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Abstract

Delays and cost overruns are common problems in the construction industry. Despite
extensive research on their causes and mitigations, these problems persist, suggesting that
the challenge is not identifying possible mitigation measures, but rather selecting the
optimal combination. Recently, a decision-support tool, Mit-C, was developed to help find
the optimal strategy by combining a Monte Carlo simulation with mathematical optimization.
However, the tool has a relevant limitation: it does not consider the resources required by
the mitigation measures, potentially leading to unrealistic or infeasible solutions.

Consequently, this master thesis addresses this limitation by further developing the project
management decision-support tool, Mit-C, through the inclusion of the resources
availability and demand required by the mitigation measures. For this purpose, the addition
of a significant number of variables and constraints into the original mathematical model
was needed, increasing the computational time of the program but improving the realism of
the results. The altered model was then validated using a case study: the construction of a
warehouse. The tool was used with both simplified and detailed project data to test its
performance.

The results demonstrated that including resource constraints has a significant effect on the
optimal mitigation strategy and leads to a lower and more realistic probability of finishing
the project on time. This difference is more noticeable when using detailed data. It is
therefore concluded that while the resource-constrained model produces more pessimistic
results, it offers a significantly more realistic, reliable and therefore valuable decision-
making tool for project managers.
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1. Introduction

The construction industry is known for having projects with delays and cost overruns.
Several researchers investigate the causes of these overruns to propose mitigation
measures. Moreover, they usually focus their studies on specific types of projects or
countries to provide mitigation measures that work best in the given context. Besides all the
efforts, there are still delays and cost overruns in the construction industry. According to
Rivera et al. (2017), on average, 72% of construction projects exceed their target duration by
38%, while 63% exceed their budget by 24%.

Since generally research on causes of overruns and mitigation measures involve interviews
to specialists in the industry, it is evident that project managers know how to mitigate risk,
but perhaps the problem is how to choose which mitigation measure to implement. In other
words, project managers know what they can do, but maybe they need assistance to help
them decide what to do.

When a project is delayed, it is necessary to implement mitigation measures. As stated
before, project managers must decide which measures to implement, and this choice is
usually based on the impact that the measures have on the probability of finishing the
project on time (Kammouh et al., 2021). The authors explain that, in practice, Monte Carlo
scheduling is usually employed to evaluate the measures’ effect on the project duration.

However, according to Kammouh et al. (2021), the problem with using the Monte Carlo
Simulation (MCS) is that it does not take into account the “project manager goal-oriented
control behavior”. The authors state that the project manager always tries to optimize by
implementing only the mitigation measures needed to finish on the target time. Thus, they
propose a decision-support tool, Mit-C, that combines MCS with a mathematical
optimization. In the latter one, the goalis to “find the set of mitigation measures thatensures
timely completion at the least amount of costs” (Kammouh et al., 2021).

In the next sub-section, a short review of the different versions of the mitigation controlleris
given, while in section 2, a more in-depth explanation of the basic Mit-C will be provided. For
more information regarding the subsequent models refer to Appendix A or the cited
references.

1.1 Mitigation controller

As introduced earlier, Kammouh et al. (2021) developed a tool which helps project
managers identify the optimal mitigation strategy to implement in a construction project. In
general terms, the tool works by performing an optimization in each iteration of a MCS in
which the project duration exceeds the target. The aim of the first version of the toolis to find



the best cost-effective measures that help reduce delay in a project by implementing a
multi-objective linear optimization.

Khalifé (2022) further developed the original tool by optimizing the project’s budget instead
of the duration. Moreover, the author incorporated a “multi-criteria assessment of negative
impacts”. In this case, the process for finding the best mitigation measures is very similar to
the first model, the main changes are done in the optimization equations to reflect the
different objective and in the definition of effectiveness which now incorporates the negative
impact of the measures.

The original Mit-C only considers the paths with a delay and cannot consider the possible
benefits of finishing the project before the targettime. Consequently, Kammouh et al. (2022)
further developed the initial model to include different types of contractual project
completion performance schemes in which penalties and/or rewards for the project’s
duration are considered. In order to do this, the objective function was changed to find the
mitigation strategy that minimizes the net cost which includes the cost of the mitigation
measures and the penalties and/or rewards. Moreover, Kammouh et al. (2022) introduced
in the new model the difference between the uncorrelated duration and the correlated
duration of activities.

The model of Kammouh et al. (2022) was later further developed by Manoj Philip (2022). This
new research focused on studying the influence of the project network structure on the
mitigation controller. The main modification implemented by Manoj Philip (2022) is the use
of the Graphical Evaluation and Review Technique (GERT) instead of the PERT. As explained
by the authors, this technique allows to tackle the limitations of the PERT. For instance,
while PERT follows a deterministic branching, GERT follows a probabilistic one. Also, while
inthe original approach the activities are executed in a linear way, the GERT allows to repeat
activities by “feedback loops”.

Further research was done by Teuber et al. (2024) based on Kammouh et al.(2022) model.
The authors presented a new model called Open Designh and Dynamic Control (Odycon),
which integrates the MCS with the Integrative Maximization of Aggregated Preferences
(IMAP) optimization method. With this approach the interests of all the stakeholders are
taken into account. Also, considering that stakeholders may have more than one interest,
Odycon allows the inclusion of several objectives, broadening the original mitigation
controller tool which only focuses on the duration or the budget of the project.

As can be noticed, in the last few years some improvements have been made to the
mitigation controller tool, however it still has some relevant limitations which will be
discussed in the following sub-section (Sub-section 1.2).



1.2 Resource constraints

Up to now, no research regarding the mitigation controller has included the resources
required by the mitigation measures. As explained in Kammouh et al. (2021), in the original
model, this is because it is assumed that project managers are conscious of the available
resources when including mitigation measures and, thus, if there are not enough resources
for a specific measure, they will not be using that measure. In other words, resources are
notincorporated in the initial model, but they are assumed to be taken into account by the
users of the tool.

Moreover, Kammouh et al. (2022) mention resource availability as an example of shared
uncertainty causes, when introducing the concept of correlated duration of activities. Here,
the resource problem is acknowledged as a source of uncertainty that may cause delay, but
it is not directly taken into account in the selection of the mitigation measures strategy. In
broad terms, the tool tries to find the measures that reduce the project duration, and the
resource availability is one of the possible factors that may affect the makespan. However,
the tool does notconsiderthatthe measures demand specific resources to be implemented.

Furthermore, the project managers do not take into account that the tool may suggest using
the same mitigation measure in different tasks occurring at the same time or different
measures that require the same resources for activities happening in parallel. This can
happen because the tool does not consider the resources availability and demand by the
mitigation measures. As explained by Kammouh et al. (2022), assuming unlimited resources
leads to boundless use of simultaneous measures and, thus, the authors suggest that
further research should focus on the incorporation of resources limitation in the model.

As already stated, some mitigation measures share resources and implementing them at
the same time may cause trouble. Moreover, some resources are renewable, such as
workers and machinery, whereas others, like materials, are non-renewable and cannot be
reused in a different mitigation measure or in cases where the same measure is applied to
multiple activities. Consequently, there is a clear need to incorporate the resource
availability and demand required by the mitigation measures into the mitigation controller
model.



1.3 Development Statement and Goal

The aim of this master thesis is:

To further develop the project management decision-support tool called Mit-C by
including the resources availability and demand required by the mitigation measures
in a construction project.

The following sub-questions are relevant for the development:

e What are the existing techniques or methods to tackle the resource-constrained
problem?

e How can the resource constraints be incorporated into the existing mitigation
controller model?

e What is the effect of including the resource constraints in the mitigation
controller?

The objective of this masterthesis is to further develop the existing mitigation controller tool,
Mit-C, by incorporating the availability of and demand for resources into the model. The
previous developed code will be used as a starting point, and alterations will be guided by
research onthe Resource Constrained Project Scheduling Problem (RCPSP), since this body
of literature provides methods for minimizing project duration while considering resource
and precedence constraints, which aligns with the objective of adding resource constraints
into Mit-C. Once the modifications are completed, possibly after some iterations, it will be
tested on a finished construction project to evaluate its benefits. Furthermore, two
interviews will be conducted with professionals from the industry, who participated in the
case study as the project manager and the construction superintendent (site manager), to
determine the value of the tool. Similarly, a comparison of the tool results with and without
the resource constraints will be performed.



2. Mitigation Controller

In this section, a more detailed explanation of how the Mit-C model works is given. This
description will focus on the versions of Kammouh et al. (2021) and Kammouh et al. (2022),
since the inclusion of the constraints will be carried out on the latter model and this one is
based on the first one. For an even more extensive explanation of the models refer to any of
the previously mentioned sources.

This section is divided into three parts. The first one outlines the steps of the model, while
the second one explains the mathematical optimization, and the last one summarizes the
generated plots.

2.1 General workflow

The tool described in Kammouh et al. (2021) works as follows. First, the user needs to input
all the required data. This includes information about the activities, risk events, mitigation
measures, and the relationship between them. For the activities the most likely, pessimistic
and optimistic values of their duration are needed as well as their precedence relationship.
Likewise, the required input includes the three capacity estimates for each mitigation
measure, the cost associated with the most likely capacity and its cost-capacity correlation
factor, and the activities on which each measure can be implemented. Moreover, the user
also needs to input the three estimates for the effect of each risk, their probability of
occurrence and their relationship with the activities. In the model of Kammouh et al. (2022),
in addition to the previous data, it is necessary to input the three estimates for the shared
uncertainties and the activities they relate to. Other relevant inputs include the target
duration of the project, and the daily penalties and rewards if permitted by the contractual
project completion performance scheme. It is relevant to mention that if the target duration
is not provided by the user, the tool calculates a target using the most-likely duration of the
activities.

Then, when the program is run, a MCS starts with the number of iterations established by
the user. As explained by Kammouh et al. (2021) the MCS method is used to include the
stochastic behavior of the variables. In each iteration, random values of the durations of the
activities (uncorrelated and correlated), the capacities of the mitigation measures and the
disruption duration of the risks are obtained by using the BETA-PERT (Program Evaluation
and Review Technique) distribution and the three-point estimates entered for each
parameter. In the case of the Kammouh et al. (2022) model, it is also necessary to obtain a
random binary value from a Bernoulli distribution which determines the occurrence of each
risk, and the costs associated with the random values obtained for the capacities of the
mitigation measures. Once all these values are gathered, the following step is to calculate



the durations of all the critical paths. Here are considered as critical those paths with a
duration larger than the target one.

In Kammouh et al. (2021), the effectiveness of a mitigation measure is described as the ratio
between the delay reduction and the cost of the corrective measure. Therefore, in the
original model, it is also necessary to compute the delay reduction of the paths by
incorporating one mitigation measure.

The next step in each MCS iteration consists of executing the optimization algorithm and
saving the results. After this, the iteration ends and a new one begins until the number of
iterations entered by the user is reached. It must be highlighted that the optimization is
carried out only when the calculated project duration exceeds the target, otherwise a new
iteration starts without optimizing. Finally, when the MCS ends, the output of all the
iterations are aggregated and displayed in different plots.

Table 1 summarizes the data and variables involved in the functioning of the mitigation
controller.



