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Abstract—The solar industry in residential areas has been wit-
nessing an astonishing growth worldwide. At the heart of this
transformation, affecting the edge of the electricity grid, reside
smart inverters (SIs). These IoT-enabled devices aim to intro-
duce a certain degree of intelligence to conventional inverters
by integrating various grid support capabilities (e.g., voltage
and frequency control). However, with the remarkable automa-
tion of these devices come enormous security risks. Thus, rising
rates of vulnerabilities have increased the necessity for designing
resilient, auditable, and secure SIs’ firmware over the air (FOTA)
amendment schemes suitable for this heterogeneous SlIs-based
ecosystem. In this regard, we propose leveraging blockchain as an
innovative technology to guarantee these cybersecurity require-
ments. In this article, we present the design of a distributed FOTA
scheme, namely, RASSIFAB, governing the process of amend-
ing SIs’ firmware within residential areas in an immutable and
scalable manner. The scheme was implemented on a blockchain
test network to assess its functionalities and performance. We
also carried out a security evaluation to determine whether
RASSIFAB is resistant to various identified threats. The obtained
results confirm that the scheme is efficient and sound. They also
indicate that RASSIFAB ensures reliable and authentic firmware
amendments even with malicious insiders, differentiating our
framework from the existing ones.

Index Terms—Blockchain, distributed energy resources
(DERs), firmware, Internet of Things (IoT), photovoltaic,
security, smart inverter (SI).

I. INTRODUCTION

HOTOVOLTAICS are estimated to account for nearly

60% of the additional capacity of renewable energy
resources worldwide by 2025. In particular, according to
the Renewables report published by the International Energy
Agency, the global share of rooftop solar panels installed
within residential areas rounded up to 30% of the total
solar panels’ deployment in 2020 [1]. This eventually led
to the advancement and adoption of innovative technologies
to tackle the effect of the proliferation of these distributed
energy resources (DERs) and smooth their integration within
the low-voltage (LV) networks of the electricity grid. At
the heart of these ingenious ever-evolving technologies, we
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find solar smart inverters (SIs). These Internet of Things
(IoT)-enabled devices stretch far beyond their basic function-
alities as they can additionally provide ancillary grid services
(e.g., voltage/frequency support and ride-through capabilities),
which are recently becoming mandated in the revised versions
of existing DERs technical standards as well as several grid
codes (e.g., IEEE 1547-2018 [2] and the German grid code
VDE-AR-N 4105 [3]).

A. Motivation

It is undeniable that the Internet-of-Energy paradigm steered
the enhancement of DERs’ integration through the automa-
tion of the power grid’s infrastructure and the implementation
of DERs management systems (DERMSs) that enable a wide
range of capabilities through (near) real-time communication.
Nonetheless, its lack of cybersecurity inherited from the IoT
paradigm has raised some eyebrows within network operators,
i.e., transmission system operators (TSOs) and distribution
system operators (DSOs). In fact, these IoT-enabled DERs
could potentially be leveraged using their vulnerabilities (e.g.,
Mirai botnet [4], [5], BlackIoT [6]) as an attack-vector to dis-
rupt the power supply by causing voltage issues and frequency
instabilities, which could lead to power outages.

On the one hand, the vulnerabilities of IoT devices and SIs
in particular, have been extensively documented in [7] and [8],
such as spoofing attacks where the hacker would masquerade
as the DERs’ aggregator (DERA) and alter critical settings
of the SIs (e.g., Volt/Var or Volt/Watt curves). In addition,
Tertytchny et al. [9] demonstrated the possibility of launching
a man-in-the-middle (MitM) attack on commercial SIs sup-
porting ancillary services, which could lead to an intentional
false-tripping of whole feeders, eventually causing a regional
blackout. Meanwhile, firmware over-the-air (FOTA) security
updates and/or patches are amongst the critical procedures
within cyber—physical systems. For instance, the 2015 cyber-
attack on the Ukrainian power grid was further complicated
when the attackers were able to alter (or reverse engineer) the
firmware of the serial-to-Ethernet converters within dozens of
substations, which prevented the operators from implement-
ing any remote procedure for recovery [10]. Furthermore,
Konstantinou and Maniatakos [11] studied the impact of
reverse engineering the firmware of power grid devices on an
IEEE 14-bus test system. Specifically, on commercial protec-
tion relays within substations to alter the normal behavior of
circuit breakers, which resulted in cascading failures. In addi-
tion, CVE-2017-9860 [12] is a vulnerability discovered that
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Fig. 1. Conventional FOTA amendments for SlIs.
could potentially allow an attacker to update an SI's firmware
without proper authentication.

On the other hand, FOTA amendments conventionally rely
on a cloud database from where the binary files are down-
loaded, as illustrated in Fig. 1 for the case of residential
SIs. This storage could be either on-premises meaning it is
hosted and administered internally by the manufacturers them-
selves using their on-site information technology resources, or
offloaded to a third-party cloud service provider. The advan-
tage of the first approach is that critical and proprietary data
regarding the firmware’s code are protected by the organi-
zation following its internal guidelines; however, the vendor
could still be the target of a cyberattack either from an exter-
nal or insider adversary that may tamper with the stored files
by injecting some malware. Meanwhile, the second approach
gives many economical and technical advantages, such as low
cost in terms of maintenance and high redundancy that guaran-
tees availability with an uptime of nearly 99.99%; nonetheless,
the approach raises a series of concerns, such as privilege
escalation attacks and privacy due to security breaches [13].
Therefore, rather than focusing on the single point-of-failure of
cloud-based systems in the sense of having the database going
down. It is rather essential to focus on the over-reliance on
third-parties, or broadly speaking on a single governing entity
(which could also be the manufacturer itself in this case), this
may create a single point-of-weakness leading to an inherent
bias and selective disclosure [14].

Therefore, a consortium blockchain-based framework where
various entities all share the governance of the whole ecosys-
tem and no participant alone is in charge of the decision
making seems to be beneficial and a perfect fit. Besides, the
blockchain ledger would also serve as an immutable audit
trail for all data and actions undertaken regarding any issued
firmware update, that could be used for future digital forensics
analysis. Whereas the interplanetary file system (IPFS) would
serve as a storage layer for the blockchain focusing on the
reliability and immutability of the firmware files [15].

B. State-of-the-Art

Securing firmware amendments has attracted tremendous
attention from the research community. Some approached the
security challenges of the procedure through hardware-assisted
schemes, such as trusted execution environments or phys-
ical unclonable functions (PUFs) [16], [17], [18], whereas
others introduced variations of cryptographic mechanisms,
such as checksums and code signatures for authenticity [19],
[20], [21] to secure the conventional centralized way of
FOTA amendments. Nonetheless, these schemes still rely
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on individual-based decision making due to their centralized
architecture.

Blockchain, hailed as one of the utmost disruptive tech-
nologies, was harnessed for various IoT-based applications
[22], [23], but in particular to tackle the limitations of con-
ventional centralized-based FOTA schemes. For instance,
Pillai et al. [24] proposed an Ethereum-based scheme for
updating IoT devices’ firmware. Where upon the release of a
new firmware the vendor node part of the blockchain creates
and deploys a smart contract (SC) to record the data on the
shared ledger. However, the scheme is based on the assump-
tion that each original equipment manufacturer (OEM) has
a single node responsible for storing the firmware data on
the blockchain, thus if this single node is hacked the devices
might download binary files that have been tampered with.
Furthermore, in [25], an Ethereum-based framework to man-
age FOTA updates for medical IoT devices was proposed,
where each OEM node would send a transaction to the
blockchain network containing the URI of the firmware to the
gateway of the devices. Nonetheless, the scheme still relies
on the centralized repositories of the OEMs, which could
eventually be a target of a cyberattack affecting the reliabil-
ity of critical patches. Meanwhile, Bere et al. [26] focused
on the firmware check and recovery procedure for SIs using
blockchain. The distributed ledger is used to store in an
immutable way the metadata of the firmware. Whereas the
onboard security module connected to the device is respon-
sible for periodically checking if the current version of the
installed firmware matches the one recorded by the vendor.
Still, the security of the scheme relies on the data written on
the ledger, which is recorded by a single vendor client. In addi-
tion, the framework is based on a private blockchain managed
by a single OEM, meaning that the proposed solution is more
suitable for homogenous ecosystems. However, residential LV
networks equipped with a large share of DERs are character-
ized by devices coming from a myriad of vendors. Thus, the
heterogeneity aspect of these devices should also be accounted
for while designing an FOTA framework.

