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Highlights 

• Bayesian Network and SLIM are combined to develop the so-called BN-SLIM 

technique 

• BN-SLIM enables one to consider the uncertainty associated with the rates of 

PSFs 

• BN-SLIM outdoes SLIM by considering the dependencies, resulting in more 

accurate HEP  

• The probability updating feature of BN-SLIM helps identify the most critical PSF 

  

                  



 

 
 

2 

BN-SLIM: A Bayesian network methodology for human reliability 

assessment based on Success Likelihood Index Method (SLIM) 

Shokoufeh Abrishami a,b, Nima Khakzadb,*, Seyed Mahmoud Hosseini a,*, Pieter van Gelder b 

a Industrial Engineering Department, Ferdowsi University of Mashhad, Iran  

b Faculty of Technology, Policy, and Management, Delft University of Technology, The Netherlands 

* Corresponding authors:  Nima Khakzad  
     Email: n.khakzadrostami@tudelft.nl  
     Address: Jaffalaan 5, Delft 2628 BX, The Netherlands 
    Seyed Mahmoud Hosseini 

    Email: sm_hosseini@um.ac.ir 
    Address: Industrial Engineering Department, Faculty of Engineering,  
                                    Ferdowsi University of Mashhad, PO Box: 91775-1111, Mashhad, 
Iran. 

Abstract 

Success Likelihood Index Model (SLIM) is one of the widely-used deterministic techniques in human 

reliability assessment especially when data is insufficient. However, this method suffers from 

epistemic uncertainty as it extremely relies on expert judgment for determining the model 

parameters such as the rates and weights of the performance shaping factors (PSFs). Besides, given 

an operation consisting of several tasks, SLIM calculates the human error probability (HEP) by 

ignoring possible dependencies among the tasks.  

The present study is aimed at using Bayesian Network (BN) for improving the performance of SLIM in 

handling uncertainty arising from experts opinion and lack of data. To this end, SLIM is combined 

with BN to form the so-called BN-SLIM technique. We demonstrate how BN-SLIM can consider 

uncertainty associated with the rates of PSFs by using probability distributions. BN-SLIM is also able 

to provide a better estimation of human error probability by considering conditional dependencies 

resulting from common PSFs. The probability updating feature of BN-SLIM can be used to identify the 

PSFs contributing the most to human failure event. The outperformance of BN-SLIM over SLIM is 

demonstrated via an illustrative example. 

Keywords 

Human error probability; Bayesian network; Success likelihood index model; Uncertainty modeling; 

Dependency analysis; Criticality analysis 
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Nomenclature 

List of abbreviations 
Abbreviation Discerption 

BN Bayesian Network 

CREAM Cognitive Reliability and Error Analysis Methods 

CPT Conditional Probability Table 

HCR Human Cognition Reliability 

HEART Human Error Assessment and Reduction Technique 

HEP Human Error Probability 

HRA Human Reliability Analysis 

IDAC Information, Decision and Action in Crew context 

MADE Mean Absolute Discretization Error 

MV Mean Variation 

PSF Performance Shaping Factor 

RV Ratio of Variation 

SLI Success Likelihood Index 

SLIM Success Likelihood Index Model 

SPAR-H Standardized Plant Analysis Risk Human Reliability Analysis 

THERP Technique for Human Error Rate Prediction 

 
List of Symbols 
Symbol Discerption 

Ai Variable i in the Bayesian Network 

E Observed evidence 

I Number of nodes in Bayesian Network 

J Number of intervals 

M Number of SLI instances 

N Number of PSFs 

PPSF Probability mass function of a certain PSF 

Ri i-th rate of a PSF 

RPSF Set of rates of a PSF 

U Set of all possible variables in Bayesian Network  

Wi Weight of the i-th PSF 

  Prior Probability 

  Posterior probability 

 

1. Introduction 

Human factor is one of the main causes of accidents in nuclear power plants, aerospace systems, 

marine industry, and the oil and gas industry [1]. In the past two decades, human error consequences 

have led to the environmental damage, major capital loss and noticeable death toll. In March 2005, 

the BP refinery explosion in Texas City caused 15 deaths and 180 injuries. According to the Chemical 
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Safety and Hazard Investigation Board (CSB) report, human factor deficiencies were to blame for the 

accident [2]. In August 2006, a fatal runway overrun in Kentucky caused 49 deaths. The final report 

issued by the national transportation safety board revealed that human errors on the part of the 

pilots and the air traffic controller were to blame for the crash [3]. Therefore, it is essential to identify 

potential human errors and estimate their occurrence probability in the operation of complex 

systems and processes. 

