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Abstract. The evaluation of fatigue damage accumulation on wind turbine support structures
under operational conditions is heavily influenced by a number of uncertainties. These uncer-
tainties may, firstly, be attributed to the highly variable and complex environmental loads, and
secondly, to the unavoidable modelling errors which mainly originate from the inherent random-
ness in both material properties and fatigue resistance of structural components. It is therefore
essential that assessment of fatigue life is carried out within a probabilistic framework; one that
accounts for the stochastic nature of the phenomenon. The present study proposes a strategy for
real-time reliability prediction of accumulated fatigue damage on wind turbine support struc-
tures by taking into account the above-mentioned uncertainties. To this end, the availability of
structural monitoring information for the identification of the global response on wind-turbine
support structures is exploited in order to address the discrepancies between actual and pre-
dicted damage accumulation. This is carried through utilization of an augmented version of the
Kalman filter, which is capable of jointly estimating the response and the unknown inputs of the
structure while relying on a limited number of noisy observations and a presumably uncertain
model of the real system. A fixed-lag smoother is further deployed for the attenuation of the
estimation error in an on-line mode and the smoothed stochastic estimates of the response are
propagated over the model at the level of stresses. The accumulated damage along with the cor-
responding reliability level is finally predicted using a stochastic nonstationary fatigue damage
model. The proposed scheme is demonstrated via implementation on the NREL 5.0 MW wind
turbine under different operational conditions, on the basis of dummy vibration data generated
via the FAST software.
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1 INTRODUCTION

Fatigue is regarded as a critical and highly-uncertain factor for wind turbine structures, where
it is essential to ensure a certain life span under irregular and constantly varying operational and
environmental conditions. Conventionally, fatigue life predictions are conducted on the basis of
numerical simulations in conjunction with the information provided from historical metocean
data. In the wake of recent advancements in Structural Health Monitoring technologies and
methodologies, significant attention has been redirected to vibration-based approaches for fa-
tigue estimation [1], particularly to what pertains to response prediction under unknown inputs.

Although fatigue has been vastly and exhaustively investigated under different perspectives
[2], not many studies have been relied on a probabilistic framework. In recent years, an attempt
has been made to approach damage accumulation due to fatigue as a stochastic process [3].
To account for the randomness in both the loading process and fatigue resistance of materials,
Shen et al. [4] established a probabilistic model of fatigue damage based on the distribution
of stress amplitudes. Despite the efficiency in obtaining the distribution of fatigue damage, the
approach in [4] is not appropriate for real-time applications. On the contrary, Rathod et al. [5]
proposed a more universal methodology for the stochastic modelling of damage accumulation
under multilevel loading, which may be easily tailored to an online framework. In a more
recent work and in the field of wind turbine structures, Thöns et al. [6] conducted a sensitivity
study for fatigue limit state on the basis on the Spearman rank coefficient. The outcome of
the study in [6] provides a useful insight into the most influential sources of uncertainty in
fatigue damage. Within the same context, Thöns et al. [7] conducted a quantitative study for the
value of structural health monitoring towards the integrity management of fatigue deteriorating
structural systems.

In what concerns the real-time state estimation of systems with unknown inputs, a variety of
methods is currently available. The primary step was taken by Kitanidis [8] through the devel-
opment of a linear state estimator in the presence of unknown inputs. Under this perspective,
Gillijns et al. [9] proposed an unbiased minimum-variance filter for the joint input-state estima-
tion of linear time invariant systems. Although optimal in terms of second order statistics, the
estimator in [9] was proven to be susceptible to numerical issues when the number of measure-
ments is larger than the order of the system. This was recently alleviated by Lourens et al. [10]
with an extension of the previously mentioned algorithm. An alternative for the dual state and
input estimation of structural systems was implemented also by Lourens et al. [11], using an
augmented version of the standard Kalman filter. To improve the poor performance of the latter
when acceleration-only measurements are employed, Naets et al. [12] proposed a stabilized
version of the augmented Kalman filter by using dummy displacement measurements. Finally,
in more recent years Azam et al. [13] suggested a dual implementation of the Kalman filter
in order to resolve the numerical issues that arise in the augmented formulation of input-state
estimation problem.

