
Electricity Load Modelling using
Computational Intelligence

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,
voorzitter van het College van Promoties,

in het openbaar te verdedigen op
woensdag 14 december 2005 om 10:30 uur

door

Rutger Willem TER BORG

informatica ingenieur
geboren te Delfzijl.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. H. Koppelaar

Toegevoegd promotor:

Dr. drs. L.J.M. Rothkrantz

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. H. Koppelaar, Technische Universiteit Delft, promotor
Dr. drs. L.J.M. Rothkrantz, Technische Universiteit Delft, toegevoegd promotor
Prof. dr. ir. J. Biemond, Technische Universiteit Delft
Prof. ir. L. van der Sluis, Technische Universiteit Delft
Prof. dr. A. Heertje, Universiteit van Amsterdam
Prof. dr. H.J. van den Herik, Universiteit Maastricht
Dr. J.J. Battjes, Nuon NV

This work was supported by:

Nuon NV
Spaklerweg 20
Amsterdam

Typeset by the author using LATEX 2ε.

Copyright © 2001–2005 by Rutger W. ter Borg.
Cover image Earth’s city lights copyright © 2000 by NASA.

ISBN 90-8559-118-X.

All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any electronic or mechanical means (including photocopying,
recording or information storage retrieval) without permission in writing from
the author.

“I have made this letter longer than usual, because I lack the time to make it short.”

Blaise Pascal (1623–1662)

Preface

During my research for doctorate, a number of events occurred with world wide
impact, such as the tragedy of the collapse of the twin towers, the introduction
of the Euro, terrorist attacks on Madrid and London, and to a lesser extent, the
many different Dutch governments during such a short period.

I have spent a tremendous amount of time on my research. At times, it has
been difficult for me to keep up the pace necessary to complete this work. Luckily,
computers were there to take over some of the tedious tasks such as keeping track
of all 705 remarks on my thesis, redrawing figures within seconds, and running
numerous tests. I am confident that I have seen LYX more than I will see it ever
again in my life.

It was Henk Koppelaar who brought me in contact with Thijs van den Berg of
Nuon. I would like to thank them both for giving me the opportunity to conduct
research for doctorate and for all their support. Léon Rothkrantz has given me
many valuable comments and suggestions, also on my work. Floris Ouwendijk
developed a useful tool to test several machine learning techniques. Thanks also
go to Coos Battjes, Melissa Brinkman, Jan van den Bor, Sebastiaan Hers, Mirjam
Nieman, Willem van Rossum, colleagues of the Monitoring & Forecasting desk,
the members of my thesis committee, and everyone else who thinks he should be
listed here.

My grandfather Wim spent more time proofreading this thesis than anyone
else. This delivered quite a few comments, which he submitted over the Internet
with remarkable ease. My parents Bart and Anja were able to distract me from
the wonders of science with, for example, a beautiful safari through Kenya, or
the occasional Tulpenrallye. And, of course, I am very grateful to my girlfriend
Fleur, who kept me motivated, and who had to relinquish a large amount of our
time together during this period. Fortunately, we could partly compensate for
that with an extra-ordinary trip through Indonesia, and I am sure that that trip
was only the beginning of our journeys.

For sure, the last four years were a turbulent period of my life. I have learnt
a great deal in scientific and personal areas. Having said all this, let us start with
the thesis itself.

Contents

1 Introduction 1
1.1 Imbalance Costs . 2

1.1.1 E-Programs . 2
1.1.2 Allocation . 3
1.1.3 Imbalance Settlement . 4
1.1.4 Imbalance Reduction Strategies 6

1.2 Research Goals . 7
1.3 Thesis Outline . 8

2 Related Work 9
2.1 Electricity Demand Models . 9

2.1.1 Causal Model . 11
2.1.2 Univariate Lagged Models 11
2.1.3 Mixed Models . 12

2.2 Wind-power Production Models 12
2.2.1 Physical Approach . 12
2.2.2 Statistical Approach . 13

2.3 Used Regression Techniques . 13
2.3.1 Nearest Neighbours . 14
2.3.2 Artificial Neural Networks 14
2.3.3 Fuzzy Inference Systems 17
2.3.4 Evolutionary Computing 18
2.3.5 Kernel Machines . 19

2.4 Quality Criteria . 20

3 Smooth Bayesian Kernel Machines 23
3.1 Smooth Functional Representations 24

3.1.1 Derivative Kernels . 25
3.1.2 Kernel Roughness Penalties 27

3.2 Smooth Relevance Vector Machine 29
3.2.1 A Novel Prior for Smoothness and Sparseness 30
3.2.2 Posterior Distributions . 31
3.2.3 Obtaining Posterior Modes 32

3.3 Experimental Results . 34

iv Contents

4 Modelling Electricity Load 37
4.1 System Architecture . 37
4.2 Modelling Process . 39
4.3 Electricity Demand Model . 40

4.3.1 Data Analysis . 40
4.3.2 Multi-component Setup 45
4.3.3 A Novel Day-type Representation 46
4.3.4 Emphasising Twilight . 47

4.4 Wind-power Production Model 48
4.4.1 Data Analysis . 48
4.4.2 Increasing Wind-speed Resolution 50
4.4.3 Representing Wind Direction 50

5 The Kernel-Machine Library 53
5.1 Requirements . 54
5.2 Design . 54
5.3 Implementation . 56

5.3.1 The Boost Libraries . 56
5.3.2 BLAS: ATLAS . 57
5.3.3 Utilities . 58

5.4 Development Tools . 60
5.4.1 The SCons Build System 60
5.4.2 The Doxygen Documentation System 61

5.5 Using the Library . 62
5.6 Testing the Library . 63

5.6.1 The Fast RVM . 63
5.6.2 On-line SVM versus Batch SVM 64

6 Experimental Results 67
6.1 Electricity-demand Forecasting in Practice 67
6.2 Electricity-demand Model Experiments 69

6.2.1 Calendar Component . 70
6.2.2 Trend Component . 71
6.2.3 Weather Components . 71
6.2.4 Additional Information . 72

6.3 Short-term Wind-power Production Forecasting 74
6.3.1 Neural Networks for Wind-Power Prediction 76

7 Conclusions 79
7.1 Future Work . 81

“There is no plea which will justify the use of high-tension and alternating cur-
rents, either in a scientific or in a commercial sense.”

Thomas Edison (1847–1931)

1
Introduction

The energy markets across Europe have been liberalised as per EU directive
96/92/EC [57], which sparked the energy market sector to become much more
turbulent. The main objective of liberalisation was the introduction of compe-
tition, which can have multiple benefits for customers. Patel and Samuel [99]
mention that these benefits could include pricing efficiency and transparency,
product and technical innovation, improvement of quality of service, and re-
sponsiveness to changing market conditions.

Since the EU directive on the internal market for electricity, some countries
opened their markets rather quickly, while the Netherlands chose to implement
the directives more slowly. The Dutch scheme is represented by the Electricity
Act [133], by which full liberalisation is in effect as of mid-2004 [111]. After
that date all consumers became free to choose their electricity supplier.

The Dutch independent transmission system operator (TSO) Tennet is a key
figure in the Dutch electricity market, and has a number of responsibilities. It has
to make sure, to prevent black-outs, that the demand for and supply of electricity
are in balance at all times. Tennet also has to keep the high-voltage network in
a good state of repair. Any participant on the electricity grid that causes an
imbalance, will have to settle with Tennet for correcting it.

The Dutch energy company Nuon devised a plan to reduce its imbalance
costs, starting with a scientific study on modelling electricity loads. The motive
for my research are these imbalance costs, and the goal of my research is to en-
gineer methods, models, and tools that will enable a reduction of the imbalance.
This thesis is a report about this scholarly research.

2 Introduction

t−96h

Forecast
short−term
load

Adjust
positions to
forecast

Control
power
plants

t−24h t

Submit
E−program

Manage
long−term
positions

FIGURE 1.1: Time horizon of activities done by a program responsibility
partner until the program time unit at time t.

1.1 Imbalance Costs

First, let us review what an imbalance exactly means, how it is determined, how
it is settled, and what can be done to reduce it. Roughly said, an imbalance
is a deviation between supply and demand. Or, to state it in terms of current
regulations, an imbalance is the deviation between an E-program and the allo-
cated load, which will be treated in subsections 1.1.1 and 1.1.2. The settlement
procedure and thus the cost associated with an imbalance is highlighted in sub-
section 1.1.3. This section about imbalance costs is concluded with a number of
approaches to the reduction of the imbalance.

1.1.1 E-Programs

To enable Tennet to check the expected demand and supply of electricity, all
agreements on the electricity market have to be reported to Tennet in the form
of Electricity-programs (E-programs). E-programs cover periods of 96 program
time units (PTUs), currently set at fifteen minutes, and have to be submitted to
Tennet a day in advance at noon. Only program responsibility partners (PRPs)
are allowed to make transactions on the electricity market. Two types of PRPs are
distinguished: those with full acknowledgement and those with trade acknowl-
edgement. Only a PRP who has full acknowledgement is allowed to exchange
electricity physically, so only this kind of PRP can have an imbalance. Program
responsibility partners come with a variety of roles on the energy market: they
can be suppliers, producers, consumers, traders, or, more commonly, a combina-
tion of all of these.

Figure 1.1 shows a time horizon of activities typically performed by PRPs up
until the PTU. They will manage their long-term positions, such as long-lasting
contracts that have been signed with other PRPs. For long-term and medium-
term deals, trading is supported by brokers who have a market-neutral position:
their concern is to effect transactions in electricity on which a provision is earned.
Alternatively, they trade at Endex, a centralised market for long-term set up by
Benelux market participants. Some PRPs own power plants with which they
are to meet the demand of their customers in the immediate and further future.

1.1 Imbalance Costs 3

Several days in advance, they start making short-term forecasts of the expected
loads during the coming PTUs. On the basis of these forecasts, they will adjust
their long-term positions to match these expected short-term loads in a variety
of ways. They will buy and sell electricity from elsewhere on the market, for in-
stance from and to producers, or on a day-ahead basis at the Amsterdam power
exchange (APX) [127]. A day in advance at noon, E-programs have to be sub-
mitted to Tennet.

The last 24 hours before physical delivery, decisions about the production
process come into play. Producers will dispatch their power plants in the most
cost-efficient way possible, also known as economic dispatching. Broadly said,
inflexible power plants are cheap and will run continuously, and flexible power
plants are expensive and will run to counterbalance the more resilient uses of
electricity. Some power-producing facilities are hard to control, e.g., wind energy
installations. Because here the energy produced strongly depends on the actual
wind speed at a certain location, the power output cannot be guaranteed at all
times. Unexpected variations in their production levels of electricity have to be
counterbalanced by flexible and expensive power production facilities.

In the end, roughly 105% of the electricity demand by consumers will be
produced. They occupy the opposite side of the electricity market with respect
to producers. The additional ~5% is due to network transportation losses.

1.1.2 Allocation

Tennet does not measure the total load of each program responsibility partner
per PTU. This task is delegated to regional grid administrators, who have to sub-
mit each PRP’s definite load allocation to Tennet within 14 days after expiration
of that PTU. Regional grid administrators are positioned between Tennet and the
other participants. They have a neutral position: they may deliver transportation
services to all producers, consumers, suppliers and traders. Pricing of these ser-
vices is described in the tariff code [67] and boils down to the following: small
customers (such as households) pay a flat-rate fee, larger customers have more
sophisticated price structures.

The total load of each regional grid administrator is measured per PTU. For
each PTU it measures all telemetered connections, and estimates the remaining
part. Regional grid administrators do not measure the load of all their connec-
tions per PTU; e.g., most households and small businesses have an electricity
consumption meter which is read-out once a year only. To address this prob-
lem, regional grid administrators adhere to a number of standard profiles on
the basis of categories. Each non-measured connection is assigned one of these
standardised profiles. All profiles are normalised over a year, i.e., it adheres to∑

t profilec(t) = 1 for t within one calendar year and for each profile category c.
A profile together with a customer’s yearly volume determine a customer’s load
per PTU.

4 Introduction

losses
(fixed %)

Telemetered

M
C

F ProfiledNetwork
connections connections

(MCF−variable)(fixed MWh)

FIGURE 1.2: Determination of the allocated electricity load for each pro-
gram time unit.

Figure 1.2 illustrates the break down of a regional grid administrator’s mea-
sured total load. The first part (most left in the figure) are network losses due
to the transport of electricity, set at a fixed percentage at all times. A grid ad-
ministrator is responsible for its network losses, of which the percentage is not
necessarily the same for all regional grid administrators. The second part from
the left depicts the connections that are measured per PTU by telemeters. The
volume in this category is obtained by adding up all telemetered readings. Elec-
tricity volume allocated to the profiled (non-measured) connections is the total
volume decreased by the network losses and the telemetered connections. A
measuring correction factor (MCF) is applied to the aggregate volume of the
profiled connections to correct for errors caused by the estimation. The MCF is
published by each grid administrator for each PTU.

In other words, each regional grid administrator computes the load for each
PRP in the following manner

loadPRP(t) = MCF(t)
∑

i

volumePRP,iprofilei(t) +
∑

j

measuredPRP,j(t) (1.1)

where loadPRP is the load of that PRP at time t of the PTU, MCF is the ap-
plied measuring correction-factor (MCF), volumei is the total yearly electricity
consumption volume of that PRP’s customers in profile group i, profilei is one of
the determined default profiles, and measuredj are measured connections of that
PRP. Values of all variables in (1.1) are sent to the PRPs, on the basis of which a
time series of historic values can be constructed. In case of a power production
facility, both profiled connections and measured connections can have negative
values. An example of a negative profile allocation is a non-measured power pro-
duction facility such as some wind-power turbines. They are assigned a negative
yearly volume.

1.1.3 Imbalance Settlement

At the time of the PTU, imbalances are corrected by Tennet, who will buy or
sell what is needed to correct each (fully acknowledged) PRP’s imbalance. The
imbalance price is a sum of the resulting price of the bid ladder price and the

1.1 Imbalance Costs 5

Max. occurred deviation (MWh)

P
ric

e
(E

U
R

/M
W

h)

0

20

40

60

Time (day)

A
ve

ra
ge

 d
ev

ia
tio

n
(M

W
h)

20 40 60 80 100 120

0

5

10

15

20

25

FIGURE 1.3: Price bid ladder (left) and incentive component (right).

incentive component, price(t) = bid ladder price(t)+ incentive(t) with t the time of
the PTU. These two components are discussed below.

• Bid ladder price. Tennet only corrects the overall imbalance, the sum of
the imbalances of all individual PRPs. Before the PTU takes place, regu-
lating and reserving power suppliers (RRPSs) offer Tennet the opportunity
to adjust their electricity production either upward or downward. Such an
offer is presented to Tennet by means of a price bid ladder, which is a list
of prices per MWh increasing with the magnitude of deviation. Interested
RRPSs are permitted to announce their prices until one hour before a PTU.
From all submitted price bid ladders, Tennet assembles the cheapest possi-
ble overall price bid ladder, of which an example is shown in figure 1.3. So,
during the PTU, the cheapest RRPSs are called upon to regulate. If the ac-
tual deviation exceeds the maximum value of the price bid ladder chart, the
emergency power suppliers are mobilised to fulfil the unexpectedly high
demand. The price for this is at least 10% higher than the maximum price
bid ladder price. The price of the most expensive regulation applicable
to a PTU will be the resulting price for that (entire) PTU. Prices can also
be negative; this occurs when PRPs have collectively overestimated their
E-programs.

• Incentive component. Compared with prices on the price bid ladder, this
component is mostly relatively small. Based on a week observed in 5-
minute intervals, the incentive component is raised (in theory, that is) if
during that period at least one of the following conditions is true: the num-
ber of deviations absolutely larger than 300 MW exceeds 40 or the average

6 Introduction

deviation is larger than 20 MW. Figure 1.3 (right) illustrates a part of this
decision-making process. It shows that if the average deviation (the upper
solid line) reaches levels above 20 mega watts (MW, the dotted line), the
incentive component price is raised three days after this criterion has been
observed (the lower solid line).

The imbalance settlement between Tennet and each PRP is calculated by the size
of a PRP’s deviation in megawatt-hours (MWh) times the imbalance price in e
per MWh for that PTU,

settlement(t) = (Eprogram(t)− allocation(t))× price(t)

with t the time of the PTU, and settlement the sum paid or received by a PRP.
A PRP can receive a sum of money when it has a positive imbalance, e.g., in
case it produces more that its E-program states, and other PRPs hold a negative
imbalance. A PRP with a long position (positive imbalance) will be paid by
Tennet for its extra produced electricity. Imbalance settlement costs can be very
high, e.g., when the overall correction needed is large; this occurs typically when
PRPs collectively hold a long or a short position, or when a PRP has a large
deficient position.

1.1.4 Imbalance Reduction Strategies

PRPs with full responsibility face the challenge of keeping their imbalances as
small as possible. In order to minimise them, the allocated volumes should match
the E-programs as accurately as possible. The two most important factors con-
tributing to deviations between E-programs and allocated volumes are uncertain
future demand and uncertain future production. Imbalances can be reduced in
several ways. I mention three of them.

• Improve portfolio effects. A large portfolio of a variety of customers
may show a pooling effect: customers complementing each other in their
consumption patterns in such way that the uncertainty of their collective
demand is smaller than that of one individual customer. A great deal of
the efficiency improvement in the electricity market can be accounted for
by the knowledge one has been able to gather about its customers [134].
PRPs need a good assessment of how their customers react under different
circumstances.

• Improve short-term demand forecasts. As submitted E-programs cannot
be altered, the coming demands must be predicted as accurately as pos-
sible. In other words, a PRP needs a good short-term electricity demand
forecast.

1.2 Research Goals 7

• Improve short-term production forecasts. Many renewables have the
drawback that their future production strongly depends on the weather
conditions. Most dominantly present in this category is wind-power pro-
duction, which already produces considerable amounts of energy in the
Netherlands during windy times.

These issues can be more or less leading in how to reduce an imbalance. A shared
theme across all approaches is how to make the demands and power-production
levels more transparent. With a better insight on these fronts PRPs will be able to
take better founded decisions thus improving the efficiency of their operations.

1.2 Research Goals

As announced at the beginning of this chapter, the goal of my PhD research
is to engineer methods, models, and tools that could enable reduction of the
imbalances of a PRP. To achieve this, the following will be the two key aspects
during my research: to obtain a predictive model describing electricity demands
and to obtain a predictive model for short-term wind-power production.

• Electricity-Demand Model. The target application of the electricity de-
mand model will have to include long-term scenarios as well as short-term
forecasting. If used for back-casting, gaps present in time series of electric-
ity load can be filled with model predictions. Historical electricity demand
patterns can be normalised, i.e., demands predicted for an average-weather
scenario. This information can be used, e.g., for determining prices for
clients. Using short-term weather forecasts supplied by a meteorological
institute, the model should be able to make short-term forecasts of the ag-
gregated expected load of a PRP. A key challenge will be to cover both
long-term and short-term in one model.

• Wind-Power Production Forecast. The endeavour to reduce the total
amount of carbon dioxide in the atmosphere [50] has been ongoing for
a while. The European Union (EU)’s renewables directive aims to raise
the share of electricity produced from renewable energy sources (RES) in
the EU to 22% by 2010 [51]. The efficiency of wind-energy turbines has
been significantly improved during the last decade, and they have become
an attractive source of renewable energy. At the moment, wind energy is
the fastest growing type of renewable energy in Europe. However, due to
the unreliability of wind energy production, it is also increasingly respon-
sible for larger imbalances. These can be reduced with a more accurate
short-term forecast of wind-power production.

The key challenge will be to obtain predictive models on the basis of recordings
of allocations of electricity demands and of recordings of wind-power production

8 Introduction

that have been made available for this research. Whereas classical statisticians
typically assume that the form of the correct model is known and the objective
is to estimate the model parameters, artificial intelligence researchers devise and
use many ways to automate the task of constructing a predictive model from
the data. The current state-of-the-art way to construct a model from the data
are kernel machines, of which the successful support vector machine is the most
frequently cited type. Kernel machines use either statistical learning theory or
hierarchical Bayes to decide whether a particular model is adequate or whether
a different model would produce better predictions. They can be regarded to be
the theoretically better founded successors to artificial neural networks, which
have dominated the machine-learning field since the 1980s. Kernel machines
have quite literally taken the machine-learning field by storm, and my research
is not an exception.

1.3 Thesis Outline

In chapter 2, a review of existing literature on the subject of modelling electricity
load is given. Commonly used approaches and typical solutions and techniques
are discussed. Criteria of quality are also discussed in this chapter. Chapter 3
introduces my novel smooth Bayesian kernel machines [13]. In chapter 4, the
concepts of kernel machines and electricity demand patterns are merged to a
model [14]. A model for short-term wind-power production forecasting is also
proposed [15]. Chapter 5 discusses how to implement kernel machines in an
efficient way with a freely available software library that I wrote: the Kernel-
Machine Library. Chapter 6 discusses experiments with the models that have
been implemented and tested. Finally, chapter 7 concludes this thesis.

“Copy from one, it is plagiarism; copy from two, it is research.”

Wilson Mizner (1876–1933)

2
Related Work

A well-studied field that relates closely to modelling electricity demand is the
field of electricity load forecasting [59, 72]: in many cases it also involves ob-
taining a model that describes electricity demands only. Section 2.1 gives a short
introduction to this field, and elaborates on common approaches to modelling
electricity demands. The area of wind-power production forecasting is younger
and smaller than the field of electricity load forecasting, and is treated separately
in literature. Section 2.2 discusses typical directions taken, and plans of attack
used to obtain a short-term wind-power production forecast. Overlap of the two
fields can be found in their used regression techniques, which will be topic of
discussion in section 2.3. Section 2.4 concludes the chapter with a discussion of
quality criteria.

2.1 Electricity Demand Models

As with many fields of study in applied science, the subject of electricity load
forecasting is quite broad. First of all, types of forecasting can be identified to
be spatial or non-spatial [6]. Spatial forecasting [see, e.g., 94] concentrates on
the prediction of the electricity consumption patterns of a specific geographical
area such as a city, an island, or a country. This information is used by (re-
gional) politics to determine future directions of the energy policy. Non-spatial
forecasting deals with the future electricity load of specific consumers without
special restrictions on their geographic position, e.g., that of the customer base
of a certain electricity supplier, or that of a large world-wide company.

10 Related Work

E
xt

er
na

l
T

ec
hn

iq
ue

In
te

rn
al

Causal
Lagged

Univariate Mixed

R
eg

re
ss

io
n

xt xt



yt

 yt ytyt−1 yt−1

FIGURE 2.1: Commonly encountered structures of predictive models used
for electricity load modelling.

Furthermore, differentiating on the basis of forecast time-horizon, long-term,
medium-term, and short-term forecasting are used for different purposes [135].
Long-term forecasting is mainly used for system planning and typically spans pe-
riods of 10 to 20 years. Key factors of interest in long-term prediction include
the type and level of economic activity, population growth, price of alternative
sources of energy, factors such as marketing, conservation campaigns and envi-
ronmental changes. Medium-term forecasting usually covers periods of a few
weeks and is used for estimating fuel (storage) requirements and for planning
the execution of maintenance programs. Short-term load forecasting has a time
span of less than a week, and is employed for day-to-day operation, scheduling
of power plants, and setting targets for E-programs.