Type 7 Symbol 7 Definition

1 Number of activities in the project (with activities indexed by i)
] Number of mitigation measures (with mitigation measures indexed by j)
E Number of potential risk events (with risk events indexed by e)
F Number of factors of shared uncertainty (with factors indexed by f)
K Number of project schedule paths (with paths indexed by k)
De Probability of occurrence of risk e
Sie Relation parameter that states if risk event e can impact activity i
r; Rel.at.ion. parameter that states if mitigation measure j can intervene upon
activity i
Vs Relation paramgtgr that defines the extent to which an uncertainty factor f
Input data affects the activities i
d; Duration of activity i
m; Mitigation capacity of measure j
Cj Cost of mitigation measure j
n; Cost-capacity correlation factor of mitigation measure j
d, Disruption duration caused by risk event e
Ui s Shared uncertainty of activity i by factor f
Trar Target project completion duration
P Daily penalty
R Daily reward
Dk,i Relation parameter that defines if activity i is in path k

Extravalues 5 — — - —
Tewrr » Ay Current completion time (completion time with no mitigations)

X Binary variable that states if a mitigation measure j is implemented or not
Variables Ay Delay after implementing the mitigation measures
A, Duration reduction beyond the target duration of the project

Table 1: Mit-C data and variables

2.2 Objective function

In the Kammouh et al. (2021) model, the objective function is composed of three terms. The
first one searches for the optimal combination of measures that helps the project to reach
the target duration while considering the effectiveness of the measures. The second term
aims to prioritize the mitigation strategy that has the highest duration reduction. Lastly, the
third term tries to minimize the delay after the target time in case the mitigation measures
are not enough.

In the Kammouh et al. (2022) model, as mentioned earlier, the objective is to find the
mitigation measures that minimize the net cost. The objective function (Equation 1) is
composed of three terms. The first one aims to minimize the direct cost of implementing the
measures, while the second term seeks to reduce the daily penalties for a late completion



of the project, and the third term tries to maximize the daily reward obtained for an early
completion. As explained in Kammouh et al. (2022), the solution must comply with the
compatibility constraintin Equation 2, which states that the difference between the duration
of each path before mitigation and the total mitigated duration must be less than or equal to
the target duration plus the delay or minus the early completion margin. Additionally,
Equation 3 defines how to compute the total mitigated duration in each path.

mianj.xJ-+A1.P—A2.R (1)
J€J
d) — MitDury, < Trgr + A — A, V kEK (2)
MitDUTk = Zzpk'i . ri,j' m] Xj vV kKEK (3)
JEJIEI

2.3 Output

The output of the toolincludes a graph showing the cumulative probability curves (s-curves)
of the project duration, denoting the difference between not implementing the mitigation
measures, using all of them and carrying out only the optimal ones according to the
mitigation controller. Another relevant output is the criticality of mitigation measures. The
critical index of a mitigation measure is defined as the “percentage of the Monte Carlo
iterations in which a measure is included in the optimal mitigation strategy” (Kammouh et
al., 2021). This output is vital to understand which are the best mitigation measures to
implement. Other outputs include: the cost cumulative distribution of the project with the
different scenarios stated before, the critical index of activities and critical paths (also
differentiating using the Mit-C and not doing it).
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3. Inclusion of Resource Constraints

To answer the first sub-question, “What are the existing techniques or methods to tackle
the resource-constrained problem?”, this section provides a review of the relevant
literature. The review starts by classifying the types of resources found in the Resource
Constrained Project Scheduling Problem (RCPSP) literature, then provides an overview of
the main solution methodologies, and ends with a short description of the constraints.

As introduced earlier and explained by Khajesaeedi et al. (2024), the RCPSP “seeks to
optimize project schedules by minimizing the makespan (total project duration) while
satisfying resource constraints and precedence relations among activities”. Thus, there are
two main groups of constraints: temporal constraints and resource constraints. In this
section, the focus will be only on the resource constraints, since the mitigation controller
considers precedence relationships outside the optimization.

3.1 Classification of resource constraints

Appendix B provides a detailed overview of the types of resources found in the RCPSP. Here,
in Table 2, a summary of that overview is presented.

Classification Classification 1 Classification 2
Chaudhary and Meshram (2025) Hartmann and Briskorn (2009)
* Human resources e Renewable resources
* Equipment availability e Non-renewable resources
* Material constraints e Doubly-constrained resources
e Financial constraints e Partially renewable resources
Resources e ITresources e Discrete resources

e Continuous resources

e Cumulative resources

e Time-dependentresources
e  Multiple-Skills resources

Table 2: Resources classification

In the current development, the most relevant resource types to be considered are the
human resources, equipment and materials, following Classification 1. The financial
constraint is somewhat already taken into account in the existing tool, and the IT resource
is not fully relevant for the model. Following Classification 2, the types of resources that will
be included in the development are renewable and non-renewable. Other resource variants
mentioned above, such as multiple-skill resources, may be relevant in the construction
industry. However, they would probably increase the complexity of the tool, thus, their
inclusion should be investigated in future research.
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3.2 Overview of solution methodologies

As explained by Hartmann and Briskorn (2009), while the basic RCPSP considers only
renewable resources, variants of the RCPSP like the Multi-Mode scheduling problem
(MRCPSP or MMRCPSP) allow for the inclusion of other types of resources, such as non-
renewable resources. To solve these problems, according to Khajesaeedi et al. (2024), the
RCPSP literature includes three categories of solution methods that involve a trade-off
between solution quality and computational effort:

1. Heuristics and metaheuristics: The authors state that these approaches, such as
genetic algorithms, are designed to find feasible solutions quickly, which is useful for
large problems. However, they do not guarantee that the solution found is the global
optimum

2. Exact methods: These approaches, such as the Mixed Integer Linear Programming
(MILP), are computationally more intensive, especially in large problems, but are
designed to find the global solution.

According to Khajesaeedi et al. (2024), most RCPSP researchers use metaheuristic
algorithms and there is a growing interest in hybrid approaches. Nevertheless, this thesis
will continue to use the exact method established in the original mitigation controller, MILP,
since it guarantees finding the global optimum. This will be further explained in Section 4.1.

3.3 General mathematical formulation of constraints

Now, regarding the typical constraints found in the RCPSP, Schwindt and Zimmermann
(2015) propose some basic equations. For renewable resources, they suggest:

t
Z Z T - Xiz < Ry (t € H; ke R) (4)
iev T=t—-pi+1

Equation 4, according to Schwindt and Zimmermann (2015), expresses that “the sum of
resource requirement of activities in progress at each time t € H cannot exceed the
capacity of any resource k € R, beingR the set of discrete renewable resources and H
the scheduling horizon.

For non-renewable resource constraints within a multi-mode context, they propose the
following general equation:

LC;
Z. u Z Z Tikm + Zimt = Ry (k € R") (5)
jeve & i3 T=EC;
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Equation 5, proposed by Schwindt and Zimmermann (2015), ensures that the non-
renewable resource limit is not exceeded. As can be noted, this formulation uses “modes”
to describe the relationship between the duration of activities and their resource
consumption. If modes are used, the renewable resource constraints (Equation 4) must also
be modified to account for them.

13



4. Mathematical formulations

This section presents the mathematical formulation of the changes that were carried out on

the existing mitigation controller tool. It will try to answer the second sub-question: How can

the resource constraints be incorporated into the existing mitigation controller model?

More specifically, it will start with a short explanation of why the problem should be kept

linear. Then, a description of some changes implemented related to the penalties and

rewards will be introduced. This will be followed by the definition of renewable and non-

renewable resource constraints. Lastly, the section will end with a diagram summarizing all

the equations.

Table 3 outlines the symbols used in this section.

Symbol / notation {

Description

Ay Delay after implementing the mitigation measures
A, Duration reduction beyond the target duration of the project
C.r Capacity of non-renewable resource nr
C, Capacity of renewable resource r
D; Duration of activity i with no mitigation
fi Finish time of activity i. f; is the finish time of the last dummy activity
1 Number of activities in the project (with activities indexed by i)
J Number of mitigation measures (with mitigation measures indexed by j)
M “Big-M” constant used for linearization
MC; Mitigation capacity of measure j
NR Number of non-renewable resources (with non-renewable resources indexed by
nr)
Piw Relation parameter that states if activity i is preceded by activity w
q Auxiliary binary variable used to linearize delta-related constraint
R Number of renewable resources (with renewable resources indexed by r)
r. Relation parameter that states if mitigation measure j can intervene upon
Y activity i
r. Relation parameter representing the number of non-renewable resources nr
Jnr required by mitigation measure j
r. Relation parameter representing the number of renewable resources r required
T by mitigation measure j
S; Start time of activity i. s; is the start time of the first dummy activity
T Number of time periods (days), indexed by t
T ona Duration of the project after being mitigated
Tior Target project completion duration
X;j Binary variable that states if mitigation measure j is implemented or not
y1;, Auxiliary binary variable used to linearize renewable-resource constraints
y2;, Auxiliary binary variable used to linearize renewable-resource constraints
Zj, Binary variable that states if mitigation measure j is implemented at time t

Table 3: Description of symbols / notations
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4.1 Integer Linear Programming

A programming model can be linear or non-linear. As described by Williams (2013), linear
programs are characterized by having objective functions and constraints as linear
expressions. In contrast, when at least one of the functions, either objective or constraints,
is non-linear the program is considered non-linear.

Linear programs are usually preferred for the simple reason that they are easierto solve than
non-linear ones. As explained in Hillier and Lieberman (2001), the easiest types of models
with only two variables can be solved by a graphical procedure. Additionally, Luenberger and
Ye (2021) state that linear formulations are preferred not only because they are easy to solve,
but also because of the simplicity of their objective and constraints definitions. Moreover,
since all linear programs are convex, if a feasible solution is found, this will coincide with the
global optimum (Nocedal & Wright, 2006). The global optimum is relevant because it is the
best feasible solution (either minimum or maximum depending on the objective) and the
value is unique. It should be clarified, however, that a linear program might have one single
value of global optimum but there can be multiple optimum solutions (combination of the
values of the variables) that reach this optimum. For instance, in the case of the mitigation
controller, if the model is convex, there will be a single minimum net cost but there will be
probably different combinations of mitigation measures that can lead to this minimum.

Although linear programs are simple to define, easy to solve, and finding a global optimum
is guaranteed, they have a significant drawback. As explained by Hillier and Lieberman
(2001), to make a model manageable, some approximations and simplifying assumptions
are needed. Consequently, linear models often lack realism.

Non-linear problems are, in some sense, the opposite to linear ones. While they represent
reality more accurately, they are more complex and, thus, they require more computational
time. Also, the solution found is a local optimum. While this local optimum may also be the
global optimum, this is not guaranteed, and additional verification is needed.

By nature, the mitigation controller model is non-linear. However, due to the advantage of
the global optimum, it is preferred to have a linear model. Williams (2013) states that some
non-linear programs can be converted to linear ones by implementing integer programming
but highlights that this comes with a high computational cost. This difficulty arises because
restricting variables to be integers introduces a more complex search method, making the
model more computationally demanding than a purely continuous linear program. Williams
(2013) also mentions thatinteger program models can be pure integer when all the variables
are of this type, or mixed integer when some of the variables are integers and some other are
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continuous. In the following sections (4.2-4.4), it will be explained how the mitigation
controller program can be kept linear by adding integer variables.