This study presents a vibration-based probabilistic framework for fatigue assessment on wind
turbine structures accounting for uncertainties in the level of the structural model, the estimated
stresses time histories and the employed fatigue model. The paper is organized as follows:
in Section 2 the mathematical formulation of the response estimation problem for systems with
unknown inputs is established. This is carried out using the augmented form of the Kalman filter
which is further enhanced with a fixed-lag smoother for the attenuation of the underlying model
uncertainty and the improvement of state estimates. In Section 3, the stochastic framework
for fatigue assessment is presented. This comprises a non-stationary fatigue model capable of
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capturing the expected value and variance of fatigue damage as well as their evolution in time
as a function of the loading history. Finally, the implementation of the proposed approach is
illustrated in Section 4 by means of an application to a wind turbine support structure on the
basis of simulated measurement data.

2 RESPONSE ESTIMATION

The starting point for the response estimation on wind turbine structures is the continuous-
time system of equations of motion

Mü(t) + Cu̇(t) + Ku(t) = Sp f(t) (1)

where u(t) ∈ Rn denotes the displacement vector, M, C, K ∈ Rn×n are the mass, damping
and stiffness matrices, f(t) ∈ Rnp is the force vector, with np designating the number of input
forces, and Sp ∈ Rn×np is the corresponding selection matrix.

Upon introduction of the state vector x(t) = vec
(

[u̇(t) u(t)]
)
∈ R2n, Eq. (1) may be

transformed into the state equation and additionally fused with a measurement process in order
to form the deterministic state-space model in the continuous-time domain. The latter can be
further transferred, through temporal discretization, to the discrete-time domain, which yields
the following stochastic state and observation equations

xk+1 = Axk + Bpk + wk (2)

yk = Gxk + Jpk + vk (3)

where it should be noted that Eqs. (2) and (3) are additionally supplemented with the zero-mean
white noise processes wk ∈ R2n and vk ∈ Rny that represent the system and measurement
noise of covariance matrices Q ∈ R2n×2n and R ∈ Rny×ny , respectively.

In the absence of knowledge with respect to the driving forces of the system, the state-
space model described in Eqs. (2) and (3) may be written in the augmented form. This is
accomplished by supplementing the initial state vector with the input force vector in order to
construct an augmented state vector as follows

zk =

[
xk

pk

]
(4)

To derive the system matrices of the augmented state-space, it is postulated that the evolution
of the input dynamics may be captured by a random-walk process

pk+1 = pk + ηk (5)

upon proper tuning of the random variable ηk ∈ Rnp which represents a zero-mean white
Gaussian process with covariance matrix S ∈ Rnp×np . The augmented state and measurement
equations may then be formulated as follows

zk+1 = Aazk + ζk (6)

yk = Gazk + vk (7)
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where the subscripta denotes the augmented state-space matrices,

Aa =

[
A B
0 I

]
, Ga =

[
G J

]
,

and ζk = vec
(

[wk ηk]
)
∈ R2n+np is the augmented noise vector with covariance matrix Qa ∈

R2n+np×2n+np . Thereafter, both input and state estimation may be accomplished recursively
through the standard Kalman filter operating on the augmented state-space formulation in two
steps

Time update

ẑk+1|k = Aa ẑk|k

Pk+1|k = AaPk|kA
T
a + Qa

(8)

Measurement update

Kk = Pk|k−1G
T
a

(
GaPk|k−1G

T
a + R

)−1
ẑk|k = ẑk|k−1 + Kk

(
yk −Ga ẑk|k−1

)
Pk|k = Pk|k−1 −KkGaPk|k−1

(9)

2.1 Smoothing and backward sampling

In the previous section, it was demonstrated how optimal a priori and a posteriori state and
input estimates may be obtained on the basis of a limited number of response measurements.
Due to the probabilistic origin of the Kalman filter, these state estimates are delivered in terms of
the first two moments of their probability distribution, which essentially reflects the uncertainty
associated with both the system dynamics and the measurement quality. An effective way
of attenuating this uncertainty and improving the performance of the estimator is to further
condition the forward results on posterior measurements via the so-called smoothing process.

Among the three basic classes of smoothers, that is fixed-point, fixed interval and fixed-
lag smoothers, the latter is considered as the optimal estimator since, apart from allowing for
processing delay, it is also tailored for on-line operation [14]. The aim of such a smoother is
to provide the optimal state estimate at time k − N conditioned on measurements up to and
including time instant k. It is therefore required that N future measurements are available for
the smoothed state estimation at time instant k −N .