I distinguish three types of electricity demand models: causal models, uni-
variate lagged models, and mixed models. The separation is made on the basis
of what variables are in use by these models, and is illustrated in figure 2.1. Two
types of variables are distinguished: external and internal. Internal variables
are considered to be the variables for which the predictive model is to be made,
e.g., electricity demands or wind-power production levels. External variables are
other types of influential variables that are considered, e.g., temperature and
wind speeds. The arrows depict the flow of information (or values) in the model.
If an arrow points to the same circle (or node), it means that historic information
readings are kept in some kind of memory. Regression techniques are discussed
in more depth in section 2.3. The causal, univariate lagged and mixed models
are discussed next.

2.1 Electricity Demand Models 11

2.1.1 Causal Model

In this thesis, I use the term causal model if the input space exclusively contains
external variables and propagates to the output as in

ỹ(t) = f(xi(t− τi,j)), (2.1)

with t discretised time, ỹ the predicted electricity demand in R, f the model’s
function, xi an input variable in RN , τi,j a time lag variable offset, and i and j
indices. A time lag is used for variables (such as temperature) that do not have
an immediate effect on the electricity demands: e.g., it takes a while before a
building cools down or warms up. Historical (or lagged) recordings can be in-
troduced to make these time-delayed influences measurable. Input spaces where
τi,j = 0 for all values of i and j in (2.1) are often referred to as direct or flat
models. This type of model is encountered frequently [71, 79, 90], and is used
in combination with a large variety of computational learning methods, ranging
from self-organising maps [27, 91, 97] to fuzzy logic controllers [129].

A recurring problem is that predictability of input variables may have an in-
fluence on the accuracy and forecast horizon of an electricity demand model.
Examples of exactly predictable input variables are time of the day [45], day of
the week [97], seasonality with month number [71], and holiday indicators to
match holiday information. However, not all required inputs can be predicted
accurately over a large time span. The temperature is a good example of this:
because the relation between ambient temperature and electricity demands is im-
portant, an accurate prediction of future temperatures is needed if one wants to
use such an established relation. The load predictor then builds on the results of
these temperature forecasts [79]. As the temperature cannot be predicted with
an acceptable degree of accuracy, it is sometimes not taken into consideration
[33].

2.1.2 Univariate Lagged Models

Otherwise known as local learning models, univariate lagged models use only one
variable in their input space, namely historical demand values. These univariate
lagged models are expressed by

ỹ(t) = f(y(t− τk)), (2.2)

with y ∈ R a historic electricity demand value, and with the remaining sym-
bols identical to those used in (2.1). Univariate lagged models look at a certain
window of historic electricity loads as their input space. The field of non-linear
time series analysis is largely about determining the step size and length of the
window to look at [16, 117].

Several regression techniques have been used, such as artificial neural net-
works [23, 24], support vector machines [107], fuzzy logic controllers [98], and

12 Related Work

nearest neighbours [9]. One step ahead (or iterated) prediction in this class of
models suffers from error propagation: values y(t− τi) become vulnerable values
themselves. A way to address this is by making a separate model for each needed
forecast time horizon. One of the biggest drawbacks of this type of models is that
it is not able to fully contain a priori knowledge, such as the effect of public
holidays.

2.1.3 Mixed Models

Another approach is to use both historical electricity demand measurements and
external variables [7, 26, 27, 33]; they combine the self-containing information
of signals with related variables and a priori knowledge. They can be formulated
as

ỹ(t) = f(xi(t− τi,j), y(t− τk)). (2.3)

As with causal variables, it can be a problem if an input attribute is used which
cannot be predicted accurately [33]. Also, like univariate lagged models, they
suffer from error propagation.

2.2 Wind-power Production Models

An exhaustive literature survey of wind-power prediction is available in a report
by Giebel et al. [54]. With respect to short-term forecasting of wind power,
two different approaches are identified: a physical approach and a statistical
approach. In a physical approach, one makes a description of the dynamics of
the underlying system, based on complete knowledge of all its subsystems [16].
The statistical approach is, like the approach to electricity demand forecasting,
to construct models from the data.

2.2.1 Physical Approach

Generally, in the physical approach, the underlying system is separated in three
different subsystems, which we will discuss next.

• To scale down. During this phase, the localised numerical weather fore-
casts are scaled down to match the turbine hub height (the name can be
misleading, because one could just as well scale up the numerical weather
forecasts to turbine hub height). To estimate the wind power produced
at some site, ideally one wants to have wind speed measurements done
at that exact location. Often weather data are obtained by using weather
models such as HIRLAM. Unfortunately, actual errors made by a HIRLAM
model are not available because the actual wind speeds are not measured.

2.3 Used Regression Techniques 13

• To convert to power. In this step, it is assumed that the total amount of
electricity produced by the turbines depends on wind speed only. Using the
so-called power-curve of the turbines, the wind speeds are converted to an
expected power production. Power curves are often obtained from the sup-
plier of the wind turbines, or are estimated on the basis of measurements
on the wind turbines themselves [80, 81].

• To scale up. The estimated power of a subset of the complete farm is scaled
up to match the installed total wind-power production capacity, and then
the efficiency of the wind farm is used to determine the farm’s total output.
This specific step has also been addressed by more sophisticated tools such
as a fuzzy-neural network [101].

The results obtained are acceptable. However, they require a great deal of data
management of all individual farms and changing characteristics thereof.

2.2.2 Statistical Approach

In the statistical approach, the model is inferred from the data. The common
approach with this one-stage type of approach is to use neural networks [81] or
another kind of regression technique [4]. It usually estimates the wind-power
production in one step, by taking the numerical weather predictions and trans-
forming them to the estimated wind-power production. This is the same ap-
proach as the one that is taken to electricity demand modelling. This class of
models works in a more implicit way: the numeric weather predictions are trans-
lated to a wind-power production forecast in one single step. A drawback of this
approach is that it is a black box, i.e., its one and only function is to predict the
expected wind-power production. For instance, additional information such as
the performance of individual wind farms does not become available.

2.3 Used Regression Techniques

Let us consider a data set D = (x1, y1), . . . , (xN , yN) containing N input-output
pairs (xi, yi) ∈ X × Y, with X typically containing multidimensional vectors in
RM , and Y typically representing scalars in R. Then, a regression problem is the
task to find a relation

y(x) = f(x) + ε (2.4)

that maps any input x ∈ X (including unseen ones) to an output y assuming an
additive error ε. Generalisation to unobserved measurements implies the diffi-
culty of computational learning [70, 122]: it is the cornerstone of mainstream
computational learning research. One of the ways to obtain the relation in (2.4)
is by supervised learning, where examples are presented in the shape of input-
output pairs. A selection of supervised learning methods, used for both electricity

14 Related Work

demand modelling [83] and short-term wind-power prediction [54], is described
below.

2.3.1 Nearest Neighbours

The simplest approach to forecasting is by reproduction of the past. In this type
of model, one devises some sort of distance metric on the input space X . Predic-
tions for a certain x are made by querying all of the historical data, to find the
measurements that have their inputs closest to that x. It then returns the output
of that historical reading. Brockmann and Kuthe [21] created a model that looks
for the same day of the week of one year ago, and uses that day as a prediction.
Although it does not perform disappointingly, it can be difficult and time con-
suming to devise a distance metric and to configure the number and weighing of
neighbours. Most importantly, it is not able to discover unknown relations or to
generalise properly.

Self-organising maps such as Kohonen neural networks [73] have found their
use mostly in clustering data. The main application of these unsupervised learn-
ing methods to electricity load forecasting has been to discover which days of
the week have similar electricity load patterns, which allows a reduction of the
number of input variables. In the dominant results two clusters are found, one
containing weekdays and one containing weekends. Other separations made are
found to be days close to the weekend, midweek, holidays and Sundays, and
more [8, 21, 91, 97]. Other research claims that every day of the week can have
a unique load pattern [42], so every day is treated separately [33, 71]. Besides
those that cluster on the basis of day of the week, algorithms that cluster on all
input variables are employed as well [26, 27, 65].

2.3.2 Artificial Neural Networks

Artificial neural networks, commonly referred to as neural nets, are computa-
tional models which consist of a large number of densely connected simple pro-
cessing units. The simple processing units are often called artificial neurons or
nodes. The connections between simple processing units are also often called
links. Each link is associated with a weight which is often called synapse strength
of the link. Neural networks are typically arranged in a number of layers. In the
case of feed forward networks, there are connections only between adjacent lay-
ers. Figure 2.2 shows a multi-layer feed-forward network which consists of an
input layer, one hidden layer, and an output layer.

The application of artificial neural networks [ANNs; 58, 92, 108, 130] to elec-
tricity demand modelling has been around for more than a decade [42]. When
neural network solutions are used for function approximation, the multi-layer
perceptron (MLP) network seems to be a very attractive choice. This is because
it has been theoretically proved that MLP can well approximate continuous func-

2.3 Used Regression Techniques 15

Inputs

Hidden units

Outputs

x1 x2

h1(x) h2(x) h3(x) h4(x)

w1
w3

w4

f(x)

w2

x3

FIGURE 2.2: A feed-forward neural network with inputs in R3 and 4 hidden
units.

tions when enough neurons are used. MLP networks are implemented in almost
all commercial neural network simulators and many of the shareware neural net-
work simulators. It is probably due to this wide availability and use that it is one
of the most referred to types of ANN in the electricity demand modelling litera-
ture [20, 23, 24, 35, 40, 42, 47, 59, 71, 79, 95, 110, 114, 138], and that it is still
the most frequently used technique.

Besides the traditional multilayer perceptron, many other types of neural net-
works have been utilised in this field, e.g., simple recurrent networks [38], grey
neural networks [61], functional networks [29, 30], and adaptive logic networks
[45]. Radial basis function networks are an advanced variant of artificial neural
networks and have excellent nonlinear approximation capabilities. They have
been successfully applied to a large diversity of problems, including chaotic time
series modelling [28]. Radial basis function (RBF) networks have traditionally
been associated with radial basis functions in a single layer network such as
shown in figure 2.2. In the input layer, each element of the input vector x is fully
connected to all inputs of the hidden layer neurons. RBF network topology is
determined by the number of hidden units. In the hidden layer, the hidden unit
activation function hi(x) is a radial basis function. The output layer combines
the outputs of the functions in the hidden layer, to form

y(x) = w0 +
N∑

i=0

wihi(x). (2.5)

A radial basis function neural network which has its radial bases at locations of
patterns presented in the training data equals a kernel machine using a Gaussian

16 Related Work

kernel, discussed in subsection 2.3.5.

Training a Neural Network

Training of a neural network is the procedure of finding the proper weights of
the network in such a way that the inputs correspond with the outputs. The
error back-propagation learning algorithm is a form of supervised learning used
to train mainly feed-forward neural networks. In outline, the algorithm is as
follows.

• Initialisation. The weights of the network are initialised to small random
values. First the weights are initialised, usually with random values often
with a dispersal around 0.

• Forward pass. Inputs of each training pattern are presented to the net-
work. The outputs are computed using the inputs and the current weights
of the network. Certain statistics are kept from this computation, and used
in the next phase. The target outputs of each training pattern are com-
pared with the actual activation levels of the output units, the difference
between the two is termed the error. Training may be pattern-by-pattern
or epoch-by-epoch. With pattern-by-pattern training, the pattern error is
provided directly to the backward pass. With epoch-by-epoch training, the
pattern errors are summed across all training patterns, and the total error
is provided to the backward pass.

• Backward pass. In this phase, the weights of the neural network are up-
dated.

Often, a separate learn data set and test data set are used to decide when to stop
learning. This is exemplified by the progress of a learn set error and test set error,
which is depicted in figure 2.3. By over-learning (or over-specialisation) it can
happen that the error decreases on the learning data while it increases on the
test data. This procedure is repeated until some stopping criterion is reached.
Figure 2.3 illustrates a good moment to stop training, the best point to stop the
training process is marked by the dotted line. Often a large amount of iterations
(epochs) are needed for each set of patterns. Learning continues until the error
is small enough, or even better yet, until the best results are attained using a
separate set of test patterns.

There are many variations on the above mentioned back-propagation learn-
ing, that sometimes are able to achieve better results. Well-known variations are
Quick-prop [46], and RPROP [106].

As for radial basis function networks, parameters are established by minimis-
ing a cost function

min
∑

C(yi, y(xi))

2.3 Used Regression Techniques 17

Epoch

E
rr

or

test error

training error

FIGURE 2.3: Typical error developments of back-propagation training [58].

which is typically the sum of the squares of the residuals. As with MLP artificial
neural networks, RBF networks can be trained by a variety of supervised learn-
ing algorithms. In the initial approaches, all data samples are assigned to the
hidden layer to act like a centroid. In later approaches, the number of hidden
units is reduced by the use of clustering algorithms such as k-median [17], or by
stochastic choice [63]. Other algorithms are orthogonal least squares [115] and
gradient descent [68].

One of the drawbacks of neural networks is that they deliver an arcane web
of interconnected neurons, and as such are not easily interpretable by humans
[5]. This sparked separate research into the inner workings of neural networks
applied to electricity demand forecasting [19]. Another problem can be the train-
ing times on large data sets. Despite these drawbacks, neural networks can give
good all-round performance and have been applied successfully to load fore-
casting. The mathematical theories necessary to guarantee the performance of
applied neural networks are still under development.

2.3.3 Fuzzy Inference Systems

During an international meeting of fuzzy researchers in Tokyo in 1987, Takeshi
Yamakawa demonstrated the use of fuzzy control in an inverted pendulum ex-
periment, which is a classical control problem in which a vehicle tries to keep a
pole, mounted on its top with a hinge, upright by moving back and forth. Ob-
servers were impressed by this demonstration, as well as by later experiments
by Yamakawa in which he mounted a live mouse on top of the pendulum and
the system remained stable. Since then, a wide range of other applications has
been investigated or implemented; character and handwriting recognition, opti-

18 Related Work

AggregationInference
fication

Fuzzi−

O
ut

pu
t

In
pu

t

Defuzzi−
fication

FIGURE 2.4: A schematic view of a fuzzy logic controller.

cal fuzzy systems, voice-controlled unmanned vehicles, control flow of powders
in manufacturing film, elevator systems, et cetera.

Zadeh [136] devised fuzzy sets, an extension to Boole’s set theory [10], to
enable the assignment of an intermediate degree of membership to a subset. In
the classical Boolean set theory a subset B ⊂ S is defined by ∀x ∈ S: x 7→ {0, 1},
where x 7→ 1 means x ∈ B and x 7→ 0 means x /∈ B. A fuzzy subset F ⊂ S is
represented by ∀x ∈ S: x 7→ [0, 1] with the meaning of 0 and 1 unchanged, but
values in-between representing intermediate degrees of membership. This kind
of mapping is usually described by the membership function of F , commonly
denoted by µF (x), where µ is a truth value.

A decade after Zadeh’s introduction, Mamdani and Assilian [89] devised the
fuzzy logic controller (FLC), which differs from a classical proportional-integral-
derivative (PID) controller [93] in that it not only can be programmed by linguis-
tic statements, but also in that it performs better on non-differentiable problem
domains. Figure 2.4 gives a graphical representation of the processes in a FLC,
which I will discuss from left to right. In the fuzzification stage, all inputs are
mapped to truth values using membership functions. Given mappings of input
variables into membership functions and truth values, a fuzzy logic controller
has to determine the output based on a collection of logic rules in the form of
IF-THEN statements. In this process, inference calculates the outcome of each
single rule. If multiple rules fire on the same consequent linguistic variables, the
aggregation operator defines the combinatorial result. The final defuzzification
stage maps truth values to output values.

With respect to modelling electricity load, the classical fuzzy inference model
is applied [82, 98, 129], although the more sophisticated neuro-fuzzy models,
which are combinations of a neural network and a fuzzy inference system, are
applied as well [1, 21, 62]. Most of these methods are used as elements of hybrid
models, since they can not generalise by themselves.

Although the FLCs are appealing because of the linguistic statements, these
are also their drawback, e.g., linguistic statements have been inferred recur-
rently: they become lengthier if the outcome is less crisp. A vast amount of
linguistic statements is difficult to be interpreted by humans [11].

2.3.4 Evolutionary Computing

Holland began his work on genetic algorithms in the early 1960s. Followed by

2.3 Used Regression Techniques 19

Holland [60]’s publication, the interest in algorithms inspired by Darwin’s theory
of natural selection [39] flourished. As happens in many fields of science, the
container term evolutionary computing now encompasses many sub fields, such
as genetic algorithms and Koza’s [76] genetic programming. These algorithms
have been successfully applied to a large set of problems. Chen et al. [34] used
an evolutionary algorithm to build a combined forecasting method from several
other forecasting techniques. Bhattacharya et al. [7] employed a linear genetic
programming approach to model electricity-load patterns.

Although an interesting class of methods, it has an important drawback: any
evolutionary computing method is only as strong as its underlying model. The
computational costs also remain high, often a distributed computing approach is
needed to address the scalability issues [12].

2.3.5 Kernel Machines

Vapnik’s optimal margin classifier [18], which later became known as the support
vector machine (SVM), has drawn a considerable amount of attention [22, 37,
112]. SVMs belong to the family of kernel machines. They are closely related to
artificial neural networks, in fact, using a kernel machine with a sigmoid kernel
function is equivalent to a two-layer, feed-forward neural network. An arbitrary
kernel function can be used, for polynomial, radial basis function and multi-layer
perceptron functions in which the weights of the network are mostly found by
solving a quadratic programming problem with linear constraints, rather than by
solving a non-convex, unconstrained minimisation problem as in standard neural
network training.

Kernel machines have in common that they combine statistical learning the-
ory to optimise generalisation [123–125], mathematical programming to find
solutions efficiently, and the kernel trick to handle nonlinearity [3]. In case of re-
gression they use the fact that observational data can, under certain conditions,
be represented by a linear combination of kernel functions k [41, 128]

f(x) = w0 +
N∑

n=1

wnk(xn,x). (2.6)

One can, but often does not have to, deliberately design the similarity of points
in the state space by altering this kernel function. When considering Gaussian
(which is a radial basis function) kernel functions

k(u,v) = exp
(
− 1

2σ−2 ‖u− v‖22
)

, (2.7)

kernel machines can be regarded as a topology adaptive approach to radial basis
function networks (as discussed in subsection 2.3.2), with the locations of the
radial bases restricted to the set of inputs.

20 Related Work

Also derivative Bayesian methods have emerged, which include the relevance
vector machine [119, 120], Figueiredo’s method [48], and the kernelised Lasso
[109]. These methods tend to produce more accurate and concise results than
the support vector machine. However, they are computationally more costly than
the support vector machine.

Perhaps because kernel machines are relatively new, they are rarely found in
the load forecasting literature. Support vector machines were used in two entries
of the Eunite competition including the winning one [33, 107].

2.4 Quality Criteria

Quality criteria are an important topic, because one can go as far as saying that
any model can be better than any other model by merely using an other qual-
ity criterion. I consider three properties, successively accuracy, consistency, and
robustness.

Accuracy of a model is measured by the size of the average error resulting
from the model. This average can be determined in many different ways, and is
mostly obtained by a transformation on one of the vector p-norms of the dif-
ference between the predicted outputs ỹ and the actual outputs y, given by
‖y − ỹ‖p = (

∑
i |yi − ỹi|p)1/p. In this category, the vector p-norms most com-

monly used are the root-mean-square of the error

RMSE(y, ỹ) =
√

N−1 ‖y − ỹ‖22,

the mean absolute error MAE(y, ỹ) = N−1 ‖y − ỹ‖1, or the maximum absolute
error MAX(y, ỹ) = ‖y − ỹ‖∞. In the field of electricity-load forecasting, the
mean absolute percentage error

MAPE(y, ỹ) = 100 N−1
N∑

i=1

|yi − ỹi|/yi (2.8)

is a frequently used benchmark. The MAPE error benchmark has been used
by the great building energy predictor shootout [56] and the Eunite competi-
tion. The European Network of Excellence on Intelligent Technologies for Smart
Adaptive Systems organised an electricity-load forecasting competition in 2001,
where the MAX and MAPE error benchmarks were used.

Consistency is about the higher order moments of the error distribution. If
one estimates a probability density function of the error, ideally it should have
its mode located at the mean, and the distribution should tend towards a normal
distribution.

Robustness of a model addresses the performance in uncharted waters. This
can be measured by using cross-validation. In this approach, data are (repeat-
edly) split up in a training set and test set. The computational learning method

2.4 Quality Criteria 21

trains on the training set and consequently predicts for samples in the test set.
Error measures and distributions of the test set should be similar to that of the
training set.

Common benchmarks in determining the quality of the short-term wind-
power prediction are the persistence model and the mean-production model.
When using persistence, one takes the previous measured value(s) as the predic-
tion for the next value(s). The model to beat is the persistence model [54].

3
Smooth Bayesian Kernel Machines

Sparked by the introduction of the support vector machine [18], kernel machines
have become a popular tool to model measured data. As a result of the combina-
tion of several disciplines, these machines have in common that they combine the
kernel trick [3] and the principle of parsimony [112, 124]. The latter is brought
forth by obtaining a sparse set that utilises a small subset of the data to represent
a function.

A great deal of research has been done to find the optimum balance between
quality of fit and the size of the support vector set. A common approach is to
put a constraint or penalty on the model parameters, as is done by, e.g., the
0-norm support vector machine [131], 1-norm support vector machine [137],
or 2-norm support vector machine [116]. The relevance vector machine [120]
uses automatic relevance determination [86] to find that balance. Other types of
traditional regression methods, such as the Lasso [118], have also been applied
successfully in combination with kernels [109].

Quite some evidence can be found for the proposition that sparseness, in
some sense, equals smoothness [see, e.g., 49, subsection 2.2]. However, impos-
ing constraints on the magnitude of the weights alone does not necessarily result
in representations which are smooth in the output space (see figure 3.3). As yet,
no special attention is paid to the smoothness of the function, i.e., that it should
have continuous derivatives up to some order1.

Ramsay and Silverman [105] promote smoothness by a roughness penalty: a

1The smooth support vector machine [78] entails a formulation of the quadratic program of the
support vector machine.

24 Smooth Bayesian Kernel Machines

X H

Φ

FIGURE 3.1: A mapping Φ from input space X to feature space H.

penalty on the magnitude of one or more derivatives of the function. Advertised
advantages of this penalty are its flexibility, i.e., the freedom to design the penalty
to fit the problem at hand more adequately, and that it results in high quality
models.

The remainder of this chapter is organised as follows. In section 3.1, the
concept of smooth functional representations is laid down from the view of ker-
nel machines. I introduce derivatives of kernel machines, derivatives of several
kernel functions, and kernel roughness penalties. It is noted that through pe-
nalised regularisation, roughness penalties do lead to smoothness, but do not
lead to sparseness. To find a balance between smoothness and sparseness, I have
devised the smooth relevance vector machine [13], discussed in section 3.2. A
brief introduction to Bayesian model inference is given, followed by a novel prior
for sparseness and smoothness, its related model, and its update equations. Sec-
tion 3.3 shows comparative experimental results of the smooth relevance vector
machine on synthetic data.

3.1 Smooth Functional Representations

Kernel machines exploit the kernel trick, the idea of mapping data to a high-
dimensional feature space where some linear algorithm is applied that works
exclusively with inner products. Assume we have some mapping Φ from an input
space X to a feature space H, then a kernel function (or kernel)

k(u,v) = 〈Φ(u),Φ(v)〉 (3.1)

is used, under certain conditions, to define the inner product in feature space
H. Figure 3.1 illustrates the basic idea of the kernel trick: to linearise in feature
space H is equal to a nonlinear estimate in input space X . Some commonly used
kernel functions [53] are written down in table 3.1.

3.1 Smooth Functional Representations 25

TABLE 3.1: Some common kernel functions and their properties.

