
 
 

Delft University of Technology

Global Coasts: A Baroque Embarrassment of Riches

Schlacher, Thomas A.; Maslo, Brooke ; de Schipper, M.A.

DOI
10.3390/coasts2040014
Publication date
2022
Document Version
Final published version
Published in
Coasts

Citation (APA)
Schlacher, T. A., Maslo, B., & de Schipper, M. A. (2022). Global Coasts: A Baroque Embarrassment of
Riches. Coasts. https://doi.org/10.3390/coasts2040014

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/coasts2040014
https://doi.org/10.3390/coasts2040014


Citation: Schlacher, T.A.; Maslo, B.;

de Schipper, M.A. Global Coasts: A

Baroque Embarrassment of Riches.

Coasts 2022, 2, 278–301. https://

doi.org/10.3390/coasts2040014

Academic Editor: Javier Benavente

González

Received: 22 April 2022

Accepted: 24 October 2022

Published: 8 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Perspective
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Abstract: Coasts form the universal stage on which people interact with the global ocean. Our
history is inextricably intertwined with the seashore, being a rich tapestry of archaeological sites
that paint a vivid picture of people hunting, foraging, fishing and scavenging at the edge of the
sea. Seascapes inspire diverse art forms celebrated through the ages. The world’s sandy beaches
have a flummoxing duality of anthropocentric purpose—ranging from the horrors when being
theatres of war to first love under a rising moon. ‘Man’s Love of the Sea’ continues to draw people
towards the shore: the narrow coastal strip contains everything from holiday cottages to mega-
cities. This coastal concentration of the human population is problematic when shorelines erode
and move inland, a geological process fastened by climate change. Society’s response is often a
heavy investment in coastal engineering to complement and enhance the natural storm protection
capacity of beaches and dunes. The coast’s immense cultural, social, and economic significance
are complemented by a wealth of natural riches. In the public’s eye, these ecological values can
pale somewhat compared with more imminent ecosystem services, particularly protecting human
properties from storm impacts. To re-balance the picture, here we illustrate how peer-reviewed science
can be translated into ‘cool beach facts’, aimed at creating a broader environmental appreciation of
ocean shores. The colourful kaleidoscope of coastal values faces a veritable array of anthropogenic
stressors, from coastal armouring to environmental harm caused by off-road vehicles. Whilst these
threats are not necessarily unique to coastal ecosystems, rarely do the winds of global change blow
stiffer than at the edge of the sea, where millions of people have created their fragile homes on shifting
sands now being increasingly eroded by rising seas. Natural shorelines accommodate such changing
sea levels by moving landwards, a poignant and powerful reminder that protecting the remaining
natural land is primus inter pares in coastal management. There is no doubt that coastal ecosystems
and coastal communities face august trials to maintain essential ecosystem services in the face of
global change. Whilst bureaucracies are not always well equipped to counteract environmental
harm effectively, using measures carrying a social license, many communities and individuals have
encouragingly deep values connected to living coastlines. Building on these values, and harnessing
the fierce protective spirits of people, are pivotal to shaping fresh models that can enhance and
re-build resilience for shores that will continue to be a ‘baroque embarrassment of coastal riches’.

Keywords: coastal management; environmental values; sandy shores; ocean beaches; conservation

1. Humans at the Edge of the Sea: The Coastal Connection

‘A striking characteristic of most coastal barriers in their natural state is their tendency
to migrate or recede gradually landward. That being so, it hardly seems sensible that
people build houses on shifting sands. Perhaps that can be explained by man’s romantic
love of the sea.’ [1]
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1.1. Vulnerable Coastal Cities Arising from ‘Man’s Love of the Sea’

It is devilishly difficult, and rather dangerous, to explain decisions and actions pow-
ered by romantic love. Humanity would be robbed of many a fantastic artistic work were it
not a beguiling, yet often impossible, task to do so (Figure 1). Cities built on the malleable
sands that naturally form often fragile dunes on ocean-exposed beaches so flummoxing
and illogical that ‘man’s romantic love of the sea’ must surely be considered seriously as
the raison d’etre for our lemming-like rush to the coast [2].
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Figure 1. Bandits on a Rocky Coast (Salvator Rosa, 1655–1660). (Image Source: The Metropolitan 
Museum of Art (‘The Met’), New York. The image of OA—Open Access. As part of the Met’s 
Open Access policy, the image can be freely copied, modified and distributed, even for commer-
cial purposes. https://www.metmuseum.org/about-the-met/policies-and-documents/open-access; 
accessed 26 Oct 2022) Note: Coastal landscapes have inspired artist throughout the ages, their 
sense of drama continuing unabated. Here, the jagged rocks frame a semi-hidden cove (presuma-
bly a smuggler’s cove) creating the seascape-stage for bandits arguing on the rocky shore. Few 
characters can dramatically outshine bandits and coastal smugglers, enduring symbols of roman-
tic escapisms and defiance against the reach of government. 

Coasts have been changing for millennia, but humans have become the major agent 
of geomorphic change only during the past few centuries. Furthermore, the spatial reach 
of anthropogenic impacts on coastlines has massively expanded to operate now at a truly 
global scale. The large numbers of coastal armouring structures (e.g., seawalls, groynes, 
breakwaters) are testimony to our massive investments aimed at ‘holding the line’ at the 
edge of the sea [20]. How humans shape seascapes can be a highly complex interplay be-
tween local practices, physical forces, socio-cultural norms, and geo-political events. In 
this context, Belknap and Sandweiss [21] provide a fascinating account of the intersection 
between societal destruction caused by colonising forces and the loss of key human 
practices that shaped coastal landforms. In Peru, the harvesting and processing of beach 
clams created sheets of discarded midden shells. These shell deposits played an important 
role in preserving dune ridges from erosion and deflation: indigenous maritime people 
effectively provided the mechanism for maintaining steep sandy beach ridges armoured 
by shell middens. The rapacious Spanish conquest resulted in a cataclysmic loss of indig-
enous culture; it also fundamentally changed coastal morphology by destroying the socio-
economic structures that underpinned clam harvesting and the creation and maintenance 
of shell middens. It is a fascinating story of geopolitical events destroying the human fab-
ric that for millennia maintained a dynamic coastal landscape [21]. Interestingly, shells 
continue to be used to stabilise shorelines, in settings as diverse as coastal villages in Timor 
Leste and large-scale investments to create ‘living shorelines’ in the US [22]. 

Figure 1. Bandits on a Rocky Coast (Salvator Rosa, 1655–1660). (Image Source: The Metropolitan
Museum of Art (‘The Met’), New York. The image of OA—Open Access. As part of the Met’s
Open Access policy, the image can be freely copied, modified and distributed, even for commercial
purposes. https://www.metmuseum.org/about-the-met/policies-and-documents/open-access;
accessed 26 October 2022) Note: Coastal landscapes have inspired artist throughout the ages, their
sense of drama continuing unabated. Here, the jagged rocks frame a semi-hidden cove (presumably a
smuggler’s cove) creating the seascape-stage for bandits arguing on the rocky shore. Few characters
can dramatically outshine bandits and coastal smugglers, enduring symbols of romantic escapisms
and defiance against the reach of government.

