
Delft University of Technology
Master of Science Thesis in Embedded Systems

Deriving Timing Properties from System
Traces using Data-driven Techniques

Şerban Vădineanu
Supervised by Dr. Mitra Nasri

Embedded
Networked
Systems

Deriving Timing Properties from System Traces
using Data-driven Techniques

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Şerban Vădineanu

TU Delft Student Number: 4824989
Supervised by Dr. Mitra Nasri

23.07.2020

Author
Şerban Vădineanu ()(

(TU Delft Student Number: 4824989)
Title

Deriving Timing Properties from System Traces using Data-driven Techniques
MSc Presentation Date

03.08.2020

Graduation Committee
dr. ir. Fernando Kuipers (chairman) Delft University of Technology
dr. Mitra Nasri Delft University of Technology and

Eindhoven University of Technology
dr. Jan Rellermeyer Delft University of Technology

mailto:vadineanu@student.tudelft.nl
mailto:serbanvadineanu@gmail.com

Abstract

With the growth in the complexity of real-time embedded systems, there is
an increasing need for tools and techniques to understand and compare the
observed runtime behavior of a system with the expected one. Since many real-
time applications require periodic interactions with the environment, one of the
fundamental problems in guaranteeing/monitoring their temporal correctness is
to be able to infer the periodicity of certain events in the system. The prac-
ticability of a period inference tool, however, depends on both its accuracy and
robustness (resilience) against noise in the output trace of the system, e.g., when
the system trace is impacted by events that have a non-deterministic nature such
as the presence of aperiodic tasks, release jitters, and runtime execution-time
variations of the tasks.

This work (i) presents a period inference framework that uses regression-
based machine-learning (RBML) methods, (ii) thoroughly investigates the ac-
curacy and robustness of different families of RBML methods in the presence of
uncertainties in the system parameters, and (iii) proposes further accuracy im-
provements by deriving candidate pruning rules based on the inherent properties
of the underlying scheduling policies. We show, on both synthetically generated
traces and traces from actual systems, that our solutions can reduce the error of
period estimation by two to three orders of magnitudes w.r.t. state of the art.
Also, our methods showed to be robust against most sources of disturbance.

iv

Preface

This work concludes my 2-year journey as an Embedded Systems master student
at TU Delft. Throughout the time I spent here, and especially during my
thesis, I have encountered numerous difficulties but an even greater amount of
opportunities.

I would like to thank my supervisor, Dr. Mitra Nasri, for her invaluable
guidance and for teaching me how to view every challenge as an opportunity,
how to critically think my way out of problems, and, overall, how to become a
better researcher.

My sincere gratitude goes towards my parents, who never questioned my de-
cisions and gave me their full support even when I was not entirely confident
about my choices. They invested me with their trust which was the most mo-
tivating aspect for me to finish everything and make them proud.

I would also like to thank Lorena, who provided me with 24/7 ”psychological
consultancy” and whose patience and willingness to help allowed for rays of
sunshine in my most cloudy days.

Also, I would like to say an honest “mult,umesc” to all my friends from Ro-
mania who not only were there to listen to my complaints about how hard is
to do a thesis abroad, but also provided me with computing resources when the
experiments where many and the time was tight.

Lastly, I don’t want to forget the bonds I built in Delft, which although are
few I truly believe that are strong. Thank you, guys, for sharing some of your
brief moments of free time with me and for allowing me to know you better!

Şerban Vădineanu

Delft, The Netherlands
23rd July 2020

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Questions . 2
1.3 Contributions . 3
1.4 Organization . 3

2 Background and System Model 5
2.1 Background . 5
2.2 System Model and Problem Definition 7

3 Related Work 11
3.1 Period Estimation . 11
3.2 Timing Properties from Real-time Systems 12
3.3 Machine Learning Methods for Reverse-engineering Real-time Sys-

tems . 13
3.4 RBML on Signals . 13

4 RBML-based Period Inference Framework 15
4.1 Solution Overview . 15
4.2 Feature Extraction . 16
4.3 Regression Methods . 18
4.4 Candidate Selection . 22
4.5 Improving Accuracy using Ternary Projections 23

5 Experiments 27
5.1 Experimental Setup . 27
5.2 Using the Baselines . 28
5.3 Additions to Simso . 29
5.4 Parameter Tuning . 29
5.5 Assessing Accuracy in Periodic Systems 30

5.5.1 Impact of system utilization 30
5.5.2 Impact of the number of tasks 30
5.5.3 Impact of execution time variations 32
5.5.4 Impact of release jitter . 32
5.5.5 Impact of candidate adjustment method (RPMPA) 32
5.5.6 Impact of space-pruning method (SPM) 33

vii

5.6 Assessing Robustness . 35
5.6.1 Robustness w.r.t. the presence of higher-priority aperi-

odic tasks . 35
5.6.2 Robustness w.r.t. dropping jobs 36
5.6.3 Robustness w.r.t. the scheduling policy 36
5.6.4 Robustness w.r.t. tardiness 37

5.7 Case Study . 38
5.8 Evaluating Runtime and Memory Requirements 39

6 Discussions 41
6.1 Tree-based Solutions . 41
6.2 Non-tree-based Solutions . 41
6.3 Memory Consumption and Runtime 42
6.4 Period Adjustment . 42

7 Conclusions 43
7.1 Summary . 43
7.2 Answers to Research Questions 43
7.3 Future Work . 45

viii

List of Figures

2.1 Example of a task with a period of 10, relative deadline equal to the

period, and release time jitter. 6
2.2 An example of a task set with one aperiodic task (τ1), two sporadic

tasks (τ2 and τ4) and one periodic task with release jitter (τ3) scheduled

by a FP policy (assuming pi = i). (a) shows a schedule, (b) shows the

trace of the schedule, and (c) show the binaryprojection of the trace

for task τ3. 9

4.1 Our period inference framework. The edges denote the information

flow between our algorithms. 16
4.2 Periodogram and circular autocorrelation methods applied on task pro-

jections for a task with (a) period 1000, and (b) period 5000 from a

system containing 4 tasks, with a total utilization of 30% and sched-

uled by the rate monotonic scheduling policy. The other two tasks

have a period of 2000 and 10000, respectively. 17
4.3 Regression tree fitted on a data set of traces with 4 tasks and total

utilization of 30% (see details in Section 5.1 for automotive task sets) 20

5.1 The impact of the number of features (for RPM) and the number of

candidates (for RPMPA) on the solution’s accuracy. Note that the

shade around the curves represents the confidence intervals for 0.95

confidence level. 29
5.2 Experimental results . 31
5.3 Error distribution for RPM based on cubist. 32
5.4 (a)-(b) the impact of period adjustment method, and (c) the impact

of space-pruning. 34
5.5 Space-pruning for traces with jitter. 34
5.6 cubist against upper bound. 35
5.7 The impact of different levels tardiness. 37
5.8 (a) the number of rules in a trained cubist method and its confidence

intervals for a confidence level of 0.95, (b) memory consumption, and

(c) runtime of various regression algorithms. 40

ix

x

List of Tables

3.1 Works on reverse-engineering real-time systems. 12
3.2 Works on period estimation from signals. 12

4.1 Overview of best performing families of regression algorithms and for

each family the best model [12]. 19

5.1 The effect of period adjustment. 33
5.2 Scheduling policy robustness for log-uniform traces with 10 tasks and

50% execution time variation. 36
5.3 Results on the two CAN data sets. 38
5.4 Runtime comparison. 39

xi

xii

Chapter 1

Introduction

The rapid growth of software size and complexity in real-time embedded systems
has posed imminent challenges to the ability to debug systems, identify runtime
deviations from the correct service [52], and detect (and evade) security attacks
at runtime [33]. This raises an urge for tools and techniques to understand (or
infer) the runtime behavior of a system from its observable outputs such as the
traces of output messages, task executions, actuations, etc. without impacting
the system itself or, in some cases, without being able to access the source code
or the internal parts of the system.

1.1 Problem Statement

In this work, we focus on developing a tool for inferring the timing properties of
a system. Such a tool can be used to (i) find time-bugs during the development
phase (e.g., to check if activities happen with the expected frequency or period),
(ii) detect timing anomalies and security attacks that leave a trace on the
observable timing profile of the system during the operation phase (e.g., such
as those explained in [33, 42] to spot anomalies in the regularity of an activity
in the system [20]), and (iii) diagnosing the system after applying a patch or
an upgrade during the maintenance phase (e.g., to check if a data-consumer
application still performs periodically after installing an upgrade on the data-
producer application).

Since many real-time applications require periodic interactions with the en-
vironment, one of the primary use cases of a timing inference tool is to infer the
periodicity of events from a system’s output traces. What makes this very first
step challenging is that the observable timing traces are typically obtained from
the components’ interfaces and hence are impacted by the internal structure
of the application, operating system, hardware platform, and their interactions.
For instance, consider an execution trace that indicates the time intervals during
which a certain task has occupied the processor. It is easy to infer the period
if the task exclusively runs on top of dedicated hardware. It becomes harder
if the task is one of the low-priority tasks in a set of periodic tasks running on
top of a real-time operating system (RTOS) with a preemptive fixed-priority
scheduling (FP) policy because then the task’s execution intervals are affected
by the interference from the higher-priority periodic tasks. Finally, it becomes

1

much harder if the latter system also includes high-priority aperiodic or event-
driven activities (such as interrupt services), sporadic tasks, release jitters, and
deadline misses. A timing inference tool, therefore, must be robust against these
interferences, dynamic behavior, and uncertainties; otherwise, it might not be
able to address true challenges faced by real systems and hence becomes useless
in practice. Furthermore, it must be accurate, else it will not be helpful to find
time bugs or to detect deviations from the expected periodicity.

We consider the problem of inferring a task’s period from a timed-sequence
of zeros and ones (called a binary projection) that shows when the task was
occupying the resource during the interval of time for which the trace has been
obtained. We consider a single processing resource, e.g., a CPU core, a network
link, a CAN bus, etc. We assume no prior knowledge about the number of other
tasks in the system and their parameters, execution model, runtime, execution-
time variations, and release jitters.

1.2 Research Questions

The aim of this work is to create an accurate and robust period inference tool.
We try to achieve this goal by answering the following research questions:

• RQ1. Can one infer the tasks’ periods from traces of a real-time system
using RBML (regression-based machine learning) techniques? If so, how
effective (in terms of accuracy) and efficient (in terms of runtime) would
those methods be?

This question’s aim is to explore how a data-driven method for estimating
the period of a task can be compared to the already existing approaches.
We propose the first framework to use RBML methods for period inference
problem and then compare its accuracy, runtime, and memory consump-
tion with the state of the art.

• RQ2. What impact does the choice of the RBML algorithm have on the
effectiveness of period inference?

Various families of RBML methods have been introduced and applied
on different problems by the literature. We investigate the performance
of different families of RBML methods in terms of their accuracy and
robustness for the problem of period inference in real-time systems.

• RQ3. Can we derive a set of pruning rules to further restrict the number
of possible period values? If so, what will be the impact of adding the set
of rules over the RBML performance in terms of accuracy?

By answering this question, we want to find out whether incorporating
knowledge derived from the real-time systems theory can help in increasing
the accuracy of the RBML methods.

• RQ4. How robust is our solution against the interferences caused by the
non-determinism present during the operation of real systems?

The purpose of this question is to assess the impact of different sources of
uncertainty in the underlying system’s behavior on the proposed solutions
for the period-inference problem.

2

1.3 Contributions

In order to address the first research question (RQ1), we propose the first
period inference framework that utilizes RBML methods. We focus
on regression-based methods due to the continuous nature of the target vari-
able: the period. Our method relies on training a model from labeled traces.
However, apart from labels, our RBML solution requires a set of features to be
trained on. As a consequence, we interpret the execution of a task as a binary
signal so that we can apply signal-processing techniques (i.e., periodogram and
circular-autocorrelation) in order to generate period candidates, which will be
further used as the required features. However, since the number of the obtained
candidates is large, we include in our process an additional step of selection and
combination such that we only choose as features the right amount of candidates
in order to reach a trade-off between accuracy and input size. Once the model
is trained, we further enhance its accuracy by creating a period adjustment
step, based on selecting the closest candidate to our model’s prediction.

For answering the second and fourth research questions (RQ2 and RQ4),
we perform a thorough investigation of widely-used families of regression
algorithms, which showed promising performance in recent literature studies
such as the review of Delgado et al. [12]. We include not only comparisons in
terms of accuracy, but also in terms of runtime and memory consumption, and
robustness of these methods.

We address the third research question (RQ3) by deriving two theoretical
bounds based on the properties of real-time scheduling policies to narrow down
the search space of the period estimate.

