regularize Poisson reconstruction results. Such
a constraint is similar to a local linear model used in Monte Carlo
image denosing [BRM∗16] and is generally more robust.

5.2. Iterative Optimization

Rousselle et al. [RJN16] proposed a different image reconstruction
approach based on iterative optimization. As mentioned in Section 2,
the basic idea is to rewrite the pixel intensity Ip as the sum of the
difference and the intensity of the neighbor pixel Iq. Generalizing
Equation 10, we have

〈Ip〉= ∑
q∈Np

wp,q(〈Iq〉+ 〈Ip− Iq〉) , (20)

whereNp is the set of pixels neighboring to p, wp,q is the weight that
defines how good pixel p can be approximated by its neighbor q, and
〈〉 denotes a Monte Carlo estimator. This reformulation leads to a
simple algorithm in which a pixel iteratively receives a contribution
from their neighbor pixels (see Algorithm 1). Using uniform weights
as in Equation 14, this approach in fact yields visually similar results
as Poisson reconstruction with L2-norm (see Figure 8), although the
filters to distribute the energy are different in the frequency domain.

It is possible to further reduce visual artifacts in the reconstruc-
tion by using the image and gradient variance to weigh the control
variates. Rousselle et al. proposed to use the following weight:

w(n)
p,q =

σ
−2
p,q

∑r∈Np
σ
−2
p,r

, (21)

where σ
2
p,q is the variance that corresponds to the shift from neighbor

q, which can be estimated by

σ
2
p,q = var(I(n)p )+var(〈Iq− Ip〉) . (22)

Note that they use var(I(n)p ) in place of var(I(n)q ) to reduce energy
loss in the reconstruction image. As the pixels are iteratively up-
dated, the variance of I(n)p is approximated by the variance of the
primal-domain value Ip divided by a constant value (see [RJN16] for
details). Figure 8 shows an example that demonstrates the robustness
of each reconstruction technique.

One challenge for weighted reconstruction is to have variance
of the primal image and the gradients. For path tracing, unbiased
variance estimation could be easily performed by using an online
variance estimator [Knu97]. For progressive photon mapping, as
each gather point needs to keep track of kernel radius reduction,
variance can by approximated by taking the difference of two inde-
pendent buffers, each of which accumulates separate photon passes.
Such two buffers are also useful for collaborative filtering in Monte
Carlo denoising [BRM∗16]. A more systematic approach for esti-
mating variance in photon mapping is to estimate and remove bias
from the intensity before applying variance estimation [HJJ10].

Another approach to reducing visual artifacts is to perform gradi-
ent resampling [BYM18]. The idea is to perform some independent
runs of primal and gradient estimation, and then for each pixel, ran-
domly sample the results from the runs and take the average of the
sampled values for image reconstruction. This approach decorrelates
spikes that both appears in the primal and gradient domain, and thus
reducing artifacts.

5.3. Relationship to Denoising

Filtering noise of Monte Carlo rendering by post processing is
becoming increasingly popular in film and animation production.
Such techniques often exploit the correlation between the image
and feature vectors from the auxiliary buffer such as albedo, normal,
and depth map for filtering. We discuss the relevance of gradient-
domain reconstruction with existing models for general image-space
filtering.

The general idea of denoising Monte Carlo rendering is to de-
termine a function that maps a feature vector to a color value of
each pixel. The feature vector could be defined using noisy pixel
values and auxiliary information such as albedo, normal, and depth
within a neighboring region around each pixel. Let F be such a
function such that Fp = F(yp) is the denoised pixel intensity and
y is the feature vector at pixel p. Let I be the noisy image so that
Ip = Fp + ε where ε is the noise. The zero-order model assumes
that each pixel can be written as a weighted sum of neighboring val-
ues, i.e., Fp = ∑q∈Np

wp,qFq, which is equivalent to the following
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Figure 9: Comparison between gradient-domain reconstruction and Monte Carlo denoising. For surface rendering, gradient-domain rendering
is less efficient than Monte Carlo denoisers that use auxiliary buffers (NFOR [BRM∗16]) or histograms of path samples (BCD [BB17]).
NFOR could also be applied to address noisy regions remaining in gradient-domain path tracing by using the reconstructed image as guiding
features, leading to improved image quality (see G-PT + NFOR in the KITCHEN scene). For volume rendering, gradient-domain rendering is
comparable to Monte Carlo denoisers, particularly with photon density estimation.