Human Reliability Analysis (HRA) is a systematic approach to analyze and identify the causes and 

consequences of human errors in different human-machine systems. HRA aims to diminish the 

likelihood and consequences of human error by recognizing and assessing how humans affect system 

safety [4]. An integral part of HRA is assessing the Performance Shaping Factors (PSFs), i.e., the 

factors influencing Human Error Probability (HEP). In other words, PSFs are environmental, personal 

or task-oriented factors with positive or negative effects on human performance in different contexts 

[5].  

During the last decades, a lot of research has been conducted to improve HRA methods, resulting in 

two main generations of HRA techniques. In the first generation techniques, such as Technique for 

Human Error Rate Prediction (THERP) [6], Human Cognition Reliability (HRC) [7], and Human Error 

Assessment and Reduction Technique (HEART) [8], human is considered as a mechanical or electrical 

component (depending on the context) who inherently has deficiencies [9]. These techniques focus 

on the characteristics of tasks much more than the effects of the context and the environment in 

estimating the HEP. The second generation techniques, such as Cognitive Reliability and Error 

Analysis Methods (CREAM) [10], Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H)  

[11] and Information, Decision and Action in Crew context (IDAC) [12], were developed to improve 

the first generation techniques. In the second generation techniques, the operator cognition and 

context are considered as the major contributing factors to the HEP. However, the both generations 

have some limitations such as being highly subjective, lacking a causal mechanism to link PSFs to the 

operator performance [13], and not being easily compatible with system safety assessment models 

[14]. 

Among the HRA methods, Success Likelihood Index Model (SLIM), proposed by Embrey [15], is one of 

the most flexible and commonly used techniques for estimating HEP under a combined effect of a set 

of PSFs. SLIM can afford a wide range of PSFs according to the application of interest and thus can be 

used in different industries [16-19]. On the other hand, SPAR-H and CREAM have been developed 

based on specific PSFs which may not cover all the details of a performance context [13]. 
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Despite its popularity, SLIM suffers from the foregoing drawbacks of the first and second generations 

techniques of HRA. One of the important shortcomings, especially in case of data scarcity, is that the 

parameters of SLIM such as the rates and weights of PSFs should be determined by experts, exposing 

the assessment of HEP to subjectivity and thus varying degrees of epistemic uncertainty. To mitigate 

this limitation Musharraf et al. [20] and Akyuz [21] used evidence theory and fuzzy theory, 

respectively, to combine different degrees of belief about the rates and weights of the PSFs; 

however, the assignment of prior belief masses to the model parameters has still remained a 

challenge in  these approaches [22]. Another limitation of SLIM, which is also common in other HRA 

methods, is its inability in considering the dependencies among HEPs in a number of related tasks. 

HEPs dependencies may arise from the influence of human error in one task on the subsequent tasks 

[6, 11, 23]  or from the common PSFs involved in HEPs of two or more tasks [24].  

Bayesian Network (BN) has been proposed as a promising technique for enhancing the performance 

and accuracy of HRA techniques such as SPAR-H and CREAM [14, 25]. Groth et al. [14] transferred 

SPAR-H to BN and showed how BN framework can be exploited not only for reasoning with perfect, 

partial or no information on PSFs states but also for considering the PSFs interdependencies. Kim et 

al. [25] combined CREAM and BN so that the uncertainty associated with the PSFs rates could be 

modeled using probability distribution functions although the relationships between PSFs and the 

HEP were still deterministic. Since no major attempts have been made so far to improve the 

drawbacks of SLIM using BN, in this study we have developed an innovative technique for HEP 

assessment by mapping SLIM into BN, so-called the BN-SLIM technique.  

The proposed BN-SLIM can be used to alleviate the limitations of SLIM and to improve its accuracy 

and performance. In the conventional SLIM, a large amount of uncertainty is involved in estimating 

the values of the rates and weights of PSFs. The probabilistic framework of BN enables the analyst to 

consider the uncertainty via prior probability distributions. It also helps decrease the uncertainty 

when the updated probabilities are substituted for prior probabilities as more information becomes 

available, making a priori subjective estimates tend to a posteriori more objective results [26]. BN’s 

probability updating feature can also be exploited by analysts to determine which PSF and which PSF 

rate have contributed more to the occurrence of human error. We will apply BN-SLIM to an 

illustrative example to demonstrate how it may outperform SLIM by handling dependencies among 

tasks with common PSFs and by performing belief updating. 

The rest of this paper is organized as follow: Section 2 provides an overview of SLIM and BN 

techniques. Section 3 is devoted to the development of the BN-SLIM. In Section 4 the application of 
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the BN-SLIM to a case study is illustrated and the obtained results are discussed. Conclusions are 

given in Section 5.  

