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A novel hybrid model for multiphase flow in complex multi-scale 
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A B S T R A C T   

We present a multi-level discrete fracture model (MLDFM) to guarantee a robust and efficient solution for 
naturally fractured reservoir simulation. In MLDFM, we apply a triple continuum model using structured grid for 
forward simulation where large-scale fractures are represented with numerical embedded discrete fracture model 
(EDFM) and the secondary fractures are upscaled as third continuum. What makes the triple continuum model 
different from the previous work is that both the numerical EDFM and the third continuum are treated in a 
dynamic approach by considering the effect of flow direction on the complex local-scale flow response. For that 
purpose, we construct a finer unstructured discrete fracture matrix (DFM) grid which represents all fractures 
explicitly and is conformal to the boundary of coarse structured grid. During a simulation run, we apply a basis 
function to generate the local boundary conditions at fine scale using the global solution. Benefit from that, we 
can use a more accurate flow-based approach in the extended local upscaling to re-compute the transmissibility 
in triple continuum model. Moreover, we apply a local-global upscaling formalism to guarantee dynamically 
updated local boundary conditions for upscaling. Besides, we present several cases using synthetic and realistic 
fractured networks to demonstrate the performance of MLDFM. The results prove that the proposed MLDFM 
approach more accurately captures the flow in complex fractured systems than EDFM solutions by comparing 
against fine-scale DFM. At the same time, MLDFM is more computationally efficient in comparison with fine scale 
DFM.   

1. Introduction 

The field management is always challenging for a naturally fractured 
reservoir due to the complex structure of the fracture network. To 
address this problem, the reservoir simulation technology is taken as one 
of the most important tools to reduce the uncertainties underground and 
thus accurately predict the flow response of development strategy of 
interest. However, the further application of this technology is quite 
limited by the computational efficiency and accuracy since the structure 
of the fracture network could be rather complex and the fracture/fault 
length varies from several meters up to a few kilometers. 

Since the middle of last century, researchers invested a lot of effort 
for the modelling of fractured reservoirs (Ramirez et al., 2009; Bour
biaux, 2010; Berre et al., 2019). Barenblatt et al. (1960) first proposed a 

dual-porosity (DP) model where the fractured reservoir is treated as an 
equivalent and homogeneous model containing matrix and fracture 
systems. Then Warren and Root (1963) introduced the DP into petro
leum engineering. In this model, the matrix only serves as a source or 
sink to feed the fracture system when the fracture provides fluid-flow 
pathways. Moreover, it was extended as the dual-porosity dual-
permeability (DPDK) model by considering the flow between matrix 
blocks (Gerke and van Genuchten, 1993a; Gerke and van Genuchten, 
1993b; Blaskovich et al., 1983). Currently, the DP and DPDK models are 
widely employed by various commercial reservoir simulators and ap
plications (Sun et al., 2013; Yao et al., 2013; Gong and Rossen, 2016). 
However, in both DP and DPDK models, the matrix is required to be low 
permeable and the fracture networks should be well connected. 

Pruess and Narasimhan, 1982, 1985 proposed a multiple interacting 
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continuum (MINC) model which can be interpreted as a natural exten
sion of the dual porosity approach. Different from the DP model, the 
matrix blocks are discretized into a sequence of nested volume elements 
(Pruess, 1992). Benefit from that, the MINC model could accurately 
capture a transient flow within the low permeable matrix. However, 
being constrained by the original assumptions of the DP model, it is only 
applicable for well-connected fractured networks. 

To break the limitations of fracture connection in DP, DPDK, and 
MINC, Lee et al. (2000) and Li and Lee (2008) proposed an embedded 
discrete fracture model (EDFM) which makes the modelling of fractured 
reservoirs more explicitly constrained by geological characterization 
based on outcrop information and reservoir measurements. Because of 
the flexibility of the non-conforming mesh, the EDFM is used in various 
applications (Fumagalli et al., 2016; Zhang et al., 2017; Hui et al., 2019; 
Wang et al., 2019, 2020; Yu et al., 2019). Besides, for a more flexible 
application of EDFM for fractures with different conductivities including 
barriers, Tene et al. (2017) proposed a project-embedded discrete frac
ture model (pEDFM). 

Karimi-Fard et al. (2004) used a discrete fracture matrix (DFM) 
model to accurately predict the flow response in complex naturally 
fractured reservoirs. For explicit fracture representation, the fracture 
and matrix elements are conformal with each other when the fractures 
are represented with a lower dimension compared with the matrix grid. 
That makes DFM one of the most accurate representations of fractured 
reservoirs. However, the DFM utilization usually introduces a significant 
number of control volumes which reduces the efficiency of the simula
tion. To address this issue, the Multiple Sub-Region approach (Gong, 
2007; Karimi-Fard et al., 2006; Karimi-Fard and Durlofsky, 2012, 2016; 
Awadalla and Voskov, 2018) was proposed where the matrix elements 
are aggregated as multiple sub-regions and the fracture elements are 
upscaled as an integrate fracture network in each coarse block. By per
forming local upscaling in fine DFM grid, the transmissibility among the 
multiple sub-regions and fracture networks can be computed. Thanks to 
that, the dimension of the linear system is reduced drastically when the 
model accurately captures the transient effect inside coarse blocks and 

the mass transfer between fracture and matrix. Besides, the DFM was 
further extended for thermal processes (Zhu et al., 2016), geomechanics 
treatment (Garipov et al., 2016), and even fracture propagation (Gal
lyamov et al., 2018; Zeng et al., 2018). 