1.4 Organization

Chapter 2 introduces the essential notions which we will use throughout the
thesis, it also includes the system model with a formalization of our problem.
The state of the art is presented in Chapter 3. In Chapter 4 we offer a de-
scription of our period mining solution. Chapter 5 is dedicated to the empirical
evaluation of our methods, while Chapter 6 provides insight on the strengths
and weaknesses of different families of RBML methods for the problem of period
inference. Finally, Chapter 7 provides the conclusion and possible research paths
for future work.

3

4

Chapter 2

Background and System
Model

In this chapter, we introduce the fundamental notions over which we define
our problem and formulate the solution. Section 2.1 provides an overview of
the background information, while in Section 2.2 we present the model of our
system and we state the problems we aim to solve.

2.1 Background

A real-time system is a system whose correctness depends not only on its logical
correctness, but also on its temporal correctness.

The most relevant real-time systems notions that we will use throughout this
work are the following:

• Task. A task implements a functionality of the system. It can represent
a process or a thread that are executed on the processor, and it can create
an unlimited number of instances, called jobs. A task is characterized by
the following properties:

– Release time. The release time of a job is the time at which the
job is ready for execution.

– Execution time. The execution time is the time a job requires to
access the resource (e.g., processor) to complete. Different jobs of
the same task can have different execution time values. The lower
and the upper bounds on the execution time are called the best-case
execution time (BCET) and the worst-case execution time (WCET),
respectively.

– Deadline. The deadline is the time before which a job must com-
plete its execution in order to guarantee the system’s correctness. If
this time is specified w.r.t. the release time of the task, then it is
denoted as relative deadline. If the deadline is specified w.r.t. to a
time origin, e.g., time 0, then it is referred as absolute deadline [6].
Depending on the consequence of a deadline miss for the system, a
deadline can be categorized as soft or hard. Missing a soft deadline

5

absolute	deadline

0 10

preemption

22

release	time

20

relative	deadline

execution	time

30

expected
release	time

25

first	job second	job third	job

absolute	deadline

release	
jitter execution

Figure 2.1: Example of a task with a period of 10, relative deadline equal
to the period, and release time jitter.

will not have a catastrophic consequence for the system while missing
a hard deadline will result in the system failure.

The aforementioned properties are exemplified in Figure 2.1.

– Periodicity. Depending on the release pattern of its jobs, a task can
be:

a. Periodic. The jobs are released with a certain period.

b. Aperiodic. Tasks have non-deterministic release time, which
can be triggered, for instance, by events.

c. Sporadic. The inter-arrival time between two consecutive jobs
is separated by a minimum inter-arrival time (also called period).

– Release time jitter. The maximum deviation of the release time
among all invocations of a task is called (maximum) release time
jitter. The release time jitter can be caused by timer inaccuracy,
interrupt latency, or networking delays [34]. An illustration of release
time jitter is present in Figure 2.1.

• Schedule. The schedule is a particular assignment of tasks to the pro-
cessor(s) and time intervals. This assignment determines the task execu-
tion sequence and is typically generated by a scheduling algorithm (policy).

• Scheduling policy. It is the policy by which jobs are scheduled. There
are three main categories of scheduling policies: task-level fixed-priority
scheduling (FP), job-level fixed-priority scheduling (JLFP), and dynamic-
priority scheduling (DP).

– Fixed-priority scheduling. For this category of algorithms, all
jobs of a task will have the same priority which is typically assigned

6

to the task at design time. After being assigned, the priority of the
task will not change during the lifetime of the system. A common
priority assignment method that is used by fixed-priority scheduling
is rate monotonic (RM) for periodic tasks. RM assigns a higher pri-
ority to a task with a smaller period. Considering that the period of a
task is a constant property, the priorities of the tasks will not change
throughout the system’s execution, making RM a fixed-priority as-
signment.

– Job-level fixed-priority scheduling. This type of policies allow
jobs to have different priorities. JLFP policies include widely imple-
mented scheduling policies in real-time systems such as the earlier-
deadline first (EDF), FP, and first-in-first-out (FIFO) policies. EDF
is a policy that assigns a higher priority to a job with an earlier ab-
solute deadline. EDF is not a task-level fixed-priority policy since at
different moments in the schedule the same task can have different
priorities.

– Dynamic-priority scheduling. In these policies, a job’s priority
can change over the time. The least-laxity first scheduling policy is
one of the dynamic-priority policies as it changes the priority of a job
over the time as the job progresses towards its completion.

• Execution model. The most general categorization of execution models
is as: preemptive and non-preemptive.

During scheduling, the tasks that are waiting for a time slice on the pro-
cessor reside into the ready queue, while the task in execution is called
running task [6].

– Preemptive execution. The operation of suspending the running
task and inserting it into the ready queue is called preemption [6].
Hence, when a higher-priority task enters the ready queue, it will
preempt the lower priority running task.

– Non-preemptive execution. The non-preemptive execution model
disables the use of preemption completely. Thus, a running task can-
not be suspended by other higher-priority tasks.

2.2 System Model and Problem Definition

We assume a system with a single (processing) resource (such as a CPU core, I/O
or CAN bus, or a link on the network). The resource can be occupied/used by
a set of tasks τ = {τ1, τ2, . . . , τn}, scheduled by a job-level fixed priority (JLFP)
scheduling policy on the resource. Furthermore, we assume no restriction on
whether each task executes preemptively or non-preemptively.

A task in τ can be activated periodically, sporadically, or aperiodically. A
periodic or sporadic task is identified by τi = (Cmin

i , Cmax
i , Ti, Di, σi), where

Cmin
i and Cmax

i are the best-case and worst-case execution times (BCET and
WCET), Ti is the period, Di is the relative deadline (which is assumed to be
equal to the period), and σi is the maximum release jitter of the task. If the
task is sporadic, its period indicates the minimum-inter arrival time between its

7

activations. An aperiodic task is identified by a 3-tuple τj = (Cmin
j , Cmax

j , Dj),

where Cmin
i and Cmax

i are the BCET and WCET and Dj is the relative deadline
of the task, respectively. We further assume that all timing parameters are
positive integer values in N+ with the exception of Cmin

i and σi that can be
0. The total utilization of the system is denoted by U and it is the sum of
the utilization of all periodic and sporadic tasks in the system, where a task
utilization is the ratio of its WCET to its period. The hyperperiod of a task set,
denoted by H, is the least common multiple of the periods.

We use Ji,k to denote the k-th job of a task τi. Each job Ji,k has a priority
pi,k that is assigned by the scheduling policy at its release time. The priority
remains unchanged as long as the job is in the system and priority ties are
broken arbitrarily. We assume that at any time instant t, either one of the tasks
in τ or the idle task, denoted by τ0, is running on the resource.

A trace T = ([ts, te], 〈ε1, ε2, . . . , εN 〉) represents a time-ordered sequence of
symbols that represents a schedule generated by the JLFP scheduler for the task
set τ ∪ {τ0} from the time ts to te. Each symbol εi ∈ T is an identifier (index)
of a task that was occupying the resource at time i, where i ∈ {ts, ts+1, . . . , te}.
Hence, εi ∈ τ ∪ {τ0}. The length of a trace is |T | = te − ts. Figure 2.2(a) and
(b) show a schedule of a task set with 4 tasks and the equivalent trace of that
schedule.

Before we formally define the problems that are being solved in the thesis, we
need to introduce two other notions that are tied to a trace: binary projection
and ternary projection. A binary projection for task τi is a sequence of zeros
and ones that represents the times at which a job of the task was occupying the
resource in the trace. Figure 2.2(c) shows the binary projection of the task τ3.

Definition 1 A binary projection of a trace T for task τi, denoted by PB
i =

〈p1, p2, . . . , p|T |〉, is a time-ordered sequence of elements pk, where

pk =

{
1, εk = i
0, otherwise

. (2.1)

For convention, we assume that pk = 1 means that task τi was running during
the interval [k, k+1). For instance, in Figure 2.2(a), p6 = 1 denotes that τ3 was
running during the interval [6, 7).

A ternary projection for a task τi is similar to the binary projection except
that it also contains the resource-idle intervals. Figure 2.2(d) shows the ternary
projection of the task τ3.

Definition 2 A ternary projection of a trace T for task τi, denoted by PT
i =

〈p1, p2, . . . , p|T |〉, is a time-ordered sequence of elements pk, where

pk =

 1, εk = i
idle, εk = 0
0, otherwise

. (2.2)

Next, we define two versions of the period inference (PI) problem as follows:

Problem 1 Find the period of τi from its projection PB
i .

8

(a) schedule

0 1 4 5 6 8 18 19 23 2412 13
𝜏2

0 1 4 6 7 11 12 13 16 20 21 24
𝜏3

4 5 21 23
𝜏1

16 17

10 11 17 18
𝜏4

22

0
1 1

0
1

0
1

0 0
1

0
1

0
1 1

0
1

0
1

0 0
1

0
1

idle idle

0

idle

𝜏0 (idle task)
7 8 9 10 19 20

(b) trace
2 3 3 3 1 2 3 0 2 0 4 3 2 3 3 3 1 4 2 0 3 1 1 2 3

0 5 10 15 20 25

(c) binary projection for 𝝉𝟑

(d) ternary projection for 𝝉𝟑

Figure 2.2: An example of a task set with one aperiodic task (τ1), two

sporadic tasks (τ2 and τ4) and one periodic task with release jitter (τ3)

scheduled by a FP policy (assuming pi = i). (a) shows a schedule, (b)

shows the trace of the schedule, and (c) show the binaryprojection of the

trace for task τ3.

Problem 2 Find the period of τi from its projection PT
i provided that PT

i does
not include a deadline miss from τi.

It is worth noting that the only input to the Problems 1 and 2 is a projection.
Since a projection is just a sequence of limited symbols (‘0’, ‘1’, and ‘idle’), it
does not contain any information about the scheduling policy, tasks’ parameters
(such as the execution times, release jitter, periods, deadlines, etc.). Moreover,
the projections themselves do not contain information about whether or not
there are tardy jobs (i.e., jobs that have completed after their deadline) in the
original trace.

9

10

Chapter 3

Related Work

In this chapter we review previous works that share similarities with our project.
We begin our review with a section dedicated to the works on period estimation
(Section 3.1), we then explore the state of the art on deriving other timing
properties from real-time systems apart from the periodicity of the tasks (Section
3.2). Also, we explore how other authors employed machine-learning techniques
to extract meaningful attributes from real-time systems traces (Section 3.3).
Finally, we provide an overview for the works that applied regression-based
machine learning (RBML) on features extracted from signals (Section 3.4).

A summary of the most relevant works on inferring properties of real-time
systems can be found in Table 3.1.

3.1 Period Estimation

Although periodicity mining has been extensively studied in the past couple
of decades, very few works have actually focused on inferring periods from the
execution traces of real-time tasks. Patel and Modi [35] have surveyed various
types of periodicity mining in the problem of finding similar patterns and fre-
quent items in a set, however, since their goal is not to find a single numerical
value as the period of an event, they are not really relevant to this thesis. In
the rest of this section, we will only focus on the works that are aiming to find
a numeric period in the data as part of their solutions.

Iegorov et al. [21] are among the few pioneers who proposed a solution for the
problem of inferring periods from execution traces. They created an algorithm
which identifies the time intervals between consecutive task activations and
computes the period as the mode of the intervals’ distribution. However, their
method performs poorly when the tasks have runtime execution-time variation
and/or the true period of the task under analysis does not divide all other
smaller periods in the task set, i.e., it is not harmonic with the rest of the tasks.
Young et al. [52] use a fast Fourier transformation to infer the periodicity of
messages sent on a controller area network (CAN) in order to detect security
attacks that impact the timing of the messages. Their problem, however, is only
a subset of ours since CAN applies a non-preemptive fixed-priority (FP) policy
and messages have typically a fixed size with a low runtime variation on the
message length.

11

Paper Problem Approach
Iegorov [21] Period inference Determine the distribution of

time intervals between the jobs
of a task

Young [52] Intrusion detection Infer periods of messages using
fast Fourier transform

Iegorov [20] Precedence constraints Mine a task precedence graph
from execution traces

Cutulenco [11] Timing constraints Mine timed regular expressions
from execution traces

Lamichhane [26] Program tracing Identify the running task from
power consumption traces

Sucholutsky [47] Trace restoration Use recurrent neural networks
to reconstruct execution traces

Table 3.1: Works on reverse-engineering real-time systems.

Paper Periodogram Autocorrelation
Vlachos [49] x x

Berberidis [3] x
McKilliam [31] x

Puech [37] x x
Unnikrishnan [48] x

Malode [30] x
Li [29] x

Liang [8] x

Table 3.2: Works on period estimation from signals.

