

Delft University of Technology

NanoFlowNet
Real-time Dense Optical Flow on a Nano Quadcopter
Bouwmeester, Rik J.; Paredes-Valles, Federico; De Croon, Guido C.H.E.

DOI
10.1109/ICRA48891.2023.10161258
Publication date
2023
Document Version
Final published version
Published in
Proceedings - ICRA 2023

Citation (APA)
Bouwmeester, R. J., Paredes-Valles, F., & De Croon, G. C. H. E. (2023). NanoFlowNet: Real-time Dense
Optical Flow on a Nano Quadcopter. In Proceedings - ICRA 2023: IEEE International Conference on
Robotics and Automation (pp. 1996-2003). (Proceedings - IEEE International Conference on Robotics and
Automation; Vol. 2023-May). IEEE. https://doi.org/10.1109/ICRA48891.2023.10161258
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICRA48891.2023.10161258
https://doi.org/10.1109/ICRA48891.2023.10161258

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

NanoFlowNet: Real-time Dense Optical Flow on a Nano Quadcopter

Rik J. Bouwmeester, Federico Paredes-Vallés and Guido C. H. E. de Croon

Abstract— Nano quadcopters are small, agile, and cheap plat-
forms that are well suited for deployment in narrow, cluttered
environments. Due to their limited payload, these vehicles are
highly constrained in processing power, rendering conventional
vision-based methods for safe and autonomous navigation
incompatible. Recent machine learning developments promise
high-performance perception at low latency, while dedicated
edge computing hardware has the potential to augment the
processing capabilities of these limited devices. In this work,
we present NanoFlowNet, a lightweight convolutional neural
network for real-time dense optical flow estimation on edge
computing hardware. We draw inspiration from recent ad-
vances in semantic segmentation for the design of this network.
Additionally, we guide the learning of optical flow using motion
boundary ground truth data, which improves performance with
no impact on latency. Validation results on the MPI-Sintel
dataset show the high performance of the proposed network
given its constrained architecture. Additionally, we successfully
demonstrate the capabilities of NanoFlowNet by deploying it on
the ultra-low power GAP8 microprocessor and by applying it to
vision-based obstacle avoidance on board a Bitcraze Crazyflie,
a 34 g nano quadcopter.

I. INTRODUCTION

Safe and reliable navigation of autonomous aerial systems
in narrow, cluttered, GPS-denied, and unknown environments
is one of the main open challenges in the field of robotics.
Because of their small size and agility, micro air vehicles
(MAVs) are optimal for this task [1], [2]. Nano quadcopters
are a variety of MAVs that are characterized by minimal
weight (approx. 30 g) and size (approx. 10 cm rotor-to-
rotor) and hence are well suited for deployment under the
aforementioned conditions. With the right algorithm design,
these nano quadcopters have been demonstrated to be able
to perform complex tasks such as exploration [3] or gas
source seeking [4]. However, conventional approaches to
these problems rely on computationally expensive “map-
based” methods that require an array of sensors (e.g., stereo
camera, LiDAR) and processors that, in the majority of cases,
exceed the payload capacity of these vehicles.

The main approach to autonomous flight of MAVs is based
on monocular vision, since a single camera can be light-
weight and energy-efficient, while providing rich information
on the environment. One of the most important monocular
visual cues for navigation is optical flow. Until now, it has
been extensively exploited on aerial vehicles with relatively
high payload capacity for tasks such as obstacle avoidance
[5], [6], and several bio-inspired methods for autonomous
navigation [7]–[11].

All authors are with the Micro Air Vehicle Laboratory, Faculty of
Aerospace Engineering, Delft University of Technology, Delft, The Nether-
lands. Contact: G.C.H.E.deCroon@tudelft.nl

Fig. 1: Top: NanoFlowNet consists of (i) an encoder that extracts features
from the input images, (ii) a fusion module that combines features from
different levels, and (iii) a motion-boundary-guided detail head, which
is only enabled during training, to guide the learning with zero cost to
inference latency. Bottom: We demonstrate NanoFlowNet in an obstacle
avoidance application on board a nano quadcopter (time-lapse image).

Traditionally, the task of monocular optical flow estimation
has been performed by hand-crafted methods [12], [13].
However, the field recently shifted toward deep learning
approaches [14]–[25], which deliver not only a better per-
formance than the conventional methods but also a faster
runtime. Although the focus has largely been on improving
performance, efforts have been made to find models of
reduced size and faster inference [15], [16], [18], [19], [22],
[23], [26]. However, these methods remain computationally
expensive, with runtime ranging from several to tens of
frames per second (FPS) on desktop GPUs and requiring
millions of parameters (and hence large amounts of memory),
rendering these models incompatible with edge hardware.

