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Abstract

Numerical modeling of convection suitable for finite volume methods for steady-state,
multidimensional, incompressible, turbulent flows is considered. Two methods used to
achieve higher order accurate and oscillation-free solutions are discussed, namely flux
limiting and variable normalization. A unified formulation, which brings together most
existing higher order monotonicity preserving schemes, is discussed. The unified formu-
lation allows the inclusion of higher order non-monotone schemes, and a new class of flux
limiters is presented. Some numerical results are shown for two-dimensional flows, and
the superiority of the flux-limiting schemes is confirmed by comparison with results of the
first order upwind scheme.

1 Introduction

The last decade has seen a considerable increase in computer capacity with regard to speed
and memory. With this background, a large number of numerical algorithms based on a
finite volume formulation of the Navier-Stokes equations in boundary-fitted coordinates with
turbulence modeling has been developed for the computation of steady-state incompressible
turbulent flow in complicated domains [4, 22, 17, 3, 15, 40). Most of the numerical procedures
are based on second order central differencing for the spatial derivatives. In many practical
problems the Reynolds number is high, and it is well known that in these circumstances central
differences may give rise to non-physical spatial oscillations. In addition, they are unsuitable
for two-equation turbulence models, for instance the k-¢ variant [12], for these cannot accept
(unphysically) negative values of turbulence quantities arising as a result of oscillations, and
instability will occur due to their nonlinear nature. To overcome these problems the hybrid
central /upwind scheme of [25] and other first order variants, such as PLDS [21], are frequently
invoked. These schemes are popular because of their robustness, but they suffer from severe
numerical diffusion when the grid is not fine enough or when the flow direction is not aligned
with the local grid direction.

Higher order schemes which avoid the unfavorable properties mentioned above, can be
regarded as best suited for general flow computations. However, the monotonicity constraint
to first order schemes has to be replaced by aless restrictive total variation diminishing (TVD)
requirement [8]. Also, such schemes should be algorithmically simple. because only simple
schemes can find widespread use in practical engineering calculations.

The present paper aims to draw together two methods of formulating higher order scheies.
which produce oscillation-free solutions and minimize numerical diffusion. One method that
we discuss is the construction of flux limiters to obtain TVD schemes, described in [28].
Traditionally, such schemes have been designed for the unsteady compressible Euler equations.



Moreover, the TVD condition has been proved completely for the one-dimensional case. The
issue given attention here is the extension of this work to the steady-state, multidimensional
transport equations for incompressible turbulent flows. Upwind-weighted as well as symmetric
flux limiters have been proposed in the literature and will be presented in this paper. The first
group of limiters includes Van Leer [30], Chakravarthy-Osher discussed in [28], the limited
% = -scheme proposed by Koren [11] and ISNAS presented in [39], the latter enclosing Van
Leer’s MUSCL [31] and UMIST [16]. The second method is the normalized variable (NV)
technique based on [14] and [6]. It is suitable for steady-state calculations. A number of
proposed NV schemes, such as SMART [6], HLPA [37], SOUCUP [38] and BSOU [20], will
be considered. In general, flux-limiting algorithms are more convenient than NV methods,
since a defect correction approach can easily be adopted.

In what follows, the non-monotone, the flux-limiting and the NV schemes for a one-
dimensional convection equation, and their extensions to the two-dimensional case are out-
lined. A unified formulation of these developments is discussed. Then, five classes of flux
limiters are presented, which bring together all lux-limiting and NV schemes mentioned.
One of these classes is proposed in this paper. Finally, we show some numerical results in
which the performance of a number of flux-limiting schemes are examined by means of a
comparison of numerical accuracy and computational cost. The comparison is made on the
basis of applications to two test problems, both involving convection dominance. Also, the
application of one of the flux-limiting schemes, namely ISNAS, to turbulent flow is demon-
strated.

2 Higher order schemes and monotonicity

In [40] the finite volume discretization of the steady-state, incompressible Navier-Stokes and
turbulence transport equations in general coordinates on a staggered grid is discussed. The
accuracy with which convective transport, in particular for turbulence quantities, is approxi-
mated is of crucial importance and is the subject of this paper.
Let us consider the following one-dimensional scalar convection equation:
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where ¢ is a scalar quantity being convected by a velocity u. A uniform infinite staggered
grid is given in Figure 2.1. Spatial discretization of (2.1) is obtained by integration over a
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Figure 2.1: One-dimensional staggered grid showing the nodes involved in the evaluation of
¢ at cell-face ¢ + 1.
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where Az is the mesh-width. Throughout the paper the implicit Euler scheme is used in
which the semi-discrete equation (2.2) is solved one time-step after another, using the time
history merely as a route to steady-state. We discuss several methods for expressing the cell-
face values ¢;_;/, and $i+1/2 in terms of surrounding nodal values. We need to consider only
the cell-face value ¢, /2- The other face value will be treated in the same way. Furthermore,
we assume that u;yq/5 > 0.

Approximations of the cell-face values can be constructed by piecewise polynomial inter-
polation as suggested in [32]. The basic idea of this so-called s-interpolation is that linear
and quadratic approximations of the solution on each cell lead to second- and third order
space discretizations, respectively. The general form of the x-scheme is

biv1j2 = Gi + %[(1 + &)(dig1 ~ i)+ (1 = &) (&5 — ¢i-1)] (2.3)

where the parameter k € [—1, 1] is still to be chosen. Examples are the second order Fromm’s
scheme [5], the second order QUICK scheme proposed by Leonard [13] and the third order
cubic interpolation scheme (CUI) used in [2] and are obtained by setting x = 0.3 and %,
respectively. For k # % the local truncation error is of second order; for x = % it is of third
order.

Although higher order schemes have been successful in eliminating numerical diffusion,
they may cause spurious oscillations in regions where large gradients exist. In the next two
sections we discuss two methods to design higher order schemes which do not exhibit wiggles.