Finding the periodicity of a signal is a well-studied problem in signal-processing
research [43, 3, 49, 29, 31, 30, 48, 37, 18]. As it can be observed from Table 3.2,
Periodogram [43] and circular autocorrelation [18] are among the widely used
methods to find a plausible set of periods for a signal. However, as we will see in
the experimental section, these methods perform poorly when used on signals
generated from preempted tasks.

3.2 Timing Properties from Real-time Systems

Apart from the works of Iegorov et al. [21] and Yang et al. [52] who focused
on deriving the periods of the tasks, other works aimed to infer a different type
of timing properties. Cutulenco et al. [11] proposed a technique for extract-
ing timed regular expressions from execution traces, which provide information
about the occurrence pattern of the events in the system. Similarly, Iegorov et
al. [20] mine an occurrence pattern between the tasks in the system under the
form of a task precedence graph. However, although both works aim to derive a
timing property which relies on periodicity, namely the precedence constraints,
they do not infer the actual values for the periods. They only determine inter-
pretations of the occurence patterns under the form of regular expressions and

12

precedence graphs, respectively.

3.3 Machine Learning Methods for Reverse-engineering
Real-time Systems

Data-driven methods such as k-nearest neighbors and dynamic time-warping
algorithms have been used in reverse engineering real-time systems to identify
tasks from their runtime power traces [26]. In addition, long short-term memory
(LSTM) neural networks have been used to reconstruct traces affected by noise
[47]. However, to the best of our knowledge, no study so far has utilized
regression-based machine learning (RBML) methods to infer the timing prop-
erties of real-time systems.

3.4 RBML on Signals

Our proposed approach for finding the periods of the tasks relies on data-driven
techniques. Since we aim to estimate a continuous value, the family of al-
gorithms that we considered is regression. Thus, we investigated solutions that
employed regression algorithms to determine trends from signals.

Although there are no records of regression models being used to directly
estimate the period of a signal, these algorithms have been successfully employed
together with signal features to solve various tasks. Benkedjouh et al. [2]
used Mel-frequency cepstral coefficients extracted from raw sensor signals to
train a support vector machine. The end goal was to estimate the remaining
useful life of tools used in the manufacturing process. Similarly, Wang et al.
[50] created a tool wear prediction model using Gaussian mixture regression on
features extracted from cutting force signals. In another work, Xia et al. [51]
use random forest to detect acoustic events, while Slapničar et al. [46] also
make use of a related regression algorithm to estimate the blood pressure from
photoplethysmogram signals. When it comes to electrical signals, Fei et al. [14]
train a support vector on voltage waveforms to find the faulty locations in the
transmission line.

The wide applicability of regression demonstrated that this family of al-
gorithms is suitable to be used in tandem with signal-processing techniques.
However, to the best of our knowledge, no work has used regression models as a
substitute for signal-processing techniques or to directly improve their output.

13

14

Chapter 4

RBML-based Period
Inference Framework

4.1 Solution Overview

This section first introduces the challenges of the period inference (PI) problem
and then presents our solution.

Challenges. As mentioned earlier, the PI problem has a long history in
signal processing. Methods such as periodogram [43] and circular autocorrela-
tion (or autocorrelation for short) [18] have been applied to infer periodicity of
a signal and shown to work well in the presence of small (or standard) noise.
However, when applied to the PI problem, the results revealed a couple of is-
sues: (i) these methods can generate many candidate periods most of which
are irrelevant, (ii) although they assign a weight (called power) to each period
candidate, there is no direct relation between the weight and the true period,
(iii) they cannot handle scenarios with preemptions well because they perceive
each preemption as a new occurrence of the event under analysis (which adds
a significant amount of noise to their inputs), and (iv) the true period is not
necessarily among the candidates, particularly for the autocorrelation method.
Hence, they could not provide an accurate solution for the PI problem.

We then decided to look into the machine-learning methods that could work
well on the PI problem. We specially focused on those whose decision logic is
explainable and traceable by a human. Therefore, we deliberately avoided using
deep neural networks for the problem or for the feature extraction. However, this
raised the next challenge: how to extract meaningful and helpful features from
a projection? A starting point could be to use the whole binary projection as
a feature and let the machine-learning method figure out the period. However,
that could lead to two major issues: (i) dimensionality problems with the feature
space, and (ii) having inputs with varying-length. High-dimensional feature
spaces typically lead to sparse data which in turn reduces the efficiency and
increases the runtime of model learning [1]. Moreover, most machine-learning
methods require a fixed input size which implies that the input projection must
be cut (for all projections of all training and testing task sets). However, since
task sets have different hyperperiods, putting a predetermined cut-off threshold
could either lead to low accuracy (if the cut-off is too short) or to a huge runtime

15

Binary	or	ternary	
projection
(Section	2.2)

Feature	extraction
(Section	4.2)

Regression-based	
period	miner
(Section	4.3)

Period	adjustment
(Section	4.4)

Space-pruning
(Section	4.5)

Period

Figure 4.1: Our period inference framework. The edges denote the inform-

ation flow between our algorithms.

and low efficiency in learning the model (if the cut-off is too long).
Solution highlights. The framework we propose to solve the period infer-

ence problem suggests a four-stage pipeline where Stage 0 extracts features and
Stages 1 to 3 are for accuracy improvement of period estimation. Figure 4.1
shows the pipeline and the stages. In Stage 0, we use both periodogram and
autocorrelation to compile a fixed set of features from their top k highest-rank
candidates (see Section 4.2). In Stage 1, we use supervised learning methods,
and in particular, the regression-based machine-learning methods, to determine
the relationship between our feature vectors and the target output, i.e., task
period (see Section 4.3). RBML methods are commonly used when the goal is
to predict a continuous output that takes order into consideration (in our case,
the period). We call our RBML solution regression-based period miner (RPM).
In Stage 2, we further adjust the predictions of RPM by providing it with a set
of high-ranked candidates from periodogram and autocorrelation. This aims to
use RPM as a referee whose purpose is to highlight the most accurate peak from
the two signal processing methods (see Section 4.4) Stage 3, on the other hand,
uses the extra information provided in ternary projections to extract pruning
rules to further restrict the number of candidates (Section 4.5).

4.2 Feature Extraction

This section briefly explains how periodogram and autocorrelation methods
work.

Periodogram [43]. Consider a sequence x(n) and its discrete Fourier trans-
form X(f). The periodogram P gives an estimation of the spectral density
of the discrete signal x(n) and is obtained from the squared magnitude of the
Fourier coefficients X(f), as presented in [28]:

P(k) =
1

N
‖X(k)‖2, (4.1)

where N is the sequence length and P(k) is the power of frequency k.
Figure 4.2(a) and (b) show two periodograms obtained for two periodic tasks

with period 1000 and 5000 from a task set with four tasks scheduled by rate
monotonic scheduling policy. As can be seen in Figure 4.2(a), the highest peak
in this example (here, peak refers to a jump in the diagram) of the periodogram

16

0 1000 2000 3000
0.0

0.5

1.0
Projection

0 5000 10000 15000 20000
0.0

0.5

1.0
Projection

0 1000 2000 3000
0

100

Po
we

r

Periodogram

0 5000 10000 15000 20000
0

2

4

Po
we

r

Periodogram

0 1000 2000 3000
0

500

1000

Autocorrelation

0 5000 10000 15000 20000
0

100

200
Autocorrelation

(a) A periodic task with period 1000 (b) A periodic task with period 5000

Figure 4.2: Periodogram and circular autocorrelation methods applied on

task projections for a task with (a) period 1000, and (b) period 5000 from a

system containing 4 tasks, with a total utilization of 30% and scheduled by

the rate monotonic scheduling policy. The other two tasks have a period

of 2000 and 10000, respectively.

indicates the true period of the task, i.e., 1000. However, for the task with
period 5000, this observation does not hold; the true period of this task is not
the highest-peak but the 5th highest peak. The lower the priority of a task, the
higher is the amount of interference it will have in its schedule. These inter-
ferences make the projections less regular and hence result in a more irregular
periodogram that has many peaks.

Circular Autocorrelation [18]. It is a metric that describes how similar is
a sequence to its past values for different circular phase shifts. We use Vlachos
et al. [49] method to compute the circular autocorrelation:

ACF(k) =
1

N

N−1∑
n=0

x(k)x(n+ k), (4.2)

where N is the sequence length and k is the phase shift. In the case of period

17

inference problem, we would expect that the highest value of the autocorrelation
function would be at a lag k equal to the true period.

A practical way to compute the ACF is to translate the operations into the
frequency domain. Since (4.2) is a convolution, one can compute it with the
dot product between the Fourier coefficients of the sequence and their complex
conjugates [49]:

ACF = DFT −1X ·X∗, (4.3)

For our problem, the discrete Fourier transform is applied to the projection
in order to extract the Fourier coefficients. Furthermore, we perform the dot
product between the coefficients and their complex conjugates and apply the
inverse Fourier transform on the result to obtain the autocorrelation.

Figure 4.2 illustrates the usage of autocorrelation when the input is a projec-
ted trace. Firstly, we notice that the highest value that this technique exhibits
is for a lag (period) of 0. This behavior is normal, since the highest similarity
between a signal and itself is present when the two signals perfectly overlap
with each other, e.g., at time 0. Hence, the peak at 0 is excluded from the
examination. The other observation is that, similar to the periodogram, the
autocorrelation method is able to discover the true period only in the case from
Figure 4.2(a), while for the second period, its top peak indicates an erroneous
value. Moreover, we observe that the autocorrelation is sensitive to low utiliz-
ation values. In Figure 4.2(b), although the task has not been preempted, the
slight variation at the start of its execution causes the projection to not have
any overlap with itself when is shifted by the true period of 5000. As a res-
ult, the autocorrelation method could not detect the actual periodic behavior.
However, it could observe two smaller peaks slightly shorter and slightly larger
than 5000 at 4635 and 5365, respectively.

It is worth noting that, both periodogram and autocorrelation methods have
an O(p log p) time complexity, where p is the length of the projection[36].

Extracting fixed-size features. Our fixed-size candidate list is constructed
from the top k = 3 peaks of the outputs of the two methods, namely, we gather
k-highest peaks from periodogram and k-highest peaks from the autocorrelation
methods. This allows us to work on a much smaller dimension for the input-
data and have fixed input size to use with our regression-based solution. For the
cases when there are fewer than k peaks for a method, the number of features
is completed by appending the highest peak of that method until we reach the
desired k. The choice on the number of features, i.e., k = 3, was made after
evaluating the impact of k on various scenarios and finding out the suitable
value that results in a high accuracy without increasing the dimensions of the
feature space (Figure 5.1(b) in Chapter 5 compares different choices.).

4.3 Regression Methods

Regression analysis is a method originating from statistics, whose purpose is
to estimate the relationship between a dependent variable (also referred to as
”outcome”) and one or more independent variables (also called ”features”). In
machine learning, regression is employed when the aim is to predict a continuous
output, which takes order into consideration. A regression model can be formally
described by

18

Algorithm Nickname Category
Cubist Regression [38, 39, 40] cubist Rule-based

Generalized Boosting Regression [15] gbm Boosting
Averaged Neural Network [41] avNNet Neural Networks

Extremely Randomized Regression Trees [16] extraTrees Random Forests
Bayesian Additive Regression Tree [9] bartMachine Bayesian Models

Support Vector Regression [10] svr Support Vector Machines

Table 4.1: Overview of best performing families of regression algorithms

and for each family the best model [12].

Yi = f(Xi, β) + ei, (4.4)

where Yi is the outcome variable, belonging to the vector Y , Xi is a vector com-
prised of the independent variables, β represent the unknown parameters and
ei is an additive error term (residual) which is associated with the prediction.

Since we try to estimate the period from a projection, in our regression scen-
ario, the dependent variable Yi is the task’s period Ti. The independent variables
Xi contain the features we extracted at the previous step, while the function f
comes from the choice of a regression algorithm, whose parameters β we need
to estimate through training. Thus, our goal is to choose the form of function
f and to compute the estimates of the parameters β̂ such that the function has
the best fit on the data. In order to assess how well the model fits the data, the
predicted outcome, i.e.,

Ŷi = f(Xi, β̂), (4.5)

is compared against the true dependent variable. The comparison is present
in the shape of a loss function L(Y, f(X, β̂)), where Y is a vector containing
the outcome variables and X includes all vectors of independent variables. For
instance, the most commonly used loss function is the mean square error (MSE):

MSE =

∑N
j=1(Yj − Ŷj)2

N
, (4.6)

where N is the total number of observations.