Upon obtaining the state estimates at time k using the augmented Kalman filter, the fixed
interval smoother is running backwards from k up to k − N in order to provide the smoothed
estimate of each state with delays between 0 and N . This process is summarized in four steps
performed for i = 2, . . . , N + 1 at each time instant k as follows

Fixed-lag smoother

Lk,i = P0,i−1
k GT

(
GP0,0

k GT
k + Rk

)−1
ẑk+1−i|k = ẑk+2−i|k + Lk,i

(
yk −Gzk|k−1

)
P0,i
k+1 = P0,i−1

k (A− Lk,0G)T

Pi,i
k+1 = Pi−1,i−1

k −P0,i−1
k GTLT

k,iA
T

(10)
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It should be noted that for i = 1 the matrix Lk,i is equal to the Kalman gain and the above
process represents the measurement update of the standard Kalman filter. Accordingly, the
covariance matrix P0,0

k designates the a priori estimate error covariance while in the general
case the covariance matrices Pi,j

k are defined as

Pi,j
k = E

[
(zk−j − ẑk−j,k−1) (zk−i − ẑk−i,k−1)

T
]

(11)

Once the smoothed state and input estimates at time instant k − N are obtained, it may easily
be deduced from Eqs. (10) that the final state estimate is delivered as a Gaussian distribution
with mean and variance

E [zk−N |y1, . . . ,yk] = ẑk−N+1|k + Lk,N+1

(
yk −Gẑk|k−1

)
(12)

E
[
(zk−N − ẑk−N,k) (zk−N − ẑk−N,k)

T
]

= PN,N
k −P0,N

k GTLT
k,NA

T (13)

where every quantity on the right-hand side is obtained through the last step of smoothing pro-
cess. Within the context of fatigue assessment, this uncertainty in state estimates may be prop-
agated over the model at the level of stresses and subsequently quantified through the backward
sampling of the stress time histories in order to account for the modelling and measurement
uncertainties.

3 FATIGUE DAMAGE

Fatigue damage accumulation is a stochastic process characterized by several uncertainties.
These uncertainties are associated with a number of sources, such as material properties, mod-
eling errors and loading conditions among others. Under this perspective, it is essential that
damage accumulation is treated within a probabilistic framework, one that is able to account for
the stochastic nature of the phenomenon. In so doing, the present study is based on the premise
of non-stationary and normally distributed damage accumulation process

D(t) ∼ N
(
µD(t), σ2

D(t)
)

(14)

with µD(t) and σ2
D(t) denoting the time-varying mean and variance respectively. The elabora-

tion of this assumption is presented in three steps through the following sections.

3.1 Model of damage accumulation

A common practice for the evaluation of fatigue damage in steel structures is the linear
accumulation rule, also known as Palmgen-Miner rule [15, 16], whereby damage at a given
stress level is defined as the ratio of operational cycles to the number of failure cycles. For
varying stress level, this is formulated as follows

D =
k∑
j=1

Dj =
k∑
j=1

n (∆σj)

Nf (∆σj)
(15)

where n (∆σj) is the number of cycles with stress amplitude ∆σj ,Nf (∆σj) denotes the number
of cycles to failure at stress level ∆σj and k is the number of stress ranges contained in the
examined time history. In the case of directly measured or estimated strain/stress time histories,
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the number of cycles at stress amplitude ∆σj may be determined using counting techniques.
Among others, the rainflow counting algorithm, which is thoroughly described in [17] and
employed in this study as well, constitutes the most accurate and commonly used method in
fatigue analysis. Finally, the relationship between fatigue life in terms of cycles Nf and stress
range ∆σ is obtained by the well-known S −N curve [18] which is expressed by

Nf∆σ
m = A (16)

where A represents a fatigue strength constant and m denotes the slope of the curve, with both
variables being material dependent. Combining Eq. (15) and the S −N curve model described
by Eq. (16), the expression of damage accumulation for multi-stress levels may be written as

D =
k∑
j=1

C (∆σj)
m n (∆σj) (17)

with C denoting the reciprocal of fatigue strength constant A.