2. Background 

2.1. Success Likelihood Index Model (SLIM) 

SLIM is one of the flexible techniques to estimate HEP during a task execution. As a decision-analysis 

approach, it proposes a degree of preference called Success Likelihood Index (SLI) for each task under 

the combined effects of PSFs [15, 27] . Although this model heavily relies on experts judgment, it is 

quite practical where data is insufficient about human error.  

In conventional SLIM, weights and rates of PSFs define how each PSF contribute to an SLI. For a given 

task and PSF, the rate of the PSF shows to what extent the PSF is desirable for executing the task 

while the weight of the PSF shows the relative importance of the PSF to the task. The following steps 

are taken in the SLIM [27, 28]:  

1. Determine the set of PSFs that would influence the human error potential in executing the 

task of interest.The set of PSFs can be identified in association with the task characteristics 

and environment. 

2. Determine the weight of each PSF. Considering that several PSFs may contribute to the same 

task in a specific scenario, the largest weight (W) is assigned to the most important PSF, and 

so on; where ∑    
      and N denotes the number of PSFs.  

3. Determine the rate of each PSF.    is a deterministic number between 1 and 9 (inclusive), 

with Ri = 1 for the worst and Ri = 9 for the best conditions of the i-th PSF.  

4. Calculate the SLI of the task. Once the rates and weights of all the relevant PSFs are 

determined, Eq. (1) can be employed to calculate the SLI of the task: 

    ∑        
                     (1) 

5.  Estimate the HEP in executing the task. The logarithmic relationship in Eq. (2) can be used to 

convert the SLI into the corresponding HEP: 

                         (2) 

where the constants a and b can be determined by two tasks for which the amounts of HEPs 

and the corresponding SLIs are known. 
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2.2 Bayesian Network (BN) 

BN is a probabilistic graphical model for reasoning under uncertainty. The qualitative part of BN is a 

directed acyclic graph composed of nodes and arcs. The nodes display random variables with 

various states, and the arcs represent the causal relationships between the nodes [29]. 

Conditional Probability Tables (CPTs) are the quantitative part of BN which make it a powerful 

reasoning tool. CPTs quantify the conditional dependency of a child node given all possible 

combinations of the states of its parent nodes; instead of CPT, marginal probabilities are assigned to 

root nodes (i.e., nodes with no parent). Regarding the chain rule, the joint probability distribution of 

nodes P(U) is calculated as: 

     ∏             
 
             (3) 

where U is a set of random variables               ,        is the parent set of node Ai, and 

P(U) reflects the properties of BN with   variables [30]. 

Using Bayes' theorem, it is possible to obtain the updated (posterior) probability of events by 

observing new evidence (E) [31]: 

       
          

    
 

      

∑        
        (4) 

In the context of HRA, the evidence can be in the form of observation of human error in a task or the 

occurrence of incidents in an operation, or new information about the performance context. The 

probability updating characteristic of BN is widely employed in diagnostic reasoning. Besides the 

unique capability of BN in diagnostic reasoning, it enables to marge data from different resources, 

considers multi states variables, and models cause-effect relationships between factors [32]. These 

aspects of BN have received increasing attention in the field of HRA, for instance, in modeling the 

relationship between PSFs [4, 33], assessing human failure events dependencies [24], and extending 

and improving the available HRA methods [14, 25]. 

3. BN-SLIM 

To estimate the HEP in SLIM, the rates and the weights of the PSFs must be determined. In the 

absence of relevant data, which is usually the case, subjective measuring of rates and weights by 

experts can increase the uncertainty of the estimated HEP. Moreover, given several tasks in an 

operation, SLIM estimates the HEP of each task separately, disregarding the dependencies between 

human failure events in the tasks (e.g., due to common PSFs) which could lead to inaccurate 
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estimation of the total HEP. To alleviate this drawback, we have developed an innovative technique, 

so-called BN-SLIM, by mapping SLIM into an equivalent BN. The benefit of doing so, is twofold: 

(I) An operation may include a number of tasks to be fulfilled in parallel or series. Since tasks may 

share common PSFs, there would be dependencies among the SLIs of the tasks. Such dependencies, 

if not taken into account (as is the case in SLIM), can lead to an overestimation or underestimation of 

the total HEP. BN-SLIM, thanks to the capability of BN in considering dependencies, is expected to 

address this drawback of SLIM. 

(II) BN-SLIM enables experts to express their uncertainty about the rates of PSFs in the form of 

probability distributions instead of deterministic point estimates. Given new evidence about HEP, the 

probability distribution of the rates can be updated; this, in turn, can help decrease the uncertainties 

and provide acumen for a proactive approach for preventing error under different contextual 

conditions.  

In Sections 3.1 and 3.2, through an illustrative example, we will show how the initial results of the 

SLIM (i.e., the identified PSFs and their respective weights and rates) can be used to develop the BN, 

which together with the SLIM forms the proposed BN-SLIM methodology.   