optimization for denoising:

min
Fp

∑
q∈Np

wp,q(Fp− Iq)
2 , (23)

where wp,q could be defined using strategies such as bilat-
eral filtering, non-local means, and joint filtering with auxiliary
buffers [RMZ13, BRM∗16]. The optimization is done at each local
image patch centered at each pixel to recover the pixel value Fp. The
neighborhood Np is a window of 19× 19 pixels [BRM∗16]. The
first-order model further considers the derivative ∇Fp = ∇F(yp)
with respect to features [MCY14, BRM∗16]:

min
Fp,∇Fp

∑
q∈Np

wp,q

(
Fp +∇F>p (yq− yp)− Iq

)2
. (24)

The term∇F>p (yq− yp) belongs to the first-order Taylor expansion
that approximates Fq using Fp and its derivative ∇Fp. By solving
Fp and∇Fp, the entire local image patch can be reconstructed. The
patch can then be accumulated to yield the final image.

From the optimization above, one may expect Fp ≈ Iq −
∇F>p (yq− yp). This would correspond to the filtered pixel p being
approximately equal to a neighbor noisy pixel q compensated by a
difference term. This interpretation is in fact related to the control
variate in Equation 20. A subtle difference is that general filtering
works in a window of roughly 19×19 pixels [BRM∗16] while the
window in control variates reconstruction [RJN16] is limited to
direct neighbors, i.e, left, right, top, and bottom due to the extra
cost of performing shift mapping to pixels that are further away.
The control variates approach compensates for this limitation by
performing the reconstruction iteratively to propagate the filtering
effects to a larger neighborhood.

The current thinking is that gradient-domain reconstruction is not
yet as effective as image denoising [RJN16]. Based on the above-
mentioned relationship between control variates and denoising, we
conjecture that this is due to denoising techniques often utilizing
more features (e.g., from auxiliary buffers) than gradient-domain
reconstruction. Such feature maps are usually highly correlated
with the final image, particularly for surface rendering, making
them effective candidates to define filtering. Manzi et al. [MVZ16]
in fact proposed an extended Poisson reconstruction technique to
include local patch constraints derived from feature buffers. Another
possibility is to use the gradient-domain reconstruction as a yet
another feature map with Monte Carlo denoising techniques to filter
the primal-domain image. Back et al. [BYM18] apply a similar idea
in the context of adaptive sampling.

Figure 9 compares gradient-domain reconstruction and Monte
Carlo image denoising. Gradient-domain reconstruction is an ef-
fective way to reduce noise but not comparable to Monte Carlo
denoisers in surface rendering. To fill this gap, one can post-process
gradient-domain rendering with Monte Carlo denoisers, e.g., us-
ing NFOR [BRM∗16] by treating the reconstruction image as an
additional feature map [BYM18]. This approach does not require
any auxiliary buffers such as albedo map. In volume rendering,
gradient-domain rendering, particularly with photon density es-
timation, gradient-domain rendering is as competitive as Monte
Carlo denoisers. We generally found that denoisers that use fea-
ture maps [BRM∗16] work better than those that use sample his-
togram [BB17]. We believe that filling the gap between image recon-
struction in the gradient domain and Monte Carlo image denoising
is an interesting research avenue.
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(a) Direct neighbors (c) Bigger tile(b) Non-contiguous pairs

Figure 10: Shift mapping in gradient-domain estimation can be
extended beyond traditional neighbors. (a) Gradients can be esti-
mated with shift mapping from a base pixel to its four direct neigh-
bors [LKL∗13, KMA∗15, MKA∗15, HGNH17, SSC∗17, GHV∗18].
(b) Finite difference between spread-out pixels with similar in-
tensities can be estimated by shifting between two pixels in the
pairs [MRK∗14]. (c) Gradients can be estimated by considering all
possible shift mapping using all the pixels inside a tile [BPE17].

