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Abstract. Federated learning is a technique that enables the use of dis-
tributed datasets for machine learning purposes without requiring data
to be pooled, thereby better preserving privacy and ownership of the
data. While supervised FL research has grown substantially over the last
years, unsupervised FL. methods remain scarce. This work introduces an
algorithm which implements K-means clustering in a federated manner,
addressing the challenges of varying number of clusters between centers,
as well as convergence on less separable datasets.

Keywords: Federated Learning - K-Means clustering - Distributed
machine learning

1 Introduction

Nowadays, lots of data is being generated in a distributed fashion. Mobile phones
and other personal devices such as smart watches enable the collection of massive
amounts of data. If made accessible, this data could prove useful for improving
the performance of the services provided by these devices. However, due to a
growing concern on data privacy, more and more users of these devices are
hesitant in sharing their data. Furthermore, regulations such as the General
Data Protection and Regulation (GDPR) act prevent the collection of data of
this kind in bulk. Federated learning (FL) ([15]) was introduced as a solution to
this problem. In short, instead of pooling data to train a single model, instances
of a model are being shared to data owners (clients), which then train the model
on their local data. Then, these trained models are sent back to the central
server, which aggregates the results. Next, a new round begins with the server
sending out the updated models. This cycle continues until convergence.

Over the past couple of years, research has shown FL to be a promising tech-
nique, reaching performances comparable to a central approach in which all data
of the clients is pooled at a single location [11,17]. The vast majority of the fed-
erated learning research has been focusing on the supervised learning paradigm.
Little work has been done on unsupervised federated learning methods, even
less so when specifically looking into clustering techniques [12,13]. One of these
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clustering techniques is k-means clustering [7]. In a federated learning setting,
k-means clustering can be described as trying to find overarching cluster means
over data which is distributed among different datasets (clients).

Prior work has been done on creating federated k-means clustering algorithms
[5,8,10,14,18]. We focus on solving the issue of a variable amount of local clus-
ters. When data distributions between clients differ, it is likely that not all clients
share data from all global clusters. When this is the case, the amount of clusters
present per client can differ. This complicates federated clustering in two ways.
First, matching cluster means between clients becomes less straightforward, as
there is no one-to-one matching anymore. Second, when the local k does not
correspond to the global k, the problem of finding an optimal k scales linearly
with the amount of clients. Furthermore, when clients hold only part of the data,
it can be hard to distinguish between outliers and samples of a different cluster,
without the knowledge of the data distribution of other clients. Altogether, this
makes manually determining a value for k on each client locally complicated, if
not infeasible without loss of performance.

We propose an iterative federated k-means clustering algorithm (FKM) that
automatically determines the local value for k. By iteratively aggregating local
cluster means, and running k-means locally on all clients in parallel, we are able
to create a clustering that in many cases corresponds to a central clustering,
i.e. the k-means clustering that would occur if all data was pooled together. By
pruning empty global clusters on local clients, we are able to deal with a variable
amount of local clusters between clients, without having to set the values for k
locally on each client.

2 Related Work

Since its inception in 2017, federated learning has been applied in various sce-
narios. The most well known taxonomy of federated learning systems is the split
between the cross-device and cross-silo settings [12]. In brief, in the cross-device
setting, many, in the order of thousands or more, devices are connected. How-
ever their connection is usually unstable, and cross-device federations will have
to deal with users dropping out or joining later throughout the process. This
setting is mostly applicable to federations with end-user devices, such as mobile
phones. On the other hand, in the cross-silo setting, there are usually only a cou-
ple to tens of clients. These clients are usually quite stable and can be assumed
to be connected from the beginning of the process all the way to the end. This
setting is more applicable to health care centers or companies learning a shared
model without sharing their data due to privacy or competition reasons.
Different challenges emerge based on whether the federation is cross-device
or cross-silo and as such different algorithms have emerged for either setting. For
the cross-device setting, Liu et al. introduced a method for federated k-means
in a setting where each client is seen as a single sample [14]. More specifically,
they tackle the issue of proactive caching in cellular networks, i.e. trying to
predict what data to keep local based on popularity. Their method is robust
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against user change, and assumes a tiered architecture with base stations and
sub stations, as can be found in next-generation cellular networks. Kumar et al.
also propose a federated k-means clustering algorithm that can be applied for
the cross-device setting [10]. Their method assumes a central dataset available
at the server, on which a k-means clustering is pre-trained. It is then distributed
across all clients who update the clustering based on their local data, after which
the clustering is aggregated again on the server. Finally, Hou et al. created a k-
means clustering algorithm based on homomorphic encryption and blockchain
[8]. Although their method is not explicitly applied to the cross-device setting,
it does share encrypted versions of the data, which is often still unacceptable for
many cross-silo use-cases.