2.1 Flux-limiting technique

In [8] the total variation diminishing (TVD) concept is proposed as the criterion for developing
convection schemes which combine accuracy and monotonicity. We study the following subset
of implicit schemes applied to (2.1):
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where 1 is a time level. The total variation of a numerical solution {¢;} is defined by

TV(d) = [¢hir1 — &il (2.6)

1

and the scheme (2.4) is said to be TVD if
TV(¢™!) < TV(¢") (2.7)
A grid function {¢;} is called monotone if for all
min(@i—1, dip1) < ¢ < max(i-1, dis1) (2.8)

The scheme (2.4) is called monotonicity preserving if ¢"+! remains monotone when ¢" is
monotone. Hence, no new minima or maxima are created during time advancement. In [8] it
is shown that a nonlinear TVD scheme is monotonicity preserving. In [8] a class of explicit
schemes is considered and conditions are derived to ensure that these schemes are TVD. For
the implicit scheme (2.4) we have the following theorem.
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Theorem 2.1 If

it 20, DY, 20 (2.9)

then scheme (2.4) is TVD.
Proof Subtracting equations (2.4) at i+ 1 and at 4 gives

Ba— ol = (1+ Ry + DERL G — ot

GG = ) = DG - 6 (2.10)

Since (2.9) holds, we have

1 1 7 I 1
[@f g — Bt > (1+ (:f:i/z DZ:*']]/Z)M);_'_"*]I — ‘)7-l+ |

—CIEplT = | = DRl — i (2.11)
so that, using the fact that the grid is infinite,

TV($") = Zlcbm 7|
2 Z< L G + DRI = 91| = 3Gl - |
— 2 DEERIGEE ot = 2 - cb?“l =TV(6"™)  (2.12)
n

The construction of nonlinear TVD schemes is based on the flux-limiting formulation as
presented in [28]. We write the face value $i11/2 s the sum of a diffusive first order upwind
term and an "anti-diffusive” one. The higher order anti-diffusive part is multiplied by the
so-called flux limiter, which is a nonlinear function of

¢z+l (bz

_— 9.13
N2 = gt (2.13)

leading to the flux-limited scheme
, , 1
Pit1/2 = @it ,—‘I’(7'z‘+1/2)(¢i = i—1) (2.14)

Note that (2.13) is the inverse of the definition used in [28]. A scheme (2.14) is symmetric if
the forward and backward gradients can be exchanged, so that the scheme can also be written
as

Cbz—l-l/z = qu + = \I} )(‘pz-}-l ) (213)
2 z-}-'l
From (2.14) and (2.15) it follows that a symmetric limiter satisfies
1
U(r) = r¥(=) (2.16)

”
The flux limiter ¥(7) must satisfy certain constraints in order to satisfy the TVD condition

(2.9). For example, with constant u > 0 substitution of (2. 14) in (2.2) gives, using implicit
Euler time discretization,

T 7 uAt 7.
ST = 4 - (d’?jll/z - (bzl—-'-l]/z)
1N U'At 1 \Il(m L7 L7 et
= @, — Az [14 2‘1’( 1+1/2,) — E__lxl ](cpil-H _ Z4—11 ) (2.17)



where At is the time-step. According to Theorem 2.1, the scheme is TVD if

1 10(s) .
1-}——2-\1’(7')——5‘—':'—20, V’:", S (2.18)
This inequality is satisfied if
0 < ¥(r) < 2r (2.19)

Among the proposals, which have been discussed in, for example, [28] and [1], the following
limiters are commonly used:

U(r)=(r+Ir))/(1+r) Van Leer limiter
¥, (r) = max[ 0, min(r, ¥) ] Chakravarthy-Osher limiter (2.20)

Ua(r) = max[0, min(®r, 1), min(r, )] Sweby ®-limiter

where 1 <9 < 2and 1 < & < 2. The parameters ¥» and ¢ generate a family of limiters. For
example, » = 1 or & = 1 gives the well-known Minmod limiter which is the most diffusive
one, and ® = 2 corresponds to a limiter which has been known in the literature as Roe’s
Superbee limiter and is less diffusive than Van Leer and Minmod. With the exception of the
Chakravarthy-Osher limiter (% # 1), all these limiters share the symmetry property (2.16).

It is widely accepted that all TVD schemes must reduce locally to first order accuracy
at physical extrema regardless of the order of accuracy in regions of monotonicity, so that
¥(r) = 0 when r < 0 (see e.g. [28]), but this is a misunderstanding. It is shown here that
TVD schemes need not be first order accurate at extrema of the solution, if the flux limiters
are appropriately designed. We consider a semi-discrete TVD scheme (2.2) with constant
u > 0 with the flux ¢;1,/, given by (2.14).

Theorem 2.2 The necessary and sufficient condition for scheme (2.2), (2.14) to be sccond
order accurate away from extrema of the solution is

U(l)=1 (2.21)

and second. order accurate at extrema 18
30(3) - U(-1) =2 (2.22)

Proof Using the Taylor series we obtain

Big1/2 — bi-1/2

1 1
Az = (1+ E‘I’(Tm/‘z) - 5‘1’(7"1'—1/-2))(152 -

1 1 3 , y 9 e
(5+ Y1) = Z‘I’(Ti-u'z))ﬁw)? + 0(Az?) (2.23)

Taylor expansions of 74,1/ and 7;_y; about point z; away from extrema (i.e. ¢ # 0) are
given by

rigr2 = 1+ O(Az), 742 = 14+ O(Az) (2.24)
Obviously, ¥(1) = 1 is the necessary and sufficient condition for (2.23) to be second order

accurate. If z; is an extremum, then ¢ = 0 but, in general, ¢! # 0, so the condition for
(2.23) to be second order accurate is

1

§+

3 -
U(riv1/2) = 7 ¥(ricay2) = 0 (2.25)

e
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Furthermore, if ¢! = 0 then
1
rivz = =1+ O(Az), 1= 3 + O(Az) (2.26)

Substitution in (2.25) gives (2.22).

|
This theorem suggests that one may allow ¥(r) # 0 for r < 0 and ¥ may also be negative.
A less restrictive sufficient condition than (2.19) for the implicit scheme (2.17) to be TVD is

Y(r)

e

a < Y(r), L24a, -2<a< (2.27)

It is easily seen that (2.18) is satisfied. Condition (2.19) is obtained as the special case a = 0,
so that (2.27)is more general. This idea is not new: see [27]. Figure 2.2 shows the set of values

¥(r)

Y= (2 +0)r

/ Y=o

Figure 2.2: Region of limiters for implicit TVD schemes.