6. Advanced Gradient Sampling

This section goes beyond the basic algorithms for gradient-domain
rendering. In general, the original gradients refers to the finite dif-
ferences of two neighboring pixels. This can be generalized to the
finite difference of two arbitrary (not necessarily neighboring) pixels
in the image space. We first explain the ideas of gradient estimation
with a group of non-contiguous pixels and a pixel tile (illustrated
by Figure 10). We then explain advanced sampling techniques that
can further reduce variance in gradient-domain rendering including
Markov Chain Monte Carlo methods and adaptive sampling.

6.1. Sampling Pixel Difference

Non-contiguous Pixel Pairs. Manzi et al. [MRK∗14] investigated
the idea of computing gradient estimates between two non-adjacent
pixels. This pair of pixels is chosen to improve the efficiency of shift
mapping by selecting pixels with similar measurement contribution
functions. The idea is to detect similar pixel values using feature
maps and compute finite difference for such pixels. To find the
pixel pairs, a hand-crafted affinity metric is derived from a set
of feature maps. This set of feature map contains normals, depth
and albedo information. This is similar to what is used in image-
space denoising techniques as they assume that feature buffers are
generally in correlation with the final image. For each feature map,
a weight is computed similarly to a denoising method [BRM∗16].
The weights are concatenated and the N best pixels are extracted to
determine where to shift the paths.

Larger Neighborhood. Bauszat et al. [BPE17] proposed to per-
form shift mapping between all the pixels in a tile to improve the
efficiency of gradient sampling. They formulated this idea under
the framework of path reusing [BSH02]: the base paths in a pixel
are allowed to shift to all the other pixels within a rectangular tile,
resulting in more accurate primal- and gradient-domain estimates.
While in traditional path reusing, shifting paths inside a rectangular
tile results in visible artifacts in the final image, this does not happen
in gradient-domain rendering. The trick is to properly compute the
gradients at the tile boundary by making the tiles overlapped by one
pixel. This makes tile artifacts less visible in both the gradients and
the reconstruction.

With a larger neighborhood, the overhead of shift mapping has
to be addressed to make gradient-domain path reusing efficient
because now the number of shifts grows proportionally to the total
number of pixels in the tile. The evaluation of the optimal tile
size [BPE17] shows that using tiles of 6×6 or 8×8 pixels improves
the convergence while still having a reasonable overhead. To further
improve performance, Russian roulette is performed before actual
shift mapping is done in order to avoid shifting paths that do not
contribute much.

6.2. Advanced Sampling

Markov Chain Monte Carlo Methods. Gradient-domain render-
ing can also be applied with Markov Chain Monte Carlo (MCMC)
methods. In fact, the seminal work of gradient-domain rendering
is about gradient-domain Metropolis light transport by Lehtinen
et al. [LKL∗13]. Instead of concentrating samples on pixels with
higher intensity as in traditional Metropolis light transport, it is also
possible to concentrate samples on gradients by including gradient
magnitudes into the MCMC target function. Manzi et al. [MRK∗14]
proposed an extension that uses shift mapping on selective pairs
of pixels in order to sample image features more accurately. This
allows more efficient gradient estimates, which is demonstrated
by the improved performance over the original gradient-domain
Metropolis light transport [LKL∗13].

Adaptive Sampling. Rendered images from Monte Carlo estima-
tion often exhibit noise, which can be mitigated by adaptive sam-
pling and reconstruction [ZJL∗15]. A common idea of adaptive
sampling is to control the sampling densities in the image space,
which is applicable to gradient-domain rendering as well. For exam-
ple, a simple but effective technique is to focus samples to image
regions that have large pixel and gradient variance. Instead of modi-
fying the standard gradient-domain light transport algorithms, Back
et al. [BYM18] linked gradient-domain path tracing to an off-the-
shelf adaptive sampling technique [MCY14] that can handle error
estimation and sample distribution. They proposed to treat the re-
constructed image as an additional feature map to auxiliary features
(e.g., color, normal, and albedo map), and show that such adaptive
sampling and reconstruction could benefit gradient-domain path
tracing and result in better image quality.

7. Higher Dimensional Integrals

Beyond rendering surfaces, gradient-domain rendering is applicable
to higher dimensional integrals, particularly volumetric rendering,
animation, and spectral rendering.