In this work, instead of improving the accuracy of state-
of-the-art approaches, we focus on their inference speed
and, more particularly, on the deployment of a dense optical

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 1996

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

61
25

8

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 07:06:51 UTC from IEEE Xplore. Restrictions apply.

flow network on edge devices. To this end, we present
NanoFlowNet, a lightweight convolutional neural network
(CNN) architecture for optical flow estimation that, in-
spired by the semantic segmentation network STDC-Seg
[27], achieves real-time inference on the ultra-low power
GAP8 multi-core microprocessor on the Bitcraze AI-deck.
An overview of the proposed network architecture and its
training pipeline can be found in Fig. 1.

The key contributions of this paper are listed as follows.
First, we introduce NanoFlowNet, a novel lightweight neural
network architecture that performs, for the first time, real-
time dense optical flow estimation on edge hardware. We
validate this network, which runs at 5.5-9.3 FPS on the
tiny GAP8 microprocessor, through extensive quantitative
and qualitative evaluations on multiple datasets. Second,
we show, for the first time, that using motion boundary
ground truth to guide the learning of optical flow improves
performance while having zero impact on inference latency.
Last, we demonstrate the proposed NanoFlowNet in a real-
world obstacle avoidance application on board a Bitcraze
Crazyflie nano quadcopter.

The remainder of this paper is organized as follows.
Section II provides an overview of the state-of-the-art on
autonomous navigation of nano quadcopters and on real-time
inference with CNNs. In Section III, we present the details
of the proposed architecture and its training pipeline, while
Section IV covers the setup of the experiments as well as
the obtained results. Finally, concluding remarks are given
in Section V alongside recommendations for future work.

II. RELATED WORK

A. Autonomous navigation of nano quadcopters

The limited computational capacity of nano quadcopters
(and MAVs in general) puts a constraint on the types
of methods that can be used for autonomous navigation.
Methods demonstrated on board nano quadcopters can be
broadly grouped in model-based reinforcement learning for
hovering [28], obstacle avoidance based on dedicated laser
ranging sensors [3], [4], [29], and self-motion estimation
using optical flow from dedicated optical flow sensors [30]
or estimated with external, multi-camera setups [31], [32].
Other methods circumvent the computational constraints of
these vehicles by running methods off-board [33]–[35].

Regarding edge computing hardware, recent works have
focused on augmenting the computational power of nano
quadcopters without exceeding their payload limitations.
Methods based on application-specific integrated circuits
(ASICs) [36]–[39] can efficiently provide information for
specific tasks such as SLAM and visual-inertial odometry but
have not yet been presented on a flying drone. More recently,
parallel ultra-low power processors introduce energy-efficient
multi-core processing to parallelize visual workloads on edge
devices [40]. In this work, we exploit the commercially avail-
able off-the-shelf AI-deck from Bitcraze, equipped with the
GreenWaves GAP8 system-on-chip (SoC) and an ultra-low
power grayscale camera. This nine-core SoC has been used
for several end-to-end methods that integrate perception and

navigation by directly regressing inputs through a CNN into
control commands [40]–[42]. Instead, in our approach, we
calculate optical flow as an intermediate step. This gives us
direct control over vehicle behavior and can support multiple
optical-flow-based tasks to be performed simultaneously or
interchangeably. Our work, motivated by these benefits, is
the first to present a fully convolutional neural network for a
dense (i.e., per-pixel) prediction task on board the AI-deck.

B. Real-time dense inference with CNNs

For the design of NanoFlowNet, we draw inspiration from
recent semantic segmentation literature in order to signif-
icantly speed up optical flow estimations while retaining
performance. More specifically, we draw inspiration from
the BiSeNet [43] and STDC-Seg [27] architectures. First,
BiSeNet identified a sacrifice of low-level spatial information
in previous real-time methods and improved performance by
proposing a multi-path architecture in which low-level spatial
information is encoded in a separate path. A feature fusion
module was proposed to fuse information from the high- and
low-level paths, while an attention refinement module refined
features through channel attention. Then, the STDC-Seg
architecture introduced the STDC module, which increases
the receptive field size per layer at a low computational
cost. Furthermore, it identified that BiSeNet’s spatial path
pronounces edges, and replaced the convolutions from the
path with a train-time-only “detail head” and “detail loss”
to mimic the information passed from the removed convolu-
tions, thus shrinking the model and decreasing latency. The
“detail guidance ground truth” was generated by convolving
the ground truth segmentation map with a Laplacian kernel.

