A NEW VISION ON LIGHTWEIGHT FIBER-BASED BUILDING SYSTEMS USING CORELESS-FILAMENT WINDING

Fibrous surface of a lightweight fiber-based building system

<u>P2 Presentation</u> Ruben Tjebbe Steinfort 5675138 Architectural Engineering Graduation Design Studio January 26, 2024

Introduction

PROBLEM STATEMENT – CONTEXT – OVERALL DESIGN HYPOTHESIS – THEMATIC RESEARCH QUESTION – OBJECTIVE – METHODOLOGIES

Research

DEMATERIALIZATION & DECARBONIZATION – PRODUCTION OF FIBROUS TECTONICS – MODULARITY & DEMOUNTABILITY – RESEARCH CONCLUSION

Design

LOCATION – PROGRAM – CONCEPT PRINCIPLES – DESIGN VISION - PRELIMINARY DESIGNS

Conclusion

CONCLUSION - WHAT'S NEXT

Illustration retrieved from: Building-industry-construction-site [Illustration]. Freepik. Accessed on January 25, 2024, www.freepik.com

Illustration retrieved from: Cost-reduction-illustration-with-decrease-price-minimising-or-falling-rate-of-profit-in-business [Illustration]. Vecteezy. Accessed on January 25, 2024, www.vecteezy.com (ECESP, 2021)

Graph retrieved from: REINVENTING CONSTRUCTION: A ROUTE TO HIGHER PRODUCTIVITY [Graph]. Mckinsey. Accessed on January 25, 2024, www.mckinsey.com

PROBLEM STATEMENT Effects of the building industry on our planet CONTEXTUAL PROBLEM **Material Waste Pollution and** Emissions Depletion OVERALL DESIGN HYPOTHESIS THEMATIC RESEARCH QUESTION OBJECTIVE METHODOLOGIES Illustration retrieved from: Trash container [Illustration]. Vecteezy. Accessed on January 25, 2024, www.vecteezy.com Illustration retrieved from: Construction materials set [Illustration]. Vectorstock. Accessed on January 25, 2024, www.vectorstock.com Illustration retrieved from: Building industrial plants polluting the environment. [Illustration]. Adobe Stock. Accessed on January 25, 2024, www.stock.adobe..com

Illustration retrieved from: Pollution concept [Illustration]. Freepik. Accessed on January 25, 2024, www.freepik.com

(ECESP, 2021)

P2 Presentation I A New Vision on Lightweight Fiber-Based Building Systems I AE Studio I Ruben Tjebbe Steinfort I 5675138

(ECESP, 2021)

P2 Presentation I A New Vision on Lightweight Fiber-Based Building Systems I AE Studio I Ruben Tjebbe Steinfort I 5675138

Circular economy manufacturing cycle

Reevaluation of our traditional building methods

PROBLEM STATEMENT

CONTEXTUAL PROBLEM

HYPOTHESIS

QUESTION

OBJECTIVE

PROBLEM STATEMENT

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

"We as architects and engineers have to develop our own fabrication processes adapted for the needs of architectural and building construction" Jan Knippers

Image retrieved from: From laboratory to building practice [Picture]. Competitiononline. Accessed on January 25, 2024, www.competitionline.com

(Pérez, Guo, & Knippers, 2022)

Coreless Filament Winding using Fiber Filaments

Surface-based Layered Fibers

Coreless Filament Winding

Flax Fibers

Illustration retrieved from: Spatial winding: cooperative heterogeneous multi-robot system for fibrous structures [Illustration]. ResearchGate. Accessed on January 25, 2024, www.researchgate.net

Image retrieved from: Flax fibers from flax for the manufacture of linen fabric and linen fabric [Picture]. Shutterstock. Accessed on January 25, 2024, www.shutterstock.com

(Duque Estrada, et al., 2020)

P2 Presentation I A New Vision on Lightweight Fiber-Based Building Systems I AE Studio I Ruben Tjebbe Steinfort I 5675138