Moreover, aimed to account for the fractures in various scales effi
ciently and accurately, researchers proposed many hybrid models that 
take full advantage of above-mentioned models (Jiang and Younis, 
2016; Wang et al., 2017; Ren et al., 2017; Ding et al., 2018; Xu et al., 
2019; Yan et al., 2019; Guo et al., 2019; Liu et al., 2020). As proved in 
various applications and tests, the hybrid models have a great advantage 
in simulation efficiency compared with pure EDFM or DFM. However, in 
the hybrid models, the transmissibilities are fixed throughout the 
simulation. This could limit the simulation accuracy since the flow di
rection, that has a big effect on the local-scale flow response in complex 
fractured domain, cannot be fixed during a simulation of practical 
interest. 

In this paper, we propose a novel hybrid model named multi-level 
discrete fracture model (MLDFM) to improve the modelling capabil
ities of considering the effect of flow direction on the complex local-scale 
flow response. For this purpose, we integrate a two-scale flow hierarchy 
within the naturally fractured reservoir simulation. In the coarse-scale 
forward simulation of a complex fracture network shown in Fig. 1, we 
apply a triple continuum model on a structured grid where large-scale 
fractures in yellow are represented with the numerical EDFM and the 
small-scale fractures in blue are upscaled as a third continuum. In the 
fine-scale simulation, we apply DFM on an unstructured grid which 
represents all fractures explicitly. Because of the high accuracy of DFM, 
the fine-scale solution is used to re-compute the transmissibility in triple 
continuum model through extended local upscaling. Aimed to further 
improve the upscaled solution, we employ global solutions from coarse- 
scale simulation to generate dynamically updated boundary conditions 
in the extended local domain. By implementing the idea in a local-global 
upscaling formalism, the effect of flow direction on the complex local- 
scale flow response can be considered in MLDFM. To demonstrate the 
feasibility and accuracy of MLDFM, we present several cases using 
synthetic fracture networks. Moreover, we test a realistic fracture 
network to investigate the performance of MLDFM in applied field cases. 

2. Modelling approach 

The proposed model is implemented using the Automatic Differen
tiation General Purpose Research Simulator (AD-GPRS) (Garipov et al., 
2016, 2018; Voskov, 2012; Zaydullin et al., 2014). Below, we present a 
brief description of the MLDFM. 

2.1. Conservation equations 

Assuming that there are only oil and water phases in the system, the 
transport equations can be written as follows: 

∂
∂t
(φρoSo)+∇ ⋅ (ρouo)+ ρoqo = 0 (1)  

∂
∂t
(φρwSw)+∇ ⋅ (ρwuw)+ ρwqw = 0 (2) 

Here, φ is the reservoir porosity; t is the time; subscripts o and w 
indicate oil and water phases; ρ is the phase density; S is the saturation; q 
is the phase rate per unit volume. uj is the Darcy velocity: 

uj = −
kkrj

μj
∇P (3)  

where μ is the viscosity; k is the permeability; krj is the relative perme
ability of phase j; P is the pressure. Finally, we close the system using the 
saturation constraint: 

So + Sw = 1 (4) 

Fig. 1. A synthetic fracture network. Black thick lines are boundaries of the 
reservoir, blue lines represent small-scale fractures, yellow lines represent 
large-scale fractures. In the triple continuum model, the large-scale fractures 
are represented with numerical EDFM, the small-scale fractures that fall inside 
the same coarse structured grid are upscaled as a third continuum. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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By applying the two-point flux approximation (TPFA) for dis
cretization in space and the backward Euler approximation for dis
cretization in time, the transport equations shown in Eqs. (1) and (2) can 
be transformed as: 

(
VφρjSj

)n+1
−
(
VφρjSj

)n
− Δt

∑

l

(
ρl

jλ
l
jγ

lΔψl
)n+1

+ΔtV
(
ρjqj

)n+1
= 0 (5) 

Here Δt is the time step; V is the volume of a control volume; j in
dicates oil or water phase; ΔΨ l is the potential difference between two 
neighboring control volumes connected by l interface; λj

l = (krj/μj)l is the 
mobility of phase j over the interface l by upstream weighting; n + 1 is 
the new time step; n is the previous time step; γ is the transmissibility. 

