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A B S T R A C T

Interferometric Synthetic Aperture Radar (InSAR) has a wide range of applications, including the monitoring
of solid-earth and cryospheric geophysical processes and the monitoring of the built environment. The use of
InSAR for atmospheric applications is less thoroughly developed. To perform such analyses the atmospheric
phase delay of the SAR signal between different overpasses is used, which needs to be disentangled from
other phase constituents, such as displacements and topography, which requires stack processing of large
data volumes. Typically, initial atmospheric delays are predicted using existing numerical weather prediction
(NWP) models, but InSAR processing and NWP model delay estimation software are not well integrated. Here
we present a pure Python-based software package that integrates the automatic downloading and processing
of InSAR and NWP model data to create time-series of unwrapped InSAR interferograms and InSAR equivalent
tropospheric delays from NWP models. By combining the geometry of the InSAR radar signals with different
NWP model datasets the tropospheric delays can accurately be derived on a pixel by pixel basis.
1. Introduction

SAR interferometry (InSAR) is a well established technique that
utilizes the phase changes of radar waves between consecutive satel-
lite overpasses to measure differences in signal delays in the order
of millimetres (Hanssen, 2001). Topography, line-of-sight surface dis-
placements between the different overpasses, and atmospheric signal
delays due to the weather conditions during these overpasses are the
main contributors to this signal, leading to products such as digital
elevation models (DEMs), deformation maps of the earth’s surface,
buildings and infrastructure, and atmospheric delay maps. The latter
have a large but under exploited potential to be used in numerical
weather prediction (NWP) models.

For InSAR processing there are different software packages avail-
able, commercially, like Gamma (Wegmüller and Werner, 1997) or
open-source, like Doris (Kampes and Usai, 1999), ICSE (Rosen et al.,
2015), GMTSAR (Sandwell et al., 2011) and SNAP (ESA, 2021b).

With the launch of new SAR satellites, also the number of dif-
ferent operational modes of SAR satellites is evolving, which needs
constant adaptation of software capabilities. Especially, the TOPSAR
mode (De Zan and Guarnieri, 2006) and large data volumes of the
Sentinel-1 satellites changed the requirements for InSAR software.
Moreover, the particular usage of InSAR for atmospheric studies re-
quired a more robust integration with numerical weather prediction
models (NWP).

∗ Corresponding author.
E-mail address: gert.mulder@gmail.com (G. Mulder).

To address the need for integrated processing, we developed the
Radar Interferometric Parallel Processing Lab (RIPPL), a system op-
timized for handling Sentinel-1 TOPSAR mode data. RIPPL combines
InSAR processing with atmospheric delay estimation derived from NWP
models. This integration produces combined stacks of InSAR and NWP
delay values, which can be used either to correct InSAR measurements
for atmospheric effects or to improve the accuracy of NWP models
using InSAR data. While the computation of atmospheric delays from
NWP models has been implemented in other tools, such as GACOS (Yu
et al., 2018), PyAPS (Jolivet et al., 2011), TRAIN (Bekaert et al.,
2015), TropoDeep (Haji-Aghajany et al., 2025) or AtmNet (Zhou et al.,
2023), these systems operate independent from the InSAR processing
software. Because in RIPPL these two parts are integrated, it is much
easier for users to create combined InSAR and NWP model delay
time-series. Additionally, the RIPPL package also supports the use
of the high-resolution CERRA (Ridal et al., 2024) and HARMONIE-
AROME (Bengtsson et al., 2017) NWP model data, which are part of
other packages. Finally, the radar geometry from InSAR processing can
be used to compute NWP delay estimates, enabling the use of slant
total delays (STD) (de Haan et al., 2009) rather than zenith total delays
(ZTD) (Jolivet et al., 2011; Yu et al., 2018).

To simplify the use of the software it integrates the automatic
download and processing of Sentinel-1 Single Look Complex (SLC)
data (ESA, 2024), precise orbits (ESA, 2021a), SRTM (Farr et al.,
2007) and TanDEM-X (Rizzoli et al., 2017) DEM data and ERA5
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Table 1
Different SAR, DEM and NWP input datasets from external sources used in RIPPL. All datasets are available free of charge, but for most datasets the user should
egister and provide their credentials during the RIPPL setup. The KNMI Dataplatform can only be used to download the most recent HARMONIE-AROME data,
dditional historical data is available on request.
Data type Source Provider Link Login

Sentinel-1 SLCs & orbits Copernicus data space ESA dataspace.copernicus.eu/ Yes
Sentinel-1 SLCs & orbits Alaska satellite facility DAAC ASF asf.alaska.edu Yes
SRTM DEM USGS data pool USGS lpdaac.usgs.gov Yes
TanDEM-X DEM EOC geoservice DLR download.geoservice.dlr.de Yes
EGM96 geoid NGA office of geomatics USGS earth-info.nga.mil No
ERA5 NWP model Copernicus climate data store ECMWF cds.climate.copernicus.eu Yes
CERRA NWP model Copernicus climate data store ECMWF cds.climate.copernicus.eu Yes
HARMONIE-AROME NWP model KNMI Dataplatform (last 4 days) KNMI dataplatform.knmi.nl Yes
u

o
t
t

s
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n
i

c

d

(Hersbach et al., 2020) and CERRA (Ridal et al., 2024) NWP model
data. This allows users to easily integrate DEM and NWP model data
in their processing chain.