4.2 Penalties and rewards

As mentioned earlier in Section 2, a previous model of the mitigation controller included the
concept of penalties and rewards for late and early project completion, respectively.
Kammouh et al. (2022) explain that there are three possible scenarios after the optimization.
As shown in the figure extracted from the same source (Figure 1), the duration of the project
after the optimization (i.e. post-mitigation) can be equal to, greater than, or less than the
target time. Clearly, the three scenarios cannot happen at the same time. Therefore, one of
the constraints included in the original mitigation controller is that either A; (residual delay),
A, (reduction beyond target time), or both must be zero and, thus, the product equals zero,
as in Equation 6 (Kammouh et al., 2022).

Al X A 2 = 0 (6)
A: reduction beyond the target duration
—
project duration reduction
Scenario 1: reward oo + Time
for early completion , _
b 0 opt T;(,, /me'
- // 3
A: residual delay
% '[Jr(gfecl duration reduction
Scenario 2: penalty + Time
for late completion { = () T T
ar A opr curr
X o
A=0:timely completion
project duration reduction
Scenario 3: timely e Time
completion =0 T
opt?* tar curr
.79 ~

Non-mitigated (current) completion time + Target completion time

{- Mitigated (optimized) completion time
Figure 1: Optimization scenarios (Kammouh et al., 2022)

Since the previous equation implies the multiplication of two variables, the equation is non-
linear. However, as explained in section 4.1, itis desired to keep all the constraints as linear
equations or inequations in order to find the global optimal solution. Consequently, the
previous constraint must be linearized.

It is evident that the mentioned constraint can be classified as a “Either/Or Constraint” as
described in Forrester and Waddell (2022). In other words, either A; = 0 or A, = 0. The
authors explain that this type of restrictions can be modeled by incorporating an “auxiliary
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binary variable” and a big number (“Big M”). The value of the binary variable is the one that
defines which of the two constraints is imposed. The authors also explain that the Big M is
usually a large number that, when its term is different from zero, it causes the constraint to
lose its relevance. Nevertheless, in the current case, a different approach is taken. A switch
binary variable q is introduced as shown in Equations 7 and 8.

Here, if g takes a value of 1, A; will have a high upper bound while A, will be limited to be
less than orequalto zero. Conversely, if g takes avalue of 0, A; willbe forced to be less than
orequalto zero and A, will have a large upper bound. It should be highlighted that to ensure
that one of the A is equal to zero and not a negative number, the lower boundary of these
two variables must be zero.

Concerning the value of the “Big M”, in this case a prudent number would be the duration of
the longest critical path before mitigations are applied. This is because it is basically
impossible that a delay (A;) or a duration reduction (A,) can be higher than the longest
duration of a project.

Moreover, the constraint cited in Section 2.2 must be modified as a consequence of the
introduction of the auxiliar variable q . Now, the difference between the duration of the
project after being mitigated (T,,4) and the target duration (T;,,-) must be equal to either the
delay (A;) or the duration reduction (A,), as defined in Equation 9. Furthermore, the
inequality in Equation 10 must be introduced to define the value of g. For instance, if the
duration of the project after mitigation is larger than the target time, the value of g will be
forced to be 1 by Equation 10. Here itis relevantto remember that since q is a binary variable
it can only take the values 1 or 0.

Ay — Ay =Teng — Tiar (9)

M. q = Tend - Ttar (10)
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Figure 2 illustrates the linearization of the constraintincluded in the original model. It can be
noted how adding a switch binary variable can expand the model, in terms of constraints, to

Original model New model
constraint constraints

M. q =Tena — Trar

keep it linear.

Ay X Ay = ([ Linearization sefip Li20 > A <M.q

A =20 - A € M.(1—-9q)

Al - AZ =Tend — Tear

Figure 2: Old constraint linearization

4.3 Renewable resources

The renewable resource constraint could be easily defined as the following: the amount of
a certain resource r consumed by all the mitigation measures j being implemented at a
certain time t must be equal to or less than the resource capacity C,.. This constraint must
be verified for all the renewable resources and for all the time periods of the project. It
sounds quite simple, but in fact this involves multiple constraints, and due to the actual
modeling of the tool some extra complexities are encountered.

To begin with, the actual mitigation controller model uses the binary variables x; which
symbolize if the mitigation measure j should be implemented or not. Now, the first problem
is that the new model needs to know if the mitigation measures are being implemented or
not at each specific time of the project. According to Schwindt and Zimmermann (2015), the
“time-indexed” integer linear programming formulation is frequently used to model
resource-constrained scheduling problems. The authors explain that this type of
formulation uses a type of variable, for instance x; ;, that indicates the status of an activity
iattime t .Inasimilarway, z; ; binary variables are added to the mitigation controller model.
These new variables represent if, at time t , mitigation measure j is implemented or not (1
or 0, respectively).

A second challenge is how to determine the periods of time at which mitigation measures
can be implemented. This seems quite intricate to do in the existing model because of a
series of factors. Firstly, the periods of time at which each mitigation measure can act

18



should be the same as the time periods of the activities they can be implemented on.
Secondly, the time periods of each activity are not known precisely. All the possible paths
and the activities durations are determined before the optimization, so the time periods in
which each activity is ongoing could be determined. However, after optimization the
durations will change based on which measures are activated and their capacity. In other
words, the time periods that each mitigation measure may be active depends not only if the
optimization decides to implement it or not, but also on the time periods of the activities on
which they can be applied to and, simultaneously, this depends on which measures are
being implemented.

Consequently, following a similar approach to the time-indexed formulations, a new set of
variables are incorporated into the mitigation controller model. These will be the starting
and ending times of the activities, s; and f;, respectively. The idea is to find these values
during the optimization, including the effect of the mitigation capacities, for the purpose of
later stablishing z;;. The incorporation of these new variables requires the restrictions
stated in Equations 11 and 12. These two inequations imply that the starting (s;) and finishing
times (f;) of each activity must be equal to or greater than 0. In the code, this is simply
defined as the lower boundary of the variables mentioned instead of a constraint.

;=20 Vi€l (11)

fi=0 Vi€l (12)

Moreover, the starting time of the first activity (dummy task) must be equal to 0, as defined
in Equation 13. Additionally, the starting time (s;) of an activity i must be equal to or greater
than the finishing time of its predecessor activities (f;, ), as expressed by Equation 14. Here,
w is used torefer to the predecessor activities and not confuse themwith i and, clearly, I =
W . Also, a new binary relation parameter is used here, p;,,, which states if activity i is
preceded by activity w or not.

s, =0 (13)

SiZfW vV i€1 A WEpi,W=1 (14)
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Equation 15 establishes that the finishing time (f;) of each activity must be equal to the sum
of the starting time (s;) and the duration (D;) of the activity minus the mitigation capacity of
the mitigation measures being implemented. Here, the activities duration is the sum of the
random values of the activity duration, the risks effect that act on them and the shared
uncertainties duration, as described in Section 2.1. The last term of the inequation
represents the summation of all the mitigation capacities of those measures which can be
applied to the specific activity and that the optimization chooses as optimal. Furthermore,
Equation 16 expresses that the finishing time of the last activity (dummy task), f;, must be
equal to or greater than the finishing times of all the preceding activities.

fi=Di+s -3 MG.x;.1y; Vi€l (15)

i=fi Vi€l (16)

Figure 3 shows the equations used to determine the start and finish times of activities after
being mitigated.

Start times of activities Finish times of activities

=20 Vi€l fiz0 vigl
5, =0 f=fi ViEl
si=f, Vi€l A wEpy=1 fi=Di+ s —E_ MG.x.1; ViEIl

Figure 3: Equations for activity start and finish times

Now that the starting and finishing times of activities after mitigation is known, the
renewable resource constraints can be formulated based on the examples given in
Schwindt and Zimmermann (2015). Equation 17 states that the sum of the renewable
resources (1j,) consumed by all the mitigation measures being implemented and active on
time t (z;;) must be equal to or less than the capacity of each renewable resource (C;.). This
must be verified for each renewable resource, r , and for each time, t, in the project
mitigated makespan. Moreover, it is important to note that, since the t values represent
each day of the project duration, T is basically the finishing time of the last activity, that is
one of the optimization variables, and this affects the linearity of the model. Therefore, a
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better approachis to stablish T as the duration of the longest critical path before mitigation.
This may create constraints that will not be needed, but it will cover all the possible duration
of the project after mitigations are applied. Furthermore, the amount that each mitigation
measure j needs of each r resource (7;,) is introduced by the user as an input and then it
is actualized based on the mitigation capacities obtained randomly in each MCS iteration.
The relationship between the capacities and the resources consumption of the mitigation
measure will be further developed in next section (Section 4.4).

2z <G VIER A tET (17)

Here, one last obstacle was encountered. The value of Zjt is determined by three
conditions: if mitigation measure j is implemented or not, if time t is after the start of
activity i affected by measure j or not, and if time t is before the end of activity i affected by
measure j or not. This can be expressed using Equation 18, in which each factor on the right
side of the inequality represents one of the previous conditions.

zip 2 x.(t—ss—D.(i+1-1) VjEJ] NLEtET (18)

The issue with this inequation (Equation 18) is that variables are being multiplicated and,
thus, is non-linear. Therefore, a similar procedure to the one explained in Section 4.2 is
followed. Two binary auxiliary variables are added per each z;.: y1;; and y2; ;. These extra
variables will help to determine if each t is before or after s; and f; by including Equations 19
and 20.

M.yl, =2t—s —1 (19)

M.y2, = fi—t+1 (20)

In Equation 19, if ¢ is greater than s; the value of y1; ; is forced to be 1. Likewise, in Equation
20, if t is lower than f;, then y2; ; is constrained to be 1. Regarding the value of the “Big M”,
like the case explained in Section 4.2, an appropriate choice would be the duration of the
longest critical path before mitigating the project.
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Finally, the value of Zj can be obtained using Equation 21. Here, the three last terms on the
right side of the inequation must be 1 for z; ; to take a value of 1. This would mean that the
mitigation measure j is being implemented, and the time t is greater than the starting time
and lower than the finishing time of the activity affected by the measure. In the rest of the
possible cases, z;; must take a value of 0, but as it can be noticed the inequation does not
force this value. Thus, this could be considered a limitation of the model. Furthermore, it is
important to highlight that all these auxiliar variables (z;., y1;; and y2;,) must be clearly
stated as binary, if not they may influence the renewable resource constraint by multiplying
the resources consumption.

Zj,t 2 _2 + x]' + y]-j,t + y2]"t (21)

Figure 4 summarizes the equations added in the mathematical formulation to incorporate
the renewable resource constraints, starting by the general resource constraint inequation,
followed by the addition of decision variables and finishing with the linearization of the

Renewable resource . . ;
i Linearization constraints
constraints

L
z}:zj_r.)rj,sc,. VIER A tET M.yl >t-s—1

—

constraints.