3.2 Distribution of fatigue damage

In establishing a probabilistic representation of damage accumulation, fatigue life is consid-
ered to be described by a probabilistic S − N curve, as illustrated in Fig. 1. In practice, this
is accomplished by treating the failure cycles Nf of each stress level as a random variable that
follows a certain distribution. Since fatigue life of components under constant or random am-
plitude stress conditions may be adequately represented via normal or log-normal distributions,
as underlined by Wu et al. [19], it is assumed that the number of cycles to failure at a certain
stress level is normally distributed

fn (Nf ) =
1

σNf

√
2π

exp

(
−1

2

(
Nf − µNf

σNf

)2
)

(18)

with mean µNf
and standard deviation σNf

. The corresponding distribution of damage accu-
mulation at the same stress level may then be derived through the one-to-one transformation of
Eq. (18). The latter requires the functional relationship Nf = h (D) between failure life Nf

and damage accumulation D, which may be obtained through evaluation of Eq. (17) at failure

Cycles nNf1 Nf2 Nf3

Δσ1

Δσ2

Δσ3

Δσ

Figure 1: Probabilistic S −N curve
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life for a single stress level. Thereafter, the probability density function of cumulative damage
D may be calculated through the differentiation of its cumulative distribution as shown below

fD(D) =
d

dD
FD(D)

=
D

dD
Fn
(
h−1(D)

)
=

D

dD

(∫ h−1(D)

−∞
fn (Nf ) dNf

)

=
dh−1(D)

dD
fn
(
h−1(D)

)
=
dNf

dD
fn (Nf ) (19)

where dNf/dD = 1/s with s = C (∆σ)m denoting the slope of the S − N curve at the stress
level ∆σ. Substituting in Eq. (19) and making use of Eq. (17) for a single stress level and Eq.
(18), the probability density function of D may be written as follows

fD(D) =
1

sσNf

√
2π

exp

(
−1

2

(
D − sµNf

sσNf

)2
)

(20)

where it may be observed that fatigue damage follows a normal distribution as well

D (Nf ) ∼ N
(
sµNf

, sσNf

)
(21)

with mean sµNf
and standard deviation sσNf

.

3.3 Evolution of variance

As illustrated in Fig. 1, fatigue life follows an increasing trend in variability as stress level
decreases, thus resulting in low variability of failure cycles at high stress conditions and higher
variability at low stress levels. Additionally, as demonstrated by Wang et al. [20], damage
accumulation at constant stress level exhibits a monotonically increasing variability as usage
cycles increase. This second source of variability is graphically depicted in Fig. 2, where it

Cycles nNf1 Nf2 Nf3

D=1

Δσ1

Δσ2 Δσ3

s1

1 1

s2

1
s3

Δσ1 > Δσ2 > Δσ3

Figure 2: Evolution of variance for different stresses
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may be inferred that the initial stage is represented by zero usage cycles and zero variability for
all stress levels. Subsequently, as the number of usage cycles at a certain stress level increases,
the variability is accordingly increasing until it reaches a certain value σNf

at failure life. This
trend may be geometrically interpreted, as elaborated by Rathod et al. [5], and captured through
the rate of change of the standard deviation rσ, given by

rσ =
σNf

Nf

(22)

Subsequently, the standard deviation of the loading cycles n may be derived from the product
of the rate of change and the number of cycles n, given by the following expression

σn = rσn =

(
σNf

Nf

)
n (23)

Considering finally that the damage index is related to the number of cycles via the slope s =
C (∆σ)m of the S − N curve, the standard deviation of cumulative damage may be written as
follows

σD =

(
σNf

Nf

)
ns = C (∆σ)m n

(
σNf

Nf

)
(24)

Although the above formula represents the variability in damage due to single stress-level
condition, it can be readily extended to account for the variability in damage accumulation
under multi-level stress conditions, as graphically presented in Fig. 3. In so doing, it is assumed
that damage accumulation at each stress level bears an independent stochastic contribution to
the total variability of damage accumulation which is given by

σD =

√√√√ k∑
j=1

(
C (∆σj)

m nj

(
σNf j

Nfj

))2

(25)

where Nf j denotes the cycles to failure at stress level ∆σj and σNf j
the corresponding standard

deviation.

Cycles nNf1 Nf2 Nf3

D=1

Δσ1

Δσ2

Δσ3

Δσ1 > Δσ2 > Δσ3

Figure 3: Damage accumulation for multi-stress loading
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3.4 Reliability prediction

Based on the above probabilistic model for fatigue damage accumulation, which relies on
the assumption of normally distributed usage and failure cycles, the reliability of a structural
component with respect to fatigue damage may be calculated through the limit state function

Z(n) = Dc −D(n) (26)

where Dc is the critical damage with E [Dc] = 1 and Z(n) = 0 describes the limit state that
separates the safe domain, for which Z(n) > 0, from the failure region where Z(n) < 0.
Thereafter, the reliability is calculated on the basis of the limit state function as follows

R = P (Z(n) > 0)

= 1− P (Z(n) ≤ 0)

= 1− Φ

− µDc − µD√
σ2
Dc

+ σ2
D

 (27)

with µD and σD denoting the mean and the standard deviation of damage accumulation while
µDc , σDc designate the mean the standard deviation of threshold damage.