V(r) (shaded) satisfying (2.27). Condition (2.27) offers the possibility to construct limiters
which are continuously differentiable everywhere, resulting in robust convergence of iterative
solution methods. Examples of such limiters are the well-known Van Albada limiter discussed
in [26}, [27] and the recently proposed OSPRE limiter [35] which are given by, respectively:

r24p 3 r24p
4 = s L R — 298
(r) r2 41’ (r) 27241+ 1 (2.28)

These limiters satisfy (2.27) with @ = —0.25 and o = —0.5, respectively. They do not satisfy
(2.22), so the scheme (2.2) becomes diffusive at extrema (but less than the first order upwind
scheme).

The situation is more unfavorable for multidimensional flow problems. since in [7] it is
shown that any conservative TVD scheme in two space dimensions for scalar conservation laws
is at most first order accurate. However, numerical experiments have shown that 2D schemes
using an 1D second order accurate TVD scheme in each direction perpendicular to the cell
face give oscillation-free accurate results. This has been understood since the introduction



of a new monotonicity concept weaker than TVD in two space dimensions in (26, 27]. We
consider the following 2D scalar convection equation:

d¢  Oup  Ove o .
'(Tﬁ"f"’a}*-l-w—o (2.29)
discretized by
BT = B AT (G — ) B (0 — o)
e st DA w6~ 4187) 20
where
g = AR L 6 )
Bﬁ:ll/zf = B(w?ﬁlwq’?j—l B o 6 Zizlj)
Y?L;-l‘l/?, = C((Plljlzv ‘bn‘H] ¢Z‘717(PZZ§11)
DL e = DT, o3 eitly o tl) (2.31)

In [26, 27, a class of explicit schemes in two dimensions is considered and a new definition of
monotonicity is introduced which is weaker than TVD. Extending this to the implicit case,
we have

Definition 2.1 Scheme (2.30) is called monotone if
+1 +1 1 +1 T
A 200 B, 20, Ciilie 20, DYy p20 (2.32)

According to Theorem 2.1, a 1D monotone implicit scheme is TVD and vice versa. In two
dimensions, the total variation of {¢;;} is defined by (see [7])

V() = Z(I@H,j — il + bijr1 — bi4)) (2.33)

Spekreijse shows that for explicit schemes, a 2D monotone scheme is not necessarily TV
[27). This is also true for implicit schemes. For example, let {#2;} be given by

(bzz‘: 17 (17])_(130)
" 0, V(i,j)# (1,0)

and let in (2.30)

A1l+1 p— B’_n‘+1 C'»Zl;—-—ll/Z = D:]+]/2 03 V(Z,]) # (070)

i=1/2,3 = Fi4+1/2,4
n+1  _ w1 1 n+1
B]/+zo 1, Al 1/20—C -1/2 = DoT/z 0
Then o
L=
7'27 = bR ('L:j): (OVO)
0, otherwise
Hence, TV(¢") = 4 and TV(4™"*!) = 5, so we found a monotone scheme which is not TVD.

The advantage of schemes satlsfylng (2.32) is brought out in the following theorem.

~I



Theorem 2.3 (cf. [26, 27]). If scheme (2.30) is monotone then a steady state solution of
(2.30) is monotone, i.e., for all (3,5)

win(bi—1,5, Piv1,55 Pij=1, Pijt1) < Gij < max(bizy j, Bip1,5, Bij1s Bija1) (2.34)
where {¢; ;} denotes a steady-state solution of (2.30).

For reasons of robustness and algorithmic simplicity, multidimensiona] flux-limiting schemes
are treated by one-dimensional decomposition in the normal direction for each cell face. When
applied to (2.29) with constants u,v > 0, the implicit Euler scheme is

oy = ot - Z_Axt(#fll/zj - (-b?ji]/%j) - %(d’zﬁl/z - é:?j—ll/-z) (2.35)
where
big1/25 = bij + %@(Tiﬂ/z,j)('d’i,j - bi_1)
¢i,j+1/'2 = ¢i; + %W(Ti,j-{-l/z)(@i,j — Oi5-1]) {2.36)
and ‘
Tip1)2,5 = %ﬁ%, Tig+1/2 = H (2.37)

The fluxes $i~1/2,; and ®3,j—1/2 are obtained from ®iy1/2,5 and @; 4179, respectively, by de-
creasing the indices by 1 in appropriate manner. If the limiter U(r) satisfies the conditions
given in (2.27) then scheme (2.35) is monotone. This is a direct consequence of Theorem 2.1
and Definition 2.1. If the limiter ¥ satisfies (2.21) and (2.22) uniform second order accuracy
is obtained.

2.2 Normalized variable technique

In [6] the SMART scheme is developed, shortly followed by the SHARP scheme [14]. Both
schemes are bounded, which means that the solutions cannot contain any wiggles and remain
bounded with respect to the boundary values in the absence of a physical source term. The
derivation of these schemes is based on the variable normalization proposed by Leonard [14].
In the normalized variable (NV) space linear and nonlinear schemes can be constructed rather
easily and the conditions for a scheme to be bounded can be clearly identified. This technique
is widely used for steady-state calculations of incompressible flows (see e.g. [37], [38] and [20]).
We shall give a brief description of its essential features.