4
4

e M.y2, > fi—-t+1
=

Zip2x.(t—-5-1).(fi+1-10) VY jEJ A tE&T [=Linearization §

Zijp 2 —2+ x5 + ¥l + y2,

Figure 4: Renewable resource constraints

4.4 Non-renewable resources

As introduced in the previous section (Section 3), the basic Resource Constrained Project
Scheduling Problem (RCPSP) only includes renewable resources and “modes” are usually
implemented to incorporate the non-renewable type. Schwindt and Zimmermann (2015)
explain that the modes define the relation between the resource consumption of the
activities and their duration. The concept of modes could also be implemented for
mitigation measures, describing the relation between the resource requirement and the
mitigation capacity. However, this characterization may not be effective in the current
model of the mitigation controller. The tool obtains the mitigation capacity randomly from a
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Beta-PERT distribution and, consequently, it would be necessary to have as many modes as
possible number from the distribution which would increase significantly the amount of
data requested as input. It would be more efficient to have a function that defines the
relationship between the mitigation capacity and the resource consumption. Nevertheless,
these types of functions are challenging to define. The relationship between mitigation
capacity and material consumption is clearly different to the one with human resources
since the latter may include influencing factors such as tiredness. Thus, in the current
development, these relationships will be simplified and described as linear. Future research
may focus on including a more complex and realistic characterization of these relationships.

Regarding the non-renewable resource constraints mathematical formulation, it is a little
bit more straightforward in comparison to the renewable one. Each mitigation measure can
consume a specific amount of each non-renewable resource and each of these resources
has a maximum capacity for the whole project. Since the resources cannot be renovated,
the constraints only depend on the implementation of the mitigation measures, and time
does not play a significant role.

Based on the previous description and other models, such as the ones introduced in
Schwindt and Zimmermann (2015) and Ramos et al. (2023), the constraint in Equation 22
can be defined. It is important to highlight that the previous models are focused on the
activities’ resources and implement the modes method, thus, their inequations are a little
bit more complex than the one presented here.

Zj]=1 Xj. Vinr < Cpy Vv nr € NR (22)

Equation 22 implies that the summation of the resource nr consumed by each mitigation
measure being implemented, x;, must be equal to or less than the capacity of the
nr resource, and this must be complied for all the NR resources. The amount that each
mitigation measure j needs of each nr resource (7 ;) is defined by the useras aninputand
then it is actualized based on the mitigation capacities obtained randomly in each MCS
iteration.

4.5 Summary

Figure 5 compares the original mitigation controller model with the new resource-
constrained version. It can be noticed the significant number of variables and constraints
needed to include the resources required by mitigation measures while keeping the model
linear.
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5. Tool modelling

5.1 Optimization variables and functions

Table 4 below summarizes the variables used in the new version of the mitigation controller.
As can be observed, there are both binary and continuous variables, thus the optimization
problem is a Mixed-Integer Linear Program. To model the problem in Python the “milp”
function from the “scipy.optimize” module was used.

The “milp” function in SciPy requires the constraints to be provided in matrix form. Since the
problem involves a large number of constraints and variables, the resulting matrix would be
very large if stored in dense form (saving all the coefficients of each variable in each
constraint). However, most of its entries are zero, meaning that a dense representation is
unnecessary. Therefore, the constraints were represented using sparse matrices from the
“scipy.sparse” module, which store only the non-zero coefficients. This significantly
reduces memory usage and improves the computational efficiency of the MILP formulation.

Variable Comments

There are ] variables. These are the decision

X;j Binary 0 1 variables which state if each mitigation measure
is implemented or not.
A1 Continuous 0 None IThese are the residual delay and the duration

reduction beyond the target time. These two
variables represent time, and since other time
related variables in previous versions of the Mit-C
Az Continuous 0 None were considered integers, it could be assumed
that these also should be integers. However, it
lwas opted to consider them continuous in order
to relax the optimization.

This is the switch variable that helps to linearize

q Binary 0 1 the constraints related to the previous variables
as explained in Section 4.2
Si Continuous 0 None [There are I variables of each of these two. These

variables represent at which time each activity
starts and finishes. Also, similar to the previous
time related variables, it was decided to consider
them continuous variables to relax the program.
Zj ¢ Binary 0 1 There are /] X T variables of these three. As
explained in Section 4.3, the first ones state if
each mitigation measure is active at each time of
the project, and the second and third ones help
define the first one.

fi Continuous 0 None

Y1 Binary 0 1

V2 Binary 0 1

Table 4: Optimization variables summary
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5.2 Mitigation controller workflow

This section describes the workflow of the new mitigation controller shown in Figure 6.

Taking into account that the tool is based on previous versions of it, most of the workflow is

similar to the one defined in Kammouh et al. (2022) and summarized in Section 2.1.

Verify & parse data
Compute target duration

Start Monte Carlo
simulation (i=1)

Generate random values (Beta PERT:
durations, capacities, disruptions)

Assess risk occurrence (Bernoulli
distribution)

Calculate mitigation cost (based
on new capacities)

Calculate resources needs

(based on new capacities)

Compute critical path duration
(pre-mitigation)

‘l

YES

Run optimization

Determine mitigated project duration,
critical path + activities, and cost

YES
Output final results

Step 1

Step 2

Step3

Step 4

Step 5

Step 6

Step7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

Figure 6: Mitigation controller flow diagram

(based on Kammouh et al. (2022))

As can be seen in Figure 6, first, the data provided
by the user as an excel file must be imported,
verified for completeness and proper data entry,
and then processed (Steps 1 and 2). The data
required as input is basically the one of previous
models (stated in Section 2.1) plus the renewable
and non-renewable resources needed by each
mitigation measure. In addition, if a target duration
is not given as an input, this value must be
computed as the project duration when the
activities follow their most likely durations (Step 3).

Subsequently, as shownin Figure 6, the MCS can be
started. In each iteration, Steps 5 to 13 must be
followed. To begin with, some extra data processing
must be carried out. Random values from BETA-
PERT distributions must be obtained for the
following: correlated and uncorrelated durations of
each activity, disruption duration of each risk, and
mitigation capacity of each measure (Step 5). It is
also necessary to determine if each risk event
occurs or not (binary value) by drawing a random
value from a Bernoulli distribution (Step 6).
Moreover, using the new random mitigation
capacities of the measures, the cost associated
with them and the resources required by them must
be re-calculated (Steps 7 and 8).

Once all the previously mentioned data is acquired,
the duration of each activity before mitigation can
be calculated (only considering correlated and
uncorrelated durations of activities, and the
disruption durations of the risks occurring). These

new activities durations are used to determine the critical path before mitigation and its
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duration, which later is implemented as the M and T values from Section 4.2 and 4.3 (Step
9).

Thereafter, if the project duration is delayed with respect to the target duration, the
optimization is run considering the minimization function cited in Section 2.1, the variables
summarized in Section 5.1 and the constraints described in Section 4 (Step 10 and 11). The
aim is to “find the optimal combination of measures that minimizes the net cost, which is
the summation of the mitigation costs and the penalty (in case of delay) or the reward (in
case of early completion)” (Kammouh et al., 2022), while considering the resources
requirements and capacities. The first J values of the optimization will define if the mitigation
measures must be implemented or not to reach the minimum net cost.

With this information, it is possible to determine the optimal duration of the project, the
critical path after applying the optimal mitigation measures, and the activities that comprise
it (Step 12). Additionally, to enable graphical comparisons, the project’s cost and duration
when implementing all the measures must also be calculated. Next, the results of the
iteration must be stored (Step 13). This includes: the output of the optimization and the
values calculated for project cost, duration, critical path and its activities (before and after
mitigation and with all and only optimal mitigations).

As depicted in Figure 6, once the optimization results are saved for the current iteration, a
new iteration begins. Likewise, a new iteration starts when there is no delay, and the
optimization is not carried out. This will occur till the number of iterations reaches the one
stablished by the user. Finally, the MCS ends and the graphs summarizing the results of all
the iterations are shown (Steps 14 and 15).
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6. Validation

6.1 Description of case study

This section introduces a case study used to validate the new mitigation controller and to try
to answer the last sub-question: What is the effect of including the resource constraints
in the mitigation controller?

The case study project consists of the construction of a warehouse which will have the
function of sort center for an international e-commerce company. It includes the
construction of a main building with a storage and office zone and works in the exterior area.
The structure of the warehouse is made up of an internal steel structure forming the
columns and trusses, surrounded by concrete walls built with the tilt-up method, supported
by isolated footings for the columns and a continuous perimeter footing for the walls. In
addition, the structure includes a concrete slab and a metal deck roof.

The construction project was carried out by a company that chose to be kept anonymous,
and the data was shared by the project manager. The real data was simplified and slightly
modified to maintain confidentiality. Typically, construction projects involve a larger
number of activities, risks and mitigation measures than those used in the validation of the
tool.

Two validation exercises were carried out. The first one was performed using a highly
simplified version of the project data. The preliminary results showed a proper functioning
of the tool. However, when these results were shown to the project manager, he pointed out
that the tool would be more useful if the input data were more precise and realistic. Thus, a
second validation was carried out using a more detailed version of the project data. Table 5
compares the data sizes for the two validation exercises.

First Validation Second Validation
Number of activities 13 42
Number of risks 19 31
Number of shared uncertainty factors 0 5
Number of mitigation measures 24 54
Number of renewable resources 5 8
Number of non-renewable resources 1 1

Table 5: Data size

Moreover, previous studies of the mitigation controller compared scenarios with different
penalties and rewards. However, since the focus of this master thesis is the addition of
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resource constraints, the evaluation will focus on the scenario with no rewards for early
completion and an extremely high penalty for delays (10°). This scenario will concentrate on
choosing the mitigation measures necessary for the project to reach the target duration.

Project schedule

The construction project, originally consisting of about 80 activities, was summarized to its
10 principal ones for the first validation exercise. Each of the selected activities had several
sub-tasks in the original schedule. Table 1 of Appendix C shows the summarized schedule
with the most-likely, pessimistic and optimistic estimates of the activities’ durations, in
addition to their precedence relationships. For the second validation, the schedule datawas
expanded to 40 activities, as shown in Table 2 of the same appendix. Furthermore, the
difference between the two validation exercises can be seen in Figures 7 and 8, which show
the project networks. It can be observed that the second validation exercise has a more
intricate network with a higher number of parallel activities, which suggests a greater
potential for conflicts over renewable resources.

This version of the mitigation controller only allows for strict finish-to-start precedence
relationships. Consequently, the schedules from the two validations differ slightly from
each other and more significantly from the real project schedule. This difference can be
clearly noted in the resulting project duration. In this case, a target duration was not
specified, therefore, the tooltook the “original duration” as the target and calculated it using
the most-likely duration of the activities. While the real project’s most-likely duration was
less than one year, the tool calculated a duration of 393 days in the first validation exercise
and 376 days in the second one.
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Figure 8: Project network (second validation exercise)

Risk events and Activities’ correlation

Tables 3 and 4 of Appendix C display a summary of the risk events for the first and second
validation, respectively. These tables include three-point estimates of the amount of delay
caused by each risk event, their occurrence probability, and their relationship to the
activities. Furthermore, if a risk affects more than one activity, it is entered into the table
once for each affected activity.
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The mitigation controller tool also requires as input a table including the shared uncertainty
factors with their three-point estimates and the activities they affect. These factors, such as
“issues with suppliers”, are usually defined and managed in projects as risks. Thus, in this
case, most of them are entered as risks factors. Only in the second validation exercise, in
which the schedule data was more precise, were a few specific shared uncertainties also
included (Table 5 of Appendix C).