For the cross-silo setting, Servetnyk et al. proposed a federated k-means clus-
tering algorithm based on dual averaging and self-organising maps [18]. Although
their algorithm is capable of dealing with heterogeneous data, they do not explic-
itly address the challenge of a variable local k, or cluster alignment. Finally,
Dennis et al. propose a one-shot federated k-means clustering algorithm, which
only needs one local clustering, as well as one global aggregation step [5]. As
we focus mostly on the cross-silo setting, our algorithms bears the most resem-
blance to the method by Dennis et al. (kFed). The key differences are that our
method does not require setting a local value for k on each client, which, as
we argue in the introduction, can be difficult if not impossible without loss of
performance. This also allows us to have a different k for each client, further
improving performance. Finally, we show that, for less separable datasets, there
is a substantial performance gain in iterating between the local data and global
aggregation more than once, as is done by Dennis et al.

Table 1. Notations used

symbol/description
X data on client ¢
K, global number of clusters
K; number of clusters on client ¢
Cy global cluster means
C; cluster means of client ¢
M total amount (sum) of local clusters
Si amount of samples for each cluster on client ¢
N total amount of clients
3 Methods

Notation used throughout this section is found in Table 1. The pseudocode for
our proposed federated k-means algorithm (FKM) can be found in Algorithm 1.



110 S. Garst and M. Reinders

Algorithm 1. The federated kmeans algorithm

Input: K,

1: Init:

2: on each client i € N do:

3 K=K,y

4: i, C; = kmeans++_init(X;, K;) > get cluster means using kmeans++

initialization

5:  send S;, C; to server

6: For each round r do:

7: On server do:

8:  Cp = [C1|C2]..|Cwm] > Concatenate all local cluster means
9:  S; = [S1]S2]..|Sm] > Repeat for sample amounts per cluster

10:  Cy4 = kmeans(C, K, weights = S;) > Obtain new global clusters using kmeans
11:  send Cjy to all clients
12: On each client i € N do:

13: Ci =0y
14: S; = kmeans_assign(X;,C}) > Determine empty clusters
15:  C; = Cy[s =0 for s in S;] > Drop empty global clusters

16: KZ = size(C’i)

17:  S;, C; = kmeans(X;, K;, init = C;) > run kmeans from remaining global cluster
means

18:  send S;, C; to server

The algorithm can be divided into two parts: an initialization step, in which
we generate initial cluster means on each client using k-means++ initialization
[1], and an iterative k-means step in which clients communicate their cluster
means to the server, which aggregates these means into a ‘global’ set of means,
which then gets redistributed to the clients for the next k-means iteration. See
supplement A for background on k-means and k-means+-+.

3.1 Determining the Amount of Local Clusters

While the global amount of clusters is set (main parameter k of the k-means
procedure), it is not a given that each client has data for each of these clusters.
In other words, the number of clusters between clients can differ, and is not
necessarily equal to the number of clusters in the pooled data. In order to solve
this problem, we determine which global clusters correspond to local data in
each round on each client. Before a client applies a new k-means step locally,
it assigns its data to the global cluster means it has received (line 14). Next,
clients check if there are empty clusters, i.e. cluster means which did not get
any points assigned to them. If so, clients discard these empty clusters (line
15). The remaining (global) cluster means are then used as initialization for the
next local k-means step (line 16). This way, k can locally become smaller when
running k-means on the clients. Since this pruning step only happens after global
aggregation, we guarantee that the discarded clusters are indeed corresponding
to clusters on other clients.
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3.2 Cluster Alignment