Type k(u,v) dimH
Linear 〈u,v〉 1
Polynomial (γ 〈u,v〉+ b)d

d
Exponential exp (−γ ‖u− v‖) ∞
Gaussian exp

(
− 1

2σ−2 ‖u− v‖2
)
∞

Sigmoid tanh(γ 〈u,v〉+ b) ∞

In supervised learning, we consider a data set D = (x1, y1), . . . , (xN , yN)
containing N input-output pairs (xi, yi) ∈ X × Y, with X typically containing
multidimensional vectors in RM , and Y representing either classes in case of
classification, or scalars in R in case of regression. I will consider the case of
regression. Wahba [128] shows that we can represent our data D using a linear
model of the form

y(x) = w0 +
N∑

i=1

wik(x,xi) (3.2)

with bias w0, parameters w1, . . . , wN , and a kernel function k(xi,xj) as defined
in (3.1).

In the field of functional data analysis, smoothness is favoured explicitly by
applying a roughness penalty [55], a penalty on the degree of curvature of one
or more derivatives of y(x). Fortunately, as y(x) in (3.2) is linear in terms of
kernels k(x,xi), its derivatives are defined by

Dny(x) =
N∑

i=1

wiD
nk(x,xi), (3.3)

where Dn is a derivative operator, which will be further developed below, to-
gether with derivatives of the Gaussian and polynomial kernel functions.

3.1.1 Derivative Kernels

To establish derivative kernels, let us rely on some basic vector calculus. For a
fixed xi, a kernel function k(x,xi) maps x to a scalar field, i.e., it is a function
such that k : Rn 7→ R. If the kernel function k(x,xi) is differentiable, the partial
derivative of a scalar field is defined in an unambiguous way. This results in
a vector field called the gradient, denoted by O : Rn 7→ Rn, and obtained by
O = ∂/∂x. To determine the derivative of that resulting vector field, we will use
the divergence operator, which involves an inner product and results in a scalar
field again, OTO : Rn 7→ R. In physical terms, the divergence of a vector field is

26 Smooth Bayesian Kernel Machines

the extent to which the vector-field flow behaves like a source or a sink at a given
point. So, in short, we use the gradient and divergence alternately, following a
recurrent definition

Dn =

{
ODn−1 forn odd,

OTDn−1 forn even.

Let D0k(x,xi) = k(x,xi), then the dimension of the n-th order derivative of
a kernel Dnk(x,xi) is either 1 for n is even, or M for n being an odd number,
where M is the dimension of underlying vectors x and xi. Because a kernel maps
to a scalar field, derivative kernels exist for n even or for M = 1 (or both).

Furthermore, if we use the following definition for the power operator for
vectors

xn =

{
(xTx)n/2 forn even,

x(xTx)(n−1)/2 forn odd,
(3.4)

we can simply substitute scalars for vectors in derivative calculus, with the prod-
uct operator assumed to be the inner product. The derivatives of the commonly
used Gaussian kernel and derivatives of the polynomial kernel are highlighted
next.

Gaussian Derivative Kernel

Derivatives of the Gaussian kernel k(u,v) = exp(− 1
2σ−2 ‖u− v‖22) are identified

by Rodrigues’ formula for Hermite polynomials

Hn(x) = (−1)n exp(x2)Dn exp(−x2). (3.5)

By letting the power operator for vectors be defined by (3.4), substituting the
term (

√
2σ)−1(u − v) for x in (3.5), and keeping track of additional terms of

(
√

2σ)−1, we arrive at the convenient compact form of the derivatives of Gaussian
kernels

Dnk(u,v) = (−
√

2σ)−nHn((
√

2σ)−1(u− v)) exp(− 1
2σ−2 ‖u− v‖22).

Figure 3.2 shows a Gaussian kernel and its first five order of derivatives. They
are located at 0 and shown for the domain [−3, 3].

Polynomial Derivative Kernel

Derivatives of the polynomial kernel k(u,v) =
(
γuTv + λ

)d
are found to be

Dnk(u,v) =
d!

(d− n)!
γnvn

i

(
γuTv + λ

)d−n

which is valid in this instantiation as long as d ≥ n.

3.1 Smooth Functional Representations 27

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

x

k(
x
, x

i)

−3 −2 −1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

x

D
3 k(

x
, x

i)

−3 −2 −1 0 1 2 3

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

x

D
1 k(

x
, x

i)

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

x

D
4 k(

x
, x

i)

−3 −2 −1 0 1 2 3

−1.0

−0.5

0.0

0.5

x

D
2 k(

x
, x

i)

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

x

D
5 k(

x
, x

i)

FIGURE 3.2: Gaussian kernel (parametrised by σ = 1, top left), and its first
five orders of derivatives.

3.1.2 Kernel Roughness Penalties

An applied roughness penalty can be related to the assumption that the regres-
sion surface is made of some kind of elastic sheet. It is observed in nature that
tensions in any elastic sheet tend to be distributed to an overall minimum value.
The regression surface can be assumed to be such an elastic sheet. In this case,
the tensions in this surface will have to be kept at an overall minimum, or limited
to a maximum.

Let a kernel matrix K be a matrix with entries Kij = k(xi,xj) for inputs
x1,x2, . . . ,xN ∈ X , and let a design matrix H = [1K] be a matrix that consists
of the combination of [1, 1, . . . , 1]T and a kernel matrix,

H =


1 k(x1,x1) k(x1,x2) . . . k(x1,xN)
1 k(x2,x1) k(x2,x2) . . . k(x2,xN)
...

...
...

. . .
...

1 k(xN ,x1) k(xN ,x2) . . . k(xN ,xN)

 .

For example, in a regularisation setting, applying a roughness penalty can be ac-
complished by penalising the summed curvature of the second order derivatives

min ‖y −Hw‖22 + λ
∥∥D2Hw

∥∥2

2
(3.6)

with D2H = [0D2K] being a design matrix of a second order derivative kernel
with D2Kij = D2k(xi,xj). For λ = 0, this imposes an ordinary least squares, and
for λ → ∞, the result will approximate a straight line. Besides a penalty on the

28 Smooth Bayesian Kernel Machines

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

x

y

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

x

y

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

x

y

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

x

y

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

x

y

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

x

y

Low penalty High penalty

FIGURE 3.3: Ridge penalised regression (top row) and roughness penalised
regression (bottom row).

second order derivative as shown in (3.6), more generally, a linear differential
operator

Ly(x) =
∑

n

cnDny(x) (3.7)

can be defined [104], and used to form a weighted sum of penalties on Dny(x)
from (3.3). If applied in penalised regularisation, L takes the shape

min ‖y −Hw‖22 + λ ‖Lw‖22 (3.8)

with L a roughness penalty matrix, formed by the sum of several derivative de-
sign matrices L =

∑
n cnDnH. The optimisation problem in (3.8) is solved by

w = (HTH + λLTL)−1yTH.
Figure 3.3 illustrates the difference in results between ridge penalised regres-

sion, which can be obtained by solving for

min ‖y −Hw‖22 + λ ‖w‖22 , (3.9)

and roughness penalised regression, both on a noisy sine function N (sin(x), 0.2)
on the domain [0, 2π]. The amount of penalty (controlled by changing parame-
ters λ in (3.8) and (3.9)) is increased from left to right. In this case, a Gaussian
kernel has been used with σ = 0.2, and the 4th order Gaussian derivative ker-
nel has been penalised for roughness. The roughness penalty structure deviates

3.2 Smooth Relevance Vector Machine 29

from the usual kernel machines in the sense that it uses a projection of the fea-
ture space on a lower-dimensional (but often still high-dimensional) space to
determine the amount of penalty placed on the model parameters.

Despite reasonable conditions of matrices HTH and LTL, this system of
equations is singular in case of duplicate inputs. In the field of functional data
analysis, this is addressed by pre-processing, such as starting with the dominant
frequencies [105]. Also, the choice of parameters λ is done manually by methods
such as cross-validation.

Although the resulting functions are smooth, regularisation as in (3.8) does
not promote sparseness. My aim is to have a representation that is both smooth
and sparse, and in addition to have an automatic selection of the value of param-
eter λ.

3.2 Smooth Relevance Vector Machine

In essence, the Bayes approach provides a probabilistic rule explaining how you
should change your existing beliefs in the light of new evidence. In other words,
it allows us to combine new data with our existing (prior) knowledge or exper-
tise.

Assume we formulate a parametrised model for the data. If these model
parameters are subject to existing beliefs also, we speak of a hierarchical Bayesian
model [25]. We could state beliefs of these beliefs and beliefs thereof et cetera,
but the hierarchy must stop at some point: we will use the observed data to
estimate the final stage parameters. MacKay [85, 86, 87, 88] showed that a two-
stage hierarchical Bayesian model can embody Occam’s razor: certain prior ideas
on the model parameters enforce the model to be fitted in a concise way. Stated
differently, with this we can find the least complex explanation for the evidence,
the observed data.

Perhaps even more important in practice is that non-hierarchical models are
usually inappropriate: with a few parameters, they cannot fit large datasets ac-
curately, whereas with many parameters, they tend to over-fit such data. This
over-fitting takes place in the sense that the producing models fit well to the
existing data but lead to inferior predictions for unseen data [52]. To put it
differently, they lack generalisation.

In a Bayes approach we have to specify a model for the observed data D =
(x1, y1), (x2, y2), . . . , (xN , yN) given an unknown parameter vector w; this is
specified in (3.2). Let us further assume that parameter vector w is a random
quantity as well, having a prior distribution p(w |θ), where θ is a vector of hyper-
parameters (or second-stage parameters). Normal Bayesian inference concerning
w is then based on its posterior distribution

p(w |y,θ) =
p(w,y,θ)
p(y,θ)

=
p(y,w |θ)
p(y |θ)

(3.10)

30 Smooth Bayesian Kernel Machines

where p(y |θ) is the marginal distribution of y

p(y |θ) =
∫

p(y |w)p(w |θ) dw.

If the hyper-parameter vector θ is unknown, the fully Bayesian approach would
adopt a second-stage prior distribution, a hyper-prior distribution p(θ) which al-
lows inference concerning θ to be based on

p(θ |y) =
∫

p(y |w)p(w |θ)p(θ) dθs
p(y |η)p(η |θ)p(θ) dη dθ

=
∫

p(w |y,θ)p(θ |y) dθ. (3.11)

If the hyper-prior distribution p(θ) cannot be specified, it is possible to follow an
empirical Bayes approach. The name empirical Bayes stems from the fact that
we are using the data to estimate hyper-parameter vector θ by θ̂. The empiri-
cal Bayes approach essentially replaces the integration in the right-hand side of
(3.11) by a maximisation, also known as the marginal maximum likelihood es-
timation. In that case, inference is based on the estimated posterior distribution
p(w |y, θ̂).

3.2.1 A Novel Prior for Smoothness and Sparseness

To fit (3.2) in a Bayesian framework, we will assume that our observational data
D = (x1, y1), (x2, y2), . . . , (xN , yN) are corrupted by independently and identi-
cally distributed (iid) noise generated by a Gaussian probability function (de-
noted by N)

yi
iid∼ N

(
y(xi), σ2

)
.

Although this can be a dangerous assumption, it is often a good approximation
due to a surprising result known as the central limit theorem. This theorem states
that the mean of any set of random variables with any distribution having a finite
mean and variance tends to the Gaussian distribution.

I combine the idea of regularisation by a roughness penalty with a Bayesian
sparseness inducing prior. As described above, I presume that the outputs are
corrupted by Gaussian noise,

p(y |w, σ2) = N (y |Hw, σ2I). (3.12)

To promote both smoothness and sparseness, I propose a zero-mean Gaussian
prior over the weights, and a covariance matrix consisting of two terms

p(w |α, λ) = N (w |0, (λLTL + A)−1). (3.13)

The first term λLTL is the smoothness promoting part, formed by a roughness
penalty matrix defined underneath (3.8). The second term is a diagonal matrix

3.2 Smooth Relevance Vector Machine 31

TABLE 3.2: The prior used by the RVM and the SRVM.

Method Prior
RVM [120] p(w |α) = N (w |0,A−1)
SRVM [this thesis] p(w |α, λ) = N (w |0, (λLTL + A)−1)

A = diag(α0, . . . , αN) containing one hyper-parameter αi per weight wi, as in
automatic relevance determination (ARD) [88], as applied in the relevance vec-
tor machine (RVM) [120]. Table 3.2 shows the difference between the priors of
the RVM and my SRVM.

3.2.2 Posterior Distributions

To arrive at the posterior distributions, we could integrate out the weights,∫
p(y |w, σ) p(w |α, λ) dw

but there is another way to get there, that is, by exploiting Bayes’ rule

p(y |w, σ2) p(w |α, λ) = p(y |α, σ2) p(w |α, σ2). (3.14)

Substitution of (3.12) and (3.13) into the left-hand side of (3.14) results in a
product of two Gaussians

N (y |Hw, σ2I)N (w |0, (λLTL + A)−1). (3.15)

Let us consider the terms in the exponent of the product of the Gaussians in
(3.15),

σ−2yTy − 2wTσ−2HT y + wT
(
σ−2HTH + λLTL + A

)
w.

This can be rewritten using a matrix multiplication identity that is given by (a−
Bc)TB−1(a−Bc) = aTB−1a− 2aTc + cTBc, by defining

Σ =
(
σ−2HTH + λLTL + A

)−1
, and

µ = Σσ−2HTy,

substituting, rewriting, and grouping, to end up with

(w − µ)T Σ−1 (w − µ) +
yT(σ−2I− σ−2H(σ−2HTH + λLTL + A)−1HTσ−2)y)

.

32 Smooth Bayesian Kernel Machines

The latter part can be rewritten using the matrix inversion lemma (also known
as the Sherman-Morrison-Woodbury identity) given by

(A + XBXT)−1 = A−1 −A−1X(B−1 + XTA−1X)−1XTA−1

to obtain

(w − µ)T Σ−1 (w − µ) + yT
(
σ2I + H

(
λLTL + A

)−1
HT

)−1

y (3.16)

as the terms in the exponent. We can re-express (3.16) as a product of two
Gaussians

N (w |µ,Σ)N (y | 0, σ2I + H(λLTL + A)−1HT)
which is the right-hand side of (3.14) that we are looking for. The posterior
distributions are given by

p(w|y,α, λ, σ2) = N (w|µ,Σ),
p(y|α, λ, σ2) = N (y|0, σ2I + HSHT).

with Σ = (σ−2HTH + S−1)−1, S = (λLTL + A)−1 and µ = σ−2ΣHTy.

3.2.3 Obtaining Posterior Modes

To obtain (locally) optimum values for α, λ and σ2, we will follow a type-II
maximum likelihood approach similar to that of the RVM [120]. Of course, the
normal procedure for finding optima of functions, is to differentiate the function
and to find the roots.

We take a Gamma prior over the parameters α, σ2 and λ. Therefore, we
maximise

log p(y| log α, log β, log λ) +
∑

log p(log αi) + log p(log β) + log p(log λ)

which gives the following objective function (as in ref. Tipping).

L = − 1
2 log |σ2I+H(λLTL+A)−1HT|+yT(σ2I+H(λLTL+A)−1HT)y (3.17)

the first term is rewritten using the matrix inversion lemma for determinants
|A + XBXT| = |B||A||B−1 + XTA−1X| to

|σ2I + H(λLTL + A)−1HT| = |(λLTL + A)−1||σ2I||Σ−1|

When taking the log, use the identity log a−1b−1 = − log a− log b to obtain

log |σ2I + H(λLTL + A)−1HT| = − log |λLTL + A|+ N log σ2 − log |Σ|

and the data dependent term is rewritten as

= σ2yTy − σ2yTHΣHTyσ2

= σ2yT(y −Hµ)

= σ2 ‖y −Hµ‖2 + µ(λLTL + A)µ.

3.2 Smooth Relevance Vector Machine 33

Hyper-parameters

In order to obtain an update rule for the hyper-parameters αi, an identity of the
derivatives of the determinant is used, ∂ log |X(z)|/∂z = Tr(X−1∂X/∂z). Here,
Tr is the trace operator, defined to be the sum of the values on the diagonal of a
matrix. Derivatives of (3.17) with respect to log αi are

∂L
∂ log αi

= − 1
2 (−αiSii + αiΣii + αiµ

2
i) + a− bαi, (3.18)

here the fact is used that values on the diagonal are computable when multiply-
ing with a diagonal matrix. Solving for αi in (3.18), thereby following MacKay
[85], the update rules become

αt+1
i =

αt
i(Sii − Σii)

µ2
i

. (3.19)

Note that in the case of λ = 0, then Sii = (α−1
i)t, which makes (3.19) identical

to the update equation for the hyper-parameters used by the original RVM [120].

Noise variance

With respect to log σ2 the derivatives of (3.17) are

∂L
∂ log σ2

= − 1
2 (N − Tr(Σσ−2HTH))− σ2 ‖y −Hµ‖2 .

This can be written as

(σ2)t+1 =
‖y −Hµ‖2

N − Tr(Σ(σ−2)tHTH)
. (3.20)

which re-estimates the noise variance σ2.

Smoothness parameter

For the smoothness parameter λ, the derivative with respect to log λ is given by

∂L
∂ log λ

= − 1
2 (−Tr(SλLTL) + Tr(ΣλLTL)) + λµTLTLµ

The roughness-penalty parameter λ is updated by

λt+1 =
(Tr(SλtLTL)− Tr(ΣλtLTL))

µTLTLµ
. (3.21)

In practice, we obtain traces of SA and ΣA by evaluating (3.19). We compute
Tr(ΣλtLTL), and obtain the other trace in (3.21) by Tr(SλtLTL) = N−Tr(SA),
and the trace present in (3.20) by using Tr(Σ(σ−2)tHTH) = N − Tr(ΣA) −
Tr(ΣλtLTL).

34 Smooth Bayesian Kernel Machines

TABLE 3.3: Comparative performance.

Method SVs D0 D2 D4

RVM (old) [120] 6.5± 1.0 0.047± 0.010 0.054± 0.014 0.106± 0.030

RVM (new) [121] 6.0± 1.1 0.049± 0.010 0.056± 0.013 0.108± 0.026

Figueiredo [49] 6.3± 1.3 0.053± 0.012 0.067± 0.022 0.136± 0.051

KRLS [44] 17.0± 0.0 0.054± 0.012 0.077± 0.017 0.242± 0.066

SOG-SVR [43] 17.0± 0.0 0.062± 0.010 0.050± 0.008 0.062± 0.012

AO-SVR [84] 20.7± 3.2 0.057± 0.011 0.112± 0.029 0.374± 0.115

SRVM [this thesis] 16.3± 3.4 0.039± 0.009 0.030± 0.009 0.033± 0.013

3.3 Experimental Results

To measure the effectiveness of the proposed Bayesian model, we have per-
formed a series of experiments. Because we need availability of the derivatives
of the underlying function in order to be able to measure and compare perfor-
mances, I have chosen the well-known sinc benchmark.

The data for one experiment consist of 50 points, with xi uniformly dis-
tributed over [−10, 10], and yi ∼ N (sinc(xi), 0.1). On these data, I trained a
series of kernel machines, as shown in the first column of table 3.3. Besides the
smooth relevance vector machine (SRVM) that I have proposed in this chapter,
six other kernel machines have also been implemented with the kernel-machine
library (described in chapter 5): three types of Bayesian kernel machines, and
three types of deterministic kernel machines.

Two algorithms implementing the relevance vector machine (RVM) have been
used; the algorithm presented in the original paper [120], and the more recent
and faster algorithm [121]. Next is Figureido’s method, which is also a Bayesian
type of kernel machine using a Jeffrey’s non-informative hyper-prior in order to
promote sparse solutions. Figueiredo showed that his method is computationally
faster than the original RVM, and that its solutions had the same quality as those
of the RVM.

The kernel recursive-least-squares (KRLS, [44]) algorithm is a greedy on-
line method that uses an approximate linear dependency test to select the active
set of the support vectors. This way of determining the support vectors is also
applied in sparse on-line greedy support-vector regression (SOG-SVR), which is
also an algorithm by Engel et al. [43]. These two methods have in common
that they are greedy, i.e., they do not find an exact solution, but rather trade-off
accuracy against computational costs. This is not the case for the accurate on-
line support-vector regression algorithm (AO-SVR, [84]). This algorithm applies
changes to the parameters while maintaining the Karush-Kuhn-Tucker (KKT, [69,
77]) conditions. These conditions guarantee that a global optimum will have

3.3 Experimental Results 35

−10 −5 0 5 10

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

y(
x)

sinc
RVM
SRVM
AO−SVR

−10 −5 0 5 10

−0.5

0.0

0.5

x

D
4 y(

x)

sinc
RVM

SRVM
AO−SVR

FIGURE 3.4: Input data to a single experiment, the underlying sinc(x) func-
tion, and the resulting RVM, SRVM, and AO-SVR (left). Right,
the 4th order derivative of sinc(x), RVM, SRVM, and AO-SVR.

been found. Training points are presented to the algorithm one at a time, thereby
enabling a truly incremental way to find the solution. It delivers an exact solution
to the mathematical programming formulation of support vector regression [41].

For the smooth relevance vector machine (SRVM), I have chosen to penalise
the 10th order derivative only, which should effectuate smoothness up to the 8th
order [105]. A Gaussian kernel is used by all methods, parametrised by σ = 1.6.
I repeated this experiment 1000 times. Table 3.3 shows the mean and standard
deviation of the results, subsequently of the number of basis vectors, and of the
root-mean-square of errors of zeroth, second, and fourth order derivatives.

As shown in table 3.3, smoothness requires notably more support vectors
(SVs) than common sparse Bayesian models. In contrast, the support vectors
seem to be spent wisely, because the error on all derivative orders is consistently
lower than that of the compared methods. Figure 3.4 illustrates a function that
is smooth in output space. Although at first sight the fit of the function itself
is not drastically different from others (left), the gain in quality of fit is clearly
visible in a higher order derivative (right): the SRVM shows a good match with
the underlying sinc function.

“Engineering problems are under-defined, there are many solutions, good, bad
and indifferent. The art is to arrive at a good solution. This is a creative activity,
involving imagination, intuition and deliberate choice.”

Ove Arup (1895–1988)

4
Modelling Electricity Load

This chapter deals with the merger between the domain specific knowledge of
electricity-load patterns and kernel machines. In section 4.1, I will describe the
generic architecture that is used for both the electricity-demand model and the
wind-power production model. The modelling step of this architecture is dis-
cussed in section 4.2. For the electricity-demand model, the layout of a multi-
component setup, and representations needed to embed the domain specific
knowledge are developed in section 4.3 [14]. Section 4.4 blends wind-power
production patterns with a kernel machine [15].

4.1 System Architecture

Because the electricity-demand model will have to satisfy different applications,
the model type is chosen to be the causal type (see subsection 2.1.1). It can
deal with missing values; it does not need a contiguous data set. The overall
system architecture is shown in figure 4.1. It illustrates the three different stages
of dealing with a load model: the modelling, calibrating and predicting stages
(shown with a light-grey background colour). These three stages are discussed
below.

• Modelling. Modelling involves creating and obtaining the model itself.
Data analysis has to be performed, input parameters have to be selected,
pre-processing steps have to be suited to the problem at hand, and also
the needed historical data are selected. A more detailed description of

38 Modelling Electricity Load

Evaluation

ParametersCalibrating

Modelling

Calendar
history

Weather
history

history
Load

Predictingprocessing
Pre−

Model
predictions
Calendar

predictions
Weather

Load
predictions

FIGURE 4.1: Architecture of the electricity-load prediction system.

the procedure used to obtain a model is described in section 4.2. Once
the modelling is done, the model structure can be used for a number of
different applications. The same model can be used to (re-)calibrate the
its parameters to suit different electricity-load patterns. E.g., one model
could be used for the electricity-load patterns of a series of customers. The
modelling phase includes the use of historic data of load patterns, calendar
events and weather patterns, but this phase also defines the structure of
the patterns to be used for predictions. The calendar database may be
implemented by a lookup table or scripts generating a series of dates and
their associated day-types, but, it could also be that the calendar history is
not needed at all.