THEMATIC RESEARCH QUESTION

PROBLEM STATEMENT

CONTEXTUAL PROBLEM

OVERALL DESIGN HYPOTHESIS

OBJECTIVE

METHODOLOGIES

(Rijksoverheid, 2023)

Graphs retrieved from: Het stikstofprobleem is echt Nederlands, uitgelegd in acht grafieken [Graph]. NOS. Accessed on January 25, 2024, www.nos.nl

METHODOLOGIES

Historically

Historic image of flax farming in Groningen, The Netherlands in the 19th century

Image retrieved from: The flax industry 19th century [Picture]. Canonvannederland. Accessed on January 25, 2024, www.canonvannederland.nl (Brouwers, 1970), (Canonvannederland, 2021), (Hofslot, 2023)

Synergy between farmers, builders, inhabitants AND with nature itself

Illustration retrieved from: Male farmer with rake [Illustration]. Vecteezy. Accessed on January 25, 2024, www.vecteezy.com

Illustration retrieved from: Labor Cooperation [Illustration]. PNGtree. Accessed on January 25, 2024, www.pngtree.com

Image retrieved from: The flax plant [Image]. Beezone. Accessed on January 25, 2024, www.beezone.co.kr

Image retrieved from: Bees, Beetles and Butterflies [Image]. CornerstonesandEducation. Accessed on January 25, 2024, www.cornerstoneseducation.co.uk

PROBLEM STATEMENT

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Overall Design Hypothesis

The flax farm of the future, that is constituted from **fibrous structures**, and which is constructed using **coreless-filament winding**, will have a positive impact on the layout, the efficiency of the required facilities and translates into a **new architectural language** that has a transformative impact on the **relationship between humans and their environment** and ultimately showcases the **full potential** of the use of **flax** in Architecture.

CONTEXTUAL
PROBLEM

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Thematic Research Question

How to create **lightweight fiber-based building systems** for large open spaces from (regionally harvested) **flax** fibers using coreless-filament winding, whereby **bespoke fibrous tectonics**, **dematerialization** and **modularity** are considered as guiding themes?

CONTEXTUAL PROBLEM

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Design Objective

- Flax farm & factory of the future
- Incorporated into the Groningen landscape
- Uses regional fibrous sources, such as Flax
- Design various potent layouts
- Space for community engagement
- Showcase the full potential of flax
- Explore the transformative impact of this new architectural language

Research Objective

• Various potent fibrous building systems made from flax

CONTEXTUAL PROBLEM

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Design

•	Which materials and construction techniques, both historically and contemporary, have been used to accommodate different farm and factory typologies in The Netherlands and abroad?	>	Case study analysis
Со	ntextual influences		
-	What are the geographical and climatic characteristics of the site, in the Groningen landscape, that needs to be considered, and how do they influence the design?		Context analysis Literature review Interview
Inf	rastructure		
•	What infrastructure is required for flax farm activities, including storage, processing, production and packaging and which layout is the most suitable to use in the design to promote a smooth workflow and efficiency between the facilities?		Literature review Interview
Со	nmunity engagement		
-	How can the architectural design of the farm include spaces for community engagement, education and events to showcase the potential and the production cycle of Flax?		Case study analysis Literature review
Arc	hitectural Language		
	How do these materials and techniques alter the way we are connected to our living environment and result in a new architectural language?		Literature review

CONTEXTUAL PROBLEM

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Design

	Which materials and construction techniques, both historically and contemporary, have been used to accommodate different farm and factory typologies in The Netherlands and abroad?	 	Case study analysis
Co	ntextual influences		
•	What are the geographical and climatic characteristics of the site, in the Groningen landscape, that needs to be considered, and how do they influence the design?	 	Context analysis Literature review Interview
In	frastructure		
•	What infrastructure is required for flax farm activities, including storage, processing, production and packaging and which layout is the most suitable to use in the design to promote a smooth workflow and efficiency between the facilities?	 	Literature review Interview
Со	mmunity engagement		
	How can the architectural design of the farm include spaces for community engagement, education and events to showcase the potential and the production cycle of Flax?	 	Case study analysis Literature review
Ar	chitectural Language		
•	How do these materials and techniques alter the way we are connected to our living environment and result in a new architectural language?	 	Literature review