C. Contributions

In this article, we aim to address the aforementioned gaps
by proposing a resilient, auditable, and secure SIs firmware
amendments with blockchain (RASSIFAB) framework suit-
able for heterogeneous ecosystems. The framework is based
on two developed SCs; the first is used for the initializa-
tion phase including the registration of the entities part of
the system (i.e., TSOs, DSOs, and OEMs) as well as the IoT
devices (i.e., SIs). Whereas the second is used to monitor the
status of the SIs’ firmware and issue new updates or patches
with a distributed and autonomous checksum verification on-
chain of the firmware metadata. In addition, to address the
OEMs’ over-reliance on single trusted third parties, we pro-
pose to utilize a P2P file-sharing system based on the IPFS,
where different OEMs form a coalition to store the encrypted
binary firmware files. To the best of our knowledge, there
exists no blockchain-based scheme dedicated for SIs’ FOTA
amendments that considers the heterogeneity aspect of these
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devices within the edge of the SG as well as the threat of
insider attacks posed by the various OEMs part of the ecosys-
tem. To summarize, the major contributions of this article are
as follows.

1) We propose a distributed access control-based FOTA
amendment scheme for heterogeneous SIs within the
residential LV networks of the SG that addresses the
threat of insider attacks.

2) We implement a proof-of-concept of RASSIFAB to
demonstrate its feasibility, with a performance evalua-
tion of the framework based on various metrics as well
as a security analysis following the defined threat model
in order to assess its efficiency and soundness.

D. Paper Organization

The remainder of this article is organized as follows.
Section II represents some security standards and best prac-
tices for firmware amendments in general and DERs in
particular. In Section III, we present the architecture design
of our proposed blockchain-based system, its threat model,
and goals. Section IV details the system’s workflow and
functionalities. The implementation of RASSIFAB, including
the performance as well as security analysis, is discussed in
Section V. The related work is examined in Section VI with an
in-depth comparison between our scheme and the existing ones
as well as the limitations of RASSIFAB. Finally, Section VII
concludes this article with some future directions.

II. SECURITY STANDARDS AND BEST PRACTICES

Securing FOTA for IoT devices in general and the cyber-
security aspect of DERs have been the focus of various
standardization initiatives by multiple international agen-
cies, including the Internet engineering task force (IETF),
the National Institute of Standards and Technology (NIST),
the International Electrotechnical Commission (IEC), the
Institute of Electrical and Electronics Engineers (IEEE), the
Underwriters Laboratories (UL), and so forth. Where the major
goal of these initiatives has been to provide a shared platform
for debate, with a set of explicit best practices and recommen-
dations that would further enhance the security of IoT devices
in general and DERs in this particular use case.

For instance, the IETF RFC 8240 [27] is a summary of
the IoT software update workshop held in 2016 and organized
by the Internet architecture board. The workshop aimed to
discuss several challenges and vulnerabilities relevant to the
procedure of updating and/or patching IoT devices’ firmware.
This eventually led to establishing the IETF software updates
for IoT (SUIT) working group [28], which focuses on defin-
ing various components of a security update solution (e.g.,
transport protocols, firmware’s metadata, cryptographic mech-
anisms for integrity checks, etc.). Among the tasks completed
by the working group is the IETF RFC 9019 [29], which
defines a secure architecture for IoT devices’ firmware. In
addition, the IETF RFC 4108 [30] introduces a format for
firmware packages’ digital signatures utilizing cryptographic
message syntax, that contains an identifier, the firmware’s ver-
sion, a description of the package, certificate of the signer,

8947

etc. Nonetheless, the approach is based on a single trust
anchor consisting of a public-key signing mechanism to val-
idate the hash of the firmware as well as the identity of
the organization that signed the package using its private
key. Meanwhile, patch management for industrial automation
and control systems was also addressed in the IEC 62443
Series [31].

Besides, code signing aims to ensure the firmware’s integrity
and nonrepudiation. It is based on digital signatures for the ver-
ification of provenance of the data (i.e., OEMs) and checksum
mechanisms (e.g., MD5, SHA-1, SHA-256, etc.) to validate
that the data was not subject to any modification during the
transit phase. As presented in the NIST white paper [21],
the procedure relies on three main entities, i.e., developer,
signer and verifier. The developer is responsible for creating
the firmware code, ensuring it is bug-free using the OEMs
auditing tools and then sending it to the signer. The latter
requires the authentication of the developer before signing the
data using the private key of the OEMs tied to a certificate
authority. However, the procedure could be vulnerable to vari-
ous threats. For instance, it is likely that the signed version of
the firmware contains a malicious code embedded in it through
an insider attack, the theft or leakage of private signing keys,
which will result in compromising the software supply chain
of the OEM in a similar manner to what happened during the
notorious SolarWinds attack [32].

As for DERs’ standards, the IEEE 1547 [2] recognizes
that cybersecurity is a critical concern while considering
DERs connected to larger monitoring and control systems
associated to the electricity grid, without directly address-
ing this challenge. Nonetheless, the working group is cur-
rently drafting a guide for DERs cybersecurity, i.e., IEEE
P1547.3 [33], which touches on the requirements for patching
their IoT-enabled devices. Meanwhile, the UL 1741 stan-
dard [34] addresses the requirements for inverters as part of
the interconnection systems used with DERs; however, with
no explicit details regarding the security aspect. Nevertheless,
the UL recently announced that they are working jointly with
the U.S. Department of Energy’s National Renewable Energy
Laboratory on a cybersecurity certification standard for DERs
that also addresses firmware updates of SIs [35], which again
demonstrates the criticality of this matter.

Thus, by taking into account the discussed standards and
their relevant requirements in terms of DERs’ firmware secu-
rity (in particular residential SIs), we design our framework
not only in a way that incorporates the identified best prac-
tices and recommendations derived but also addresses some of
the limitations of current practices. Fig. 2 represents a high-
level representation of our framework, which can be abstracted
into two major components: 1) the blockchain network and
2) the distributed shared storage. Furthermore, the blockchain
network can be divided into two sublayers as it is a com-
bination of lightweight nodes (i.e., SIs) and full nodes (i.e.,
TSOs, DSOs and OEMs). These nodes all have different access
rules and privileges, which are defined in the SCs developed.
We note that the in-depth details of the proposed architecture
model and SCs would be further discussed in Sections III
and IV.
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Fig. 2. RASSIFAB abstracted system model.

III. PROBLEM FORMALIZATION

In this section, we present the system model, the plausible
threats, as well as the design goals of RASSIFAB.

A. System Model

The architecture design of our proposed FOTA framework
is illustrated in Fig. 3, which can be divided into three main
different components. Namely: 1) the SG physical layer which
represents the actual edge devices of the LV network (in this
case SIs); 2) the cyber-blockchain layer encompassing the vari-
ous entities part of the P2P network as well as the SCs defining
all data structures, metadata, functions, and modifiers detailing
the access control rules and policies of RASSIFAB,; and 3) the
distributed consortium firmware file-sharing system. Hereafter,
we introduce the various stakeholders part of the framework
and detail their responsibilities.