Mitigation measures

The possible mitigation measures are shown in Tables 6 and 7 of Appendix C for the first and
second validation, respectively. The three-point estimates of each measure’s mitigation
capacity are given in the tables, together with the associated costs (in USD) and the activity
number it can be applied to. It is also worth mentioning that those mitigation measures
which can be applied to more than one activity (e.g. “Hiring extra personnel”) are entered in
the table as many times as the number of activities they can be implemented on, just like
previous models.

The renewable resources required by each mitigation measure and their available
capacities are shown in Tables 8 and 9 from Appendix C for the first and second validation
exercises, respectively. Similarly, the non-renewable resources demands and capacities for
each exercise are included in Tables 10 and 11 from the same appendix.

Finally, it is relevant to highlight that the two validation datasets differ in the number of
mitigation measures and resources included. The data from the first validation only includes
24 mitigation measures, 5 renewable resources (general workers, welding personnel, lifting
equipment, crane and laser-drying equipment) and 1 non-renewable resource (high-early-
strength concrete). In contrast, the second validation expands this data to 54 mitigation
measures, 8 renewable resources (earthworks personnel, concrete personnel, general
workers, welding personnel, earthworks equipment fleet, lifting equipment, crane and laser-
drying equipment) and 1 non-renewable resource (high-early-strength concrete). It should
be noted that for resources related to personnel the unit represents a crew, that is, a value
of 1 corresponds to approximately 5 workers.

6.2 Preliminary results

In this sub-section, the results of the first validation are presented. The program was run
with Monte Carlo simulations of different sizes: 50, 100, 500, 1000, 2000 and 4000 iterations.
In this first exercise, since the data size was small, the execution time was extremely fast
when running a small number of iterations. Figure 9 below shows how computational time

31



increases with the number of iterations. For 50 iterations the execution time was only 2
minutes, while for 4000 iterations it was approximately five and a half hours.

In contrast, Figure 10 shows that the “matching result rate” remains stable, even when the
number of iterations is increased. This rate is the percentage of iterations in which the
resource-constrained Mit-C model reached the same result as the original tool. It can be
noted that, when the number of iterations is equal to or larger than 100, this percentage is
always around 76%. This indicates that itis not necessary to run a large number of iterations
with a high execution time to get a reliable result. Therefore, when using the more detailed
data, in the second validation exercise, the program will be run with only 100 iterations.
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Figure 9: Runtime vs. number of iterations
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Figures 11 to 13 show some of the most relevant graphs generated by the tool when running
itwith 100 iterations. Figure 11 displays the critical index of the mitigation measures, that s,
the percentage of iterations in which they are used in the optimal mitigation strategy
(Kammouh et al., 2021). The graph directly compares the results from the resourced-
constrained Mit-C model with those from the original tool. Moreover, the graph reveals two
key observations. The first one is that both the original and the resource-constrained tools
selected the exact same set of mitigation measures (measures 2 to 10). The second
observation is that, for these selected measures, the results from both tools are highly
similar: each measure reached a comparable critical index in both tools.
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Figure 11: Critical index of mitigation measures (first validation exercise)

Figure 12 shows the cumulative distribution function (s-curve) of the project duration,
displaying five different lines:

e The Target duration (black vertical line), representing the project’s original most-
likely duration.

e The Original scenario (blue s-curve), representing the project with no mitigations
applied.

e The Permanent scenario (red s-curve), representing the project when all mitigations
are applied.

e Two Tentative scenarios, representing the project when applying the optimal
measures suggested by the tools: one using the original Mit-C (orange s-curve) and
the other using the resource-constrained version (green s-curve).

Analysis of Figure 12 reveals three significant insights. First, the s-curves for the two
Tentative scenarios are nearly identical. This outcome is a direct consequence of the finding
from Figure 11. Since both tools selected the same mitigation measures with similar
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frequency, they logically produce nearly identical project durations. This is further
confirmed in Figure 13, where the probability distributions for both Tentative scenarios are
almost completely overlapped. This suggests that, for this specific low-detailed case, the
inclusion of resource constraints has a minimalimpact onthe final project duration forecast.

Second, both Tentative scenarios achieve a very high probability of meeting the target
duration. This outcome appears overly optimistic, particularly when considering Van
Gunsteren et al. (2011) suggestion that a probability of on-time completion over 50% can be
considered sufficient. This suggests that the target duration of 393 days, even though it is
the original duration, may have been set too conservatively and that an earlier date could
also be achievable. However, this result should be seen in context. A similar result was
found in the case study with high-penalty condition presented in Kammouh et al. (2022).
Furthermore, a closer analysis of the s-curves reveals that the completion date associated
with a 50% probability is approximately 387 days, only six days less than the target. This
small difference indicates that an even more aggressive mitigation strategy, resulting from
atighter target duration, would have offered only a minimal reduction in the project’s overall
duration.

Third, the steepness of the s-curves, for both Tentative scenarios, just before the target
indicated a low probability of finishing before the target. As rationalized by Kammouh et al.
(2022), this is a logical consequence of having no reward for early completion. The
optimization has no incentive to use costly mitigations to finish the project before the target.
This low variability is also visible in Figure 13, where the duration distributions for the
Tentative scenarios are noticeably narrower than those for the Permanent and Original
scenarios.
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Figure 12: Cumulative distribution function of the project duration (first validation exercise)
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Figure 13: Probability distribution function of the project duration (first validation exercise)

Atfirst glance, these results suggest that the resource-constrained model produces a nearly
identical outcome to the original one. However, a deeper analysis reveals a critical hidden
difference. While the final project durations were similar, Figure 10 showed that in 24% of
the iterations, the optimal mitigation strategy from the original tool was different from the
one selected by the resource-constrained model. This implies that in nearly a quarter of the
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possible scenarios, the optimal strategy from the original tool was, in fact, infeasible
because it violated one or more resource constraints, and the new model was forced to find
a different and feasible solution

To further investigate the last insight, the optimal strategies from original Mit-C were
checked for compliance with the resource constraints. This analysis found that a total of
1730 constraints were not complied with. Figure 14 shows the percentage distribution of
these violations by resource, while the raw data can be found in Table 1 of Appendix D. As
seeninthe figure, the “Crane” was the resource with the highest number of violations, while
“high-early-strength concrete” and the “laser-drying equipment” had none.

Constraint Violations by Resource
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Figure 14: Percentage distribution of constraint violations (first validation exercise)

These results were presented to the project manager from the real project and then an
interview was conducted to gather his insights. The most important point raised by the
interviewee is that the modeling of the resources is not very detailed in this exercise. He
suggested adding more resources to differentiate between specialized worker types, noting
that in practice workers are capacitated for different tasks.

6.3 Final results

In this sub-section, the results of the second validation, which used the more detailed
project data, are presented. The program was also run for 100 iterations.

The most obvious impact of the increased data detail was on computational performance.
The execution time for 100 iterations was 325 minutes (approximately 5.4 hours). Thisis a
dramatic increase compared to the 9 minutes required for 100 iterations in the first exercise.
This performance difference highlights the computational cost of increased model
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complexity. This is logical, considering that for each added mitigation measure, 1 + 3. T
extra variables are created, and for each renewable resource, T extra constraints are
introduced, where T is the duration of the project in the critical path.

A second significant finding was the sharp decline in the “matching result rate”. In this
validation, the optimal solutions from the two tools matched in only 37% of the iterations.
This is a significant drop from the 76% rate in the first validation exercise. This change is a
direct consequence of the more detailed data. By introducing more specific resources and
a more complex schedule, the number of potential resource conflicts increases, causing
the unconstrained and constrained models to diverge more frequently.

Figure 15, which displays the critical index of mitigation measures, visualizes this
divergence. There is now a clear difference between the strategies selected by the original
and resource-constrained models. While both tools still use some measures with similar
frequencies, the resource-constrained tool now selects a wider variety of mitigation
measures. In fact, the new mitigation controller included all the mitigation measures in at
least 5% to 10% of the iterations. This suggests that, under more realistic constrained
conditions, the optimal strategy is not to rely on a few dominant measures, butto employ a
more diverse combination of mitigation measures.
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Figure 15: Critical index of mitigation measures (second validation exercise)
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The impact on the project duration is shown in the s-curves of Figure 16. The probability of
finishing on target decreased for all optimized scenarios compared to the first validation.
The Permanent and original Mit-C scenarios both dropped to around 80% probability of
finishing on the target. More drastically, the probability of the resource-constrained
scenario fellto 60%. This general decline can be attributed to the more detailed risk register,
which introduced greater project variability into the possible project durations. The 20%
difference between the two Tentative scenarios, however, is a direct result of the resource
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constraints restricting the use of certain mitigation measures. From a project management
perspective, the 60% outcome is still a favorable result. According to the principle
suggested by Van Gunsteren et al. (2011), this is a sufficient and acceptable probability for
project control.

Another relevant insight from Figure 16 is that the s-curve for the resource-constrained
model extends further to the right of the target line. This is confirmed in Figure 17, where the
right tail of its probability distribution is longer than the others. This indicates that under
realistic resource constraints, the project faces a greater risk of significant delays and it’s a
logical consequence. The constraints prevent the use of some mitigation measures that are
available in the more optimistic and unconstrained scenarios, leading to a wider range of
possible negative outcomes with longer project durations. This finding highlights a key
contribution of the enhanced tool: while the resource-constrained model is more restrictive
and produces less optimistic results, its realism, achieved by including the resources,
makes it a more accurate and reliable forecasting tool.
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Figure 16: Cumulative distribution function of the project duration (second validation exercise)
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Figure 17: Probability distribution function of the project duration (second validation exercise)

The non-compliance of the original model’s output was again quantified. The optimal
mitigation strategies from the original Mit-C violated 2685 resource constraints in this
validation exercise. Figure 18 shows the percentage distribution of these violations by
resource (the raw data can be found in Table 2 of Appendix D). Consistent with the first
validation, no conflicts occurred for “high-early-strength concrete” or “laser-drying
equipment”. Additionally, no violations occurred for several other personneland equipment
resources. This suggests that a more detailed schedule provides a more realistic
representation of resource demand over time. By splitting these into a more detailed
sequence of activities, the resource demand is spread out more realistically over makespan,
thus avoiding artificial violations. This did not eliminate all conflicts, but rather focused
them on the truly critical resources.

Consequently, violations were limited to three key resources: the “crane” (a conflictive
resource in both validation exercises) and the “earthworks personnel” and “earthworks
equipment fleet” (introduced to make the resources more task-specific). The high number
of violations associated with these resources highlights the value of using detailed input
data.
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Figure 18: Percentage distribution of constraint violations (second validation exercise)

Finally, the results of this second validation were presented to the project manager and site
manager, after which an interview was conducted. Their main comments included the
following:

The interviewees highlighted that the input data format was well structured and
transparent.

The interviewees mentioned that the graphical results were clear and easy to
understand. Moreover, they identified the cumulative distribution function (s-curve)
of the project duration as the most useful output, as it clearly illustrates the impact
of both implementing mitigation measures and including resource constraints.

The interviewees highlighted the tool’s potential to significantly improve the selection
process of mitigation measures compared to current practices. They explained that
their current approach consists of following their “gut feeling” or intuition, whereas
the tool provides a suggestion of optimal measures based on a data-driven analysis
of all possible scenarios. Following the tool’s strategy is more trustworthy and cost-
efficient. Moreover, they mentioned the tool’s value for proactive planning, allowing
them to prepare for potential delays even before a project is behind schedule.