This rush has created a string of cities at the edge of ocean-exposed beaches, housing
the human lemmings on a migration towards the seashore that is unprecedented in human
history [3]. The narrow coastal strip is predicted to experience continual mass movement,
population growth and urbanisation in the future [4,5]. Among coastal landform types,
sandy beaches are prime sites for settlement, tourism and recreation [6]. Ocean-exposed,
wave-dominated, sandy beaches and coastal dunes are, however, complex and pliable
systems, their width and shoreline position being continuously moved by storms, variations
in sea level, and changes in sediment supply and transport [7]. Considering the enormous
investments in housing and infrastructure built on shifting sands, it is not surprising
that shoreline recession and beach erosion are the dominant themes in coastal hazard
management [8–12]. Shoreline retreat becomes particularly poignant for ocean beaches
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subjected to coastal squeeze [13], being trapped between human structures on the landward
side and rising seas caused by climate change [9].

1.2. Coasts as Ever-Changing and Malleable Seascapes

Forming the edge of the land that is the final frontier for the enormous energy of the
ocean, coastal landscapes are very rarely static. That change is the overriding attribute of
many coastlines has been recognised for Millenia, poignantly illustrated by King Canute’s
demonstration of secular power having no control over the tides. In somewhat less apoc-
ryphal ways, the twisted geological history of coastal seascapes has been richly documented
for at least two centuries. Charles Lyell’s (1797–1875) towering contribution to geology
illustrates this well, emphasising ‘deep time’ as the key to understanding earth’s history. In
the face of humanity’s rush to the sea, and our fear of how to defend against the rising seas,
it seems incredulous to observe the cavalier attitude of real estate businesses that wilfully
ignore coastal instability, notwithstanding that we have known for centuries that coastlines
rarely stay still [1].

Undeniable evidence of marked changes in the position of the shoreline on sedimen-
tary coasts is preserved in the geological structures of coastal seascapes [14]. On sandy
shores, the stratigraphic record often demonstrates that sea level variation is the master
factor controlling the formation, persistence, shape, resilience, and longevity of beaches,
most notably the position of the coastline [15]. It also shows that beaches migrate land-
wards (‘shoreline retreat’) under rising seas [16] when there is no human infrastructure
arresting this movement [17]. Tectonic events can result in remarkable changes to coastline
topography [18], and mega-storms re-shape the coastal seascape, resulting in horrendous
damage to coastal assets and tragic loss of human lives [19].

Coasts have been changing for millennia, but humans have become the major agent
of geomorphic change only during the past few centuries. Furthermore, the spatial reach
of anthropogenic impacts on coastlines has massively expanded to operate now at a
truly global scale. The large numbers of coastal armouring structures (e.g., seawalls,
groynes, breakwaters) are testimony to our massive investments aimed at ‘holding the
line’ at the edge of the sea [20]. How humans shape seascapes can be a highly complex
interplay between local practices, physical forces, socio-cultural norms, and geo-political
events. In this context, Belknap and Sandweiss [21] provide a fascinating account of the
intersection between societal destruction caused by colonising forces and the loss of key
human practices that shaped coastal landforms. In Peru, the harvesting and processing
of beach clams created sheets of discarded midden shells. These shell deposits played an
important role in preserving dune ridges from erosion and deflation: indigenous maritime
people effectively provided the mechanism for maintaining steep sandy beach ridges
armoured by shell middens. The rapacious Spanish conquest resulted in a cataclysmic loss
of indigenous culture; it also fundamentally changed coastal morphology by destroying
the socio-economic structures that underpinned clam harvesting and the creation and
maintenance of shell middens. It is a fascinating story of geopolitical events destroying the
human fabric that for millennia maintained a dynamic coastal landscape [21]. Interestingly,
shells continue to be used to stabilise shorelines, in settings as diverse as coastal villages in
Timor Leste and large-scale investments to create ‘living shorelines’ in the US [22].

1.3. Coasts Connect People with the Ocean and with Ocean Life

A minute percentage of the global population will ever feel the teak decking under
their feet whilst yachting nonchalantly offshore. More will engage in fishing or ply the seven
seas on commercial ships. For the populace sans yachts or other sea legs, the connection to
the ocean is limited to the seashore. Thus, coasts connect people to the global ocean and
other people on far-flung shores. Humans inhabit and use coasts in a bewildering variety of
ways, from playing boccia during the annual holidays to harvesting seafood as an essential
livelihood. In fact, few connections to the sea are as old, widespread and important as
fishing and the harvesting of sea creatures from the shore. ‘Foraging’ on the seashore not
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only provides vital nutrition for artisanal fishers and coastal communities, but it has seen a
renaissance connecting city dwellers to nature [23]. In fact, people’s fascination with the
seashore has for a long time found an expression in ‘beachcombing’. People forage amongst
flotsam and jetsam to find treasures, discover objects of curiosity, and spot beached debris
that floated on the seven seas [24]. It appears that foreign human-made objects have been
recovered from beaches by Indigenous people for quite some time, connecting cultures
across ocean basins in unexpected ways. For example, the First Nation People of Labrador
and north-eastern Greenland were familiar with iron, in the form of nails, many years
before direct contact with Europeans; the likely source of such iron was driftwood, possibly
having drifted across the Atlantic from European shores [25].

Some of the connections that beaches form between the ocean and the land are distress-
ing or seem unsavoury to all but a hardy biologist. Marine animals beach on ocean shores,
either accidentally stranding alive or as wave-cast dead carcasses washing ashore after
drifting at sea [26]. Nobody who had the dubious pleasure of experiencing the ripe aromas
of spoiled whale meat will argue that research on stranded carcasses can be challenging
to the senses (and socially isolating). However, the olfactory signals belie the biological
insights that ‘smelly science’ can deliver [27]. An astonishing diversity of iconic vertebrate
scavengers feeds on animal carcasses stranded on beaches [28,29]. Amongst the many
facets and that ‘stranding science’ can encompass some include: (a) species discoveries
some rare marine animals are almost exclusively known from stranded individuals; (b) dis-
tribution and population structure of marine mammals (inc. gestation lengths, breeding
seasonality, growth rates); (c) ‘functional discoveries’ in physiology and anatomy (e.g., a
remarkable heat exchange system was discovered by dissecting beached dolphins, seals,
and manatees; they can regulate their body heat at levels high enough to function ade-
quately in a cold ocean, but at levels low enough to preserve fragile sperm and developing
foetuses); (d) tracking the toll of diseases, toxicants, shipping, and floating marine rubbish
(e.g., ghost fishing gear); (e) tissue samples analysed for DNA composition can reveal
levels of population mixing and ‘family trees’ for regional populations, and stable isotope
values can give us a time-integrated picture about the distinct classes of food items animals
consumed in the preceding weeks to months; (f) nursing injured animals to rehabilitate
victims of boat strikes and gunshot wounds back into the wild; and (g) satellite-tagged
seals, turtles, and whales that have been successfully re-floated broadcast ‘live pictures’
about their movements, behaviours and habitat choices [26].