In the RIPPL software package we implemented parallel processing
of large InSAR datasets, while preserving the flexibility for researchers
o adapt the processing to their own needs. This is done by keeping the

RIPPL software a pure Python package and using the available Python
tools to optimize for processing speed and data storage efficiency.

In the next sections we first give an overview of the developed
method for InSAR and NWP model processing steps in the RIPPL
package. Secondly, we focus on how the processing and data handling
is implemented in the software to allow efficient parallel computations.
Thirdly, we give two case studies for the InSAR and NWP model
processing that are available as a tutorial in the RIPPL package. Finally,

e conclude with a discussion

2. Theory

In this section we explain the used processing principles for InSAR
processing and the developed methods to calculate the expected InSAR
tropospheric delays from NWP models.

2.1. Stack processing approach

The setup of the RIPPL software is built around the interfero-
metric stack. This is a set of SAR SLC images for different satellite
verpasses for the same satellite track, which are coregistered to the
ame reference image for interferometric processing. These SLC images
re provided by different space agencies or companies and derived

from raw SAR data using Doppler centroid estimation, range migration
and azimuth focusing (Hanssen, 2001). Due to the Sentinel-1 TOPSAR
Interferometric Wide (IW) swath mode, the images are first split in
individual bursts or slices and coregistered to the referenced SLC. After
the coregistration the slices are combined to a full image and converted
to geographic or projected coordinate systems using resampling of mul-
tilooking. The results of the different processing steps of individual SLCs
or interferograms are outputted in the same folder and summarized in
a json meta data file, see Figs. 1 and 5.

2.2. Main processing steps Sentinel-1 processing

For the interferometric processing of InSAR data, RIPPL applies a
number of processing steps that are well described in InSAR literature,
see e.g. Hanssen (2001), Moreira et al. (2013) and Yague-Martinez et al.
(2016), see Fig. 1. This is the default setup for InSAR processing in
RIPPL, but can be adjusted by adding or changing individual processing
teps.

To create a RIPPL stack the user needs to define the area of interest,
eriod of interest and the specific satellite track, see Fig. 1 top left.

Based on these user inputs the SLC data, needed DEM data and the
precise satellite orbits are downloaded from external sources, which
are listed in Table 1. Then all SLCs are geo-referenced, coregistered
nd resampled to the grid of the reference SLC to allow the creation
2 
of interferograms. Because most processing steps are specific for the
reference SLC, other SLCs or interferograms only, all steps Fig. 1 are
divided of these three image types.

After the download of all relevant SAR, DEM and orbit data, the
ser selects one reference SLC, which radar coordinates are used as

reference for all other SLCs. This reference SLC image is then geo-
referenced using a newly created DEM in radar coordinates. In this
step every radar coordinate in range and azimuth (r a, az) is linked with
a geographic coordinate in latitude, longitude and ellipsoidal height
(lat, lon, ℎ). Because the SLC is already processed from raw SAR data
using the zero-Doppler geometry, this can be done by intersecting the
iso-range circle with the topographic surface of the Earth in the zero-
Doppler plane, perpendicular to the satellite orbit, see Fig. 2 (Geudtner
and Schwäbisch, 1996). To find the DEM with the topographic height
f every radar pixel as input for geocoding, the needed heights for
he radar coordinates are interpolated from external DEM data for
he area of interest, which can either be SRTM (Farr et al., 2007)

or TanDEM-X (Rizzoli et al., 2017) at 30 or 90 m resolution. This is
done by converting the (lat, lon) coordinates of the original DEM to
radar coordinates (Kampes and Hanssen, 2004), which is then trian-
gulated (Virtanen et al., 2020) and interpolated to the regular radar
grid using barycentric interpolation.

Using the estimated geographic coordinates of the reference SLC, all
other SLCs are coregistered to the reference radar grid using a geomet-
ric coregistration (Sansosti et al., 2006), which results in a range and
azimuth shift for every individual pixel. These pixel shifts are then used
to resample other SLCs based on resampling kernels given by Hanssen
(2001). However, in the case of TOPSAR acquisition the SLC is not a
baseband signal, due to the azimuth-varying non-zero Doppler centroid,
which is required for resampling based on these kernels. Therefore,
prior to the interpolation the signal is deramped (Yague-Martinez et al.,
2016). After any additional range or azimuth filtering is applied, re-
ampled TOPSAR SLCs can be reramped again to allow interferogram
reation.