3.1. Model development 

Following the steps of the original SLIM in Section 2.1, it is assumed that a set of N PSFs affecting the 

execution of a particular task along with their corresponding rates and weights has already been 

identified by subject matter experts. To develop the BN version of SLIM (i.e., BN-SLIM), the first step 

is building the structure of the BN, specifying the nodes and the arcs as conditional relationships 

between the nodes. According to the original SLIM, the effect of different PSFs on the HEP is 

modeled through the SLI variable (see Eq. 1). Thus, two functions are needed for estimating the HEP 

value: One for modeling the relationship between the PSFs and the SLI, and the other for calculating 

the HEP using the SLI. So a BN with N + 2 nodes would be required: N nodes for representing the N 

PSFs and 2 nodes for representing the SLI and the HEP variables.  

To better explain the model development, consider a case where training and experience are the 

only PSFs affecting the human performance in a task, i.e., N = 2. The BN for estimating the HEP given 

the task and its PSFs is depicted in Figure 1, generated using AgenaRisk software [34].   
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Figure 1. BN-SLIM structure.  

Each PSF node would have several states to represent its rates. Since according to Eq. (1) each PSF 

directly impacts the amount of SLI, causal arcs are drawn from the PSF nodes to SLI node. The 

number of states of SLI node is equal to the number of possible combinations of the rates (states) of 

PSFs nodes. For the sake of simplicity, consider only three rates “R1 = 1”, “R5 = 5” and “R9 = 9” as the 

states of PSF nodes “Experience” and “Training”. The weights of 0.2 and 0.8 are considered for 

Experience and Training, respectively. As such,      different values can be calculated for the SLI 

according to Eq. (1) as: 

                                                          

                                             (5) 

Each value of the SLI can be presented as a state of SLI node. Furthermore, according to Eq. (2), SLI 

node should be the only parent of HEP node. This node has two states, that is, human error occurs 

(HEP = Yes) and human error does not occur (HEP = No).  

Completing the structure of the BN in Figure 1, CPTs should be assigned to SLI and HEP nodes to 

quantify the effects of the PSF nodes. The marginal probability distributions assigned to each PSF 

node encodes the analyst’s uncertainty about the rates of the PSF node. For illustrative purposes, 

assume that the probability distribution of the states of Experience node can be presented as 

PExperience (R1, R5, R9) = (0.4, 0.4, 0.2). This probability mass function may indicate that during the 

operation the probability that the task is executed by an operator with no experience (i.e., 
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Experience = R1) is 0.4, with at least 5 years of experience (i.e., Experience = R5) is 0.4, and with 

more than 10 years of experience (i.e., Experience = R9) is 0.2.  

In a similar way, the probability distribution of the states of Training node is assumed as PTraining (R1, 

R5, R9) = (0.6, 0.1, 0.3). The probability distributions of the rates (states) make it possible to consider 

the uncertainty associated with the rates of PSFs whereas in conventional SLIM only one rate for 

each PSF should be specified.  

The SLI node as an intermediate node in the BN makes a link between the PSFs and the HEP. The CPT 

of SLI node in Table 1 shows which combination of the rates of Training and Experience results in 

which state (amount) of the SLI. 

Table 1. CPT of SLI node with 9 states and two PSFs, Experience and Training, as its parents. The 

weights of 0.2 and 0.8 have been considered, respectively, for Experience and Training. 

          Training → R1  R5  R9 

SLI↓ Experience→      R1 R5 R9  R1 R5 R9  R1 R5 R9 

1.0 1 0 0  0 0 0  0 0 0 

1.8 0 1 0  0 0 0  0 0 0 

2.6 0 0 1  0 0 0  0 0 0 

4.2 0 0 0  1 0 0  0 0 0 

5.0 0 0 0  0 1 0  0 0 0 

5.8 0 0 0  0 0 1  0 0 0 

7.4 0 0 0  0 0 0  1 0 0 

8.2 0 0 0  0 0 0  0 1 0 

9.0 0 0 0  0 0 0  0 0 1 

 

To build the CPT of HEP node, the conditional error probability is assigned by direct application of the 

logarithmic formula in Eq. (2). where          and         have been calculated assuming that 

two pairs of corresponding SLIs and HEPs are known for the tasks as (SLI= 1, HEP= 0.6) and (SLI= 9, 

HEP= 10-3). Having the values of a and b determined, the CPT to estimate the HEPs for possible values 

of the SLI can be presented in Table 2.   

Table 2. CPT of HEP node given the states (values) of SLI node.  