For simplicity we focus on the one-dimensional situation. The multidimensional extension
is straightforward. We consider the control volume surrounding point 7 as shown in Figure
2.1 and assume that Uip1/2 > 0. A normalized variable b at point 2 + & is defined as

2 Pitk — Pi—1 11 .
Gigp =L o ) 2002, 1 2.38
o+ Gip1 — Pi1 2 2 ( )

Thus, we have 031-71 = 0 and é;_,_] = 1. The underlying principle of this variable normalization
is that values of ¢4, between 0 and 1 indicate that &itk is locally monotone, whereas values
outside this range imply an extremum. With definition (2.38) the k-scheme (2.3) may be
written as

. . y
Pit1/2 = (1= 5K)0i + 7(1 + &) (2.39)



whereas the first order upwind scheme, in terms of normalized variables, is simply:
bis1pr = i (2.40)

Both schemes depend linearly on ¢; only. This dependence is shown in Figure 2.3, which is
called an NV diagram. The curves shown are called NV characteristics. A class of nounlinear

A QUICK (k=1/2)
¢'i+1/2 i

(0.5.0.75)

First order upwind

Figure 2.3: NV diagram with two well-known characteristics.

schemes is given by ) R
Giv12 = (&) (2.41)

For such schemes the following two properties hold:

1. A scheme with a NV characteristic that passes through the point (%,23) in the NV
diagram has second order local truncation error.

2. A scheme with a NV characteristic that satisfies f(3)=2 and f'(3) =1 - 1k has the
same formal order of accuracy as the corresponding s-scheme.

For a proof, see Appendix A. Note that all x-schemes pass through (3, 53)

For the construction of a bounded scheme, Gaskell and Lau [6] formulated their convec-
tion boundedness criterion (CBC) which states that if the local solution is monotone (i.e.
Pic1 < ¢ < dig1) the estimated face value $i41/2 should be between ¢; and ¢4 1, whereas
if there is an extremurm the first order upwind value must be used, i.e. ®it1/2 = ¢i- The CBC
implies that for 0 < ¢; < 1 the NV characteristic should lie in the shaded domain of Figure
2.4 and coincide with the first order upwind NV characteristic otherwise.

The ratio of differences ¢; (2.38) is related to the ratio of comsecutive gradients Tiy1)2
(2.13) by
1 - ¢,

&
This relationship allows us to convert NV schemes to flux-limited schemes and vice versa. It
may be noted that based on this relationship, the SOUCUP scheme of [38] is identical to the
Minmod limiter. Moreover, with the formula (2.42) it is possible to compare the CB( with

Tit1/2 = (2.42)
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i+1f2

First order upwind

' A
/) 1 (D ;
Figure 2.4: NV characteristic of ISNAS within the CB( region.

the monotonicity criterion (2.27), which is shown in Figure 2.5. Clearly, by taking & = 0 the
CBC is identical to (2.19), so that CBC implies TVD.

As an example we present a generalization of the ISNAS (Interpolation Scheme which is
Nonoscillatory for Advected Scalars) flux-limited scheme proposed in [39]. In ISNAS a third
order polynomial for f(¢;) is taken with f0)=0,f3&) =2, f(1) =1, 3y = 3 (corre-
sponding to £ = 1). See Figure 2.4. We extend this to general k by requiring f'(3) = 1-1ix.
The following piecewise polynomials satisfy, for x € [~1,1], the CBC:

r‘ﬁi; (j)z<0

~(1+K)$2 + (2 + Lx)d;, 0<di<l —1<k<0

t

£(é) = 4 25+ 0P =3k + 3B+ (T+R)di =1, 1< <1, ~1<k<0 (243

2607 — (14 35)% + (2 + £)d;, 0<di<1, 0<k<]

&1, éi > 1
This NV formulation is easily converted to flux-limited form using (2.42). Equation (2.14)

can be written as

- 1 N
Giy1y2=(1+ 5V (repry2))es (2.44)
From (2.43), (2.44) and (2.42), we deduce the following class of flux limiters:

(F+ ) (=r?+ B+ r)r—w)/(1+7)%, r1<1, ~1<K<0
Vu(r) =1 ((2+&)r—&)/(1+7), r>1, =1<k<0 (2.45)

(r+ )T+ R)r+1-8)/(14+7r?2,  0<x<l

which will be referred to as a rational & (R-x) limiter. We note that (1) = 1 for all
€ [=1,1]. The value ¥/ (1) = 1(1 + &) controls the accuracy, which is the same as for the
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First order upwind
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Figure 2.5: NV diagram showing the TVD region for implicit schemes.

corresponding k-scheme. Graphical representation of the R- limiter for different values of s
in a flux limiter diagram is given in Figure 2.6. As expected, this figure shows that (2.19) is

151 3 ’
; I
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) er ,
’
! /
/ 250 K
! !
! /
! /
1 N 2f )
/ /
! 7
/ i

= 1 = ’
‘@ ' Fsk ‘

o / &£ ‘

] !
/
y s
05 o kappa = -1 " / o kappa=0
i
* kappa = -1/2 J x kappa = 1/3
% kappa = ~1/3 o5t kappa = 1/2
y + kappa = 1
0 0
0 05 1 1.5 2 25 3 ] 0.5 [ 1.5 2 25 3 3.5 [
r r

Figure 2.6: The R-x limiter.

satisfied. For x = 0 in (2.45) the resulting scheme is identical to the Van Leer limiter (2.20}
and to the NV scheme HLPA developed in [37].

2.3 General approximation of steady-state convection: fAux- limiting and
defect correction strategies

We now construct a general algorithm for the approximation of cell-face fluxes in (2.2) with the
different schemes previously considered by employing the flux- limiting strategy and a defect
correction approach. These schemes satisfy (2.27) and are therefore monotone according
to Definition 2.1, and are suitable for approximating steady-state convection accor ding to

Theorem 2.3.
The face values ¢;y/, are approximated by the first order upwind scheme, corrected by

11



adding an appropriate anti-diffusive flux controlled by a limiter. That is, $;i41/2 is approxi-
mated by

¢+ 3U(rt ) (80— dica), Uiy1y2 > 0
Piv1/2 = (2.46)
bis1 ~ 3U(r7yy 1) (Pirz ~ Big1), Uig1yz <O
where s 4 p o
i1 Pf - R < T 9 AT
T:+1/2 = m:; and Ti+1/2 = m (2.41)