1.4. Wildlife on Coasts: ‘Nature Red in Tooth and Claw’

Coastal seascapes have inspired artists for Millenia, creating some of our most trea-
sured works. Coasts can, however, be raw places of unspeakable tragedy [30], illustrating
Alfred Lord Tennyson’s sentiment of ‘Nature Red in Tooth and Claw’ at its most cruel. In
sharp contrast to the serene scenes painting motley fisherfolks and glowing sunsets, there
exist other truths, such as sharks attacking people in the surf zones of ocean beaches [31].
Every person that dies is a profound and fundamentally tragic loss. This loss is always the
ethical imperative and consequently, there can be no debating the trauma experienced by
shark victims and their families.

In the spirit of open intellectual enquiry, one may, however, try to examine human-
shark interactions through the prism of three complementary contexts: (i) a human safety
perspective, (ii) our free-willed choices, and (iii) the role of sharks in marine food chains:
First, The risk of dying from cardiovascular diseases caused by the fatty fish and chips
consumed whilst overlooking a ‘sharky‘ beach is orders of magnitude higher than actually
passing those greasy kilojoules up the nearshore food chain via a shark. Secondly, the only
mammals that have evolutionary reversed their tracks back into the sea are whales, seals
and their blubbery chums. By contrast, humans have remained firmly terrestrial mammals
and enter the surf voluntarily to seek pleasure and excitement. Most activities that amuse
us carry some risks. Swimming or board-riding in the surf is not risk-free; the possibility of
a shark encounter is always present: exposure to this risk is voluntary. Thirdly, unknown to
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most beach visitors, the surf zones of ocean shores harbour a great diversity of fish species,
spanning a spectrum of sizes, feeding modes, and positions on the trophic ladder; sharks
are the apex consumers in these food chains [32–35]. These perspectives may, arguably,
be seen as controversial. Still, all facets of how humans interact with coastal habitats and
animals should generally be examined from multiple angles as long as this does not cause
preventable human anguish.

2. Coasts as Windows to Our Past

By the time Geoffrey Chaucer’s motley band of medieval pilgrims from the Canter-
bury Tales reached the shrine of Thomas Becket, the great cathedral’s colourful windows
firmly caught their gaze, fuelling their imaginations, religious or otherwise. The dazzling
cathedral windows’ effect is undiminished today: it is a riotous kaleidoscope of colours,
shapes, symbols, beasts, mythologies, and human foibles their colourful diversity giving us
different mental prisms to view the world around us. Archaeological sites along coasts are
metaphorically our cathedral windows to the past: they tell stories of ancient civilisations
and cultures, catastrophic environmental events, catches of seafood, cultivation of new
crops, foraging and scavenging along the shoreline, hunting of ferocious beasts and feasting
on them, religious practices, births and burials, tools and ornaments, and much more coasts
hold outstanding records of our shared human history and the environment that supported
our cultural evolution.

2.1. Coastal Societies and Cultures at the Edge of a Violent Sea

Archaeological deposits in the coastal zone are invaluable archives of the story of
First Peoples, told by burial sites, middens, meeting places, local stone quarries, fish traps,
intensive net fishing, fields of crops, buildings, irrigation systems, temples, and diverse
artefacts. It is increasingly being recognised that First National lived in complex coastal
societies and interacted with their maritime environments in sophisticated ways [21,36].
However, it is also becoming evident that massive environmental disasters can abruptly
decimate coastal societies. For example, between ≈5800 and 3600 cal B.P., large settle-
ments in coastal Peru contained impressive architectural monuments and diverse ways
of supporting their populations (e.g., intensive net fishing, irrigated orchards, fields of
cotton) [37]. These civilisations’ demise (≈3800 B.P.) has been linked to a series of natural
disasters earthquakes, El Niño flooding, beach ridge formation, and sand-dune incursion-
that irrevocably changed their natural support systems [37].

Sedimentary coastlines are continually adjusting their position in response to a range
of physical forces operating at a range of scales, from Millenia (e.g., eustatic sea-level
adjustments), centuries (extreme storms), years to decades (sea-level rise linked to climate
change) and weeks to days (storms) [38]. In the context of hazards posed to coastal societies
by meteorological and oceanographic drivers, it is the study of ‘mega storms’ that reveals
the tenuous existence of humans at the edge of the sea. The 2004 Indian Ocean tsunami
created wave heights reaching 35 m. It is a particularly poignant example of extreme
environmental forcing. Histories of coastal societies did not include stories of such massive
Tsunami events, which appeared ‘unprecedented’ for the region. However, sand sheets
deposited on the coastal plain by past Tsunamis provide a record of events going back
over 1000s of years, revealing massive storms around AD 1290–1400 and AD 780–990.
This palaeotsunami record suggests that such events occur infrequently enough for entire
human lifetimes to elapse between them [39], challenging our capacity to properly assess
coastal hazards that have return periods longer than our histories [38].

2.2. Shelled Seafood Is a Prime Source of Nutrition That Creates Rich Historical Records

Caves in sea cliffs and sedimentary deposits in coastal dunes provide us with a
tightly woven tapestry of archaeological diets. The remains of animals and humans allow
us to make plausible inferences about the diet and foraging modes of early humans and
ancient civilisations [40]. Seashores support diverse assemblages of invertebrates, especially
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molluscs (snails, clams, oysters, mussels) [41,42]. Molluscs can typically be easily collected
by prying them off rocks or digging them out of the sand. Molluscs can also be highly
abundant, such as wedge clams on ocean shores, and they are an excellent source of
protein [43,44]. Therefore, it is not surprising that the diet of humans living on the coast
generally contains copious molluscs. In fact, some of the most impressive archaeological
deposits are mounds of mollusc shells; these ‘shell middens’ occur in diverse topographical
and geographical settings [45]. Because coastal people collected a great diversity of mollusc
species, the species composition of the remains provides a fascinating opportunity to track
ecological change through time [46].

2.3. ‘Blood on the Sand’: Humans as Coastal Scavengers and Hunters

Humans have occupied coastlines and foraged along the seashore for hundreds of
thousands of years [40]. Ocean beaches are typically depositional environments, making
them natural stranding sites for marine animals that perish at sea, such as seals, dolphins,
seabirds, and fish. These stranded animal carcasses provide a source of nutrition that
is easily accessible on sedimentary shorelines. In sharp contrast to hunting wild beasts,
scavenging also carries negligible risks. Access to animal tissues of high nutritional value,
coupled with the much lower risk of hunting-related injury, suggests that First Peoples
have used shoreline scavenging as a viable means of resource acquisition [40].