A large part of the phase differences in interferograms are due to
surface topography, which can be closely approximated using exter-
al DEMs. Therefore, the topographic phase shifts are first removed
n the phase correction step for all but the reference SLC. A set of

interferograms can then be created using different combinations of
coregistered SLCs. Currently supported option are: (1) all possible
interferometric combinations, (2) all interferometric combinations with
the reference image only and, (3) all interferometric combinations
with a maximum temporal baseline. These can be used respectively
for the SqueeSAR algorithm (Ferretti et al., 2011), single-reference PS
processing (Ferretti et al., 2001) and small baseline subsets (SBAS)
approach (Berardino et al., 2002). For every interferogram also the
oherence is estimated (Touzi et al., 1999), which is often needed

for the above mentioned method. Finally, the RIPPL package uses
SNAPHU (Chen and Zebker, 2002) to perform an unwrapping of the
ata.

To use the InSAR output data in common GIS software and re-
duce the image size, the interferogram, coherence, amplitude and
unwrapped output images can be converted to a geographic or pro-
jected grid. Example results for the interferogram, calibrated amplitude,
coherence and unwrapped interferogram are given in Fig. 10.

https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
https://asf.alaska.edu
https://urs.earthdata.nasa.gov/users/new
https://lpdaac.usgs.gov/tools/data-pool
https://urs.earthdata.nasa.gov/users/new
https://download.geoservice.dlr.de/TDM30_EDEM/
https://sso.eoc.dlr.de/tdm30-edited/selfservice
https://earth-info.nga.mil
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu/user/register
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu/user/register
https://dataplatform.knmi.nl/
https://developer.dataplatform.knmi.nl/register/
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Fig. 1. Main steps for InSAR processing. On the left the user inputs and the online data are given, which are downloaded as part of the RIPPL processing. On
top the structure of the RIPPL stack is given, which consists of (i) one reference SLC, (ii) one or multiple other SLC images which are coregistered and resampled
to the reference SLC and (iii) one or multiple interferograms of the SLC images in the stack. For these three image types the relevant processing steps are given
column-wise. Regular stack processing starts with stack initialization followed by DEM generation and geocoding of the reference SLC. Then the other SLCs are
coregistered, resampled and phase corrected. The coregistered stack of SLCs is then used to create interferograms, and coherence and radiometric calibrated
amplitude images. As a last step the interferograms can be unwrapped, using SNAPHU (Chen and Zebker, 2002).
2.3. Tropospheric delay estimation

The second main component of the RIPPL package is the calcula-
tion of tropospheric delays from NWP models. Currently it is possible
to process NWP model data from the ERA5 (Hersbach et al., 2020)
and CERRA (Ridal et al., 2024) reanalysis models provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF) and
the HARMONIE-AROME model (Bengtsson et al., 2017) provided by
the Royal Netherlands Meteorological Institute (KNMI). The coverage
of the NWP models are Western-Europe for the HARMONIE-AROME
model, worldwide for the ERA5 model and Europe-wide for the CERRA
model. The needed data for the ERA5 and CERRA models can be down-
loaded automatically from the Copernicus climate data store (ECMWF,
2019). The HARMONIE-AROME data should be acquired at the KNMI
or one of the 11 other European national weather services using the
HARMONIE-AROME model.

To convert the obtained weather model data to InSAR atmospheric
delays, NWP model parameters are converted to refractivity and in-
tegrated along the slant path of the radar signal from the ground to
the satellite sensor, see Fig. 2. The total derived atmospheric delay 𝛿 is
given by,

𝛿 = ∫

sat

scat
𝑁(𝑧)𝑑 𝑧, (1)

where 𝑁(𝑧) is the refractivity of air at location 𝑧 between the scat-
terer on the ground scat and the satellite sat. Refractivity values are
mainly dependent on dry air pressure 𝑃𝑑 , water vapour pressure 𝑒 and
temperature 𝑇 , and can be modelled as (Davis et al., 1985)

𝑁 = 𝑘1
𝑃 + 𝑘′ 𝑒 + 𝑘3

𝑒 + 𝑘4
𝑛𝑒 + 𝑘5𝑊 , (2)
𝑇 2 𝑇 𝑇 2 𝑓 2

3 
Fig. 2. The satellite geometry of the Sentinel-1 satellite mission. The radar
signal travels within the range plane, which is on average perpendicular to the
satellite heading 𝛼ℎ. The radar satellite observes a swath with a width of about
250 km with a range in look-angles 𝜃 of approximately 25 to 45 degrees. The
tropospheric delays depend on the pressure, temperature and specific humidity
along the slant satellite path, which is defined by the location on the ground
(lat,lon, ℎ), incidence angle 𝜃inc and azimuth angle 𝛼𝑎.
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Fig. 3. Illustration of slant ray-tracing technique. This shows how the atmo-
spheric delay values are derived along a straight path between the scatterer
and the satellite, ignoring the minimal bending of the signal path. Based on
the pressure difference 𝛥𝑃 , temperature 𝑇 and specific humidity 𝑞 the delay
per model layer is calculated and integrated of the full signal path. For the
owest model layer the height and pressure values of the scatterer are used
nstead of the bottom of the model layer.