After each client has calculated one iteration of k-means (not until convergence,
to avoid local minima) on their local data (each with their own amount of local
clusters), they send their cluster means as well as the amount of samples per
cluster back to the server. The server then concatenates all cluster means, and
aggregates them. It does so by running a k-means clustering on the received local
means until convergence (using the global k parameter), to align clusters from
different clients to each other. This global k-means is weighted by the amount
of samples per cluster found, such that a cluster with lots of samples in it will
have a bigger impact on the aggregation step compared to a cluster with fewer
samples. That is, we modify the k-means objective function (see supplement A
for the original) into:

M
Fim =Y, min (8|05 — Cil?) (1)
g=0 "¢

where S; is the amount of samples corresponding to local cluster C;. Note that
the cluster means sent back by the clients are at the server used as the samples
for clustering using k-means. Doing the aggregation with a k-means clustering,
we solve the cluster alignment problem, since similar clusters will be close to
each other and thus merged by the global k-means step.

Because the amount of samples have to be reported to the central server,
there exists a privacy risk if a client finds a cluster with only one sample in
it. To prevent this, any clusters holding less than p samples (we used p = 2
throughout this work) are simply omitted from the list of means sent to the
server.

4 Results

We compared our federated k-means (FKM) with a k-means clustering that
is executed on all data centrally, as well as to one-shot the method of Dennis
et al. [5]. Our first set of experiments is on simulated data, such that ground
truth labels of the cluster centers is known. We therefore calculate the Adjusted
Rand Index (ARI) for both central and federated approaches with respect to
the labelled samples data. Since there are no labels for the clustering in the
FEMNIST experiment, the silhouette score was used instead. In some cases, we
added an “informed” setting for Dennis et al., in which we set K; such as to
achieve the highest ARI score by exhaustive search. In all other cases, we run
their method using K; = K, as the ARI score is only available when ground
truth labels are known, which is not always the case.

4.1 Clients Holding Different Parts of the Data

In order to validate the FKM algorithm, a synthetic two-dimensional dataset was
generated. The generation procedure is taken from Servetnyk et al. [18]. Sixteen
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cluster centers were chosen with an equal distance (here 5) from one another,
see Fig. la. Then, 50 data points were sampled around each cluster center using
a normal distribution (with variance 1). This data was then distributed among
four clients in the following way: First, each client is assigned a ‘location’ within
the field (X7,Xs € (—12.5,12.5)). From there, the probability P that a data
point would be assigned to a certain client scales inversely with the euclidean
distance d to that datapoint:

full dataset including sample origins ARI for different levels of heterogeneity
- - Yy
8
o

. KM
B Dennis et. al., informed
3 Dennis et. al.

Bl1 B=10 central

data distribution, = 10

o0 75 S0 25 00 25 50 75 100 oo 75 0 25 00 25 50 75 100 oo 75 S0 35 00 25 50 75 100
X X i

(c) (d) (e)

central clustering, ARI = 0.96 FKM clustering, § = 0.1, ARI = 0.95

Fig. 1. The regular synthetic datasets. (a) shows the original sampling of the regular
synthetic dataset, with the defined cluster means (from which the data are generated
using a normal distribution N(0,1)) in red. (b) shows ARI results on all three datasets.
(c) until (e) shows how this dataset is distributed over five different clients using differ-
ent values of 3. Different colors indicate the different clients. (f) to (h) show examples
of a clustering on (c) as given by a centralized k-means, FKM (ours), and kFed (Dennis
et al.), respectively. Note that different colors in the last three plots denote different
cluster assignments instead of different clients. (Color figure online)
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P=1-eap(~2) @)

where 3 is a parameter which can be tuned to promote more or less heterogeneity
in the data separation. Differing from [18], if a data point happens to be assigned
to multiple clients, it instead gets assigned at random.

We wanted to explore the influence of data heterogeneity, i.e. a varying
amount of clusters per client. To do so, we generated three versions of this
dataset, with 3 = 0.1, 1, 10. See Fig. 1 c-e for the final distributions. Note that 3
only changes which points get assigned to which client, meaning that it does not
influence the performance for the central case. Figure 1b shows that our method
is able to attain performance similar to a centralized k-means clustering, while
outperforming Dennis et al., regardless of tuning of the K; parameter. Perfor-
mance of our FKM approach seems to be independent of § (in contrast to the
method of Dennis et al.), meaning that our algorithm is robust to having varying
cluster amounts between clients.