Formula (2.46) also opens the possibility to incorporate arbitrary upwind biased schemes in
an algorithmically simple way. The &-scheme (2.3) can be written as (2.14) by taking
1 1 e
\I/’;(r)=§(l+r;)r+§(l- ) (2.48)
where the symbol * indicates that this is not truly a limiter, because it does not satisfy (2.27).
This section presents five classes of flux limiters, which bring together most limiters known
in the literature. The limiters presented are restricted to U(r) > 0,7 > 0 and degenerate
locally to first order accuracy at physical extrema. If umiform second order accuracy is
required, one can proceed as follows. Let a uniformly second order limiter to be constructed
and a given limiter be denoted by ¥ and U+, respectively. We assume that U+ satisfies (2.19)
and (2.21). First, we compute W+(1), and take

C=¥(-1)= 3\1:+(§-) ~2 (2.49)

for uniform second order accuracy. Note that —2 < ¢ < 0. Next, we construct the limiter for
7 < 0, as follows:
¥'(r) = min[0, max(e, —(r)], -2<a<(<0 (2.50)

Then, the uniformly second order limiter reads:

1 L .
Y(r)= 5[1 + sign(r)]¥(r) + E[l ~ sign(r)]¥(r) (2.51)
It is easily seen that (2.21) and (2.22) are satisfied, and condition (2.27) is satisfied, if
0S U< (2+a), —1<a<0 (2.52)

The lower bound of « is chosen to be —1, because of the second order accuracy (W+(1) = 1).
Together with (2.49) this leads to —2 < ¢ < a. From (2.50) it follows that

U7(r) = min[0, max(¢, ~(r)], —-1<¢<0 (2.53)

Finally, we require that the face value must be bounded by the neighbouring nodal values. so
that

dy+ 1
g < ¢ = = 33Ut (- .54
mlhﬂ_z+a 24 ¢ 3@(3) (2.54)
In summary, if a limiter U+ satisfies
1 1 2 1dut 1
—- < \I,+ N s - < +r 2 -

12



then a uniformly second order accurate limiter can be constructed using (2.49), (2.53) and
(2.51), which will fulfill (2.27). An illustration of the improvement of accuracy in this manner
will be discussed in Section 4.

We shall now discuss the behaviour of several classes of flux limiters in the first quadrant
of the (r, ¥)-plane. For implicit calculations the following TVD criterion will be used:

0 < ¥(r) <min(2r, M) (2.56)

where M > 0 is a parameter. This ensures that the graph of ¥ is inside the shaded region of
Figure 2.2 with o = 0. Furthermore, in the multidimensional case Definition 2.1 is satisfied,
so that Theorem 2.3 applies. We are free to choose any M for obtaining bounded schemes
and by increasing M more accuracy near extrema will be obtained. For M = oo, condition
(2.56) corresponds to CBC. Hence, any limiter previously mentioned. except Van Albada and
OSPRE, can be employed.

The k-scheme (2.48) can be made TVD by imposing constraint (2.56). resulting in the
following class of flux limiters:

Vym(r) = max[0, min( M, %(1 + K)r + —i—(l - K), 27)] (2.57)

This is also observed by Hundsdorfer et al. [9]. These are called piecewise linear x (PL-x) lim-
iters. This class of limiters has the advantage of high flexibility in the sense of simply switching
between some linear schemes. The main disadvantage is that the non-differentiability of ¥
may adversely affect the convergence behaviour of iterative solution methods. R-x limiters
(2.45) do not share this disadvantage. Note that the parameter M controls the resolution
of sharp gradients, i.e. with a large value of M more accuracy near steep gradients can be
obtained. However, too large values of M may lead to convergence problems. Therefore, we

take 1 < M < 4. For k = % and M = 2 one obtains the so-called limited x = %-scheme
proposed by Koren [11]. By taking k = 1, 1 < M < 2 the Chakravarthy-Osher limiter is re-
covered. The parameters k = —1 and M = 1 give the Davis limiter used in [1] and is identical

to the NV scheme BSOU developed in [20]. It is interesting to note that by converting the
SMART scheme of Gaskell and Lau [6] to flux-limited form, we obtain

lIJ%A(r) = max[0, min(4, %7‘ + %, 27)] (2.58)

which is clearly most consistent with QUICK over a maximum possible range with (2.56) for
M = 4. An alternative is the second order symmetric GMIST limiter proposed by Lien and
Leschziner [16], given by

3 11 3
v = 0, min(2, — - = -, 2.59
() = max[0, min( ,4r—l— 7 47"+4 2r)) (2.59)

Hence, this limiter is a piecewise linear version of (2.57) with x = 1, M = 2, which satisfies
the symmetry condition (2.16). Generally, we have

1 l 1 «
Uy () = max[0, min(M, 5(1 +K)r + E(l - &), E(l — KT+ %(1 + &), 2r)] (2.60)

which also contains the Van Leer’s MUSCL scheme [31] (k = 0, M = 2).
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Summarizing, we now have a flux-limited scheme written in the canonical form (2.46)
which comprises a number of interesting flux limiters, viz.

Ui(r) = 3(1+ w)r+ 1(1-«) Linear x-scheme

Ve (r) = max[ 0, min(®r, 1), min(r, ¢)] Sweby ¢-limiter
( (r+1«r1)f—m—j)’;ﬁ‘:ﬁ, r<l, —1<k<0

U(r) =< Qili_*_?, r>1, -1<k<0 R-x limiter
|+ )RS o<k <

V() = max[0, min(M, 3(1 + x)r + 3(1 = k), 27)] PL-x limiter
V3 s(r) = max[0, min(M, (1 + x)r + 3(1 - K),
21— r)r + L1+ k), 27)] Symmetric PL-x limiter

where -1 <k <1,1 <d<2and 1 < M < 4. For implementation, this formulation is very
convenient. Generally, the function ¥(r)is nonlinear, and more than 2 immediate neighbour-
ing nodal points per spatial direction may be involved in approximating the convective flux
®iy172- Difficulties for iterative solution methods can be circumvented by writing ¢4y, in
terms of a lower order approximation plus a correction term. This is known as the defect
correction technique and was probably first used in the present context by Khosla and Rubin
[10]. More specifically, the face value $iy1/2 is written as

bit1/2 = Eifisn + (BT — G55 10)° (2.61)

where ¢1ﬁfls/2 stands for the approximation by a lower order scheme, for example, first order

upwind, and QS?_S}S/Z is the higher order approximation. The term in brackets is evaluated
explicitly using the values from the previous time step, which is indicated by the superscript
‘o’. It is typically small compared to the implicit part, so that its explicit treatment does
not slow down convergence. This approach ensures diagonal dominance for the resulting
algebraic equations, thus enhancing iterative rate of convergence while restoring higher order
accuracy at steady-state convergence. The limited anti-diffusive parts of (2.46) may be viewed
as deferred corrections to the first order upwind approximation and hence can be put into
the source term. Since the stencil associated with first order upwind is maintained, existing
codes can easily be modified.