HEP↓ SLI→ 1.0 1.8 2.6 4.2 5 5.8 7.4 8.2 9.0 

Yes 0.600 0.317 0.167 0.046 0.024 0.013 0.004 0.002 0.001 

No 0.400 0.683 0.833 0.954 0.976 0.987 0.996 0.998 0.999 
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However, it should be noted that since two pairs of corresponding SLIs and HEPs are identified by 

subject matter experts with respect to the error context of interest, they are subjective and could 

vary from case to case [17], [20], [21], [27]. For example, Kirwan [27] considered (SLI = 4, HEP = 0.5) 

and (SLI = 6, HEP = 10-4) for identifying a and b while Islam et al. [17] calculated a and b assuming (SLI 

= 1, HEP = 0.15) and (SLI = 9, HEP = 10-5). It should be noted that the present study is not aimed at 

resolving the uncertainty arising from such subjectivity, and thus the provided values are merely for 

demonstration purposes. 

This information on the probability distributions of the PSFs rates can be ideally obtained from 

historical and empirical data or provided by subject matter experts when empirical data is not 

available or sufficient. Therefore, depending on the available data and expert knowledge, the rates of 

the PSFs could be identified probabilistically, deterministically, or both [14], [25]. Given the previous 

rates and weights, as can be seen in Figure 1, P(HEP = Yes) = 0.244. As shown in Figure 2, the 

developed BN-SLIM is also capable of estimating the HEP when the rates of Training and Experience 

are given deterministically (as is the case in conventional SLIM), for instance due to exact knowledge. 

 

Figure 2. BN-SLIM with deterministic PSF rates, representing the conventional SLIM.  

It is noteworthy to mention that BN-SLIM can provide a quick estimation of HEP for a variety of cases 

with no need to perform all calculations needed in SLIM. This capability makes BN-SLIM a suitable 

alternative for conventional SLIM, especially when it is essential to estimate the HEP instantly, 
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including decision making in the marine operations [17] or in emergency response actions where 

time is critical.  

3.2. Model refinement 

To make the BN-SLIM more compatible with the conventional SLIM, the model can be refined so that 

the rates of PSF nodes could vary from 1 to 9 (see Section 2.1). Having a wider range of PSF rates 

could lead to a better modeling of uncertainty. Moreover, it would enable the modeler to predict the 

HEP while considering all possible performance conditions derived from different combinations of 

PSFs rates. 

However, increasing the number of the rates to 9 and having n PSFs as the parents of SLI node would 

increase the size of the CPT of SLI node to       cells to fill in:    rows to present the states 

(values) of SLI node and    columns to present the combinations of the states of PSF nodes. To 

handle this complexity, SLI values can be discretized into a limited number of states using equal 

frequency discretization method [35]. Discretization is a common approach in machine learning to 

handle the large size of continuous values which otherwise may considerably slow down the 

inference. Equal frequency discretization technique groups continuous numeric values into discrete 

intervals so that each interval would contain approximately the same number of values. 

To demonstrate the application of equal frequency discretization method, consider 81 SLI values 

resulted from the combination of nine rates (      ) of Experience and Training, with identified 

weights of 0.2 and 0.8 as in Section. 3.1. The suggested number of intervals     and also the 

frequency of numbers in each interval  are both equal to √ , where M is the number of possible SLI 

instances [36]. Obviously, the higher the number of intervals the lower the discretization error. Equal 

frequency discretization technique sorts all SLI instances in an ascending order, and then divides the 

range into a specified number of intervals, in such a way that every interval contains the equal 

number of sorted SLI instances.  

If several SLI instances happen to have the same value, the first interval can contain more than    

instances. The following intervals are determined with the same method, so that the last interval 

may contain less than    instances. The last interval will be merged with the preceding interval if its 

frequency is less than half the mean frequency interval [37]. Each interval of SLI is considered as a 

state of SLI node. Therefore, considering 81 possible SLI instances (given two PSFs each with 9 rates), 

the optimal number of states for SLI node would be √   = 9; by sorting the SLI values the upper and 

lower bounds of each state of SLI node can be determined. The allocated SLI instances to each 
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interval are listed in Table 3. As shown in the second row of Table 3, the first interval contains more 

than 9 instances because two instances has the same value of 2.2. 

Table 3. Discretization of SLI instances into 9 states (intervals) using equal frequency discretization 

technique.   