CONTEXTUAL PROBLEM

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

```
OBJECTIVE
```

METHODOLOGIES

Design

	Which materials and construction techniques, both historically and contemporary, have been used to accommodate different farm and factory typologies in The Netherlands and abroad?		Case study analysis
Со	ntextual influences		
	What are the geographical and climatic characteristics of the site, in the Groningen landscape, that needs to be considered, and how do they influence the design?	>	Context analysis Literature review Interview
Inf	rastructure		
•	What infrastructure is required for flax farm activities, including storage, processing, production and packaging and which layout is the most suitable to use in the design to promote a smooth workflow and efficiency between the facilities?		Literature review Interview
Со	mmunity engagement		
	How can the architectural design of the farm include spaces for community engagement, education and events to showcase the potential and the production cycle of Flax?	>	Case study analysis Literature review
Are	hitectural Language		
	How do these materials and techniques alter the way we are connected to our living environment and result in a new architectural language?	>	Literature review

CONTEXTUAL PROBLEM

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Design

Farm and Factory typologies & materials used

result in a new architectural language?

	Which materials and construction techniques, both historically and contemporary, have been used to accommodate different farm and factory typologies in The Netherlands and abroad?		Case study analysis
Со	ntextual influences		
•	What are the geographical and climatic characteristics of the site, in the Groningen landscape, that needs to be considered, and how do they influence the design?		Context analysis Literature review Interview
Inf	rastructure		
•	What infrastructure is required for flax farm activities, including storage, processing, production and packaging and which layout is the most suitable to use in the design to promote a smooth workflow and efficiency between the facilities?		Literature review Interview
Co	mmunity engagement		
•	How can the architectural design of the farm include spaces for community engagement, education and events to showcase the potential and the production cycle of Flax?		Case study analysis Literature review
Are	chitectural Language		
	How do these materials and techniques alter the way we are connected to our living environment and	>	Literature review

CONTEXTUAL PROBLEM

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Design

•	How do these materials and techniques alter the way we are connected to our living environment and result in a new architectural language?	 -	Literature review
Ar	chitectural Language		
	How can the architectural design of the farm include spaces for community engagement, education and events to showcase the potential and the production cycle of Flax?	 	Case study analysis Literature review
Со	mmunity engagement		
•	What infrastructure is required for flax farm activities, including storage, processing, production and packaging and which layout is the most suitable to use in the design to promote a smooth workflow and efficiency between the facilities?	 	Literature review Interview
Inf	rastructure		
	What are the geographical and climatic characteristics of the site, in the Groningen landscape, that needs to be considered, and how do they influence the design?	 	Context analysis Literature review Interview
Со	ntextual influences		
1	Which materials and construction techniques, both historically and contemporary, have been used to accommodate different farm and factory typologies in The Netherlands and abroad?	 	Case study analysis

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Research

Dematerialization & Decarbonization

- What are the characteristics of (flax) fibers that need consideration to use the material with the corelessfilament winding technique to achieve dematerialized fibrous structures?
- How are flax fibers harvested, processed, and finalized to be used for coreless-filament winding and how can the biodegradability of the end product be ensured?

Production of fibrous tectonics

How can the fabrication technique of coreless-filament winding be optimally used with flax and other types of fiber-based materials resulting in dematerialized modular structures characterized by fibrous tectonics?

Modularity & Demountability

- How can these structural and non-structural fibrous elements be combined in a modular and demountable way, while being thermally insulated, weatherproof and structurally optimized, to form fiber-based building systems?
- How can computational design aid in creating fibrous structures that utilize dematerialization, are structurally optimized for the shapes needed for the program and enable form freedom?