3 Numerical framework

The flux-limiting technique outlined in Section 2.3 has been implemented within our Navier-
Stokes flow solver, which has the following features [18, 36, 24, 19, 41, 40]

e It is based on a coordinate invariant finite volume discretization on a staggered non-
orthogonal boundary-fitted grid of the incompressible Reynolds-averaged Navier-Stokes
equations employing the contravariant mass flux components as primary unknowns.

o Closure of the Reynolds-averaged equations is effected by the standard k-¢ model with
wall functions [12].
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e A second order pressure correction scheme proposed in [29] is used to obtain a divergence-
free velocity field. Linearization is carried out with the Newton method.

o Time discretization takes place with a weighted average between the forward and back-
ward Euler methods.

e The resulting algebraic equations are solved in each time step by a preconditioned
GMRES solver [23]. For preconditioners we use incomplete LU factorizations. Details
may be found in [34].

In every time step first the momentum and continuity equations are solved and then each
turbulence equation. For time discretization the implicit Euler scheme has been selected. The
process is repeated until convergence to a steady-state solution is achieved.

4 Numerical results

In this section we investigate the performance of the following schemes: the first order upwind
(UDS, ¥ =0}, QUICK, CUI, the Fromm’s scheme, ISNAS, SMART. Van Leer, the limited
k = L-scheme (i.e. PL-1), UMIST and MUSCL. Three two-dimensional test problems are
solved. The first two cases involve convection dominance and steep gradients of the trans-
ported scalars with non-uniform and non-smooth flow fields. In the last case the numerical
method is applied to a turbulent flow in which the performance of the ISNAS scheme is illus-
trated. To quantify the error of the schemes, the Lo, and L; norms of the difference between
the exact and numerical solutions are measured:

”A¢”00 = fg?}v I¢i,exact - (»bi,numericall (4.1)
and
I|Aq5|| Ez_l [sz exactN qsi,numericall (4'2)

where N is the number of the grid points. Along with these measures we also give the mass
error as defined by

ZiNzl (bi,numerical ]
Zi]\_iJ </’i,exact
All calculations were performed on a HP 9000/755 workstation.

The first example, which involves both a non-uniform velocity field and inclination of
streamlines to grid lines, is the convection of a scalar property in a unit square transported
by an inviscid stagnation flow:

(4.3)

|1 "7‘mass| = !1 -

Z du¢ 900 _ | o
with
(’U,,'D):‘— (3"1_:‘/) (43)

See Figure 4.1. Non-zero inflow values are specified only for 0 <z < 1 and y = 0 where one
of the following two profiles is imposed:

smooth profile: ¢, (z) = e sin?(rz) (4.6)

1. 0.4<2<0.6

square wave profile: oy, (2) = { 0. otherwise (4.7)



Figure 4.1: The streamlines in the stagnation flow test.

The exact solution in the first case is
$(z,y) = eV gin2(ra(1 - y)) (4.8)

and in the second:
I, 04<2(1-y)<0.6

0, otherwise (4.9)

¢(z,y) = {
Three uniform grids, comsisting of 30 x 30, 60 x 60 and 120 x 120 cells, respectively, are used.
Figures 4.2 and 4.3 show the computed profiles at the outlet plane z = 1, obtained with
these grids. The smooth solutions obtained with all schemes, except UDS, are satisfactory.
For the square wave solution, QUICK, CUI and the Fromm’s scheme produced results with
spurious oscillations. These wiggles are effectively removed by the monotone schemes, though
the UDS solution shows the worst agreement with the exact solution. Also, the higher order
schemes are capable of resolving steep gradients. Furthermore, it can be seen that SMART,
the limited x = %-scheme and MUSCL yield solution slopes which are virtually the same
as obtained with QUICK, CUI and the Fromm’s scheme. The schemes ISNAS, Van Leer
and UMIST are moderately more diffusive than the piecewise linear schemes. The error
measurements are summarized in Tables 4.1 and 4.2. The maximum and mass errors for the
square wave solution are not showed, because they were not thought to be meaningful. The
most accurate results with respect to the smooth profile are obtained by QUICK, whereas
SMART yields the smallest errors on all grids for the square wave solution. Ignoring the
non-monotone schemes, the piecewise linear schemes SMART, the limited x = %-scheme and
MUSCL are more accurate than the smooth limiters ISNAS and Van Leer. The UMIST
scheme gives less accurate results than its monotone rivals. In Tables 4.3 and 4.4 we give the
orders of accuracy p, as measured from the medium-sized to the finest grid. For the square
wave solution, we also measured the required computational cost (total CPU time, At = |
s) for each scheme on the finest grid. Regarding the smooth solution, apart from UDS, all
schemes show more or less second order convergence in L; norm. Good order behaviour is
shown by MUSCL, the Fromm’s scheme and the limited x = %—scheme. The UMIST scheme
and the smooth limiters ISNAS and Van Leer show a lower than O(Az?) behaviour with
respect to ||Ag||eo. All other schemes, except UDS, converge faster and tend to O(Az?). Due
to the non-smoothness of the square wave solution, as expected, the order of accuracy in I,
norm are below O(Az). Concerning the mass errors, these are mainly caused by the fact that
at the inflow boundaries the exact fluxes are imposed, whereas at the outflow boundaries -
mathematically correct - the fluxes are computed from the interior numerical solution. As a
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Scheme | Grid lAGllco (x10%) | J]JA@ll1 (X10%) [ |1 — rmass| (x10°)
30 x 30 563.90 1755.00 1830.00
UDS 60 x 60 316.63 928.51 933.30
120 x 120 168.11 478.54 471.47
30 x 30 67.35 104.98 125.95
CUI 60 x 60 17.04 21.09 6.61
120 x 120 4.29 4.68 2.48
30 x 30 79.30 109.69 120.28
PL-% 60 x 60 24.48 22.17 5.84
120 x 120 5.76 4.74 2.58
30 x 30 64.37 97.40 128.61
QUICK | 60 x 60 16.33 20.36 7.61
120 x 120 4.11 4.73 2.12
30 x 30 116.30 138.23 154.95
ISNAS 60 x 60 41.28 31.59 13.21
120 x 120 14.77 7.51 1.03
30 x 30 69.40 99.25 121.55
SMART | 60 x 60 20.28 20.79 6.78
120 x 120 4.56 4.77 2.24
30 x 30 121.00 172.86 190.47
UMIST | 60 x 60 45.58 39.13 23.48
120 x 120 17.57 9.30 1.82
30 x 30 72.60 123.84 117.87
Fromm 60 x 60 18.40 25.20 4.27
120 x 120 4.62 5.36 3.20
30 x 30 72.69 123.96 123.42
MUSCL | 60 x 60 20.98 25.81 5.20
120 x 120 4.76 5.42 3.08
30 x 30 106.60 139.54 141.88
Van Leer | 60 x 60 36.28 30.01 9.21
120 x 120 12.67 6.87 2.17