SLI Interval SLI instances 

[1.0   2.2] 1.0, 1.2, 1.4, 1.6, 1.8, 1.8, 2.0, 2.0, 2.2, 2.2 

(2.2   3.0] 2.4, 2.4, 2.6, 2.6, 2.6, 2.8, 2.8, 3.0, 3.0 

(3.0   3.8] 3.2, 3.2, 3.4, 3.4, 3.4, 3.6, 3.6, 3.8, 3.8 

(3.8   4.6] 4.0, 4.0, 4.2, 4.2, 4.2, 4.2, 4.2, 4.6, 4.6 

(4.6   5.4] 4.8, 4.8, 5.0, 5.0, 5.0, 5.2, 5.2, 5.4, 5.4 

(5.4   6.2] 5.6, 5.6, 5.8, 5.8, 5.8, 6.0, 6.0, 6.2, 6.2 

(6.2   7.0] 6.4, 6.4, 6.6 ,6.6 ,6.6, 6.8, 6.8, 7.0, 7.0 

(7.0   7.8] 7.2, 7.2, 7.4, 7.4, 7.4, 7.6, 7.6, 7.8, 7.8 

(7.8   9.0] 8.0, 8.0, 8.2, 8.2, 8.4, 8.6, 8.8, 9.0 

 

The CPT of SLI node contains ones and zeros to model the relationship between the combinations of 

rates and the corresponding SLI states. For instance, the row of state [       ] in the CPT of SLI 

node can be populated as: 

      [       ]                             {
 
 

                           
    

  (6) 

Where    and    are the rates of Experience and Training, respectively, for       and      . 

Other rows of the CPT are filled in the same way. The CPT of HEP node is populated as explained in 

Section 3.1 using the average value of each SLI state (interval). 

It is worth noting that there are always some discretization errors when continuous data is 

discretized into intervals. It means that discretization of SLI values may lead to slightly different HEPs 

in BN-SLIM from those obtained from conventional SLIM. The Mean Absolute Discretization Error 

(MADE) can thus be computed to find out the expected difference between the results of BN-SLIM 

and SLIM as: 

     
∑      

         
         

   

 
        (7) 

where     
     and     

        are the calculated HEPs using SLIM and BN-SLIM, respectively, for 

all M possible values of SLI. Given the foregoing example with two PSFs “Experience” and “Training” 

each with 9 rates, M = 92 = 81 is the number of the SLIs that may result from the combination of the 
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PSFS rates; thus the MADE of the proposed discretization is calculated as 0.01 which could be 

improved by increasing the number of intervals. 

4. Model application 

4.1. Case study 

Developing the BN-SLIM step-by-step through a simple example of only two PSFs and one task (and 

one HEP) in the previous section, the model can be applied to a more complicated example 

consisting of more PSFs and tasks. As such, the application of BN-SLIM to improving the HEP 

estimation can be demonstrated for cases where various error contexts during carrying out tasks can 

lead to human errors. 

The illustrative example is composed of three sequential tasks. For Task 1 and Task 2, experience and 

training were considered as the main PSFs influencing the success likelihood of performance while 

for Task 3, training and fatigue were considered as the main PSFs. The normalized weights of PSFs for 

each task are listed in Table 4. Besides, based on collected data and experts judgement, the 

probability mass distributions of the levels (rates) of experience, training, and fatigue of the 

operators are assumed to nearly follow exponential, uniform, and normal distributions, respectively 

(the root nodes in Figure 3). The mean values and standard deviations of the foregoing prior 

distributions are listed in Table 5.  

Table 4. Weights of the PSFs for Tasks 1, 2, and 3 

Task Experience Training Fatigue 

Task 1 0.55 0.45 - 

Task 2 0.2 0.8 - 

Task 3 - 0.15 0.85 

 

Figure 3 depicts the BN-SLIM extended to estimate the HEPs of the three tasks as HEP 1, HEP 2, and 

HEP 3. According to the methodology described in Section 3 for developing the BN part of BN-SLIM, 

the probabilities of the states of each HEP can be calculated. Since the tasks should be performed 

sequentially (in series), OR gate can be used to calculate the Total HEP. The CPT of the nodes were 

populated according to the explanations in Sections 3.1 and 3.2. The CPTs of nodes Total HEP and 

HEP1 and part of the CPT of node SLI1 are given in the appendix.  
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Figure 3. BN-SLIM for the calculation of individual HEPS and the Total HEP.  

Table 5. Parameters of prior and posterior probability distributions of the rates of the three PSFs 

(root nodes) in Figure 3. The mean values and standard deviations of the probability distributions are 

also given for the sake of clarity.       

PSF Prior distribution of rates  Posterior distribution of rates given 
Total HEP = Yes  

Mean Standard deviation  Mean Standard deviation 

Experience 3.32 2.01  2.76 1.76 
Training 5.00 2.58  3.06 2.07 
Fatigue 5.00 1.88  4.60 1.98 

4.2. Results and discussion 

Given a number of related tasks during an operation, SLIM calculates the HEP of each task separately, 

ignoring the dependencies among the HEPs due to common PSFs. BN-SLIM, on the other hand, can 

consider such dependencies thanks to the modeling features of BN. As can be seen from Figure 3, 

using BN-SLIM the probability of the total human error has been calculated as              

          . However, ignoring conditional dependencies among the HEPs (which is the case in 

SLIM) would have resulted in an overestimation of the total HEP as                     

                                                                 

                     .  
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One of the exclusive abilities of BN-SLIM over SLIM is diagnostic reasoning, aimed at updating the 

probability distributions of the PSF rates given some evidence. For instance, if it is known that human 

error has occurred, BN-SLIM can identify both (i) the PSF which has contributed the most to the error 

and (ii) the most likely rate of each PSF which has been present during the error. Indeed, updating 

analysis helps HRA practitioners conduct “what-if” scenarios in order to gain better acumen and 

accordingly take proactive approaches for preventing human errors [14].  