2.2. Impact of local boundary conditions 

To support the motivation of the MLDFM, we investigate the effect of 
local boundary conditions on the flow response. Assuming a local 

fractured domain shown in Fig. 2, we impose two types of boundary 
conditions by adapting the flow direction. The reservoir and fluid pa
rameters are taken from Table 1 through 3. The relative permeability of 
water is defined as Krw = Sw

2, the relative permeability of oil is defined as 
Kro = So

2. The first boundary condition is injecting water at the left side of 
the fracture network with constant pressure equal to 300 bar. The sec
ond boundary condition is injecting water at the bottom side of the 
fracture network with constant pressure equal to 300 bar. The simula
tion time is 50 days. 

The simulation results using the two boundary conditions are shown 
in Fig. 3a and Fig. 3b respectively. We can see that there is an obvious 
difference in pressure and saturation distributions. The results demon
strate that the flow direction has a big impact on the flow pattern. 
Therefore, we can point it out that the small-scale flow response inside a 
coarse-scale grid-block holding complex fracture structure could be 
heavily influenced by the local boundary condition. Furthermore, we 
can conclude that considering the effect of local boundary condition on 
the complex local-scale flow response is necessary for fractured reservoir 
simulation. 

2.3. Multi-level discrete fracture model 

In this section, assisted with a synthetic fracture network, we give a 
detailed description of the MLDFM implementation. We will construct 
two levels of the grid and split the whole fracture domain into many 
subdomains. In each subdomain, we apply the basis functions described 
in section 2.3.3 to determine the local boundary conditions at a fine 
scale. Based on that, we use the local upscaling method that is described 
in section 2.3.4 to recompute the transmissibility in a triple continuum 
model which is finally applied for forward simulation at a coarse scale. 

2.3.1. Construct two levels of grid 
We construct two levels of grid where the coarse-scale grid is applied 

for forward simulation and the fine grid is used to capture the fine-scale 
flow response. To guarantee an efficient and accurate simulation, the 
structured grid is employed on the coarse scale because of its flexibility 
when an unstructured grid is used on the fine scale to represent all 
fractures explicitly. In this study, these two grids are required to conform 
with each other for the convenience of the following implementations. 

Taking a synthetic fracture network shown in Fig. 1 as an example, 
we first mesh it with a structured grid shown in Fig. 4. Then, we generate 
a fine unstructured grid using Gmsh (Geuzaine and Remacle, 2009) 
shown in Fig. 5. Out of the purpose of a better visualization, the domain 
is only part of Fig. 4. 

Thanks to the explicit representation of all fractures in fine grid, the 
small-scale flow response could be accurately captured with the DFM. 
Assisted with upscaling of the fine-scale solutions, we could construct a 
triple continuum model on the coarse structured grid for forward 
simulation where the large-scale fractures are represented with nu
merical EDFM and the small-scale fractures are upscaled as a third 
continuum. 

Fig. 2. A local fractured domain. The black lines are the boundaries of domain; 
red lines represent fractures. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Geometry parameters.  

Parameter Value Unit 

Reservoir dimensions 100 × 100 m 
Reservoir thickness 10 m 
Initial pressure 200 bar 
Initial water saturation 0.3  
Matrix permeability 0.01 μm2 

Matrix porosity 0.2  
Fracture permeability 10,000 μm2 

Fracture porosity 1.0  
Fracture aperture 0.001 m 
Well radius 0.1 m  

Table 2 
Fluid densities (surface condition).  

Oil density (kg/m3) Water density (kg/m3) 

800 1000  

Table 3 
Oil formation volume and viscosity.  

Pressure (bar) Formation volume (rm3/sm3) Viscosity (cP) 

50.0 1.97527 0.21564 
70.0 1.96301 0.21934 
90.0 1.95464 0.21981 
110.0 1.93391 0.22325 
130.0 1.91309 0.22736 
150.0 1.89217 0.2317 
170.0 1.87115 0.23628 
190.0 1.85005 0.24112 
210.0 1.82887 0.24623 
230.0 1.80761 0.25165 
250.8 1.78628 0.25738  
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However, due to the large gridblocks number, it is challenging to 
directly predict flow response based on the solution of fine scale model. 
To resolve that, we apply the local upscaling technique. Next, we will 
describe how to construct a subdomain for the local upscaling. 

2.3.2. Construct subdomains 
As discussed in literatures (Gomez-Hernandez and Wen, 1994; 

Holden and Lia, 1992), an extended domain helps to improve the 

Fig. 3. The effect of flow direction on the flow response in a local fractured domain. We inject water at the left or bottom side of the fracture network with constant 
bottom hole pressure. a) Pressure and saturation distributions when water is injected from the left boundary, b) Pressure and saturation distributions when water is 
injected from the bottom boundary. 

Fig. 4. Structured gridding on the coarse scale. Black thick lines are boundaries 
of the reservoir, blue lines represent small-scale fractures, yellow lines repre
sent large-scale fractures, black thin lines represent the boundaries of coarse 
grid-blocks. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 5. Unstructured gridding on the fine scale. This is a local region of the 
whole domain; the coordinates help to determine its position in Fig. 4; the 
large-scale fractures in yellow and small-scale fractures in blue are represented 
explicitly; the unstructured grid is conformal with the boundary lines of coarse 
grid-blocks. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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accuracy of upscaled solution in the local upscaling. Therefore, we apply 
the extended local upscaling in this work. First, we split the original 
model by many subdomains as shown in Fig. 6. Each subdomain con
tains 3 × 3 coarse grid-blocks. Based on that, we determine extended 
subdomains also shown in Fig. 6. For a better understanding, we display 
an extended subdomain containing 7 × 7 coarse grid-blocks in Fig. 7. 
Next, we describe how to determine the boundary conditions in this 
extended subdomain. 