7.1. Volumetric Light Transport

Motivated by the efficiency of photon density estimation techniques
for surface rendering, Gruson et al. [GHV∗18] extended gradient-
domain light transport to handle homogeneous participating me-
dia. They showed that, for volumetric rendering, gradient-domain
path-based techniques are not as efficient as density estimation tech-
niques. They then focused on adopting higher dimensional photon
representations including photon points, beams [JZJ08,JNSJ11] and
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(b) Point-Beam 3D (BRE)(a) Point-Point 3D (VPM) (d) Plane-Beam 0D (Plane)(c) Beam-Beam 3D (Beam)

Figure 11: Density estimation techniques for volume rendering [GHV∗18]. This diagram illustrates the shift mapping for the gathering kernel.
We group the techniques based on the types of photon representation and camera ray query: (a) photon point to camera point, (b) photon point
to camera beam, (c) photon beam to camera beam, and (d) photon plane to camera beam. Here all techniques use 3D kernels except photon
plane. The shift mapping of such techniques differs mainly in how the camera and light subpath vertices in the kernel are sampled and shifted.
By following the ray direction, we denote the last two vertices on the light subpath as a and b, and those on the camera subpath as c and d.
The prime symbol denotes offset vertex, and t is the distance from the ray origin.

planes [BJ17] for gradient-domain rendering. The resulting algo-
rithms, namely: gradient-domain volumetric photon mapping, beam
radiance estimate, photon beams, and photon planes, can handle var-
ious scenarios in volumetric rendering and outperform their primal
counterparts. Shift mappings used in their algorithms are shown in
Figure 11.

Gruson et al. also draw some insights for applying their tech-
niques as follows. First, as stated by Křivánek et al. [KGH∗14]
for the primal-domain counterpart, rendering with photon beams
is more efficient when the medium is thin, i.e., it does not block
light from passing through the medium too much. This is gener-
ally applicable to volumes such as haze, smoke, or fruit juice. For
thick media, such as dense clouds or full-cream milk, rendering
with photons is better because the photons mostly scatter around
the surface-medium interaction area; very few of them can travel
into the medium as most of their energy is absorbed. Second, it
is observed that the initial kernel radius for progressive rendering
in the gradient domain is not as sensitive as in the primal domain,
which enables more robust parameter setups when working in the
gradient domain.

While Gruson et al. [GHV∗18] showed how each technique per-
forms differently under different configurations, they let the choice
of the technique to users. Instead of manually picking the right tech-
nique for the right scene, it would be interesting to combine all volu-
metric photon density estimation techniques for the gradient domain
into the same framework. Theoretically, multiple importance sam-
pling that works directly in each individual path space [KGH∗14]
could be employed.

7.2. Temporal Coherent Gradient Sampling

Manzi et al. [MKD∗16] explored animation with gradient-domain
rendering. They observed that performing image reconstruction for
each animation frame separately leads to flickering. To address this
problem, they suggest to further consider shift mapping across two
consecutive frames. For shift mapping such as half-vector copy and

manifold exploration, one needs to consider the scene geometry
in each frame to generate the offset paths, which will cause an
additional complexity in the implementation and more memory
requirements. Instead, they proposed to employ random number
replay so that random samples for base paths in the first frame could
be captured for generating the offset paths in the second frame.
While this approach might not produce the most coherent path
pairs, it still leads to significant improvements in temporal gradient
sampling. For this technique, a modified Poisson reconstruction
which considers the temporal dimension is required.

7.3. Spectral Gradient Sampling

Spectral rendering is concerned with sampling every wavelength of
the spectrum instead of just red, green, and blue components. The
goal is to more precisely simulate the light spectrum distribution in
a scene and to render specific light phenomena such as dispersion
or thin-film materials. After completing the simulation, the spectral
distribution can be resampled to red, green, and blue, to display
on monitors. The distribution of light intensity across wavelengths
forms an additional dimension of the rendering integral. Depending
on its wavelength, light reacts differently to some materials such
as dielectrics, in particular during refraction. When a light ray in-
tersects with such a dispersive material, the ray’s wavelength must
be sampled since the ray’s direction depends on it. Since the ray
can only carry this one wavelength afterwards, it only contributes
to a small section of the pixel’s spectrum, introducing so-called
color noise. Consequently, many more samples are necessary for a
high-quality simulation.