The execution time of the program was initially perceived as lengthy. However, this
was not considered a problem for the adoption of the tool, since they expectto use it
for periodic analysis and not every day.
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7. Conclusion

Delays and cost overruns are common problems in the construction industry. Despite
extensive research on their causes and mitigations, these problems persist, suggesting that
the challenge is not identifying possible mitigation measures, but rather selecting the right
combination. Recently, researchers found out that the current way of selecting mitigation
measures, by employing Monte Carlo scheduling to evaluate the measures’ effect on the
project duration, was lacking the project manager goal-oriented control behavior.
Consequently, they developed a decision-support tool called Mit-C that combines Monte
Carlo simulation with mathematical optimization. The aim of this optimization is to minimize
the net cost to find the optimal mitigation strategy. In their research, they proved that by
following the optimal strategy the costs of a project could be reduced. Subsequentresearch
has further refined the tool, introducing various modifications. Despite these contributions,
some limitations remained. One of these limitations was that the model did not account for
resource constraints when determining the optimal strategy. This omission could lead to
unrealistic solutions, such as using a mitigation measure in an unlimited way, or creating
conflicts between measures competing for shared resources.

Consequently, this master thesis further developed the project management decision-
support tool Mit-C by including the availability of and demand for resources required by the
mitigation measures. This development primarily involved modifying the existing Mit-C code
to incorporate the new resource constraints. While the objective function remained
unchanged, several new variables and constraints were introduced throughout the rest of
the model to manage the inclusion of resource constraints.

The results demonstrate that including resource constraints has a significant impact on the
model’s output. Firstly, it alters the optimal mitigation strategy. While some measures are
selected in similar ways between the new and the original versions of the tool, the resource-
constrained model frequently selects a different optimal strategy than the original. This
difference becomes more noticeable when using more detailed input data.

This sensitivity to level of detail in data is a key finding. By analyzing the same project with
two different levels of detail, this thesis effectively demonstrates that the optimal mitigation
strategy is highly dependent on the project’s specific context. Therefore, it can be concluded
that the core finding, that resource constraints will always impact the optimal mitigation
strategy, is generalizable, while the specific numerical results and the magnitude of that
impact are case-dependent. For instance, the more detailed schedule in the second
validation, with a higher number of parallel activities, created more resource conflicts and
thus forced a more significant divergence from the unconstrained model’s strategy.
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The change in the optimal strategy directly leads to the second major finding: the inclusion
of constraints reduces the probability of finishing the project on the target duration. By
narrowing the feasible region, the constraints reduce the possible combinations of
measures and limit their use. As a result, the project cannot be mitigated on the same level
as with the original model, which in turn lowers the probability of finishing on time. Therefore,
while the s-curve generated using the optimal strategies suggested by the resource-
constrained tool appears more pessimistic, it represents a more accurate and reliable
forecast, as the selected strategies are assured to be feasible in terms of resources.

7.1 Contributions

The main contribution of this master thesis is the conceptual and practical improvement of
the Mit-C decision-support tool through the incorporation of resource constraints, ensuring
the recommended mitigation strategies are not just optimal, but also feasible.

This was achieved through the adaptation of the Resource Constrained Project Scheduling
Problem (RCPSP) theory. The constraints of the RCPSP, which traditionally apply to project
activities, were successfully adapted to model the resource consumption of mitigation
measures. While multi-mode literature served as key inspiration, significant changes were
necessary. The adaptation had to account not only for the shift in focus from activities to
mitigation measures but also for the fact that mitigation capacities are sampled from
continuous distributions, which is incompatible with the discrete pre-defined choices of a
standard modes method.

Furthermore, incorporating both renewable and non-renewable resource constraints was a
significant challenge. This is because the original model did not track the start and finish
times of activities or mitigations, whichis essential for managing time-dependentrenewable
resources. This was solved by introducing time-indexed variables, which in turn required the
addition of several new constraints.

All these modifications were implemented while preserving the model’s global optimality.
By using auxiliary binary variables, the model was kept linear. This is arelevant achievement,
since it means that the new tool maintains one of its most important features: the feasible
solution found is the best globally optimal strategy.

The validation of the improved tool demonstrated the importance of this contribution. It
proved that accounting for resource availability directly impacts the optimal mitigation
strategy selected, which in turn provides a more realistic and reliable forecast of the
probability of finishing the project on time.
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Ultimately, this thesis delivers an improved version of the mitigation controller that provides

project managers with a higher degree of confidence. The resulting toolis a more trustworthy

instrument for project management, as its recommendations are assured to be

implementable within the available resources.

7.2. Further development

Even though a significant contribution has been made in this master thesis, there are still

some aspects to improve in the mitigation controller. Some key areas for future work are the

following:

Resource-capacity relationship: Future research could improve the realism of the
model by replacing the linear relationship between mitigation capacity and resource
requirements. The current linear assumption, while computationally simple, is an
oversimplification.

To address this limitation, a dedicated study could investigate the relationship
between mitigation capacity and resource consumption for different resource types,
with the goal of deriving specific functions that describe these relationships. These
new functions could then be incorporated into the mitigation controller model in a
similar way to the current model but differentiating for each type of resource.

This level of detailed modeling was beyond the scope of the current thesis due to the
lack of existing research on the functions and the complexity to model them. For
example, in the case of human resources, to increase the mitigation capacity extra
workers are needed, which is aligned with a near-linear relationship. However,
beyond a certain point, effects such as workspace congestion may reduce their
efficiency and consequently the mitigation capacity. Moreover, a low number of
workers could also significantly affect the mitigation capacity and notin a linear way
because of the effect of workers’ fatigue. This behavior is complex to model, but it
would allow the model to better reflect real projects.

Incorporation of activities resources: Since the focus of the toolis to determine the
optimal mitigation strategy, this research only included the resources required by
mitigation measures. However, a valuable extension would be to incorporate the
resources demanded by activities and to allow the share of resources.

From a modeling perspective, the implementation is straightforward. It could be
done by creating an activity-resource matrix, similar to the existing one for
mitigations, and defining extra constraints. A significant advantage is that the current
model already tracks the start and finish times of activities as part of the optimization,
which facilitates the implementation of the activities’ renewable resource
constraints.
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However, two significant challenges need to be addressed. The primary barrier is the
extensive datainputrequired from the user. The modelwould need detailed resource
consumption data for every activity which can be a substantial data collection effort.
A second challenge is modeling the relationship between the duration of activities
and resource consumption. As with mitigation measures, assuming a linear
relationship is a simplification.

Precedence relationships: The current mitigation controller only considers strict
finish-to-start precedence relationships between activities. The tool could be further
developed to support all types of logical dependencies, that is, to also allow: finish-
to-finish, start-to-finish and start-to-start relationships. Also, incorporating lead and
lag times into these relationships could be a relevant improvement, creating a more
realistic representation of project schedules.

While this extension would require simple modifications to the data input format, the
primary challenge lies within the mathematical optimization. Since the start and
finish times of activities are determined within the optimization, the constraints that
define these variables would need to be reformulated. This would involve two key
changes. Firstly, the simple binary precedence matrix would need to be redesigned
to allow all types of precedence and lead or lag times. Secondly, the model would
need to dynamically apply the correct equation for each activity’s start and finish
times based on the specific type of relationship it has with each of its predecessors.
Multi-project management: Considering that sometimes projects share resources
between each other, future research could focus on extending the Mit-C model to
simultaneously analyze a portfolio of projects.

The implementation would require extending the data model to handle multiple
independent projects (schedules, risks, and mitigation measures) simultaneously.
The key would be to keep the previous type of data separate while restraining all
projects to a shared set of resource constraints. The current constraints would
probably need to be reformulated since at the moment only consider the mitigation
measures related to a single project. Moreover, there is another bigger challenge:
defining the optimization goal. The model would probably need to handle project
prioritization. This would require a new objective function that can weigh the relative
importance of the projects and make trade-offs between them. For this purpose, the
IMAP methodology could be very beneficial.
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Appendix A: MitC subsequent developments

Mit-C with budget optimization and impacts’ multi-criteria assessment

As introduced earlier, Khalifé (2022) further develops the Mit-C by optimizing the project’s
budget instead of the duration. Moreover, the author incorporates a “multi-criteria
assessment of negative impacts”. The process for finding the best mitigation measures is
very similar to the first model, the main changes are done in the optimization equations.

The objective function is modified to only two terms. The first term, like the Kammouh et al.
(2021) model, searches for the mitigation measures strategy that reduces the project cost
to be within the budget while maximizing effectiveness. In Khalifé (2022), the effectiveness
is defined as “the ratio of the cost reduction and the aggregated average of negative impact
of each mitigation measure”. The author explains that mitigation measures besides carrying
costreduction, they also have negative effects. Thus, he introduces the concept of “average
of negative impact” as an aggregated average computed using preference-based modelling
software to take into account the effect of the measures under specific criteria (e.g. the
authoruses for the studied case: time delays, environmental impact and noise disturbance).

The second term of the objective function, in a similar way to the third term of the original
model, tries to minimize the cost overrun when the mitigation measures are not enough to
reach the project’s budget.

Mit-C with activities correlation and contractual project completion
performance scheme

One of the limitations that the Mit-C introduced by Kammouh et al. (2021) has is that it only
considers the paths with a duration longer than the target one, in other words, those paths
with delay. Thus, the original model is not able to consider the possible benefits of finishing
the project before the target time. Kammouh et al. (2022) further develops the original model
to include a different “contractual project completion performance scheme” in which
penalties and rewards for the project’s duration are considered. In order to do this, the
objective function is changed since now the aim is to reduce the total net cost. In other
words, the objective is to find the mitigation strategy that minimizes the net cost which
includes the cost of the mitigation measures and the penalties or rewards. The problem as
stated is non-linear, but some modifications are made to the equations to transform it into
a linear problem and, consequently, be able to find the global optimal solution.
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Another limitation of the original model is that it assumes that activities’ durations are
independent from each other. Kammouh et al. (2022) explain that construction activities
can be stochastically correlated since they are exposed to similar conditions, such as the
weather, and these shared factors introduce uncertainty in the activities’ duration. Thus, an
activity’s duration can have two types of uncertainty. First, there is an independent
uncertainty which only influences the specific activity (this was included in the original Mit-
C model). Secondly, there is a shared uncertainty which affects several activities.
Consequently, the authors propose to compute the random variable “activity duration” as
the summation of the random variable “uncorrelated duration” and the random variable
“shared duration”.

Mit-C - GERT

The model of Kammouh et al. (2022) was later further developed by Manoj Philip (2022). This
new research focused in studying the influence of the project network structure on the
mitigation controller. The main modification implemented by Manoj Philip (2022) is the use
of the Graphical Evaluation and Review Technique (GERT) instead of the PERT. As explained
by the authors, this technique allows to tackle the limitations of the PERT. For instance,
while PERT follows a deterministic branching, GERT follows a probabilistic one. Also, while
inthe original approach the activities are executed in a linear way, the GERT allows to repeat
activities by “feedback loops”. The authors state that this model could be applied to more
complex projects but also mention that it requires higher computational power and to be
knowledgeable on the GERT concept.