1) Transmission System Operators: In the context of the
electrical grid, a TSO is an entity delegated with the task of
transmitting electrical power from generation plants to the dis-
tribution networks in various regions. In our framework, the
TSOs being the highest authority in a power grid operational
system, are delegated with the administrative tasks and work-
flows of setting up the blockchain-based ecosystem. They are
responsible for managing the administrator nodes (ANs) part
of the blockchain framework, which are in charge of the first
deployment of the SCs to the consortium blockchain network
as well as the execution of certain functions during the ini-
tialization phase of the system (which will be detailed in
Section IV-A). Besides, the framework is based on the idea of
splitting the LV network of the power grid into several semiin-
dependent blockchain zones (BZs) geographically distributed.
Thus, we assume that each zone would fall into the control of
one single TSO, which will be responsible for managing a set
of ANs.

2) Distribution System Operators: The DSOs are the enti-
ties operating the distribution networks, whose role was lim-
ited to supply electricity to end consumers. However, with the
proliferation of DERs and the introduction of a bi-directional
flow of energy. DSOs are shifting from their traditional tasks
to a more smart and intelligent control, by deploying DERA
nodes (DERANs) with DERMSs to control these renewable
resources dispatched across the LV networks. The DSOs first
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Fig. 3. Detailed architecture design of RASSIFAB.

relied on smart meters for data collection, however, with the
introduction of SIs those are also being leveraged to moni-
tor the state of the LV network and coordinate the multiple
DERs at the edge of the SG. In addition, these SIs within
residential areas are connected to the grid and support ancil-
lary services. Hence, maintaining an immutable inventory list
of these intelligent devices as well as keeping track of their
firmware updates is of tremendous criticality from the view-
point of a DSO. This would ensure the security and reliability
of the measurements collected and also protect these devices
from being hacked or compromised, e.g., firmware downgrade
attacks or reverse engineering that would alter their normal
operation. In our proposed scheme, each BZ, depending on its
location and size (e.g., neighborhood, district, city, etc.), would
be supervised by either a single or multiple DSOs responsi-
ble for managing their respective DERANSs in the blockchain
framework.

3) Original Equipment Manufacturers: Typically, the LV
network within residential areas is characterized by its hetero-
geneity in regard to the OEMs from which the SIs installed
are originating. In fact, it is no surprise that each household
would invest in a different inverter based on costs or personal
preferences and those would widely differ from one prosumer
to another. Meanwhile, each OEM is responsible for issuing
firmware updates and/or patches to its proprietary devices (i.e.,
SIs in this particular case) to guarantee their normal and cor-
rect behavior as well as cybersecurity. In our scheme, and by
taking into account the heterogeneity aspect of the SIs within
this ecosystem, each BZ would encompass a set of various
OEMs labeled as OEM in which each manufacturer is denoted
as OEM; with i € {1,...,|OEM|}. Whereas, each OEM; is
responsible for a set of blockchain nodes labeled as OEM;N
in which each manufacturer node is denoted as OEM;N; with
je{l,...,|OEM;N|}. In addition, our scheme is also leverag-
ing a distributed consortium file-sharing system based on the
IPFS. Where for each OEM, a number of blockchain nodes
are also designated as the IPFS storage nodes.

4) Prosumers: In our framework, each residential prosumer
is supposed to have an SI connected to its household’s solar
panel. As SIs are characterized by limited computation and
storage capacities, they are part of the blockchain frame-
work as light nodes in contrast to the aforementioned nodes.
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Basically, they neither store a full copy of the distributed
blockchain ledger nor participate in the consensus to create
blocks. However, they keep track of the headers of each block
which contain the Merkle roots of a given transaction pool.
Thus, allowing them to verify the credibility of a transaction
by mounting its hash until reaching the root of the Merkle tree
of the block containing that specific transaction. In addition,
the SIs client nodes (SICNs) are also running an IPFS client
node that allows them to download the firmware files from the
distributed storage system.

Meanwhile, it is worth stressing that configuring a
blockchain node using the existing SIs’ hardware or software
might be challenging due to some dependencies’ issues. Thus,
it is possible to have those SIs linked, using an Ethernet
connection, to a designed system on-chip blockchain unit
built using a Raspberry Pi for instance, that would host the
blockchain-based capabilities defined in our scheme as well
as the IPFS client. However, we should specify that the tech-
nical details and implementation of this fall beyond the scope
of this article and could be the focus of future work.

B. Threat Model

The aim of this section is to identify the threats from
which FOTA updates in the case of SIs are vulnerable to
and eventually derive the security requirements and goals that
must be satisfied. The threat model upon which RASSIFAB
is built is following the S.T.R.I.D.E. approach [36], which
divides security risk into six main classes (C), i.e., Spoofing
of identity (targeting authentication, denoted later as C1),
Tampering with data (against integrity, denoted later as C2),
Repudiation (affecting accountability, denoted later as C3),
Information leakage (disturbing confidentiality, denoted later
as C4), Denial of service (influencing availability, denoted later
as C5), and finally Escalation of privilege (hindering autho-
rization, denoted later as C6). In what follows, we detail the
various security threats and attacks that could be exploited
during the procedure of amending SIs’ firmware and we also
indicate under which class of the S.T.R.LD.E. model they
fall.

1) Firmware Downgrade Attack [C5,C6]: In this scenario,
an attacker tries to push an old, but correct firmware to the SI
with a valid signature from the OEM. Suppose that particular
version of the firmware is known to contain a vulnerability; the
attacker can then try exploiting it by opening a backdoor that
may eventually allow him to gain full control over the SI with
the right escalation of privilege. Therefore, the attacker can
disconnect all inverters that have been a target of this attack,
causing a Denial-of-Service (DoS) attack.

2) Firmware Mismatch Attack [C5]: In this attack, the
malicious user tries to send a valid firmware but for a dif-
ferent device; for instance it could be a firmware of a smart
meter sent to an SI from the same vendor. If the device does
not require a rigorous check of the firmware file, then the
update is most likely to be accepted as its code signature is
valid. The impact of such an attack on SIs can scale from
minor misbehavior or abnormal functioning of the inverters
to rendering the devices totally inoperable. In fact, this type
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of attack has been reported recently, due to a human error,
where an employee entered the wrong identifier of the devices
to be updated, leading to a mismatched firmware being sent
to multiple microwaves causing them to crash and stop func-
tioning [37]. Thus, it is also important to incorporate the risk
of human error in our proposed scheme and mandate the ver-
ification of the FOTA updates by various authorized authors
to minimize the likelihood of this risk.

3) MitM or Redirection Attack [C2,C5]: If the transporta-
tion phase of the FOTA update is not properly configured and
secured, an attacker would be able to launch an MitM attack
by redirecting the SIs to download a malicious firmware file
from a corrupted server.

4) Firmware Reverse Engineering [C2,C4-C6]: If the
firmware files are not properly encrypted, a malicious user
can easily have access to them. To then reverse engineer
those files, introducing new vulnerabilities or backdoors to
fully gain remote control over the SIs capabilities. Thus,
the confidentiality of the firmware binary files should be
guaranteed.

5) Supply Chain Attack [C1-C6]: In this scenario, the
attacker is able to infiltrate the OEM’s system and deploy
a malicious malware that would alter the firmware before
sending it to the end users. Besides, the attacker could also
hijack the account of one of the authors responsible for sign-
ing the firmware package and use the leaked key to dispatch
the compromised firmware to the SIs [32].

C. Design Goals

Based on the aforementioned threats identified, this sec-
tion presents the security goals (G) and requirements that
RASSIFAB must satisfy.

1) Authentication, Authorization, and Accountability [G1]:
These refer to a set of techniques utilized to regulate and track
access control within a system. In our proposed scheme, first,
authentication refers to the ability of authenticating both the
OEMs, sending the firmware with its metadata, as well as the
SIs devices. Second, authorization signifies that only autho-
rized entities can execute certain functionalities based on their
privilege and access rules defined. For instance, an OEM B
should not be allowed to send an update to devices manufac-
tured by OEM A. Last, transparency and accountability are
critical features that must be ensured in this scenario (i.e.,
FOTA), as each update or patch sent must be recorded in an
immutable manner and verified by other entities part of the
framework based on their roles and affiliations. If we consider
the case of political cyberattacks, an OEM C of a given country
could try to update specific devices with a corrupted firmware.
Thus, if the scheme is based on a consortium blockchain
involving various OEMs and other stakeholders (i.e., TSOs
and DSOs), the OEM C would be unable to alter the shared
copy of the ledger to hide all traces of the attack, which would
guarantee accountability.