Literature review

Images retrieved from: Cover pages of various research papers [Image]. ResearchGate. Accessed on January 25, 2024, www.researchgate.com

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Research

Dematerialization & Decarbonization

- What are the characteristics of (flax) fibers that need consideration to use the material with the corelessfilament winding technique to achieve dematerialized fibrous structures?
- How are flax fibers harvested, processed, and finalized to be used for coreless-filament winding and how can the biodegradability of the end product be ensured?

Production of fibrous tectonics

How can the fabrication technique of coreless-filament winding be optimally used with flax and other types of fiber-based materials resulting in dematerialized modular structures characterized by fibrous tectonics?

Modularity & Demountability

- How can these structural and non-structural fibrous elements be combined in a modular and demountable way, while being thermally insulated, weatherproof and structurally optimized, to form fiber-based building systems?
- How can computational design aid in creating fibrous structures that utilize dematerialization, are structurally optimized for the shapes needed for the program and enable form freedom?

Case study analysis

ICD/ITKE Research Pavilion 2012 ICD/ITKE Research Buildings, Germany BUGA Fibre Pavilion 2019 CD Research Buildings / Prototypes Bundesgartenschau Heilbronn 2019, Germany

Maison Fibre 2021 ICD/ITKE Research Buildings LivMatS Pavilion 2021 2021 ICD Research Buildings / Prototypes Botanic Garden Freiburg, Germany

Images retrieved from: Overview of ICD/ITKE research pavilions and Demonstrators [Image]. ITKE University of Stuttgart. Accessed on January 25, 2024, www.itke.uni-stuttgart.de

P2 Presentation I A New Vision on Lightweight Fiber-Based Building Systems I AE Studio I Ruben Tjebbe Steinfort I 5675138

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Research

Dematerialization & Decarbonization

- What are the characteristics of (flax) fibers that need consideration to use the material with the corelessfilament winding technique to achieve dematerialized fibrous structures?
- How are flax fibers harvested, processed, and finalized to be used for coreless-filament winding and how can the biodegradability of the end product be ensured?

Production of fibrous tectonics

How can the fabrication technique of coreless-filament winding be optimally used with flax and other types of fiber-based materials resulting in dematerialized modular structures characterized by fibrous tectonics?

Modularity & Demountability

- How can these structural and non-structural fibrous elements be combined in a modular and demountable way, while being thermally insulated, weatherproof and structurally optimized, to form fiber-based building systems?
- How can computational design aid in creating fibrous structures that utilize dematerialization, are structurally optimized for the shapes needed for the program and enable form freedom?

Interview

Dr. Julian Fial Head of Production & Development

Image retrieved from: Dr. Julian Fial [Image]. Regrow. Accessed on January 25, 2024, www.regrow.build

Illustration retrieved from: Logo FibR [Illustration]. FibR. Accessed on January 25, 2024, www.fibr.tech

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Research

Dematerialization & Decarbonization

- What are the characteristics of (flax) fibers that need consideration to use the material with the corelessfilament winding technique to achieve dematerialized fibrous structures?
- How are flax fibers harvested, processed, and finalized to be used for coreless-filament winding and how can the biodegradability of the end product be ensured?

Production of fibrous tectonics

How can the fabrication technique of coreless-filament winding be optimally used with flax and other types of fiber-based materials resulting in dematerialized modular structures characterized by fibrous tectonics?

Modularity & Demountability

- How can these structural and non-structural fibrous elements be combined in a modular and demountable way, while being thermally insulated, weatherproof and structurally optimized, to form fiber-based building systems?
- How can computational design aid in creating fibrous structures that utilize dematerialization, are structurally optimized for the shapes needed for the program and enable form freedom?

Research-by-Design

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Research

Dematerialization & Decarbonization

- What are the characteristics of (flax) fibers that need consideration to use the material with the corelessfilament winding technique to achieve dematerialized fibrous structures?
- How are flax fibers harvested, processed, and finalized to be used for coreless-filament winding and how can the biodegradability of the end product be ensured?