Thereafter, substitution of Eqs. (17) and (25) into Eq. (27) yields the reliability index of a
structural component under multi-level stress conditions as given below

R = 1− Φ

−
µDc −

k∑
j=1

C (∆σj)
m n (∆σj)√√√√σ2

Dc
+

k∑
j=1

(
C (∆σj)

m n (∆σj)
(
σNf j

/Nfj

))2

 (28)

where it should be noted that the variability of threshold damage σDc at failure life, i.e. when
n = Nf , is equal to the variability of damage accumulation σD, given by Eq. (25). This is also
implied from Fig. 2 where it is shown that the variability of damage follows a monotonically
increasing trend until it reaches the value of threshold damage at failure level.

4 RESULTS

The demonstration of the proposed scheme for reliability prediction of fatigue damage accu-
mulation is carried out through an application to the NREL 5.0 MW land-based wind turbine,
whose features are in detail presented by Jonkman et al. [21]. To investigate the fatigue limit
state (FLS), the considered structure is modelled using the FAST v8 software platform for the
generation of artificial measurements from aero-servo-elastic simulations in operational condi-
tions. A total of two hundred simulations, each with a duration of ten minutes, is used for this
purpose. Each simulation is performed at a mean wind speed sampled from a Weibull distribu-
tion with mean equal to 10 m/s and a turbulence intensity derived from a log-normal distribution
conditioned on the previously sampled mean wind speed.

To enable the implementation of the proposed approach in a long-term period, the structural
response is assumed to be measured with sensors appropriate for continuous and permanent

9
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(a) Simulated wind turbine
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(b) Sensor configuration

x
y

z

θx , Mx

θz , Mz

θy , My

vx , Fx

vy , Fy

vz , Fz

1 (z = 3m)

2 (z = 6m)

3 (z = 9m)

4 (z = 12m)

5 (z = 15m)

(c) Critical locations

Figure 4: Overview of the sensor locations, the finite element model of the tower and the critical locations

monitoring. In this study, availability of acceleration and inclination measurements is assumed,
whose adopted configuration is depicted in Figs. 4(a) and 4(b). Their number and location on
the structure are determined by the stability and observability conditions, in accordance with the
number of inputs to be identified and their corresponding locations. These inputs are considered
to be the interface forces between the tower top and the nacelle, as illustrated in Fig. 4(c).

To additionally account for modelling errors, a stochastic Finite Element (FE) model of the
wind turbine structure is employed for the solution of the inverse problem. Namely, while
the forward process for the data generation is carried out with a perfectly known deterministic
model, the one implemented in FAST, the identification part is performed with a perturbed
FE model. This is a refined shell-element model, reduced with a component mode synthesis
technique, that involves a randomness in the material properties, introduced at the level of the
constitutive matrix C as follows

C = C0

(
α + f(x)

)
(29)

where α, equal to 0.95, is a perturbation factor for the mean value of C which is denoted by
C0 and f(x) is a zero-mean stochastic process which is herein assumed to be log-normally
distributed with standard deviation 2 · 1010 N/m2. Within this context, the stochastic stiffness
matrix of an element (e) may be expressed on the basis of the principle of virtual work as

k(e) = k
(e)
0 + ∆k(e)

s =

∫
V (e)

B(e)αC0B
(e)dV (e) +

∫
V (e)

B(e)C0f
(e)(x)B(e)dV (e) (30)

where k
(e)
0 is the perturbed deterministic part and ∆k(e)

s denotes the fluctuating part. For the
sake of completeness, it should be noted that V (e) is the volume of element (e) and B(e) repre-
sents the deformation matrix.

The simulation measurements obtained from FAST are polluted with 3% white Gaussian
noise and subsequently fed to the augmented Kalman filter which is operating along with the
fixed-lag smoother for the dual input and state estimation of the perturbed model. The algorithm
is initialized with a zero state vector, the measurement error covariance is obtained as a function
of the noise level and the system error covariance is calculated on the basis of the L-curve,
as shown in Fig. 5. The smoothed state estimates, which are delivered as Gaussian random

10
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Figure 5: L-curve for the optimal choice of the regularization parameter

variables with mean and variance given by Eqs. (12) and (13), are finally propagated over the
model in order to obtain the corresponding distributions of stress estimates at critical locations.