Scavenging is a highly plausible mode of foraging along coastlines, and the story of
scavenging comes with two tantalising twists. First, where feasible, actively hunting for
marine vertebrates would have most certainly complemented scavenging for dead animals.
The long-standing debate about the relative contribution of scavenging versus hunting to
the diet of humans illustrates that reconstructing the exact modes of resource acquisition
can be challenging. Still, purposeful kills of seabirds and seals, even using small watercraft
to reach nearshore islands, were likely employed by First Peoples [40,47]. Secondly, humans
may have ‘outcompeted’ other species of vertebrate scavengers patrolling the seashore in
search of carcasses. This inference stems from an intriguing collection of animal remains
deposited by Neanderthals in the caves of Gibraltar [48]. The deposits contain the expected
remains of herbivores (e.g., red deers, ibex and boar), marine mammals (seals, dolphins) and
molluscs, all of which can be expected to form part of hunters and scavengers on the Iberian
peninsula. What is astonishing, though, are the fossils of carnivore species that are known
to include scavenging on ocean beaches as part of their foraging repertoire: grey wolves,
hyenas, leopards, and brown bears [48,49]. The presence of carnivore fossils raises the
questions of their mode of death and origin, with at least two hypotheses: (1) The predators
entered the cave to feed on the spoils of the Neanderthal’s bounty; or (2) The Neanderthals
hunted (killed) the carnivores whilst the animals consumed carcasses along the shoreline.
The first hypothesis (‘uninvited cave buffet visitors’) lacks a compelling explanation of how
several fierce predators died on the spot. The alternative hypothesis (‘humans outcompete
carnivores at animal carcasses’) suggests adaptive flexibility in the mode of food acquisition,
switching between scavenging and hunting as opportunities arose. From the perspective of
hyenas, leopards and bears, it posits that the animal scavengers became the hunted, killed
in ambushes set by our ancestors around beached carcasses. There is blood on the sand, a
thriller written by the quill of man’s ancient foraging histories.

3. A Potpourri of Ten ‘Cool’ Beach Facts

The fantastic tapestry of natural riches that coasts weave is impossible to describe
in a way that reflects that the true colour and breadth of geological, oceanographic and
ecological features at the edge of the sea. In the public’s eye, ecosystem services provided
by coasts often take primacy, particularly the role of coastal landforms to protect human
properties from storms. By contrast, other environmental values of coasts are not always
appreciated. As a small gesture to re-balance this picture, here we illustrate how values
can be ‘showcased’ in the form of ten ‘cool beach facts’: these are, of course, not a fully
representative cross-section of coastal structures and processes, but rather a potpourri
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(in no topological order) of vignettes that tell fascinating stories—canapes of coastal science
to pique interest and awaken an appetite to explore more fascinating coastal cuisine.

(1.) Beach Landscapes: Ridges, Runnels, Scallops, Ripples, Bars and Pyramids!

Who does not love building a sandcastle? It is a joy because we can easily form the
sand into many wondrous shapes. Ocean waves, tides, and currents do the same, shaping
beach sands into landscapes at the edge of the land. At a fleeting glance, beaches may
appear flat and featureless. At a closer look (and a bit of rambling down the shore), beaches
reveal a cornucopia of structures: ridges, runnels, ripples, bars, banks, and even natural
pyramids formed from shingles. The beaches between the low- and high-water line are also
part of a bigger system that includes the dunes backing them and the surf-zone fronting
them: all are creatures of sand, and all are continually re-shaped by natural forces into sandy
landforms of all types and sizes. There is no such thing as a simple beach landscape [50–54].
Rambling through the coastal countryside is a walk in the park to make new discoveries.

(2.) The Vanity of the Sands: Every Single Sand Grain Has a Story.

Whilst the grains forming beaches (aka ‘sand’) can have multiple parents, most modern
mixed families openly embrace geological break-ups (i.e., the weathering of once proud
rocks and mountains into smaller fragments) and invite dead bodies (i.e., biological origins
being the skeletal remains of organisms). No matter what the exact paternity may be, sand
grains have a story: their surface pitting and fissures are witnesses of forces crushing them,
rolling them, burying them, blowing them, bouncing them, unearthing them, freezing
them, baking them in the sun, all the while remaining the fundamental building blocks of
dunes and beaches [55]. By way of analogy, think of the weather-beaten faces of people
who have worked the land and plied the seven seas—their images tell of rich and moving
stories, each unique and valuable. Sand grains are lousy at hiding things—their stories are
written all over their stone-cold faces.

(3.) Oxygen Factories in the Sands: Minute Plant Life Blooms on Beaches.

Only the driest, hottest or coldest beach sands are pure rock material without life. Most
beach sands are are mixture of the actual non-living grains (i.e., weathered rocks and the
fragments of animal/protozoan skeletons) and minute plant and animal life. Some of these
organisms are smaller than sand grains, attaching themselves to their surfaces. Others live
in the spaces among sand grains, and their abundance can reach millions per square metre
of beach [56–58]. Tiny algae can be spotted with the naked eye when sands turn golden
or green in colour: this colour change is caused by countless algae living within the sands
(i.e., one can find 20,000 individuals per cubic centimetre of beach sand) [59–61]. These
algae are not lame ducks: they can actively move, migrating up and down through the
sand. When concentrated near the surface, they can turn beach sands into shades of green
and yellow. Being plants, they use sunlight as the energy source to produce new biological
matter; a ‘by-product’ of manufacturing this new organic material is oxygen—the elixir of
life [59–61]. Do not throw stones in coastal glasshouses: Beaches are amazing greenhouses
full of living and breathing organisms.

(4.) Worms and Other Cool Creatures Lurk in Beach Sands.

Digging for worms in backyards, compost heaps, and on the seashore is the first step
of many a memorable fishing trip. Most worms meet an untimely death, their last defiant
act being a wriggly morsel of fish food on a hook. Worms are typically a few centimetres
long, and rarely do they grow much thicker than a finger. Now meet ‘Balanoglossus gigas’,
a worm burrowing in the balmy sands of the Brazilian Coast. It is a perfectly harmless
creature, but as far as worms go, it is a giant of a beast: 1.5 m long [62]. Whilst spectacular in
size, it is but one example of the fantastic animal life that beach sands hold. The commonly
held belief that sandy beaches are mostly lifeless piles of sand is a complete fib: beach
sands teem with life. One simply has to look a little harder, mostly under the surface of the
sand and at night. All invertebrate animals living on ocean beaches either dig down into
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the sand or hide under stranded algae, logs, and other flotsam and jetsam. Beach animals
burrow and hide to avoid being eaten by birds (everyone has experienced seagulls on the
beach, including their metabolic actions) or being washed out to sea by waves. Crawling
and skipping around at night is also much safer. A spectacular diversity of fantastic animals
lies just below the surface of the sands [11,63]. Warning: digging below the beach surface
gives you worms and crabs.

(5.) Beach Life Amongst the Touchy Kiwis.