4.2 Increasing Levels of Noise

Next, we explored the effect of having noisier clusters. We recreated the regular
synthetic dataset, but varied the standard deviation from which samples are
being generated, from 1 to 1.5 (original used 1). Figure 2 shows the effect. We
generated these datasets twice, once with 50 points per cluster and once with
200 points per cluster.

Results on these datasets are shown in Fig. 3. For both central and federated
clustering, the ARI scores go down for higher noise levels. This is expected, as

Fig. 2. Some of the data distributions of the simulated datasets with increasing levels
of noise (columns), using 50 or 200 points per cluster (rows).
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updated method vs. central, 50 points per cluster, beta = 0.1

updated method vs. central, 50 points per clus

*

£
=
q

o | ——

o

Fig. 3. Clustering results on the synthetic dataset when using different levels of noise
for different values of 3. (a) to (c) show the final ARI scores for beta = 0.1, 1 and 10,
respectively. (d) to (f) show how the ARI score for FKM converges over time, each
corresponding to the figure above it.

there will be more points ending up closer to the cluster they did not originally
belong to, meaning that even if kmeans finds the original cluster means perfectly,
the label assignment will be off. Therefore, the relative difference between fed-
erated and central clustering is more important than the absolute ARI scores.
Our method attains a similar average performance; however, variance seems to
increase compared to centralized clustering. Furthermore, for 5 = 0.1, mean ARI
decreases compared to central clustering at high noise levels, meaning that a set-
ting with high noise as well as high cluster variability is still a hard challenge
for our federated k-means algorithm.

Regardless, performance does seem to increase significantly as compared to
the method of Dennis et al. [5]. This can partly be due to our ability to iterate.
Figure 3a to 3b shows that, especially for noisier datasets, there is a large benefit
in being able to iterate more often. The amount of points per cluster does not
seem to influence ARI score significantly, see supplement B.

4.3 Ablation Study

To explore the importance of several parts of our algorithm, we perform an
ablation study on the two dimensional synthetic data introduced in Sect.4.1
with a noise parameter of 1. We make five separate ablations, as well as one
setting in which all five modifications are included:

— Retain empty clusters: For this ablation, we skip the step where we prune
the empty clusters, effectively fixing K; equal to K in all clients.
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— Initialization: Instead of initializing local cluster using k-means++, we ini-
tialize local clusters at random.

— 100 local iterations: Instead of performing one iteration of k-means locally,
we perform 100 iterations.

— Unweighted aggregation: When aggregating cluster means on the server,
instead of weighting the cluster means by the amount of samples correspond-
ing to said cluster locally, we simply give every cluster a weight of 1 (Note
that we explored several values for the amount of local iterations, however
we saw little difference between those values, so for sake of brevity we report
only the results using the largest value that we explored (100)).

We considered the same values of 3 as earlier described in Sect. 4.1, i.e. § €
{0.1, 1, 10}, as shown in Fig.4. This figure shows that the degree to which
different parameters are important depend on (3, i.e. the heterogeneity of the
data. For 8 = 0.1 the largest impact can be seen for doing weighted aggregation
and local pruning. When data is homogeneously distributed (8 = 10), i.e. every
client has data for each cluster, the proposed ablations seem to have little impact
on the algorithm. In fact, increasing the amount of local iterations could even
be beneficial in a completely heterogeneous case. This is in line with literature
on supervised federated learning, where increasing the amount of local epochs
can increase performance [15]. However, under heterogeneous circumstances, in
supervised federated learning, clients might move too far into local optima before
aggregation, decreasing performance with more local iterations [20]. We therefore
hypothesize that in even more heterogeneous circumstances, a lower amount of
local iterations could still be beneficial for our method as well.

o ®ofo
o —1f
oo o @b
+—

"

® 4

® i

o
SSp——
B

(a) (b) (c)

Fig. 4. Results of the ablation study. (a), (b) and (c) show results for § = 0.1, 1 and 10,
respectively. (a) shows that, for a highly heterogeneous dataset, both dropping empty
local clusters and especially weighted aggregation have a large impact on model per-
formance. However, as the data becomes more homogeneously distributed, (subfigures
(b)—(c)), these factors become less important.