To make the discussion more concrete, two “what-if” scenarios are conducted below.  

4.2.1. First Scenario 

In the first scenario, we set                    as evidence to determine the most critical PSF 

contributing to the human error although the source of error is unknown. (It is not known which 

tasks were executed erroneously). Propagating this evidence throughout the model, the posterior 

probability distributions of the rates of the PSFs can be calculated (Figure 4); the posterior mean 

values and standard deviations are reported in Table 5.   

 

Figure 4. BN-SLIM for the calculation of posterior probability of the rates given “Total HEP = yes”.   

Comparison of posterior and prior probability distributions of PSFs can be used to evaluate and rank 

order the PSFs based on their contribution to the total human error. One of the criterion for 
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measuring the contribution of a PSF is the Mean Variation (MV) as the difference between the prior 

and posterior mean values of the rates: 

      
∑          

      ∑          
   

∑          
   

        (8) 

where       and       are the prior and posterior probabilities, respectively, of the rates. Given the 

prior and posterior mean values in Table 5, the MVs of the PSFs have been calculated as shown in 

Figure 5.  

As can be seen from Figure 5, Training and Experience can be identified as the most and second most 

critical PSFs, respectively, given a total human error. Among the PSFs, Training might have been 

expected to have the largest influence on the total human failure due to its contribution to all the 

three tasks and also its largest total weight of 1.4. However, it could not be so easy to rank order the 

two other PSFs, i.e., Experience and Fatigue, based on their contribution: Experience is involved in 

two tasks with a total weight of 0.75 whereas Fatigue is involved only in one task yet with a higher 

weight of 0.85.  

As can be seen in Figure 5, MV can prioritize PSFs based on their contribution to the overall human 

error which helps analyst optimally allocate the resources in order to reduce the likelihood of human 

error.  

  

Figure 5. Mean variation of the probability distributions of the PSFs: the higher the MV the more 

critical the respective PSF. 

Moreover, to gain more insight into the performance conditions for this scenario, a comparison 

between the posterior and prior probabilities of each rate of the PSFs can be conducted. This 
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comparison can help specify which rates are more likely to have contributed to the Total HEP. To this 

end, the ratio of variation (RV) of each rate can be defined as:  

    
    

            

     
          (9) 

The RVs of the rates of Training,     
        

, as the most critical PSF, have been depicted in Figure 6; 

as can be seen, the training rates lower than 4 are more likely to be present in the Total HEP. 

Therefore, using MV, Training is identified as the most critical PSF while using RV the lower rates of 

Training (lower than 4) are identified as the most likely conditions of Training with regard to this 

scenario.  

 

Figure 6. Ratio of variation of training rates given the total human error (i.e., “Total HEP” = yes). 

4.2.2. Second Scenario 

In the second scenario, two pieces of evidence are applied: a human error has occurred, i.e., 

                  , and the level of experience of the operator who may have been involved 

in executing the tasks has been five (e.g., five years), i.e.,                    . Considering 

the posterior probabilities calculated given this evidence, the RVs of the rates of Training, as an 

example, have been presented in Figure 7. 

As can be seen, R1, R2 and R3 are, respectively, the rates with the highest RV, indicating that 

operators with a level of “Experience” of five and levels of “Training” lower than 4 are more likely to 

have participated in the error in the context of the foregoing three tasks. This outcome demonstrates 
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that RV of PSF rates can be used as an effective diagnostic criterion, reflecting more precisely the 

likely performance context given a human error.  

  

Figure 7. Ratio of variation of training rates given a human error (i.e., “Total HEP” = yes) by operators 

with five years of experience (i.e., “Experience” = R5).   

5. Conclusion 

This paper has proposed a new model, so-called BN-SLIM, for improving the performance of SLIM 

using BN. The BN-SLIM was developed by mapping SLIM in BN so that the causal links between 

performance shaping factors (PSFs) and human errors as well as the dependencies among human 

errors could be modeled. We demonstrated that the BN-SLIM can effectively be applied for human 

error probability (HEP) assessment as it outperforms SLIM with regard to the following modeling 

aspects: 

 Handling uncertainty: BN-SLIM is better able to handle uncertainties by considering 

probability distributions of PSF rates in contrast to SLIM which only adopts deterministic 

rates. Indeed, BN-SLIM enables practitioners to use both expert judgment and empirical data 

in a probabilistic way, which could be a significant step toward improving the performance of 

SLIM which relies on the deterministic judgment of experts. 