2.3.3. Basis functions for the local boundary condition 
For a typical extended local upscaling, the boundary conditions that 

apply constant pressure boundaries on the left and right sides and 
employ no-flow boundaries on up and bottom sides are used to estimate 
the kx. But due to the existence of complex fracture networks, the flow 
response inside the extended subdomain could be heavily affected by the 
fracture distributions and thus influenced by the flow direction. There
fore, the typical approach may fail to provide accurate upscaled solu
tion. Moreover, the fine grid in this study is unstructured which is also 
different from the typical extended local upscaling. 

In this work, we derive local boundary conditions from the global 
pressure solution that is obtained by solving the coarse-scale triple 
continuum model to account for the effect of flow directions on the local 
flow response. Thanks to that, an adaptive and accurate local boundary 
condition can be resolved. Below is the detailed procedure using the 
finite-volume basis functions (Hajibeygi et al., 2011; Wang et al., 2014; 
Ţene et al., 2015). 

First, we determine the boundary lines which are drawn in purple 
and yellow in Fig. 7. Note that the yellow lines represent large fractures. 
Second, we determine all the fine unstructured cells around the purple 
lines and the elements on the yellow lines. Here, we call them as 
boundary control volumes. Third, among all the boundary control vol
umes, we select the gridblocks located at the matrix and fracture coarse 
nodes as shown in Fig. 7. Here, we call them as basis control volumes. 

Fourth, according to the number of matrix coarse nodes and fracture 
coarse nodes shown in Fig. 8, we perform local steady-state simulations 
on the boundary control volumes. In each simulation, we force the 
pressure of basis control volume at one coarse node as 1 and the pressure 
of the other basis control volumes as 0. The pressure values of boundary 
control volumes form the basis functions. For example, as shown in 
Fig. 9a, we set pressure of basis control volume at matrix coarse node i 
(in red) equal to 1 and pressure of other basis control volumes equal to 0. 
The pressure value of a matrix control volume j is taken as Φij

mm, while 
the pressure value of fracture control volume j is taken as Φij

mf. With a 
similar approach, we set the pressure of basis control volume on fracture 
coarse node i (in red in Fig. 9b) equal to 1 and pressure of other basis 
control volumes equal to 0 and determine Φij

fm and Φij
ff. 

Finally, since we know the pressure values on the coarse nodes from 
global solution, we can compute the pressure values of boundary control 
volumes applying the basis function. The pressure value of matrix con
trol volume j can be computed by Eq. (6). 

Pm
j =

∑Ncm

i=1
Φmm

ij Pm
i +

∑Ncf

i=1
Φfm

ij Pf
i (6) 

The pressure value of fracture control volume j can be computed by 
Eq. (7). 

Pf
j =

∑Ncm

i=1
Φmf

ij Pm
i +

∑Ncf

i=1
Φff

ij P
f
i (7) 

Here, Ncm is the number of matrix coarse nodes; Ncf is the number of 
fracture coarse nodes; subscripts m and f represent matrix and fractured 
porous media. Pi

m and Pi
f are taken from global solution. 

Note that at the beginning of the simulation, the pressure distributes 
uniformly in coarse scale without any difference. For this situation, we 
apply the typical extended local upscaling. 

2.3.4. Local upscaling 
Knowing the local boundary condition for an extended subdomain, 

Fig. 6. Generate extended subdomains. Black thick lines are the boundaries of 
subdomains; black thin lines represent the boundaries of coarse grid-blocks; 
each subdomain contains 3 × 3 coarse grid-blocks; an extended subdomain is 
larger than a subdomain and is composed of four regions where each region is 
enclosed by the purple lines. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. The boundary lines and coarse nodes in an 
extended subdomain. The purples lines represent 
boundary lines; the large-scale fractures in yellow are 
also taken as boundary lines; the matrix coarse nodes 
are represented with red point; the fracture coarse 
nodes are represented with red squares. This extended 
subdomain contains 7 × 7 coarse grid-blocks; the 
coordinates help to determine its position in Fig. 6. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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we can perform a local steady-state simulation on the fine unstructured 
grid to reproduce the small-scale flow response. Based on this solution, 
we re-compute the transmissibility among matrix, large fractures, and 
small fractures using a single-phase flow-based numerical upscaling 
(Durlofsky et al., 2012). 