Production of fibrous tectonics

How can the fabrication technique of coreless-filament winding be optimally used with flax and other types of fiber-based materials resulting in dematerialized modular structures characterized by fibrous tectonics?

Modularity & Demountability

- How can these structural and non-structural fibrous elements be combined in a modular and demountable way, while being thermally insulated, weatherproof and structurally optimized, to form fiber-based building systems?
- How can computational design aid in creating fibrous structures that utilize dematerialization, are structurally optimized for the shapes needed for the program and enable form freedom?

OVERALL DESIGN HYPOTHESIS

THEMATIC RESEARCH QUESTION

OBJECTIVE

METHODOLOGIES

Research

Dematerialization & Decarbonization

- What are the characteristics of (flax) fibers that need consideration to use the material with the corelessfilament winding technique to achieve dematerialized fibrous structures?
- How are flax fibers harvested, processed, and finalized to be used for coreless-filament winding and how can the biodegradability of the end product be ensured?

Production of fibrous tectonics

How can the fabrication technique of coreless-filament winding be optimally used with flax and other types of fiber-based materials resulting in dematerialized modular structures characterized by fibrous tectonics?

Modularity & Demountability

- How can these structural and non-structural fibrous elements be combined in a modular and demountable way, while being thermally insulated, weatherproof and structurally optimized, to form fiber-based building systems?
- How can computational design aid in creating fibrous structures that utilize dematerialization, are structurally optimized for the shapes needed for the program and enable form freedom?

Digital prototyping

RESEARCH

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

> RESEARCH CONCLUSION

Comparative analysis

Flax is the most optimal natural fiber

Appendix 2 I Performance Indicators – Filament Winding Materials

	Flax Fiber	Hemp Fiber	Sisal Fiber	Basalt Fiber	Carbon Fiber	Fiber Glass	Steel Fiber
Tensile strength (MPa)	343-1500	270-900	353	2600-4840	2000-5000	3500	660-830
Compression strength (MPa)	1200*	-	-	-	1000-3000	50-100	250-1500
Elasticity (Young's module – MPa)	58.643	30.000 - 60.000	15.720	80.000- 115.000	200.000- 500.000	72.000	210.000
Diameter	10-80 µm	26 µm	121-411 μm	10.6 µm	5-8 µm	10-17 μm	-
Fiber length	10-100 cm	1 – 5 cm	80-120 cm	50 cm	× ×	x	8
Density (g/cm ³)	1.4-1.5	1.48	1.45	1.85-2.75	1.75-2.00	1.5	7.8
Fire resistance	Bad	Bad	Bad	Superior	Good	Good	Good
Fire retardance	Varies	Varies	Varies	Superior	Good	Good	Good
Burning/Melting point	237 °C	118-131 °C	163 °C	1500-1700 °C	< 1000 °C	1200-1700 °C	1425-1540 °C
16	a 1	a 1	G 1	a 1	a 1		a 1
Moisture absorption	Good	Good	Good	Good	Good	Good	Good
Moisture resistance	Bad	Bad	Bad	Good	Good	Good	Good
Thermal conductivity (W/mK)	0.038	0.038-0.042	0.038	0.031-0.0038	0.63	0.04	45
Growth duration (days)	100	90-120	1000-1800	-	-	-	-
Growing season Origin	Spring Flax Plant	Spring Hemp Plant	Summer Sisal Plant	- Volcanic rock	- Synthetic	- Glass	- Steel ore
Organic/Inorganic	Organic	Organic	Organic	Inorganic	Inorganic	Inorganic	Inorganic
Texture	Soft, shining	Soft, shining	Coarse/ rough	Fine grained	Soft/ Smooth	Soft/ Smooth	Smooth, but hard
	-	0.00 1 1 1	000 1141	Brown/Black	Plaat/gray	Light yellow	Grev metallig
Color	Beige/light grev	brown	brown	DIOWIDDIACK	Diack/grey	/white	orcy metallo
Color Sound absorption coefficient	Beige/light grey 0.93	0.93	0.6-0.7	0.22-0.75	<0.1	/white 0.9-0.95	0.2
Color Sound absorption coefficient	Beige/light grey 0.93	0.93	0.6-0.7	0.22-0.75	<0.1	/white 0.9-0.95	0.2
Color Sound absorption coefficient Biodegradability	Beige/light grey 0.93 Yes	Off white/ brown 0.93 Yes	Orr white/ brown 0.6-0.7 Yes	0.22-0.75 No	<0.1	/white 0.9-0.95 No	0.2 No
Color Sound absorption coefficient Biodegradability Eco-friendiiness	Beige/light grey 0.93 Yes Yes	Ves Yes	Vir White/ brown 0.6-0.7 Yes Yes	0.22-0.75 No No	<0.1 No No	/white 0.9-0.95 No No	0.2 No