The choice of regression methods. Table 4.1 lists the overall best per-
forming families of regression algorithms and for each family the best model, as
suggested by Delgado et al. [12] in their extensive recent survey on the perform-
ance and effectiveness of regression methods. These methods present distinctive
characteristics in their implementation, namely, they do not theoretically dom-
inate each other. Hence, in order to answer the question “which regression
method performs best for the period-inference problem”, we implemented and
investigated all of these methods to gather insights about their performance
on our particular problem. We, however, anticipate to see that the tree-based
solutions (cubist, gbm, extraTrees, bartMachine) have a better performance than
svr and avNNet because we expect that the transition from a set of candidate
periods (the features) to the true period to be better approximated by a set
of rules and/or comparisons rather than a linear or non-linear combination of
these features as in svr and avNNet, respectively.

19

yesno

no yes

yesnono yes

no yesno yes

100000

5000

no yes

500

no yes

5000 2000 1000

no yes

20000 10000

10000

200

no

100

yes

Figure 4.3: Regression tree fitted on a data set of traces with 4 tasks and

total utilization of 30% (see details in Section 5.1 for automotive task sets)

Regression trees. A majority of the RBML methods in Table 4.1 are in
fact variations of regression trees. A regression tree [5] recursively partitions the
feature space of the data into smaller regions until the final sub-divisions are
similar enough to be summarized by a simple model in a leaf. This model can
be simply the average of the outcomes from that sub-division.

Figure 4.3 shows the rules generated by a regression tree that was trained on
the automotive task sets with four periodic tasks and 30% utilization (see details
of the task set generation in Section 5.1). The features used for training are the
three highest peaks from the periodogram (denoted by P1, P2, and P3) and
the autocorrelation (denoted by A1, A2, and A3) methods. The non-terminal
nodes represents the rules that will be used to guide the inference process by
narrowing down the period estimate of a new task.

To make it more tangible, we explain how to use the regression tree in Fig-
ure 4.3 to estimate the period of the two tasks in Figure 4.2(a) and (b). In
the first step, we derive the three highest peaks of the periodogram and auto-
correlation methods to build the feature vectors X1 and X2 for the first and
second tasks, respectively. Here, X1 = 〈P1=1000, P2=500, P3=333, A1=1000,
A2=2000, A3=3000〉 andX2 = 〈P1=769, P2=666, P3=5000, A1=4635, A2=10000,
A3=5365〉. Next, we traverse the tree by evaluating the rules starting from the
root node. For example, for the first task, P1 = 1000 and hence the condition
in the root node (i.e., P1 ≤ 60000) is satisfied. Thus, we go to the right branch
in the tree and repeat the process from there until we reach to a leaf. The value
in the leaf is our period estimate. In this example, the trained model allows us
to accurately estimate both tasks’ period.

An interesting observation in Figure 4.3 is the exclusion of A2 and A3 in the

20

tree’s rules which basically means that these two features had no impact on the
final period estimate. With a further investigation, we observed that typically
in task sets with low utilization, the trained regression trees tend to be smaller
and rules contain fewer features because there are less preemptions (noise) in
the input. However, with an increase in utilization, the tree is forced to consider
more features and even become deeper to keep the accuracy high.

Training a regression tree can be done in O(m · N · logN), where m is the
number of features (in our case 6) and N is the number of samples (projections)
used for training. Later in Section 5.8, we provide an evaluation on the runtime
and memory consumption of various RBML methods.

Cubist Regression [25, 38, 39, 40]. It is a regression tree whose leaves
embed linear regression models instead of simple ‘estimates of the output’. The
tree can be further reduced by combining or pruning the rules via collapsing the
nodes of the trees into rules.

By training a cubist regression model on the same data-set as in Figure 4.3,
we obtain the following rules:

1. If (A1 ≤ 2000) then return P1,

2. If (P1 ≤ 1250 ∧ A1 > 2000) then return 5000,

3. If (P1 > 1250) then return P1.

In this example, we observe that while the rules and outputs rely on the
top candidates of the periodogram, they are not limited to them. For example,
rule 2 outputs the period 5000 which is not among the three top features of peri-
odogram. The cubist regression uses these rules to compensates for projections
where the periodogram is wrong.

Cubist regressions consume notably less memory than the regression trees
(see Section 5.8 Figure 5.8(b)) and hence they might be a better choice when
the solution must have low memory consumption and runtime. However, we
also noticed a growth in the number of rules when they are trained on task sets
with high utilization. This is due to the fact that the underlying regression tree
from which the cubist regression rules are obtained, gets larger and deeper when
the number of preemptions increases.

Generalized Boosting Regression [17, 15]. This algorithm is a regres-
sion tree-based solution which uses a committee of regression trees of fixed size.
The initial prediction of the algorithm starts from a leaf, which contains the
average value of the outcome variables (i.e., the periods). The next step is to
compute the residuals of this initial prediction against the true output (true
period). Next, a regression tree is fitted on the data, but having the previously
computed residuals as the outcome variables. In order to preserve the general-
ization capabilities of the model, the results from the tree are multiplied by a
constant value. Afterwards, the output from the tree is added to the initial leaf
to obtain a new set of predictions, which are again used to compute residuals.
The process is repeated until the maximum number of trees is reached.

The following three algorithms are also based on regression trees, their main
differences residing in their construction, but not in their way of operation is
similar to regression trees.

Extremely Randomized Regression Trees [45, 16]. The algorithm relies
on a committee of regression trees for its predictions. However, when building

21

the trees this method, instead of searching for a rule that minimizes the error,
it randomly picks a rule for each feature and then chooses the one that provides
the lowest the error. In this way, a randomized regression tree is much faster to
compute than a regular regression tree.

Bayesian Additive Regression Tree [22, 9]. Similar to gbm, this method
also relies on a group of trees, where each tree is fit on the residuals of the
predictions from a previous tree. The major difference is that bartMachine is
based on a probability model containing a set of priors for the tree structure
and a likelihood for the leaves’ values. This probability model is incorporated
into a penalization factor which enforces the tree depth and the leaf values to be
small. In this way, it ensures that the contribution of each tree is small enough
so that the model does not overfit the data.

Averaged Neural Network [24, 41]. The technique involves a committee
of five multilayer perceptrons having the same size, but trained using different
random seeds. The seeds are used when first creating the untrained networks,
in order to initialize the weights, thus, ensuring that each of the five networks
will have a different starting point. After training, the resulting weights are
used to build a function whose purpose is to map the input vector of features
(i.e., the periods from periodogram and autocorrelation) to an output value
(the estimated period). The network is set to have linear output neurons, which
makes it suitable for regression. Finally, the predictions from the five networks
are averaged to provide the final estimate.

Support Vector Regression [32, 10]. The goal of svr is to find a line or
a hyperplane that is able to fit the most data points within a certain margin
from it. Moreover, it can accommodate non-linear trends by fitting the line in
a transformed feature space using a kernel function.

Sections 5.5, 5.6, 5.7, 5.8 and Chapter 6 provide further insights about the
performance of these RBML methods.

4.4 Candidate Selection

As it can be seen in Figure 4.2, the true period of the sequence is indicated by
one of the peaks of the periodogram and autocorrelation, although not always by
the highest. Further investigations showed that, on the one hand, in a majority
of projections, the true period is indeed among the peaks of periodogram and
autocorrelation. However, it is hard to know which of those peaks just by looking
at their power or rank. On the other hand, the RBML methods typically predict
only an approximation of the real period which is not always equal to the true
one (hence having a non-zero error in most cases). We then introduced a further
pruning phase to the output of our RPM method and created a method called
RPM with period adjustment (RPMPA).

RPMPA treats the RPM method as a referee which chooses the right period
from a set of candidates. Namely, it first calculates the period estimate using
the RPM method and then finds the closest period to this estimate from a fixed
set of values gathered from the 20 highest peaks of each of the periodogram and
autocorrelation (hence, 40 candidates in total). The number of candidates (i.e.,
40) is a hand-tuned value and comes from experimenting on many task sets (see
Section 5.4).

22

4.5 Improving Accuracy using Ternary Projec-
tions

Choosing from a pool of candidates can help in considerably increasing the
performance. However, in the cases when the regression algorithm significantly
deviates from the true period, the chosen candidate may be even further from
the correct value. Thus, by ensuring that only the most relevant candidates are
kept in the set, we can expect an even greater drop in error. The goal of our
space-pruning method (SPM) is to derive a lower and an upper bound on the
possible set of period values. These bounds allow us to remove the impossible
period values from the candidate set generated from the highest 20 peaks of
each of the periodogram and autocorrelation methods.

In order to prune impossible candidates and find an upper bound on the
period, we use the extra information available in ternary projections, i.e., the
idle times. Given that the underlying scheduling policy is work-conserving,
if a task has accessed the resource anywhere between two idle times, it must
have released a job somewhere between those idle times. For example, from
Figure 2.2(d) we can infer that at least one job of τ3 must have been released in
the interval [10, 19] since there is at least a “1” in the task’s projection in this
interval.

Our key idea to derive an upper bound on the task’s period is to traverse the
ternary projection to find pairs of consecutive intervals separated by idle times
in which the task has occupied the resource. We call them effective intervals.
From each pair of effective intervals, we then obtain one upper bound on the
task’s period. After traversing the whole projection, the smallest upper bound
found is the value we use to prune the candidates obtained from the peaks of
periodogram and autocorrelation.

Extracting effective intervals. Let x be a time instant at which px = 1
and ∃z < x in the ternary projection such that pz = idle, then the beginning
of the effective interval that contains the time instant k is the latest idle time
prior to the execution of τi, namely,

Isj (x) = max{k | z < k < x ∧ pk = idle ∧
∀py, k < y < x, py 6= idle}. (4.7)

For example, in Figure 2.2(c), the beginning of the effective interval that con-
tains time instants 11, 13, or 16 is 9 while for time instant 24 is 19. By calcu-
lating (4.7) for any px = 1, one can obtain the starting points of all effective
intervals in a projection. For the example in Figure 2.2(c), the starting point of
the effective intervals are at times 9 and 19.

Calculating an upper bound for Ti. Let Isj and Isj+1 be the starting
points of two consecutive effective intervals for task τi. The latest time instant
at which a job of τi has occupied the resource during interval Ij is obtained as
follows

fin(Isj , I
s
j+1) = max{k | k ∈ [Isj , I

s
j+1) ∧ pk = 1 ∧

∀py, k < y < Isj+1, py 6= 1}, (4.8)

23

where px is the value of the ternary projection at time x. For example, in
Figure 2.2(c), fin(9, 19) = 15.

Theorem 1 Given the start time of two consecutive effective intervals Isj and
Isj+1 for task τi, Ti must follow

Ti ≤ fin(Isj , I
s
j+1)− Isj−1. (4.9)

Proof. By definition, there is at least one time instant in Isj−1 in which task τi
has occupied the resource. Hence, the earliest release time of τi in Isj−1 cannot
be smaller than Isj−1. Moreover, since the last moment at which the task has
occupied the resource in the interval Ij is at fin(Isj , I

s
j+1), the latest possible

release time of a job of the task cannot be later than fin(Isj , I
s
j+1). The period

of the task is bounded by the time interval between the latest possible release
time of the current job and the earliest possible release time of the previous
job (i.e., Isj−1). Hence, (4.9) provides an upper bound on the inter-arrival time
between two jobs of τi. �

Calculating a lower bound for Ti. Provided that we know that the
projection does not contain any deadline misses, we obtain a lower bound on
the period of task τi. To do so, we extract the largest interval L in which the task
τi does not occupy the resource. If there is no deadline miss in the projection,
then the length of the largest interval in which no job of task τi has occupied
the resource is upper bounded by |L| ≤ 2 · Ti. Namely, the period of the task
cannot be smaller than half of that interval. The reason is that, in the worst
case, the largest interval that can be observed is between a job which executed
right after its release and the next job that executed right before its deadline,
resulting in a value slightly lower than two times the period. For example, in
Figure 4.2(b), the interval [5200, 11300] is the largest interval in which no job of
the task has occupied the resource. Hence, period of τi must be at least 3050.
This allows us to remove a large number of peaks of the periodogram from the
candidate set. As this example shows, periodogram can contain many peaks at
small periods.

Since both the lower bound and the upper bound can be calculated at the
same time and by passing through the projection only once, they have a a linear
time complexity w.r.t. the length of the projection.