• Calibrating. The need for recalibration of the model depends on the pur-
pose the predictive model will be used for, the aim of calibrating a model
is to (re-)fit the model to historic data. When modelling is done, the cali-
bration boils down to finding the right parameters on the basis of historic
weather measurements, historic calendar events, and of course, the his-
toric dependant variables, the historic electricity-load patterns. The his-
toric weather patterns should match the same period of the historic load
patterns. E.g., when newer or other history has become available, one can
consider to (re-)calibrate the model. If the calibration engine is enhanced
(e.g., by the introduction of a newer type kernel machine), the predictive
quality of all models can be enhanced.

• Predicting. When predicting, the model constructs an electricity-load pre-
diction, aided by predicted calendar-events and numeric weather-forecasts
fed to it. The model will return a load prediction, which is presented to an
end-user by some graphical user-interface. For a day-to-day use of a short-
term forecasting system, one could expect that the prediction stage is the
most frequently consulted one. And for the other extreme, for customer

4.2 Modelling Process 39

Evaluate

Fit to data

Preprocess

enhancements
Propose

data
Gather newInitial

model

FIGURE 4.2: Modelling process.

profile analysis, it could be that the prediction step is performed only once.

The presented structure implies that for the model to be able to predict, it is
adamant that predicted weather data are available from the same weather sta-
tions as were used during the modelling process. E.g., atmospheric data for
the purpose of wind-power generation prediction should be available from all
selected weather stations.

4.2 Modelling Process

The modelling process has been set up in the way depicted in figure 4.2. The
process begins with an initially proposed model, depicted on the left of the figure.
Next, the model will be fitted to the data after which the results will be evaluated.
Hereafter, enhancements to the system will be installed. If necessary, new data
will be collected and the processing steps repeated. A more detailed treatment
of these steps is given below.

• To pre-process. Before a non-linear regression is executed by the kernel
machine, I will apply a series of preprocessing steps to the input variables.
For all kernel machines, I will use a Gaussian radial basis function (RBF)
kernel [53], expressed by

k(u,v) = exp
(
− 1

2σ−2‖u− v‖22
)

since it has shown good all-round results, also on time series predictions
[96]. As a radial basis function, it has the foundation to formalise repre-
sentations in a flexible way. However, inputs will have to be represented
in a way that suits well to the Gaussian kernel. Although a kernel can be
interpreted as an inner product in feature space, it can also be regarded
as a measure of similarity. Because of this, I consider pairwise distances of
patterns when designing preprocessing transformations.

• To fit to the data. Fitting of the model will be done by a kernel machine
on the pre-processed data. Testing the quality of the model will be done by

40 Modelling Electricity Load

visual inspection, and by measuring generalisation by means of a split of
the data in a training set and a test set. A maximum generalising power is
desired, i.e., a low train error alone is clearly not desirable.

• To evaluate. The evaluation is more an evaluation of the input space than
an evaluation of the fit on the data itself; that has been taken care of in the
previous step. Once a new variable is added, the correlation of the error
with all existing input variables is checked. It is best if the input variable
set is as linearly independent as possible with respect to the already cre-
ated input space. The maximum errors are located and investigated for
similarity of occurrence.

• To propose enhancements. Given the results from the previous steps,
I can propose enhancements to improve the model. Information about
the output variable that is inherent in the input space, or feature space,
is of utmost importance [74]. While, in a theoretical sense, having more
features should only give us more discriminating power, this is often not
the case because of the added redundancy or noise. Supervised learning
methods perform best if the training data contain as little irrelevant and
redundant features as possible. As with linear regression problems, I will
do a straightforward incremental selection of input variables.

• To gather new data. For a number of variables, new data will have to be
gathered to be able to represent the needed variables. What variables have
been gathered is described in the data analysis sections below.

4.3 Electricity Demand Model

A common start when creating models is to identify the variables with which
a historically verifiable link can be established. In subsection 4.3.1, I seek for,
and discuss, phenomena present in electricity demand patterns. The multi-
component setup of the electricity demand model is motivated and elicited in
subsection 4.3.2. Novel representations of several electricity demand specific
concepts designed for a radial basis such as the Gaussian kernel are discussed in
the next two subsections.

4.3.1 Data Analysis

I am able to use a data set measured at the province North Holland in the Nether-
lands, consisting of historical hourly electricity demand measurements made dur-
ing 1996, 1997, and 1998. Also for the same period I have collected the hourly
temperature, wind speed, and radiation measurements from a weather station
located at Amsterdam Airport Schiphol as an indication for weather related cir-
cumstances.

4.3 Electricity Demand Model 41

The data set has been extended with the following calendar related attributes:
day of the year, day of the week, local time of the day, and a daylight saving in-
dicator. To describe events with a larger time horizon (such as seasonality), an
accurate and complete collection of features describing Earth’s position in the
ecliptic (the geometric plane that describes the orbit of the Earth) has been gath-
ered. Moshier’s ephemeris calculator1 is used to generate the longitude (angle),
latitude (tilt), and the radius (distance) for all measurements. The Sun’s altitude
and the Sun’s azimuth have been computed for the Netherlands. The Sun’s alti-
tude is the angle of the Sun with the horizon, while the azimuth expresses the
angle between the Sun and the geographic north. Attributes describing all Dutch
national, school, and construction holidays have been gathered and included.

Because data play a central role in electricity-demand modelling, I will discuss
below the variables that I consider to have a relationship with electricity demand
to a certain extent.

Sunlight

The Earth’s axial rotation and orientation towards the Sun cause yearly and daily
cycles in almost all its dynamic systems, and electricity consumption is not an
exception. Sunlight intensity is an important natural factor that directly and
indirectly influences electricity load. The most obvious direct influence is that
lights will be switched on whenever the illumination of the surroundings drops
below a certain limit.

As the Netherlands are not situated close to the equator, the daylight duration
changes throughout the year. Figure 4.3 (left) illustrates this by showing the
yearly electricity load pattern of the North Holland data on Mondays at 8 PM. It
clearly shows the seasonality of summer (low loads) and winter (high loads) in
the electricity load. The Sun’s altitude (figure 4.3, right) indicates lower loads
with higher altitudes, i.e., the higher the Sun rises above the horizon, the more
light there is, the less electricity will be used.

Cloud cover may have such a dampening effect on the sunlight that is passing
through that people switch on the lights as well. Also, in order to save energy, the
clock is set forward and backward one hour in spring and autumn, respectively.
The effect of this daylight saving time can best be noticed at times of the day
when the light intensity changes considerably (i.e. at twilight).

Temperature

A part of the electricity consumption depends on temperature-sensitive processes
or controllers. The electricity requirements of such processes are mostly nega-
tively related to the temperature, for example electrical heating-systems and an
aluminium factory require more energy when the ambient temperature is lower

1The software used for these calculations can be found at http://www.moshier.net/.

42 Modelling Electricity Load

0 50 150 250 350

1000

1100

1200

1300

1400

1500

1600

Day of year

E
le

ct
ric

ity
 lo

ad
 (

M
W

h)

−30 −20 −10 0 10

1000

1100

1200

1300

1400

1500

1600

Sun altitude (°)
E

le
ct

ric
ity

 lo
ad

 (
M

W
h)

FIGURE 4.3: Yearly patterns of the North Holland data set of Mondays at 8
PM seen from different perspectives.

and vice versa. However, the opposite can also be true, e.g., for refrigerators and
air-conditioning systems. The utilisation factor of these systems is one of the fac-
tors that determine the overall correlation between temperature and electricity
use. Figure 4.4 (left) relates ambient temperature and electricity load measure-
ments of the North Holland data set at 5 AM. Near-linear relationships show for
the working days (the high density points at the top), and Saturday and Sun-
day (which are at the middle and bottom of the figure). Earlier work assumed
linearity [e.g., 30, 75], but for the data under consideration, that hypothesis is
falsified by inspection of figure 4.4 (right). This plot of the North Holland data
at 5.00 hrs demonstrates non-linearity between ambient temperature and elec-
tricity load. Brierley and Batty [20] noted that people tend to react slowly to
quickly changing weather conditions. If not taken into account, this could lead
to wrongly estimated electricity demands after relatively large changes in tem-
perature.

Wind

Wind is a weather variable of which the direct relation with the electricity de-
mand is hard to establish. However, Brierley and Batty [20] found that elec-
tricity loads on windy days tend to be systematically underestimated if the wind
chill factor is not taken (sufficiently) into account. The same is true for buildings
that are sensitive to draught. They also reported that thunderstorms can greatly
influence electricity requirements.

4.3 Electricity Demand Model 43

−10 0 10 20 30

1000

1200

1400

1600

1800

Temperature (°C)

E
le

ct
ric

ity
 lo

ad
 (

M
W

h)

−10 0 5 10 20

600

650

700

750

800

850

Temperature (°C)

E
le

ct
ric

ity
 lo

ad
 (

M
W

h)

FIGURE 4.4: Temperature versus load at 1 PM (left) and at 5 AM (right).

Working Hours

Despite the continuing move towards a 24-hour economy in the Netherlands,
people tend to sleep at night, and most jobs are still from 9 to 5. During working
hours, more electricity-consuming devices (such as heavy machinery) are used
than outside working hours. In the same context, a typical weekly load pat-
tern can be identified because the days from Monday through Friday are typical
working days.

Holidays occur rather irregularly while influencing large groups of consu-
mers, and therefore they are one of the more interesting phenomena. This is
exemplified in figure 4.5 by a period surrounding the Queen’s Birthday and As-
cension day of 1996 of the North Holland data. The first days of interest in fig-
ure 4.5 are the Queen’s Birthday (point 2) and Ascension day (point 4), showing
an irregular electricity usage pattern because most people do not work on public
holidays. In terms of electricity load, these days look like Sundays. The subse-
quent Thursday and Friday following the Queen’s Birthday (point 2) show no
drastic differences from normal. However, the Friday (point 5) after Ascension
day clearly shows that many people take the day off between two non-working
days [75]. These days are called bridge days. Other atypical days can also be
identified, e.g., in the south of the Netherlands, electricity use during carnival
shows typical public holiday patterns. Also, Good Friday, being actually a work-
ing day two days before Easter, shows similarities to the pattern of a bridge day.
For similar reasons Christmas Eve and New Year’s eve (may) show the same pat-
tern.

School holiday periods and the summer holidays show recurring yearly pat-

44 Modelling Electricity Load

0 50 100 150 200 250 300 350

400

600

800

1000

1200

1400

Time offset (hours)

E
le

ct
ric

ity
 lo

ad
 (

M
W

h)

1 2 3 4 5

FIGURE 4.5: A period of two weeks in 1996 starting on Monday (point 1),
with two public holidays (points 2 and 4), a school holiday
(exemplified by point 3) and a bridge day (point 5).

terns of electricity demand. The Netherlands stagger the timing of several school
holidays over three regions so as to prevent traffic jams and over-occupied recre-
ation areas. Non-summer school holidays start early in the North region, then in
the Central region, and the South region vacations start last [2]. Summer hol-
idays fall in different periods, using the same staggering method as the school
holidays, but with a less straightforward starting scheme. The starting times are
rotated over a period of six years, in which a region will start early twice, then
middle once, late twice, and middle once again. An interesting issue also in this
category is the construction holidays (the Dutch Bouwvak), because a large part
of the heavy-duty machinery is not operating during that time. Construction hol-
idays are divided over three regions like the school summer holidays and the first
construction holiday starts at the same time as the first school summer holidays.
The impact of a school holiday is visible when comparing the Monday at point 3
in figure 4.5 with the Monday a week before, at point 1. The impact of the var-
ious holidays may vary considerably; e.g. the Christmas holiday has a greater
impact on the electricity load than any other holiday.

Extreme Events

Happenings such as strikes and large media events can change the electricity
use pattern to a large extent. For instance, football matches may have such a
big influence because a large part of the population will be glued to its TV set.
Electricity use is lower than usual, but during half-time people will take a beer,

4.3 Electricity Demand Model 45

Component 1

Component 2

Component P

y1, y2, . . . , yN

ε

ε

ε

x1,1, . . . ,x1,N f1(x)

x2,1, . . . ,x2,N f2(x)

xP,1, . . . ,xP,N fP (x)

FIGURE 4.6: Multi-component architecture and its iterative fitting proce-
dure.

turn on lights etc., and a peak in demand results. These changes in demand are
called TV pick ups2. Only a few particular football matches seem to have this
influence; otherwise the effect is negligible.

Indirect Influences

Sunlight and half-time of a football match have an immediate effect on the elec-
tricity load, which other variables, such as temperature, have not: e.g., it takes a
while before a building cools down or warms up. Historical (or lagged) record-
ings can be introduced to make these time-delayed influences measurable.

4.3.2 Multi-component Setup

Let us assume that the relative influence of temperature, wind, and other weather
related variables is the same for all day types. To increase the orthogonality of
these (and other) input variables, we do not want to mix the input space in which
the day types reside with that of the temperature. Quite a common approach is to
combine the predictions in such way, that the electricity load is assumed to be a
(weighted) sum of a number of components such as the base load, trend, season,
temperature and irregular components [100]. An increase in orthogonality can
be achieved by a weighted sum of different kernel machines from (2.6), given by

y(x) =
∑

j

fj(x) =
∑

j

wj,0 +
Nj∑

n=1

wj,nk(xj,n,x)

 . (4.1)

The fitting procedure is illustrated by figure 4.6. We start by fitting the first kernel
machine f1, or component 1, to the data. The next step will be to fit component

2The National Grid website at http://www.nationalgrid.com/uk/activities/mn_pickup.

html shows several TV pick ups.

46 Modelling Electricity Load

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Offset (hours)

D
is

ta
nc

e

0 10 30 50 70

−1.0

−0.5

0.0

0.5

1.0

Time (hours)

V
al

ue

FIGURE 4.7: Cyclic time-of-day representation distances (left), and cyclic
day-type representation (right).

2 to the residual of step 1. This procedure is repeated for all P components until
the residuals of all components have converged.

4.3.3 A Novel Day-type Representation

One of the main characteristics of electricity load data are periodic events such
as days, weeks and years. Although this set of periodic events sounds quite
straightforward, it is one of the hardest representation problems when modelling
electricity load.

Time of the day has been represented in various ways: in a binary form, a lin-
ear form and a trigonometric form. The linear form is represented by something
like xi = c · td, which can be a numbered hour or half hour [e.g. 1]. The time-
of-day can also be represented by binary encoding [e.g. 71]. The disadvantages
of the linear forms are the jumps in value if the day changes (i.e. a sawtooth
function over time). A possible solution to this is the other form, which is a sine-
cosine quadrature [45, 47, 95], which expresses the normalised time of day td
using xi(t) = sin(2πtd) and xj(t) = cos(2πtd). From a distance point-of-view, the
polar variant is the correct one in terms of day-to-day transitions [45]. Figure 4.7
(left) illustrates this by showing the computing distance from a fixed time of day
to the future.

Although weeks are regular periodic events, many different week patterns
may be present in the data because of public holidays. Because a day is a nom-
inal variable, every day is assigned an associated day type. A great deal of re-
search has been performed to figure out how many different day-types could be
defined in electricity-load forecasting by using self-organising maps (see subsec-
tion 2.3.1). Without loss of generality, I will assume that every day of the week
has a unique demand pattern [42].

Nearly all researchers use a 24-hour day-type representation for each calen-

4.3 Electricity Demand Model 47

0 10 20 30 40 50 60 70

600

800

1000

1200

1400

Time offset (hours)

E
le

ct
ric

ity
 lo

ad
 (

M
W

h)

Tue Wed Thu

FIGURE 4.8: The error made by all systems using 24-hour day-type repre-
sentations is illustrated in the circle near hour 50.

dar day starting at midnight. However, this representation does not force smooth
day-to-day transitions on the system: it does not consider the case that a day type
may differ when the day is followed by, preceded by, or by chance is a public
holiday, which will cause a jump on the transition point. Figure 4.8 shows the
adjacent days to the Wednesday at point 2 of figure 4.5, and of the Wednesday
a week before that, when no public holiday occurred. The circle near hour 50
in figure 4.8 illustrates that if the day-type representation of Thursday does not
take into account that the preceding day has been a public holiday, the modelled
electricity demands will most probably show a jump at the day transition point
and also most likely cause a considerable error.

Therefore, I propose to extend the scope of a day type to more than 24 hours
so as to ensure smooth transitions between day types. To keep the number of
possible states in terms of number of active day types to a minimum, the length
of day types is increased to 48 hours. This ensures that at any time two day types
are active. These 48-hour periods will start and end at the time of day at which
the variance of the loads is smallest on average (e.g., 4 AM). To represent the day
types, I propose a combination of a binary day-type representation and a polar
representation: all day types will have their own circle of 48 hours. Figure 4.7
(right) illustrates this representation.

4.3.4 Emphasising Twilight

To represent time of year (or seasonality), I propose several alternative represen-
tations of which we select one on the basis of experiments described in chapter 6.

48 Modelling Electricity Load

The first alternative will be a polar indicator for time of year, with the position
on the circle determined by the position of the Earth in the ecliptic. The second
proposed representation will be the Sun’s altitude: the angle of the Sun with the
horizon.

Sun light is often considered to be incorporated in a time of the year indica-
tor; few researchers considered representations for direct daylight [45]. At civil
twilight, i.e. when the altitude of the Sun reaches below -6°, artificial illumi-
nation is needed to be able to read. We will adopt the sigmoid function from
classical artificial neural networks to accentuate the twilight period of the Sun
altitude values,

xi(t) = sigmoid(λ altitude(t)).

and scale parameter λ in such a way that the function is ~1 near 6° and ~-1 near
-6°. This twilight indicator will be resilient during the application of the daylight
savings times, but only during twilight, and it will be dormant at other times of
day.

4.4 Wind-power Production Model

This section consists of three subsections, starting with an analysis of the data at
hand, followed by a proposed method to increase the wind speed resolution, and
a way to represent the wind direction.

4.4.1 Data Analysis

The data available for the case of short-term wind-power production forecasting
are the production data of wind farms of an electricity company in the Nether-
lands. They are the aggregate of a large number of telemetered connections.
Although it seems straightforward to acquire these data, it is a tremendous un-
dertaking to collect them all and to verify that they contain all the elements
needed for appraisal of the performance of wind power plants.

Figure 4.9 shows the produced wind power and wind speeds for one week.
It illustrates energy production that is typical of wind-power production, i.e., on
the first day, almost no energy production occurred, while on the fifth day, the
production is often well above 150 MW. When wind speeds are not sufficiently
high, no production takes place at all. The variation in correlation between wind
speeds and the wind-power production is significant. This is exemplified by
point 1 and point 2 in figure 4.9. At point 1, wind-power production is sig-
nificantly lower than at point 2, while the wind speeds at point 1 are marginally
higher than those at point 2.

We do not have any wind speeds measured at the parks themselves, but rather
measured at weather stations operated by the Dutch meteorological institute.

4.4 Wind-power Production Model 49

0

50

100

150

200

0
2
4
6
8

10
12

1 2 3 4 5 6 7 8

W
in

d
po

w
er

pr
od

uc
tio

n
(M

W
)

W
in

d

sp
ee

d
(m

/s
)

1

1

2

2

FIGURE 4.9: Seven days of wind energy production (top), and their corre-
sponding measured wind speeds at the same time (bottom).

TABLE 4.1: Correlation matrix of available weather stations and the aggre-
gate wind-power production.

Amsterdam De Kooy Stavoren Valkenburg Production
Amsterdam 1.00 0.851 0.810 0.875 0.864
De Kooy 1.000 0.821 0.799 0.881
Stavoren 1.000 0.791 0.857
Valkenburg 1.000 0.831
Production 1.000

Traditionally wind speeds were measured in knots3. The potential wind speed
is computed from the measured wind speed. The correction factor is usually be-
tween 0.9 and 1.2. The distribution of the potential wind speed therefore will
be clustered around the original value in knot. The potential wind speed is re-
ported in 0.1 meter per second, but the resolution of the records from which it
was computed is approximately 0.5 meter per second. From July 1996 onwards
wind speeds are measured in integer values of meter per second. So, since then
the resolution is even less. We have available wind speeds measured from the
four stations mentioned in table 4.1. This table also displays the correlations be-
tween the wind speeds measured at each station, and the recorded wind-energy
production.

3Source: website KNMI http://www.knmi.nl.

50 Modelling Electricity Load

2 4 6 8 10 12 14

0

50

100

150

200

250

Wind Netherlands (m/s)

P
ro

du
ce

d
W

in
d

E
ne

rg
y

(M
W

)

5 10 15

0

50

100

150

200

250

Average Wind Speed (m/s)
P

ro
du

ce
d

W
in

d
E

ne
rg

y
(M

W
)

FIGURE 4.10: A wind-power curve using the discretised wind speeds (left),
and using the computed average wind speeds (right).

4.4.2 Increasing Wind-speed Resolution

Because of the time window of 14 days between submitting E-programs and their
definite allocations, a causal model as introduced in subsection 2.1.1 will be used.
Therefore, I have to resort to the numerical weather predictions (i.e., I cannot use
a time-series model). A lack of resolution in wind speed records as mentioned
in subsection 4.4.1 is one of the first issues that one encounters on the way to a
wind forecasting system. If this resolution is not improved, the predictions will
suffer from the same discretion level. Figure 4.10 (left) illustrates this by the
power curve of the data using the wind speed of the Netherlands. We propose
to overcome the problem of coarse resolution by taking into account multiple
weather stations. Figure 4.10 (right) shows the wind-power curve of the data in
combination with averaged wind speed of the four weather stations presented in
table 4.1.

4.4.3 Representing Wind Direction

By taking into account the direction of the wind, I assume that a wind-power
production farm is surrounded by a varying landscape. For instance, assuming
identical wind speeds, if a forest is to the East, and open sea to the West, one
could expect that if the wind blows from the East, a lower production would oc-
cur, due to causes such as turbulence. Additionally, in most cases meteorological
institutes measure and predict weather on a different altitude than where the
wind-power turbines are located.

The direction of the wind is recorded in degrees to North. In order to optimise

4.4 Wind-power Production Model 51

this entity to work in combination with a radial basis function, we will map the
polar representation to an Euclidean representation during a pre-processing step.
The exact setup of the feature space for the wind energy prediction system will
be done by experiments and in an incremental way as described in section 4.2.

“Science is what we understand well enough to explain to a computer. Art is
everything else we do.”

Donald Knuth (1938–)

5
The Kernel-Machine Library

Since the introduction of the support vector machine (SVM), about a dozen soft-
ware packages have been introduced that implement support vector machines.
SVMlight [66] contains a number of extensions e.g. a preference ranking prob-
lem, and extensions to deal with structures such as trees. LibSVM [32] is distinct
in that it gives a user-friendly introduction to support vector machines. SVM-
Torch [36] was primarily made to deal with large data-sets, and is now part of
the more generic Torch machine-learning software package. All the previously
mentioned packages have two things in common: they are geared towards the
SVM, and are developed as end-user tools. Creation, improving, or embedding
of other types of kernel machines are not their primary objective.

I initiated the development of the kernel-machine library (KML) to fill that
void: it should be an open-source1 library to promote the use and progress of
kernel machines, both for academic use and for developing real-world applica-
tions. This is the objective of the kernel-machine library: to enable researchers to
develop other types of kernel machines, to improve upon the existing algorithms,
and to be able to integrate kernel machines into all kinds of applications. The li-
brary is available at http://www.terborg.net. A concurrent-versioning system
is set up to improve joint development over the Internet. As such, it is subject to
constant change, with new features and methods being added continuously.