Odycon

Further research was done by Teuber et al. (2024) based on Kammouh et al.(2022) model.
The authors present a new model called Open Design and Dynamic Control (Odycon), “a
pure a-priori stochastic simulation & optimization methodology integrating the capability of
the project (technical domain), the human goal-oriented behavior (human domain), and the
association of stakeholder-oriented behavior (social domain)” (Teuber et al., 2024). Odycon
integrates the MCS with the Integrative Maximization of Aggregated Preferences (IMAP)
optimization method. As explained by the authors, the latter method is implemented to
integrate the interests of the stakeholders with the technical design and, consequently,
reach a “best-fit for common purpose project management” (Teuber et al., 2024). This
means that with this approach the interest of all the stakeholders are taken into account.
Also, considering that stakeholders may have more than one interest, Odycon allows the
inclusion of several objectives, broadening the original mitigation controller tool which only
focuses on the duration or the budget of the project.
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The concept of Odycon works in a similar way to Mit-C. One of the main differences is that
Teuber et al. (2024a) propose two ways of using the tool, as project planning optimization or
as project control optimization. The user needs to choose whether to use it for planning or
for control, since this defines the types of variables. Nevertheless, the focus of this proposal
is on project control, thus the explanation will continue with this approach.

As mentioned before, the optimization is carried out using the IMAP method. Teuber et al.
(2024a) explain that the aim is to find the highest aggregated score to define the optimal
measures. In order to do this, first it is necessary to define the objective functions, the
preference functions of the stakeholders and the weights. To compute the aggregated score,
the first step is to calculate the values of the objective functions and the related preference
scores using the preference functions, then these scores per stakeholder are aggregated
using the weights and finally the overall aggregated preference score is computed
employing the weighted least squares method.
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Appendix B: RCPSP

This appendix provides an overview of the types of resources encountered in the Resource
Constrained Project Scheduling Problem (RCPSP) literature.

Chaudhary and Meshram (2025) review project scheduling techniques in the context of the
resource-constrained problem, but first they identify the most important type of resource
constraints. According to the authors the constraints can be of the following types: human
resources (workers availability and skills), equipment availability, material constraints,
financial constraints (budget limitations or funding availability) and IT resources.

Based on the research done by Hartmann and Briskorn (2009), the classification of
resources is a little bit different. They recognize various types of resources and, thus,
different variants of the RCPSP. Moreover, the authors state that the original RCPSP
considers only renewable resources, that is, resources that are “available in each period
with its full capacity” (Hartmann & Briskorn, 2009). However, there are variants that
consider other scenarios.

One of these cases mentioned by the authors, and perhaps the most relevant to the current
development, is the Multi-Mode scheduling problem (MRCPSP or MMRCPSP). This problem
may consider different types of resources: renewable, non-renewable and doubly-
constrained resources. Hartmann and Briskorn (2009) explain that the non-renewable
resources are those that have a capacity for the whole project and, thus, cannot be restored
after a period is finalized, while the doubly-constrained ones are “limited both for each
period and for the whole project” (Hartmann & Briskorn, 2009). The authors also highlight
that doubly-constrained resources can be included using arenewable and a non-renewable
resource. Moreover, some researchers consider a type of resource in the RCPSP problem
thatis similar to the latter one: partially renewable resources. Hartmann and Briskorn (2021)
define this type of resources as those that have a “set of subsets of periods” and that the
capacity is available in each subset.

Furthermore, Hartmann and Briskorn (2009) point out that while the base RCPSP considers
discrete resources, such as labor and equipment, some authors focus on solving the
problem by implementing continuous resources, such as material.

Another type of resource found in the literature is cumulative resources. Typical of
production processes, Hartmann and Briskorn (2009) describes this type of resource as
those that can be both used and generated by an activity. In the construction industry, this
variant of the RCPSP could help to get insight into how to consider resource constraints in
prefab construction projects.
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Some other literature focuses on solving the RCPSP taking into account time-dependent
resources. As the name implies, the resource availability changes as time passes. These
may sound similar to the non-renewable resources. However, the availability of non-
renewable resources changes because they are consumed, but the one of time-dependent
resources varies for other reasons. Hartmann and Briskorn (2009) suggest that this type of
resource is useful for taking into account equipment maintenance or workers vacations.

Hartmann and Briskorn (2021) updated the research on the RCPSP variants and included
the Multiple-Skills resources (MS-RCPSP). The authors explain that in this type of problem
activities need resources with specific skills while the resources have one or more skills,
and the objective is not only to minimize the makespan but also to allocate correctly the
resources. This type of problem can be significant in a construction project since it can
reflect the different skills of workers.

In the current development, the most relevant type of resources to be considered are the
human resources, equipment and materials, following the Chaudhary and Meshram (2025)
classification. The financial constraint is somewhat already taken into account in the
existing tool, and the IT resource is not fully relevant for the model. Following the Hartmann
and Briskorn (2021) classification, the type of resources that will be included in the
development are renewable and non-renewable. Other resource variants mentioned above,
such as multiple-skill resources, may be relevant in the construction industry. However,
they would probably increase the complexity of the tool, thus, their inclusion should be
investigated in future research.
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Appendix C: Case study data

Activity ID Activity description Optimistic = Most-Likely  Pessimistic Predecessor activity

1 | Start date 0 0 0

2 Design phase 58 65 102 1
3 Earthworks 38 46 68 2
4 Foundation 60 69 102 2
5 Building internal metal structure 74 89 128 4
6 Building perimetral walls 86 113 150 3,4
7 Roof set up 112 146 192 5,6
8 Building slab on grade 39 43 56 5,6
9 Mechanical installations 125 153 203 3,4
10 Electrical installations 119 145 193 3,4
11 Office area finishes 103 120 172 5,6
12 Exterior works 74 86 123 5,6
13 Delivery 0 0 0 12

Table 1: Case study activities of validation exercise 1

Boehy Activity description Optimistic | Most-Likely Pessimistic Pledef:?ssor
| activity
1 Start date 0 0 0
2 Design Phase 52 65 102 1
3 EARTHWORKS - Soil Striping S 7 10 2
4 EARTHWORKS - Cut and Scarification 12 15 23 3
-] EARTHWORKS - Filling and Compaction 30 40 60 4
6 EARTHWORKS - Crushed Base 3 12 18 S
7 EARTHWORKS - SandFilling for Casting Beds S 7 10 10,6
8 FOUNDATION - Spread Footings 17 22 33 S
3 FOUNDATION - Continuos Footing 18 22 34 S
10 TILT UP WALLS - Concrete Block For Anchoring 13 16 24 S
11 TILT UP WALLS - Casting Beds 14 17 26 10,6
12 TILT UP WALLS - Rebar Enabling 18 23 35 10,6
13 TILT UP WALLS - Tilt Up Pouring 24 30 45 10,6
14 TILT UP WALLS - Lifting 17 21 32 13
15 TILT UP WALLS - Sack and Patch 34 42 63 14
16 TILT UP WALLS - Painting 34 43 65 14
17 SLAB ON GRADE - Concrete Pouring 18 22 33 25,6
18 SLAB ON GRADE - Joint Sealing 14 18 27 17
13 METAL STRUCTURE - Main Structure 45 60 30 S
20 METAL STRUCTURE - Joists 64 80 120 S
21 METAL STRUCTURE - Central Structure 40 S0 75 S
22 METAL STRUCTURE - Perimeter Structure 41 S0 76 13,13
23 METAL STRUCTURE - Paint 45 60 30 21
24 ROOFING SYSTEM - Insulation 17 21 32 23
25 ROOFING SYSTEM - KR18 Metal Sheet Installation 16 21 31 24
26 ROOFING SYSTEM - Skylights 24 30 45 25
27 ROOFING SYSTEM - Accessories and Detailing 22 27 42 25,26
28 EQUIPMENT AND DOORS - Dock Levelers 30 38 ST 17
23 EQUIPMENT AND DOORS - Ramp Doors 12 15 22 16
30 EQUIPMENT AND DOORS - Man Doors 13 15 23 16
3 EQUIPMENT AND DOORS - Concrete Ramps 26 30 45 17
32 EQUIPMENT AND DOORS - Bollards S 7 10 17
33 FIRE PROTECTION SYSTEM - FPS Installations 36 45 68 25
34 FIRE PROTECTION SYSTEM - Fire Alarm System 21 27 41 33
35 ELECTRICAL INSTALLATIONS - Main Feeders 40 50 7S5 25
36 ELECTRICAL INSTALLATIONS - Lighting 38 47 1 35
37 ELECTRICAL INSTALLATIONS - Outlets 37 47 70 35
38 PLUMBING - Sanitary System 17 21 32 14
39 PLUMBING - Domestic \water Installations 24 30 45 25
40 EXTERIORS - Pavement Construction 44 55 83 22
41 EXTERIORS - Landscape and Exterior Rooms 12 15 23 40
42 Delibery 0 0 0 41

Table 2: Case study activities of validation exercise 2
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Risk event ID

Risk event description

Minimum

Most likely

Maximum Affected activities

Risk probability

1 Design rejection 8 12 20 2 0.05
2 Design errors (e.g.:collisions) 5 8 15 0.1
3 Unexpected groundwater table discovery 10 18 30 3 0.1
4 Soil supply shortage 54 12 18 3 0.15
5 Material supply shortage 8 13 22 4 0.2
6 Material supply shortage 8 13 22 6 0.2
7 Material supply shortage 8 13 22 8 0.2
8 Steel elements supply shortage 10 18 35 5 0.15
9 Steel elements supply shortage 10 18 35 7 0.15
10 Wall collapse 14 24 34 6 0.02
1] Crane/heavy equipment breakdown 5 10 20 6 0.1
12 Personnel heat stroke 3 7 12 74 0.15
13 personnel fall accident 5 12 25 7 0.08
14 Incorrect cement quality 7 14 25 4 0.05
15 Incorrect cement quality V4 14 25 6 0.05
16 Incorrect cement quality 7 14 25 8 0.05
17 Power outage 1 3 7 9 0.1
18 External power infrastructure connection issues 7 12 20 10 0.12
19 Weather conditon 4 7 13 3 0.3
20 Weather conditon 4 7 13 4 0.3
21 Weather conditon 4 F 13 S5 0.3
22 Weather conditon 4 7 13 6 0.3
23 Weather conditon 4 7 13 7 0.3
24 Weather conditon 4 7 13 12 0.3

Table 3: Case study risks of validation exercise 1

Risk event ID Risk event description Minimum  Mostlikely Maximum :cftfii(i:tt:e‘: Risk probability
1 Design rejection 8 12 20 2 0.05
2 Design errors (e.g.:collisions) 5 3 15 2 0.1
3 Unexpected groundwater table discovery 10 18 30 3 0.1
4 Soil supply shortage 7 12 18 5 0.15
5 Soil supply shortage 7 12 18 7 0.15
6 Material supply shortage 8 13 22 8 0.2
7 Material supply shortage 8 13 22 9 0.2
8 Material supply shortage 8 13 22 10 0.2
9 Material supply shortage 8 13 22 13 0.2

