

Flooding Resilience Future for the ABC Mega Region

Applying Nature-based solutions as a systematic approach

P5 Presentation

1st mentor Diego Sepulveda Carmona 2nd mentor Geert van der Meulen

Minyue Jiang, 5282055 November, 2022 TU Delft, Faculty of Architecture

CONTEXT

Lower Rhine River Basin / ABC (Amsterdam-Bruseel-Cologn) Mega Region

Figure: Rhine river basin Source: illustrate by Huw C. Davies, 2000

Map of the ABC (Amsterdam-Bruseel-Cologn) Mega Region

PROBLEM

Figure: Sea level raise 1993-now Illustrate by the author Source: Climate.gov, 2020

AP Photo/Michael Probst

Urban area potentially exposed to river flooding in 2071-2100 compared with 1961-1990

Flood risks in the ABC Mega region

Urban area change 1992-2019

Landscape fragmentation caused by grey infrastructure

Multi-level and crossing border governance

In the lower Rhine basin, the ABC MEGA Region is faced with the increasing <u>risk of flooding</u> caused by climate changing and extreme weather. The repercussions of over-modifying nature due to the urban sprawl and decay causing the <u>land scarcity and landscape fragmentation</u>, seems to put it in a more dangerous conditions. Crossing border and multi-level governance seems to be difficult to carry out an coherent flood management strategies.

<u>Spatial planning</u> should be better involved in the process of flood management to <u>recognize the dynamics</u> and to <u>activate the capacity of the green and blue infrastructure of flood resilience</u> as well as <u>guide the expasion and form of the cities</u> in the ABC Mega Region.

CONCEPTUALIZATION

FLOODING RESILIENCE FUTURE FOR THE ABC MEGA REGION

LOWER

LOWER FLOODING RISKS

LONGER

LONGER LIFE-SPAN

SUSTAINABLE

SUSTAINABLE URBAN
DEVELOPMENT

HEALTHY

HUMAN WELL BEING

ENGAGING

CATALYSTS OF LOCAL INVOLVEMENT

COOPERATION

STRONGER CONNECTION

BRODER

BROADER RANGE OF BENEFICIARIES

DYNAMIC

DYNAMIC AND FLEXIBILE SYSTEM

Figure: Nature-Based Solutions are a new focal point in the global effort to deal with climate change Illustrate by Natasha de Sena, WER

Flood Management

Nature-Based Solutions

Urban Development

Problem

ANALYSIS

OPPORTUNITY CONTEXT Where to grow? Where to apply nature-based solutions for flood management? PROBLEM 50 km CONCEPTUALIZATION population decline population growth urbanized areas country border surface water River mainstream _ River diversion Flood Risk Area RP100 ANALYSIS RP50 RP10 CONCLUSION

Amsterdam Apeldoorn **Doetinchem** Rottedam Dortmund Bochum Helmond Duisburg Eindhoven Maastricht

Territories in Between (TiB)

CONTEXT

PROBLEM

CONCEPTUALIZATION

ម

ANALYSIS

I KALEGY

CONCLUSION

OPPORTUNITY CONTEXT PROBLEM CONCEPTUALIZATION ANALYSIS

Potential areas to apply nature-based solutions for flood risks control

Territories in between

- · Randstad, the Netherlands
- Flanders , Belgium
- · Ruhrgebiet, Germany

Figure: potential areas to apply nature-based solutions for flood risks control Illustrate by the author Source: Copernicus, 2017

CONTEXT

PROBLEM

CONCEPTUALIZATION

ANALYSIS

CONCLUSION

Policy related to flood management and nature landscapes protection

Figure: Policy related to flood management and nature landscapes protection Illustrate by the author Source: Copernicus, 2017 and Natura 2000

CONTEXT

PROBLEM

PR

CONCEPTUALIZATION

"Space for river"

Downstream
Seaward
Upstream
Inland

Downstream Seaward

Upstream Inland

Agriculture areas Green patches Natura 2000

Flood Risk Area

Terrain and water level

Figure: Rhine waterlevel monthly Illustrate by the author Source: OpenDataPortal Düsseldorf, 2022

Terrain and scenarios of water level raising

Figure: scenarios of water level raising Illustrate by the author

CONTEXT

PROBLEM

CONCEPTUALIZATION

ANALYSIS

STRATEGY AND DESIGN

CONCLUSION

soil

Figure: USDA Soil Texture Source: Christopher Aragón, 2018

Soil Group	Description	Final Infiltration Rate (mm/h)
A	Lowest Runoff Potential. Includes deep sands with	8 - 12
	very little silt and clay, also deep, rapidly permeable	
	loess.	
В	Moderately Low Runoff Potential. Mostly sandy soils	4 - 8
	less deep than A, loess less deep or less aggregated	
	than A, but the group as a whole has above-average	
	infiltration after thorough wetting.	
C	Moderately High Runoff Potential. Comprises shallow	1 - 4
	soils and soils containing considerable clay and	
	colloids, though less than those of group D. The group	
	has below-average infiltration after pre-saturation.	
D	Highest Runoff Potential. Includes mostly clays of	0 - 1
	high swelling percent, but the group also includes some	
	shallow soils with nearly impermeable sub-horizons	
	near the surface	