The governing equation for steady-state simulation in the local re
gion can be written as below: 

∇ ⋅
(
− kf∇pf )= 0 (8) 

Here, superscript f means fine scale. The flux between two neigh
boring fine control volumes is defined as: 
(
qf )

l =
(
Tf Δpf )

l (9)  

where q represents flux; T represents the transmissibility. 
The flux between two neighboring coarse control volumes can be 

written as below: 

qc =
∑

l

(
qf )

l (10)  

where superscript c means the coarse scale; l represents all the fine scale 
interfaces on a coarse scale interface. The pressure of coarse control 
volumes can be obtained using the volume-average method: 

pc
m = 〈pf 〉m pc

n = 〈pf 〉n (11)  

where subscripts m and n represent two neighboring coarse control 
volumes; <•>m denotes a bulk-volume-averaged property computed 
over the fine control volumes which fall inside the coarse control volume 
m. Then the transmissibility between control volumes m and n can be 
written as: 

Tc
m,n =

qc
⃒
⃒pc

m − pc
n

⃒
⃒

(12) 

Note that the transmissibility between matrix control volumes and 
that between large fracture elements are still computed by traditional 
discretization approach. Using an upscaling approach to update these 
transmissibilities could remove the limitation that requires the two grids 
to be conformal and thus simplify the pre-processing work in terms of 
grid generation. But since it may affect the accuracy of transmissibility 
computation, we are going to investigate the feasibility of such an 
approach in our future work. 

2.4. Adaptive local-global upscaling 

Due to the adjustment of field development plan and the variety of 
multi-scale heterogeneities, the local boundary conditions are not static 
during a simulation run. Moreover, as discussed in (Renard and de 

Fig. 8. Local boundary lines and coarse nodes. The lines in purple and yellow 
represent boundary lines; the red points on the purple lines and red squares on 
the yellow lines represent the coarse nodes; we know the pressure values on 
coarse nodes from global solution. The purple lines, yellow lines, red points, 
and red squares are taken from Fig. 7. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 9. Schematic of computing basis function. We 
perform many steady-state simulations on the 
boundary control volumes which are near purple lines 
and on the yellow lines to determine basis functions. 
For example, in figure a, we force the pressure value 
of the fine control volume at the red coarse node as 1, 
and force the pressure values of the fine control vol
umes at the blue coarse nodes and blue squares as 0. 
The pressure values of boundary control volumes 
form the basis function. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 10. Implementation procedure of adaptive local-global upscaling.  
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Marsily, 1997; Miller et al., 1998), the changes in boundary conditions 
have a large effect on local upscaling solutions. Therefore, we perform 
the local upscaling adaptively following the local-global upscaling pro
cedure (Chen et al., 2003; Li and Durlofsky, 2016). In this way, dynamic 
and accurate boundary conditions can be guaranteed for local upscaling. 
The flow chart of the implementation procedure is described in Fig. 10. 
We describe the details as follows. 

First, according to the current simulation time, we determine 
whether to perform the local upscaling or not. If yes, we perform the 
local upscaling. If not, we continue the forward simulation. Second, if 
local upscaling is necessary, we determine the local boundary conditions 
following section 2.3.3. Third, we perform local upscaling to update the 
transmissibility for coarse-scale forward simulation. The way to 
compute the transmissibility is described in Eqs. (13)–(16). 

Tc
Mm ,Sn

=
qc

Mm ,Sn⃒
⃒pc

Mm
− pc

Sn

⃒
⃒

(13)  

Tc
Mm ,Ln

=
qc

Mm ,Ln⃒
⃒pc

Mm
− pc

Ln

⃒
⃒

(14)  

Tc
Sm ,Sn

=
qc

Sm ,Sn⃒
⃒pc

Sm
− pc

Sn

⃒
⃒

(15)  

Tc
Sm ,Ln

=
qc

Sm ,Ln⃒
⃒pc

Sm
− pc

Ln

⃒
⃒

(16) 

Here the superscript c represents coarse scale; the subscripts M, S, 
and L represent matrix, small fractures, and large fractures porous 
media; the subscripts m and n represent two neighboring coarse control 
volumes. Note that the small fractures that fall inside the same coarse 
structured grid are upscaled as a single continuum. As a result, we obtain 
a triple continuum model for the coarse-scale forward simulation where 
large fractures are represented with numerical EDFM and small fractures 
are upscaled as a third continuum. It is important to mention that the 
DFM technique has already reached certain maturity in representation 
of 2D and 3D fractured networks (Berre et al., 2021). However, an 
application of DFM to realistic fractured networks with several thousand 
fractures (e.g. based on outcrop interpretation) is still a challenging 
problem due to the high complexity of meshing. The EDFM approach is a 
more suitable technique for this type of applications and this is where 
MLDFM can significantly improve the accuracy of approximation. 
Considering the fact that there are limited number of fractures in each 
subdomain, we apply the DFM, which provides better solutions than that 
of EDFM but requires an unstructured grid, to accurately reproduce the 
fine-scale complex flow response. 

To display the triple continuum model in an intuitive way, we show 
the connectivity between the continuums in Fig. 11. Since the fractures 
may vary in a wide range of length scales in realistic fractured reservoirs, 
we are going to extend the fracture network from two levels presented in 
this study to three or more levels in future research. A new triple con
tinuum model will be introduced where the large-scale fractures are 
represented with numerical EDFM, the middle-scale fractures are rep
resented with a third continuum, and the small-scale fractures are ho
mogenized into the matrix. 