A few elements of STDC-Seg and BiSeNet have been
separately investigated in the context of optical flow. AD-
Net [44] showed that channel attention can be beneficial
for optical flow estimation, while EDOF [45] fused features
from an edge-detector network and an optical flow encoder
network for detail-guided optical flow estimation. Similar to
STDC-Seg, we use edges to guide the learning.

III. METHOD

For the design of NanoFlowNet, we adopt the STDC-
Seg network [27] and modify it to our needs. We replace
all regular convolutions with depthwise separable convolu-
tions, and we globally reduce the number of filters by a
factor of four to further reduce latency and the number of
parameters. We introduce an even smaller model with half
of NanoFlowNet’s filters (globally) and call it NanoFlowNet-
s. Further modifications to the architecture are discussed in
detail in the following subsections.

A. Motion boundary detail guidance

The closest analogy to detail guidance as used in STDC-
Seg is to generate edges from the optical flow ground truth.
Instead, we replace this “edge-detect” detail guidance ground
truth with motion boundary ground truth from the optical
flow datasets. We adopt the Focal Loss [46] to counter the
class imbalance problem.

1997

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 07:06:51 UTC from IEEE Xplore. Restrictions apply.

B. Strided STDC module redesign

We modify the strided STDC modules from STDC-Seg
[27] to further decrease latency. The original and modified
strided STDC modules can be found in Figs. 2 and 3, re-
spectively. First, following the insights of several low-latency
literature methods [47]–[51], we replace all convolutions in
the STDC module with depthwise separable convolutions due
to their low computational expense. Second, we identify that
the first operation in the strided STDC module (a pointwise
convolution) is the most expensive in terms of the number
of multiply-accumulate (MAC) operations. By relocating this
operation to the bottom path after the average pooling opera-
tion, we make the strided STDC block computationally more
tractable overall while increasing the number of features in
the top path and the number of features with a large receptive
field size in the concatenated output. Our modified blocks
lead to a reduction of over 50% of the MAC operations in
stage 1, and of over 10% in stages 2 and 3.

C. Reduced input/output dimensionality

We design the network for low-resolution input and down-
scale all dataset’s input frames, optical flow, and motion
boundary ground truth accordingly. The scaling factor is
picked such that the resulting data resolution closely matches
the target application resolution (approx. qqVGA, 160x120
pixels). Horizontal and vertical scalings are identical, to fix
the aspect ratio in an attempt to retain naturalism. This
allows us to make the network shallower by dropping the
first (expensive) convolution altogether and thus decrease
latency while maintaining feature sizes in the deepest layers.
The downscaled training data matches the low-resolution
cameras found on nano quadcopters more closely, making
our synthetic dataset more naturalistic for our intended
application. As an added benefit, working with downscaled
data significantly speeds up training. The primary downside
of reduced input resolution is the loss of information, in
particular we will miss out on small objects and small

displacements that are not captured by the resolution. To
be able to compare with existing optical flow works, we
benchmark performance at native dataset resolution, since
downscaling of flow magnitudes results in lower endpoint
error (EPE) without a qualitative improvement.

Lastly, we design our network for grayscale input images,
saving two third of the on-board memory dedicated to the
input frames and decreasing the computational cost of the
first layer (at a loss of color information).

IV. EXPERIMENTS

A. Implementation details

All models are trained for 300 epochs on FlyingChairs2
[14], [52], a regenerated FlyingChairs dataset with motion
boundary ground truth. We use the Adam optimizer [53],
with learning rate 1e-3 and a batch size of 8. After this, we
fine-tune our architectures on FlyingThings3D [54] for 200
epochs with a learning rate of 1e-4.

Given the scaling and conversion to grayscale of the input
data, our network is not directly comparable with results
reported by other works. For comparison, we retrain one
of the fastest networks in literature, Flownet2-s [16], on the
same data. Given the reduction in resolution, we drop the
deepest two layers to maintain a reasonable feature size in
the deepest layers, and name the model Flownet2-xs.

We run all experiments in a docker environment with
TensorFlow 2.8.0, CUDA 11.2, CUDNN 8.1.0, TensorRT
7.2.2 on an NVIDIA GeForce GTX 1070 Max-Q with batch
size 1 for benchmarking latency.

B. Performance and latency on public benchmarks

We evaluate the trained networks on the unseen MPI Sintel
train subset, on both the clean and final pass. Quantitative re-
sults can be found in Table I. Regarding accuracy, according
to these results, our NanoFlowNet performs better than the
squeezed FlowNet2-xs architecture, despite using less than
10% of the parameters. With respect to runtime, FlowNet2-xs

Fig. 2: Original strided STDC module from [27], with the exception that we use depthwise separable (DS) convolutions in place of all non-pointwise
convolutions. We use ReLU activations after all layers in the block. M denotes the number of input features, while N is the number of output features.