2) Firmware Integrity and Nonrepudiation [G2]: The relia-
bility of an FOTA update has to be provable, meaning that the
update must be signed with a digital signature (or preferably
multiple signatures to increase the resilience of the procedure).
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Fig. 4. [Initialization and registration phase workflow of RASSIFAB.

Meanwhile, as the metadata of the update includes some
relevant information about the firmware, it should also be
authenticated. Thus, to minimize the effort of validating the
signatures of both the metadata and firmware itself, we opted
to tie both and include a digest or fingerprint (i.e., hash) of
the binary image into the firmware metadata recorded on-chain
that would eventually be signed by the OEM’s authors.

3) Firmware Confidentiality [G3]: The binary image of the
firmware is required to be encrypted not only in order to pro-
tect the proprietary content of the file but also to stop attackers
from reading it and eventually reverse engineer it to introduce
some vulnerabilities.

4) Lightweight Security and Scalability [G4]: As Sls are
characterized by low computation as well as storage resources,
the proposed scheme should incorporate lightweight mecha-
nisms at the edge of the LV network. In addition, leveraging
blockchain would inevitably introduce some scalability issues
both in terms of transactions per second rate as well as the
ledger’s overhead. Thus, it is important to design the architec-
ture of the FOTA framework in a way that would alleviate this
burden and not over-stress the SIs, while at the same time guar-
anteeing the level of security needed within this heterogeneous
ecosystem.

IV. PROPOSED RASSIFAB SCHEME

In this section, we discuss the workflow of our proposed
scheme by first detailing both the registration and initialization
phases to set up the blockchain system. We then present the
access control policies defined in the SCs and explain how the
firmware update procedure for Sls is performed.

A. Initialization and Registration

Before joining the consortium blockchain-based framework,
all participants are assumed to have generated locally their
respective blockchain keys following the elliptic curve digi-
tal signature algorithm (ECDSA). These pairs of keys would
be used to sign and authenticate transactions sent to the
blockchain network as well as ensure the validation of all
blocks generated. Then, the blockchain addresses would be
derived from these public keys, which would serve as unique
identifiers for each of the node parts of the framework in the
implementation of the distributed access control. Meanwhile,
the ANs, DERANs, and OEMNSs are considered to be under
the supervision of known organizations, hence, their public
keys can be distributed and verified by means of a certificate
authority for instance. For Sls, their public keys and addresses
generated by the prosumers would be communicated to the
DSOs and OEMs through secure channels for privacy and then
used during the initialization phase.

The initialization steps of our proposed blockchain-based
FOTA framework are illustrated in Fig. 4, which are divided
into five main subphases. The first subphase involves the
deployment of the SIsinit.sol' SC (which defines the struc-
tures used to map all stakeholders, SI devices, their metadata,
and access rules) to the blockchain network by one of the
TSO nodes (i.e., ANs) controlling a given BZ. If success-
ful, the defined list of ANs in the SC would be automatically
instantiated with the address of the node that deployed the con-
tract (i.e., msg.sender). In addition, this node would receive the

TRASSIFAB source code. [Online]. Available at: https://github.com/
Raakk/RASSIFAB/.
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deployment address of the SC that would be eventually shared
with the rest of the participants and used to initiate all inter-
actions with the functions defined within the contract as well
as access its associated storage.

The second subphase involves adding the various node
parts of the blockchain framework. In fact, for the sake of
cybersecurity and resilience, the contract enables updating the
list of ANs, so that in case one is offline or faulty, oth-
ers can still operate the system and ensure its continuity.
Meanwhile, the DERAs and OEMs are also registered to the
framework using DERAInit() and OEMInit() (which are func-
tions that take as input the names of each entity, converted to
bytes8 type for optimization purposes, serving as unique iden-
tifiers for the implementation of the access rules). Whereas
DERANUpdate() and OEMUpdate() are functions used to reg-
ister the blockchain addresses of both the DERA and OEM
nodes, respectively, while mapping them to their respective
organizations. It is worth noting that these functions can only
be executed by an AN leveraging the onlyByAdmin() modifier
defined in SisInit.sol.

The third subphase is focused on adding the multiple SIs to
the consortium blockchain system. It starts by updating the list
of the devices’ serial numbers by each of the OEMs using the
OEMSUpdate() function. Those serials would be later used to
bind the devices with their respective OEM using the addDe-
vice() function which returns a unique Id of the SI. The latter
function is used to register the devices on-chain by inputting
their metadata, i.e., blockchain address, the OEM who fabri-
cated the device, the DSO managing the grid zone to which
the SI is connected, the unique serial number of the device
and its type. We should note that we included a variable
to register the type of the device in order to guarantee the
future extensibility of the scheme proposed here to encom-
pass other devices, such as smart meters, sensors, etc. Both
functions mentioned are restricted using the verifyOEM() and
onlyByDERMS() modifiers, respectively.

Then, the fourth subphase starts by deploying the
SIsFirmware.sol contract (that inherits the first one), which
is used for issuing firmware updates and/or patches requests
to the SIs. Similarly, the address of the SC is also broad-
casted among all participants after its deployment. Then, the
last subphase is mapping the already added devices in the
previous contract with their current firmware metadata (i.e.,
version and hash of the installed firmware as well as the IPFS
link from where the file could be recovered if needed) using
the UpdateMapp_DFW() function. It should be noted that this
function can only be executed by one of the OEM nodes of
the SI by checking the association between the msg.sender
and the OEM of the device using the checkManuf{) modifier.

Meanwhile, each OEM;N; has a reputation score denoted as
p encoded within the SIsInit.sol SC, with a value that ranges
from O to 5. In fact, during the initialization phase performed
by the ANs, each OEM;N; is assigned with an initial repu-
tation score denoted as pg above the trust threshold of the
system denoted as pr, meaning that py > pr, as these nodes
are assumed to be semitrusted. Then, based on the historical
behavior of these manufacturer nodes within the framework,
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their reputation can be deducted if they misbehaved at any
given round, where OEM;N; - pime = OEM;N;.ptme—1 — 9,
with § being fixed at 1. Specifically, misbehavior in our scheme
is defined as sending a firmware update or patch transaction
containing compromised metadata (i.e., wrong hash of the
binary file or associated IPFS path) which will be detailed
in the following section. Moreover, this reputation is used to
revoke the nodes’ access to the framework (in terms of sending
transactions) once their score falls below pr.

B. Firmware Update Procedure

The process of sending a firmware update to an SI belonging
to OEM; for instance, is depicted in Fig. 5, which is encoded
in the sendFWupdate() function of the SIsFirmware.sol SC.
Before the transaction gets to trigger the execution of the
actual body of this function, certain requirements need to
be fulfilled (which are defined within the contract’s modi-
fiers). First, the node sending this transaction, being OEM; Nj,
should not be blacklisted (i.e., OEMyNj- p > pr) and that the
msg.sender address needs to satisfy the following condition
OEMyNj € OEM,N i.e., i == i. If any of these conditions is
not satisfied the transaction would fail with a message error
depending on which requirement was not met. Then, as this
is an update rather than a patch, the version of the firmware
must be higher than the one recorded on-chain (i.e., the current
version installed on the device) for the transaction to be valid.
The next step of the procedure is to check the SI’s signers list,
which is used to guarantee the BFT nature of the procedure.