3. Numerical results 

In this section, we present several tests to demonstrate the perfor
mance of the MLDFM. First, we benchmark the MLDFM solution with 
the fine DFM and traditional EDFM solutions. Next, we study with 
several examples the sensitivity of the MLDFM solutions to different 

Fig. 11. The fracture distribution and corresponding 
connectivity between continuums. Here, we only 
show two types of fracture network for illustration, 
one is simple and the other is complex. M1 represents 
the white grid-block; M2 represents the light blue grid- 
block; L1 represents the large fracture in red in the 
white grid-block; L2 represents the large fracture in 
purple in the light blue grid-block; S1 represents the 
small fractures in blue in the white grid-block; S2 
represents the small fractures in yellow in the light 
blue grid-block. (For interpretation of the references 
to colour in this figure legend, the reader is referred to 
the Web version of this article.)   

Fig. 12. The schematic of a simple fracture network. Red thick lines represent 
large-scale fractures, black thick lines represent small-scale fractures, black thin 
lines represent the boundaries of coarse grid-blocks. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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boundary conditions and the type of small features. Finally, we inves
tigate the feasibility of the MLDFM method for realistic fractured 
reservoirs. 

3.1. Simple fracture network 

In this case, using a simple fracture network in Fig. 12, we bench
mark the numerical solutions of MLDFM and EDFM with a reference 
solution, obtained using a high-resolution DFM. The EDFM solution is 
obtained by solving the traditional EDFM model, see (Hajibeygi et al., 
2011; Tene et al., 2017) for details regarding the computation of 
fracture-matrix transmissibility. The reference solution is based on a 
conforming grid that is fully converged numerically, see (Sartori, 2018) 
for details. The reservoir is saturated with water, the properties of 
reservoir and fluid are taken from Tables 1 and 2 The upper and lower 
boundaries are impermeable, the left and right boundaries are imposed 
with constant injection and production rates equaling to 200 Kg/day. 
The injected pore volume is 0.01. 

Since the length of all fractures is larger than the size of the coarse- 
scale grid-block, we represent all fractures with numerical EDFM in 
MLDFM. From Fig. 13, we can see that the three solutions of DFM, 
EDFM, and MLDFM are very similar. The results demonstrate the ac
curacy and feasibility of the numerical EDFM in MLDFM. Moreover, we 

compare the pressure solutions in Fig. 14. By averaging the fine DFM 
solution to the coarse grid and taking it as a reference, the relative errors 
(defined by Eq. (17)) of the conventional EDFM and MLDFM are equal to 
3.06% and 2.04% respectively. The pressure error in MLDFM is 1.5 times 
lower than in conventional EDFM. 

err =
∑NB

i=1

⃒
⃒pMLDFM,i − pDFM,i

⃒
⃒

pDFM,i

/

NB (17)  

where NB is the number of coarse matrix grid-blocks. This error is 
applied for all examples in this paper. 

In this test, the results prove that the MLDFM is capable to provide 
slightly more accurate solutions than the EDFM when all the fractures 
have a length in the same order as the grid-block size or much longer. 
Next, we will test a fracture network with shorter fractures compared 
with grid-block size. 

3.2. Complex fracture network 

In this section, we investigate the performance of the MLDFM in 

Fig. 13. The pressure distributions obtained from DFM, conventional EDFM and MLDFM (injected PV = 0.01). The solutions are shown on the coarse grid; the 
solution of DFM is obtained by volume weighted method. The fine unstructured grid used for DFM and MLDFM is not shown here. Since the length of all fractures is 
larger than the size of the coarse-scale grid-block, we represent all fractures with numerical EDFM in MLDFM. To constrain boundary condition, we attach skin grid- 
blocks that have tiny volume and very high permeability on the left and right boundaries of the domain. The dimension of the grid-blocks is 12 × 10. This test shows 
the accuracy and feasibility of numerical EDFM in MLDFM. 

Fig. 14. The comparison of pressure solutions obtained from DFM, conven
tional EDFM and MLDFM (injected PV = 0.01). Since we attach skin grid-blocks 
on the left and right boundaries of the domain, the number of grid-blocks is 
120. If a grid-block is numbered as J and I in x and y directions respectively, the 
block ID of this grid-block is (I-1) × 12 + J. The block ID of the left bottom grid- 
block is 1, the block ID of the right up grid-block is 120. Fig. 15. The schematic of a complex fracture network. Red thick lines represent 

large-scale fractures, black thick lines represent small-scale fractures, black thin 
lines represent the boundaries of coarse grid-blocks. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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multiphase flow using a more complex fractured model shown in Fig. 15. 
The boundary condition is the same as that applied in the previous 
example. The reservoir, fluid, and boundary condition parameters are 
taken from Table 1 through 5. Since the length of small-scale fractures is 
much smaller than the grid-block size, we apply the idea of the hierar
chical fracture model (HFM) in the comparison instead of EDFM. Here, 
the large-scale fractures are represented with the traditional EDFM 
when the small-scale fractures are homogenized into matrix using 

upscaling method. See the treatment of type III fractures in (Guo et al., 
2019) for the details of the upscaling method. In this work, we refer to it 
as EDFM + ECM where ECM represents Equivalent Continuum Model. 
Besides, the small-scale fractures are upscaled as a third continuum in 
the MLDFM. 