Fig. 3: Our modified strided STDC module. We reorganize the operations to minimize the spatial resolution pointwise convolutions have to perform on.

1998

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 07:06:51 UTC from IEEE Xplore. Restrictions apply.

(a) Input frame I (b) Ground truth (c) NanoFlowNet (d) NanoFlowNet-s (e) FlowNet2-xs

Fig. 4: Qualitative comparison of optical flow estimates by NanoFlowNet(-s) and FlowNet2-xs on MPI Sintel (train) clean pass.

Method MPI Sintel (train) [EPE] Frame rate [FPS] ParametersClean Final GPU¹ GAP8²
FlowNet2-xs 9.054 9.458 150 - 1,978,250
NanoFlowNet (ours) 7.122 7.979 141 5.57 170,881
NanoFlowNet-s (ours) 9.559 10.047 151 9.34 46,749

TABLE I: Quantitative results on MPI Sintel. ¹At a resolution of 96x224. ²At a resolution of 112x160, including vision thread.

Detail guidance method MPI Sintel (train)
Clean Final

None 7.636 8.119
Edge detect 7.404 8.141
Motion boundaries 7.122 7.979

TABLE II: Quantitative comparison of different methods of detail guidance.

does not fit on the GAP8 microprocessor due to the network
size (i.e., lack of memory). To put the achieved latency of
NanoFlowNet in perspective, we execute FlowNet2-xs’ first
two convolutions and the final prediction layer on the GAP8.
The three-layer architecture achieves 4.96 FPS, which is
slower than running the entire NanoFlowNet (5.57 FPS). On
laptop GPU hardware, NanoFlowNet achieves comparable
FPS to FlowNet2-xs. NanoFlowNet-s has lower performance
than both other models, but has a low parameter count with
only 27% of NanoFlowNet’s and 2.4% of FlowNet2-xs’s
parameters, and is the fastest out of all the networks tested.

Qualitative results, presented in Fig. 4, confirm that
NanoFlowNet makes the most accurate optical flow esti-
mates out of all the networks tested. Interestingly, both
NanoFlowNet and NanoFlowNet-s appear to detect dis-
placements of smaller objects, which FlowNet2-xs misses.
However, NanoFlowNet-s’ flow estimates are highly noisy.

C. Ablation study

1) Motion boundaries detail guidance: We verify the ef-
fectiveness of motion boundary detail guidance by retraining
two additional networks, one with detail guidance based on
the optical flow ground truth convolved with a Laplacian
kernel (further referred to as “edge-detect guidance”), and
another one with no detail guidance. Quantitative and quali-
tative results can be found in Table II and Fig. 5, respectively.
As shown, motion boundary detail guidance improves results
and outperforms edge detect detail guidance. Since all these
guidance methods only affect (i.e., guide) the training be-
havior, all methods have identical latency. Qualitative results
show that motion-boundary-guided optical flow best defines
moving objects, and shows the least “leakage” of foreground
objects into the background.

Strided STDC block MPI Sintel (train) [EPE] Frame rate [FPS]
Clean Final GPU¹ GAP8²

Unmodified 7.483 8.114 136 4.84
Modified 7.122 7.979 141 5.57

TABLE III: Quantitative comparison of the original and the modified strided
STDC block. ¹At a resolution of 96x224. ²At a resolution of 112x160,
including vision thread.

Mode MPI Sintel (train) [EPE] Frame rate [FPS]
Clean Final GPU¹ GAP8²

Color 7.726 8.344 141 5.18
Grayscale 7.122 7.979 141 5.57

TABLE IV: Quantitative comparison of grayscale vs. color input frame-
based architectures. ¹At a resolution of 96x224. ²At a resolution of 112x160,
including vision thread.

2) Strided STDC module redesign: Table III shows the
effects of the strided STDC module redesign. The network
with the redesigned module is both faster (both on laptop
GPU and the GAP8 microprocessor) and more accurate.

3) Reduced input dimensionality: A comparison between
training and inferring on grayscale images compared to color
images can be found in Table IV. Our grayscale model
outperforms the color variant. We hypothesize that this is
due to the limited capacity of the network. The latency of
the grayscale model on the GAP8 is lower due to reduced
data transfer and a cheaper first convolution.

D. Obstacle avoidance implementation

We deploy the proposed NanoFlowNet architecture on a
Crazyflie 2.x equipped with the AI-deck and the flow-deck
for the task of vision-based obstacle avoidance. We use the
AI-deck to capture images with the front-facing camera and
to run optical flow inference and processing. The downward-
facing optical flow deck is used for positioning only. The
total flight platform weighs in at 34 g. See Fig. 6 for a picture
of the platform.