If the signers’ list is empty, then the temporary fields for the
firmware metadata are initialized and OEM; Nj is pushed into
the list. Meanwhile, in case the list is not empty, the function
checks whether the provided metadata are equal to the regis-
tered ones. If there is a mismatch between any of the new input
data, OEMyNj.p would be deducted by § and if the reputation
is below p7 the node is automatically added to the blacklist and
the transaction would fail. However, if the provided metadata
are correct, the function checks if the majority of the nodes
belonging to the SI's OEM have endorsed the same firmware
metadata. Only then an event (i.e., New_Firmware_Update())
would be triggered automatically containing the new firmware
metadata and the address of the device that requires an update.
Meanwhile, if the metadata was not validated by the major-
ity, the device would wait for the other OEM nodes. We note
that the device’s address is defined as an indexed parame-
ter, thus allowing to leverage event listeners within scripts
that would use this value. For instance, each SICN would lis-
ten to this event and get a notification only if the address
mentioned in the event matches its own unique blockchain
address.

After receiving the firmware metadata from the blockchain
(i.e., hash of the firmware, IPFS link, encrypted blockchain
secret key denoted as Sf;“yai“ and version). The SICN starts
by decrypting Sgyain using its own AES-256 preset key (e.g.,
embedded during the manufacturing process of the device).
The obtained key is used to decrypt the firmware file down-
loaded from the IPFS link received, then the hash of the file
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Fig. 5. Flowchart of the proposed blockchain-based FOTA update scheme.

is calculated. If the obtained hash is not the same as the one
received from the blockchain, the file is then deleted; other-
wise, the new binary file would be installed and the SI would
reboot. We should note that we used this approach as the
binary files are supposed to be encrypted before being pinned
to the IPFS by the OEMs before starting an update request
on the blockchain framework. Suppose that for each device,
its firmware was encrypted using a unique key this would
result in a storage overhead in terms of duplicated files. In
fact, devices belonging to the same OEM and which are also
the same model would have the exact same firmware. Thus,
the file is encrypted with a single key (for the same set of
devices) and this key is in turn encrypted using each of those
devices’ unique keys. The cyphered key is then sent through
the blockchain as part of the firmware metadata.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

e - N - N(
Machine 1 Machine 2 Machine 3 Machine 4
Bootnode OEM,
OEM,
OEM;5 OEM3 OEM,
& nde s n 4 n s
. v J v AN v J \o J

Fig. 6. Proposed RASSIFAB implementation using Ethereum.

V. IMPLEMENTATION AND ANALYSIS

Our proposed framework was implemented on a blockchain
test network using Geth, being the Go implementation of
Ethereum. The network was deployed on four Ubuntu vir-
tual machines (located on different physical hosts) each with
four vCPUs and 16 GB of RAM. The machines were then
partitioned into multiple virtual Ethereum nodes with several
accounts to emulate all entities of the system as illustrated in
Fig. 6. Besides, the consensus we have opted to leverage is
Cligue which is a variation of PoA. The consensus has been
extensively utilized within industrial blockchains [38], [39]
due to its higher performance [40]. Whereas the configuration
of the blockchain network (i.e., block zero) can be found in the
Genesis.json file with the source code. We also used Node.js
and Web3.js libraries for the scripts detailing the interaction
scenarios with the blockchain-based framework and SCs.

A. Performance Evaluation

The evaluation of our proposed scheme in terms of
performance focuses on three main aspects: 1) the overhead
introduced by the adoption of blockchain in terms of execution
cost; 2) the scalability of the blockchain ledger with a grow-
ing number of devices; and 3) the runtime overhead associated
to the additional utilized security mechanisms in RASSIFAB
compared to a centralized scheme.

1) Execution and Communication Costs of the Initialization
Phase: In order to assess the time required for setting up the
framework (i.e., initialization and registration phase), we have
tested the execution time (or cost) of various functions defined
in the initialization SC developed with different workloads.
We note that the execution time of a transaction triggering a
function in the contract is defined as: Texecution = T confirmation —
Tgeployment- Starting with adding the ANs to the system (i.e.,
TSO nodes), the obtained results in Table I indicate that it
takes roughly 104.345 ms to add five ANs. Meanwhile, the
initialization of the set of DSOs and OEMs takes 67.43 and
99.92 ms for adding three DSOs and five OEMs, respectively,
to the blockchain network. Whereas the registration step of
the nodes is conducted by adding ten DERANs and OEMNs
for each of the added organizations (i.e., a total of 80 nodes),
which requires 697.883 ms and 1.170 s, respectively.

Furthermore, the execution time of the registration phase of
the devices (i.e., SIs) is also included in Table I. The procedure
starts with updating the unique serial numbers of each SI part
of the framework, which takes around 1.184 s for ten devices
per manufacturer (i.e., a total of 50 devices). Then, adding the
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Registration of TSO nodes 5 0.104 6
Initialization of DSOs 3 0.067 3
Initialization of OEMs 5 0.099 6
Registration of DSOs nodes 10 0.697 27
Registration of OEMs nodes 10 1.170 41
Initialization of serial numbers 50 1.184 51
Registration of devices 50 1.220 52
Initialization of firmware metadata 50 1.246 71

Deployment time of Sisinit.sol: 23.957Tms
Deployment time of SIsFirmware.sol: 24.643ms

blockchain addresses of the SIs and their respective associa-
tions to both the DSOs and OEMs requires 1.22 s. Finally,
updating the mapping between the devices and their respec-
tive firmware metadata on-chain (i.e., the currently installed
version on the SIs) is performed in 1.246 s.

Meanwhile, the communication cost of the scheme, which
indicates the growth of the size of the chaindata as transactions
are being added to the blockchain ledger was also evaluated.
For instance, the registration of the DERANs and OEMNs
takes 27 and 41 kB for each. Whereas the registration of the
devices (i.e., addresses, serials, and their firmware metadata)
takes a total average of 174 kB.

2) Execution Time of Sending Firmware Updates: The exe-
cution time of sending firmware updates to the devices within
a single BZ, depicted in Fig. 7(a), was evaluated under three
different scenarios. The first use case involves one single OEM
part of the framework with four nodes (i.e., |OEM| = 1 and
|OEM;N| = 4). In the second case, we also have one OEM
but with ten nodes (i.e., |OEM| = 1 and |OEM;N| = 10).
Whereas in the third case, the number of OEMs was set at
five and to each four nodes were allocated (i.e., |OEM| = 5
and |OEM;N| = 4; thus, Y0, Y"1 | OEM;N; = 20). It is
important to note that we only present the evaluation of
sending firmware updates here. Nonetheless, sending patches
is roughly similar with the only exception regarding the
requirement for the version number of the firmware within
the metadata.

Firmware Update - Chain size
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RASSIFAB Overhead

Performance analysis of sending firmware updates using RASSIFAB. (a) Execution time. (b) Ledger scalability. (c) Runtime overhead.

Starting with case I, the initial number of SIs was set at
20 and scaled to reach 100 devices that should be updated
simultaneously. We should note that this number of devices
represents the SIs within a single BZ, and as we mentioned
previously, the whole LV network is divided into several zones,
thus the total number of devices would be above 100. From
Fig. 7(a), it can be observed that the time required for send-
ing and validating the firmware update metadata on-chain for
all cases is increasing with the number of devices which is
quite expected. As more concurrent transactions are deployed
to the blockchain, thus requiring more time to be confirmed,
however, it is worth noting that the increase is linear and mod-
erate. Meanwhile, the execution time of case II is noticeably
higher compared to the other cases, which is due to the num-
ber of OEM nodes per manufacturer. The proposed scheme, as
discussed previously, relies on a voting-like mechanism over
the sent FOTA update metadata. Thus, in order to issue an
event indicating that a new firmware is released, the metadata
should be signed by at least six nodes in case II, compared
to three nodes for the remaining cases (i.e., cases I and III).
Nonetheless, the overhead introduced by blockchain in our
proposed scheme for sending a firmware update request to a
single device is around 1.093 s (in case I with at least three
validating nodes), which is lower than the overhead in Hu et al.
scheme [41] with an execution time of roughly 1.3 s using one
single validating node.

