Design parameter guidelines for purely passive cooling buildings in tropical area

Fatima El Hadji

- The energy for space cooling is tripling between 1990 and 2016 (IEA, 2018).
- Over 50% of the building's energy consumption is used for cooling purposes. (A. Katili, 2015)

Research problem High energy consumption

- Intense radiation
- High air temperature
- High relative humidity

Research problem

High energy consumption

Fully glazed high rises ———

Tropical climates

Can a passive high rise building be the solution?

Research problem

How can a **purely passive office building** be achieved in a **tropical climate** ensuring the indoor **thermal comfort**?

Research question

How can a **purely passive office building** be achieved in a **tropical climate** ensuring the indoor **thermal comfort**?

- Investigate the possibility of the design of a purely passive building in tropical climate
- Investigate to what extent it is possible to achieve a low energy building.

Sub-questions

- What have been done in bioclimatic architecture to solve hot and humid climate issue in passive way?
- What are the applicable passive building strategies in a hot and humid climate?
- What is the most optimized combination of passive envelope strategies in order to reduce the cooling demands?
- What is the effect of the envelope design parameters on the cooling consumption?
- What is the effect of the combination of envelope parameters and indoor comfort parameters on the cooling consumption?

Fatima El Hadji

Methodology

Question?

for design

Research

Research
through
design

How can a purely passive office building be achieved in a tropical climate ensuring the indoor thermal comfort?

Methodology

Climate design	Facade design	Computational design
Zero Ene	ergy Buildings in Tropical (climates
	Bioclimatic architecture	
	Passive cooling strategies	5
A	Adaptive thermal comfor	†
Build	ding performance simula	ition
Build	ing performance optimiz	ation

Zero Energy Buildings in Tropical climates

Out of **332 Zero Energy Buildings** (ZEB) globally, **only three** ZEBs are built in the **tropical climate**. (2016 List of Zero NET Energy Buildings, 2019)

Zero Energy Buildings in Tropical climates

Strategies applied in the three ZEB buildings in Tropical regions.

Bioclimatic architecture

The bioclimatic approach for the design of a multi-story building in the tropics area is composed by three steps:

- the analysis and design of the site plan,
 - the design of the envelope
 - the interior design. (Dewi Larasati Zr, 2013)

Passive cooling strategies

Methodology

How can a purely passive office building be achieved in a Question? tropical climate ensuring the indoor thermal comfort? Research for design **Energy simulation** Optimization Computational Energy & comfort Optimization Research model performance through design mode FRONTIER Fatima El Hadji

Research through design

Outputs

Optimization

Methodology: Computational workflow

One Raffles Quay

Kohn Pederson Fox Architects Function: office building Typical floor area: 1,700 m2

Source: https://www.meinhardt.com.sg/projects/one-raffles-quay

23

One Raffles Quay

Facade system:
Unitized aluminium
system with double
glazed low E-solar tinted

Source: https://www.executivecentre.com/office-space/singapore-one-raffles-quay/

Methodology: Case study

One Raffles Quay

Computational optimization: Envelope parameters optimization

Computational optimization: Envelope parameters optimization

Fatima El Hadji

1. General

2. Envelope

3. Indoor comfort

Results: North facade

Results: East facade

Results: East facade

Results: high wwr on east facade

	Design	wwr north	wwr south	wwr east	wwr west	glazing type	shading type	n° louvres	depth	occupancy density	lighting density	cooling set point	cooling energy
	170	70%	70%	70%	70%	4	horizontal	2	0.9	0.15	15	24	204
Ţ	178	70%	70%	70%	70%	3	vertical	2	0.5	0.15	15	24	202
	220	70%	40%	70%	40%	4	horizontal	4	0.5	0.15	15	24	199
	67	70%	70%	70%	70%	3	vertical	1	0.9	0.15	15	24	197
										v			
	1029	70%	70%	70%	70%	3	horizontal	3	0.9	0.1	3	30	82
(796	70%	70%	70%	70%	3	horizontal	4	0.5	0.1	3	30	83
	992	70%	70%	70%	70%	3	horizontal	2	0.9	0.1	3	30	84