Table made by author (R.T. STEINFORT)

(Sources are listed in Appendix 2)

P2 Presentation I A New Vision on Lightweight Fiber-Based Building Systems I AE Studio I Ruben Tjebbe Steinfort I 5675138

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

> RESEARCH CONCLUSION

Comparative analysis

Flax is the most optimal natural fiber

Advantages

- High tensile strength
- Separation of fibers
- Optimal thermal insulators

Disadvantages

- Dematerialization & material characteristics
- Flammable
- Biodegradable & hydrophilic
- Not naturally weatherproof

	Flax Fiber	Hemp Fiber	Sisal Fiber
Tensile strength (MPa)	343-1500	270-900	353
Compression strength	1200*	-	-
(MPa)			
Elasticity	58.643	30.000 -	15.720
(Young's module – MPa)		60.000	
Diameter	10-80 μm	26 µm	121-411
			μm
Fiber length	10-100 cm	1 – 5 cm	80-120 cm
Density (g/cm³)	1.4-1.5	1.48	1.45
Fire resistance	Bad	Bad	Bad
Fire retardance	Varies	Varies	Varies
Burning/Melting point	237 °C	118-131 °C	163 °C
Moisture absorption	Good	Good	Good
Moisture resistance	Bad	Bad	Bad
Thermal conductivity	0.038	0.038-0.042	0.038
(W/mK)			
Biodegradability	Yes	Yes	Yes
Eco-friendliness	Yes	Yes	Yes

Table made by author (R.T. STEINFORT)

(Sources are listed in Appendix 2)

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

> RESEARCH CONCLUSION

Life Cycle of Flax

- Harvested in 100 days
- Biological Cycle

Production phase

Coreless-Filament Winding

End-of-Life phase

- Reuse
- Modular
- Shredding
- Decomposed
- Upcycled
- Particle boards or insulation

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

RESEARCH CONCLUSION

Production process

- Coreless-filament winding technique uses fiber filaments
- That are wound upon two boundary frames and the fibers are impregnated with resin

Images retrieved from: Fabrication sequence of a fibre reinforced composite building element [Image]. ITKE University of Stuttgart. Accessed on January 25, 2024, www.itke.uni-stuttgart.de

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

> RESEARCH CONCLUSION

The key factors

- Fiber-to-fiber interaction and orientation
- Winding syntax
- Structural abilities

1-1i aqui

C cmp1 ecc

the ing 2

0

Y

PRODUCTION OF FIBROUS TECTONICS

> MODULARITY & DEMOUNTABILITY

> > RESEARCH CONCLUSION

Fibrous tectonics

- Tailor made
- Interrelationship between structure and artistic values
- Also visible between the elements and their specific function
- Bespoke fibrous tectonic structures

Original geometry (global FEM iteration 1)

Optimized final geometry (global FEM iteration 2-5)