To improve spectral rendering, gradient-domain light transport
can be extended to the spectral domain, as explored by Petitjean
et al. [PBE18]. The idea is to estimate the gradients in the 1D
wavelength domain by exploiting the correlation of light paths in this
domain. Particularly, Petitjean et al. used shift mapping to construct
pairs of paths for neighboring wavelengths. Each pair is used to
estimate both the light spectrum of a pixel and its gradients. Both are
integrated to reconstruct the final image using a fast one-dimensional
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Figure 12: Extension of half-vector copy for spectral rendering to
compute gradients in the wavelength dimension. The offset path
is the same as the base path at start. If a dispersive interaction is
encountered, the paths diverge. At each successive intersection, the
wavelength-dependent generalized half-vector is copied. Reconnec-
tion is done as soon as two consecutive connectable vertices are
encountered on the base path.

Poisson reconstruction that can be parallelized over the entire image.
To create a shifted path with wavelength λ

′ from a base path with
wavelength λ, Petitjean et al. generalized the half-vector shift to
take the dispersion into account. When considering refractions, the
half-vector defined by Equation 15 becomes

h =
ηiωi +ηoωo

‖ηiωi +ηoωo‖
, (25)

where ηi and ηo are the wavelength-dependent indices of refraction
of the inside and outside media. To maintain as much correlation
as possible between the paths, the paths are split only when the
encounter a dispersive surface and are recombined as soon as they
reach two consecutive diffuse surfaces. The process of splitting and
recombining paths is explained in Figure 12. Two already recom-
bined paths can split again if they reach another dispersive surface -
in which case the overhead cost increases.

One limitation of this current approach is that it does not con-
sider image-space gradients simultaneously. Similar to temporal
rendering [MKD∗16], an interesting extension would be to further
consider image-space gradients together with wavelength gradients
and apply a 3D Poisson solver to gain further noise removal in the
image reconstruction.

8. Conclusions and Future Work

Gradient-domain rendering has developed into a promising family
of techniques to accelerate Monte Carlo light transport simulations.
It exploits path correlations to effectively sample image-space gradi-
ents, leading to a low-noise image after reconstruction. We discuss
several potential future research in this area.

8.1. Open Problems

More Effective Shift Mapping. We summarized the various shift
mapping functions: random sequence replay, reconnection, half-
vector copy, and manifold exploration. No single shift mapping
method is currently robust enough for all situations, nor sufficiently
cheap to apply in all situations. Random sequence replay is generic
but the resulting offset path lacks correlation when compared to
other shift mappings. Path reconnection is easy to implement but

only works with diffuse connections. Half-vector copy cannot search
for paths constrained at both endpoints. Manifold exploration is
robust but often too costly to implement and execute broadly. As
such, designing a cheaper, faster, and more generic shift mapping
remains an open problem. Moreover, given a family of shift mapping
techniques, choosing the optimal shift mapping technique for a given
base path could lead to more effective gradient sampling.

Better Reconstruction. Poisson reconstruction is usually sensitive
to noise in the primal or gradient estimates. In contrast, denoising
techniques can robustly handle noise based on supplemental informa-
tion such as feature maps and sample histograms. Recent denoising
methods leverage machine learning [CKS∗17, BVM∗17, VRM∗18],
with promising performance and quality. Combining recent machine
learning techniques and Poisson reconstruction may lead to better
and more robust reconstruction solutions.

Higher-Order Derivative. The current gradient-domain tech-
niques focus only on gradients, which is the first order image deriva-
tive. A recent work in image reconstruction [LSR18] shows that a
higher order derivative (e.g. Laplacian) could be useful to reconstruct
the image. Designing a shift mapping for a low-variance estimation
of higher order derivatives could be an interesting research direction.
In addition, adaptively selecting gradient or higher order derivatives
may lead to more efficient estimators.

Unifying Gradient Sampling Techniques in Volumetric Render-
ing. Given the derivation of gradient-domain volumetric rendering
using photon points and beams [GHV∗18], gradient-domain variant
of the unified photon point and beams method for simulating vol-
umetric light transport [KGH∗14] may lead to some non-obvious
theoretical challenges, while also necessitating solutions to complex
renderer software engineering/architecture challenges. Here, it re-
mains unknown when combining all such estimators using multiple
importance sampling leads to better results (e.g., in an equal-time
comparison) since the individual estimators in the gradient domain
could be too costly to exhaustively evaluate.