New Zealand’s flightless Kiwi bird is one of the most remarkable products of avian
evolution. The adorable and ‘very huggable’ Kiwis hunt for food by probing their long bills
into soft earth and sand. Their eyesight is embarrassing. Kiwis make up for poor eyesight
with remarkably acute senses of smell and touch. Having to rely on senses other than vision
to detect prey, Kiwis even have developed a sense called ‘remote touch’: they can detect
vibration and pressure cues from prey within the substrate, using a unique organ at the tip
of their bill. Where natural forests back the seashore, Kiwis come down to beaches at night
to forage for tasty invertebrate morsels along the shoreline. The sight of Kiwis foraging on
a seashore is a captivating symbol of evolution at its creatively finest, most peculiar, and
downright loveable. Kiwis searching for prey also remind us that animals are abundant (at
night) and diverse on sandy beaches (e.g., sand hoppers, sandflies, beetles, slater, worms,
snails, crabs, etc.). This bonanza of animal life supports not only the peculiar Kiwi (in a
peculiar country), but a myriad of other birds foraging on the sands of the planet’s sandy
beaches [64,65]. There is so much more to Kiwis than rugby.

(6.) ‘Like a Rolling Stone’: Sand Grains on The Move.

Perhaps the most outstanding attribute of coastlines made from sand is their contin-
uously changing shape, width, height, and position: Sandy shores are rarely stable. The
ability to change shape requires sand to have one fundamental property: it must be able
to move. The physical energy for sand to move on sedimentary shorelines is provided
by various agents: wind, currents, tides, waves, humans, etc. Geologists have studied
coastal sand movement for well over a century. It remains a vital profession, especially
on retreating shorelines where ocean waves threaten humans and their assets. What is
rarely appreciated is the vocabulary that the humble sand grain has acquired: (i) a grain
rolling along the surface under the force of the wind, ‘creeps’; (ii) when a grain collides
with another grain and the crash lifts one grain into the air, it now moves by ‘saltation’,
or ‘jumping’; (iii) when the wind blows strong enough, and long enough, the lifted and
wind-blown grain cannot drop to the ground—it now moves ‘suspended’ [66,67]. Those
beach sand grains are the original ‘rolling stones’.

(7.) Crabs That Breath Air with their Legs.

A group of crabs found on sandy beaches, called the ‘sand bubblers’ (species of the
genera Scopimera and Dotilla), have moved a very long way from their marine ancestors.
They have adopted decidedly terrestrial habits: they retreat into burrows when the beach
is covered by water; they emerge to feed, in air, on the sand surface when the tide is out;
they even take up oxygen from the air rather than from water using gills (i.e., they have
aerial gas exchange). These crabs well and truly do not like getting wet, sitting out the high
tide in a trapped air pocket inside their burrows. Terrestrial animals have lungs to take up
oxygen and get rid of carbon dioxide. The sand bubbler crabs have developed a somewhat
more unorthodox solution for gas exchange: parts of their legs are slightly flattened out and
covered with a thin membrane. Zoologists have falsely thought that these organs are used
for hearing and hence named them ‘tympanum’, a reference to the eardrums (‘tympanic
membrane’) of vertebrates, including us humans [68]. The crabs use these membranes for
aerial gas exchange, and they do not want to hear another word about the ears on their legs.
Some beach crabs carry their lungs on their legs—a breath of fresh air in animal evolution.
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(8.) Vegan Beach Flies Wearing Stilettos Feed by Step Dancing.

The top few centimetres of beach sands contain enormous numbers of minute algae, a
good food source. However, these minute, one-celled algae are smaller than the sand grains;
they also tend to stick to the sand grains. Being sticky and small makes it devilishly difficult
to get to the food morsels (algae) without ingesting copious volumes of sand. Sand is bad
because it fills up the gut with nutritionally useless dead volume. Sand is bad because
it is heavy ballast (a big problem for a flying insect). So how does a flying beach animal
wanting to exploit this rich food source winnow the sticky grain (algae) from the chaff
(sand)? Engineers would suggest a four-step process: (i) loosen the algae from the sand
grains they are attached to; (ii) lift the dislodged algae into a watery mixture of algae and
sand; (iii) let the heavier sand grains settle out to the bottom; and (iv) slurp up the delicious
algae soup from the top (hopefully with few gritty bits). A beach fly (yes, a humble fly;
Lipochaeta slossonae) has found a solution to make this ‘floatation separation’ work on ocean
beaches: the flies tap quickly with their feet on the moist sand; this loosens the algae from
the grains. The fly’s tapping step dance also creates a thin layer of water in which the
dislodged algae float to the top whilst the sand grains remain at the bottom. (One can easily
mimic this by tapping gently and quickly on wet sand; after a few seconds, the top layers
of sand should fluidise). All that remains for the fly to do is to slurp the delicious algal
soup—Bon appetite. If step dancing to create an algal soup were not awesomely amazing
enough, the flies have another trick up their sleeve: The flies are covered in a coat of velvet
hair. To avoid getting their splendid ‘fur coat’ wet, the flies stand on ‘high heels’, formed by
strong spines pointing downwards from the tip of their legs—an uncanny resemblance to
stilettos [69]. Beach flies in Louboutin stilettos: When high fashion meets high achievement
in foraging innovation?

(9.) Surfing Beach Snails Are Über-Cool.

Dead animals of all types and sizes wash up on the world’s sandy beaches. The influx
of high-quality animal protein, delivered in discrete packages that do not need to be chased,
hunted down, and killed (all very dangerous activities), is a hugely attractive event for
animal consumers on sandy shores. Not surprising, sandy beaches contain many species of
scavengers, all wanting to feed on stranded carcasses. It follows that detecting a carcass
fall, and getting to it before others do, are two traits at a premium for any beach scavengers
worth its salt. Snails (Bullia digitalis) on South African beaches have mastered both. They
have a highly acute sense of smell, detecting the tiniest amount of chemicals leaching
from an animal carcasses. So far, so good—rapid detection is solved. However, snails
are hardly known for speed, a massive handicap for a scavenger that needs to access a
carcass swiftly. The snail’s solution to quickly reaching a dead body washed up on a beach
is pure genius: SURF! Yes, the snails evolved a large foot that can be rapidly inflated to
function as a ‘sail/board’ in the low waves bores (called ‘swash’) running up and down a
beach. The snails use their foot (aka ‘surf board’) to ride the swash up the beach expertly,
thereby carrying it towards the delicious dead animal of choice. Remarkably, the snails
appear to have control over direction and distance. They surf at an angle to the flow of the
swash, and, like a sailing ship, they tack in a zigzag trajectory towards the food item. After
a few swash rides, the surfing snails typically reach their food—voila [70–72]. PS—Four
species of antson a Venezuelan beach have entered this evolutionary ‘invertebrate surfing
carnival’, with some adroit inviduals able to ride small foam crests [73]; at this stage it
remains unknown whether the cool South African surfer snails now have ants in their
boardshorts. Surfing snails on sandy beaches are so über-cool that they risk frostbite.

(10.) Incisive Decisions in Evolution and the Grant Meetings of the Mammals: It All
Happens on Coasts.

