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University of Jyväskylä, P.O. Box 35 (Agora)

FI-40014 University of Jyväskylä, Jyväskylä, Finland
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Abstract. We consider the use of controllability techniques to solve the Helmholtz equa-
tion. Instead of solving directly the time-harmonic equation, we formulate the Helmholtz
problem as an exact controllability problem for the time-dependent wave equation. This
involves finding such initial conditions that after one time-period the solution and its time
derivative would coincide with the initial conditions. The problem is formulated as a
least-squares optimization problem, which is solved by a preconditioned conjugate gradi-
ent method. We use spectral elements for spatial discretization and the classical fourth
order Runge-Kutta method for time discretization. This leads to high accuracy and diag-
onal mass matrices. Mass lumping makes the explicit time-stepping scheme for the wave
equation very efficient.

1 INTRODUCTION

We consider controllability methods for the numerical solution of the two-dimensional
Helmholtz equation with an absorbing boundary condition describing the scattering of a
time-harmonic incident wave by a sound-soft obstacle:

−ω2U −∇2U = 0, in Ω, (1)

U = 0, on Γ0, (2)

−iωU +
∂U

∂n
= Gext, on Γext, (3)

where U(x) denotes the total acoustic pressure consisting of the scattered wave Uscat(x)
and the incident wave Uinc(x) = exp(i~ω · x), where i is the imaginary unit and the vector
~ω gives the propagation direction. The function Gext depends on the incident wave. The
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domain Ω is bounded by the surface of the obstacle Γ0 and an absorbing boundary Γext.
Vector n is the outward normal vector to domain Ω. In this case, the angular frequency
ω = ‖~ω‖2 is equal to the wavenumber, and it is related to the wavelength λ by the formula
λ = 2π

ω
.

Spatial discretization is done with spectral element method (SEM). It allows conve-
nient treatment of complex geometries. The basis functions are higher order Lagrange
interpolation polynomials, and the nodes of these functions are placed at Gauss-Lobatto
collocation points. The integrals in the weak form of the equation are evaluated with the
corresponding Gauss-Lobatto quadrature formulas. As a consequence of the choice, spec-
tral element discretization leads to diagonal mass matrices also with a higher-order basis1.
This significantly improves the computational efficiency of the explicit time-integration
used. Moreover, when using higher order elements, same accuracy is reached with less
degrees of freedom than when using lower order finite elements2.

After discretization, the controllability problem is reformulated as a least-squares op-
timization problem, which is solved with a preconditioned conjugate gradient algorithm.
Such an approach was first suggested and developed in the 1990s by French researchers3

and we have recently introduced some improvements to its practical realization4. In these
references, the central finite difference scheme, which is only second-order accurate with
respect to time step, has been used for time discretization. When higher order elements are
used with the second order time discretization, the error of time discretization dominates
reducing the global accuracy of the scheme, unless very small time steps are considered.
In this article, we improve the accuracy of the method by using the fourth order accurate
Runge-Kutta method for time discretization. We also compare it with the method with
central finite difference scheme4.

2 EXACT CONTROLLABILITY FORMULATION

In order to solve the Helmholtz problem (1)-(3), we return to the time-dependent wave
equation. Direct time-integration of the wave equation could be used to reach the time-
periodic case, but convergence is usually too slow to be useful in practice. This is why we
use an alternative idea of Bristeau, Glowinski and Périaux to speed up the convergence
by control techniques3.

The original time-harmonic equation is reformulated as an exact controllability5 prob-
lem for the wave equation: Find initial conditions e0 and e1 such that:

∂2u

∂t2
−∇2u = 0, in Q = Ω× [0, T ], (4)

u = 0, on γ0 = Γ0 × [0, T ], (5)

∂u

∂t
+

∂u

∂n
= gext, on γext = Γext × [0, T ], (6)
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u(x, 0) = e0,
∂u

∂t
(x, 0) = e1, in Ω, (7)

u(x, T ) = e0,
∂u

∂t
(x, T ) = e1, in Ω. (8)

The key idea of the method is to look for a time periodic solution by using initial conditions
as control variables. Once the exact controllability problem is solved, the real-valued
initial conditions are equal to the terminal conditions, and T -periodic solution u is found.
The complex-valued solution U of (1)-(3) is then obtained by U = e0 + i

ω
e1.