10 Material supply shortage 8 13 22 17 0.2
11 Steel elements supply shortage 10 18 35 19 0.15
12 Steel elements supply shortage 10 18 25 21 0.15
13 Steel elements supply shortage 10 18 25 22 0.15
14 Wall collapse 14 24 34 14 0.02
15 Crane/heavy equipment breakdown 5 10 20 14 0.1
16 Personnel heat stroke 3 7 12 24 0.15
17 Personnel heat stroke 3 7 12 25 0.15
18 Personnel heat stroke 3 7 12 26 0.15
19 Personnel fall accident 5 12 25 24 0.08
20 Personnel fall accident 5 12 25 25 0.08
21 Personnel fall accident 5 12 25 26 0.08
22 Incorrect cement quality Z 14 25 8 0.05
23 Incorrect cement quality @ 14 25 9 0.05
24 Incorrect cement quality 7 14 25 13 0.05
25 Incorrect cement quality 7 14 25 17 0.05
26 Power outage 1 3 i 33 0.1
27 Power outage 1 3 7 34 0.1
28 Power outage 1 3 7 35 0.1
29 Power outage 1 3 7 36 0.1
30 Power outage 1 3 74 37 0.1
31 External power infrastructure connection issues 7 12 20 35 0.12

Table 4: Case study risks of validation exercise 2
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F tion Minimum Most likely Maximum Relations
nl Weather condition -15 0 25 3,45

2 Weather condition -15 0 25 8,9

3 Weather condition -15 0 25 11,13
4 Weather condition -15 0 25 19,20,21
5 Weather condition -15 0 25 24,25,26

Table 5: Shared uncertainty factors of validation exercise 2

Mitigation ID Mitigation measure Minimum time Most likely time Maximum time  Relations Depem:::)y factoy Minimum cost Muz:)lsitkeiy

1 Additional heavy earthworking fleet 10 15 20 3 05 62500.00 75000.00 87500.00
2 Extra personnel 15 22 30 4 07 62181.82 80000.00 100363.64
3 Add large crane for material lifting 1 15 19 5 05 65000.00 75000.00 85000.00
4 Add aerial lifts for personnel access 8 12 16 5 05 10000.00 12000.00 14000.00
5 Extra steel erection crew 18 25 32 S 07 100500.00 125000.00 149500.00
6 Extra general workers 15 25 35 6 07 79200.00 110000.00 140800.00
7 Add large crane for material lifting 10 14 18 6 05 60000.00 70000.00 80000.00
8 Employ high-early-strength concrete 8 12 16 6 02 42000.00 45000.00 48000.00
9 Extra steel erection crew 25 35 45 7 07 140000.00 175000.00 210000.00
10 Extra general workers 15 22 30 7 07 34977.27 45000.00 56454.55
11 Extra general workers 8 12 16 8 07 30666.67 40000.00 49333.33
12 Employ laser drying equipment 4 6 8 8 02 14000.00 15000.00 16000.00
13 Employ high-early-strength concrete 3 8 11 8 02 83250.00 90000.00 96750.00
14 Add aerial lifts for personnel access 18 25 32 9 05 21500.00 25000.00 28500.00
15 Extra general workers 22 30 40 9 07 48800.00 60000.00 74000.00
16 Add aerial lifts for personnel access 18 25 32 10 05 21500.00 25000.00 28500.00
17 Extra general workers 22 30 40 10 07 48800.00 60000.00 74000.00
18 Employ high-early-strength concrete 10 14 18 12 02 80142.86 85000.00 89857.14
19 Employ laser drying equipment S 8 11 12 02 16650.00 18000.00 19350.00

Table 6: Case study mitigation measures of validation exercise 1
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Minimum  Most likely Maximum

Dependency Minimum  Most likely

Mitigation ID Mitigation measure tine e time Relations oy (heta) Rt s
1 Additional heavy earthworking fleet 2 3 4 3 0.5 20000.00 24000.00 28000.00
2 Additional heavy earthworking fleet 4 6 8 4 0.5 40000.00 48000.00 56000.00
3 Additional heavy earthworking fleet 11 15 19 5 0.5 104000.00 | 120000.00 | 136000.00
4 Add large crane for material lifting 7 9 11 14 0.5 64000.00 72000.00 | 80000.00
5 Add large crane for material lifting 11 15 19 19 05 104000.00 | 120000.00 | 136000.00
6 Add large crane for material lifting 7 10 13 21 0.5 68000.00 80000.00 | 92000.00
7 Add large crane for material lifting 7 10 13 22 0.5 68000.00 80000.00 | 92000.00
8 Add aerial lifts for personnel access 6 8 10 19 0.5 8750.00 10000.00 11250.00
El Add aerial lifts for personnel access 7 10 13 20 0.5 10625.00 12500.00 14375.00
10 Add aerial lifts for personnel access 5 7 ] 21 0.5 7500.00 8750.00 10000.00
11 Add aerial lifts for personnel access 5 7 9 22 05 7500.00 8750.00 10000.00
12 Add aerial lifts for personnel access 6 8 10 23 0.5 8750.00 10000.00 11250.00
13 Add aerial lifts for personnel access 3 4 S 24 05 4375.00 5000.00 5625.00
14 Add aerial lifts for personnel access 3 4 1 25 05 4375.00 5000.00 5625.00
15 Add aerial lifts for personnel access 4 S 6 26 0.5 5625.00 6250.00 6875.00
16 Add aerial lifts for personnel access 4 5 6 27 0.5 5625.00 6250.00 6875.00
17 Add aerial lifts for personnel access S 7 9 33 0.5 7500.00 8750.00 10000.00
18 Add aerial lifts for personnel access s 7 El 36 05 7500.00 8750.00 10000.00
19 Employ high-early-strength concrete 4 S 6 8 0.2 43200.00 45000.00 46800.00
20 Employ high-early-strength concrete 4 5 6 9 0.2 43200.00 45000.00 46800.00
21 Employ high-early-strength concrete 4 6 8 13 0.2 50400.00 54000.00 57600.00
22 Employ high-early-strength concrete 4 6 8 17 0.2 74666.67 80000.00 | 85333.33
23 Employ high-early-strength concrete 5 7 9 40 0.2 99000.00 | 105000.00 | 111000.00
24 Employ high-early-strength concrete 2 3 4 41 0.2 14000.00 15000.00 16000.00
25 Employ laser drying equipment 3 4 S 13 0.2 11400.00 12000.00 12600.00
26 Employ laser drying equipment 3 4 S 17 0.2 11400.00 12000.00 12600.00
27 Employ laser drying equipment 4 6 8 40 0.2 16800.00 18000.00 19200.00
28 Employ laser drying equipment 2 3 4 41 0.2 8400.00 9000.00 9600.00
29 Extra steel erection crew 14 18 23 19 0.7 76000.00 90000.00 | 107500.00
30 Extra steel erection crew 18 24 30 20 0.7 99000.00 | 120000.00 | 141000.00
31 Extra steel erection crew 11 15 19 21 0.7 61000.00 75000.00 89000.00
32 Extra steel erection crew 11 15 19 22 0.7 61000.00 75000.00 89000.00
33 Extra earthworks crew 2 2 3 3 0.7 6000.00 6000.00 8100.00
34 Extra earthworks crew 3 4 5 4 0.7 9900.00 12000.00 | 14100.00
35 Extra earthworks crew 9 12 15 5 0.7 29700.00 | 36000.00 | 42300.00
36 Extra earthworks crew 8 4 5 6 0.7 9900.00 12000.00 | 14100.00
37 Extra earthworks crew 2 2 3 7 0.7 6000.00 6000.00 8100.00
38 Extra concrete crew 5 7 9 8 0.7 22400.00 | 28000.00 | 33600.00
39 Extra concrete crew S 7 9 9 0.7 22400.00 28000.00 33600.00
40 Extra concrete crew 4 5 6 10 0.7 17200.00 20000.00 22800.00
41 Extra concrete crew 4 5 6 11 0.7 17200.00 20000.00 22800.00
42 Extra concrete crew 7 9 11 13 0.7 30400.00 36000.00 41600.00
43 Extra concrete crew 5 7 9 17 0.7 22400.00 | 28000.00 | 33600.00
44 Extra general workers 9 12 15 15 0.7 19800.00 24000.00 28200.00
45 Extra general workers 9 12 15 16 0.7 19800.00 24000.00 28200.00
46 Extra general workers 12 15 19 23 0.7 25800.00 30000.00 35600.00
47 Extra general workers 5 6 8 24 0.7 10600.00 12000.00 14800.00
48 Extra general workers 5 6 8 25 0.7 10600.00 12000.00 14800.00
49 Extra general workers 7 9 11 26 0.7 15200.00 18000.00 20800.00
50 Extra general workers 6 8 10 27 0.7 13200.00 16000.00 18800.00
51 Extra general workers 9 11 14 28 0.7 19200.00 22000.00 26200.00
52 Extra general workers 3 4 S 29 0.7 6600.00 8000.00 9400.00
53 Extra general workers 3 4 5 30 0.7 6600.00 8000.00 9400.00
54 Extra general workers 2 2 3 32 0.7 5000.00 5000.00 6750.00

Table 7: Case study mitigation measures of validation exercise 2
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General Welding Lifting Sa— Laser-drying

workers personnel equipment equipment

Mitigation ID resource_1 resource_2 resource_3 resource_4 resource_5
1 0 0 0 0 0
2 1 0 0 0 0
3 0 0 0 1 0
4 0 0 A 0 0
5 0 d 0 0 0
6 1 0 0 0 0
7 0 0 0 1 0
8 0 0 0 0 0
9 0 1 0 0 0
10 1 0 0 0 0
11 1 0 0 0 0
12 0 0 0 0 1
13 0 0 0 0 0
14 0 0 i 0 0
15 1 0 0 0 0
16 0 0 1 0 0
17 1 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 1
Capacity 2 1 1 ) |

Table 8: Case study renewable resources of validation exercise 1
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Table 9: Case study renewable resources of validation exercise 2
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High-early-
strength
concrete

Mitigation ID resource_1

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 1000
9 0
10 0
11 0
12 0
13 2165
14 0
15 0
16 0
17 0
18 2000
19 0

Capacity 4500

Table 10: Case study non-renewable resources of validation exercise 1

57



High-early-
strength
concrete

Mitigation ID  resource_1

1 0

(V-3 (-0 N (< 00 (V0 B (FO3 [N

(=
=y

=y
N

[
w

[
>

&

[
(=)

[=
~

(3
o
olojojo|o|jo|jo|jo|jo|o|o|o|jo|o|o|o |o

=
0

350

[
w0

8

1000
2165
2000
250

N
[y

N

N
w

N
S

]
o

N
=
o

N
~
o

28
29
30
31
32
33

35
36
37
38
39

41
42

EI15IE|GER|B

49

50

51

52

53

54
Capacity

[=R[=R (=N [0 [=] [=} (-3 [~} [= ] [~} [~ (=) [} [~} [~ [~} [~} [0 [~ [~} [~ [= 0 [= ] (=] [~ [= ) [=)

&
8

Table 11: Case study non-renewable resources of validation exercise 2
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Appendix D: Constraints violations

Resource ‘ Number of constraints ‘
High-early-strength concrete 0

General workers 24

Welding personnel 374

Lifting equipment 447

Crane 885

Laser-drying equipment 0

Total 1730

Table 1: Resource-constraint non-compliance (first validation)

Resource ‘ Number of constraints ‘
High-early-strength concrete 0
Earthworks personnel 1501
Concrete personnel 0
Welding personnel 0
General workers 0
Earthworks equipment fleet 812
Crane 372
Lifting equipment 0
Laser-drying equipment 0
Total 2685

Table 2: Resource-constraint non-compliance (second validation)