We compare the solutions of MLDFM and EDFM + ECM with the 
high-resolution DFM solution. As shown in Figs. 16 and 17, the fracture 
network introduces a complex multi-scale flow response which affects 
multiphase transport in all models. The pressure solutions, shown in 
Fig. 16, demonstrate that MLDFM provides a better solution in com
parison to the EDFM + ECM. Taking the fine DFM solution as a refer
ence, the pressure errors of the EDFM + ECM and MLDFM are equal to 
11.60% and 3.29% respectively. In addition, the saturation distribu
tions, shown in Fig. 17, demonstrate that MLDFM could predict the main 
flow path more accurately than EDFM + ECM. The saturation errors of 
the EDFM + ECM and MLDFM are equal to 13.35% and 6.45% respec
tively. Notice that the pressure error in MLDFM is almost 4 times lower 
than that in EDFM + ECM when both models are applied to multiphase 
flow in the complex fracture network. The improvement of the simula
tion accuracy in MLDFM is achieved by an application of the triple 
continuum model in a dynamic manner which enhances the modelling 
capabilities by considering the effect of a local flow redistribution at sub- 
scale of EDFM. 

3.3. Sensitivity analysis 

In this section, we will demonstrate the robustness of MLDFM 
through sensitivity analysis. 

3.3.1. Sensitivity to the flow boundary condition 
As shown above, boundary conditions play a vital role in flow 

response. In this section, by using the fracture network in Fig. 15, we 
investigate the sensitivity of all three model solutions to boundary 
conditions. The reservoir, fluid, and boundary condition parameters are 
taken again from Table 1 through 5. We design three flow directions 
shown in Fig. 18. Since the solution for the first boundary condition is 
already obtained in the last section and shown in Figs. 16 and 17, we 
only run simulations for the second and third boundary conditions here. 
The pressure solutions, shown in Fig. 19, demonstrate that the MLDFM is 
capable to provide significantly better solutions than the EDFM + ECM 
at different boundary conditions. The saturation distributions, shown in 
Figs. 20 and 21, demonstrate that MLDFM could predict the main flow 
path more accurately than EDFM + ECM. The errors are shown in 
Table 6. 

3.3.2. Sensitivity to the type of small features 
The type of small features also has significant impact on the flow 

response. While the large-scale fractures control the major flow distri
bution, the small-scale fractures affect it at the local scale. In this section, 
we investigate the sensitivity of solutions of the three models to the type 
of small-scale fractures. To reach this goal, we generate a new geological 

Table 4 
Relative permeability (Corey equation).  

Parameter Value 

Phase exponent 2 
Oil exponent 4 
Irreducible phase saturation 0 
Residual oil saturation 0 
End point of the oil relative permeability curve 1  

Table 5 
Injection/Production strategy.  

Parameter Value Unit 

Injection rate 500 kg/d 
Production rate 500 kg/d 
Injected pore volume 0.25   

Fig. 16. The pressure distributions (injected PV = 0.25). If a grid-block is 
numbered as J and I in x and y directions respectively, the block ID of this grid- 
block is (I-1) × 7 + J. The block ID of the left bottom grid-block is 1, the block 
ID of the right up grid-block is 49. The numbering approach of block ID is used 
in the following figures. 

Fig. 17. The water saturation distributions (injected PV = 0.25). To constrain boundary condition, we attach skin grid-blocks that have tiny volume and very high 
permeability on the outer boundaries of the domain. The dimension of the grid-blocks is 7 × 7. What the way to attach skin grid-blocks is used in the 
following figures. 
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model by changing fracture connectivity of the fracture network in 
Fig. 15. As shown in Fig. 22, we removed most of the small-scale features 
of which the angles are larger than 90◦. Again, the reservoir, fluid, and 
well condition parameters are taken from Table 1 through 5. 

Pressure and saturation solutions are shown in Figs. 23 and 24 
respectively. Taking the DFM solution as a reference, the pressure errors 
of the EDFM + ECM and MLDFM are equal to 15.66% and 2.96% 
respectively. The saturation errors of the EDFM + ECM and MLDFM are 
equal to 14.04% and 8.54% respectively. The results demonstrate again 

Fig. 18. The schematic of three flow conditions.  

Fig. 19. The pressure distributions at the second and third type of global boundary conditions (injected PV = 0.25).  

Fig. 20. The water saturation distributions at the second flow condition (injected PV = 0.25).  

Fig. 21. The water saturation distributions at the third flow condition (injected PV = 0.25).  