3) Ledger Overhead With Sending Firmware Updates: The
scalability of the chain size was also assessed as the number of
SIs part of the system is increasing. From the obtained results
depicted in Fig. 7(b), it can be observed that the ledger size
increases as more transactions are added to the blockchain, yet
the increase is following a linear trend also. For instance, send-
ing a firmware update to 100 devices in case I adds roughly
289 kb to the chain, whereas in case II the ledger increases
by 935 kb. It is worth stressing that the size of the ledger
would grow in a moderate way, due to only saving the meta-
data of the firmware rather than the actual binary files, which
are stored off-chain. In addition, the procedure of updating
SIs is characterized by a low recurrence as typically a device
can be expected to receive a firmware update twice a year on
average. Thus, justifying the use of blockchain for keeping an
immutable record of these security updates for future forensic
analysis or security audits.

4) IPFS, Encryption, and Hash Runtime Overheads: The
aim here is to evaluate the overhead introduced by all the
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Fig. 8.

Snapshot of sending a firmware update with no attacks.

mechanisms leveraged in our scheme compared to a cen-
tralized approach using the OEM’s cloud servers with no
requirements for files’ encryption. If we consider a firmware
binary image or file with a size equal to 16 MB, it would
take approximately an extra 12 s to download the encrypted
firmware from the IPFS, compared to using an HTTP server,
following the benchmark provided in [42]. Then, 0.93 s to
decrypt it using AES-256 and 1.12 s to calculate the hash of
the file using SHA-256, based on the benchmark conducted
on a Raspberry Pi 3 model B, provided in [43]. Meanwhile,
the time required to decrypt kehyain and compare the hashes
are assumed to be negligible. Thus, the proposed scheme is
expected to have an average runtime overhead of 15.143 s,
which is within an acceptable range taking into account the
new features introduced that harness the cybersecurity and
resilience of the scheme. Besides, the procedure of firmware
amendments is moderately sensitive to latency as it is vulner-
able to zero-day attacks. In Fig. 7(c), we provide a pie-chart
representing the average sum of RASSIFAB’s runtime over-
head that illustrates the various percentages of each additional
technique utilized in our scheme.

B. Security Properties

In this section, we detail the various security features pro-
vided by RASSIFAB and discuss how they meet the goals
defined in Section III-C with some test results.

1) Intrusion Prevention [G1]: Fig. 8 represents the proce-
dure of sending a firmware update (case III) under no attack to
an SI that belongs to OEM>. In order for the update request
to be successful, the majority of the nodes (i.e., OEM,Nj,
OEM,N;, and OEM,N3 located in machine 3) need to send
a transaction containing the metadata of the firmware. This
procedure is depicted in the blue box of the figure, that
represents the execution of three scripts to send a firmware
update request from the OEM blockchain nodes. Only then
would an event containing the new firmware metadata be auto-
matically triggered at the SICN (located in machine 4) as
illustrated in the green box of the figure. Our proposed scheme
is capable of detecting various intrusion attacks that deviate
from this detailed (normal) behavior, such as firmware down-
grade attacks, unauthorized access, or malicious insiders in
a fine-grained manner by triggering an exception sent to the
blockchain nodes (e.g., ANs or OEMNS5).
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Fig. 9.  Snapshots of two attack scenarios (i.e., downgrade attack and
unauthorized access).

If we consider the attack scenario of a firmware downgrade
attack, previously defined in Section III-B. For each request
sent using the sendFWupdate() function, the version of the
firmware is required as input. Then, the body of the func-
tion runs an autonomous check to verify that the provided
version is higher than the previous one, which is recorded
on-chain as part of the SIs’ firmware metadata during the
initialization phase. In the developed SC we used seman-
tic versioning, a widely adopted version scheme based on
three-part version number, where the first number indicates
a major version change, the second for a minor and the third
for patches. These numbers are assigned in increasing order
and correspond to new developments in the firmware. An
example of a firmware’s version would be 1.7.23, which is
converted into an array to be recorded on-chain as part of
the firmware metadata. Suppose an attacker tries sending an
old version of the firmware, the transaction will be reverted
with an error message because it will not pass the predefined
requirements of the function, as illustrated in Fig. 9 (i.e., blue
box). The figure represents a snapshot of the execution of a
script detailing an attack scenario in which an OEM node
sends a request for an update with version 1.25.4, while
the current firmware’s version of the device is recorded as
1.27.3 on-chain. Nonetheless, it is possible that the attacker
might input a higher version to bypass this check while the
actual firmware is an old version. Still, the request will not
be sent to the SICN as the metadata (i.e., firmware hash
and IPFS path) need to be validated by the majority of the
OEMNES, i.e., SICN.Signersiengmn > |OEM;N|/2 + 1, which is
impossible under the assumption of having the majority not
malicious.

Meanwhile, if OEM;N; tries sending a firmware update to a
device belonging to OEM; with i # i’ (i.e., firmware mismatch
attack), the transaction will be reverted with the error message:
Unauthorized access!, as illustrated in Fig. 9 (i.e., the green
box). The function requires the msg.sender to belong to the
same organization as the device, this is achieved through the
access control scheme we implemented in our proposed SCs.
Another occurrence of this attack could be from the same
OEM but for different models or types of devices, which could
be due to an honest human error [37] or a malicious insider. In
this case, as the new metadata need to be validated following
a BFT protocol, the rest of the OEM nodes would notice this
faulty update through logging and blockchain’s events moni-
toring as illustrated in Fig. 10 (i.e., the gray box). Thus, the
tampered metadata would never reach the SICN as it will
not be validated by the rest of the legitimate OEM nodes,
eventually protecting the device.
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Fig. 10. Snapshot of an insider attack scenario being detected.

2) Firmware Integrity and Confidentiality [G2 and G3]:
The integrity of the firmware means that it has not been tam-
pered with during all steps of the FOTA procedure. In our
scheme, we guarantee this feature by including the hashes of
the binary files as well as the IPFS paths as part of the firmware
metadata, which are recorded on the shared blockchain ledger
among all entities part of the ecosystem. Due to the strong
coalition resistance of hash functions, it would be impossi-
ble for an attacker to calculate the same hash for different
files. Besides, the IPFS links are based on content identi-
fiers (CID), where the link would have the following format:
ipfs:// < CID > [Path/file. The CIDs are derived from the
files’ content hashes, thus any alteration of the content will
produce a different CID, thus, a different path [15]. Suppose
an adversary tries launching an MitM or redirection attack,
the attacker would be unable to produce a different file with
the same CID in the IPFS as illustrated in Fig. 10. This also
applies to the case of a software supply chain attack where
an adversary that was able to get access to the account of
one of the OEMNSs (e.g., through a leaked key or a mali-
cious insider) is trying to send an update containing a malware
similarly to SolarWinds attack. In this scenario, the attacker
would be unable to generate a legitimate CID and hash of
the corrupted firmware file. Besides, as the rest of the OEM
nodes are: 1) assumed to be honest (i.e., at least the major-
ity); 2) their accounts and blockchain keys were not leaked;
and 3) the update requests in our scheme are required to be
validated following a BFT manner, the attempted attack would
be detected and the update request would fail.

Furthermore, as the firmware metadata are recorded in an
immutable and distributed manner this enables the devices
to check frequently whether their firmware has not been
maliciously modified (e.g., in case of a physical attack).
Meanwhile, as the proposed framework is based on a con-
sortium blockchain and due to the transparency feature of
the distributed system, the actual firmware files are encrypted
before being pinned to the shared IPFS-based P2P network.
Thus, guaranteeing the confidentiality of the firmware and
protecting it from being leveraged for reverse engineering
attacks.