Results: Glazing type

Results: Glazing type

Results: shading system

Results: shading system

Results: shading depth

Results: minimum shading depth

Design	wwr north	wwr south	wwr east	wwr west	glazing type	shading type	n° louvres	depth	occupancy density	lighting density	cooling set point	cooling energy
1005	70%	70%	70%	70%	3	horizontal	2	0.1	0.1	3	30	92
1056	70%	70%	70%	70%	3	horizontal	3	0.1	0.1	3	30	91
654	70%	70%	60%	70%	3	horizontal	4	0.1	0.1	3	30	90
652	70%	70%	40%	70%	3	horizontal	4	0.1	0.1	3	30	88
600	70%	70%	30%	70%	3	horizontal	4	0.1	0.1	3	30	88

Results: occupancy density

Results: cooling set point temperature

Results: cooling set point temperature

Results: 28°C cooling set point

Design	wwr north	wwr south	wwr east	wwr west	glazing type	shading type	n° louvres	depth	occupancy density	lighting density	cooling set point	cooling energy
921	70%	50%	30%	70%	4	horizontal	3	0.5	0.1	3	28	119
666	70%	70%	60%	70%	4	horizontal	4	0.5	0.1	3	28	114
1013	70%	70%	50%	70%	4	horizontal	4	0.5	0.1	3	28	114
953	70%	70%	70%	70%	4	horizontal	3	0.9	0.1	3	28	114
690	50%	70%	20%	70%	4	horizontal	3	0.9	0.1	3	28	113

Results: cooling set point temperature

Design	wwr north	wwr south	wwr east	wwr west	glazing type	shading type	n° louvres	depth	occupancy density	lighting density	cooling set point	cooling energy
1044	70%	70%	70%	70%	3	horizontal	4	0.9	0.1	3	30	82
515	70%	70%	40%	70%	3	horizontal	2	0.5	0.1	3	28	105
798	60%	70%	70%	60%	4	horizontal	4	0.9	0.1	3	26	133
798	60%	70%	70%	60%	4	norizontal	4	0.9	0.1	3	26	155

Results

Results

Inputs

Results

Results

Window-to-wall ratio

Envelope properties

Indoor comfort

Energy performance

Architectural
/Envelope
parameters

Indoor comfort parameters

Energy performance

Fatima El Hadji

Design selection: Indoor comfort parameters

Design selection: Indoor comfort parameters

Design selection: Indoor comfort parameters

Design	wwr north	wwr south	wwr east	wwr west	glazing type	shading type	n° louvres	depth	occupancy density	lighting density	cooling set point	cooling energy
791	70%	70%	70%	70%	4	horizontal	2	0.9	0.1	3	26	150
515	70%	70%	40%	70%	3	horizontal	2	0.5	0.1	3	28	105
857	70%	70%	60%	70%	3	horizontal	3	0.9	0.1	3	30	82
												N

Reference projects: Energy performance driven design

Conclusions

Design goal	Constants	Design n°	Cooling energy (kWh/m2/y)	Energy reduction/increase (%)
	High wwr	343	330	+57
High transparency	High occupancy density	175	305	+45
riigh transparency	Low lighting density	475	242	+15
	Low cooling set point	700	227	+8
		1007	218	+4
High occupancy density	High occupancy density	727	149	-29
riigii occupancy density	Low lighting density	658	126	-40
		1003	107	-49
		791	150	-29
Low cooling demand	Low occupancy density Low lighting density	515	105	-50
	LOW IIBITETIS GETISITY	857	82	-61

Conclusions

Can a passive high rise building be the solution?

No. It is **not possible** to achieve a purely passive building.

But, it is possible to reduce the cooling demands up to **61%** with respect to the average EUI of an office building in Singapore

Conclusions

How can a **purely passive office building** be achieved in a **tropical climate** ensuring the indoor **thermal comfort**?

The window to wall ratio of **east** and **west facade** have an impact on the cooling demands.

The implementation of a **lower occupancy** and **lighting density** lead to lower cooling consumption.

The implementation of an **external shading** device **is needed**. Also, the implementation of **cross ventilation** contributed to heat loss.

Finally, the application of **adaptive comfort** models can definitely help in the reduction of cooling demands. The percentage of acceptable time reached the total percentage even if the indoor operative temperature reached up to 28°C.

Fatima El Hadji

Future recommendations

Further development can be done by adding other variables in the optimization phase, such as:

Dynamic shading system

Implementation of active system, such as solar panels

Optimization of the setting of the HVAC system

Take into account the relative humidity