 Considering dependencies: Given an operation consisting of a number of tasks, SLIM 

estimates the total HEP of the operation as an aggregation of the HEPs of the tasks, ignoring 

the dependencies among the HEPs due to common PSFs. BN-SLIM, on the other hand, can 

consider the conditional dependencies among the tasks’ HEPs while calculating the 
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operation’s total HEP. This capability would result in a more accurate prediction of human 

performance. 

 Diagnostic analysis: Thanks to the capability of BN-SLIM in probability updating, two 

criticality measures have been defined in the present study. Given a HEP, the mean variation, 

which is defined as the normalized difference between the mean values of the prior and 

posterior distributions of PSF rates, can be used to identify the PSF contributing the most to 

the HEP. Likewise, the ratio of variation, which is defined as the normalized difference 

between the posterior and prior probabilities of PSF rates, can be used to identify the most 

likely PSF rate leading to the HEP. This capability could be very effective in proactive risk 

assessment and management to prevent or reduce the likelihood of human failure events. 

Aside from the above-mentioned improvements made to SLIM via BN-SLIM, there is still room to 

enhance the performance and accuracy of BN-SLIM. For instance, similar to the rates, the weights of 

PSFs can also be modeled probabilistically to present the experts uncertainty about the importance 

of PSFs in relation to a certain task. This, however, can significantly increase the size of conditional 

probability tables and make the modeling too complex and intractable.  

Besides, the uncertainty associated with the constant parameters of the logarithmic function used to 

calculate the HEP, both in SLIM and BN-SLIM, still remains an open question for further research. 

Nevertheless, according to the added features, we believe that the proposed BN-SLIM is more 

compatible with probabilistic safety assessment and management methodologies. 
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Appendix 

Tables A1, A2, and A3 indicate the CPTs of Total HEP, HEP1, and SLI1 nodes in Figure 3. 

Table A1. the CPT of  Total HEP node  

HEP1 Yes No 

HEP2 Yes No Yes No 

HEP3 Yes No Yes No Yes No Yes No 

Yes 1 1 1 1 1 1 1 0 

No 0 0 0 0 0 0 0 1 

 
Table A2. The CPT of HEP1 node 

SLI1 

Interval→ 
1.00 - 
2.55 

2.65 - 
3.45 

3.55 - 
4.15 

4.20 - 
4.70 

4.75  - 
5.25 

5.30  -  
5.80 

5.85  - 
6.45 

6.55  - 
7.35 

7.45  - 
9.00 

HEP1↓ 

Yes 0.4097 0.0944 0.0376 0.0188 0.0101 0.0053 0.0027 0.0011 0.0003 

No 0.5903 0.9056 0.9624 0.9812 0.9899 0.9947 0.9973 0.9989 0.9997 

 
Table A3. Part of the CPT of SLI1 node 

SLI1 Intervals 
→ 1.00 - 

2.55 
2.65 - 
3.45 

3.55 - 
4.15 

4.20 - 
4.70 

4.75  - 
5.25 

5.30  -  
5.80 

5.85  - 
6.45 

6.55  - 
7.35 

7.45  - 
9.00 Traini

ng↓ 
Experei
nce↓ 

R1 R1 1 0 0 0 0 0 0 0 0 

R1 R2 1 0 0 0 0 0 0 0 0 

R1 R3 1 0 0 0 0 0 0 0 0 

R1 R4 1 0 0 0 0 0 0 0 0 

R1 R5 0 1 0 0 0 0 0 0 0 

R1 R6 0 1 0 0 0 0 0 0 0 

R1 R7 0 0 1 0 0 0 0 0 0 

R1 R8 0 0 1 0 0 0 0 0 0 

R1 R9 0 0 0 1 0 0 0 0 0 

R2 R1 1 0 0 0 0 0 0 0 0 

R2 R2 1 0 0 0 0 0 0 0 0 

R2 R3 1 0 0 0 0 0 0 0 0 
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SLI1 Intervals 
→ 1.00 - 

2.55 
2.65 - 
3.45 

3.55 - 
4.15 

4.20 - 
4.70 

4.75  - 
5.25 

5.30  -  
5.80 

5.85  - 
6.45 

6.55  - 
7.35 

7.45  - 
9.00 Traini

ng↓ 
Experei
nce↓ 

R2 R4 0 1 0 0 0 0 0 0 0 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

 

                  