Table 4.1: Measured errors as function

of grid spacing for the smooth case.
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Scheme | 30 x 30 | 60 x 60 | 120 x 120
1A¢: (x100)

UDS 9.36 6.77 4.81
CUI 4.26 2.54 1.51
PL-1 3.78 2.19 1.27
QUICK | 4.32 2.53 1.49
ISNAS 4.12 2.46 1.47
SMART | 3.55 2.04 1.18
UMIST | 4.51 2.76 1.70
Fromm 4.27 2.65 1.59 |
MUSCL | 3.89 2.26 1.32
Van Leer | 4.23 2.52 1.50

Table 4.2: Measured errors as function of gridsize for the square wave case.

Schewe | paglie, | Plal, | Pii—rmassl = Plael,
UDS 0.91 | 0.96 0.03
CUT 1.99 | 217 -0.75
PL-1 2.09 | 2.23 -1.05
QUICK | 1.9 | 2.11 -0.27
ISNAS 1.48 | 2.07 1.60
SMART | 215 | 2.12 -0.52
UMIST | 1.38 | 2.7 1.62
Fromm 1.99 2.23 -1.81
MUSCL | 2.4 | 2.5 -1.50
Van Leer 1.52 2.13 -0.04

" Table 4.3: Estimated orders of several schemes for the smooth case.
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Scheme | pyagl, | CPU (s) | # time steps
UDS 0.49 3.45 5
CUI 0.75 21.46 29
PL-% 079 | 94.72 128
QUICK 0.76 25.90 35
ISNAS 0.74 28.12 38
SMART 0.79 98.42 133
UMIST 0.69 14.80 20
Fromm 0.74 18.00 24
MUSCL 0.78 70.50 94
Van Leer | 0.75 23.25 31

Table 4.4: Estimated order of accuracy and computing times for the square wave case.

consequence, due to discretization errors, the total net flux is not zero. Hence, schemes
which are strictly conservative, do not show strictly conservation behaviour for this test case,
unless - mathematically incorrect - the exact fluxes are also imposed at outflow. According
to [33], a scheme has good mass conservation properties if the corresponding mass error
converges better, the same, or a little bit worse than ||A¢|j;. This is true for the schemes
UDS, QUICK, ISNAS, SMART, UMIST and Van Leer. The remaining schemes behave not
so well. Concerning the computational cost, UMIST, Van Leer and ISNAS require about
4, 7 and 8 times, respectively, more computing time than UDS and are much cheaper than
SMART, the limited x = %—scheme and MUSCL, which makes them attractive choices. This
is particularly relevant for multigrid calculations.

In the next example we compare a typical TVD scheme to the uniformly second order TVD
scheme to verify the improvement of accuracy of the latter. The first test case is computed
again with a cone-shaped initial profile. We have selected the following flux limiters:

¥q(r) = max[0, min(r, 2)], ¥(r)= max[—1,min(r,2)] (4.10)

The limiter ¥y is the Chakravarthy-Osher or PL-1 limiter and ¥, is the uniformly second
order modification of W;, which satisfies (2.21) and (2.22). Note that x = 1 is the only
possibility for which the PL-x limiter satsifies (2.55). From calculations (not shown here)
it appears that the results of the smooth R-x limiter and its modified counterpart, which
satisfies (2.22), show no significant differences. Figure 4.4 shows the results of the limiters
¥, and ¥, compared to the exact solution, employing different grids. Clearly, the modified
limiter W, gives an improved accuracy. To quantify this improvement, the Lo, and Ly errors
and actual orders (p) are tabulated in Table 4.5. We observe that the degeneracy to first
order accuracy at maximum in the Wy limiter affects the accuracy elsewhere. The results
agree with Theorem 2.2 reasonably well.

The next problem is a turbulent co-flow jet in a planar duct. The flow involves several
interesting features, such as the presence of recirculation with unknown reattachment and sep-
aration points and the coexistence of both strong and weak shear regions. The geometry is a
symmetric planar duct as shown in Figure 4.5. Furthermore, do/Do = 0.075, UyfU, = 31.5
and the Reynolds number based on Do and the jet flow velocity U, is 2 X 10°. Computations
were performed with the standard k-¢ model in conjunction with wall functions [12] on three
different uniform grids, with 50 x 40, 70 x 50 and 90 x 60 cells. Because of symmetry, com-
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20x 20 40x 40 80x &0

Figure 4.4: Cone profiles at outlet. . eXact; ---, Uy - o Uy,

Error | Grid ¥, P ¥, D
20 x 20 | 0.0495 - 0.0479 -
Ly 40 x 40 | 0.0160 | 1.63 | 0.0132 | 1.86
80 x 80 | 0.0051 | 1.65 | 0.0037 1.83
20 X 20 | 0.5584 - 0.5421 -
Lo 40 X 40 | 0.3505 | 0.67 | 0.2962 | 0.87
80 x 80 | 0.2047 ! 0.78 | 0.1804 | 0.7]