Figure: The USDA-NRCS Hydrologic Soil Group Classification Source: Reynold J. Stone, 2014

AVAILABILITY CONTEXT the flood protection system and floodable area PROBLEM In need of renovation refurbished _____ High terrain CONCEPTUALIZATION Floodplain Flood-prone area ANALYSIS CONCLUSION Figure: floodplain and flood-prone area Illustrate by the author Source: Bezirksregierung Düsseldorf Sachstand Maßnahmenumsetzung, 2022

Functional spaces along side the river

Figure: different spatial element in the satellite map Illustrate by the author Source: Googlemap, 2022

Figure: Functional map alongside the river Illustrate by the author Source: Openstreetmap, 2022

PROBLEM

CONCEPTUALIZATION

ANALYSIS

CONCLUSION

Functional spaces: Natura 2000 and green spaces

Figure: urbanized area and urban parks Illustrate by the author Source: Openstreetmap, 2022

STRATEGY AND DESIGN

Find the suitable NBS strategy for the design

Source: Googlemap, 2022

Case 1

PROBLEM

CONCEPTUALIZATION

ANALYSIS

STRATEGY

PROBLEM

CONCEPTUALIZATION

ANALYSIS

CONCLUSION

Case 2

Applied NBS

after

CONTEXT

PROBLEM

CONCEPTUALI7ATION

ANALYSIS

CONCLUSION

Case 3

ANALYSIS

after

PROBLEM

CONCEPTUALIZATION

ANALYSIS

CONCLUSION

Strategy in agriculture land

Strategy in urban parks

PROBLEM

CONCEPTUALIZATION

ANALYSIS

SIRALEGY

Strategy in green spaces

PROBLEM

CONCEPTUALIZATION

ANALYSIS

STRATEGY

2022

PROBLEM

CONCEPTUALIZATION

ANALYSIS

STRATEGY

2030

PROBLEM

CONCEPTUALIZATION

ANALYSIS

TRATEGY

2040

PROBLEM

CONCEPTUALIZATION

ANALYSIS

STRATEGY ND DESIGN

local - execution

landscape architect, urbanist, hydrologist, ecologist, local government, citizen involvement Planning and design Integrated flood risk management in local construction Landscape construction companies, farmers, urban park and orchards operators, citizens Local government funding, local government policies and processes, private landowner land sales or leases, higher level government funding or policy support, eco-

friendly NGO organisations

mega regional - cooperation and support

The representitive cities morphology of river landscapes and city landscapes

CONCLUSION

3.1

2.1

3.1.1

3.2.1

3.1

3.2.1

2.1

	PREPARATION	LOCAL EXPERIMENTAITON	REGIONAL ITEGRATION	SYSTEMICAL EFFECTION
	+		1	+>
	2022	·	•	
Planning and governan	ice			
Site Evaluation				
stakeholder involvement				
ocal policy				
Regional policy				
Apply NBS				
Ecosystem conservation				
Cerraforming the river andscapes				
Demolition and return to nature				
Enhancing the green-blue network	2			
/alues and outcomes				
Flood riks reduction local)				
Flood riks reduction				
upstream and downstrea	uii <i>)</i>			
Human wellbeing				

FLOODING RESILIENCE FUTURE FOR THE ABC MEGA REGION

LOWER

LOWER FLOODING RISKS

NBS can effectively control the risks and hazards posed by flooding.

LONGER

LONGER LIFE-SPAN

Eco-systems have a longer life span than grey infrastructure and can have longer term benefits and effects.

SUSTAINABLE

SUSTAINABLE URBAN DEVELOPMENT

In the case of urban development, the longer duration and life cycle of nature-based solutions means that urban construction and development based on this perspective also has a longer life cycle and more sustainable.

HEALTHY

HUMAN WELL BEING

The improved blue-green space provides residents with more natural spaces for public activities and recreation and is conducive to human-well-being

ENGAGING

CATALYSTS OF LOCAL INVOLVEMENT

Promoting local involvement and the improvement of local projects.

COOPERATION

STRONGER CONNECTION

Closer links and communication between other economic activities, such as the production and trading of agricultural products, etc.

BRODER

BROADER RANGE OF BENEFICIARIES

Extending the benefits of flood risk control measures from the local to the broader mega region from upstream to downstream.

DYNAMIC

DYNAMIC AND FLEXIBILE SYSTEM

Whereas previously the bearers of flood pressure may not have been directly related to the beneficiaries of flood risk control, this blue-green network adds even more connectivity at the system level. The whole system is also more flexible and dynamic.

Systems involved