Algorithm 1 presents the pseudo-code for deriving the bounds required by
SPM. This algorithm receives the ternary projection of a task and traverses
this projection only once to calculate both the lower and upper bound on the
period estimates. The purpose of the first part of the algorithm (lines 8-15)
is to find the length of the current idle interval between two appearances of
the task under analysis. When the next execution of the task is seen (line 19)
the interval length ∆ is compared against the lower bound to decide whether
the value of the lower bound should be updated. The second part (lines 22-
31) focuses on determining the starting point of the current effective interval,
as well as the starting point of the previous effective interval. The latest time
instant when a job was executing, stored in variable fin, is constantly updated
within lines 16-17. Whenever a task’s execution is observed between the current
and previous idle times, the upper bound on the period estimate is updated in
line 27 (according to (4.9)). Note that we are only interested in the smallest
observed period to use it as an upper bound, hence line 27 uses a min operator.

24

Algorithm 1: Bound Deriving Algorithm

Input : Ternary projection PT

Output: Period bounds (LB ,UB)

1 prevIdle ← 0
2 fin ← 0
3 recentIdle ← 0
4 ∆← 0
5 LB ← 0
6 UB ←∞
7 for k = 1 to |PT | do
8 if pk = idle then
9 if pk−1 6= idle then

10 ∆← 1
11 end
12 else
13 ∆← ∆ + 1
14 end

15 end
16 if pk = 1 then
17 fin ← k
18 if pk−1 6= 1 then
19 LB ← max{∆/2,LB}
20 end

21 end
22 if pk 6= idle ∧ pk−1 = idle then
23 if is the first idle time to be found then
24 recentIdle ← k
25 end
26 else if task ran between current idle and previous idle then
27 UB ← min{fin − prevIdle,UB}
28 prevIdle ← recentIdle
29 recentIdle ← k

30 end

31 end

32 end

Since the algorithm requires to traverse the ternary projection only once, it
has an O(|PT |) complexity.

25

26

Chapter 5

Experiments

We performed a series of experiments to answer our research questions: In or-
der to answer RQ1, we want to determine whether our framework improves
the accuracy w.r.t. the state of the art. As part of solving RQ2, we check
how do various families of RBML methods compare against each other, and
we also explore what are the tradeoffs between the accuracy, runtime, and
the memory requirements for these methods. RQ3 is evaluated by employ-
ing the spatial-pruning method (SPM) on cases when period adjustment step
(RPMPA) failed to improve the accuracy. Our last research question (RQ4) is
answered by examining the robustness of our solution against uncertainties and
non-deterministic events.

We divide our task systems into three categories: periodic task systems where
every task is periodic but tasks might have release jitter or execution time
variation (Section 5.5), non-periodic task systems, where the task under analysis
is periodic but the rest of the system might not be periodic (Section 5.5), and
case studies from actual systems (Section 5.7).

5.1 Experimental Setup

For the experiments in Section 5.5 and 5.6, we consider two types of task sets:
automotive benchmark applications and synthetic task sets. For the automot-
ive benchmark applications, we adopt the model proposed by Kramer et al.
[23], where task periods are chosen randomly from {1, 2, 5, 10, 20, 50, 100,
200, 1000}ms with a non-uniform distribution provided in [23]. For simplicity,
we refer to the traces of these task sets as automotive traces. Our synthetic
task sets are comprised of non-harmonic periods. In order to ensure that the
chosen periods cover evenly all magnitudes, we use a log-uniform distribution
as suggested and described by Emberson et al. [13]. The periods are thereby
generated for the range [100, 10000] with a base period of 100ms. For simplicity,
we refer to the traces of these task sets as log-uniform traces. We use Strafford’s
Randfixedsum algorithm [13] to generate random utilization values for the tasks
and then use the utilization and the period to calculate the WCET of each task.

The traces for both cases are generated using Simso [7], an open source and
flexible simulation tool to generate schedules under various scheduling policies
and setups.

27

The data-set used for building the regression models is composed of the pro-
jections from 2000 traces. The length of a trace is set to be either 6 hyperperi-
ods (traces without random variations) and 10 hyperperiods (execution time
variation and release jitter). The errors are calculated by using 5-fold cross-
validation. Therefore, the data-set is randomly split into five subsets of equal
size. Out of the five subsets, four are used for training and one is used for
testing. The process is repeated until all five subsets have been used once for
testing.

We compare the results against three baselines:

• PeTaMi, a mining algorithm for periodic tasks [21];

• periodogram [43];

• autocorrelation [18].

PeTaMi represents the state of the art on period inference in the real-time
systems community, while the other two represent widely used solutions from the
signal-processing literature. These two are chosen to evaluate the improvements
made by our RPM and RPMPA over solutions that are (only) based on signal-
processing techniques.

We compare the RBML methods mentioned in Table 4.1, denoted by cubist
[40], gbm [15], avNNet [41], extraTrees [16], bartMachine [9], and svr [10]. Each
of these methods is defined by a set of hyperparameters that require tuning for
improving the model’s fit on the data. Hence, we perform an additional tuning
phase using random search on the parameter’s space. This step is integrated in
the cross-validation process such that every training set comprised of the four
subsets, is further split into a training and validation set. The parameters are
varied while being trained on the training set and the model’s performance is
estimated on the validation set. The purpose of doing one more split is to avoid
bias by not involving the test set into the parameter choice.

The metric we use to evaluate the accuracy is the average error, which is the
mean of the individual errors a method makes for every period in the test set
unless it is explicitly stated that the error has been obtained for only one task
in the task set. Moreover, to be able to focus on the accuracy of the RBML
methods, we only show the results of RPM method (e.g., in Figures 5.1, 5.2, and
5.8) unless it is explicitly mentioned (e.g., in Figures 5.4(a, b, c) and Table 5.3).

We performed our evaluation on Cartesius, a Dutch supercomputer based in
the cloud. We used thin nodes with 2 × 16-core 2.6 GHz Intel Xeon E5-2697A
v4 (Broadwell) and 64 GB of memory.

5.2 Using the Baselines

Although for the two signal processing techniques (i.e., periodogram and auto-
correlation) there are available resources that implement them, PeTaMi had no
open-source implementation available. Therefore, we reproduced the part of
the work of Iegorov et al. [21] which included the period mining algorithm.
However, in order to be compliant to the input required by PeTaMi, we also
designed a method to extract inter-arrival times from a binary projection.

28

1 2 3 4 5 6 7 8
Number of features

0

20

40

Er
ro

r [
%

]
(a) feature choice

extraTrees
cubist
gbm
bartMachine

0 5 10 15
Number of candidates

0

2

4

6

Er
ro

r [
%

]

(b) candidates size choice
automotive
loguniform
automotive with var. exec.
loguniform with var. exec.

Figure 5.1: The impact of the number of features (for RPM) and the number
of candidates (for RPMPA) on the solution’s accuracy. Note that the shade
around the curves represents the confidence intervals for 0.95 confidence
level.

5.3 Additions to Simso

Although Simso encompasses a plethora of essential features, it did not include
support for certain setups that we wanted to observe. As a consequence, we
extended the framework to cover cases for:

• uniformly distributed variable execution time;

• release time jitter;

• sporadic tasks;

• random missed jobs;

• non-preemptive execution.

5.4 Parameter Tuning

Before evaluating our solutions, we need to determine their parameters, i.e.,
the number of features for RPM and the number of candidates for RPMPA,
since they impact the solution’s accuracy. The evaluation from Figure 5.1(a)
was performed on an aggregated data set, containing automotive traces with
four levels of utilization (30%, 50%, 70% and 90%). Similarly, for the second
experiment from Figure 5.1 we used datasets incorporating the four utilization
values and we also kept 20% execution time variation for the tasks in both data
sets. We only picked the tree-based solutions since only these algorithms showed
to be able to learn from the data. Thus, they were the only algorithms that
would exhibit a trend w.r.t. the number of features. For svr and avNNet we
kept the same number of features as we chose for the tree-based algorithms. The
experiments were conducted by generating 20 random splits of the data set into
training and testing sets (for every parameter value). The model would then be
fit on the training data and the average error measured on the test data.

Figure 5.1(a) shows how the error for the tree-based algorithms decreases
when we include more features. However, we notice that after adding more
than three features from periodogram and autocorrelation, the gain in accuracy

29

becomes insignificant. Thus, we kept three features from each of the periodo-
gram and autocorrelation (i.e., six in total). Also, it is interesting to note that
cubist is able to show good performance even for as few as two features (one from
each signal processing technique). This behavior is due to the fact that cubist
is a rule-based solution, thus, when it is trained only on the highest peak from
the periodogram and from the autocorrelation, it is able to mimic the signal
processing technique which minimizes the error, namely the periodogram.

We further analyzed the contribution of increasing the pool of candidates for
RPMPA method on the accuracy. As it can be observed from Figure 5.1(b), a
relatively small number of candidates is required in order to achieve a low error
until it reaches saturation.

5.5 Assessing Accuracy in Periodic Systems

5.5.1 Impact of system utilization

Figures 5.2(a) and 5.2(b) show the average error as a function of the total util-
ization for task sets with 8 tasks. We notice that every regression model shows
increased error with the increase in the utilization since the total utilization of
the system has a direct impact on the number of preemptions. Furthermore,
we observe a dramatic upward shift in PeTaMi’s accuracy when it is applied
on log-uniform traces, from 4.35% error on automotive traces to 640% error on
log-uniform traces. This increased error is caused by the fact that the peri-
ods of the tasks generated from a log-uniform distribution are not harmonic.
However, the regression algorithms are not significantly affected when handling
non-harmonic periods. To support the previous statement, we show in Figure
5.3(a) the error relative to each period from the automotive benchmark. We
notice that PeTaMi presents an error of 27.3% and of 96.4% for periods of 5 and
50 ms, respectively, while our solutions keep the error below 1% for 5ms and
below 5% for 50ms. The aforementioned period values are the only periods that
are not divided by all smaller periods, thus, they are the only non-harmonic
periods in the automotive traces.

5.5.2 Impact of the number of tasks

Figures 5.2(c) and 5.2(d) illustrate how the error changes when increasing the
number of tasks. We observe here a reduction of the error when having more
tasks in the system for log-uniform traces in the case of some of the tree-based
solutions (from 1.84% for 4 tasks to 1.23% for 16 tasks for bartMachine). The
pattern is due to the decrease in the individual task utilization. Thus, although
the system is as congested, the individual projection of a task contains larger
idle intervals and shorter execution times that are likely not preempted much.
This enables the periodogram to extract more meaningful features. However,
in automotive task sets, the algorithms are rather unaffected by the number of
tasks in the trace since they already have a good performance (< 1% error) even
for lower number of tasks.

30

0.3 0.5 0.7 0.9
Utilization

0
1

10

100

1000

Er
ro

r [
%

]

 loguniform, n = 12
extraTrees cubist gbm bartMachine avNNet svr Periodogram Autocorrelation PeTaMi

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(a) automotive, n = 8

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(b) loguniform, n = 8

4 8 12 16
Number of tasks

0

1

10

100

1000

Er
ror

 [%
]

(c) automotive, u = 0.5

4 8 12 16
Number of tasks

0

1

10

100

1000

Er
ror

 [%
]

(d) loguniform, u = 0.5

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(e) automotive, n = 10, exec. var. 0.2

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(f) loguniform, n = 10, exec. var. 0.2

0.0 0.2 0.4 0.6 0.8
0

1

10

100

1000

Er
ror

 [%
]

(g) automotive, n = 10, u = 0.5

0.0 0.2 0.4 0.6 0.8
0

1

10

100

1000

Er
ror

 [%
]

(h) loguniform, n = 10, u = 0.5

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000
Er

ror
 [%

]
(i) automotive, n = 10, release jitter 0.1

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(j) loguniform, n = 10, release jitter 0.1

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(k) other tasks have missed jobs

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

Er
ror

 [%
]

(l) the task under observation has missed jobs

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(m) high-prio task (periodic + aperiodic)

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(n) med-prio task (periodic + aperiodic)

0.3 0.5 0.7 0.9
Utilization

0

1

10

100

1000

Er
ror

 [%
]

(o) low-prio task (periodic + aperiodic)

Figure 5.2: Experimental results

31

1 2 5 10 20 50 100 200 1000
Period [ms]

0.01

0.1

1

10

100

Er
ro

r [
%

]
(a) automotive, n = 12, u = 0.7

0 20 40 60 80 100
Error [%]

0.0

0.1

0.2

0.3

De
ns

ity

(b) loguniform, n = 12, u = 0.7
RPM
RPMPA
Periodogram
Autocorrelation
PeTaMi

Figure 5.3: Error distribution for RPM based on cubist.