1It is released under the GNU General Public License of the Free Software Foundation.

54 The Kernel-Machine Library

5.1 Requirements

Here I formalise my initial requirements for the kernel-machine library.

• It should be efficient. Because kernel machines are all about numerical
computations, one of the most important topics will be to achieve efficiency.
Efficiency can be expressed in the theoretical performance of a central pro-
cessing unit (CPU), often expressed in floating-point operations per second
(FLOPS).

• It should have a clean application programming interface (API). Be-
cause it is a development library, one of the more difficult things of the
development of a software library compared with the development of an
end-user software tool is the quality of code: co-developers have to be able
to read the source code. Good documentation, good use of comments, and
sensible names of parameters can help, but foremost the design should be
clear and simple.

• It should be cross-platform. With a dominance of more than 90% of
the desktop market, Microsoft Windows systems do contain many poten-
tial users and should be well supported. It should be tested on different
operating systems.

• It should be flexible. It should be able to accommodate all kinds of kernel
machines, and therefore be able to process data set formats used by other
packages.

• It should be extensible. In case an unforeseen situation comes into play, it
should be possible to adjust the library in line with new ideas with minimal
effort without altering the validity of its contents.

5.2 Design

The exact design of software depends on the capabilities of the language it is
written in. The C++ language is a multi-paradigm language, in other words,
the language supports procedural, object-oriented, and even functional program
structures. Recently, one of C++’s features achieved much attention: its tem-
plate typing system is extremely powerful, as it allows for Turing-complete pro-
gramming during compile-time: the time when the program is being compiled
by a compiler. Run-time is when the program is under execution, i.e., running.
This will be an important issue in the design of the KML: selecting the actions
to be taken in compile-time, and what actions will be executed in run-time. The
following may exemplify this distinction,

5.2 Design 55

Problem
type Kernel

Kernel
Machine

is contains

e.g.
SVM

Algorithm
selection

solves

Regression Classification

is is is

Single−class
Sigmoid

Gaussian

Polynomial

Deterministic

Batch

Exact

is

is

is

is

is

is

FIGURE 5.1: Entity-relation diagram used in the kernel-machine library.

template<int N>

struct factorial {

static const int value = N * factorial<N-1>::value;

};

template<>

struct factorial<0> {

static const int value = 1;

};

and its run-time counterpart would look like as follows

int factorial_rt(int n) {

return (n==0 ? 1 : n * factorial_rt(n-1));

}

Now, if a factorial needs to be computed from a known number N, this can be
done by the compiler at compile-time, reducing the number of computations
needed at run-time to zero.

Figure 5.1 shows an entity-relation diagram used in the library. A kernel
machine is a term for a combination of several concepts: a problem type, a kernel
and an algorithm. The problem type is the type of problem to be solved, e.g.
classification, regression, or single class. Given a problem type, a kernel-machine
states how the problem is solved and by what mechanisms. For instance, for a
regression problem, an SVM has a mathematical optimisation problem different
from that for a classification problem. A kernel machine contains a kernel; it is
not a kernel. However, algorithms have been devised that are specialised towards
a kernel machine in combination with a specific kernel. Therefore, a kernel can
be responsible for the selection of the algorithm used by the kernel machine.

56 The Kernel-Machine Library

Kernel machines sometimes solve identical problems in different ways: here,
trade-offs and guarantees of pre-learning and post-learning come into play.

• Batch machine or on-line machine. A batch machine will only fit to a
complete data set. It cannot modify its solution efficiently if the data set
changes. An on-line machine is capable of adjusting its found solution if
the data set changes.

• Exact machine or greedy machine. An exact machine solves the mathe-
matical optimisation problem with machine precision; a greedy machine
approximates the solution found by an exact machine in shorter time.

• Deterministic machine or probabilistic machine. A deterministic machine
can predict the mean value of a sample, whereas a probabilistic machine
can predict both the mean value and variance (or more moments).

These properties have been used deliberately as traits: only a few formulations
have available all variants (on-line, greedy, etc.), and some kernel machines exist
that have their own name, and have certain traits, but are not designed to execute
tasks outside these traits.

5.3 Implementation

The kernel-machine library consists completely of C++ header files. Users of
the library can include appropriate headers to their source code. A significant
reduction of development time has been achieved by using a number of libraries
from the Boost Libraries, as discussed in subsection 5.3.1. For efficient numeric
computing, one usually resorts to a basic linear algebra system (BLAS) of which
ATLAS is a fast variant, discussed in subsection 5.3.2. Kernel machines share
types of operations on matrices and vectors, which are included in the kernel-
machine library and discussed in subsection 5.3.3.

5.3.1 The Boost Libraries

As stated on http://www.boost.org, the Boost web site provides free peer-
reviewed portable C++ source libraries. The emphasis is on libraries which work
well with the C++ Standard Library. The libraries are intended to be widely use-
ful, and are in regular use by thousands of programmers across a broad spectrum
of applications. A further goal is to establish "existing practice" and provide refer-
ence implementations so that Boost libraries are suitable for eventual standard-
isation. Ten Boost libraries will be included in the C++ Standards Committee’s
upcoming C++ Standard Library Technical Report as a step towards becoming
part of a future C++ Standard.

5.3 Implementation 57

Libraries from the Boost Libraries that are in use by the kernel-machine library
are the following.

• Boost.Meta-Programming Library. This can be regarded as the compile-
time variant of the ISO C++ Standard Library.

• Boost.UBLAS Library. This library contains class structures dealing with
matrices, vectors, sparse matrices and sparse vectors. It supports BLAS
operations (treated in more detail below).

• Boost.Utilities Library. Several components from the Boost Utilities library
are used, such as Enable_if, and ... Type-Traits Library.

• Boost.Serialization Library.

• Boost.Range Library.

5.3.2 BLAS: ATLAS

During the 1970s, an enormous effort has taken place to formalise the numeric
computations needed by scientists. This effort resulted in numeric packages such
as LINPACK and LAPACK (short for Linear Algebra PACKage). LINPACK’s succes-
sor LAPACK used a new system for the operations (besides that an other type
of computer memory organisation was utilised), called the Basic Linear Algebra
System (BLAS). This divides the linear algebra operations into the following

• BLAS level 1: scalar-vector and vector-vector operations,

• BLAS level 2: vector-matrix operations,

• BLAS level 3: matrix-matrix operations.

LAPACK contains algorithms for operations such as Cholesky decompositions and
QR factorisations for solving positive definite systems of equations. I have rewrit-
ten the smooth relevance vector machine using BLAS and LAPACK algorithms as
shown in algorithm 1.

Because the operations are clearly defined, one can speed up all LAPACK
operations by using a better BLAS engine. The automatically tuned linear al-
gebra software (ATLAS) project has been ongoing for a while [132]. It has a
full implementation of BLAS as well as a few important routines from LAPACK.
ATLAS “tunes” towards speed of memory and size of memory assuming a mem-
ory structure of modern CPUs, as illustrated in figure 5.2. Several line and grid
searches are deployed to find the optimum size of these blocks (a sub-matrix of
a matrix) for all different BLAS operations. Several specific user-contributed
algorithms are available that fully utilise extensions such as AMD’s 3DNow!,
IBM’s AltiVec and Intel’s SSE. The ATLAS library is a C library. Fortunately, the
Boost.Numeric.Bindings library provides the glue between ATLAS and Boost’s
uBLAS data types.

58 The Kernel-Machine Library

H← design matrix(x, k)
L← design matrix(x, Dp k)
HtH← gemm(HT, H)
LtL← gemm(LT, L)
Hty← gemv(HT, y)
while max(∆ log αi) > 1 · 10−3 do

S ← posv((λLtL + A), I)
Σ← posv((σ−2HtH + S−1),I)
µ← symv(σ−2, Σ, Hty)
for i in N do

αi ← αi(Sii − Σii)/µ2
i

end for
λ← (N − Tr(SA)− Tr(ΣLtL))/µLtLµ
σ2 ← ‖Hµ− y‖/(N + Tr(LtL) + Tr(ΣA))

end while

ALGORITHM 1: Algorithm for the Smooth Relevance Vector Machine ex-
pressed in BLAS calls.

5.3.3 Utilities

View matrix

The view matrix class has been implemented to cover recurring operations found
in a large number of active-set type of algorithms. In algorithms of kernel ma-
chines, the design matrix or kernel matrix is often extended when a new support
vector is added, or is shrunk when a support vector is deleted from the active
set. The standard matrix resize operation as implemented in the uBLAS library
supports a resize, but will reallocate an entire matrix if requested. Figure 5.2
(right) illustrates the memory structure used by a view matrix: the larger, static
matrix will be reallocated infrequently, whereas the view matrix may be resized
in constant time O(1).

Input and Output

To be able to read and write data sets in formats used by other software packages,
an IO module is written that is able to read and write from the file data format
structures as used in the SVMlight, LibSVM and SVMTorch. This can be very
convenient if one wants to compare the output of the different packages.

Statistics

For assessment of the quality of fit, or other types of statistics, a number of func-
tions have been implemented that are able to operate on any type of range.

5.3 Implementation 59

L2 cache

RAM

Storage Devices

isters
reg−

L1 cache

Static container matrix

Dynamic view
matrix

FIGURE 5.2: The pyramid of a modern CPU’s memory structure (left), mem-
ory structure of a view matrix (right).

Root-mean-square, variation, standard-deviation, mean, sum, minimum, maxi-
mum, etc., have all been implemented. In case of a range of a scalar type, i.e,
the ordinary case, the output is also a scalar type. On the other hand, in case of
a range of a vector type, the output is chosen to be a vector type: the statistic
is computed separately for each attribute. For example, the mean of two sample
vectors

[8](1,1,2,3,5,8,13,21)

[8](1,2,3,5,7,11,13,17)

will be evaluated to [8](1,1.5,2.5,4,6,9.5,13,19). Also for these cases,
compile-time mechanisms select algorithms for either scalar types or for vector
types.

Scaling

To accommodate a starting point for feature scaling and representation pro-
cesses, two types of scaling functions have been implemented. The first function
will perform a linear transformation such that the mean and standard deviation
comply to a given number. The second type of scaling function will force all data
to be within a set minimum and maximum. To exemplify, suppose one has a data
set of which the input vectors have characteristics

min [4](-1,-1,-1,-1)

mean [4](0.0597222,0.355556,0.449383,-0.295388)

sd [4](0.379544,0.936391,0.633393,0.337012)

max [4](1,1,1,1)

then this could be transformed to

60 The Kernel-Machine Library

min [4](-2.79209,-1.44764,-2.28828,-2.09077)

mean [4](0,0,0,0)

sd [4](1,1,1,1)

max [4](2.47739,0.688222,0.869313,3.84375)

with a single function call.

FANN bindings

As stated on its website (http://leenissen.dk/fann/), the fast artificial neu-
ral network (FANN) library implements multilayer artificial neural networks in C
with support for both fully connected and sparsely connected networks. Cross-
platform execution in both fixed and floating point is supported. It includes a
framework for easy handling of training data sets. Although a C++ API is avail-
able, I have written new bindings to achieve a more consistent API throughout
the kernel-machine library. In other words, the implementation of a neural net-
work is similar to the implementation of a kernel machine.

5.4 Development Tools

Primary requirements for the KML are a C++ compiler and a linker. I will test the
library on two kinds: Microsoft’s (MS’s) freely available Visual C++ Toolkit and
GNU’s Compiler Collection (GCC). Although the KML is contained in header-files
only, cross-platform construction of several example and test programs is desired.
I have used the Scons build system to achieve all of these goals, and more, which
is discussed in subsection 5.4.1. Documentation is generated on the basis of
comments in the source code by the Doxygen system treated in subsection 5.4.2.

5.4.1 The SCons Build System

As described on http://www.scons.org, SCons is an open-source software con-
struction tool, that is, a next-generation build tool. SCons is an improved, cross-
platform substitute for the classic Make utility with integrated functionality sim-
ilar to autoconf, automake and compiler caches such as ccache. In short, SCons
is an easier, more reliable and faster way to build software.

Examples included in the kernel-machine library are built with the use of
SCons. On a Microsoft Windows system using Microsoft’s compiler, the output
of building an example application to do regression from the KML looks like the
following.

scons: Reading SConscript files ...

scons: done reading SConscript files.

scons: Building targets ...

5.4 Development Tools 61

cl /nologo /Wp64 /GX /Zc:forScope /O2 /G7 /arch:SSE2 /I. /I\

/I\atlas /c example\svm_regression.cpp /Foexample\svm_regres

sion.obj svm_regression.cpp

link /nologo /OUT:example\svm_regression.exe /LIBPATH:lib cb

las.lib example\svm_regression.obj

scons: done building targets.

On a POSIX system (e.g. a GNU/Linux OS) using GCC, the output of the compile
process is shown below.

scons: Reading SConscript files ...

scons: done reading SConscript files.

scons: Building targets ...

g++ -Wall -ansi -pedantic -O3 -ffast-math -fomit-frame-point

er -DNDEBUG -DNO_DEBUG -march=pentium4 -mfpmath=sse -msse -m

sse2 -mmmx -I. -I/usr/include -c -o example/svm_regression.o

example/svm_regression.cpp

g++ -o example/svm_regression example/svm_regression.o -lcbl

as -latlas

scons: done building targets.

I have facilitated the build scripts with automatic cross-platform CPU detection,
which will pass the optimal settings to the compiler for the platform at hand.
This can be observed in the output snippets above for an Intel Pentium 4 platform
where the SSE2 extensions are enabled automatically. Because the installation
of ATLAS under Windows is a somewhat extensive procedure, I have included
a SCons construction script in the KML to convert ATLAS constructed libraries
to MS Windows native loadable libraries. These can then be easily deployed on
Microsoft Windows based platforms.

5.4.2 The Doxygen Documentation System

As advertised on its website (located at http://www.doxygen.org), Doxygen is
a documentation system for C++, C, Java, Objective-C, Python, IDL and to some
extent PHP, C#, and D. It can generate an on-line documentation browser (in
HTML) and/or an off-line reference manual (in) from a set of documented source
files. There is also support for generating output in RTF, PostScript, hyperlinked
PDF, compressed HTML, and Unix man pages. The documentation is extracted
directly from the sources, which makes it much easier to keep the documentation
consistent with the source code.

In a comment just above the implementation of a function, a few lines de-
scribing the functionality of the function can be provided.

*! \brief Compute the factorial of a given number n, i.e., n!

62 The Kernel-Machine Library

\param n an integer n */

int factorial(int n) { ... }

This will be translated and aggregated to browseable HTML pages for convenient
lookup. For classes, template classes, member functions, and so on, hierarchy in
the documentations will be added automatically.

5.5 Using the Library

I have published the initial version of the KML (at http://www.terborg.net)
with the following algorithms.

• Support Vector Machines. Two variants of the support vector machine are
included: Accurate On-Line Support Vector Regression [84], and Sparse
On-line Greedy Support Vector Regression [43].

• Relevance Vector Machine [119]. Both the classical learning algorithm
[120] and newer fast learning algorithm [121] for the RVM have been
included. The fast algorithm is not available elsewhere.

• Kernel Recursive Least Squares [44].

• Adaptive Sparseness using Jeffreys Prior [49].

• Smooth Relevance Vector Machine [13].

To illustrate the expressiveness of the kernel-machine library, the following source
code creates a noise-corrupted sinc on [−10, 10], and will train an on-line SVM to
it, as is done in section 3.3.

boost::mt19937 randomness;

boost::normal_distribution<double> norm_dist(0.0, 0.1);

boost::variate_generator<boost::mt19937,

boost::normal_distribution<double> > noise(randomness,

norm_dist);

ublas::vector<double> y(50);

std::vector< ublas::vector<double> > x(50);

for(int i=0; i<N; ++i) {

x[i].resize(1);

x[i](0) = (double(i)/double(N-1))*20.0-10.0;

y[i] = boost::math::sinc_pi(x[i](0)) + noise();

}

typedef kml::regression< ublas::vector<double>, double >

my_problem;

kml::online_svm< my_problem, kml::gaussian > my_machine(1.6,

5.6 Testing the Library 63

0.1, 10.0);

my_machine.learn(x, y);

ublas::vector<double> test(N);

std::transform(x.begin(),x.end(),test.begin(),my_machine);

std::cout < < �AOSVR predictions:� < < test < < std::endl;

Compiling and running this example program will give the following output,
which is also plotted in figure 3.4.

AOSVR predictions:

[50](0.0874446,0.081959,0.08579,0.105701,0.144144,0.19371,0.

235582,0.245479,0.205863,0.117594,0.00262615,-0.105663,-0.17

8993,-0.206344,-0.193398,-0.150872,-0.0822103,0.0187777,0.15

8834,0.333346,0.522492,0.698752,0.839093,0.931865,0.974475,0

.966872,0.908814,0.803572,0.662969,0.506631,0.353948,0.21483

6,0.0873798,-0.03512,-0.15312,-0.254647,-0.318991,-0.327899,

-0.276819,-0.179247,-0.0620642,0.0449141,0.119503,0.153157,0

.150841,0.126204,0.0950485,0.0699378,0.0575196,0.0586123)

5.6 Testing the Library

This section tests the kernel-machine library in action. In the first subsection,
experiments are reproduced that have been presented in the paper describing the
fast relevance vector machine. The second subsection deals with the currently
implemented algorithm for the support vector machine (SVM) on a regression
task.

5.6.1 The Fast RVM

At the time of writing, the kernel-machine library is the only publicly available
software package that has an implementation of the fast relevance vector ma-
chine (Fast RVM, Tipping and Faul [121]). The main difference between the
algorithms that cause a computational speed-up is that the old algorithm is a
decremental-set algorithm, and the new algorithm is an incremental-set algo-
rithm. Here, decremental means that the initial solution holds all data points,
and by numerical updates non-relevance vectors will be removed. The newer
algorithm on the other hand starts with an empty solution, adds candidate rele-
vance vectors to the working set, and removes non-relevance vectors.

To measure the effectiveness of the fast RVM algorithm, I have conducted the
experiment described in the paper where the fast RVM was introduced [121].
To elicit the gained computational efficiency of the newer algorithm, a series of
experiments has been conducted. In this case, an increasing number of samples is
drawn from a noisy sinc function, identical to that described in section 3.3. These

64 The Kernel-Machine Library

10 20 50 200 500 2000

1e
−

02
1e

+
00

1e
+

02

Data set size

T
ra

in
in

g
tim

e
(s

)

RVM

Fast RVM

FIGURE 5.3: Comparative performance of the old RVM versus the new RVM
algorithm.

experiments have a strong focus on data set size. For the p-th experiment, I have
used a data set size of 10 · 1.1p. In total, 59 experiments have been conducted
by both the old and the new algorithms. Figure 5.3 shows a log-log plot of
the data sets used in the experiments versus the needed fitting time of both
algorithms. On average, the newer algorithm was about 100 times faster, which
is very significant. To illustrate, the largest data set size tested, containing 2812
points, took the old algorithm about 29 minutes to complete, whereas it took the
accelerated algorithm about 15 seconds.

5.6.2 On-line SVM versus Batch SVM

In this experiment, I tested the accurate-online support vector regression (AO-
SVR, [84]) algorithm available in the kernel-machine library for correctness and
computational costs. AO-SVR is a modification of an algorithm by Cauwenberghs
and Poggio [31] of the support vector machine (SVM), which implements a clas-
sifying accurate-online support vector machine. The same experiment will be
executed using different implementations capable of support vector machine re-
gression. The implementations chosen are also mentioned in the introduction of
this chapter: LibSVM, SVMlight and SVMTorch. I conducted experiments with the
implementations on two regression problems.

The first data set is one made available through the SVMTorch package to test
the SVM in regression mode. This is a data set containing 5000 patterns of 12
attributes. Table 5.1 shows the running times and several statistics of the found
solutions of the different SVM implementations.

5.6 Testing the Library 65

TABLE 5.1: Comparative performance of online SVM regression versus batch
implementations (5000 data points).

Tool Algorithm Fit time(s) SVs SVs at C SVs < C
LibSVM Batch [32] 2.0 597 585 12
SVMlight Batch [66] 2.6 597 585 12
SVMTorch Batch [36] 0.4 596 585 11
KML Online [84] 2.9 597 585 13

TABLE 5.2: Comparative computation times of SVM regression on the cpus-
mall data set (8192 data points).

Parameters LibSVM [32] SVMlight [66] KML [84]
C ε σ Time (s) SVs Time (s) SVs Time (s) SVs

10.0 1 2.5 11.1 5851 40.3 5849 65.5 5849
20.0 1 2.5 8.2 4197 28.4 4196 44.6 4198
10.0 2 3.5 8.4 4052 26.4 4051 33.4 4049
10.0 3 3.5 6.5 2903 19.6 2902 24.6 2900

The second regression task is the cpusmall data set availble from the authors
of LibSVM, which is a regression problem of 8192 patterns of 12 attributes. The
results of the second experiment are shown in table 5.2. The results show that
SVMTorch and LibSVM are the fastest implementations of the support vector ma-
chine, and that on-line implementation of the kernel-machine library is slowest.

It should be noted that the direct comparison of computing times as shown
in tables 5.1 and 5.2 is questionable. Batch algorithms have the complete data
set as an input, whereas an on-line algorithm performs as many fits as there are
data points. Indeed, the results should not change considerably, but I could have
compared the training times of all batch algorithms on several thousands of data
sets. For instance, when performing a cross-over validation test, in which a series
of data sets have to be trained, the result will be in favour of the on-line algorithm
with respect to the computing costs. The on-line algorithm is particularly slow
if a large part of the data consists of support vectors. One of the steps in the
algorithm is (for each new point) to evaluate the support vector machine for that
given point: i.e., when adding the last few points, a lot of kernel evaluations take
place. This takes a large amount of time.

At the time of writing, the sequential minimisation optimisation (SMO, [102])
batch algorithm is being contributed to the kernel-machine library.

“In theory, there is no difference between theory and practice. But, in practice,
there is.”

Jan van de Snepscheut (1953 - 1994)

6
Experimental Results

Experiments need data sets and a kernel machine to run. An overview of the
gathered data used for the electricity demand model is presented in subsec-
tion 4.3.1, those used for the short-term wind-power production model in sub-
section 4.4.1. To create the optimally scaled models, I will use cross-validation
techniques and visual inspection. Correlation analyses between features, the
electricity load patterns, and the kernel machine will assist in feature selection,
as discussed in section 4.2. A kernel machine from the kernel-machine library
(as introduced in chapter 5) will be used to perform experiments with.

At the time of writing, the electricity-demand model presented in this the-
sis has been in daily use for over a year. In section 6.1 I will present real-life
performance benchmarks of the different electricity-demand models during one
month. Due to the competition on the energy market, certain information con-
cerning these experiments will not be disclosed. The experiments that have been
performed to obtain my electricity demand model are discussed in section 6.2.
Section 6.3 deals with the short-term wind-power production forecasting.

6.1 Electricity-demand Forecasting in Practice

In practice, predictions can be presented to end users by several electricity de-
mand forecasting systems. Guided by expertise and experience the end user will
select and combine elements of these predictions to form the final forecast. These
final forecasts will be incorporated in the E-program, that will be submitted to
Tennet (see subsection 1.1.1).

68 Experimental Results

5 10 15 20

0
2

4
6

8

Hour of the Day

M
A

P
E

 (
%

)

My model

Human

Model A

Model B

Model A/B

FIGURE 6.1: Comparative average performance per hour of the day during
one month.