Table 4.5: Errors and orders as function of grid spacing.

putations are performed in half the domain only. The convection of & and ¢ is approximated
using the UDS and ISNAS schemes. In the momentum equations only central differences are
employed. The CPU time per time step of the ISNAS scheme appears to be about 30% higher
than that of UDS. Figures 4.6 and 4.7 provide a comparison of turbulent viscosity profiles
arising from the UDS and ISNAS schemes, at location z/Do = 1.875. Figure 4.6 shows that
in going from a coarse to a refined grid the level of turbulent viscosity calculated using the
ISNAS scheme does not change much and that grid-independence has already been achjeved
on the 70 X 50 grid. As shown in Figure 4.7, the change is appreciable, however, for the first
order scheme. In that case the turbulent viscosity is underestimated on both the 70 x 50 and
90 x 60 grids. Unlike UDS, ISNAS does not result in severe numerical diffusion as seen in
Figures 4.6 and 4.7, where the level of turbulent viscosity obtained with UDS is lower than
that of ISNAS. This can be explained as follows. In regions where the shear stress is small,
the production of turbulent energy and its dissipation rate are negligible. However, the dissi-
pation terms in the fransport equations of both & and e remain nonzero. These terms must
be in balance with the transport mechanism, in particular the convective transport. Hence,

Figure 4.5: Flow configuration.
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Figure 4.6: Effect of grid refinement on v, at 2/Dg = 1.875 calculated with ISNAS.
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Figure 4.7: Effect of grid refinement on v, at z/ Dy = 1.875 calculated with UDS.

it is important to approximate the convection of turbulence quantities accurately. When nu-
merical diffusion is introduced in the convection term (by UDS, for example), this leads to a
too high dissipation rate £ and, since ¢ is a sink term in the k-equation, to too low levels of
turbulent energy. As a consequence, since v, is proportional to k%/z, this double-edged effect

causes v; to become significantly too low.

5 Conclusions

Several higher order schemes for steady-state convective transport have been presented in this

paper. These have a major influence on the accuracy of turbulence models.

Based on Harten's TVD concept, sufficient conditions for an implicit scheme to be mono-
tonicity preserving have been discussed. It has been proved that, if the flux limiters are
appropriately defined. TVD schemes can be second order accurate at extrema of the solution.
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contrary to what is widely believed. With Spekreijse’s monotonicity concept, it is possible to
carry over monotonicity properties from one dimension to two dimensions.

Two major strategies to construct nonlinear monotone schemes are flux limiting and
variable normalization. These approaches have been shown to lead in similar directions, and
have a one-to-one correspondence. Flux-limiting schemes can be applied easily to practical
flow problems in which higher order accuracy can be maintained throughout the flow domains
and the monotonicity preserving condition must be satisfied essentially.

A new class of schemes based on the k-formulation, which preserves monotonicity, has
been constructed. They are represented by second and third order polynomial interpolants
in the normalized variable space satisfying CBC. These schemes have been converted to Aux-
limited form. This results in a class of rational x-based limiters. For xk = 0, the Van Leer
limiter is recovered, whereas a new limiter based on the QUICK scheme, called ISNAS, has
been proposed.

A robust and compact algorithm using simple flux-limiting and defect correction has been
outlined. This strategy encompasses a wide range of existing linear and nonlinear schemes.
including those of rational and piecewise linear (symmetric and non-symmetric) s-based for-
mulations, and makes incorporation into general-purpose finite-volume codes feasible.

Ten schemes have been evaluated in two linear problems with pure convection. smooth
and non-smooth solutions: UDS, QUICK, CUI, the Fromm’s scheme, ISNAS. SMART, Van
Leer, the limited x = %-scheme, UMIST and MUSCL. The performance of each scheme have
been assessed in terms of accuracy, monotonicity and efficiency. The main findings are:

o The UDS scheme suffers from excessive numerical diffusion when the flow is obligue to
the grid lines and steeps gradients across the flow are present.

o The higher order schemes are substantially less numerically diffusive and accurate (for
sufficiently smooth problems) than UDS; however, non-monotone schemes are prone to
produce spurious oscillations, whereas monotone ones remove these wiggles effectively.

¢ Regarding the computational cost, the schemes ISNAS, Van Leer and UMIST are
cheaper than SMART, MUSCL and the limited x — -};-scheme. However, the last
three schemes give lower errors than the first three. Generally, piecewise linear limiters
are less efficient than smooth ones, but very competitive in accuracy.

o The modification (4.10) of the limiter to uniform second order improves the accuracy
in situations with sharp extrema.

In the computation of a confined co-fow jet in a 2D planar duct, the approximation of
convection in the turbulence transport equations is shown to be of significant importance
for the numerical accuracy of the solution for the k- turbulence model. The flux-limiting
schemes are suitable for approximation of convective transport in turbulence equations, whose
solutions must not, for reasons of stability, have non-physical negative values. Moreover, they
can significantly reduce the grid size necessary for an accurate solution.
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A Appendix

The flux ¢;y1/5 in (2.2) must be approximated in terms of nodal values. For example, using
(2.3), we arrive at

1 1 1
bip1y2 = adi—1 + ("2‘ —2a)¢; + (E +a)piyr, o= ~i + 7" (A.1)

Let the NV characteristic be given by
bivifa = f() (A2)
To find out of which linear scheme it is a nonlinear extension, f is approximated locally by
(&) = f(a) + (& — a)f'(a) (4.3)
with o to be determined later. In terms of un-normalized variables, we have
bip172 = agic1 + fl(@)di + (fla) = af'(@))dip (A.4)

We determine o and f(a) for (A.4) to be second order accurate. To this end, we compare
with (A.1) and for second order accuracy, i.e. for all values of &, the following must hold:

%+a=f(a)—a(é— ~ %), Va (A.5)
or : ,
a=3, fla)=1 (A.6)
The relation with the x-scheme is given by
1 1 1
ly = _— o . A"-,'
flg) =5~ 2=1-3x (A7)
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