5.5.3 Impact of execution time variations

From Figures 5.2(e) and 5.2(f), we observe that the regression methods (0.69%
average error over all task sets for extraTrees) are more robust to runtime execu-
tion time variations than the baselines (3.92% periodogram, 625% autocorrela-
tion, 381% PeTaMi), showing a similar trend for both types of traces to the case
with constant execution time. Also, when we increase the variation in execution
in Figures 5.2(g) and 5.2(h), we notice that most of the RBML methods show
robustness w.r.t. to this variation for automotive traces (0.11% average error
over all task sets for extraTrees, 0.65% periodogram, 137% autocorrelation, and
142% PeTaMi), while for log-uniform traces the error decreases with the increase
in variation (from 0.98% for 20% variation to 0.3% for 80% variation). This be-
havior is due to the reduction in the average execution time for individual tasks.
Since the execution time for a job is drawn from a uniform distribution in the
range [(1 − α) ×WCET ,WCET], the wider the interval becomes the lower is
the average execution time of each task. Having lower execution time results
in having lower utilization for the system and we previously observed that the
methods perform better for lower utilization values.

5.5.4 Impact of release jitter

Figures 5.2(i) and 5.2(j) show that release time jitter has a much more negative
impact on the error than the execution time variation. One possible explan-
ation is that the periodogram, which provides most of the information to the
algorithms, is negatively impacted by jitter, thus, it produces less useful fea-
tures for training. However, we observe that some regression algorithms such
as extraTrees (1.09% average error over all task sets) and cubist (1.49% average
error over all task sets) are still able to keep a low error even for this challenging
scenario.

5.5.5 Impact of candidate adjustment method (RPMPA)

Figures 5.4(a) and 5.4(b) show that RPMPA has about 60% less error than RPM
for most RBML methods when used for cases with execution time variation
and, implicitly, on ideal traces too. Also, from Figure 5.3(b) we notice how this
method shifts the error distribution of log-uniform traces even more towards

32

Error [%]
Setup Model Data set RPM RPMPA

n = 8
U = 0.7

cubist
automotive 0.5013 0.3297
log-uniform 1.3927 0.6383

gbm
automotive 1.0734 0.5879
log-uniform 2.4894 0.8243

extraTrees
automotive 0.1639 0.1339
log-uniform 0.2853 0.2137

bartMachine
automotive 1.5045 1.092
log-uniform 2.2353 1.061

n = 10
U = 0.7
α = 0.2

cubist
automotive 1.0279 0.5765
log-uniform 1.3534 0.7911

gbm
automotive 1.9674 0.8059
log-uniform 2.1963 1.0936

extraTrees
automotive 0.5882 0.3538
log-uniform 0.7122 0.7508

bartMachine
automotive 2.2421 1.2111
log-uniform 2.4703 1.3406

robustness
U = 0.7
med. prio

cubist automotive 0.3871 0.2542
gbm automotive 2.0731 0.6527

extraTrees automotive 0.3327 0.0951
bartMachine automotive 1.8421 0.5076

job miss
U = 0.7

current task

cubist automotive 7.7464 5.4036
gbm automotive 16.0373 11.0846

extraTrees automotive 5.8743 4.4529
bartMachine automotive 18.6747 13.9603

Table 5.1: The effect of period adjustment.

0%, most of the errors being below 5%. We also observe that unlike RPM, our
RPMPA does not result in error values that are as large as 20% to 40%. However,
when the signal processing techniques (periodogram and autocorrelation) are
disturbed, e.g., by release jitter, RPMPA results in worse error than RPM.

Table 5.1 shows the reduction in error generated by RPMPA for setups includ-
ing ideal traces, execution time variation, robustness to higher priority aperiodic
jobs, and to job misses. Also, we chose the parameters of the setups such that
they will not represent extreme cases.

5.5.6 Impact of space-pruning method (SPM)

Figure 5.4(c) shows that the inclusion of an upper and a lower bound for SPM
contributes to lowering the error even further, proving that the regression is
still prone to mistakes even when choosing candidates. Also, it needs to be
mentioned that under specific setups there can be cases where no candidates
are left after the pruning phase. This situation occurs most frequently when the
release time jitter disturbs so much the signal processing techniques that they
only generate infeasible candidates. As a consequence, when analyzing the effect
of release time jitter, we defined two criteria to provide a period estimate when
no candidates are available. Therefore, we either select the output of regression

33

cubist gbm extraTrees bartMachine
Regression algorithms

0.0

0.5

1.0

1.5

2.0

Er
ro

r [
%

]

(a) automotive, n = 10, u = 0.7, exec. var. 0.2
RPM
RPMPA

cubist gbm extraTrees bartMachine
Regression algorithms

0

5

10

15

Er
ro

r [
%

]

(b) automotive, n = 10, u = 0.7, release jitter 0.1
RPM
RPMPA

cubist gbm extraTrees bartMachine
Regression algorithms

0.1

1

Er
ro

r [
%

]

(c) automotive, n = 10, u = 0.7
RPM
RPMPA
SPM

Figure 5.4: (a)-(b) the impact of period adjustment method, and (c) the
impact of space-pruning.

cubist gbm extraTrees bartMachine
Regression algorithms

0

2

4

6

8

10

Er
ro

r [
%

]

 automotive, n = 10, u = 0.7, jitter 0.1
RPM
RPMPA
SPM-R
SPM-UB

Figure 5.5: Space-pruning for traces with jitter.

(SPM-R), or we select the upper bound (SPM-UB).

The results for SPM on traces with jitter are shown in Figure 5.5. We notice
that in all cases, both versions of SPM succeed in reducing the error of RPMPA
up to 45%. Also, SPM-UB is able to achieve an average error below RPM
for cubist, gbm, and bartMachine, while for extraTrees, although it has a larger
error, it presents a much narrower confidence interval. Thus, we can expect
that the estimate of SPM-UB based on extraTrees to be more reliable than the
corresponding RPM.

Considering the results, we can conclude that the upper bound becomes a
better estimate than the regression for the cases when there are no available
candidates. This behavior is explainable since the cases without candidates
appear in situations when the signal processing techniques are affected the most
by jitter. Thus, the features that they provide to the regression algorithms are
affected too, negatively influencing the prediction. However, the upper bound
alone cannot replace the RPM methods since it can be too pessimistic as it

34

0.3 0.5 0.7 0.9
Number of features

2

4

6

8

10

Er
ro

r [
%

]
automotive, n = 10, jitter 0.1

RPM
UB

Figure 5.6: cubist against upper bound.

can be observed from Figure 5.6. The figure illustrates the evolution of the
error with the increase in utilization. We notice that only considering the upper
bound (UB) as an estimate results in a more drastic increase in the error than
the RPM with cubist.

5.6 Assessing Robustness

5.6.1 Robustness w.r.t. the presence of higher-priority
aperiodic tasks

Another step in our evaluation framework was to test the robustness of our meth-
ods for a setup that mimics possible real-world challenges. Thus, we created a
configuration with 12 automotive tasks (6 periodic and 6 sporadic) scheduled
by Rate Monotonic and under the interference of high-priority aperiodic tasks,
arriving according to a Poisson process with a rate λ=0.0005 events/ns or 5
arrivals at every 10us. Furthermore, we focused on inferring the period of one
periodic task in scenarios of having high, medium and low, priority, respectively.
For each of the three priority scenarios, the task’s priority has been chosen ran-
domly in the ranges [1, 3] for high, [4, 7] for medium, and [8, 12] for low-priority
tasks.

Figures 5.2(k), 5.2(l), 5.2(m) show the error as a function of utilization for the
tree-based algorithms, periodogram and PeTaMi. We notice that the periodo-
gram is affected by the change of priority, increasing its error with every lower
level of priority. Although, this behavior signifies the generation of features with
more noise, the RPM algorithms only suffer slight increases in their errors for
larger utilization values, while gbm and bartMachine even show a decrease in
error for lower utilization values when the priority of the task decreases. This
aspect is related to the fact that these two algorithms may not be able to gen-
eralize well when the periodogram has small error. Having a small error for

35

Algorithm Utilization RM [%] EDF [%]

cubist

0.3 0.1047 0.1046
0.5 0.1122 0.1057
0.7 0.1552 0.1554
0.9 0.2165 0.2024

gbm

0.3 0.7145 0.7151
0.5 0.8730 0.8731
0.7 0.9558 0.9493
0.9 1.0915 1.0951

extraTrees

0.3 0.3024 0.3026
0.5 0.3951 0.3953
0.7 0.4891 0.4821
0.9 0.8702 0.9175

bartMachine

0.3 0.5947 0.5929
0.5 0.6332 0.6316
0.7 0.9501 0.9509
0.9 1.3092 1.3155

Table 5.2: Scheduling policy robustness for log-uniform traces with 10 tasks
and 50% execution time variation.

periodogram means having less significant (shorter) peaks, which in turn do not
provide enough information for these algorithms to excel.

When it comes to the period adjustment step, Table 5.1 indicates substantial
improvements, generating errors up to 3.5 times lower than RPM for a setup
when the task we observed has a medium priority level.

5.6.2 Robustness w.r.t. dropping jobs

Next, we explored the impact of having missed jobs in the input projections
on the accuracy of our solutions. The setup included 10 automotive tasks. For
the first scenario, we assumed that the tasks under analysis have dropped jobs
(with a 15% probability of dropping a job), while for the second one, all the
other tasks in the system were dropping jobs, except for the task we observed.

Figures 5.2(n) and 5.2(o) show a larger error exhibited by all algorithms
compared to the other experiments when tasks drop jobs (and hence, projections
are not perfect). Moreover, we observe that the periodogram is clearly affected
when the task under analysis drops jobs. However, while the RBML methods
(RPM) show little variations from one case to the other, they are still able to
retain meaningful information from their features even when the task under
analysis has a low utilization.

The effect of missing jobs on the periodogram is also shown in Table 5.1 by the
performance of RPMPA. There, we observe that although the period adjustment
stage is still able to reduce the error, the overall error is still considerably higher
than for the previously studied cases.

5.6.3 Robustness w.r.t. the scheduling policy

One other aspect we took into account was the robustness of our method when
there is a change in the scheduling policy. Hence, we developed a scenario in
which we trained the algorithms on traces of task sets coming from both rate

36

0 0.25 0.5
0

50

100

150

200

250

300

Er
ro

r [
%

]

(a) automotive, n = 10, u = 1.0
extraTrees
cubist
gbm
bartMachine
Periodogram
Autocorrelation

0 0.1 0.2 0.25 0.3 0.4 0.5
0

50

100

150

200

250

300

Er
ro

r [
%

]

(b) automotive, n = 10, u = 1.2
extraTrees
cubist
gbm
bartMachine
Periodogram
Autocorrelation

0 0.25 0.5
0

50

100

150

200

250

300

Er
ro

r [
%

]

(c) automotive, n = 10, u = 1.4
extraTrees
cubist
gbm
bartMachine
Periodogram
Autocorrelation

Figure 5.7: The impact of different levels tardiness.

monotonic (RM) and earlier-deadline first (EDF) scheduling policies. After-
wards, we tested the regression models on separate test sets, each containing
traces only from RM and EDF, respectively. Also, since the periods coming
from a log-uniform distribution are not harmonic, we chose log-uniform traces
for this experiment. Since for harmonic periods (as in automotive traces), RM
generates an almost identical schedule to EDF, it was not useful to consider
those task sets in this experiment.

Table 5.2 shows that all considered regression algorithms have a very similar
performance, regardless of the utilization. This means that we can safely employ
our solutions for systems that are using either of the two studied scheduling
policies.

5.6.4 Robustness w.r.t. tardiness

For this case, we experimented with task sets whose total utilization exceeded
100%. A consequence of overloading this bound is that lower-priority tasks
will experience starvation (i.e., these tasks will not get any time slice on the
processor). Since the projections of starved tasks do not include any information
about their periodicity, we excluded such tasks from both the training and
testing phase.