4.4 High Variability in Number of Local Clusters

Next we wanted to explore the effect of having an even more variable local k. We
used the same data as generated for the regular synthetic dataset, but distributed
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even more heterogeneously, such that each client only had data from 1, 4, 7, 10
or 16 clusters, respectively. See Fig. ha.

Figure 5b shows that our method attains a similar average performance as
compared to the central case, however with a larger variation. This is probably
caused by differences in initializations. If the algorithm initializes in such a way
that clients assign data to more clusters than what is being present in their data,
the algorithm has a hard time correcting for that. Furthermore, it does not help
that one client only has ten datapoints in total, meaning it initializes ten clusters
of size one, of which none are being send to the central server due to privacy
issues. Regardless, our method does outperform the algorithm from Dennis et
al. [5]. This is likely due to our algorithm’s ability to change the value of k for
its local k-means step between clients.

distribution of the highly variable local cluster amount dataset ARI comparison on highly variable local cluster amount

0.95 —a

°
S
ol
oo @

<]

Own Method Dennis et. al central

(b)

Fig. 5. Assessment of the method on data with a large variability of local clusters per
client. (a) shows the distribution per client, (b) the ARI results for different methods.

silhouette scores on a subset of FEMNIST simplified silhouette scores on a subset of FEMNIST
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Fig. 6. Results on (a subset of) FEMNIST. (a) shows
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4.5 Clustering Higher Dimensional Real Data

So far, all our experiments have been done on two dimensional, simulated data.
For many use cases, however, data has a much higher dimensionality. In order to
determine performance on a higher dimensional dataset, the Federated Extended
MNIST (FEMNIST) from LEAF ([3]) (having a dimensionality of 784) was used,
which separates the original Extended MNIST ([4]) handwritten numbers and
letters based on the person who wrote them. FEMNIST has a dimensionality of
784. This leaves approximately 110 datapoints per client; see supplement C for
the distribution. Only 10 clients were used from the original FEMNIST, as this
drastically sped up the experiments, while keeping enough data for a meaningful
assessment. We set k = 60, in line with earlier experiments from Dennis et al.
[5]. Figure 6a shows that our method outperforms both settings of the method
from Dennis et al. There is still a difference with a central clustering, however.
This could be due to the relatively small amount of samples per client compared
to the amount of dimensions, decreasing the quality of the local clusters.

The FEMNIST experiments use the silhouette score [16] as their performance
metric. The silhouette score involves calculating distances from each point in a
dataset to each other point in a dataset. This means that, to calculate a ‘global’
silhouette score, distances between datapoints from different clients need to be
determined, something that can not be done in a straightforward federated man-
ner. In our case, the simulated federated environment made it possible to cal-
culate the silhouette score for evaluation purposes. In a real-life setting, the
simplified silhouette score ([9]) could be a suitable alternative, as it only calcu-
lates distances between datapoints and cluster means, something which can be
done on all clients separately.

We compare the simplified silhouette score with the silhouette score from the
same experiments in Fig. 6b. There seems to be a high correlation between the
two scores for a given method, which is in line with previous work [19].

4.6 Clustering Real Biological Data

Finally, we explore a common clustering task in bioinformatics, that of cell-type
identification. We use data from Bouland et al. [2], specifically their dataset
referred to as ‘four cancers’. This dataset consists of single-cell RNA sequence
measurements from 12 different cancer patients with one of four cancer diagnoses:
Lung, endo, colon and renal cancer. In total, there are 22815 genes (features)
measured in 132549 cells (samples). These samples are either from tumor tissue
or from normal tissue, adjacent to tumour tissue.

Before distributing the dataset over separate clients, we run a standard single-
cell pipeline protocol! using the Seurat R library [6]. Briefly, we first filter out
genes that have less than 200 or more than 2500 feature counts. We then log-
normalize the data. Afterwards, we run the Seurat function “FindVariableFea-
tures” to find the top 500 genes with most variance. Then, we select only the

! https://satijalab.org/seurat/articles/pbmc3k_tutorial.html.
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samples from tumor tissue, leaving a total of 68905 samples. Finally, we per-
form dimensionality reduction on these samples using the selected 500 genes, to
reduce dimensionality to 5 (determined using the elbow method).