3) Lightweight and Scalable FOTA [G4]: The proposed
scheme alleviates the SICNs (considered as IoT devices
with constrained capacities) from the burden of verifying
each OEMN’s signature while sending a firmware update.
As this is encoded within the proposed SIsFirmware.sol SC
and is executed automatically through the defined modifiers
each time on-chain. Furthermore, the firmware binary images
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are encrypted using symmetric cryptography (i.e., AES-256),
which has less computation overhead compared to asymmetric
cryptography while still being fairly secure, fast and efficient.

Meanwhile, the scalability of the blockchain-based scheme
is guaranteed by means of two approaches we adopted. The
first is splitting the overall network of SIs into semiindepen-
dent zones, where each BZ would be responsible for process-
ing a fraction of the transactional firmware updates/patches
requests, thus increasing the overall throughput (through par-
allel processing) and minimizing the size of the light chain
stored within the constrained SI devices for verification.
Whereas the second approach achieves scalability by offload-
ing the storage to the IPFS rather than keeping the actual
firmware files within the blockchain network, it is also worth
stressing that in our scheme we advise the use of an exter-
nal shared P2P storage system for the firmware binary files.
Nonetheless, RASSIFAB can still function using only the
blockchain layer to keep an immutable record of the sent
FOTA requests for updates.

VI. RELATED WORK AND DISCUSSION

In this section, we discuss various research outputs in
the literature that addressed the security concerns of FOTA
amendments. By either relying on the traditional client-server
model and enhancing it by leveraging strong cryptographic
techniques as well as hardware-based mechanisms, or totally
shifting to a distributed scheme by utilizing blockchain due
to its immutability and inherent cyber-resilience, we also
detail the limitations of our proposed blockchain-based frame-
work. Furthermore, Table II represents a comparison between
the discussed schemes and RASSIFAB in terms of various
characteristics.

A. Centralized Hardware-Assisted Schemes

The procedure of remotely updating and/or patching
firmware conventionally relies on a client-server architecture.
Where the devices would either receive or retrieve the newly
released firmware from the cloud server managed by the
OEM of the IoT device. Several approaches in the literature
have been proposed to secure this procedure by leveraging
various cryptographic and/or hardware-assisted mechanisms.
For instance, Kornaros et al. [44] introduced sCAN a secure
scheme against cyberattacks targeting the CAN protocol uti-
lized within vehicle networks, specifically against firmware
reverse engineering attacks during FOTA, by means of addi-
tional signed metadata of the firmware and timestamps. The
transfer of the firmware is based on a multiframe process,
where the firmware file is divided into chunks that are ver-
ified by utilizing a cyclic redundancy check algorithm (i.e.,
checksum). Nonetheless, the proposed scheme still relies on
the OEM’s centralized cloud server to download the firmware
files which might be the target of a malware injection attack. In
addition, checksums do not necessarily guarantee the authen-
ticity of the firmware as an insider attacker can change the
data and recalculate the checksum to bypass the verification.

Meanwhile, ASSURED [45] is an architecture for firmware
updates that guarantees end-to-end security between the OEMs
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TABLE 11
COMPARISON BETWEEN RASSIFAB AND OTHER FIRMWARE
AMENDMENT SCHEMES

2
3 g
2 g § a 8§
£ 5 £ & 3§
Ref. & = 5 5
3} 2 > o} I
4 Q 5 )
g 2 E £ =
= 5 %7
(=)
ASSURED [45] X X X X X
SecuCode [46] X X X X X
Lee and Lee [49] v X - v X
Hu et al. [41] v X X v X
Yohan and Lo [48] Vv V X X X
Choi and Lee [50] v v X v X
BoSMosS [51] v X X X X
RASSIFAB v v v Y v
v': Satisfied X: Unsatisfied —: Partially

and the embedded IoT devices. The proposed framework
introduces a controller (intermediary between the OEM and
devices) responsible for approving the firmware metadata and
transmitting the update envelope to the devices using an
authenticated channel. However, the scheme relies on a static
root-of-trust, i.e., the OEM and controller keys. Furthermore,
Su et al. [46] presented SecuCode a secure wireless code
dissemination scheme for computational radio frequency iden-
tification devices, which is built on the entanglement of a static
random access memory PUF with a firmware update protocol.
However, the scheme does not guarantee mutual authentica-
tion and is relying on a prover centralized database, initialized
in a secure environment, which contains the IDs of the devices
and their challenge—response pairs from the PUF.

Then, Rabbani et al. presented SHeFU [47], a secure
firmware update for a homogenous network of IoT devices,
that eliminates the requirement for remote attestation, where
malicious devices that have been compromised by a faulty
update are isolated from the rest of the network. Specifically,
each device is responsible for calculating a firmware digest
and upon the communication between the devices, each one
would calculate a message authentication code for validation.
However, the authors did not specify how the devices agree
on which digest is legitimate. Moreover, the network owner
in charge of monitoring the devices is assumed to be fully
trusted and that it cannot be compromised, hence limiting the
security of the scheme.

B. Distributed Blockchain-Enabled Schemes

In an attempt to address the flaws within the conventional
client-server based schemes for FOTA, several researchers har-
nessed the potential of blockchain technology. For instance,
in [48], Yohan and Lo proposed a blockchain-based scheme
to guarantee the authenticity and integrity of FOTA updates
within a heterogeneous IoT devices network. The procedure
follows a push approach and can be performed either directly
or indirectly. In the direct FOTA mechanism, vendors create
and deploy the corresponding SCs to the blockchain network
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for each firmware update. Whereas the indirect scheme intro-
duces a firmware broker that serves as an intermediary between
the vendor and the targeted IoT devices. However, the scheme
still relies on the centralized repositories of either the vendor
or the broker. In addition, after downloading the firmware,
there is no mechanism implemented to verify that the file or
image was not compromised during the transfer. Furthermore,
the scheme requires that each firmware update should be asso-
ciated with a newly deployed SC to the blockchain, which is
not sustainable taking into account the ledger scalability and
overhead introduced over the long run.

Meanwhile, in the blockchain-based scheme proposed by
Lee and Lee [49], embedded devices request their firmware
updates to the P2P network, to get a response checking
whether the firmware is up-to-date. The framework is based
on three types of nodes, i.e., normal nodes, verification nodes
and a vendor node (which is outside the blockchain system
but used by the verification nodes in order to provide the
file updates). Normal nodes can be either request or response
nodes. The procedure starts by having a normal node sending
a version-check request, broadcasted to the whole network,
and depending on the node receiving the request the scheme
follows different verification steps. However, the procedure is
tailored for homogenous IoT-based networks belonging to the
same vendor, as each device would compare its current version
with the other peers, which does not describe accurately the
reality of IoT-based ecosystems supporting different devices
from various OEMs. Furthermore, because of the nature of
the broadcasted request the scheme is susceptible to create
repetitive operations. For instance, the sent request can be ver-
ified by a verification node, but a response node might also
conduct a confirmation using proof-of-work which is regarded
as an extensive consensus mechanism, thus consuming more
unnecessary network traffic and computational resources. In
addition, when the embedded device is required to download a
newly released firmware, it requests a list of peers from where
it can fetch the firmware file. However, as the operation is per-
formed only by the verification node without consensus from
the rest of the peers, it is plausible that the device requiring an
update falls to an eclipse attack where a malicious verification
node could try to send a compromised peers’ list.

Furthermore, Hu et al. [41] proposed an autonomous scheme
for FOTA updates with malware check. The procedure is based
on an SC that records the firmware metadata on-chain and
leverages several off-chain programs to validate the correct-
ness of the sent data by the manufacturer node. However, no
implementation details were provided regarding the off-chain
verification procedure and how the blockchain nodes come to
consensus before indicating that the request to record the meta-
data of a new firmware is reliable. In addition, the malware
scan ratio part of the firmware metadata is only uploaded by
a single manufacturer node without any verification by other
peers, thus, if one of these nodes is hacked an attacker could
send a corrupted file that was intelligently reverse engineered
to bypass the external virus check. Meanwhile, the on-chain
verification is only based on checking the signature of the man-
ufacturer node as well as the provided score from the external
malware check tool, which does not necessarily guarantee the
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reliability of the firmware in case of leaked keys or insider
attacks.