where 𝑇 is temperature in Kelvin, 𝑒 is the partial pressure of water
vapour, 𝑃𝑑 the partial pressure of dry air, 𝐿 the liquid water content,
𝑒 is the electron density per cubic metre, 𝑓 the radar frequency and

the liquid water content. The values of the constants are 𝑘1 =
77.6 K h Pa−1, 𝑘′2 = 23.3 K h Pa−1 and 𝑘3 = 3.75 ⋅ 105 K2 h Pa−1, and
4 = −4.028 × 107 m−3, 𝑘5 = 1.4 m3 g−1. The last two terms represent
he ionospheric refractivity and the refractivity due to liquid water
n the atmosphere. However, the ionospheric is spatially smooth and
herefore mainly creates an offset for the whole image (Meyer, 2011).

Additionally, the contribution of liquid water is minimal and can be
left out in further calculations (Hanssen, 2001).

To derive the total slant delay we use a direct line and plane inter-
section approach, assuming that the radar signal travels in a straight
line from the scatterer to the satellite within the zero-Doppler plane.
This allows us to calculate the actual slant delay instead of deriving
it from the vertically integrated zenith delay using a simple mapping
function, like in GACOS (Yu et al., 2018), PyAPS (Jolivet et al., 2014),
TRAIN (Bekaert et al.) and TropoDeep (Haji-Aghajany et al., 2025).
In reality the slant delay signal is also bended (Thayer, 1967), which
is often used for the assimilation Global Navigation Satellite System
(GNSS) measurements (De Haan, 2008). However, this effect is minimal
for InSAR because the incidence angle is below 45o, leading to a max
deviation of 0.04o at ground level (Huuskonen and Holleman, 2007).
This leads to absolute delay differences of less then 1 mm delay and
ven smaller relative differences, which are not significant. Therefore,
he main focus in this approach is on how to convert pressure and
odel level data to a grid of pressure and height coordinates in the

ero-Doppler plane, to allow piecewise integration along the slant
ath of the radar signal, see Fig. 2. First the NWP model values are

interpolated onto the zero-Doppler plane to allow ray-tracing in this
2D plane. Then the pressure and height coordinates (ℎ, 𝑝) of the model
4 
levels are calculated, assuming hydrostatic balance (De Haan, 2008).
hen the path of the signal is tracked and used to interpolate (𝑇 , 𝑞)
alues at mid-level, see Fig. 3. Based on these parameters the piecewise

integrated delay 𝛿𝑡NWP,𝑙 is calculated (De Haan, 2008),

𝛿𝑡NWP,𝑙 =
1

sin 𝜃

(

𝑘1
𝑅𝑑
𝑔ℎ

𝛥𝑃 + 𝑘′2
𝑅𝑣
𝑔ℎ

𝑞 𝛥𝑃 + 𝑘3
𝑅𝑣
𝑔ℎ𝑇

𝑞 𝛥𝑃
)

, (3)

where 𝛥𝑃 is the pressure difference between the top and bottom of the
model layer 𝑙 at time 𝑡, 𝑅𝑑 and 𝑅𝑣 are the gas constants for dry and
moist air, 𝑔ℎ the gravity at given height ℎ, 𝑞 is the specific humidity of
the model layer, 𝑇 is the temperature of the model layer and 𝜃 is the
incidence angle of the satellite signal. The total delay is then,

𝛿𝑡NWP =
𝑛
∑

𝑙=1
𝛿𝑡NWP,𝑙 , (4)

where 𝛿𝑡NWP is delay for 𝑛 model levels. The RIPPL package also includes
ptions to separate the hydrostatic and wet delay (Bevis et al., 1992)

to distinguish delay differences due to air pressure and water vapour
ariations. This is done by splitting Eq. (3) into a hydrostatic and

wet part and integrating them like Eq. (4). Similarly, the package
ncludes an option to derive the non-topographic tropospheric delay,
hich is done by setting the input heights of all scatterers to zero.
he software implementation of this ray-tracing method is further
iscussed in Section 3.5. Results from the tutorial to calculate the
nSAR, HARMONIE-AROME, CERRA and ERA5 tropospheric delays are
iven in Fig. 11.

3. Software implementation

After description of the used algorithms for InSAR processing in
the former section, this section describes how these algorithms are
mplemented to create a pure Python package that is extendable and

includes parallel processing. First we discuss the data structure to store
InSAR (meta)data on disk. Then we explain how RIPPL works with
different types of coordinate systems and how multilooking and resam-
ling methods are used to convert between coordinate systems. Finally,
e focus on how the parallel, in-memory processing is implemented.

3.1. Data structure

To store the InSAR stack on disk a folder structure is created with
eparate folders for individual SLCs and interferograms. Every SLC or
nterferogram folder contains processing outputs as binary (.raw) files
nd one meta data file stored as a javascript object notation (.json)
ile, see Fig. 5. This meta data file contains all the relevant information

about the satellite sensor, acquisition mode, satellite orbits and applied
processing steps. For every processing step this list all the input param-
eters and details about the input and output data, including data paths,
data types, data sizes and coordinate systems. Using the meta data all
processing outputs can be read as numpy memory-maps (Harris et al.,
2020), which makes the files easy accessible for further processing steps
but does not load them in memory.