Heterogeneous Participating Media Rendering. With some care-
ful engineering surrounding the treatment of ray-medium inter-
face interactions, gradient-domain path tracing [KMA∗15] may
be adopted to rendering smoke with spatially-varying density. In
contrast to homogeneous media, heterogeneous media precludes
the evaluation of transmittance along a light path using a closed-
form formula. Instead, one must resort to biased approximations
(i.e., the ray-marching realization of Simpson’s integration rule) or
sampling-based solutions, in order to perform this evaluation.

A preliminary result of the SMOKE scene is shown in Figure 13.
As can be seen, the direct extension of gradient-domain volumet-
ric path tracing produces smoother image than path tracing. This
promising result hints at interesting future work to address the re-
maining but fundamental issues: bringing well known delta tracking
techniques [NGHJ18] to the gradient domain to achieve unbiased
transmittance estimates, which will require in-depth investigations.
The challenge here is that the probability of the offset paths can no
longer be evaluated in closed form in this case, and to use multiple
importance sampling, one has to resort to some path probability
density approximations.
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G-PTPT

Figure 13: A direct extension of gradient-domain path tracing to
rendering heterogeneous participating media results in a promis-
ing result, with noise in the primal domain effectively removed.
The transmittance is approximated with ray marching. Supporting
delta tracking for unbiased transmittance evaluation in the gradient
domain could be an interesting future work.

Path Guiding. Another family of techniques that improves Monte
Carlo rendering is path guiding [Jen95,VKv∗14,MGN17,RHJD18].
While path guiding is generally orthogonal to gradient domain ren-
dering, having it could lead to further convergence improvement.
One idea is that shift mapping might benefit from path guiding so
that offset paths can be contributive in challenging light transports.
More research into this direction is desirable.

Gradient-Domain Light Transport in Production. With recent
promising results, bringing gradient-domain light transport algo-
rithms to production would be an exciting next step. Several gaps
remain to be filled, e.g., to improve the performance of gradient
sampling in production scenes with many fine geometric or texture
details, to investigate the rendering with terrains, trees, or particle
systems. The complexity of making an existing production path
tracer compatible to gradient-domain light transport is also worth a
thorough discussion.

8.2. Implementation Issues

Beside the theoretical improvement, in practice, there remains work
to be done to improve the robustness of gradient-domain rendering
algorithms. We discuss them below.

BSDF Classification. Existing gradient-domain integrators depend
on the classification of BSDFs at path interactions to decide which
shift mapping strategy could be used. This greatly affects the
efficiency of gradient sampling. For example, for a pair of ver-
tices, if the classification predicts both of them as connectable
(diffuse interactions), vertex reconnection could be applied and
the offset path follows the base path from subsequent vertices.
Nevertheless, if both vertices are non-connectable (specular in-
teractions), half-vector copy and manifold exploration could be
used. The classification used in existing open-source implementa-
tions [KMA∗15, MKA∗15, HGNH17] is simply to check the BSDF
roughness value with a threshold. This obviously becomes problem-
atic when the BSDF has spatially varying roughness, or it is unclear
whether the BSDF is specular or diffuse. A possible solution is to
replace BSDF roughness with BSDF sampling density in the classi-
fication. Hereby, we can handle specularity by simply checking the
sampled vertex probability with zero.

Multi-Component BSDF. While classifying the roughness of a
single-component BSDF is straightforward, several real-world sur-
face materials are often complex: e.g., some could have layered
coatings, each of which commonly modelled as a potential multi-
lobe BSDF. There are several strategies to sample and evaluate
multi-component BSDFs, such as considering all components, or
sampling a component in each vertex interaction. Such sampling and
evaluation might, however, interfere with classification and affect
path sampling, e.g., whether a path should continue to bounce or
terminate. In the case that all components in the BSDF are consid-
ered, classification can be done based on the lowest roughness value
across all components. The advantage of this strategy is that it is
simpler to evaluate offset paths in shift mapping. The trade-off is
that there might be more variance when estimating the contribu-
tion of each component because the components are forced to be
sampled the same way. Gradient-domain uni- and bi-direction path
tracing [KMA∗15, MKA∗15] use this strategy.