1) Control strategy: We implement the horizontal balance
strategy from [55], [56], with which the yaw rate ψ̇ is set
based on the error erl between the sum of flow magnitudes
in the left and right half of the flow estimate (see Eq. 1). We

1999

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 07:06:51 UTC from IEEE Xplore. Restrictions apply.

(a) Input frame I (b) Ground truth (c) Motion-boundary guidance (d) Edge-detect guidance (e) No detail guidance

Fig. 5: Qualitative comparison of different detail guidance methods on MPI Sintel (train) clean pass.

Fig. 6: Crazyflie 2.x equipped with (i) the AI-deck used for image acquisi-
tion using a front-facing camera and to run optical flow inference, and (ii)
the downward-facing flow-deck used only for positioning.

Fig. 7: Inspired by GapFlyt [6], we deliberately let the quadcopter oscillate
vertically to generate additional optical flow.

set gains kp = 0.0126 and kd = 0.0018 experimentally. The
forward velocity of the quadcopter is set at 0.2 m/s.

ψ̇ = kperl + kd ˙erl (1)

We augment the balance strategy by implementing active
oscillations (a cyclic up-down movement, see Fig. 7) which
results in additional optical flow being generated across the
field of view (FOV). This is particularly helpful for avoiding
objects in the direction of horizontal travel. Up-down rather
than left-right surveying favors detecting obstacles wider
than taller in nature, but is much simpler to combine with the
left-right balance strategy. Additionally, left-right surveying
requires rolling, which introduces rotational flow that does
not contain depth information.

We implement both the CNN and calculation of erl on the
GAP8 microprocessor of the AI-deck. Calculating the flow
error on the AI-deck significantly reduces the amount of data
that needs to be transmitted over UART to the autopilot. The
calculation of the yaw rate is done on the Crazyflie 2.x, and
fed into the controller.

2) AI-deck implementation: The CNN processing power
on the AI-deck comes from the GreenWaves Technologies
GAP8. The chip is organized around the central single-
core fabric controller (FC) and the eight-core cluster (CL)
for parallelized workloads. For our application, we run
FC@250MHz, CL@230MHz, and VDD@1.2V.

Our AI-deck is equipped with the HM01B0 monochrome
camera, which supports a resolution of up to 324x324,
a QVGA (244x324) window mode, a 2x2 monochrome
binning mode, and cropping. For our application we enable
both the window mode and binning mode (122x162) and
take a central crop of 112x160, to ensure a matched spatial
resolution of upsampled and skipped features in the network
architecture. At our input resolution, using grayscale versus
color reduces the L2 memory usage on the AI-deck by
14%. This additional L2 memory is made available to the
AutoTiler, which improves inference time by reducing the
number of data transfers.

In this work, we utilize the GreenWaves Technologies
GAPflow toolset for porting our CNN to the GAP8. NNTool
takes a TensorFlow Lite or ONNX CNN description and
maps all operations and parameters to a representation com-
patible with AutoTiler, the GAPflow tiling solver.

We use NNTool to implement 8-bit post-training quantiza-
tion to our CNN. We quantize on images from the MPI Sintel
dataset [57] and achieve an average signal to quantization
noise ratio (SQNR) of 10.

3) Experimental setup: We compose two indoor environ-
ments for obstacle avoidance. First, an open environment,
with obstacles exclusively placed at the outline of the en-
vironment. Second, a cluttered environment, with obstacles
placed throughout (see Fig. 9). Obstacles include textured
and untextured poles, synthetic plants, flags, or panels. Both
environments are enclosed with textured panels to trap the
quadcopter inside. Panel textures consist of forest texture,
data matrix texture, and a drone racing gate texture. In
both environments, we augment the enclosure’s texture with
highly textured mats and curtains.

The simple proof-of-concept control algorithm has no ded-
icated method of dealing with head-on collisions. By placing
obstacles around the perimeter of the open environment we
minimize the risk of a head-on collision with the panels as
they introduce an imbalance of optical flow, even on a fully
perpendicular collision path with a panel.

2000

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 07:06:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Results of multiple obstacle avoidance runs in cluttered and open environments. Position recorded with an OptiTrack Motion Capture System.

Fig. 9: Overview of the cluttered, obstacle avoidance environment. Obstacles
are outlined in purple, while texture-enhancing mats and curtains in orange.

For each experiment, we start the quadcopter at approxi-
mately the same location, with varying heading. We let the
quadcopter run until a collision or empty battery. We record
flight positioning data with an OptiTrack Motion Capture
System for post-flight analysis only and record experiments
with an ISO view and top view camera.