The data used for the comparative benchmarks presented here were gathered
during a full month. I will compare the predictions made by four models and the
human end-user. Two commercial electricity-demand models have been used,
which I will call model A and model B. These two commercial models have been
combined by a certain method to obtain the third model A/B. My model is also
measured.

Figure 6.1 shows the mean absolute percentage error (MAPE, see section 2.4)
of all predictive models and the human end-user for each different hour of the
day. The figure shows that model A/B successfully combines model A and model
B, its performance is better for the larger part of the day. Next to the human user,
my model clearly has the lowest MAPE throughout the day, except for 9 AM.
During a large part of the day, my model is at least 50% more accurate than both
model A and B. During the month of measuring, models show most difficulty
with the prediction of the electricity demands near 21 hours.

Table 6.1 shows the average MAPE of the whole period that is measured. The
first column shows the model name, followed by the MAPE error and its and the
standard deviation, and the second column shows the relative MAPE expressed
in terms of my model. Model B has the highest MAPE, and of all models, my
model has the lowest MAPE. Expressed in relative terms, my model was 30%
better than the combination of models A and B. The combination of all models
and manual adjustments by the human end-user has a competitive edge of 7%
over my model.

The standard deviations of the MAPE shown in table 6.1 also appear to differ
from model to model. To illustrate the difference in consistency or robustness

6.2 Electricity-demand Model Experiments 69

TABLE 6.1: Comparative performance of different models of the real-life
data.

Model MAPE Relative MAPE
Model A 4.7±4.5 152%
Model B 5.1±4.1 165%
Model A/B 4.1±3.8 131%
Human 2.9±2.3 93%
My model 3.1±2.4 100%

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

MAPE

D
en

si
ty

 E
st

im
at

e

My model

Human

Model A

Model B

Model A/B

FIGURE 6.2: Estimated probability densities of the error distribution of sev-
eral electricity demand prediction models on real-life data.

of the different models, a kernel density estimate (which has nothing to do with
kernel machines) is depicted in figure 6.2. The total area of my model in the
domain [0,8] shown is largest together with that of the human. It implies that
the estimated probability density will practically disappear outside the graph,
this in contrast to the other models shown.

6.2 Electricity-demand Model Experiments

For the experiments I will use a data set measured at the province North Holland
in the Netherlands, consisting of historical hourly electricity demand measure-
ments done during 1996, 1997 and 1998. Also for the same period, weather and
holiday related measurements are included as discussed in subsection 4.3.1.

70 Experimental Results

TABLE 6.2: Calendar component compositions.

Time of day Day type Train Test
linear binary 7.01 6.97
polar binary 5.81 5.86
linear polar 6.04 6.13
polar polar 5.75 5.81

I have used a randomly chosen 60-40 train-test set split, which corresponds
with 15770 samples for the training set, and 10514 samples for the test set. For
the test data points, we will have to use the actual weather measurements as if
they were known in advance. For a real-life case numerical weather predictions
will have to be provided. We will use the mean absolute percentage error (MAPE,
see (2.8) on page 20). To minimise the MAPE error, I have taken the log of the
electricity load values.

I have implemented the iterative system shown in figure 4.6 using a combina-
tion of a script written in R [64], and a kernel machine from the kernel-machine
library. The following sections discuss the input variables in an incremental man-
ner, i.e., subsection 6.2.1 starts with a system containing one component only,
and subsection 6.2.4 discusses the full model containing all components.

6.2.1 Calendar Component

Time of day and day type express the calendar related variables, therefore one
component containing both is used.

Time of Day and Day Type

In this experiment we try different types to represent the time of day and day
type: for time of day we investigate the linear and polar representations, and for
day type, we will test the binary and polar representations. Public holidays are
set to Sunday. Table 6.2 shows that the polar time of day representation and the
polar day type decrease the error in all comparative cases.

Time of Year

In this experiment, we compare the different ways of representing the time of
year part in the calendar component. A linear type (day of the year), the Sun’s
altitude and a polar yearly data type have been tested. Table 6.3 shows the train
and test errors of the different representations. In all cases, the twilight indicator
lowered all errors. Although the polar without twilight indicator has the lowest

6.2 Electricity-demand Model Experiments 71

TABLE 6.3: Comparative performance of time-of-year representations.

Time of year Train Test
without time-of-year 5.75 5.81
linear 3.64 3.76
linear and twilight 3.51 3.65
altitude 3.42 3.51
altitude and twilight 3.28 3.39
polar 3.16 3.46
polar and twilight 3.20 3.30

TABLE 6.4: Added trend component.

Train Test
without trend 3.20 3.30
with trend 2.64 2.75

train error, its test error is not lowest. The polar time of year representation in
combination with the twilight indicator performs best.

6.2.2 Trend Component

The residuals show a structural slide of a prediction that is too high to a pre-
diction that is too low. On further inspection, the North Holland data exhibit a
long-term growth pattern. This long-term pattern can be modelled with a sepa-
rate trend component. To keep the complexity of this component to a minimum,
let us assume a steady exponential growth pattern. Table 6.4 shows the train and
the test error after applying three iterations of fitting.

6.2.3 Weather Components

We created a separate component for each weather related variable, i.e., a tem-
perature, a radiation and a wind component. To compare the different input
spaces for these components, the MAPE errors have been recorded after per-
forming three iterations.

Temperature

In order to achieve accurate results, all components are reset every time a new
iteration begins. Also, the exponential moving average (EMA, [103]) of the tem-

72 Experimental Results

TABLE 6.5: Temperature component configurations.

Temperature component train test
temperature only 2.25 2.35
time of day 2.21 2.31
EMA 2.26 2.35
EMA and time of day 2.00 2.09

perature is tested as an alternative in the input space. Table 6.5 shows the results
of different input space compositions for the temperature component.

Radiation

The radiation component is designed to reflect the distance correctness as well.
I.e. during night, the radiation is always equal to zero. Hence, during the night,
this component should not add any distance. Therefore, the theoretical altitude
of the Sun is determined on which measurements of the radiation above zero
may be expected, which is set at -8 degrees. A binary decision forces the points
of the radiation component to exactly the same points in feature space.

Wind

The wind component is very straightforward. We use the measured wind speed
only to model the changes in electricity demand patterns because of changes in
wind speeds.

The top row in table 6.6 shows the resulting model quality when using all
weather components after three iterations. Figure 6.3 shows the component
predictions for a period of two weeks of the North Holland data.

6.2.4 Additional Information

This experiment serves as an example of adding information that is found on
the basis of model performance quality in previous sections. In this case, we
have added school holiday information and information about the construction
holidays to the calendar component. Table 6.6 shows the impact of adding such
information.

Further analysis of the maximum errors made by the model reveals that De-
cember 30th shows unusual large errors in all years. December 5th, 1996, my
prediction goes astray. It seems that Sinterklaas has influence after all. Septem-
ber 3rd, 1998, another prediction error was made that was larger than usual.

6.2 Electricity-demand Model Experiments 73

6.4

6.6

6.8

7.0

7.2

−0.01

0.00

0.01

0.02

−0.03

−0.02

−0.01

0.00

0.01

0.02

−0.006

−0.004

−0.002

0.000

0.002

0.004

0 50 100 150 200 250 300 350

Time

W
in

d
R

ad
ia

tio
n

T
em

pe
ra

tu
re

C
al

en
da

r

FIGURE 6.3: A display of the different component predictions for a period
of two weeks.

TABLE 6.6: Holiday information.

train test
without holidays 1.95 2.04
with holidays 1.74 1.84

74 Experimental Results

TABLE 6.7: Error measured over fitted wind-power production models, no
wind direction.

added station RMSE MAE MAX Cor
Stavoren 30.78 22.68 174.57 0.886
De Kooy 21.83 16.08 137.41 0.945
Amsterdam 19.39 14.37 109.07 0.957
Valkenburg 18.96 14.11 100.39 0.959

TABLE 6.8: Error measured over fitted models, including wind directions.

added station RMSE MAE MAX Cor
Stavoren 28.07 20.55 191.78 0.907
De Kooy 21.33 15.74 137.53 0.947

Amsterdam 18.97 14.08 98.65 0.959
Valkenburg 18.64 13.86 93.97 0.960

The weather news archive1 reveals that September 1998 was very wet: a record
was set on September 3rd, 1998, when the second heaviest cloudburst of the
20th century occurred at Boskoop, pouring 92 mm in only 2 hours.

6.3 Short-term Wind-power Production Forecasting

To select the features to be used by the wind-energy prediction system, I will
conduct and evaluate several experiments with the wind-power production data.
I have initialised a kernel machine in combination with a Gaussian kernel with
parameter σ = 1. The wind speeds are scaled with a factor of 0.05. The diameter
of the wind direction circle is set to 0.5. I have tested with cross-validation
that these settings were giving acceptable results. Table 6.7 shows the results
of fitting with different feature spaces, without taking the wind direction into
account. Table 6.8 shows the results of the same feature space, but with the
wind direction being taken into account. The error measures used were root-
mean-square of the error, the mean absolute error, the maximum absolute error
and the statistical correlation.

Common benchmarks in determining the quality of the wind-power predic-
tion are the persistence model and the mean-production model. When using
persistence, one takes the latest available measured value(s) as the prediction
for the next value(s). The persistence is commonly the model to beat [54].

1See http://www.knmi.nl/voorl/nader/september1998warmenzeernat.htm.

6.3 Short-term Wind-power Production Forecasting 75

0 10 20 30 40

0

20

40

60

80

Forecast horizon (h)

R
M

S
E

 (
M

W
) Persistence

Mean
KM Model
KM Model + Error

FIGURE 6.4: Root-mean-square of the error of different models.

The mean-production model simply reproduces the mean of the production at
all times. I have used the kernel-machine model using an input space of four
weather stations and the wind directions, of which the fitting errors are shown
in bold on the bottom row of table 6.8.

Because we did not have available the historically predicted wind speeds and
directions, we simulated an error development in the numerical weather fore-
casts. To do so, we have corrupted the wind speed measurements for each fore-
cast horizon step with Gaussian multiplicative noise,

wc(t + i) = wm(t + i)N (1, c · i)

with wm being the measured wind speed at time t, i being the number of hours
ahead, and with c a constant indicating the severity of error development. During
experiments we have set c to 1/120.

Figure 6.4 shows the root-mean-square of the errors of four different models:
the persistence model, the mean of the production measurements, the kernel-
machine model, and a kernel-machine model with corrupted wind measurement
data. It illustrates that the forecast time horizon does not affect the mean-load
and kernel machine model. Persistence is the best model for approximately the
first two hours, after which the kernel-machine model has the lowest error. The
error caused by the multiplicative noise on the wind speeds does not cause dra-
matic increases in error for the first 24 hours, but ends up nearly doubled at the
end of the forecast horizon of 48 hours.

76 Experimental Results

TABLE 6.9: Performance of a 3-layer neural network with a variable number
of neurons. Training is stopped when the change in the log of
the RMSE of the test error is smaller than 1e-4. This table reports
the error over all data.

Neurons in layer 1 Epochs RMSE MAE Max Cor
3 3470 20.4 15.1 95.5 0.952
4 2915 20.4 15.2 95.7 0.952
5 2725 20.4 15.2 95.9 0.952
6 2400 20.4 15.0 96.1 0.952
7 2080 20.4 15.0 96.4 0.952
8 1930 20.6 15.2 95.6 0.951
9 1795 20.6 15.3 96.0 0.951

10 1570 20.6 15.2 96.4 0.951
15 1295 20.7 15.3 97.0 0.951
20 1010 20.7 15.2 95.5 0.951

100 375 20.9 15.4 100.9 0.950

6.3.1 Neural Networks for Wind-Power Prediction

To test the differences between applying an artificial neural network and a kernel
machine, some experiments have been performed on the wind-power production
data. Besides the mapping of the wind directions on a circle, no special kind of
transformation specific to the Gaussian kernel has been applied. I have assumed
it is reasonable to test an ANN on the same data. I have used the FANN bindings
available in the kernel-machine library, described in subsection 5.3.3.

So, I started with a basic feed-forward neural network using the R-Prop train-
ing algorithm (an algorithm more advanced than the back-propagation algo-
rithm). I have implemented an automatic stopping criterion. The data are split in
a 50% training set and a 50% test set. The neural network is trained for 5 epochs.
If the test error stabilises, training is terminated. The total error over all the data
is measured and reported. Table 6.9 shows the results of a line search for the
optimum number of neurons. During this line search, the following observations
have been made.

• The neural network gives different answers each time: all solutions found
are local solutions. Several kernel machines exist that deliver identical
answers each time, i.e., global solutions (e.g. the support vector machine
has this property, as illustrated by tables 5.1 and 5.2). Neural networks are
often trained multiple times, and the best neural network is stored. The
neural network finds a different solution every time it is trained. In some
cases the network completely failed to converge to an acceptable point.

6.3 Short-term Wind-power Production Forecasting 77

TABLE 6.10: Performance of the neural network with several different layer
configurations.

Network config Epochs RMSE MAE Max Cor
6-5-4-1 1170 20.7 15.7 94.4 0.950
6-6-5-1 950 20.6 15.6 96.4 0.951
6-7-6-1 920 20.7 15.6 97.3 0.951

6-21-21-1 800 20.9 15.6 99.8 0.950
6-5-4-3-1 600 20.7 15.8 94.6 0.951

6-12-24-48-1 875 20.7 15.8 98.4 0.951
6-33-22-11-1 350 20.7 15.8 102.7 0.951

6-5-4-3-2-1 825 20.1 15.0 99.1 0.953
6-11-9-7-5-1 1755 20.3 15.5 95.5 0.952

TABLE 6.11: Best performing ANN versus the best performing kernel ma-
chine.

Regression Technique RMSE MAE MAX Cor
Kernel Machine 18.6 13.9 94.0 0.960
Neural Network 20.1 15.0 99.1 0.953

This could be because neural networks are initialised with random weights.

• In all cases, an explicit split has to be made between train and test sets to
determine when to stop training.

• All experiments have been performed within acceptable times; i.e. less
than 10 minutes for all experiments.

After the line-search to a 3-layer neural network, an exploratory search has been
done to find a better neural network architecture. Table 6.10 shows the result
of different multilayer architectures. It can be noted that neural networks can
deliver a wind-power prediction system.

Table 6.11 shows the comparative performance of the best kernel machine
and the best artificial neural network (as shown in bold in tables 6.8 and 6.10).
However, in not one single case, the neural network has been able to achieve the
same quality of predictive model as the kernel machine. Besides this, the amount
of human effort and expertise that has to be spent to obtain consistent qualitative
models is much higher than that required for the kernel machine.

“All truths are easy to understand once they are discovered; the point is to discover
them.”

Galileo Galilei (1564–1642)

7
Conclusions

Kernel machines provide the current state-of-the-art methods to obtain predictive
models on the basis of measurements. In this work they are used to obtain
a model describing electricity demands, and also to obtain a model describing
wind-power production.

To this end, I have introduced a concept from functional data analysis to
kernel machines to promote smoothness in output space in three steps. First,
I have established derivatives of kernel machines by introducing derivative ker-
nels. Second, I have introduced kernel roughness penalties to promote smooth-
ness in output space. Third, I have developed the smooth relevance vector ma-
chine (SRVM) which successfully combines kernel roughness penalties with au-
tomatic relevance determination by using a novel Bayesian prior. Experiments in
section 3.3 elicited that smoothness in output space increases the quality of fit,
which holds even more for higher derivative orders. The quality of the approxi-
mation to the underlying function is empirically better.

I designed and developed the kernel-machine library, which enables flexi-
ble and efficient cross-platform development of kernel machines. It is open for
further extensions, but it can be said now already that it implements several
state-of-the-art algorithms. An experiment has been reproduced to affirm that
the fast relevance vector machine is magnitudes faster than the classic algorithm
for the relevance vector machine. Another experiment showed that the on-line
algorithm for the support-vector machine is not faster than batch algorithms,
especially in case of many support vectors.

The flexibility of kernel machines allows design of input-space representa-

80 Conclusions

tions specific to the knowledge domain of electricity-demand modelling. In
contrast to the in this domain commonly used 24-hour day-type representa-
tions, I propose that a day type should last 48 hours. A novel representation
is introduced to represent day types so as to ensure smooth day-to-day curve-
connections in terms of electricity loads. A twilight indicator is introduced to
keep the system aware of lights being switched on or off. Experiments showed
that the quality of the electricity-demand model has improved significantly by
using these specially designed input variables.

The use of several kernel machines to increase orthogonality of the electricity
demand model has shown to perform well, and what perhaps is even more im-
portant, using multiple components increases the transparency of the electricity-
demand model. As a result, electricity demands can be predicted with a high
degree of accuracy and transparency. Detailed patterns produced by the com-
ponents of the electricity demand model lead to explicit knowledge about the
behavioural aspects of electricity demands. A variety of circumstances hidden in
the data appears to be correctly mined, e.g. long-term growth, Sinterklaas, and a
cloudburst. For an end user, explicit explanations by the model are very valuable
information. These explanations can also be used to improve the electricity de-
mand model by adding more specific event knowledge. The electricity demand
model can back-cast historic electricity demand patterns for other hypothetical
weather scenarios.

I have successfully combined discretised wind-speed predictions obtained from
several weather stations to form an accurate high-resolution curve for wind
power. A large improvement is obtained by using more than one weather sta-
tion. The added wind direction successfully discriminates against wind from
different directions, as it lowers the error made by the wind-power production
model. Although the model performs well, the quality of the numerical wind
forecasts remains to have a large influence on the quality of the wind-power pre-
dictions. The excellent non-linear approximation capabilities of kernel machines
provide good mechanisms to create a short-term wind-power forecasting system.
Such a system can also be created with an artificial neural network. However, a
great deal of time is then consumed by the training process alone, which makes
the design of such a system much less focused on the real results.

Decrease in model prediction errors, if used in Nuon’s practice, could result
in a reduction of its imbalance, and explicitness of the knowledge would ensure
durability of this reduction.

Summarising, based on the research reported in this thesis, I have concluded
the following.

• The introduction of derivative kernels, roughness penalties, and a novel
Bayesian prior successfully combines sparseness and smoothness. Experi-
ments showed that it can improve model quality.

• The kernel-machine library provides a flexible and efficient base for imple-

7.1 Future Work 81

menting kernel machines. It is open-source, and has a growing user base.

• The predictive error of the electricity-demand model has been reduced by
introduction of domain-specific representations. A 48-hour day-type rep-
resentation is better than a 24-hour day-type representation. A twilight
indicator successfully emphasises switching on and off of lights.

• My electricity-demand model shows competitive performance compared
with a number of commercial offerings.

• Kernel machines successfully combine weather data from several sources to
deliver an accurate wind-power production forecast. When compared with
neural networks, kernel machines are easier to use, and result in stable,
more accurate solutions.

7.1 Future Work

Future research should include possibilities for other kernel methods to utilise
derivative kernels or roughness penalties. An interesting open theoretical issue
is the maximum derivative order on which a signal may be expected, given a
data set.

Electricity-demand models could be improved by using more region-specific
data and a setup for enhanced handling of the measuring-correction factor. Also,
using more weather components such as a precipitation component could struc-
turally reduce the error. Future work in the area of wind-power prediction should
include involvement of more weather stations and even more weather related
variables such as air pressure, humidity, and wind direction at each weather sta-
tion. Higher moments such as variance in the numeric weather forecasts should
be taken into account. A probabilistic type of kernel machine could give the
advantage of estimated confidence intervals of the forecasted wind-power pro-
duction.

References

[1] Ajith Abraham and Baikunth Nath. A neuro-fuzzy approach for modelling elec-
tricity demand in Victoria. Applied Soft Computing Journal, 1(2):127–138, August
2001. ISSN 1568-4946. URL http://www-mugc.cc.monash.edu.au/~abrahamp/

asc.pdf.

[2] Karin Adelmund. Regeling spreiding zomervakanties 2003–2005. Gele
katern, 7(15), June 2001. URL http://www.minocw.nl/onderwijs/vakanties/

regsprzomervak.pdf.

[3] Mark Aizerman, Emmanuil Braverman, and Lev Rozonoèr. Theoretical foundations
of the potential function method in pattern recognition learning. Automation and
Remote Control, 25:821–837, 1964.

[4] HM Al-Hamadi and SA Soliman. Short-term electric load forecasting based on
kalman filtering algorithm with moving window weather and load model. Electric
Power Systems Research, 68:47–59, 2004. ISSN 0378-7796.

[5] Robert Andrews, Joachim Diederich, and Alan Tickle. A survey and critique of
techniques for extracting rules from trained artificial neural networks. Knowledge
Based Systems, 8:373–389, 1995. ISSN 0950-7051. URL http://sky.fit.qut.

edu.au/~andrewsr/papers/KBSSurvey.ps.

[6] Jie Bao. Short-term load forecasting based on neural network and moving average.
Technical report, Iowa State University, 2002. URL http://www.public.iastate.

edu/~baojie/pub/2002-05-08_stlf.pdf.

[7] Maumita Bhattacharya, Ajith Abraham, and Baikunth Nath. A linear genetic
programming approach for modeling electricity demand prediction in Victoria.
In Ajith Abraham and Mario Koppen, editors, Hybrid Information Systems, Ad-
vances in Soft Computing, pages 379–394, Berlin, Germany, November 2001.
Springer-Verlag. ISBN 3-7908-1480-6. URL http://www-mugc.cc.monash.edu.

au/~abrahamp/172.pdf.

[8] Zvi Boger. Electricity load forecasting using artificial neural networks clustering.
In Proceedings of the 1st European Symposium on Intelligent Technologies, Hybrid
Systems and their implementation on Smart Adaptive Systems (EUNITE’01), Aachen,
Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.

sk/competition/reports/zviboger.pdf.

84 References

[9] Gianluca Bontempi. EUNITE world-wide competition: Research report. In Pro-
ceedings of the 1st European Symposium on Intelligent Technologies, Hybrid Systems
and their implementation on Smart Adaptive Systems (EUNITE’01), Aachen, Ger-
many, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.sk/

competition/reports/gianlucabontempi.pdf.

[10] George Boole. An Investigation of The Laws of Thought. Walton and Maberley,
London, 1854. ISBN 0-486-60028-9. Reprinted by Dover Publications, New York,
1951.

[11] Rutger ter Borg. Extracting fuzzy rules using genetic programming. Mas-
ter’s thesis, Delft University of Technology, Delft, the Netherlands, August
2000. URL ftp://ftp.kbs.twi.tudelft.nl/pub/docs/MSc/all/Borg_Rutger_

ter/thesis.ps.gz.

[12] Rutger ter Borg and Léon Rothkrantz. Graphed evolutionary computing. In John
Caulfield, Shu-Heng Chen, Heng-Da Cheng, Richard Duro, Vasant Honavar, Eti-
enne Kerre, Mi Lu, Manuel Grana Romay, Timothy Shih, Dan Ventura, Paul Wang,
and Yuanyuan Yang, editors, Proceedings of the 6th Joint Conference on Information
Science, March 8-13, 2002, Research Triangle Park, North Carolina, USA, pages 606–
609. JCIS / Association for Intelligent Machinery, Inc., 2002. ISBN 0-9707890-1-7.

[13] Rutger ter Borg and Léon Rothkrantz. Smooth bayesian kernel machines. In
Wlodzislaw Duch et al., editor, Proceedings of the 15th International Conference
on Artificial Neural Networks (ICANN’05), volume 3697 of Lecture Notes in Com-
puter Science, pages 577–582. Springer-Verlag, 2005. ISBN 3-540-28755-8. URL
http://www.ibspan.waw.pl/ICANN-2005/.