Images retrieved from: Overview of ICD/ITKE research pavilions and Demonstrators [Image]. ITKE University of Stuttgart. Accessed on January 25, 2024, www.itke.uni-stuttgart.de

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

> RESEARCH CONCLUSION

Potential Forms

- Endless building- and element shapes are possible on two conditions:
- Be wound upon the robotic setup
- Demolded

Images retrieved from: Overview of ICD/ITKE research pavilions and Demonstrators [Image]. ITKE University of Stuttgart. Accessed on January 25, 2024, www.itke.uni-stuttgart.de

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

> RESEARCH CONCLUSION

Potential Forms

- Research-by-Design
- Structural typologies
- From conventional towards non-conventional forms

Diagrams made by author (R.T. STEINFORT)

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

> RESEARCH CONCLUSION

Potential Forms

- Research-by-Design
- Structural typologies
- From conventional towards non-conventional forms
- Straight spans are not optimal I Axial compression

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

RESEARCH CONCLUSION

Prototyping

- Connections are demountable
- Able to be thermally insulated
- Fiber-based building systems
- Modular
- Form freedom & flexibility
- Production process

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

> RESEARCH CONCLUSION

Case study analysis

• Long spans are possible with fibers, including flax fibers

Free span > 23m

Image retrieved from: Overview of ICD/ITKE research pavilions and Demonstrators [Image]. ITKE University of Stuttgart. Accessed on January 25, 2024, www.itke.uni-stuttgart.de

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

RESEARCH CONCLUSION

Thematic Research Question

How to create **lightweight fiber-based building systems** for large open spaces from (regionally harvested) **flax** fibers using coreless-filament winding, whereby **bespoke fibrous tectonics**, **dematerialization** and **modularity** are considered as guiding themes?

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

RESEARCH CONCLUSION

• A combination of four fiber-based building systems

PRODUCTION OF FIBROUS TECTONICS

MODULARITY & DEMOUNTABILITY

RESEARCH CONCLUSION

Research Conclusion

- Proof for viability
- Not suitable for all functions
- A combination of various fibers is recommended
- Form language with bespoke fibrous characteristics
- Potential to develop a novel architectural language

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Context

- Northeast Groningen, The Netherlands
- Stedum
- 1000 inhabitants

Satellite view of Northeastern Netherlands I Scale 1:500.000

Image adjusted and retrieved from: Google Earth [Image]. Google Earth. Accessed on January 25, 2024, www.earth.google.com

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

- Close to the German border
- International transport

Satellite view of Northeastern Netherlands I Scale 1:500.000

Image adjusted and retrieved from: Google Earth [Image]. Google Earth. Accessed on January 25, 2024, www.earth.google.com

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Advantages

- Close to the German border
- International transport
- Close to the Capital of The ProvinceRoads to major highways
- A7
- A28

Satellite view of Northeastern Netherlands I Scale 1:200.000

Image adjusted and retrieved from: Google Earth [Image]. Google Earth. Accessed on January 25, 2024, www.earth.google.com

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Advantages

- Close to the German border
- International transport
- Close to the Capital of The ProvinceRoads to major highways
- A7
- A28
- Close to major ports
- Eemshaven
- Delfzijl

Satellite view of Northeastern Netherlands I Scale 1:200.000

Image adjusted and retrieved from: Google Earth [Image]. Google Earth. Accessed on January 25, 2024, www.earth.google.com

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Advantages

- Close to the German border
- International transport
- Close to the Capital of The ProvinceRoads to major highways
- A7
- A28
- Close to major ports
- Eemshaven
- Delfzijl
- Surrounded by Agricultural fields

Satellite view of Stedum, Groningen I Scale 1:50.000

Image adjusted and retrieved from: Google Earth [Image]. Google Earth. Accessed on January 25, 2024, www.earth.google.com

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Advantages

- Close to the German border
- International transport
- Close to the Capital of The ProvinceRoads to major highways
- A7
- A28
- Close to major ports
- Eemshaven
- Delfzijl
- Surrounded by Agricultural fields
- Flax Museum situated
- Collective memory flourishing flax industry
- Proposed site

Satellite view of Stedum, Groningen I Scale 1:20.000

Image adjusted and retrieved from: Google Earth [Image]. Google Earth. Accessed on January 25, 2024, www.earth.google.com

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Disadvantages

- Low population capacity
- Rural area
- Current infrastructure sufficient?