3 SPECTRAL ELEMENT DISCRETIZATION

For the spatial discretization of the wave equation (4)-(7), we use the spectral element
method, which combines the geometric flexibility of classical finite elements with the
high accuracy of spectral methods. The spectral element discretization of the problem is
based on the weak formulation of the classical wave equation (4)-(6): Find u satisfying
u(t) ∈ V = {v ∈ H1(Ω) such that v = 0 on Γ0} for any t ∈ [0, T ] and

∫
Ω

∂2u

∂t2
v dx+

∫
Ω

∇u · ∇v dx +

∫
Γext

∂u

∂t
v ds =

∫
Γext

gextv ds (9)

for any v ∈ V and t ∈ [0, T ].
The computational domain Ω is divided into Ne quadrilateral elements Ωi, i = 1, . . . , Ne

such that Ω =
⋃Ne

i=1 Ωi. For the discrete formulation, we define the reference element
Ωref = [0, 1]2 and affine mappings Gi : Ωref → Ωi such that Gi(Ωref) = Ωi. Then, the finite
element subspace Vr

h of V is given by V r
h = {vh ∈ V such that vh|Ωi

◦ Gi ∈ Qr}, where
Qr(Ωi) = {v(ξ, ζ) =

∑r
p=0

∑r
q=0 apqξ

pζq, apq ∈ R} is the set of polynomials of order r in

R2.
After spatial discretization we have the semi-discrete equation

M∂2u

∂t2
+ S ∂u

∂t
+Ku = F , (10)

where vector u(t) contains the nodal values of the function u(x, t) at time t, and satisfies
the initial condition (7) at time t = 0. Because matrices M and S are diagonal, explicit
time stepping requires only matrix-vector multiplications. Stiffness matrix is denoted by
K, and F is the vector due to the function gext.

4 TIME DISCRETIZATION

We use the fourth order Runge-Kutta scheme for time discretization. This scheme is
fourth order accurate and with a diagonal mass matrix also fully explicit, which are both
essential properties for computational efficiency. Only matrix-vector products are needed
in time-dependent simulation, but the scheme needs to satisfy the stability condition,
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which limits the length of the time step. We have chosen to divide the time interval [0, T ]
into N time steps, each of size ∆t = T/N .

After applying the fourth order Runge-Kutta scheme to equation (10) and taking into
account the initial conditions (7) we obtain the fully discrete state equation, which can
be represented in the matrix form


I
N I

. . . . . .

N I
N I




y0

y1

...
yN−1

yN

−


I
0
...
0
0


(

e0

e1

)
−


0

F̂ 1

...

F̂N−1

F̂N

 = 0, (11)

where y0 = (e0, e1)
T . The vector block yi =

(
ui, ∂ui

∂t

)T

, i = 1, . . . , N , contains the vector u

and its first time derivative at time i∆t. The identity matrix is denoted by I, and the other
matrix and vector blocks in (11) are given byN = −(B̂Â−1Ĉ+I) and F̂ i = −B̂Â−1Ĥ such
that B̂ =

(
R̂ 2R̂ 2R̂ R̂

)
and ĤT = ∆tM−1

(
F i−1 0 F i− 1

2 0 F i− 1
2 0 F i 0

)
,

where F i is the vector F at time i∆t. To compute the matrix and vector blocks mentioned
above, also the following block forms are defined:

Â =


I
D̂ I

D̂ I
2D̂ I

 , Ĉ =


2D̂

2D̂

2D̂

2D̂

 ,

D̂ =

(
0 −∆t

2
I

∆t
2
M−1K ∆t

2
M−1S

)
, R̂ =

(
−1

6
I 0

0 −1
6
I

)
.

5 LEAST SQUARES PROBLEM

The exact controllability problem for computing T−periodic solution for the wave
equation involves finding such initial conditions e0 and e1 that the solution u and its time
derivative ∂u

∂t
at time T would coincide with the initial conditions. For the numerical

solution, the exact controllability problem is replaced by a least-squares optimization
problem with the functional J , which is, on the semi-discrete level, of the form:

J(e0, e1,u) =
1

2

(
(u(t)− e0)

T K (u(t)− e0) +

(
∂u(t)

∂t
− e1

)T

M
(

∂u(t)

∂t
− e1

))
. (12)

The purpose is to minimize functional J , which depends on the initial conditions both
directly and indirectly through the solution of the wave equation.
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5.1 Gradient of the cost function

Since vector u depends linearly on the initial conditions e0 and e1, J is a quadratic
function, and (12) can be minimized by solving the linear system ∇J(e0, e1) = 0 with a
conjugate gradient (CG) method. For this, we compute the gradient of the discretized
cost function (12) by the adjoint equation technique.

The adjoint equation corresponding to the state equation (11) is


I N T

I N T

. . . . . .