Whereas in [50], Choi and Lee proposed a distributed FOTA
architecture design for IoT devices based on blockchain. The
scheme leverages manifests defined in SUIT [28], that are
recorded on the immutable ledger by a vendor (or author as
referred to in this article). The architecture offers a solution to
the author-disappearance concern, where the server of an OEM
is targeted by an attack hindering the devices from down-
loading the latest firmware update or patch. Nonetheless, the
scheme introduces a retrieval node (a trusted gateway between
the IoT devices and the blockchain network) which could rep-
resent a security threat. Moreover, the procedure of checking
the firmware and its metadata is solely based on the provided
data by the author node and its digital signature. Thus, if
the node’s key is leaked an attacker could send a malicious
firmware with a modified manifest to bypass the checksum
verification. Furthermore, the IoT devices are required to send
a transaction periodically to query if there is a new firmware,
which might add up to the ledger’s size if the blockchain
system encompasses thousands of devices. Furthermore, the
scheme lacks a performance evaluation to assess its feasibility
and efficacy as it has not been implemented.

Besides, in BoSMoS [51], He et al. focused on the validity
of IoT devices’ software rather than the procedure of issu-
ing updates or patches. They designed a blockchain-enabled
software status monitoring framework in order to detect any
malicious attempts to compromise the devices and respond to
the intrusion. The system is based on taking snapshots of the
software, using a trusted security monitoring module, which
are then stored on the immutable blockchain ledger for peri-
odic verification. Nonetheless, the scheme also relies on the
trusted software snapshots that are updated by a single devel-
oper and signed using its public key to then be registered on
the blockchain ledger. In case the private key of the developer
is leaked or compromised, this could jeopardize the security
of the monitoring system and integrity of the recorded soft-
ware metadata on-chain. Meanwhile, the IoT devices within
the scheme are not assigned with keys to interact with the
blockchain, but they rely solely on a gateway that aggregates
all blockchain requests from these devices and signs them with
its key. Thus, the scheme fails to provide a certain degree of
auditability (i.e., in terms of incoming requests from the IoT
devices, for instance to determine the root of a denial of service
attack on the blockchain system). In addition, the design of
the framework is more fit for homogenous IoT devices and the
authors did not address the case where the system encompasses
various OEMs with different access rules.

C. Advantages and Limitations of RASSIFAB

On the one hand, an FOTA scheme can rely on the strong
cryptography protocols provided by blockchain (i.e., ECDSA,
SHA, etc.) to guarantee the immutability and nonrepudia-
tion of the firmware’s files and their metadata. However, if
we fail to verify the recorded data on-chain by relying on a
single-root of trust (e.g., OEM author), several things could
go wrong. In fact, if we start from the presumption that
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all manufacturer nodes are trusted in the blockchain-based
ecosystem and that the rest of the validators need only to ver-
ify the transactions’ signatures of these nodes, we might fail at
achieving our required security goals (i.e., the integrity of the
firmware amendment requests and their metadata). Thus, our
scheme incorporates a voting-based verification mechanism
for the uploaded firmware’s metadata, rather than the actual
binary files for efficiency and scalability, yet without com-
promising on the security aspect of the scheme. Furthermore,
RASSIFAB also incorporates an immutable and auditable rep-
utation scheme used to mandate the access control of the
vendors’ node parts of the FOTA framework. Where repu-
tation scores are updated in an automated manner using SCs
and based on the continuous behavior of these nodes within the
blockchain network. Nonetheless, it is worth acknowledging
that classifying misbehavior to assign new reputation scores as
well as ensuring the reliability of these scores across zones is
a challenging task that was the subject of some research out-
puts [52], [53] and could be the focus of future work. Besides,
for the storage of the firmware files we proposed to use the
IPFS to form a consortium system among all OEMs where
the binary files would be encrypted before being pinned to
the P2P systems, hence guaranteeing the confidentiality of the
manufacturers’ proprietary code. Nonetheless, the protocol is
still in its infancy and distributed storage, in general, is still an
ongoing line of research with several challenges that remain to
be addressed (e.g., free riders, incentives, etc.) [15]. Moreover,
the framework was implemented on only four machines, which
might not reflect a real case scenario. Nonetheless, RASSIFAB
is based on the Ethereum platform where its public implemen-
tation supports up to ten thousand physical nodes scattered
around several countries. Also, our scheme leverages Clique,
which has a higher throughput and minimized latency with
a growing network size (i.e., number of nodes) compared to
other consensus mechanisms [40].

On the other hand, RASSIFAB only focuses on the secu-
rity of software supply chain rather than hardware supply
chain. For the latter, several blockchain-based schemes exist
in the literature. For instance, Xu et al. [54] proposed the
design of a blockchain-based framework used to manage
critical information about chips and to mitigate the risk of
components recycling, cloning, overproduction, etc. Similarly,
Cui et al. [55] also addressed the hardware supply chain prove-
nance concern by proposing a Hyperledger-based framework
used to ensure the traceability of electronic components as
they are circulating between manufacturers, distributors and
end users. Guin et al. [56] also used blockchain to ensure an
authentic tracking of the origin of edge devices by leverag-
ing the PUF for authentication. In a nutshell, hardware supply
chain schemes are used at the early beginning of a device’s
lifecycle to ensure the authenticity and provenance of all its
components. This aspect is extremely important in the case
of Sls as those are also composed of several chips and their
origins as well as integrity during the manufacturing or assem-
bling procedures are critical. We acknowledge that eluding the
security of hardware supply chain might limit the capabili-
ties of our proposed framework, but we also would like to
note that this matter falls beyond the scope of this article and
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could be investigated in the future. For instance, the hardware
provenance of the SIs would be coupled with the software
maintenance provided in our framework, and the PUF would
offer a strong authentication means for the SIs. Last, we should
note that ensuring the integrity of SIs’ firmware amendments
would guarantee a partial security of the whole ecosystem,
as attackers could still launch a top-down attack from the
aggregators or DSOs’ DERMSs controlling these inverters to
compromise their primary settings. In this case, our proposed
blockchain-based framework can be extended in the sense of
also incorporating the control aspect (e.g., voltage or frequency
control) of these DERs equipped with their IoT-enabled SIs.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this article, we presented the design of RASSIFAB,
which is an FOTA scheme based on blockchain technology
to guarantee a secure, resilient, reliable, and auditable pro-
cedure of sending updates and/or patches to SIs connected
to the LV networks of the SG within residential areas. The
framework enables the deployment of large-scale DERs with
heterogeneous Sls, by leveraging network segmentation and
blockchain sharding. Thus, increasing the overall throughput
of the blockchain system in terms of processed transactions
and minimizing attack entry points from a cybersecurity per-
spective. The procedure of verifying the sent requests for
updates by the OEM nodes is performed following a BFT
manner rather than starting from the assumption of having
trusted OEM nodes, which we viewed as unrealistic due to
the threat of insider attacks or simply human error. Last but
not least, the proposed framework was intended to be used
for SlIs; however, we should note that it was designed in a
generic and modular way that would enable it to manage also
the procedure of FOTA updates for other IoT-enabled devices
within the SG or other industrial applications.

For future work, we intend to study the collaborative aspect
between the various blockchain zones in terms of intrusion
attacks. For instance, if one OEM node is blacklisted within
a given zone, how can we ensure the correctness and fair-
ness of denying his access to the others. In addition, our
scheme was only tested on several machines that were par-
titioned to emulate the resources of the devices running as
light nodes. Nonetheless, the possibility of configuring and
running a blockchain client on a Raspberry Pi, that would then
be interfaced with a real SI to perform the verification check
over the firmware and its metadata is also worth investigat-
ing. Last, integrating RASSIFAB with other blockchain-based
hardware supply chain solutions to guarantee the authenticity
of the SIs using their PUF and DERs control schemes could
also be the focus of future research.
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