[14] Rutger ter Borg and Léon Rothkrantz. Modelling electricity load with kernel ma-
chines. IEEE Transactions on Power Systems, submitted, 2005. ISSN 0885-8950.

[15] Rutger ter Borg and Léon Rothkrantz. Short-term wind power prediction with
radial basis functions. Neural Network World, submitted, 2005.

[16] Svetlana Borovkova. Estimation and Prediction for Nonlinear Time Series. PhD
thesis, University of Groningen, 1998. URL http://www.ub.rug.nl/eldoc/dis/

science/s.a.borovkova/.

[17] Adrian Bors and Ioannis Pitas. Median radial basis function neural network. IEEE
Transactions on Neural Networks, 7(6):1351–1364, 1996. ISSN 1045-9227. URL
http://www-users.cs.york.ac.uk/~adrian/Papers/Journals/TNN96.pdf.

[18] Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual ACM Workshop on
Computational Learning Theory (COLT’92), pages 144–152, Pittsburgh, 1992. ACM
Press. URL http://www.clopinet.com/isabelle/Papers/colt92.ps.Z.

[19] Philip Brierley and Bill Batty. Electric load modelling with neural networks: An
insight into the black box. In Proceedings of the 4th International Conference on

References 85

Neural Information Processing and Intelligent Information Systems (ICONIP’97), vol-
ume 2, pages 1326–1329, Singapore, 1997. Springer-Verlag. URL http://www.

cranfield.ac.uk/public/me/fo941992/papers/iconip97.ps.

[20] Philip Brierley and Bill Batty. Neural data mining and modelling for electric load
prediction. In Abhay Bulsari, Fernandez de Canete, and Sirpa Kallio, editors,
Proceedings of the 4th International Conference on Engineering Applications of Neu-
ral Networks (EANN’98), Turku, Finland, 1998. Systems Engineering Association.
ISBN 951-97868-0-5. URL http://www.cranfield.ac.uk/public/me/fo941992/

papers/eann98.ps.

[21] Werner Brockmann and Steffen Kuthe. Different models to forecast electric-
ity loads. In Proceedings of the 1st European Symposium on Intelligent Technolo-
gies, Hybrid Systems and their implementation on Smart Adaptive Systems (EU-
NITE’01), Aachen, Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL
http://neuron.tuke.sk/competition/reports/wernerbrockmann.ps.

[22] Christopher Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998. ISSN 1384-5810. URL
http://citeseer.nj.nec.com/burges98tutorial.html.

[23] Francesco Camastra and Anna Maria Colla. Short-term load forecasting based on
correlation dimension estimation and neural nets. In Wulfram Gerstner, Alain Ger-
mond, Martin Hasler, and Jean-Daniel Nicoud, editors, Proceedings of the 7th Inter-
national Conference on Artificial Neural Networks (ICANN’97), volume 1327 of Lec-
ture Notes in Computer Science, pages 1035–1040. Springer-Verlag, 1997. ISBN 3-
540-63631-5. URL ftp://ftp.disi.unige.it/person/camastraf/icann97.ps.

[24] Francesco Camastra and Anna Maria Colla. Neural short-term prediction based
on dynamics reconstruction. Neural Processing Letters, 9(1):45–52, 1999. ISSN
1370-4621. URL ftp://ftp.disi.unige.it/person/camastraf/npl99.ps.

[25] Bradley Carlin and Thomas Louis. Bayes and Emperical Bayes Methods for Data
Analysis. Chapman & Hall/CRC, New York, second edition, 2000. ISBN 58488-
170-4.

[26] Otávio Carpinteiro and Alexandre Alves da Silva. A hierarchical self-organising
map model in short-term load forecasting. In Proceedings of the 5th International
Conference on Engineering Applications of Neural Networks (EANN’99), pages 75–
80, 1999. ISBN 83-7174-512-512-5. URL http://www.iee.efei.br/~otavio/

tmp/eann99.pdf.

[27] Otávio Carpinteiro and Alexandre Alves da Silva. A hierarchical self-organising
map model in short-term load forecasting. Journal of Intelligent and Robotic Sys-
tems, 31:105–113, 2001. ISSN 0921-0296. URL http://gerson.iee.efei.br/

~otavio/tmp/jirs.pdf.

[28] Martin Casdagli. Nonlinear prediction of chaotic time series. Physica D: Nonlinear
Phenomena, 35(3):335–356, 1989.

86 References

[29] Enrique Castillo, Angel Cobo, José Manuel Gutiérrez, and Rosa Eva Pruneda. An
Introduction to Functional Networks with Applications. A Neural-Based Paradigm,
volume 473 of The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, Boston, 1998. ISBN 0-7923-8332-X. URL http:

//www.wkap.nl/prod/b/0-7923-8332-X.

[30] Enrique Castillo, Bertha Guijarro, and Ampara Alonso. Electricity load forecasting
using functional networks. In Proceedings of the 1st European Symposium on In-
telligent Technologies, Hybrid Systems and their implementation on Smart Adaptive
Systems (EUNITE’01), Aachen, Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7.
URL http://neuron.tuke.sk/competition/reports/berthaguijarro.pdf.

[31] Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental sup-
port vector machine learning. In Todd Leen, Thomas Dietterich, and Volker
Tresp, editors, Advances in Neural Information Processing Systems (NIPS’00), vol-
ume 13, pages 409–415, Cambridge, Massachusetts, USA, April 2001. The
MIT Press. ISBN 0-262-12241-3. URL http://books.nips.cc/papers/files/

nips13/CauwenberghsPoggio.pdf.

[32] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001. URL http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[33] Ming-Wei Chang, Bo-Juen Chen, and Chih-Jen Lin. EUNITE network competition:
Electricity load forecasting. In Proceedings of the 1st European Symposium on In-
telligent Technologies, Hybrid Systems and their implementation on Smart Adaptive
Systems (EUNITE’01), Aachen, Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7.
URL http://neuron.tuke.sk/competition/reports/chih-jenlin.ps.

[34] Guenjun Chen, Kai-kwong Li, Tak-shing Chung, Hongbin Sun, and Guoqing Tang.
Application of an innovative combined forecasting method in power system load
forecasting. Electric Power Systems Research, 59(2):131–137, 2001. ISSN 0378-
7796.

[35] Hong Chen, Claudio Cañizares, and Ajit Singh. Ann-based short-term load fore-
casting in electricity markets. IEEE Transactions on Power Systems, 2001. ISSN
0885-8950.

[36] Roman Collobert and Samy Bengio. SVMTorch: Support vector machines for
large-scale regression problems. Journal of Machine Learning Research, 1:143–
160, 2001. ISSN 1533-7928. URL http://www.ai.mit.edu/projects/jmlr/

papers/volume1/collobert01a/collobert01a.pdf.

[37] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines (and other kernel-based learning methods). Cambridge Univerisity Press,
Cambridge, UK, 2000. ISBN 0-521-78019-5. URL http://www.support-vector.

net.

[38] Thomas Czernichow, Alain Germond, and Bernadette Dorizzi. Improving recurrent
network load forecasting. In Proceedings of the 1995 IEEE International Confer-
ence on Neural Networks (ICNN’95), Piscataway, USA, 1995. IEEE Press. ISBN 0-

References 87

7803-2769-1. URL http://www-sim.int-evry.fr/publications/czernichow/

noteedf.ps.gz.

[39] Charles Darwin. On the origin of species by means of natural selection, or the
preservation of favoured races in the struggle for life. Journal of researches during
H.M.S. Beagle’s Voyage round the world, 1859.

[40] Adam Ding. Neural networks prediction with noisy predictors. IEEE Transactions
on Neural Networks, 10(5):1196–1203, September 1999. ISSN 1045-9227. URL
http://www.math.neu.edu/~ding/ann/paper1.ps.

[41] Harris Drucker, Chris Burges, Linda Kaufman, Alex Smola, and Vladimir Vap-
nik. Support vector regression machines. In Michael Mozer, Michael Jordan,
and Thomas Petsche, editors, Advances in Neural Information Processing Sys-
tems, volume 9, pages 155–161, Cambridge, Massachusetts, USA, 1997. The MIT
Press. ISBN 0-262-10065-7. URL http://www.kernel-machines.org/papers/

druburkausmovap96.ps.gz.

[42] Mohamed El-Sharkawi, Robert Marks, and Mark Damborg. Short term elec-
tric load forecasting using an adaptively trained layered perceptron. In Mo-
hamed El-Sharkawi and Robert Marks, editors, Proceedings of the First Interna-
tional Forum on Applications of Neural Networks to Power Systems, pages 3–6.
Sofitware, 1991. ISBN 0780300653. URL http://cialab.ee.washington.edu/

marks-stuff/publications/markspubarchive/1991_shorttermelectric.pdf.

[43] Yaakov Engel, Shie Mannor, and Ron Meir. Sparse online greedy support vector re-
gression. In Tapio Elomaa, Heikki Mannila, and Hannu Toivonen, editors, Machine
Learning: ECML 2002, volume 2430 of Lecture Notes in Computer Science, Berlin,
2002. Springer-Verlag. ISBN 3-540-44036-4. URL http://www.ee.technion.ac.

il/~rmeir/publications/ecml02sogsvr.pdf.

[44] Yaakov Engel, Shie Mannor, and Ron Meir. The kernel recursive least squares
algorithm. ICNC03 001, Interdisciplinary Center for Neural Computation, Hebrew
University, Jerusalem, Israel, 2003. URL http://visl.technion.ac.il/~yaki/

papers/krls-report.pdf.

[45] David Esp. Adaptive logic networks for East Slovakian electrical load forecasting.
In Proceedings of the 1st European Symposium on Intelligent Technologies, Hybrid
Systems and their implementation on Smart Adaptive Systems (EUNITE’01), Aachen,
Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.

sk/competition/reports/davidesp.pdf.

[46] Scott Fahlman. An empirical study of learning speed in back-propagation networks.
CS 88-162, Carnegie-Mellon University, 1988. URL http://www.cs.cmu.edu/afs/

cs.cmu.edu/user/sef/www/publications/qp-tr.ps.

[47] José Fidalgo and João Peças Lopes. Load forecasting dealing with medium voltage
network reconfiguration. In Verleysen [126], pages 407–412. ISBN 2-930-30700-
5. URL www.dice.ucl.ac.be/proceedings/esann/esannpdf/es2000-34.pdf.

88 References

[48] Mário Figueiredo. Adaptive sparseness using Jeffreys prior. In Thomas Dietterich,
Suzanna Becker, and Zoubin Ghahramani, editors, Advances in Neural Information
Processing Systems (NIPS’01), volume 14, Cambridge, Massachusetts, USA, 2002.
The MIT Press. ISBN 0-262-04208-8. URL http://www-2.cs.cmu.edu/groups/

nips/nips2001/papers/psgz/aa07.ps.gz.

[49] Mário Figueiredo. Adaptive sparseness for supervised learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(9):1150–1159, 2003. ISSN 0162-
8828. URL http://www.lx.it.pt/~mtf/IEEE_TPAMI_2003.pdf.

[50] Eithne Fitzgerald. Directive 96/61/EC of the European parliament and of the coun-
cil of 24 September 1996 concerning integrated pollution prevention and control.
EU Official Journal, L(61):26–40, 10 1996. ISSN 0378-6978.

[51] Nicole Fontaine and Charles Picqué. Directive 2001/77/EC of the European par-
liament and of the council of 27 September 2001 on the promotion of electricity
produced from renewable energy sources in the internal electricity market. EU Of-
ficial Journal, L(283):33–40, 10 2001. ISSN 0378-6978. URL http://europa.eu.

int/eur-lex/pri/en/oj/dat/2001/l_283/l_28320011027en00330040.pdf.

[52] Andrew Gelman, John Carlin, Hal Stern, and Donald Rubin. Bayesian Data Analy-
sis. Chapman & Hall, London, 1995. ISBN 0-412-03991-5.

[53] Marc Genton. Classes of kernels for machine learning: A statistics per-
spective. Journal of Machine Learning Research, 2:299–312, 2001. ISSN
1533-7928. URL http://www.ai.mit.edu/projects/jmlr/papers/volume2/

genton01a/genton01a.pdf.

[54] Gregor Giebel, Richard Brownsword, and George Kariniotakis. The state-of-the-art
in short-term prediction of wind power: A literature overview. Deliverable report
D1.1, Project ANEMOS, Roskilde, Denmark, 2003. URL http://anemos.cma.fr/

download/ANEMOS_D1.1_StateOfTheArt_v1.1.pdf.

[55] Peter Green and Bernard Silverman. Nonparametric Regression and Generalized
Linear Models: A Roughness Penalty Approach. Chapman & Hall, 1993. ISBN
0412300400.

[56] Jeff Haberl and Sabaratnam Thamilseran. The great energy predictor shootout II:
Measuring retrofit savings. ASHRAE Journal, 40(1):49–56, 1998. ISSN 0001-2491.

[57] Klaus Hänsch and Sean Barrett. Directive 96/92/EC of the European parliament
and of the council of 19th of December 1996 concerning common rules for the
internal market in electricity. EU Official Journal, L(27):20–29, January 1997.
ISSN 0378-6978. URL http://www.ceer-eu.org/pdf/dir_96_92.pdf.

[58] Robert Hecht-Nielsen. Neurocomputing. Addison-Wesley Publishing Company,
Reading, Massachusetts, USA, 1990. ISBN 0-201-09255-3.

[59] Henrique Steinherz Hippert, Carlos Eduardo Pedreira, and Reinaldo Castro Souza.
Neural networks for short-term load forecasting: A review and evaluation. IEEE
Transactions on Power Systems, 16(1):44–55, 2001. ISSN 0885-8950.

References 89

[60] John Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Michigan, 1975.

[61] Cheng-Hsiung Hsieh. Grey neural network and its application to short term load
forecasting problem. IEICE Transactions on Information and Systems, E85-D(5):
897–902, 2002. URL http://search.ieice.org/2002/pdf/e85-d_5_897.pdf.

[62] Olaf Huwendiek and Werner Brockmann. Function approximation with decom-
posed fuzzy systems. Fuzzy Sets and Systems, 101(2):273–286, 1999. ISSN 0165-
0114.

[63] Boris Igelnik and Yoh-Han Pao. Stochastic choice of radial basis functions in adap-
tive function approximation and the functional-link net. IEEE Transactions on Neu-
ral Networks, 6(6):1320–1329, 1995. ISSN 1045-9227.

[64] Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996. ISSN 1061-
8600. URL http://www.r-project.org.

[65] Gregory Ivakhnenko. Inductive self-organising algorithm for maximum electric-
ity load prediction. In Proceedings of the 1st European Symposium on Intelligent
Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems
(EUNITE’01), Aachen, Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL
http://neuron.tuke.sk/competition/reports/gregoryivakhnenko.pdf.

[66] Thorsten Joachims. Making Large-Scale SVM Learning Practical, chapter 11. In
, Schölkopf et al. [113], first edition, 1999. ISBN 0-262-19416-3. URL http:

//www.cs.cornell.edu/people/tj/publications/joachims_99a.pdf.

[67] Jacques de Jong. Tariff Code. Dienst uitvoering en Toezicht Energie, the Hague,
the Netherlands, December 2001. URL http://www.nma-dte.nl/nl/besluiten/

elektriciteit/dte_codes/tarievencode/tarievencode.pdf.

[68] Nicolaos Karayiannis. Reformulated radial basis neural networks trained by gra-
dient descent. IEEE Transactions on Neural Networks, 10(3):657–671, 1999.
ISSN 1045-9227. URL http://www.egr.uh.edu/ece/faculty/karayiannis/

Karayiannis_tnn_10(3)_99.pdf.

[69] William Karush. Minima of functions of several variables with inequalities as side
conditions. Master’s thesis, University of Chicago, 1939.

[70] Michael Kearns and Umesh Vazirani. An Introduction to Computational Learning
Theory. The MIT Press, Cambridge, Massachusetts, USA, 1994. ISBN 0-262-11193-
4. URL http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=

7334.

[71] Iain King and John Tindle. Storage of half hourly electric metering data and
forecasting with artificial neural network technology. In Proceedings of the 1st
European Symposium on Intelligent Technologies, Hybrid Systems and their imple-
mentation on Smart Adaptive Systems (EUNITE’01), Aachen, Germany, 2001. Ver-
lag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.sk/competition/

reports/iainking.pdf.

90 References

[72] Daniel Kirschen. Demand-side view of electricity markets. IEEE Transactions on
Power Systems, 18(2):520–527, 2003. ISSN 0885-8950.

[73] Teuvo Kohonen. Self-organized formation of topographically correct feature maps.
Biological Cybernetics, 43:59–69, 1982.

[74] Daphne Koller and Mehran Sahami. Toward optimal feature selection. In Pro-
ceedings of the 13th International Conference on Machine Learning, pages 284–292,
1996. URL http://robotics.stanford.edu/~koller/papers/ml96.ps.

[75] Wojciech Kowalczyk. Averaging and data enrichment: two approaches to electric-
ity load forecasting. In Proceedings of the 1st European Symposium on Intelligent
Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems
(EUNITE’01), Aachen, Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL
http://neuron.tuke.sk/competition/reports/wojtekkowalczyk.pdf.

[76] John Koza. Hierarchical genetic algorithms operating on populations of computer
programs. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence, volume 1, pages 768–774, San Mateo, CA, 1989. Morgan Kaufmann.
URL http://www.genetic-programming.com/IJCAI89.ps.

[77] Harold Kuhn and Albert Tucker. Nonlinear programming. In Jerzy Neyman, ed-
itor, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, pages 481–492. University of California Press, 1951.

[78] Yuh-Jye Lee and Olvi Mangasarian. SSVM: A smooth support vector machine for
classification. Computational Optimization and Applications, 20(1):5–22, October
2001. ISSN 0926-6003.

[79] Achim Lewandowski, Frank Sandner, and Peter Protzel. Prediction of electric-
ity load by modeling the temperature dependencies. In Proceedings of the 1st
European Symposium on Intelligent Technologies, Hybrid Systems and their imple-
mentation on Smart Adaptive Systems (EUNITE’01), Aachen, Germany, 2001. Ver-
lag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.sk/competition/

reports/achimlewandowski.ps.

[80] Shuhui Li, Donald Wunsch, Edgar O’Hair, and Michael Giesselmann. Using neural
networks to estimate wind turbine power generation. IEEE Transactions on En-
ergy Conversion, 16(3):276–282, 9 2001. URL http://www.ece.umr.edu/acil/

Publications/JOURNAL/USING_NEURAL_NETWORKS.pdf.

[81] Shuhui Li, Donald Wunsch, Egard O’Hair, and Michael Giesselmann. Comparative
analysis of regression and artificial neural network models for wind turbine power
curve estimation. Journal of Solar Energy Engineering, 123:327–332, 11 2001.
ISSN 0199-6231. URL http://www.ece.umr.edu/acil/Publications/JOURNAL/

ASMEJSEE01.pdf.

[82] Ahamd Lofti. Application of learning fuzzy inference systems in electricity load
forecast. In Proceedings of the 1st European Symposium on Intelligent Technolo-
gies, Hybrid Systems and their implementation on Smart Adaptive Systems (EU-
NITE’01), Aachen, Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL
http://neuron.tuke.sk/competition/reports/ahmadlotfi.pdf.

References 91

[83] Anna Lotufo and Carlos Minussi. Electric power systems load forecasting:
A survey. In Proceedings of the IEEE Power Tech ’99 Conference, pages 1–
6, 1999. URL http://www.dee.feis.unesp.br/dee/docentes/publicacoes/

artigo_anna_buda_99.pdf.

[84] Junshiu Ma, James Theiler, and Simon Perkins. Accurate on-line support vector
regression. Neural Computation, 15(11):2683–2704, November 2003. ISSN 0899-
7667. URL http://nis-www.lanl.gov/~jt/Papers/aosvr-nc.pdf.

[85] David MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.
ISSN 0899-7667. URL http://www.inference.phy.cam.ac.uk/mackay/inter.

nc.ps.gz.

[86] David MacKay. The evidence framework applied to classification networks. Neu-
ral Computation, 4(5):698–714, 1992. ISSN 0899-7667. URL http://www.

inference.phy.cam.ac.uk/mackay/class.nc.ps.gz.

[87] David MacKay. Information-based objective functions for active data set selection.
Neural Computation, 4(4):589–603, 1992. ISSN 0899-7667. URL http://www.

inference.phy.cam.ac.uk/mackay/selection.nc.ps.gz.

[88] David MacKay. A practical bayesian framework for backprop networks. Neu-
ral Computation, 4(3):448–472, 1992. ISSN 0899-7667. URL http://www.

inference.phy.cam.ac.uk/mackay/backprop.nc.ps.gz.

[89] Ebrahim Mamdani and Seto Assilian. An experiment in linguistic synthesis with
a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1–13,
1975.

[90] Morgan Mangeas, Andreas Weigend, and Corinne Muller. Forecasting electricity
demand using nonlinear mixture of experts. In Proceedings of the World Congress on
Neural Networks (WCNN’95), volume II, pages 48–53, 1995. URL http://rutcor.

rutgers.edu/~amai/aimath98/extended_abstracts/mmangeas.ps.

[91] Francisco Marín, Fransisco García-Lagos, Gonzalo Joya, and Fransisco Sandoval.
Peak load forecasting using kohonen classification and intervention analysis. In
Proceedings of the 1st European Symposium on Intelligent Technologies, Hybrid Sys-
tems and their implementation on Smart Adaptive Systems (EUNITE’01), Aachen,
Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.

sk/competition/reports/javiermarin.pdf.

[92] Warren McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[93] Nicholas Minorsky. Directional stability and automatically steered bodies. Journal
of American Society of Naval Engineers, 34:280–309, 1922.

[94] Vladimiro Miranda and Claudio Monteiro. Fuzzy inference applied to spatial load
forecasting. In Proceedings of the IEEE Power Tech ’99 Conference, 1999. URL http:

//power.inescn.pt/inesc/artigos/bpt99_358_25.pdf.

92 References

[95] Luciano Moulin and Alexandre Alves da Silva. Neural network based short-term
elecric load forecasting with confidence intervals. In Proceedings of the 4th Brazilian
Conference on Neural Networks (CBRN’99), pages 7–12, 1999. URL http://www.

ele.ita.br/cnrn/4cbrn/artigos-4cbrn/4cbrn_002.pdf.

[96] Sayan Mukherjee, Edgar Osuna, and Federico Girosi. Nonlinear prediction of
chaotic time series using support vector machines. In Proceedings of the 1997 IEEE
Workshop on Neural Networks for Signal Processing, 1997. URL ftp://ftp.ai.

mit.edu/pub/cbcl/nnsp97.ps.gz.

[97] Fransisco Ortega, María Teresa Rodríguez, César Menéndez, Nieves Roqueñi, Vi-
cente Rodríguez, Veleriano Álvarez, Gemma Martínez, Joaquín Villanueva, and
José Manuel Mesa. An hybrid approach to prediction of electric load with mars
and kohonen maps. In Proceedings of the 1st European Symposium on Intelligent
Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems
(EUNITE’01), Aachen, Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL
http://neuron.tuke.sk/competition/reports/franciscoortega.pdf.

[98] Peter Otto. Fuzzy based time series forecasting of electric load. In Proceedings of
the 1st European Symposium on Intelligent Technologies, Hybrid Systems and their
implementation on Smart Adaptive Systems (EUNITE’01), Aachen, Germany, 2001.
Verlag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.sk/competition/

reports/peterotto.pdf.

[99] Ilesh Patel and Brian Samuel. Energy market liberalisation in Europe - the case
for full liberalisation. A report sponsored by TXU, Caminus, London, UK, Febru-
ary 2000. URL http://www.txucorp.com/eu/uk/newsroom/pressreleases/uk/

txupr21feb02report.pdf.