4) Results: Flight paths extracted from the motion capture
system are plotted on maps of the environment and can be
found in Fig. 8. The control algorithm is most robust in the
open environment, with the quadcopter managing to drain a
full battery without crashing. In the cluttered environment,
performance is much more variable. Especially in occasions
where obstacles are in close proximity to one another, the
quadcopter tends to successfully avoid an obstacle, only to
collide with another during the maneuver. Adding a head-on
collision detection based on the detection of the focus-of-

expansion (FOE) and divergence estimation (e.g., [11]) could
help avoid obstacles in these cases.

In several of the successful avoidances, the quadcopter
initially responds weakly to the obstacle, only to turn away
more harshly when the course has already been corrected
sufficiently. This behavior is expected because of two rea-
sons. First, the optical flow due to forward movement is
zero at the FOE and maximum at the edge of the peripheral
vision. Second, due to the fact that the obstacles take up
more of the FOV when they are in closer proximity to the
quadcopter, they generate more optical flow. This behavior
could be corrected by weighing the optical flow more heavily
towards the center of the image.

Another notable feature of the flight paths is that the nano
quadcopter frequently appears to enter a spiraling path. The
control algorithm is overreacting to stimuli from across the
environment. Despite this, the behavior is consistent, the
resulting paths are still exploring the environments, and the
nano quadcopter is able to break out of the spiraling motion
by approaching a panel (see Fig. 8, top right) or approaching
an obstacle (see Fig. 8, top center).

V. CONCLUSIONS & DISCUSSION

In this work, we introduced a lightweight CNN architec-
ture for dense optical flow estimation on edge hardware,
called NanoFlowNet. We achieved real-time latency on the
AI-deck. Furthermore, we showed that training our network
guided on motion boundaries improves performance at zero
cost to latency. Finally, we implemented NanoFlowNet in a
real-world obstacle avoidance application on board a Bitcraze
Crazyflie nano quadcopter. For future work, we expect ex-
amples that take more advantage of the dense information in
the generated optical flow field.

2001

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 07:06:51 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
may 2015.

[2] B. Bodin, H. Wagstaff, S. Saecdi, L. Nardi, E. Vespa, J. Mawer,
A. Nisbet, M. Lujan, S. Furber, A. J. Davison, P. H. Kelly, and M. F.
O’Boyle, “SLAMBench2: Multi-Objective Head-to-Head Benchmark-
ing for Visual SLAM,” in Proceedings - IEEE International Confer-
ence on Robotics and Automation, sep 2018, pp. 3637–3644.

[3] K. N. McGuire, C. de Wagter, K. Tuyls, H. J. Kappen, and G. C.
H. E. de Croon, “Minimal navigation solution for a swarm of tiny
flying robots to explore an unknown environment,” Science Robotics,
vol. 4, no. 35, oct 2019.

[4] B. P. Duisterhof, S. Li, J. Burgues, V. J. Reddi, and G. C.
H. E. de Croon, “Sniffy Bug: A Fully Autonomous Swarm of
Gas-Seeking Nano Quadcopters in Cluttered Environments,” in IEEE
International Conference on Intelligent Robots and Systems, jul 2021,
pp. 9099–9106.

[5] P. Gao, D. Zhang, Q. Fang, and S. Jin, “Obstacle avoidance for micro
quadrotor based on optical flow,” in Proceedings of the 29th Chinese
Control and Decision Conference, CCDC 2017, jul 2017, pp. 4033–
4037.

[6] N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermuller, and
Y. Aloimonos, “GapFlyt: Active vision based minimalist structure-
less gap detection for quadrotor flight,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 2799–2806, 2018.

[7] J. Conroy, G. Gremillion, B. Ranganathan, and J. S. Humbert, “Im-
plementation of wide-field integration of optic flow for autonomous
quadrotor navigation,” in Autonomous Robots, vol. 27, no. 3, oct 2009,
pp. 189–198.

[8] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “MAV navigation
through indoor corridors using optical flow,” in Proceedings - IEEE
International Conference on Robotics and Automation, 2010, pp.
3361–3368.

[9] G. C. H. E. de Croon, “Monocular distance estimation with optical
flow maneuvers and efference copies: A stability-based strategy,”
Bioinspiration and Biomimetics, vol. 11, no. 1, jan 2016.

[10] J. R. Serres and F. Ruffier, “Optic flow-based collision-free strate-
gies: From insects to robots,” Arthropod Structure and Development,
vol. 46, no. 5, pp. 703–717, sep 2017.

[11] G. C. H. E. de Croon, C. De Wagter, and T. Seidl, “Enhancing
optical-flow-based control by learning visual appearance cues for
flying robots,” Nature Machine Intelligence, vol. 3, no. 1, pp. 33–41,
jan 2021.