The expected value of stress time histories for locations 1 and 2 are illustrated in Fig. 6
and 7 respectively, along with their 95% confidence intervals for two different time frames of
100s and 5s. Although an erroneous model is used for the response identification, it is seen
that the stress time histories are identified with a sufficiently high degree of accuracy. This may
be primarily attributed to the capability of the filter to provide robust response estimates, when
an erroneous model is deployed, at the expense of the input predictions and secondly to the
smoothing effect which yields a substantial improvement on the peak estimates.

To quantify the uncertainty of the estimated stress time histories, which implicitly comprises
all kinds of uncertainty associated with the FE model and the response measurements, the time
histories are backwards sampled in a Monte Carlo framework and subsequently counted with
the rainflow algorithm, yielding thus a stochastic representation of the stress cycle distribution.
The latter is then processed with the fatigue model of Section 3 and produces the time-dependent
distribution of damage accumulation. It should be noted that in the context of this study, the
fatigue strength parameters are chosen such that a substantial part of the fatigue life of the
structure is wasted throughout the simulation time.

The expected value of accumulated fatigue damage with respect to the number of usage
cycles for the whole simulation time of two thousand minutes at locations 1 and 2 is depicted
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Figure 6: Actual and estimated stress time history with 95% confidence interval for location 1
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Figure 7: Actual and estimated stress time history with 95% confidence interval for location 2
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Figure 8: Expected value of fatigue damage accumulation on locations 1 and 2

in Fig. 8. As observed, the evolution of damage is identified with a high degree of accuracy, yet
there is a small drift on the estimates which mainly stems from spurious cycles due to noise on
measurements. The total damage accumulation for all five locations is presented in the bar-chart
of Fig. 9, showing the sufficiently good agreement between actual and estimated values, with a
7% maximum error.
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Figure 9: Expected value of accumulated fatigue damage on locations 1-5

Finally, the time-dependent reliability index of a structural component under the estimated
stress conditions is evaluated on the basis of Eq. (28). Figure 10 shows the evolution of relia-
bility with respect to the number of usage cycles for locations 1 and 2, where it is evident that
reliability follows a decreasing trend as the number of usage cycles increases. As underlined
in Section 3, the rate of change of the reliability index is dependent on the stress conditions,
resulting to higher rate of loss for high-low cycles and accordingly to lower one for low stress
levels. An additional information revealed from Fig. 10 pertains to the evolution of fatigue
mechanisms. Namely, it may be deduced that the initial and highly reliable period represents
the phase of crack initiation while the crack propagation period is indicated by loss of relia-
bility. This implies that high stress-level conditions result in small crack initiation periods and
faster loss of reliability during the crack propagation phase, which in turn implies faster damage
accumulation.
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Figure 10: Evolution of reliability index at locations 1 and 2
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5 CONCLUSIONS

This study presents a probabilistic framework for real-time reliability estimation of fatigue
damage accumulation on wind turbine support structures. The approach is based on output-only
measurements from wind turbine support structures and a combination of the augmented version
of the Kalman filter with a fixed-lag smoother. The smoothed uncertainty of the estimated states
is transferred through the FE model of the wind turbine substructure at the level of stresses and
subsequently propagated over a stochastic non-stationary fatigue model for the identification of
damage accumulation. The latter is finally obtained at unmeasured critical locations along with
a time-dependent reliability index. Despite the fact that a strongly perturbed numerical model
is implemented for the inverse problem, the structural quantities of interest are estimated with
sufficiently high accuracy. This is mostly due to the capability of the algorithm to provide robust
response predictions at the expense of the input estimates and partially due to the smoothing
effect. However, it is seen that even a small amount of noise can give rise to spurious stress
cycles and lead to an error accumulation on fatigue damage estimates.
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[2] W. Schütz. A history of fatigue. Engineering Fracture Mechanics, 54(2):263–300, 1996.

[3] M. R. Saberi, A. R. Rahai, M. Sanayei, and R. M. Vogel. Bridge fatigue service-life
estimation using operational strain measurements. Journal of Bridge Engineering, 21(5),
2016.

[4] H. Shen, J. Lin, and E. Mu. Probabilistic model on stochastic fatigue damage. Interna-
tional Journal of Fatigue, 22:569–572, 2000.

[5] V. Rathod, O. P. Yadav, A. Rathore, and R. Jain. Probabilistic modelling of fatigue damage
accumulation for reliability prediction. International Journal of Quality, Statistics and
Reliability, 2011.
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