Data is grouped by patient, meaning that all data from a single patient
will end up on a single client. Data is being distributed over three clients. Two
different distributions of the data are considered, denoted as IID (Identically and
Independently Distributed) or non-IID. For the IID-distribution, each client gets
data from every cancer type, whereas for the non-IID data, each client gets data
from only one cancer type, as well as from two out of six lung patients.

We run FKM, as well as central clustering and kFed (the method by Dennis
et al. [5]), with a (global) K of 4, equivalent to the amount of cancers in the
dataset. Figure7 shows the silhouette and simplified silhouette scores for all
algorithms. In the IID setting, our method slightly outperforms kFed, while there
is still a slight gap with a centralized clustering. However, when considering the
non-IID setting, we observe that the performance gap between FKM and KFed
increases, whereas the difference between FKM and a centralized clustering is
similar compared to the IID setting, indicating that FKM is more robust to
various data distributions.
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Fig. 7. Silhouette and simplified silhouette scores on the fourcancers dataset. Both the
silhouette score in (a) as well as the simplified silhouette score in (b) show increased
performance of FKM compared to kFed, though still slightly underperforming a cen-
tralized clustering. However, when the data is distributed non-1ID (figure (c) and (d)),
the gap between the federated methods seems to increase.
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5 Discussion and Conclusion

This work describes the implementation and validation of a federated k-means
clustering algorithm (FKM), enabling clustering over multiple datasets without
sharing the underlying data. Our results show performances close to a central
method, in which all data is brought into a single location. There are still some
scenarios in which our method shows larger variability in performance as com-
pared to a central clustering, however. These are mostly the more difficult sce-
narios, such as when there is an extreme distribution in the amount of cluster
present on each client, or when the data has a high dimensionality as with the
FEMNIST experiment. Assessment of our method on more heterogeneous and
'real life’ datasets is therefore an important direction for future work. Neverthe-
less, FKM has shown to be a promising method in finding similarities among
distributed datasets without the need of sharing any data.

6 Code Availability

The code to run FKM, as well as all experiments and generate the figures used
throughout this manuscript, can be found at: https://github.com/swiergarst/
fedKMeans/.

A Background on K-Means and K-Means++4

A.1 K-Means Clustering

The objective of a clustering algorithm is to partition a given dataset into several
subsets with similar features. The k-means clustering algorithm does so by trying
to minimize the within cluster sum-of-squares criterion:

m
: 2
Fym = ;oé?é%(HXj - Gill%) (3)
with m the amount of samples, C; the cluster mean of cluster ¢, C' the set of all
cluster means and X ; being data point j assigned to cluster k. The procedure
in which the k-means algorithm tries to minimize Eq.3 consists of two steps.
First, all data points get assigned to the cluster mean according to the lowest
euclidean distance. Then, the mean center point from all points assigned to a
certain cluster is calculated. This is done for every cluster, creating a new set of
means to start the next round with. This process is repeated until the change
within these means is smaller than a certain threshold (and the algorithm has
reached convergence) ([7]).

A.2 K-Means++

One of the drawbacks of classical k-means clustering is that its initialization
is sampled uniformly from the underlying data. This means that having initial


https://github.com/swiergarst/fedKMeans/
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cluster means that all come from the same cluster is as probable as having
initial cluster means spread across all clusters. Although the K-means algorithm
itself can somewhat compensate for this, it still leads to large variability in
performance. Arthur and Vassilvitskii developed an initialization method for K-
Means to combat this high variability, called k-means++ [1]. Instead of sampling
K cluster means from the data with uniform probability, datapoints get weighted
based on their distance to the closest already mean that is chosen, with larger
distances giving larger weights. This results in (on average) initializations that
are more distributed over the space, and prevents (on average) initial cluster
means from starting very close to each other, decreasing k-means performance.

B Extra Results on Increasing Amount of Points
per Cluster

See Fig. 8.

1 200 points per cluster, beta

-1
<o | - el =<
-
=

Fig. 8. results on using different levels of noise for different values of 3, with differing
amounts of points per cluster. From left to right, the columns correspond to g = 0.1,
1 and 10 respectively. From top to bottom, the rows correspond to 50, 100, and 200
points per cluster.
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C FEMNIST Distribution

See Fig. 9.

data distribution for FEMNIST experiments

amount of samples

0 2 4 6 8
client

Fig. 9. Sample distribution for the FEMNIST dataset
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