Shorelines are full of evolutionary drama. They are the theatres that staged major
radiations in animal life and tested new adaptive solutions when animal clades conquered
new realms. The role of shorelines as evolutionary interface regions is most spectacularly
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illustrated by the appearance of terrestrial mammals from their aquatic ancestors. By
contrast, the ‘reverse engineering’ of whales leaving the beach again to return to a marine
mode of life also featured shores as transitional environments. Mammals (including us)
mostly sport a rich potpourri of adaptations to terrestrial life (e.g., burrowing, galloping,
hopping, bipedal walking, tree climbing, gliding, hair, lungs, etc.). However, not all mam-
mals fancied this new life on dry land, returning to the aquatic milieu of their vertebrate
ancestors. Whales and dolphins did this with such aplomb that they now outperform
some of the fishes and sharks (the unadventurous clade of slimy, scaly, water-loving beasts)
when it comes to swimming, diving, and hunting [74]. For other marine mammals, the
connection to marine shores remains strong to this day: take, for example, seals that use
beaches as haul-out sites to court, breed and give birth. Terrestrial mammals ’spill over’
from terrestrial habitats to patrol marine strandlines for animal carcasses to scavenge and to
hunt. The planet’s ocean beaches are foraging sites for a veritable zoo of carnivore species,
including wolves, bears, lions, jaguars, foxes, leopards, dingos, Tasmania devils, hyenas,
otters, genets, weasels, badgers and many others [75].

No matter what perspective (land-to-sea vs. sea-to-land) or time window (ancient
vs. modern) one adopts, coasts are the biosphere’s unique interface that connects the sea
and land across the aeons (Figure 2). Fundamentally, coasts are edges. Edges, where
the ancient meets the modern. Edges, where iconic animal clades trialed aquatic versus
terrestrial modes of life (and vice versa) in vertebrate evolution. Edges, where large and
iconic predators roam the shores to scavenge and hunt. Edges, where our spirits are lifted
when seeing these carnivores. Coasts are edges that do it all.
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Figure 2. ‘Parrots on the Beach’. Coastal ecosystems are fascinating places where new ‘discoveries’ 
always await. We have recently encountered large flocks of parrots feeding on masses of tumble-
weed seeds rolling from the dunes onto the beach in Eastern Australia; this is an ‘exciting discov-
ery’ because it runs counter to a widely-held view about how food webs on beaches are thought to 
function. A paradigm about the function of food webs on wave-exposed ocean shores builds 
mainly on the supply of organic matter that is produced at sea and subsequently flows shoreward 
to ‘subsidise’ animal consumers on sandy beaches. By contrast, primary production on the beach 
itself is considered relatively minor. Flows of organic matter from the dunes to the beach are also 
typically small compared with the substantial onshore flows of marine production in the form of 
detached algae (kelp), seagrass, phytoplankton and animal carcasses. Thus, conventional wisdom 
postulates that the prevailing direction in which translocated organic matter flows between habi-
tats is typically from the sea to the beach: almost all organic material supporting beach food webs 
is thought to come from the ocean being washed up on beaches where it underpins the local food 
webs. Well, well, well: Here, we have terrestrial primary production flowing, en masse, from the 
dunes to the beach—the opposite direction to conventional wisdom. Notes: The Plants: The tum-
bleweeds are formed by the rolling spinifex grass (Spinifex sericeus; other common names: hairy 
spinifex, beach spinifex, coastal spinifex). The grass is a widespread pioneer plant on the ocean-
facing foredunes of Australia, New Zealand, New Caledonia and Tonga. At maturity, the female 
inflorescence detaches as a globose (up to 20 cm in diameter) seed head, which becomes a tumbleweed; 
the tumbleweeds can occur en masse on beaches when large numbers of seedheads mature and 

Figure 2. ‘Parrots on the Beach’. Coastal ecosystems are fascinating places where new ‘discoveries’
always await. We have recently encountered large flocks of parrots feeding on masses of tumbleweed
seeds rolling from the dunes onto the beach in Eastern Australia; this is an ‘exciting discovery’ because
it runs counter to a widely-held view about how food webs on beaches are thought to function. A
paradigm about the function of food webs on wave-exposed ocean shores builds mainly on the supply
of organic matter that is produced at sea and subsequently flows shoreward to ‘subsidise’ animal
consumers on sandy beaches. By contrast, primary production on the beach itself is considered
relatively minor. Flows of organic matter from the dunes to the beach are also typically small
compared with the substantial onshore flows of marine production in the form of detached algae
(kelp), seagrass, phytoplankton and animal carcasses. Thus, conventional wisdom postulates that the
prevailing direction in which translocated organic matter flows between habitats is typically from the
sea to the beach: almost all organic material supporting beach food webs is thought to come from the
ocean being washed up on beaches where it underpins the local food webs. Well, well, well: Here,
we have terrestrial primary production flowing, en masse, from the dunes to the beach—the opposite
direction to conventional wisdom. Notes: The Plants: The tumbleweeds are formed by the rolling
spinifex grass (Spinifex sericeus; other common names: hairy spinifex, beach spinifex, coastal spinifex).
The grass is a widespread pioneer plant on the ocean-facing foredunes of Australia, New Zealand,
New Caledonia and Tonga. At maturity, the female inflorescence detaches as a globose (up to 20 cm in
diameter) seed head, which becomes a tumbleweed; the tumbleweeds can occur en masse on beaches
when large numbers of seedheads mature and detach at the same time. The Birds: Little Corella
(Cacatua sanguinea) are widespread throughout Australia. They feed in large, noisy flocks, mainly on
the ground, the most common food items being grains and grass seeds (as in this observation). ‘Fun
Fact’: Little Corellas like to play, an unusual activity amongst birds. They can slide down the roofs
of wheat silos, tumbling off the edge before flying back to the top for another slide. Little Corellas
have also been observed perched on the blades of windmills, spinning round and round, falling off
and then regaining a precarious grip on the blades (https://birdlife.org.au/bird-profile/little-corella;
accessed 27 October 2022).

https://birdlife.org.au/bird-profile/little-corella
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4. Human Stressors Impacting Coastal Systems
4.1. Retreating Sandy Shorelines

No perspective on coastlines can be complete without explicit recognition of the
main anthropogenic stressors that impact shorelines worldwide. Arguably, the main
topic in the limelight illuminating coastal environmental change is erosion, particularly
the vulnerability of sandy shorelines. Sandy beaches, and other sedimentary shorelines,
have irreplicable values that encompass rich social, economic-, cultural-, and conservation
facets [76]. However, perhaps the most highly prized ecosystem service that sandy beaches
provide to human societies is safeguarding assets and lives from the tempestuous forces
of nature, especially the protection afforded by dunes against destructive flooding during
storms (Table 1).