Satellite view of Stedum, Groningen I Scale 1:20.000

Image adjusted and retrieved from: Google Earth [Image]. Google Earth. Accessed on January 25, 2024, www.earth.google.com

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

THE FLAXTORY			Harvesting	Processi
AGRICULTURAL		Program Function	Agricultural Storage	Industria Manufactu
HARVESTING	1500 m2			
Storage area for vehicles, equipment and flax bales		Rooms	Harvesting Hall	Manufactu Hall
INDUSTRIAL			<u>Storage Area</u> (Long	Storage A (Short stor
MANUFACTURING	2000 m2		- Vehicles - Equipment	- Flax Bales - Flax Rovin
Storage area for flax bales and flax roving			- Flax Bales	<u>Office</u> - For farmer
Enough space for the manufacturing machine (length approximately 40m)				& workers agricultural industrial
Offices for farmers & workers				
FABRICATION & EXPERIMENTATION	1600 m2			
Storage area for fiber elements and fiber molds		Wishes	Spacious area also for	Spacious & area also
Manufacturing area for the robot setups			traffic	
COMMERCIAL		Dimensions Area	1500 m ²	2000 m
OFFICE	600 m2	Length _{min} Height _{min}	30 m 9 m	50 m 9 m
Spacious office area		Span _{min} Climate	10 m	10 m
Restrooms and canteen		Dry Heated	Yes No	Yes No
CULTURAL		Acoustics Ventilated	N/A Natural	N/A Natural
COMMUNITY	600 m2	Regulations		
Expositions, multipurpose room				
		L	1	1

Table made by author (R.T. STEINFORT)

Fabrication

Industrial

Fabrication Hall

1600 m²

20 m 40 m

Mechanical

Medium

Office Community

Cultural

Commercial

Office Ha

Resting are

600 m²

Mechanical

Medium

600 m²

Medium

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Concept principles

- •
- Structural typologies Research-by-Design Most optimal structural forms

Tree column

Fibrous column

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Design vision

The exterior needs to be:

- Connected to the landscape
- Undulating forms
- Identity
- See-through vistas
- Groningen Landscape
- Vice versa to the processes inside

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Design vision

The interior needs to be:

- Transparent to create indoor vistas to the other facilities
- Inspire and visual connection
- Fibrous tectonics
- Able to be sensed by the employees and the visitors
- Inspirational environment
- Campus atmosphere

Diagrams made by author (R.T. STEINFORT)

Diagrams made by author (R.T. STEINFORT)

L production line

11114

Diagrams made by author (R.T. STEINFORT)

office space

PROGRAM

CONCEPT PRINCIPLES

DESIGN VISION

PRELIMINARY DESIGNS

Top Elevation

80 m

125 m

Plan

Drawings made by author (R.T. STEINFORT)

Concept 1 Embracing forms

Concept 2 Intertwined domes

CONCEPT PRINCIPLES

LOCATION

PROGRAM

DESIGN VISION

PRELIMINARY DESIGNS

Ε

120

Plan

CONCLUSION

WHAT'S NEXT?

Image retrieved from: Which is better for your health: long walk or fast walk? [Image], MANNERS. Accessed on January 25, 2024, www.manners.nl

WHAT'S NEXT?

Façade skin (weatherproof)

- Foundation, alternatives for concrete?
- Zoning plan for the area?
 - Height and size restrictions?
 - Which functions can be implemented?
- Possibilities for a 2nd floor with these fibrous panel built up?
- Which spans are precisely possible with these kind of structures made from Flax?
- And what structural typology can help with increasing the maximum span size?