Figure 5.7 illustrates the effect of tardiness on the performance of the four
tree-based regression algorithms and on the two signal processing techniques,
for different levels of execution time variation. In Figure 5.7(a) we observe
a reduction of the error with respect to the variation factor α when the total
utilization of the system is 100%. This trend is due to the decrease in the average
utilization with the increase of α. For instance, for α = 0.5, the execution
time of the tasks will be uniformly drawn from [0.5 × WCET, WCET], which
implies an average execution of 0.75 × WCET, hence, the total utilization will
be around 75% rather than 100%. However, in Figure 5.7(c) we experience an
opposite trend for 140% utilization. In this case, the lower error when there is
no execution time variation is due to the elimination of the tasks suffering from
starvation, while the increase in error for larger α appears since the random
reduction of execution time, which happens with variation, allows previously
starved tasks to find chances of execution. However, since these chances appear

37

Data set Algorithm RPM [%] RPMPA [%]

Car hacking data set [27]

extraTrees 28.2568 1.6179
cubist 3.2461 0.9703
gbm 15.8224 1.3919

bartMachine 20.8588 14.0103
Periodogram 5.3368 -

CAN intrusion data set [44]

extraTrees 13.0256 1.7039
cubist 5.5005 2.8963
gbm 19.8341 9.8881

bartMachine 14.956 5.0264
Periodogram 9.5448 -

Table 5.3: Results on the two CAN data sets.

randomly, the resulting projections would not be consistent enough to become
meaningful training samples for the algorithms to learn. Also, both levels of
execution time variation indicate a total utilization larger than 100%, which
does not provide chances for all the tasks in the system to run. Figure 5.7(b)
reflects the combination of the observations for the previous two cases. Until
30% execution time variation, the total utilization does not fall under 100%,
hence Figure 5.7(b) shows a similar trend to Figure 5.7(c). However, when
α increases, the curve becomes similar to Figure 5.7(a), since now the system
allows more systematic running intervals for the lower-priority tasks.

5.7 Case Study

In this section we validate our period inference methods on two case studies
from actual systems. We use two data-sets consisting of traces coming from
Controller Area Networks (CANs) [19], denoted by Car hacking data set [27]
and CAN intrusion data set [44] in Table 5.3.

Car hacking data set is a data set consisting of CAN traces coming from
vehicles that underwent different types of attacks such as fuzzy attacks, denial-
of-service or spoofing. However, we were only interested in the attack-free traces
since checking the robustness for systems under attack is beyond the scope of
this work. Thus, we collected 988,987 messages with 27 tasks. The unique
periods of the the tasks were {10, 20, 50, 100, 1000}ms. Also, we need to
mention that the periods of the tasks were not reported in the data set, hence,
we manually analyzed the timestamps of the messages in order to deduct their
periods.

CAN intrusion data set is another attack-based CAN data set coming from
a KIA SOUL automobile. Similarly to the previous data set, we only extracted
attack-free traces, which totaled 2,369,868 messages with 45 tasks. In this case,
the range of periods included {10, 20, 100, 200, 1000}ms and were also manually
identified.

For both data sets, the available information included: the timestamp of the
message, the message ID, the size of the message, and the data that was sent.

In order to generate our test data, we needed a set of projections of the tasks
in the systems. However, no information about the execution time of the tasks
was included into the data set. Thus, when building a projection, we generated

38

Method Average Runtime [s]
Candidate generation 5.101

PeTaMi 10.731

Table 5.4: Runtime comparison.

a fixed execution time proportional with the size of the message. Furthermore,
from all the timestamps corresponding to a task, we subtracted the timestamp
of the first occurrence of that task in the system, such that the origin of our
projection will start at zero. Finally, from every resulting timestamp, we added
a set of ones of length equal to the previously chosen execution time to finalize
the projection. We were able to do so since we know that a CAN network
follows a non-preemptive execution model [4], thus, once started, a task will
run to completion.

Having the projections from the messages, we further split them into smaller
projections of 100 jobs. As for our training data, we synthetically generated
traces that would provide a good proxy for real data. Thus, we created a data
set of 6000 automotive traces, with 20 tasks scheduled by non-preemptive rate
monotonic, with 50% utilization and 5% jitter. The results from Table 5.3 show
that our methods successfully estimated the periods of the messages on the
actual use case, showing errors below 2% for both data sets.

5.8 Evaluating Runtime and Memory Require-
ments

Figure 5.8(a) shows how the increase in utilization impacts the number of rules
generated by cubist for log-uniform traces with 12 tasks. We observe that the
number of rules grows with the utilization. This behavior is expected since with
the increase in utilization, comes an increase in complexity for the shape of the
projection. Thus, the 16 rules that accurately described the traces with 30%
utilization are not sufficient for larger utilization values since projections with
the same period can appear increasingly different due to preemptions.

The memory consumption of each regression algorithm is shown in 5.8(b).
The values were measured on trained models by using object.size(), a built-
in function of R programming language. The results indicate a large gap between
cubist and the other methods, which is expected since cubist only needs to store
in its model the rules by which it estimates the periods, while the other tree-
based solutions (extraTrees, gbm, bartMachine) need to reserve memory for all
the regression trees they have built to make predictions.

The final experiment we performed was a runtime comparison between PeTaMi
and the candidate generation from both the periodogram and autocorrelation.
For every trace we used in the experiments from Section 5.5, we measured the
amount of time required for both signal processing techniques to generate 20
period candidates from a projection. Also, we measured the duration of applying
PeTaMi on each binary projection.

Table 5.4 shows that PeTaMi requires, on average, twice the amount of time
needed by the two signal processing methods to obtain 20 candidates (denoted
as Candidate generation in Table 5.4).

39

0.3 0.5 0.7 0.9
Utilization

20

40

60

80

Ru
les

(a) loguniform, n = 12
cubist

cubist extraTrees gbm bartMachine svr avNNet

106

107

M
em

or
y

[b
yt

es
]

229.64 KB

984.05 KB

1809.05 KB
1159.48 KB 1120.52 KB

4246.52 KB

(b) loguniform, n = 12

cubist extraTrees gbm bartMachine svr avNNet

10 6

10 5

10 4

10 3

Ru
nt

im
e [

s]

(c) loguniform, n = 12
Train
Test

Figure 5.8: (a) the number of rules in a trained cubist method and its
confidence intervals for a confidence level of 0.95, (b) memory consumption,
and (c) runtime of various regression algorithms.

40

Chapter 6

Discussions

This chapter highlights the benefits and the downsides of the considered solu-
tions. We elaborate on the implications of choosing a specific regression al-
gorithm in terms of accuracy, memory consumption, and runtime.

6.1 Tree-based Solutions

Among our experiments, we noticed that extraTrees algorithm kept the smal-
lest error in almost all the setups. However, when tested on a real dataset
(Section 5.7), its generalization capability dropped to an error of 28.5% on the
Car hacking dataset, the largest among all non-tree based algorithms. This
makes extraTrees a good choice when we have access to training data from the
same system we want to test on. However, when the target system is unknown,
or we do not have access to the traces, cubist regression is a better choice, being
the only algorithm that reached an error below the periodogram for both CAN
datasets. This remarkable performance of cubist is due to its particularity of
having linear regressions as output instead of means, as the other tree-based
algorithms have.

6.2 Non-tree-based Solutions

The experiments have confirmed our statement from Section 4.3, where we ex-
pected the tree-based solutions to outperform the other types of algorithms,
when applied to our problem. We noticed that avNNet has almost a constant
yet very large error of 100% for all the experiments. This expresses the inability
of the algorithm to learn a non-linear function that can map the input features
to the target period, deciding instead to approximate the output as a constant
value, namely the average of the periods from the training set. Since the test
set is generated the same way as the training set, it will have a similar average
value for its periods. Hence, the average error of avNNet will present a similar
value regardless of the utilization of the tasks within the data set, since the
estimate of avNNet is a value close to the mean of the periods of each test set.

Furthermore, svr is also not a good choice for the PI problem since our feature
space is rather sparse, namely the features from periodogram and autocorrela-

41

tion do not have values that place the data points close to each other in this
space. Hence, svr is not able to find a suitable hyperplane to fit the data.

6.3 Memory Consumption and Runtime

Figure 5.8(b) addresses both the memory requirements, while Figure 5.8(c)
shows the runtime of the six considered RBML methods. We notice that cu-
bist has a considerably low memory consumption compared to the rest of the
algorithms. Also, when it comes to runtime, cubist has the smallest runtime for
training among the well-performing algorithms, and is only surpassed by a small
margin by gbm in testing runtime. On the other end of the spectrum, bartMa-
chine has the largest runtimes for both training and testing, while avNNet has
the largest demand for memory among the considered solutions.

Also, we observed from Table 5.4 that PeTaMi is slower than the candidate
generation step. Since the features that we use for the regression models reside
among the generated candidates, and also that the runtime required for RBML
to generate a prediction is less than 1ms in the worst case, we can conclude
that regression-based period mining (RPM) also shows better efficiency than
the state of the art. Moreover, the period adjustment of RPMPA requires just
an additional selection step from the list of 40 candidates, which is almost like
a constant complexity, i.e., O(1), in comparison to the candidate generation
runtime.

When it comes to our space-pruning method (SPM), the generation of the
valid period bounds happens in O(p) time, which is faster than the O(p log p)
time of the signal processing techniques, where p is the length of the projection.
Since the generation of the candidates was twice as fast as PeTaMi, we can
expect that the addition of SPM would still keep the runtime of our solution
below the one of the state of the art.

6.4 Period Adjustment

It is important to note the benefit of adding the candidate adjustment step,
which can drastically reduce the error of RPM (up to 3 times reduction for gbm
in Table 5.1). However, special attention must be paid to cases with large jitter,
where this additional step is negatively impacted. Also, if the target application
indulges a linear-time complexity overhead, then the limitation of RPMPA for
traces with jitter can be attenuated by employing SPM.

42

Chapter 7

Conclusions

7.1 Summary

In this work, we introduced the first regression-based machine learning (RBML)
solution for the problem of inferring a task’s period from its binary projections.
From the projections we generated features using the periodogram [43] and auto-
correlation [18] signal processing techniques. Hence, we developed a regression-
based period miner (RPM) by using the features to train regression models.
We investigated six most-successful and widely used families of RBML methods
for this problem and provided comprehensive evaluations and discussions about
their accuracy and robustness under various scenarios.

We proposed further steps for improving the accuracy by creating period-
adjustment (RPMPA) and space-pruning methods (SPM) that use the proper-
ties of a work-considering scheduler to prune the space of valid periods of a task.
Our solutions proved to be robust and highly accurate. The average observed
error of our (best) solution was under 1% in most scenarios including those with
a mixture of periodic, aperiodic, and sporadic tasks, execution time variation,
and release jitter while the existing work has two to three orders-of-magnitude
higher errors. On the case studies from actual systems, the error of our best
solution was below 1.7%.

7.2 Answers to Research Questions

Throughout our work we have tried to answer the following research questions:

RQ1. Can one infer the tasks’ periods from traces of a real-time system using
RBML (regression-based machine learning) techniques? If so, how effective (in
terms of accuracy) and efficient (in terms of runtime) would those methods be?

We have introduced the first RBML solution for the period inference problem.
In comparison to the state of the art, our solutions are two to three orders of
magnitude more accurate and have half the runtime of PeTaMi, the state-of-
the-art algorithm, in the best case (for RPM) or their runtime is comparable to
ours in the worst case (for SPM).

RQ2. What impact does the choice of the RBML algorithm have on the effect-

43

iveness of our solution?
This research question was addressed by employing six regression algorithms

(cubist, gbm, extraTrees, bartMachine, svr, and avNNet, introduced in Table 4.1)
that showed the most promising performance in a very recent and thorough
survey of RBML methods by Delgado et al. [12]. We noticed that the tree-
based solutions, namely cubist, gbm, extraTrees, and bartMachine, were the
only methods that were able to successfully learn to solve the period inference
problem. Also, among these algorithms we notice that cubist has remarkable
generalization capabilities (3.25% and 5.5% error for real traces in Table 5.3),
low memory requirements (229KB for the trained model in Figure 5.8(b), while
the second lowest value was more than 4 times larger, 984.05 KB for extraTrees),
and fast runtime in both training and testing stages (below 10µs for both stages
in Figure 5.8(c)).

RQ3. Can we derive a set of pruning rules to further restrict the number of
possible period values? If so, what will be the impact of adding the set of rules
over the RBML performance in terms of effectiveness?

To answer this question, we derived a lower bound and an upper bound on the
range of valid periods of the target task by incorporating additional information
about the time intervals in which the system is idle. We further used these
bounds to filter the candidates provided by the signal processing techniques
and we proposed two methods to obtain an estimate for the cases when none of
the candidates satisfied the bounds. The evaluation indicated that the space-
pruning method (SPM) effectively addressed the shortcomings of the period
adjustment step (RPMPA), reducing its error by up to 45% (Figure 5.5). Thus,
SPM proved to be a more reliable period miner, especially for the cases with
jitter.

RQ4. How robust is our solution against the interferences caused by the non-
determinism present during the operation of real systems?

For the final research question, we evaluated four scenarios for the robustness
of our solution, namely we tested the robustness to the presence of higher-
priority aperiodic tasks in the system, to dropping jobs, to the change
in scheduling policy and to tardiness. We noticed that the RPM methods,
especially the ones using cubist and extraTrees, were resilient to most sources of
interference (errors below 5% for execution time variation in Figures 5.2(e)-(h),
below 7% for jitter in Figures 5.2(i)-(j), under 10% for missed jobs in Figures
5.2(k)-(l), and below 2% in the presence of aperiodic tasks in Figures 5.2(m)-
(o)).