Humans’ prime perspective on sandy beaches is often their ‘buffering capacity’ to
counteract coastal hazards. In many cases, such ‘storm protection’ is the sine qua non for
human settlements to exist along ocean-exposed coastlines. Adequate sediment supply
is necessary for beaches and dunes to function as buffers. Storm protection also depends
on beach width, the volume and elevation of dunes, the capacity of shorelines to move
landwards when sea levels rise (‘accommodation space’), and the ability of dunes to rebuild
after pulsed erosion events. Human interference with natural processes has compromised
all of these, making ‘shoreline retreat’ a cardinal issue faced by numerous communities
living along sandy shorelines [8].

Erosion of beaches and cliffs is not a recent phenomenon; the scientific literature
contains accounts of shoreline change dating back to the second half of the 19th century
(Table 1). However, what is remarkable is how the spatial ambit of our analyses has
expanded from local phenomena to a truly global reach [8]. We also have moved from
being almost exclusively focused on storms to documenting and predicting the impacts of
sea-level rise caused by climate change [9].

Coastal retreat, or advance, can also be gauged with direct measurements of coastline
position, using evidence from geological methods like coring, age control, sedimentological
analyses [77]. Insights from past trajectories can be valuable to better predict how coasts
might react in the future, including the fate of sandy shorelines [78].
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Table 1. A precis of shoreline erosion reported in the peer-reviewed literature over more than a
century. Listed studies are examples, drawn from a much wider literature, selected for three main
purposes: (a) to sketch the timeline of observations on shoreline retreat, (b) to outline the evolution of
identified driving forces (transitioning from local/regional factors to sea level rise associated with
climate change), and (c) to illustrate the expansion of the spatial ambit, moving from local scales to
global impacts.

Year Location Main Observations Reference

1882
England
(Hampshire
Coast)t

- Cliff erosion
- ‘The degradation of the cliffs to the westward has been very great, and they are much serrated and
water-worn, with frequent slips in the upper strata of sand and gravel on a clay base, and in the
neighbourhood of Hordle huge masses of fallen cliff alternate with hollow chines.
- ‘At Barton also the loss is great, averaging over certain periods one yard per annum, and the
whole frontage of Christchurch Bay is similarly affected’.

[79]

1892
England
(Devonshire
Coast)

- Episodic (pulsed) nature of beach erosion, alternating between losses during storms and
gradual rebuilding during calms. “Sea-waves, tidal-currents, and river-currents can be observed,
and their effects recorded, but it is the occasional, irregular, and sometimes powerful wind-raised
current, prevalent during storms, which performs such erratic feats, and deludes the unwary
observer. For instance, a beach may resist the sea for years, yet in a few hours it may he stripped bare
to the solid rock”.

[80]

1899 Netherlands

- Decadal (1846 to 1894) record of landward movement of the shoreline at a rate of ~1 m
a year.
- ‘As a general result, the measurements show that during the last half-century, on the Dutch coast,
the sea has been encroaching on the coast. The low water line has crept landward, and the beach
has become more steep. There has also been a wasting away of the foot of the sand dunes’.

[81]

1983 Australia (New
South Wales)

- Long term (1895–1980) record of shoreline position in response to climatic variability at the
scale of ocean basins.
- average high-tide wave run-up position measured accurate to ±2.5 m from oblique and vertical
photographs, changes could be linked to regional sea-level variation and a globally significant
climatic variable, the Southern Oscillation (SO).

[82]

1997 USA
(Hawaii)

- Shoreline armouring can result in increased rates of beach loss if hard coastal defence
structures concentrate wave energy and/or block sand movement from dunes to the beach.
- “The authors identify coastal armouring structures, built to protect shoreline properties from erosion,
as the culprits. The trouble is that armouring concentrates erosional forces on the beach directly in
front, which, moreover, also loses the replenishment of sand stores from those locked into
shoreline land”.

[83]

2016 England
(East Sussex)

- Millennial records of cliff erosion and beach width.
- Beaches fronting cliffs shield cliffs from storm-induced erosion.
-‘ . . . retreat rates of chalk cliffs that were relatively slow (2–6 cm·y−1) until a few hundred years ago.
Historical observations reveal that retreat rates have subsequently accelerated by an order of
magnitude (22–32 cm·y−1)’.
- ‘We suggest that acceleration is the result of thinning of cliff-front beaches, exacerbated by
regional storminess and anthropogenic modification of the coast’.

[84]

2018 Global

- Decadal (1984–2016) record of shoreline change for sandy beaches worldwide.
- 24% of the world′s sandy beaches persistently eroding at a rate exceeding 0.5 m year−1.
- 16% of sandy beaches are experiencing erosion rates exceeding 1 m year−1.
- 37% of protected sandy shorelines are eroding at a rate larger than 0.5 m year−1.

[8]

2020 Global

- ‘13.6–15.2% (36,097–40,511 km) of the world′s sandy beaches could face severe erosion by 2050,
a number rising to 35.7–49.5% (95,061–131,745 km) by the end of the century’.
- ‘By 2100 Australia is predicted to potentially experience severe erosion along 11,426 km
of sandy beach coastline′.
‘Ambient trends in shoreline dynamics, combined with coastal recession driven by sea level rise, could
result in the near extinction of almost half of the world′s sandy beaches by the end of the century’.
‘A substantial proportion of the threatened sandy shorelines are in densely populated areas,
underlining the need for the design and implementation of effective adaptive measures’.

[9]

Predicting the exact trajectories and rates of local and regional shoreline change is
challenging. This is not surprising, given the many factors at play such as sediment supply,
armouring structures, climatic events at decadal scales, rare mega-storms [17,82]. It does,
however, stand to reason that the eye-watering observations and predictions of potential
beach loss [8,9] are a call to arms to combat climate change with elan and do so at scale.
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4.2. Pollutants That Connect Coastal Systems

Shoreline erosion is, of course, not the only game in ‘anthropogenic stressor town’.
The range of environmental harm caused by humans to coastal systems and organisms
is a depressingly vast and multifarious one. It is interesting to note that questions about
the presence, distribution and biological effects of chemical pollutants and nutrients (e.g.,
N + P [85] in beach systems have only been asked since the late 60s and early 70s [86–88].
Examining pollution questions is critically important from a human-health perspective,
especially given the intense recreational use of beaches [89].

Pollutants can also provide insights about connectivity amongst different ecosystems
in the coastal zone. In settings where rainfall occurs in distinct pulses in coastal watersheds,
estuaries can export prominent turbidity plumes to nearshore waters during and after in-
tense rainfall bouts [90]. These plumes translocate nutrients, organic matter, and pollutants
from the catchments to marine waters (a form of ‘spatial subsidy’). Marine organisms
can incorporate this translocated matter, illustrated by enhanced plankton growth and the
presence of isotopic signatures in marine fisheries species that are typical for estuarine
organic matter [91–93]. Human sewage is often isotopically distinct from other forms of
nitrogen. When sewage is discharged to estuaries, stable nitrogen isotopes can track this
distinctive sewage-N signature in the receiving waters and the tissues of fish and other
organisms exposed to sewage-N [93–95]. Isotopes characteristic of estuarine sewage can
also function as a tracer to test whether estuaries are functionally linked with ocean beaches.
For example, in Eastern Australia such ‘land-ocean coupling’ was tested by examining
stable N-isotopes in wedge clams collected from ocean beaches near and far an estuar-
ine inlet. Clams near the inlet, exposed to estuarine plumes, carried a distinct estuarine
sewage signal. By contrast, clams remote from an estuary had a typical marine isotope
signature, demonstrating the transfer of the estuarine matter to marine consumers on ocean
beaches [94].