3.2. Radar coordinates and satellite geometry

An important part of the interferometric processing is the geocoding
nd coregistration of SAR data in radar coordinates, which are directly
inked to the observation geometry of the SAR sensor. To derive the
bservation geometry for the Sentinel-1 data both the SLC data and
rbits are needed, which are both downloaded from the Copernicus
ata Space Ecosystem (ESA, 2021a). After downloading the orbits
re interpolated using cubic splines to find the Cartesian coordinates
𝑥, 𝑦, 𝑧), direction vectors (𝑥′, 𝑦′, 𝑧′) and acceleration vectors (𝑥′′, 𝑦′′, 𝑧′′)
or every radar image line in azimuth direction. This orbit information
s then used to estimate the geographic coordinates (lat, lon, ℎ) of
he radar pixels during geocoding, see Fig. 6. Based on the satellite

orbit and geographic coordinates of the radar pixels further geometric
parameters such as the look angle, heading, incidence angle, azimuth
angle can be calculated, see Fig. 2.
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(a) SRTM DEM of the Hawaii island.

(b) Number of pixels per grid cell in an equidistant projected grid.

Fig. 4. Comparison between the DEM and the number of pixels per grid cell of
an equidistant projected grid. This clearly shows the overlapping regions of the
Sentinel-1 bursts, which results in up to three times higher number of pixels in
the overlapping regions. It also shows the effect of a sloping terrain in line-of-
sight direction on the horizontal range distance, see also Fig. 6. Other patterns
shown in the number of pixels image is due to the fact that the geographic
grid size does not fit exactly with a rounded number of range/azimuth cells,
causing an alternating pattern.

3.3. Resampling, multilooking and merging of slices

Based on the found geographic coordinates (lat, lon, ℎ) during
geocoding, the radar grids can now be resampled to other coordinate
systems. First the other SLCs are resampled to the reference SLC grid
using a sinc-based kernel resampling (Hanssen, 2001). Then the resam-
pled grids are resampled to a geographic or projected grid defined by
a proj4 string (PROJ contributors, 2021). To apply the different resam-
pling steps a combination of sinc-based kernel resampling, multilooking
and barycentric resampling are used, see Fig. 7. Kernel resampling is
used for SLC data when the grid spacing of the new grid is similar to the
old grid. Multilooking is used when the grid spacing of the new grid is
larger than the original grid. Barycentric resampling is used when the
input grid is irregularly spaced.

However, the different coordinate systems of the in- and output grid
for resampling makes parallel processing more difficult. In case the in-
5 
Fig. 5. Setup of the .json meta data file used for all images and slices in the
InSAR stack. First the relevant meta data about the SAR sensor and source
files are given in the readfiles section, followed by the satellite orbits in the
orbits section. Then for all applied processing steps for the image the specific
settings and input/output data are given.

Fig. 6. Visualization of the geocoding process where geographic coordinates
of the satellite range bins are calculated using the satellite position, orientation
of the zero-Doppler plane and topography. To describe the topography a DEM
with respect to the ellipsoid is, hence DEMs with respect to a geoid should
be converted first. This also shows that although the range distances from the
satellite line-of-sight are equally spaced, this does not translate to an equal
range distance in horizontal direction, due to variation in topography and
incidence angle 𝜃inc.
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Fig. 7. Visualization of three types of resampling processes implemented in RIPPL. (1) Using kernel resampling the value of every output grid point is calculated
based on a kernel of 𝑥 by 𝑥 input grid points (in this image 𝑥 = 4). (2) Using multilooking all input grid points within the boundaries of a grid cell in a newly
defined coordinate system are averaged. (3) Using barycentric resampling a triangulation is done for the irregular input grid and a barycentric interpolation is
done for all output grid points within every triangle. Resampling is done in the input coordinate system for kernel resampling and multilooking and in the output
coordinate system for barycentric resampling. To allow parallel processing, the newly defined output grid is split in chunks and for every chunk the minimum
needed chunk size of the input grid is calculated, based on the conversion between different coordinate systems. This will lead to overlapping chunks in the input
dataset.
and output grid have the same coordinates, they can easily be divided
in different chunks and processed separately, using python packages
like Dask (Dask Development Team, 2016), which is not the case when
a grid is resampled. Therefore, the needed size of the input chunks
is first calculated based on the input coordinates of the boundaries
of the output chunk. This will create overlapping input chunks but
independent output chunks, which prevents writing of different parallel
processes to the same place in the output file, see Fig. 7.