[12] B. D. Lucas and T. Kanade, “Iterative Image Registration Technique
With an Application To Stereo Vision.” in Proc 7th Intl Joint Conf
on Artificial Intelligence, 1981, pp. 674–679.

[13] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, no. 1-3, pp. 185–203, aug 1981.

[14] A. Dosovitskiy, P. Fischery, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. V. D. Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical
flow with convolutional networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 2758–2766.

[15] A. Ranjan and M. J. Black, “Optical flow estimation using a
spatial pyramid network,” in Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, nov 2017, pp. 2720–2729.

[16] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox, “FlowNet 2.0: Evolution of optical flow estimation with
deep networks,” in Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1647–1655.

[17] S. Zhao, X. Li, and O. El Farouk Bourahla, “Deep optical flow
estimation via multi-scale correspondence structure learning,” in
IJCAI International Joint Conference on Artificial Intelligence, vol. 0,
jul 2017, pp. 3490–3496.

[18] D. Sun, X. Yang, M. Y. Liu, and J. Kautz, “PWC-Net: CNNs
for Optical Flow Using Pyramid, Warping, and Cost Volume,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2017, pp. 8934–8943.

[19] T. W. Hui, X. Tang, and C. C. Loy, “LiteFlowNet: A Lightweight
Convolutional Neural Network for Optical Flow Estimation,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8981–8989.

[20] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution
decomposition for match density estimation,” in Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, dec 2019, pp. 6037–6046.

[21] G. Yang and D. Ramanan, “Volumetric correspondence networks for
optical flow,” in Advances in Neural Information Processing Systems,
vol. 32, 2019.

[22] T. W. Hui, X. Tang, and C. C. Loy, “A Lightweight Optical
Flow CNN - Revisiting Data Fidelity and Regularization,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 8, pp. 2555–2569, feb 2021.

[23] T. W. Hui and C. C. Loy, “LiteFlowNet3: Resolving Correspondence
Ambiguity for More Accurate Optical Flow Estimation,” in European
Conference on Computer Vision, 2020, pp. 169–184.

[24] S. Zhao, Y. Sheng, Y. Dong, E. I. Chang, and Y. Xu, “Maskflownet:
Asymmetric feature matching with learnable occlusion mask,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, mar 2020, pp. 6277–6286.

[25] Z. Teed and J. Deng, “RAFT: Recurrent All-Pairs Field Transforms
for Optical Flow (Extended Abstract),” in European Conference on
Computer Vision, aug 2020, pp. 402–419.

[26] J. Hur and S. Roth, “Iterative residual refinement for joint optical
flow and occlusion estimation,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, apr
2019, pp. 5747–5756.

[27] M. Fan, S. Lai, J. Huang, X. Wei, Z. Chai, J. Luo, and X. Wei,
“Rethinking BiSeNet For Real-time Semantic Segmentation,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, apr 2021, pp. 9711–9720.

[28] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and
K. S. Pister, “Low-Level Control of a Quadrotor with Deep Model-
Based Reinforcement Learning,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 4224–4230, jan 2019.

[29] B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury, W. Fu,
A. Faust, G. C. H. E. de Croon, and V. J. Reddi, “Tiny Robot
Learning (tinyRL) for Source Seeking on a Nano Quadcopter,”
in Proceedings - IEEE International Conference on Robotics and
Automation, vol. 2021-May, no. Icra, 2021, pp. 7242–7248.

[30] A. Briod, J.-C. Zufferey, and D. Floreano, “Optic-Flow Based Control
of a 46g Quadrotor,” in Workshop on Vision-based Closed-Loop Con-
trol and Navigation of Micro Helicopters in GPS-denied Environments,
IROS 2013, 2013.

[31] R. J. Moore, K. Dantu, G. L. Barrows, and R. Nagpal, “Autonomous
MAV guidance with a lightweight omnidirectional vision sensor,”
in Proceedings - IEEE International Conference on Robotics and
Automation, sep 2014, pp. 3856–3861.

[32] K. McGuire, G. C. H. E. de Croon, C. De Wagter, K. Tuyls, and
H. Kappen, “Efficient Optical Flow and Stereo Vision for Velocity
Estimation and Obstacle Avoidance on an Autonomous Pocket Drone,”
in IEEE Robotics and Automation Letters, vol. 2, no. 2, apr 2017, pp.
1070–1076.

[33] O. Dunkley, J. J. Engel, J. Sturm, and D. Cremers, “Visual-
Inertial Navigation for a Camera-Equipped 25g Nano-Quadrotor,” in
IROS2014 aerial open source robotics workshop, 2014, p. 2.