[100] Emil Pelikán. Middle-term electric load forecasting by time series decomposition.
In Proceedings of the 1st European Symposium on Intelligent Technologies, Hybrid
Systems and their implementation on Smart Adaptive Systems (EUNITE’01), Aachen,
Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.

sk/competition/reports/emilpelikan.pdf.

[101] Pierre Pinson, Nils Siebert, and George Kariniotakis. Forecasting of regional wind
generation by a dynamic fuzzy-neural networks based upscaling approach. In Pro-
ceedings of the European Wind Energy Conference (EWEC 2003), Madrid, Spain.
EWEA, 2003. URL http://anemos.cma.fr/download/publications/pub_2003_

paper_EWEC03_UpscalingPinson.pdf.

[102] John Platt. Fast Training of Support Vector Machines using Sequential Minimal Opti-
mization, chapter 12. In , Schölkopf et al. [113], first edition, 1999. ISBN 0-262-
19416-3. URL http://research.microsoft.com/~jplatt/smo-book.pdf.

[103] Martin Pring. Technical analysis explained: the successful investor’s guide to spotting
investment trends and turning points. McGraw-Hill, New York, 1991. ISBN 0-07-
051042-3.

References 93

[104] Jim Ramsay and Bernard Silverman. Applied Functional Data Analysis. Springer-
Verlag, 2002. ISBN 0-387-95414-7. URL http://www.psych.mcgill.ca/

faculty/ramsay/appliedfda.html.

[105] Jim Ramsay and Bernard Silverman. Functional Data Analysis. Springer Series
in Statistics. Springer-Verlag, New York, 1997. ISBN 0-387-94956-9. URL http:

//www.psych.mcgill.ca/faculty/ramsay/fda.html.

[106] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In Proceedings of the IEEE Interna-
tional Conference on Artificial Neural Networks, pages 586–591, 1993.

[107] Fabio Rivieccio. SVM for an electricity load forecasting problem. In Proceedings of
the 1st European Symposium on Intelligent Technologies, Hybrid Systems and their
implementation on Smart Adaptive Systems (EUNITE’01), Aachen, Germany, 2001.
Verlag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.sk/competition/

reports/fabiorivieccio.ps.

[108] Frank Rosenblatt. The perceptron: a probablistic model for information storage
and retrieval in the brain. Psychological Review, 65:386–408, 1958.

[109] Volker Roth. Sparse kernel regressors. In Georg Dorffner, Horst Bischof, and
Kurt Hornik, editors, Proceedings of the 12th International Conference on Artifi-
cial Neural Networks (ICANN’01), volume 2130 of Lecture Notes in Computer Sci-
ence, pages 339–346. Springer-Verlag, 2001. ISBN 3-540-42486-5. URL http:

//www.informatik.uni-bonn.de/~roth/icann_pdf.pdf.

[110] Elena Savelieva, Alexey Kravetski, Sergey Chernov, Vasiliy Demyanov, Vadim Ti-
monin, Rafael Arutyunyan, Leonid Bolshov, and Mikhail Kanevski. Application
of MLP and stochastic simulations for electricity load in Russia. In Verleysen
[126], pages 413–418. ISBN 2-930-30700-5. URL http://www.dice.ucl.ac.

be/proceedings/esann/esannpdf/es2000-502.pdf.

[111] Martin Scheepers et al. Energie markt trends 2001. ECN-P 01-009, Ener-
gieonderzoek Centrum Nederland, Petten, the Netherlands, 2001. URL ftp:

//ftp.ecn.nl/pub/www/library/report/2001/p01009.pdf.

[112] Bernhard Schölkopf and Alexander Smola. Learning with Kernels. Adaptive Com-
putation and Machine Learning. The MIT Press, Cambridge, Massachusetts, USA,
2002. ISBN 0-262-19475-9. URL http://www.learning-with-kernels.org.

[113] Bernhard Schölkopf, Christhopher Burges, and Alex Smola, editors. Advances
in Kernel Methods - Support Vector Learning. The MIT Press, Cambridge, Mas-
sachusetts, USA, first edition, 1999. ISBN 0-262-19416-3. URL http://

kernel-machines.org/nips97/book.html.

[114] Tmonobu Senjyu, Hitoshi Takara, Katsumi Uezato, and Toshihisa Funabashi. One-
hour-ahead load forecasting using neural network. IEEE Transactions on Power
Systems, 17(1):113–118, 2002. ISSN 0885-8950.

94 References

[115] Colin Cowan Sheng Chen and Peter Grant. Orthogonal least squares larning
algorithm for radial basis function networks. IEEE Transactions on Neural Net-
works, 2(2):302–309, 3 1991. ISSN 1045-9227. URL http://itswww.epfl.ch/

~coursnonlin/files/support/OLS_RBF.pdf.

[116] Johan Suykens and Joos Vandewalle. Least squares support vector machine clas-
sifiers. Neural Processing Letters, 9(3):293–300, 1999. URL ftp://ftp.esat.

kuleuven.ac.be/pub/SISTA/suykens/reports/lssvm_98_72.ps.gz.

[117] Floris Takens. Detecting strange attractors in fluid turbulence. In David Rand and
Lai-Sang Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture
Notes in Mathematics, pages 366–381, Berlin, 1981. Springer-Verlag. ISBN 0-387-
11171-9.

[118] Rob Tibshirani. Regression shrinkage and selection via the lasso. Journal of The
Royal Statistical Society: Series B, 58(1):267–288, 1996. ISSN 1369-7412. URL
http://www-stat.stanford.edu/~tibs/lasso/lasso.pdf.

[119] Michael Tipping. The relevance vector machine. In Sara Solla, Todd Leen, and
Klaus-Robert Müller, editors, Advances in Neural Information Processing Systems
(NIPS’99), volume 12, pages 652–658, Cambridge, Massachusetts, USA, 2000.
The MIT Press. ISBN 0-262-19450-3. URL ftp://ftp.research.microsoft.com/

users/tipping/rvm_nips.ps.gz.

[120] Michael Tipping. Sparse bayesian learning and the relevance vector ma-
chine. Journal of Machine Learning Research, 1:211–244, 2001. ISSN
1533-7928. URL http://www.ai.mit.edu/projects/jmlr/papers/volume1/

tipping01a/tipping01a.ps.

[121] Michael Tipping and Anita Faul. Fast marginal likelihood maximisation for sparse
bayesian models. In Cristopher Bishop and Brendan Frey, editors, Proceedings of
the Ninth International Workshop on Artificial Intelligence and Statistics, January 3–
6 2003, Key West, Florida, 2003. ISBN 0-9727358-0-1. URL ftp://ftp.research.

microsoft.com/users/mtipping/fastsbl.ps.gz.

[122] Leslie Valiant. A theory of the learnable. Communications of the ACM, pages
1134–1142, 1984. ISSN 0001-0782. URL http://www.cs.toronto.edu/~roweis/

csc2515/readings/p1134-valiant.pdf.

[123] Vladimir Vapnik. Estimation of Dependencies Based on Emperical Data. Springer se-
ries in statistics. Springer-Verlag, New York, 1982. ISBN 0-387-90733-5. Translated
from Russian.

[124] Vladimir Vapnik. The Nature of Statistical Learning Theory. Statistics for En-
gineering and Information Science. Springer-Verlag, New York, 1995. ISBN
0-387-98780-0. URL http://www.springer.de/cgi/svcat/search_book.pl?

isbn=0-387-98780-0.

[125] Vladimir Vapnik. Statistical Learning Theory. John Wiley & Sons, New York,
1998. ISBN 0-471-03003-1. URL http://www.wiley.com/cda/product/0,

,0471030031,00.html.

References 95

[126] Michel Verleysen, editor. Proceedings of the 8th European Symposium on Artifi-
cial Neural Networks (ESANN’00), Brussels, Belgium, 2000. D-Facto. ISBN 2-930-
30700-5. URL http://www.dice.ucl.ac.be/esann/proceedings/esann2000/

content.htm.

[127] Albert Vreeman. APX weekly report. APX Weekly Report 23, Amsterdam Power
Exchange, Amsterdam, the Netherlands, June 2002. URL http://www.apx.nl/

marketresults/weekly/pdf/weekly_report_23.pdf.

[128] Grace Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Re-
gional Conference Series in Applied Mathematics. Society for Industrial and Applied
Mathematics, 1990. ISBN 0-89871-244-0.

[129] Robert Weizenegger. The prediction of maximum electrical load based on limited
historical data using a fuzzy logic based data mining and modelling algorithm.
In Proceedings of the 1st European Symposium on Intelligent Technologies, Hybrid
Systems and their implementation on Smart Adaptive Systems (EUNITE’01), Aachen,
Germany, 2001. Verlag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.

sk/competition/reports/robweizenegger.pdf.

[130] Paul Werbos. Beyond Regression: New tools for Prediction and Analysis in the Be-
havioural Sciences. PhD thesis, Harvard University, 1974.

[131] Jason Weston, André Elisseef, Bernhard Schölkopf, and Michael Tipping. Use of the
zero-norm with linear models and kernel methods. Journal of Machine Learning
Research, 3:1439–1461, 2003. ISSN 1533-7928. URL http://jmlr.csail.mit.

edu/papers/volume3/weston03a/weston03a.pdf.

[132] Clint Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical optimiza-
tion of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.
URL http://www.netlib.org/lapack/lawns/lawn147.ps.

[133] Hans Wijers and Winnie Sorgdrager. Elektriciteitswet 1998. Staatsblad, 1998
(427):1–26, July 1998. ISSN 0920-2064. URL http://www.nma-dte.nl/en/

publications/electricityact.pdf.

[134] Hung-Chih Wu and Chan-Nan Lu. A data mining approach for spatial modeling
in small area load forecast. IEEE Transactions on Power Systems, 17(2):516–521,
2002. ISSN 0885-8950.

[135] Esa Ylipahkala. Estimating the uncertainty of electricity load. Master’s the-
sis, Helsinky University of Technology, 1997. URL http://www.sal.hut.fi/

Publications/pdf-files/tyli97.pdf.

[136] Lofti Zadeh. Fuzzy sets. Information and Control, 8:338–358, 1965.

[137] Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani. 1-norm support vector
machines. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors,
Advances in Neural Information Processing Systems (NIPS’03), volume 16, Cam-
bridge, Massachusetts, USA, 2004. The MIT Press. URL http://books.nips.cc/

papers/files/nips16/NIPS2003_AA07.pdf.

96 References

[138] Dalibor Živčák. Electricity load forecasting using ANN. In Proceedings of the 1st
European Symposium on Intelligent Technologies, Hybrid Systems and their imple-
mentation on Smart Adaptive Systems (EUNITE’01), Aachen, Germany, 2001. Ver-
lag Mainz. ISBN 3-89653-916-7. URL http://neuron.tuke.sk/competition/

reports/daliborzivcak.pdf.

Summary

Ph.D. thesis “Electricity Load Modelling using Computation Intelligence”, by
Rutger W. ter Borg.

Chapter 1 introduces my research. As a consequence of the liberalisation of the
Dutch electricity market, program responsibility partners may have to pay con-
siderable sums for the settlement of their imbalances. These costs are based on
the difference between the estimated and two weeks later allocated electricity
offtake. The larger the difference between these two, the higher the imbalance
settlement costs, payable to the Dutch transmission system operator Tennet. The
objective of this investigation is to develop an accurate model for electricity de-
mands as well as a short-term wind-power-production forecasting system.

Chapter 2 reviews related work from the fields of electricity-demand mod-
elling and short-term wind-power production forecasting. Structures of the most
commonly used models are discussed, which in the case of the electricity demand
models are causal models, time-series models, and mixed models. Wind-power
production models can be classified to be either physical or statistical. Quality
criteria to assess the models are also presented.

Chapter 3 treats a novel method in the area of Bayesian kernel machines. I
consider the possibility of obtaining a kernel machine that is sparse in feature
space and smooth in output space. Smooth in output space implies that the un-
derlying function is assumed to have continuous derivatives up to some order.
Smoothness is achieved by applying a roughness penalty, a concept from the
area of functional data analysis. Sparseness is taken care of by automatic rele-
vance determination. Both are combined in a Bayesian model, which has been
implemented and tested. Test results are presented in this chapter.

Chapter 4 devises models based on kernel machines, one to describe elec-
tricity demands, and one to describe wind-power production. Several domain-
specific representations have been designed which make use of the flexibility of
the kernel machine. The kernels used by kernel machines have a clear interpre-
tation as a distance measure. After a thorough data analysis, I propose represen-
tations of input variables that are compatible with the Gaussian kernel specific to
electricity demand patterns. I used a multi-component setup of kernel machines
to increase the orthogonality between several input variables. The model for
short-term wind-power production uses numerical wind speeds and direction as
its only inputs. The coarse resolution of one meter per second of the wind speeds

is refined by combining the weather data from several meteorological stations.
Additionally, the wind direction is mapped on a circle so it is more compatible
with a Gaussian kernel.

Chapter 5 gives an overview of the Kernel-Machine Library, a C++ library I
wrote to facilitate the development and embedding of kernel machines, both for
academic use and for developing real-world applications. After motivating the
purpose of this library between other similar software packages, I set a number
of requirements, which have been kept in consideration during the design of
the library. Its implementation draws heavily upon features of modern C++
such as template meta-programming to achieve high performance while at the
same time offering a comfortable interface. It enables compile-time selection of
specialised algorithms, which makes it very efficient. Cross-platform compiling
and correctness testing has also been performed.

Chapter 6 practises electricity load modelling with the devised techniques.
For the electricity demand model, the multi component structure as presented in
chapter 4 is extended in an experimental way. The proposed representations for
day types and twilight are tested for their embeddability. The multi-component
structure is filled with calendar, trend, temperature, radiation, and wind com-
ponents. These components enable the electricity demands to be unravelled;
several new explicit facts are discovered by using this system. This new explicit
knowledge, such as the exact causal relations, is very useful in practice. The
created system produces accurate and detailed predictions of the electricity de-
mands. For the short-term wind-power production system, a number of weather
stations is added incrementally to be able to select the input space composition.

Chapter 7 concludes on the presented methods, models, tools, and their ex-
perimental results when used for electricity load modelling.

Samenvatting

Proefschrift “Het modelleren van elektriciteitsbelasting met behulp van com-
putational intelligence”, door Rutger W. ter Borg.

In hoofdstuk 1 wordt een introductie op mijn onderzoek gegeven. Door de libe-
ralisering van de Nederlandse elektriciteitsmarkt kunnen de daarop opererende
programmaverantwoordelijken (PV’ers) veel geld kwijt zijn aan de afwikkeling
van hun onbalans. Deze kosten zijn gebaseerd op het verschil tussen het een dag
vantevoren ingediende E-programma, waarin de PV’er opgeeft in welke mate hij
het elektriciteitsnet verwacht te belasten, en de twee weken later aan hem ge-
allocceerde belasting. Hoe groter het verschil tussen E-programma en door de
netbeheerders toegewezen allocatie, des te hoger de onbalansbetalingen aan de
landelijke netwerkbeheerder Tennet kunnen uitvallen. Het doel van dit onder-
zoek is om nauwkeurig voorspellende modellen te ontwikkelen voor zowel het
verbruik van elektriciteit als voor korte-termijn voorspellingen van windenergie-
productie.

In hoofdstuk 2 wordt de huidige aanpak besproken vanuit de onderzoeksge-
bieden van het modelleren van het verbruik van elektriciteit en het korte-termijn
voorspellen van windenergie-productie. De opzet van de meest gebruikte mo-
dellen wordt besproken, in geval van modellen voor het verbruik van elektri-
citeit zijn dit causale modellen, tijdreeksmodellen en gecombineerde modellen.
Wind energie modellen worden geklassificeerd als een fysiek model of als een
statistisch model. Kwaliteitscriteria om de modellen te beoordelen worden ook
gepresenteerd.

In hoofdstuk 3 wordt een nieuwe methode op het gebied van Bayesiaanse
kernel-machines behandeld. Voorts wordt de mogelijkheid besproken om een
kernel-machine te verkrijgen die glad is in de uitkomstruimte en leeg in de ken-
merkruimte. Glad in de uitkomstruimte houdt in dat verondersteld wordt dat
de onderliggende functie continue afgeleiden moet hebben tot op een bepaalde
orde. Gladheid wordt verkregen door het toepassen van een straf op de ruwheid,
een concept uit het gebied van de functionele data-analyse. Leegheid wordt ver-
kregen door het gebruik van een automatische relevantie-determinant. Beide
concepten worden gecombineerd in een Bayesiaans model, dat is geïmplemen-
teerd en getest. Resultaten hiervan worden in dit hoofdstuk gepresenteerd.

In hoofdstuk 4 worden modellen ontworpen op basis van kernel-machines,
één om de vraag naar elektriciteit te beschrijven, en één om de windenergie-

productie te beschrijven. Een aantal domeinspecifieke representaties zijn ont-
worpen die gebruik maken van de flexibiliteit van kernel-machines. De kernels
die gebruikt worden door kernel-machines hebben een duidelijke interpretatie
als afstandsmaat. Na een grondige data-analyse, worden representaties voor-
gesteld die goed aansluiten bij een Gaussianse kernel en specifiek zijn voor het
verbruik van elektriciteit. Een multicomponenten-structuur van kernel-machines
wordt geïntroduceerd om de orthogonaliteit van de invoervariabelen te vergro-
ten. Het model voor korte-termijn windenergie-voorspellingen gebruikt enkel
numerieke windsnelheden en de windrichting als invoer. De te grove metingen
van windsnelheden in meters per seconde worden verfijnd door het combineren
van weerdata van enkele weerstations. Hiernaast wordt de windrichting gepro-
jecteerd op een cirkel waardoor deze beter aansluit bij een Gaussiaanse kernel.

In hoofdstuk 5 wordt een overzicht gegeven van de Kernel-Machine Library,
een C++ bibliotheek die geschreven is voor het faciliteren en ontwikkelen van
kernel-machines, zowel voor academisch gebruik als voor de ontwikkeling van
applicaties die in de praktijk gebruikt kunnen worden. Na toegelicht te hebben
welke doelgroep deze bibiliotheek wil bereiken in vergelijking met gelijksoor-
tige software, wordt een aantal eisen gesteld dat tegen het licht gehouden is
tijdens het ontwerp van de bibliotheek. De implementatie maakt gebruik van
eigenschappen van modern C++, zoals template-metaprogrammeren, om goe-
de prestaties te kunnen behalen en tegelijkertijd een comfortabele interface te
kunnen bieden. Het maakt de keuze tussen gespecialiseerde algoritmen tijdens
het compileren van een programma, wat het erg efficient maakt. Het compileren
op verscheidene platformen en het testen op juistheid is ook uitgevoerd.

In hoofdstuk 6 wordt de praktijk van het modelleren van elektriciteitsbelas-
ting toegelicht. In geval van het model voor het verbruik van elektriciteit wordt
de componentenstructuur zoals geïntroduceerd in hoofdstuk 4 geëxpandeerd op
een experimentele wijze. De voorgestelde representaties voor dagtypen en sche-
mering worden getest op hun toepasselijkheid. De structuur van componenten
wordt opgebouwd met een kalender-, trend-, temperatuur-, straling-, en wind-
component. Deze componenten maken het mogelijk de elektriciteitsverbruiken
te ontrafelen. Verscheidene nieuwe feiten worden ontdekt met behulp van dit
systeem. Het gecreëerde systeem produceert nauwkeurige en gedetailleerde pre-
dicties van het verbruik van elektriciteit. Voor het korte-termijn voorspellings-
systeem van windenergie-productie wordt incrementeel een aantal weerstations
toegevoegd om een zo optimaal mogelijke selectie van de samenstelling van de
invoerruimte te kunnen maken.

In hoofdstuk 7 wordt geconcludeerd over de geïntroduceerde methoden, mo-
dellen en gereedschappen, en hun experimentele resultaten in het gebruik bij het
voorspellen van elektriciteitsbelasting.

Curriculum Vitae

Personal details

Name ter Borg

First names Rutger Willem

Birth Delfzijl, the Netherlands, November 19, 1974.

E-mail rutger@terborg.net

Education

2001–present Ph.D. (doctor) at Delft University of Technology, thesis Elec-
tricity Load Modelling using Computational Intelligence.

1994–2000 M.Sc. (ingenieur) in Technical Informatics at Delft Univer-
sity of Technology, dissertation Extracting Fuzzy Rules using
Genetic Programming.

1996–1998 Foundation course (propedeuse) at Rotterdam School of Man-
agement at Erasmus University Rotterdam.

1993–1994 Mechanical Engineering at Delft University of Technology.

1987–1993 Pre-university education (vwo) at Willem de Zwijger Col-
lege, Bussum. Subjects Dutch, English, Biology, Economics,
Mathematics B, Physics, Chemistry. Additional course on
Mathematics A.

Work experience

2005 Developed and implemented a gas consumption model at
Nuon NV, Energy Sourcing, Quantitative Analysis Group.

2005 Developed and implemented a short-term wind power pro-
duction forecasting system at Nuon NV, Energy Sourcing,
Quantitative Analysis Group.

2001–2004 Researched, developed and implemented a predictive elec-
tricity demand model at Nuon NV, Energy Sourcing, Applied
Research & Technology Group.

2000–2001 Conducted research to genetic algorithms. Set up a web
hosting server of about 15 Internet domains.

1997–1999 Developed IT-related products at Kojac CV, Delft.

1996–1998 Coached extra lessons in exact sciences to students of pre-
university level.

1997 Designed and implemented an automated invoicing system
for meeting room rentals.

Other activities

2005 Participated the International Conference on Artificial Neu-
ral Networks (ICANN), Warshaw, Poland.

2004 Participated McKinsey & Company’s Ph.D. Masterclass, Am-
sterdam.

2004 Participated the Eunite conference on invitation, Oulu, Fin-
land.

2003 Member of an M.Sc. examination committee at Delft Uni-
versity of Technology.

1997 Prize winner Best Business Plan 1997, Erasmus University
Rotterdam.

1994–1995 Building commission at the Delftsch Studenten Corps.

Languages

Nederlands Moedertaal

English Fluent

Française Modéré

Deutsch Mäßig

Español Medio

Other interests

Sailing (on yachts), open water diving, skiing, playing a
game of golf, playing squash, historic car rallies (partici-
pated the Tulpenrallye several times), (trading at) financial
markets, scientific developments, current affairs.

The Hague, 7th November 2005

	Electricity Load Modelling using
Computational Intelligence
	Preface
	Contents
	1 Introduction
	1.1 Imbalance Costs
	1.2 Research Goals
	1.3 Thesis Outline

	2 Related Work
	2.1 Electricity Demand Models
	2.2 Wind-power Production Models
	2.3 Used Regression Techniques
	2.4 Quality Criteria

	3 Smooth Bayesian Kernel Machines
	3.1 Smooth Functional Representations
	3.2 Smooth Relevance Vector Machine
	3.3 Experimental Results

	4 Modelling Electricity Load
	4.1 System Architecture
	4.2 Modelling Process
	4.3 Electricity Demand Model
	4.4 Wind-power Production Model

	5 The Kernel-Machine Library
	5.1 Requirements
	5.2 Design
	5.3 Implementation
	5.4 Development Tools
	5.5 Using the Library
	5.6 Testing the Library

	6 Experimental Results
	6.1 Electricity-demand Forecasting in Practice
	6.2 Electricity-demand Model Experiments
	6.3 Short-term Wind-power Production Forecasting

	7 Conclusions
	7.1 Future Work

	References
	Summary
	Samenvatting
	Curriculum Vitae