3.4. Pipelines and parallel processing

To process large datasets of InSAR data the RIPPL software imple-
ments both parallel processing using multiple processors and pipelines
which combine different processing steps without reading or writing
to disk. This saves processing time, but also saves on disk IO and
reduces the amount of disk space needed. Fig. 8 gives an example of
a pipeline for the resampling and topographic phase correction. The
figure shows on the left of the image the initial data inputs, in the
middle the different in-memory processing steps and on the right the
final resampled output data. Because the coordinates of the DEM and
secondary SLC are different from the reference SLC, the data chunks
loaded from these datasets will be overlapping as shown in Fig. 7.

Although most processing steps could be done in one pipeline,
this is often not recommended due too code limitations or efficiency
considerations. (1) Because any data chunks with a coordinate system
other than the final output are overlapping, these data files cannot
be saved to disk. (2) When the pipeline includes subsequent resam-
pling steps the overlapping areas will become increasingly large for
every resampling step, causing inefficient processing and memory use.
(3) When processing a stack of images, some processing steps like
geocoding will generate the same outputs for every secondary SLC or
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interferogram, which makes it more efficient to run and save these steps
first.

Building and running a pipeline is done using the following steps.

1. Initialization: During the initialization of the pipeline we define
the number of cores used for processing and the chunk size for
every individual process.

2. Processing steps: The different processing steps for the pipeline
are added in order. For example, the coregistration step should
be added before the resampling step.

3. Parallel run: After setting the processing steps and input data
the pipeline can be run. The data is automatically divided in
different chunks and the pipeline is checked for any inconsis-
tencies in the data or processing steps. If all checks are passed
successfully the data is processed in parallel.

3.5. Tropospheric delay calculations

To calculate the NWP model delays the ray-tracing algorithm, as
discussed in Section 2.3, is dependent on the already calculated radar
geometry. Fig. 9 shows the subsequent calculation steps and how they
depend on the satellite geometry. In the first step the weather model
parameters are loaded and converted into refractivity values. In the
second step the obtained refractivity values are interpolated for the
zero-Doppler plane. In the third step the calculated refractivity values
for the zero-Doppler planes are used to do the ray-tracing in a 2D plane
using the incidence angle of the pixel.

Because the NWP model has a lower resolution than the InSAR data
the surface elevation in the model does not coincide with the DEM used
for InSAR processing. Therefore, the NWP model delay value is adjusted
for height differences using linear interpolation.
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Fig. 8. Overview of a RIPPL processing pipeline. In this processing pipeline a secondary SLC is coregistered and resampled to the radar grid of the reference SLC.
On the left the input datasets are given that are loaded from disk to memory before the processing starts. These are a DEM, the reference SLC and the secondary
SLC in different coordinate systems. Then these datasets are processed using a geocoding, coregistration, resampling and phase-correction processing step, where
all intermediate data is stored in memory. Finally, only the resampled phase-corrected secondary SLC is saved to disk. Using such a pipeline strongly reduces
the needed disk space and the time needed to read and write data to and from disk. To allow parallel processing images are divided in chunks and processed
separately, see Fig. 7. In this pipeline barycentric resampling is applied during the geocoding step and kernel resampling is done during the resampling step.
Fig. 9. Main steps in NWP delay calculations. On the right the different
calculation steps to calculate tropospheric delays are given and on the left
the corresponding input datasets from the InSAR stack that are needed to do
this calculation. The NWP model data input is shown in a different colour here
because it has the coordinate system and grid size of the original downloaded
NWP model data, while all other datasets share the same coordinate system
defined during the InSAR processing. Apart from the NWP model data, all
input datasets are related to the satellite geometry, see Figs. 2 and 6.

3.6. Code adaptability

An important part of the RIPPL code is the ability to add or adapt
processing steps. This can be done by adapting the processing step
template, which is split in two parts: (i) The initialization function that
defines the needed input data and created output data of the function
(ii) The process calculations, which define the calculations done in this
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step using any Numpy (Harris et al., 2020) function. These steps can
then be added to a pipeline as described in Section 3.4.

3.7. Processing outputs

In case the user would like to do post-processing in Python, the
output data can directly be accessed as memmap files, which can
be loaded from the stack object. Otherwise, data can be exported to
.geotiff files. To visualize the results a plotting routine within the RIPPL
software can be used, based on the cartopy package (Met Office, 2015).
The .geotiff and plotting tools from the RIPPL software are limited to
geographic or projected datasets. Examples of outputs are shown as part
of the tutorials given in Section 4.

4. Results

To make the RIPPL software more accessible for first time users, we
included two tutorials in the software package itself, which are written
in the form of a Jupyter notebook. The advantage of this system is that
the code can be run step by step, where the results can directly be
visualized and the code is explained in detail. The first tutorial covers
the main processing steps for an InSAR datastack, see Section 2.2, and
highlights the effects of an earthquake on Hawaii in May 2018. The
second tutorial focuses on the NWP model data, for a case over The
Netherlands.

4.1. Earthquake Hawaii

The tutorial that comes with the RIPPL software includes a study
case about the earthquake on the island of Hawaii on May 4th 2018.