When a BSDF contains a diffuse and a glossy component, there
might be no good way to decide whether to continue recursing
(bouncing) or to terminate a path: here, the diffuse component might
be sampled efficiently when the path stops, favoring connections to
light sources, whereas the glossy component is more efficiently sam-
pled when the path continues bouncing. In this case, handling each
component separately by stochastically choosing a single BRDF
component at each interaction is preferable. The advantage of this
strategy is that the classification can be more fine-grained and ap-
plied to each component separately. For best correlation in shift
mapping, we can enforce the sampled component of the current ver-
tex on the base and offset path to be the same. The trade-off is that
now the BSDFs implementation and path evaluation has to be modi-
fied to account for component sampling events. Gradient-domain
photon density [HGNH17] and gradient-domain vertex connection
and merging [SSC∗17] use this strategy.

It could be interesting to perform some empirical tests to see
which strategy is better for multi-component BSDFs. Beyond para-
metric BSDF models, it is unclear whether shift mapping can be
performed with vertex interactions that are defined by programmable
shaders. More investigations into this direction is needed to draw
deeper insights into designing a robust material system for gradient-
domain rendering.
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P.: Light transport simulation with vertex connection and merging. ACM
Transactions on Graphics (2012). 9

[HGNH17] HUA B.-S., GRUSON A., NOWROUZEZAHRAI D.,
HACHISUKA T.: Gradient-domain photon density estimation. Computer
Graphics Forum (2017). 1, 7, 8, 9, 13, 16

[HJ09] HACHISUKA T., JENSEN H. W.: Stochastic progressive photon
mapping. ACM Transactions on Graphics (2009). 8

[HJJ10] HACHISUKA T., JAROSZ W., JENSEN H. W.: A progressive error
estimation framework for photon density estimation. In ACM Transactions
on Graphics (2010). 3, 11

[HKD15] HANIKA J., KAPLANYAN A. S., DACHSBACHER C.: Improved
half vector space light transport. Computer Graphics Forum (2015). 3, 9

[HPJ12] HACHISUKA T., PANTALEONI J., JENSEN H. W.: A path space
extension for robust light transport simulation. ACM Transactions on
Graphics (2012). 9

[Ige99] IGEHY H.: Tracing ray differentials. In Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques
(1999), pp. 179–186. 3

[JDZJ08] JAROSZ W., DONNER C., ZWICKER M., JENSEN H. W.: Ra-
diance caching for participating media. ACM Transactions on Graphics
(2008). 3

[Jen95] JENSEN H. W.: Importance driven path tracing using the photon
map. In Rendering Techniques (1995). 16

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon Mapping.
A. K. Peters, Ltd., 2001. 8

[JM12] JAKOB W., MARSCHNER S.: Manifold exploration: a markov
chain monte carlo technique for rendering scenes with difficult specular
transport. ACM Transactions on Graphics (2012). 3, 6, 7, 9

[JNSJ11] JAROSZ W., NOWROUZEZAHRAI D., SADEGHI I., JENSEN
H. W.: A comprehensive theory of volumetric radiance estimation using
photon points and beams. ACM Transactions on Graphics (2011). 13

[JZJ08] JAROSZ W., ZWICKER M., JENSEN H. W.: The beam radiance
estimate for volumetric photon mapping. Computer Graphics Forum
(2008). 13

[Kaj86] KAJIYA J. T.: The rendering equation. ACM Transactions on
Graphics (1986). 2
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light transport simulation via metropolised bidirectional estimators. ACM
Transactions on Graphics (2016). 9

[SSC∗17] SUN W., SUN X., CARR N. A., NOWROUZEZAHRAI D., RA-
MAMOORTHI R.: Gradient-domain vertex connection and merging. In
Proceedings of the Eurographics Symposium on Rendering: Experimental
Ideas & Implementations (2017). 1, 7, 8, 9, 13, 16

[SW01] SUYKENS F., WILLEMS Y. D.: Path differentials and applications.
In Rendering Techniques (2001). 3

[VG95a] VEACH E., GUIBAS L.: Bidirectional estimators for light trans-
port. In Photorealistic Rendering Techniques. Springer, 1995. 7

[VG95b] VEACH E., GUIBAS L. J.: Optimally combining sampling
techniques for monte carlo rendering. In Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques (1995). 6,
7

[VKv∗14] VORBA J., KARLÍK O., ŠIK M., RITSCHEL T., KŘIVÁNEK
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