I N T

I




q0

q1

...
qN−1

qN

 =


0
0
...
0

∂J(e0,e1,u(e0,e1))
∂yN

 , (13)

where qi =
(
pi, ∂pi

∂t

)
, i = N − 1, . . . , 0, N T = −(ĈT (ÂT )−1B̂ + I), and

∂J(e0, e1,u(e0, e1))

∂yN
=

( ∂J(e0,e1,u(e0,e1))
∂uN

∂J(e0,e1,u(e0,e1))

∂
“

∂uN

∂t

”
)

=

(
K(uN − e0)

M(∂uN

∂t
− e1)

)
. (14)

Then, the gradient components are

dJ(e0, e1,u(e0, e1))

de0

= K(e0 − uN) + p0, (15)

dJ(e0, e1,u(e0, e1))

de1

= M
(

e1 −
∂uN

∂t

)
+

∂p0

∂t
. (16)

5.2 Preconditioned conjugate gradient method

If the unpreconditioned CG algorithm is used, the number of iterations grows with the
order of elements6. That is why we solve the least-squares problem with a preconditioned
CG algorithm. The initial approximations of e0 and e1 are computed by using a transition
procedure7. Each CG iteration step requires computation of the gradient ∇J , which
involves the solution of the wave equation (4)-(8) and its adjoint equation. Also solution
of one linear system with a preconditioner L and some matrix-vector operations are needed
at each iteration.

We use the block-diagonal preconditioner

L =

(
K 0
0 M

)
, (17)
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where the first and second blocks are associated with the first and second terms in (12),
respectively. Solution of a linear system with the block-diagonal preconditioner incorpo-
rates the solution of systems with the stiffness matrix K and the diagonal mass matrix M.
Efficient method for computing solution of linear systems with the matrix K is critical
for the overall efficiency of the control method. We apply a modification of Kickinger’s8

algebraic multigrid (AMG). In this method coarsening (i.e. selection of the unknowns for
coarser levels) is based on the graph of the stiffness matrix, instead of using actual values
stored in the stiffness matrix9. The coarsening process operates in a geometric fashion by
sequentially choosing a coarse node and eliminating the neighboring nodes of the graph.
The primary criterion used here for selecting the next coarse grid node is to take the node
with minimum degree (taking into account the eliminations). The secondary criterion is
to follow the original numbering. This approach ensures fast computation of coarser level
components. It also is an easy task to extend this method to use any graph related to
the problem.

However, this strategy leads to far too coarse systems when applied to the graph of
stiffness matrix obtained by higher-order discretization. This is due to increasing amount
of connections between unknowns of the problem. Consequently, convergence factor of
AMG degrades rapidly as the order of the approximation polynomials increases. We have
overcome this problem by employing a graph that is constructed so that unknowns are
connected to each other as lower-order element would have been used in the discretization
process, i.e. only the unknowns corresponding to the nearest neighbouring nodes are
connected to each other. The use of AMG methods for problems discretized with spectral
elements has recently been studied in an article by Heys, Manteuffel, McCormick, and
Olson10, in which they applied the well-known AMG of Ruge and Stüben11 to Poisson
problem and Stokes equations.

6 NUMERICAL EXAMPLES

We consider a two-dimensional scattering problem (4)-(8) with gext = ∂uinc

∂n
+ ∂uinc

∂t
,

where the incident plane wave is of the form

uinc(x, t) = cos(~ω · x) cos(ωt) + sin(~ω · x) sin(ωt).

We have set the propagation direction ~ω = ω(−
√

2
2

,
√

2
2

), and the stopping criterion is
achieved when relative euclidean norm of the gradient of the functional J is less than 10−5.
Error due to geometry modeling is reduced to an insignificant level by using geometries
with polygonal boundaries.

Large time step allows to compute the solution utilizing only small amount of CPU
time, but it may involve an error which deteriorates the accuracy of the method. Because
of accuracy and stability demands the time interval [0, T ] is divided into 300 time steps
(∆t = 1/600) in the case of central finite difference (CD) time discretization and into
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150 time steps (∆t = 1/300) in the case of Runge-Kutta (RK) time discretization. The
results are obtained by using a PC based on an AMD Athlon XP 1800+ CPU at 1.5 GHz.

As a smoother of the AMG we have used successive over relaxation (SOR), with over-
relaxation parameter 1.2. One iteration of SOR is used as pre- and post-smoothing.
Additionally, in the beginning of every multigrid iteration, four iterations of SOR is used
to smooth the solution initially. In this case, so called W-cycle12 is utilized as a multigrid
iteration.

6.1 Accuracy

To study the effect of spatial and temporal discretizations we eliminate the error of
absorbing boundary condition by modifying the scattering problem such that we know the
solution u to be the plane wave uinc. To achieve this, we introduce a function g ∈ H1(Ω)
such that g|Γ0 = uinc, g|Γext = 0 and ∂g

∂n
|Γext = 0, and define û = u − g. Then, function û

satisfies the wave equation

∂2û

∂t2
−∇2û = −∂2g

∂t2
+∇2g

and the boundary conditions (5) and (6). We use the controllability algorithm to compute
the function û and, in the end, get the actual solution u by the summation û + g.