Processing is done based on the main processing steps, see Sec-
tion 2.2, and also includes unwrapping of the created multilooked
interferogram. The main processing steps are combined in a minimum
number successive pipelines to allow parallel processing and minimize
disk usage. Because individual pipelines are limited to the use of two
different coordinate systems, three different pipelines where needed
for the conversion from DEM coordinates to radar coordinates, the
resampling of the secondary SLC and the conversion from the reference
radar grid to a multilooked grid in an oblique Mercator projection. The
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(a) Interferogram between 23rd of April and 5th of May 2018. (b) Calibrated amplitude 𝛽0 for the 23rd of April 2018.

(c) Coherence between 23rd of April and 5th of May 2018. (d) Unwrapped interferogram.

Fig. 10. This figure gives an example of the direct output from RIPPL for an earthquake over Hawaii, which illustrates the capabilities of the software for InSAR
processing. For the interferogram and unwrapped interferogram values over water are masked. The coherence image clearly shows lower values in the overlapping
regions of the Sentinel-1 bursts, related to the higher number of pixels in these regions, see Fig. 4. This is due the smaller bias in the coherence estimates for
low coherence values (Hanssen, 2001).
pipelines are preceded by the download of Sentinel-1 SLCs, Sentinel-1
precise orbits and SRTM DEM data, followed by the initialization of the
stack.

The results for the interferogram, calibrated amplitude, coherence
and unwrapped interferogram are given in Fig. 10. The images are
created using the cartopy package (Met Office, 2015) and are also
available as geotiffs, which is compatible with most geographic infor-
mation system (GIS) software. Fig. 10a shows the highest density of
fringes in the South-Eastern part of the island close to the epicentre of
the earthquake. The unwrapped image shows a movement up to about
40 cm in the radar line of sight. Next to the fringes in the South-East
part of the island, the interferogram also shows a few fringes in the
centre of the island, which are not related to the earthquake but are due
to the differences in the stratified atmosphere between the two epochs.

This example shows that the RIPPL software can be valuable tool for
solid earth applications and does make full use of the available overlap-
ping areas between the Sentinel-1 burst, see Fig. 10(c). However, it still
has some difficulties with the unwrapping of areas with a high number
of fringes or high noise levels. This could be solved by including
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filtering techniques (Goldstein and Werner, 1998) or combining the
software with alternative unwrapping techniques (Hooper et al., 2007).

4.2. Weather model evaluation over the Netherlands

The second tutorial also runs the main steps to process the InSAR
data, but includes the NWP model results for the HARMONIE-AROME
model, provided by the KNMI, and the ERA5 en CERRA models, pro-
vided by the ECMWF. This shows that in this case a large part of
the InSAR phase differences are due to the differences in tropospheric
delays. The processing of NWP delays next to the InSAR delays can
therefore be very helpful tool to either correct for tropospheric delays
or to evaluate the use of InSAR phase differences for NWP models. The
RIPPL code was therefore an important tool for the comparison and
integration of InSAR and NWP model delays in Mulder et al. (2022).
The InSAR and NWP model results are shown alongside in Fig. 11.

This figure shows that there is a clear correlation between the
models resolution and the capability to capture details of the water
vapour field. However, the details found with higher resolution do not
always represent the real weather situation, as can be seen in Fig. 11d.
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(a) Unwrapped interferogram. (b) Difference of ERA5 delays.

(c) Difference of CERRA delays. (d) Difference of HARMONIE-AROME delays.

Fig. 11. This figure shows a comparison between RIPPL InSAR results and derived NWP model delays. This data can be an input for tropospheric corrections
of InSAR data, but can also be used to improve NWP model performance. Figure a gives the unwrapped interferogram between 18th and 24th of July 2017
over The Netherlands. Figures b,c and d show the modelled differential tropospheric delays from low to high-resolution for the ERA5 (30 km), CERRA (5.5 km)
and HARMONIE-AROME (2.5 km) models. Note that the values for the interferogram are shifted compared to the model values. This is because InSAR can only
measure relative delays and no absolute delays, which causes a shift in the absolute values.

Computers and Geosciences 207 (2026) 106069 
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This is mainly because high-resolution NWP models are able to capture
small weather vapour patterns, but they are often in the wrong location.
urther discussion on this can be found in Mulder et al. (2022, 2025).

4.3. Further case studies

In Sections 4.1 and 4.2 we showed two examples on how the RIPPL
package can be used for short time-series, but the length and number of
ime-series can easily be expanded. Therefore, additional output data of
wo time-series with a time-span of one year are added in the additional
aterials of this paper. The presented cases are (1) An extension of the

ime-series over the Netherlands, including ERA5 and CERRA analysis
nd, (2) A time-series of InSAR images over the Patagonian Ice Fields,
howing Sentinel-1 results over ice fields during different seasons.

5. Discussion

The combination of InSAR and NWP model delay values, as dis-
cussed in Section 4.2, has several applications, which is discussed in
the following paragraphs.