[34] F. Candan, A. Beke, and T. Kumbasar, “Design and Deployment of
Fuzzy PID Controllers to the nano quadcopter Crazyflie 2.0,” in 2018
IEEE (SMC) International Conference on Innovations in Intelligent
Systems and Applications, INISTA 2018, sep 2018.

[35] A. Anwar and A. Raychowdhury, “Autonomous Navigation via Deep
Reinforcement Learning for Resource Constraint Edge Nodes Using
Transfer Learning,” IEEE Access, vol. 8, pp. 26 549–26 560, oct 2020.

[36] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion:
A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accel-
erator for Autonomous Navigation of Nano Drones,” IEEE Journal of
Solid-State Circuits, vol. 54, no. 4, pp. 1106–1119, apr 2019.

[37] Z. Li, Y. Chen, L. Gong, L. Liu, D. Sylvester, D. Blaauw, and
H. S. Kim, “An 879GOPS 243mW 80fps VGA Fully Visual CNN-
SLAM Processor for Wide-Range Autonomous Exploration,” in IEEE
International Solid-State Circuits Conference, mar 2019, pp. 134–136.

[38] M. Hosseini and T. Mohsenin, “Binary Precision Neural Network
Manycore Accelerator,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 17, no. 2, pp. 1–27, apr 2021.

[39] N. K. Manjunath, A. Shiri, M. Hosseini, B. Prakash, N. R. Waytowich,
and T. Mohsenin, “An Energy Efficient EdgeAI Autoencoder Accel-
erator for Reinforcement Learning,” IEEE Open Journal of Circuits
and Systems, vol. 2, pp. 182–195, jan 2021.

2002

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 07:06:51 UTC from IEEE Xplore. Restrictions apply.

[40] D. Palossi, F. Conti, and L. Benini, “An open source and open hard-
ware deep learning-powered visual navigation engine for autonomous
nano-UAVs,” in Proceedings - 15th Annual International Conference
on Distributed Computing in Sensor Systems, DCOSS 2019, may 2019,
pp. 604–611.

[41] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and
L. Benini, “A 64-mW DNN-Based Visual Navigation Engine for
Autonomous Nano-Drones,” IEEE Internet of Things Journal, vol. 6,
no. 5, pp. 8357–8371, may 2019.

[42] D. Palossi, N. Zimmerman, A. Burrello, F. Conti, H. Muller, L. M.
Gambardella, L. Benini, A. Giusti, and J. Guzzi, “Fully Onboard
AI-Powered Human-Drone Pose Estimation on Ultralow-Power Au-
tonomous Flying Nano-UAVs,” IEEE Internet of Things Journal,
vol. 9, no. 3, pp. 1913–1929, feb 2022.

[43] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet:
Bilateral segmentation network for real-time semantic segmentation,”
in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 325–341.

[44] M. Zhai, X. Xiang, R. Zhang, N. Lv, and A. E. Saddik, “Ad-net:
Attention Guided Network for Optical Flow Estimation Using Dilated
Convolution,” in ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, may 2019, pp. 2207–
2211.

[45] G. Zuo, C. Zhang, J. Tong, D. Gong, and M. You, “Edge Detection-
Based Optical Flow Estimation Method,” in 2021 IEEE 11th Annual
International Conference on CYBER Technology in Automation, Con-
trol, and Intelligent Systems, CYBER 2021, jul 2021, pp. 873–878.

[46] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss
for Dense Object Detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 42, no. 2, pp. 318–327, aug 2020.

[47] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, oct 2017, pp. 1800–1807.

[48] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,” apr
2017.

[49] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, jul 2018, pp. 6848–6856.

[50] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C.
Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, jan 2018, pp. 4510–4520.

[51] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and
M. Grundmann, “BlazeFace: Sub-millisecond Neural Face Detection
on Mobile GPUs,” CVPR Workshop on Computer Vision for
Augmented and Virtual Reality, jul 2019.

[52] E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, Motion and
depth boundaries with a generic network for disparity, optical flow or
scene flow estimation,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 614–630.

[53] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings, dec 2015.

[54] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A Large Dataset to Train Convolutional Networks for
Disparity, Optical Flow, and Scene Flow Estimation,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2016-Decem, dec 2016, pp. 4040–4048.

[55] K. Souhila and A. Karim, “Optical flow based robot obstacle
avoidance,” International Journal of Advanced Robotic Systems,
vol. 4, no. 1, p. 2, mar 2007.

[56] G. Cho, J. Kim, and H. Oh, “Vision-based obstacle avoidance strate-
gies for MAVs using optical flows in 3-D textured environments,”
Sensors, vol. 19, no. 11, p. 2523, jun 2019.

[57] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2012, pp.
611–625.

2003

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 07:06:51 UTC from IEEE Xplore. Restrictions apply.