We use a mesh with stepsize h = 1/4 to solve this modified test problem with wavenum-
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Figure 1: L∞-norm of the difference between analytic solution and numerical solution with respect to
the spectral order.
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ber ω = π and time interval [0, 2]. The boundary Γext coincides with a rectangle with the
lower left corner at the point (0.0, 0.0) and the upper right corner at the point (4.0, 4.0).
In the center of this rectangle, we have a bounded square scatterer with side length 2.

Figure 1 shows the error when the order of the spectral basis is increased. As the order
increases, the error decreases until the error of the time discretization or the stopping
criterion is achieved. According to Figure 1, error of spatial discretization dominates
with low order elements. Thus, the difference between maximum errors is negligible for
spectral orders r = 1 (corresponding to bilinear finite elements) and r = 2. When higher
order elements are used, results computed with RK version of the algorithm are more
accurate than the ones computed with the CD version.

Figure 2: Contourplot of scattering by a non-convex semi-open cavity.

Figure 3: Contourplot of scattering by two non-convex semi-open cavities.
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6.2 Scattering by non-convex cavities

We consider acoustic scattering by a non-convex semi-open cavity and a system of two
semi-open cavities with angular frequency ω = 4π, total time T = 1/2, and mesh stepsize
h = 1/32. In the first scattering test, the lower left corner of the surrounding domain
is at the point (0.0, 0.0) and the upper right corner is at the point (7.25, 3.75). Internal
width and height of the cavity are 5 and 5

4
, respectively, and thickness of the wall is 1

4
(see

Figure 2). As the second test case, we solve the same problem in a domain, where the
artificial boundary Γext coincides with the border of a quadrangle [0, 5] × [0, 4], and we
have two non-convex semi-open cavities as scatterers. Internal width and height of each
cavity are 3

4
and 5

4
, respectively. Thickness of the wall is 1

4
, and distance between cavities

is 1 (see Figure 3).
Both test examples are solved by increasing the order of the spectral element basis.

Figures 2 and 3 represent the total field u obtained by the RK time discretization and
cubic spectral element basis (r = 3). The number of CG iterations needed to solve the
control problem with CD and RK time discretizations are compared in Table 1, which
also shows the number of degrees of freedom (DOF) in the spectral element mesh. The
choice of the geometry of the scatterer affects the number of iterations. In the case of
one non-convex semi-open cavity more reflections are produced inside the cavity than in
the case of two non-convex semi-open cavities. Therefore, the number of iterations in the
first test example is more than twice as large as in the second test example. The number
of iterations is almost the same with both time discretizations. Since the preconditioner
accelerates the convergence rate of the CG method, the number of preconditioned CG
iterations is independent of polynomial degree r.

CPU time in seconds is depicted in Figure 4, where DOF increases as the order of the
spectral element basis increases from 1 to 3. Solving the system with inversion of the mass
matrix M−1 is required only once at each timetep in CD time discretization, whereas in
the case of RK time discretization each time step involves four multiplications by M−1.
This allows to use larger stepsizes in RK with good accuracy, but it also increases the

r 1 2 3

test 1 DOF 25568 100800 225696
number of
iterations

RK 321 303 299
CD 351 330 326

test 2 DOF 18039 71151 159335
number of
iterations

RK 153 146 145
CD 156 147 144

Table 1: Number of iterations in the case of a non-convex semi-open cavity (test 1) and two non-convex
semi-open cavities (test 2) with mesh stepsize h = 1/32 and angular frequency ω = 4π.
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computational effort when compared to CD. Although the RK version of algorithm needs
more CPU time than the CD version, computational efforts of the methods with CD and
RK time discretization are of the same order of magnitude.

103

104

105

105

C
P

U
 ti

m
e 

fo
r 

al
go

rit
hm

Degrees of freedom

 

test 1, RK
test 1, CD
test 2, RK
test 2, CD

Figure 4: CPU time in seconds with respect to the number of degrees of freedom.

7 CONCLUSIONS

The spectral element formulation used in this article results in a global mass matrix
that is diagonal by construction. No inversion of a mass matrix is needed either in the
method with CD or in the method with RK time discretization. This leads to efficient
implementation, which is an advantage compared to classical finite element method.

Simulation results show that the number of CG iterations is independent of the number
of optimization variables, i.e. two times DOF. The method with RK time discretization
needs more computational time, but leads to more accurate result than the method with
CD time discretization. CPU times of both methods are of the same order and seem to
depend linearly on DOF.
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