44

7.3 Future Work

Given the benefit of incorporating knowledge about the idle-time (space-pruning
method), it would be interesting to investigate the advantages of including other
sources of information on the period inference problem. One such source can be
to know the intervals when a higher-priority task is running in the system. This
knowledge may then provide a way to derive a tighter upper bound for the period
estimation, which could further enhance the accuracy of RPM, particularly for
the cases with jitter where the best performing approach was SPM based on the
upper bound.

Furthermore, we would like to explore RBML methods to infer the timing
properties of parallel applications running on multiprocessor platforms. Such
cases present the challenge of having the jobs of the same task run on different
processors, depending on the schedule. Thus, creating simple binary projec-
tions of the tasks running on one processor will not suffice anymore to generate
meaningful features. A possible solution could include aggregating projections
coming from different processors, however, timing inaccuracies can occur since
the jobs may not be executed periodically on each processor.

Currently, our solutions require execution traces coming from real-time sys-
tems. A future research direction could involve exploring methods to determine
the tasks’ periods without needing to assume any information about the prop-
erties of the tasks in the system or their sequence of execution. A first step
towards this goal was taken by Lamichhane et al. [26] with their work on de-
termining the running task based on the power trace of the microcontroller.
However, in our case, one would require to find periodic patterns with high
confidence within the power trace and, then, map each individual pattern to a
projection, out of which the period can be mined.

45

46

Bibliography

[1] Robert Bellman. Curse of Dimensionality. Adaptive Control Processes: A
Guided Tour, 3:2, 1961.

[2] Tarak Benkedjouh, Noureddine Zerhouni, and Said Rechak. Tool Condi-
tion Monitoring Based on Mel-frequency Cepstral Coefficients and Support
Vector Regression. In International Conference on Electrical Engineering-
Boumerdes (ICEE-B), pages 1–5, 2017.

[3] Christos Berberidis, Walid G Aref, Mikhail Atallah, Ioannis Vlahavas,
and Ahmed K Elmagarmid. Multiple and Partial Periodicity Mining in
Time Series Databases. In European Conference on Artificial Intelligence
(ECAI), pages 370–374, 2002.

[4] Robert Bosch et al. CAN Specification Version 2.0. Rober Bousch GmbH,
Postfach, 300240:72, 1991.

[5] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and Regression Trees. 1984.

[6] Giorgio C Buttazzo. Hard Real-time Computing Systems: Predictable
Scheduling Algorithms and Applications, volume 24. 2011.

[7] Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie Déplanche.
Simso: A Simulation Tool to Evaluate Real-time Multiprocessor Scheduling
Algorithms. 2014.

[8] Kuo ching Liang, Xiaodong Wang, and Ta-Hsin Li. Robust Discovery of
Periodically Expressed Genes Using the Laplace Periodogram. BMC bioin-
formatics, 10(1):15, 2009.

[9] Hugh A Chipman, Edward I George, Robert E McCulloch, et al. BART:
Bayesian Additive Regression Trees. The Annals of Applied Statistics,
4(1):266–298, 2010.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[11] Greta Cutulenco, Yogi Joshi, Apurva Narayan, and Sebastian Fischmeister.
Mining Timed Regular Expressions From System Traces. In International
Workshop on Software Mining (SoftwareMining), pages 3–10, 2016.

47

[12] Manuel Fernández Delgado, M. S. Sirsat, Eva Cernadas, Sadi Alawadi,
Senén Barro, and Manuel Febrero-Bande. An Extensive Experimental Sur-
vey of Regression Methods. Neural Networks, 111:11–34, 2019.

[13] Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the
Synthesis of Multiprocessor Task Sets. In International Workshop on Ana-
lysis Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS), pages 6–11, 2010.

[14] Chunguo Fei, Guoyuan Qi, and Chunxin Li. Fault Location on High Voltage
Transmission Line by Applying Support Vector Regression with Fault Sig-
nal Amplitudes. Electric Power Systems Research, 160(1):173–179.

[15] Jerome H Friedman. Stochastic Gradient Boosting. Computational Stat-
istics & Data Analysis (CSDA), 38(4):367–378, 2002.

[16] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely Randomized
Trees. Machine Learning, 63(1):3–42, 2006.

[17] Brandon Greenwell, Bradley Boehmke, Jay Cunningham, and GBM De-
velopers. gbm: Generalized Boosted Regression Models, 2019. R package
version 2.1.5.

[18] John A Gubner. Probability and Random Processes for Electrical and Com-
puter Engineers. 2006.

[19] Hacking and Countermeasure Research Lab. http://ocslab.hksecurity.
net/Datasets/, 2010. [Online; accessed 01-July-2020].

[20] Oleg Iegorov and Sebastian Fischmeister. Mining Task Precedence Graphs
from Real Time Embedded System Traces. In IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), pages 251–260,
2018.

[21] Oleg Iegorov, Reinier Torres, and Sebastian Fischmeister. Periodic Task
Mining in Embedded System Traces. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 331–340, 2017.

[22] Adam Kapelner and Justin Bleich. bartMachine: Machine Learning
with Bayesian Additive Regression Trees. Journal of Statistical Software,
70(4):1–40, 2016.

[23] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real World Automot-
ive Benchmarks for Free. In International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[24] Max Kuhn. caret: Classification and Regression Training, 2020. R package
version 6.0-86.

[25] Max Kuhn and Ross Quinlan. Cubist: Rule- And Instance-Based Regression
Modeling, 2020. R package version 0.2.3.

[26] Kamal Lamichhane, Carlos Moreno, and Sebastian Fischmeister. Non-
intrusive Program Tracing of Non preemptive Multitasking Systems Using
Power Consumption. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1147–1150, 2018.

48

http://ocslab.hksecurity.net/Datasets/
http://ocslab.hksecurity.net/Datasets/

[27] H. Lee, S. H. Jeong, and H. K. Kim. OTIDS: A Novel Intrusion Detection
System for In-vehicle Network by Using Remote Frame. In Annual Con-
ference on Privacy, Security and Trust (PST), volume 00, pages 57–5709,
2017.

[28] Cornelius T Leondes. Computer Techniques and Algorithms in Digital Sig-
nal Processing: Advances in Theory and Applications. 1996.

[29] Ta-Hsin Li. Detection and Estimation of Hidden Periodicity in Asymmetric
Noise by Using Quantile Periodogram. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3969–3972, 2012.

[30] YB Malode, DB Khadse, and DV Jamthe. Efficient Periodicity Mining
Using Circular Autocorrelation in Time Series Data. International Research
Journal of Engineering and Technology (IRJET), 2(3):430–436, 2015.

[31] Robby G McKilliam, I Vaughan L Clarkson, and Barry G Quinn. Fast
Sparse Period Estimation. IEEE Signal Processing Letters, 22(1):62–66,
2014.

[32] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and
Friedrich Leisch. e1071: Misc Functions of the Department of Statistics,
Probability Theory Group (Formerly: E1071), TU Wien, 2019. R package
version 1.7-3.

[33] M. Nasri, T. Chantem, G. Bloom, and R. M. Gerdes. On the Pitfalls
and Vulnerabilities of Schedule Randomization Against Schedule-Based At-
tacks. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 103–116, 2019.

[34] Mitra Nasri, Geoffrey Nelissen, and Björn B Brandenburg. A Response-
time Analysis for Non-preemptive Job Sets under Global Scheduling. In
Euromicro Conference on Real-Time Systems (ECRTS), pages 9–16, 2018.

[35] Mukesh Patel and Nilesh Modi. A Comprehensive Study on Periodicity
Mining Algorithms. In International Conference on Global Trends in Signal
Processing, Information Computing and Communication (ICGTSPICC),
pages 567–575, 2016.

[36] Maurice Bertram Priestley. Spectral Analysis and Time Series Probability
and Mathematical Statistics. Number 4. 1981.

[37] Tom Puech, Matthieu Boussard, Anthony D’Amato, and Gaëtan Miller-
and. A Fully Automated Periodicity Detection in Time Series. In Inter-
national Workshop on Advanced Analysis and Learning on Temporal Data
(AALTD), pages 43–54, 2019.

[38] J Quinlan. Learning with Continuous Classes. In Australian Joint Confer-
ence on Artificial Intelligence (AI), volume 92, pages 343–348, 1992.

[39] J Quinlan. Combining Instance-based and Model-based Learning. In Inter-
national Conference on Machine Learning (ICML), pages 236–243, 1993.

[40] J Quinlan. C4. 5: Programs for Machine Learning. 2014.

49

[41] Brian D Ripley. Pattern recognition and neural networks. 2007.

[42] Mahmoud Salem, Mark Crowley, and Sebastian Fischmeister. Anomaly
Detection using Inter-arrival Curves for Real-time Systems. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 97–106, 2016.

[43] Arthur Schuster. On the Investigation of Hidden Periodicities with Applica-
tion to a Supposed 26 Day Period of Meteorological Phenomena. Terrestrial
Magnetism, 3(1):13–41, 1898.

[44] E. Seo, H. M. Song, and H. K. Kim. GIDS: GAN based Intrusion Detection
System for In-Vehicle Network. In Annual Conference on Privacy, Security
and Trust (PST), pages 1–6, 2018.

[45] Jaak Simm, Ildefons Magrans de Abril, and Masashi Sugiyama. Tree-Based
Ensemble Multi-Task Learning Method for Classification and Regression,
2014. R package version 6.0-86.

[46] Gasper Slapničar, Mitja Luštrek, and Matej Marinko. Continuous Blood
Pressure Estimation from PPG Signal. Informatica, 42(1):33–42.

[47] Ilia Sucholutsky, Apurva Narayan, Matthias Schonlau, and Sebastian Fisc-
hmeister. Deep Learning for System Trace Restoration. In International
Joint Conference on Neural Networks (IJCNN), pages 1–8, 2019.

[48] Poornima Unnikrishnan and V Jothiprakash. Daily Rainfall Forecasting for
One Year in a Single Run Using Singular Spectrum Analysis. International
Journal of Hydrology (IJH), 561(1):609–621, 2018.

[49] Michail Vlachos, Philip Yu, and Vittorio Castelli. On Periodicity Detection
and Structural Periodic Similarity. In SIAM International Conference on
Data Mining (SDM), pages 449–460, 2005.

[50] Guofeng Wang, Lei Qian, and Zhiwei Guo. Continuous Tool Wear Pre-
diction based on Gaussian Mixture Regression Model. The International
Journal of Advanced Manufacturing Technology (IJAMT), 66(9-12):1921–
1929, 2013.

[51] Xianjun Xia, Roberto Togneri, Ferdous Sohel, and David Huang. Ran-
dom Forest Regression-based Acoustic Event Detection with Bottleneck
Features. In International Conference on Multimedia and Expo (ICME),
pages 157–162, 2017.

[52] Clinton Young, Habeeb Olufowobi, Gedare Bloom, and Joseph Zambreno.
Automotive Intrusion Detection Based on Constant CAN Message Fre-
quencies Across Vehicle Driving Modes. In ACM Workshop on Automotive
Cybersecurity, page 9–14, 2019.

50

	Preface
	Introduction
	Problem Statement
	Research Questions
	Contributions
	Organization

	Background and System Model
	Background
	System Model and Problem Definition

	Related Work
	Period Estimation
	Timing Properties from Real-time Systems
	Machine Learning Methods for Reverse-engineering Real-time Systems
	RBML on Signals

	RBML-based Period Inference Framework
	Solution Overview
	Feature Extraction
	Regression Methods
	Candidate Selection
	Improving Accuracy using Ternary Projections

	Experiments
	Experimental Setup
	Using the Baselines
	Additions to Simso
	Parameter Tuning
	Assessing Accuracy in Periodic Systems
	Impact of system utilization
	Impact of the number of tasks
	Impact of execution time variations
	Impact of release jitter
	Impact of candidate adjustment method (RPMPA)
	Impact of space-pruning method (SPM)

	Assessing Robustness
	Robustness w.r.t. the presence of higher-priority aperiodic tasks
	Robustness w.r.t. dropping jobs
	Robustness w.r.t. the scheduling policy
	Robustness w.r.t. tardiness

	Case Study
	Evaluating Runtime and Memory Requirements

	Discussions
	Tree-based Solutions
	Non-tree-based Solutions
	Memory Consumption and Runtime
	Period Adjustment

	Conclusions
	Summary
	Answers to Research Questions
	Future Work