5.1. InSAR tropospheric corrections

The most common use of InSAR tropospheric delay products is miti-
ating atmospheric effects in InSAR deformation studies. This approach
s particularly useful for correcting large-scale phase trends or topo-

graphically induced delays. Well known packages are PyAPS (Jolivet
et al., 2011), TRAIN (Bekaert et al., 2015) and GACOS (Yu et al.,
2018), which all offer tropospheric delay products based on different

WP models. A comparison by Murray et al. (2019) showed that
ACOS performed best, which is likely due to the high quality and

patial resolution (9 km) of the input data from the ECMWF HRES
odel. Additionally, external measurements can be combined with the
erived NWP products using deep-learning methods to enhance the
inal product, for example, using DEMs like in AtmNet (Zhou et al.,

2023) or GNSS measurements like in TropoDeep (Haji-Aghajany et al.,
2025). Currently this mainly leads to improvement of delay products in
areas with high GNSS cover, but with the integration other sources like
rainfall radars this could lead to enhanced tropospheric delay products
in the future.

In the RIPPL code automatic download and delay calculation of
the worldwide ERA5 reanalysis (31 km resolution) and the Europe-
wide CERRA reanalysis (5.5 km resolution) are implemented. For the

ARMONIE-AROME (2.5 km resolution), only the delay calculation
s included. This suggests RIPPL may perform better over Europe,

especially in regions with lower GNSS coverage. However, higher reso-
lutions do not always lead to significant improvements since precise
timing and positioning of turbulent features becomes a limiting fac-
tor (Bekaert et al., 2015; Murray et al., 2019; Haji-Aghajany et al.,
2025; Mulder et al., 2025).

In contrast with other packages RIPPL combines both InSAR pro-
essing and NWP model delay estimation in one package, which sim-

plifies the use of tropospheric corrections in InSAR time-series. Also, the
radar geometry from InSAR processing can be used to compute NWP
elay estimates, enabling the use of slant total delays (STD) rather than
enith total delays (ZTD). This can lead to a significant horizontal shift

of delay patterns, although smaller than similar shifts due to timing
errors of the NWP model (Yu et al., 2018; Mulder et al., 2025). Finally,
he shared satellite geometry can also prevent problems due to the use
f different or lower resolution DEMs in the tropospheric correction

product (Zinno et al., 2023). However, these delay errors are limited
to about 1 mm per 50 m DEM error (Cavalié et al., 2007; Jolivet et al.,
2014) and are likely only significant in areas with strong elevation
differences.
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5.2. InSAR as input for NWP models

A less explored, but promising application the use of InSAR data to
enhance weather forecasting. However, this is often difficult because
InSAR data offers differential delays, while NWP models need absolute
delay information. This problem can be solved by subtracting the NWP
model delay for one date from the differential delays to derive the
InSAR tropospheric delays at the other date (Mateus et al., 2018,
2020), but this method is very sensitive for errors in the NWP model.

herefore, more robust have been proposed (Liu, 2013; Mulder et al.,
2022) based on time-series of InSAR and NWP model data, which can
e provided by RIPPL. Additionally, results from the RIPPL software
an be used to evaluate the performance and precision of NWP models
t different weather states (Mulder et al., 2025, 2022). Finally, the
ntegration of InSAR and NWP data can aid in analysing specific

atmospheric conditions (Hanssen et al.). For example, these combined
atasets can be used for statistical analysis of delay variations, of-
ering insights into current weather states or potential atmospheric
isturbances (Hanssen, 2001; Mulder et al., 2023).

6. Conclusion

As shown in the result section the RIPPL package offers a way to
seamlessly integrate the processing of InSAR data stacks with the esti-
mation of tropospheric delay based on NWP models. This allows for the
use of the radar geometry needed for the InSAR processing to apply a
ray-tracing method for the atmospheric delay estimation. Although our
presented methods are mainly a combination of previously developed
methods, we believe that the integration of InSAR and NWP model
data processing not only improves the quality and comparability of
the two products, but could also further the InSAR deformation and

WP model research. For InSAR research this can simplify the use of
tmospheric corrections, because they are readily available in the same
ormat. For NWP model research this can help to compare NWP model
ealizations with InSAR tropospheric delay measurements and a help
evelop methods to assimilate InSAR tropospheric measurements into
WP models.
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Computer code availability

The RIPPL Python code is freely available from the TU Delft Geodesy
GitHub repository via the following link. The RIPPL code is written
in Python only, but it does depend on the installation of the Snaphu
software to unwrap interferograms. Further required dependencies can
be installed using one of the Python package managers. The tutorials
and installation scripts are written as a jupyter notebook (Granger and
Perez, 2021) and can therefore be run using the jupyter interface in
a web browser. The total disk space of the RIPPL package is only 15
MB, but make sure that you have at least 100 GB of free disk space to
run the tutorials, as the SAR SLCs and resampled SLCs take up a lot of
disk space. To properly run the RIPPL code a minimum of 4 GB RAM is
needed, but 16 GB is recommended. For any questions about the RIPPL
code the corresponding author of this paper can be contacted.
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