4.3. Human Impacts on Sandy Shores: A Diverse Collection of Impact Types

Several syntheses have summarised the main pressures and their ecological impacts
on ocean beaches [76,95–98]. It is beyond the scope of this perspective to give a detailed
account of the full range of anthropogenic effects. Still, typically, the existing published
summaries of human impacts in the coastal zone focus on biological responses to about ten
commonly encountered types of human stressors.

1. Armouring (e.g., seawalls, breakwaters, groynes) [7,20,99–105]
2. Nourishment (e.g., sand additions, re-profiling) [106–115]
3. Fisheries (e.g., recreational, artisanal, clams, bait) [32–35,116–128]
4. Off-road Vehicle Traffic (e.g., off-road traffic, recreation) [95,129–146]
5. Grooming (e.g., removal/cleaning of natural wrack deposits) [147–152]
6. Trampling (e.g., crushing of plants and animals) [6,89,153–162]
7. Water Quality & Toxicants (e.g., nutrients, microbial, human health, chemical pollu-

tants) [58,93,94,163–172]
8. ‘Urbanisation’/Multiple Human Uses (e.g., habitat loss) [11–13,29,76,96,97,173–194]
9. Invasive Species & Feral and Domestic Carnivores (e.g., foxes, fire ants) [75,195–199]
10. Anthropogenic Debris (e.g., litter, rubbish, plastics, microplastics) [200–208]

In contrast to these well-covered themes, there is little work on light and sound
pollution, groundwater contamination, and algal blooms in high-energy surf zones [209].
Many studies have covered multiple pressures related to the increasing urbanisation and
concomitant human footprint in the coastal zone [6]. The existence of several urban stressors
acting at the same time in the same place makes it devilishly difficult to attribute observed
biological changes to distinct human stressors correctly; unravelling the specific effects of
specific factors, notionally viewed to work in concert, presents as an inviting intellectual
challenge to coastal ecologists.
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One theme that has not been covered adequately in the literature reviewing impacts
on sandy beaches is the recent explosion of papers on anthropogenic debris, especially
plastic that washes up on all sandy shores, even on the most remote beaches [210]. Massive
changes in the way and number of people that use sandy beaches during the COVID
pandemic resulted in modified ecological patterns and processes, some positive and some
negative [211,212].

Last but not least, it requires little extra emphasis that every coastal structure and pro-
cess be it a geo-morphological, hydraulic, meteorological, socio-economic, or ecological one,
is altered by climate change [213]. Indubitably, climate change and humankind’s response
to it in the Anthropocene is primus inter pares as the single most powerful global force that
dictates whether and how coasts can accommodate humans in the coming decades.

5. Principles to Guide Environmental Solutions

Attempting to write about ‘solutions’ for coastal problems in a few (or many)
paragraphs is, depending on one’s perspective, ambitious or naïve. Gallantly (and
perhaps naively), here we do just that, trying to sketch the essence of an, admittedly,
idiosyncratic collection of three principles posited in equal measures for reflection and
to stimulate debate.

5.1. Protect Remaining Natural Land

Climate change causes sea levels to rise, and it alters storm regimes [214,215]. Rising
sea levels and storms force coastlines to move landwards, threatening settlements ranging
in size from holiday cottages to megacities [17]. Shoreline retreat under rising seas can be
accommodated on sparsely populated coastlines. However, much of our coast is now urban,
containing little or no accommodation space for shorelines on the move. Loss of coastal
land not only severely limits our options to respond to climate change; it also means a loss
of coastal habitats and a loss of coastal biodiversity. Consequently, constraining the human
footprint in the coastal strip places a massive premium on protecting all remaining natural
areas. This interplay between climate change and habitat loss constitutes the very pointy
end of how coastal societies make decisions about the types and longevity of environments
they want to inhabit at the edge of the sea.

5.2. Working with Nature to Enhance the Resilience of Coasts

Society will defend coastal settlements at the edge of the sea and, in many instances,
has little alternative but to seek to enhance the resilience of coastal. Defining ‘resilience’
is not a trivial task [216,217]. but perspectives that focus on the continuity of essential
processes and services delivered by coastal systems appear a sensible way forward (e.g.,
the ‘capacity of the socioeconomic and natural systems in the coastal environment to
cope with disturbances by adapting whilst maintaining their essential functions’ [218].
Affluent coastal societies will likely have to invest heavily in engineered solutions to
combat receding shorelines. This strategy has a long tradition and can be spectacularly
successful if done well [8]. There are many examples where poorly planned or executed
‘coastal defence’ structures did precisely the opposite—accelerate erosion [219]. Whenever
and wherever civil engineering is the method of prime choice to strengthen protection
against coastal hazards, adopting the ethos of ‘building with nature’ may seem a sensible
strategy to incorporate more ecological thinking into public works [220,221]. All else
being equal, it stands to reason that strenghtening the resilience of coasts requires in many
cases to find a compromise between ecology, economy, social and cultural aspirations and
technical feasibility.

5.3. Common Goals for a Common Good

As coastal citizens, we are willing to invest vast sums of energy and money into saving
our shores when faced with threats that insult our sense of justice and stir our souls. Our
collective actions to clean coastlines that oil spills have spoiled is a brilliant example that we
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do care about coastal environments. The fact that millions are spent to try and remedy the
harm caused by oil coming ashore signifies that society deeply values ‘clean’ shorelines and
the health of plants and animals they support [222]. Yet, there is a veritable litany of failures
in how the civil service manages coastlines and loses sight of these values. Many papers
lament that the quagmires of bureaucracy swallow up citizens’ goodwill. The quicksands
of government also trap the civil service itself. The unholy alliance of quagmires and
quicksands produces disjointed attempts to repair shorelines using engineered structures
that can create new ecological problems and lack community buy-in.

There is nothing new about the byzantine shortcomings of governments and gover-
nance in coastal management [223]. It is also not fruitful to be dramatically evangelical
about the need to drain the swamps of bureaucracy—a task that is best added to the
repertoire of Sisyphus. However, what many coastal communities and citizens have are
gloriously uplifting and fierce spirits—spirits that value the narrow tongues of shifting
sands that are their fragile home at the edge of a tempestuous ocean. These spirits are the
very fabric to tailor fresh and inclusive models that will enhance coastal resilience. They are
the foul-weather gear to embrace nature-informed engineering. They are the fierce defiance
driving protection of habitats and biodiversity. We can embolden this fierceness by creating
fresh and trusted knowledge built on solid science that needs to rise to these challenges
armed with a fierceness and freshness of its own.
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