Table 6 
Errors of EDFM + ECM and MLDFM compared with DFM at three boundary 
conditions.  

Boundary conditions Pressure error, % Saturation error, % 

EDFM + ECM MLDFM EDFM + ECM MLDFM 

Type 1 11.60 3.29 13.35 6.45 
Type 2 30.74 9.87 10.36 8.22 
Type 3 32.05 15.28 8.36 7.89  
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that MLDFM could provide more accurate solutions than EDFM + ECM 
for different small features types. 

3.4. Realistic fracture network 

In this section, we test MLDFM with a complex fracture network from 
Apodi, Brazil (Bertotti and Bisdom, 2013; Bisdom et al., 2016) shown in 
Fig. 25. The reservoir dimension is 300 × 300 m, the first boundary 
condition shown in Fig. 18 is applied, the pressures at the left and right 
boundaries are fixed at 300 and 100 bar respectively, the injected pore 
volume of fine DFM model is 0.20, and other parameters are taken from 
Table 1 through 5. 

The pressure and water saturation solutions obtained by DFM, EDFM 
+ ECM, and MLDFM simulations are shown in Figs. 26 and 27. Taking 
the fine DFM solution as a reference, the pressure errors of the EDFM +
ECM and MLDFM are equal to 4.40% and 2.39% respectively, the 
saturation errors of the EDFM + ECM and MLDFM are equal to 18.34% 
and 8.10% respectively. Besides, the error of saturation in MLDFM 
model is distributed more uniformly with a lower amplitude in com
parison to EDFM + ECM approach where errors are near the main 
displacement front. 

The results demonstrate that the MLDFM can provide more accurate 
solutions than EDFM + ECM for reservoirs simulations employing 
complex realistic fracture networks. The number of control volumes 
corresponding to DFM, EDFM + ECM, and MLDFM are 334,774, 998 and 
1145 respectively. Compared with DFM, MLDFM saves about 97% 
simulation time and is comparable by performance with EDFM + ECM. 
Therefore, we can conclude that MLDFM is an accurate and computa
tionally efficient forward-simulation method for complex naturally 
fractured reservoirs. 

4. Conclusions 

We present a multi-level discrete fracture model (MLDFM) for 

Fig. 22. The schematic of a modified fracture network. Remove most of the 
small-scale fractures of which the angles are larger than 90◦ from the fracture 
network shown in Fig. 15. Red thick lines represent large-scale fractures, black 
thick lines represent small-scale fractures, black thin lines represent the 
boundaries of coarse grid-blocks. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 23. The pressure distributions of the test using a modified fracture 
network (injected PV = 0.25). The first flow condition is applied. 

Fig. 24. The water saturation distributions of the test using a modified fracture network (injected PV = 0.25). The first flow condition is applied.  

Fig. 25. A realistic fracture network from Apodi, Brazil.  
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naturally fractured reservoir simulation. To guarantee accurate and 
efficient solutions, we couple fine-scale solutions within a coarse-scale 
forward simulation. 

In the coarse-scale forward simulation, we apply a triple continuum 
model on a structured grid where large fractures are approximated 
explicitly utilizing the numerical EDFM and the secondary features are 
upscaled as a third continuum. Different from the previous work, the 
numerical EDFM and the third continuum are treated in a dynamic 
manner considering the effect of changes in flow direction on the 
complex multi-scale flow response. 

In the fine-scale simulation, we use DFM on an unstructured grid that 
approximates all fractures explicitly. Thanks to that, the small-scale flow 
response can be captured accurately. 

For the convenience of implementation, the fine grid is conformal to 
the boundary of coarse grid. Benefit from that, it is easy to couple the 
upscaled solution of fine-scale simulation within the coarse-scale for
ward simulation. 

To guarantee the robustness and accuracy of the upscaled solution, 
we apply the flow-based method for the extended local upscaling. 
Moreover, since the flow direction has a large effect on the upscaled 
solution, we derive local boundary conditions at fine scale from the 
global pressure solution employing basis functions. What improves the 
solution furthermore is that we apply a local-global upscaling formalism 
to ensure changes in local boundary conditions. 

We present several numerical cases to demonstrate the performance 
of MLDFM. The test mimicking single-phase flow in a simple synthetic 
fracture network proves that the numerical EDFM approach in MLDFM 
is capable to improve the modelling capabilities of large-scale fractures. 
Moreover, we test several multi-phase flow cases using complex fracture 
networks. The results demonstrate that the MLDFM could also provide 
robust and accurate solutions for multi-phase flow modelling in complex 
fractured reservoirs. Besides, we test a multi-phase flow in a realistic 
fracture network based on outcrop observations. The results further 
demonstrate the feasibility and performance of MLDFM in applied field 
cases. 

In view of the high modelling capabilities of DFM, we will present a 
hybrid model using DFM in both coarse-scale and fine-scale simulations. 

Moreover, we will investigate the feasibility of applying EDFM at two 
scale simulations which could significantly simplify the implementation 
of MLDFM. Besides, considering the realistic applications, we will apply 
the MLDFM to 3D problems. 
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