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Inverse Designing Surface Curvatures by Deep Learning

Yaqi Guo, Saurav Sharma,* and Siddhant Kumar*

1. Introduction

Nature is replete of porous structures with unique curvature
topologies—from the simplest example of soap films with con-
stant mean curvatures (Plateau’s law[1,2]) to the morphogenesis-
driven Turing patterns[3,4] in animal skin pigmentation; from
biological systems such as trabecular bone[5–7] and vascular
networks[8,9] to non-biological systems like porous ceramics,
nanoporous gold,[10] and block copolymers[11] (see Figure 1).
Driven by complex relaxation dynamics and nonequilibrium
phenomena such as self-assembly,[12–14] pattern formation,[15–17]

and phase ordering kinetics,[18,19] both understanding and
tuning such physics behind the natural emergence of complex

curvature topologies opens up new avenues
for advances in materials engineering.

For instance, mimicking the microstruc-
tural curvature topologies of nanoporous
gold and phase-separated block copoly-
mers, spinodoid metamaterials[11,20–22]

have sparked significant interest for their
potential applications in bio-implants,[23]

lightweight structures,[24] energy absorp-
tion,[25] mass transport,[26] and more. The
microstructure of these materials emerges
from a spinodal decomposition process
(i.e., rapid separation of immiscible
phases) via either self-assembly[11] or com-
bination of in silico design and 3D print-
ing.[21] In spinodal decomposition, the
phase separation is governed by minimiza-
tion of the bulk free energy while regulated
by the interfacial energy between the
phases; the latter being intricately related
to the interfacial curvatures. The resulting

curvature topology promotes stretching-dominated deformation,
which is stronger than bending-dominated deformation and,
therefore, exhibits excellent mechanical resilience.[11,22]

However, how to (in silico) tune the physics of spinodal decom-
position to obtain tailored curvature topologies for favorable
mechanics remains an open question.

A similar curvature design challenge is gaining attention in
the field of bio-scaffolds and implants. Substrate curvatures
play a significant role in inducing spatiotemporal growth, differ-
entiation, and migration of biological cells and tissues.[27–32]

For example, metamaterials based on triply periodic minimal
surfaces (TPMS) gained popularity in the design of bone
implants as they were believed to mimic the zero mean curvature
of trabecular bone and in turn, enhance the long-term compati-
bility. However, a recent study[5] has challenged this assumption,
revealing that trabecular bone displays a complex curvature
profile instead, with significant variations across patients and
anatomical sites. This highlights the need to develop porous
structures with tunable curvature topologies, not only for bone
implants but also for cell scaffolds that can adapt to diverse
patient- and (anatomical) site-specific contexts.

Despite a wide variety of explorations ranging from TPMS to
spinodoid metamaterials, a more general and unified topology
description of smooth porous microstructures remains to be
investigated. In this direction, Song[33] recently proposed a uni-
fying phase-field framework to generate tubular and membra-
nous topologies with diverse curvature profiles. Similar to the
canonical spinodal decomposition model,[34] topologies within
this framework are obtained as optimizers (subject to constant
volume restriction) of energy functionals parameterized based
on principal curvatures of the phase-field interface. While this
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to trabecular bone—have inspired several mimetic design spaces for architected
metamaterials and bio-scaffolds. However, the design approaches so far are
ad hoc, raising the challenge: how to systematically and efficiently inverse design
such artificial microstructures with targeted topological features? Herein, surface
curvature is explored as a design modality and a deep learning framework is
presented to produce topologies with as-desired curvature profiles. The inverse
design framework can generalize to diverse topological features such as tubular,
membranous, and particulate features. Moreover, successful generalization
beyond both the design and data space is demonstrated by inverse designing
topologies that mimic the curvature profile of trabecular bone, spinodoid
topologies, and periodic nodal surfaces for application in bio-scaffolds and
implants. Lastly, curvature and mechanics are bridged by showing how topo-
logical curvature can be designed to promote mechanically beneficial stretching-
dominated deformation over bending-dominated deformation.
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approach opens up a design space to control curvature topology,
key challenges persist. 1) Exploring the entire design–property
space is nearly impossible because each topology requires a
computationally expensive phase-field simulation. The character-
ization of the microstructural curvature profile by a high-
dimensional probability distribution of principal curvatures
further exacerbates the situation. 2) Although the curvature pro-
file of a given topology is unique and simple to obtain, the inverse
design, i.e., identifying a microstructural topology with a targeted
curvature profile remains an open challenge. This is due to the
ill-posedness of the inverse problem, i.e., multiple topologies
with different design parameters may display the identical or
similar curvature profiles, making it difficult to identify the opti-
mal design. In addition, traditional design approaches such as
topology optimization[35–37] and intuition-based approaches are
not only computationally expensive, but they may also not be
applicable to design for an unconventional target property, such
as the microstructural curvature profile. To enhance the discov-
ery of novel topologies, traditional empirical methods typically
rely on collecting data from experiments or drawing inspiration
from nature to mimic biological materials.[38–41] While intuition-
based design approaches can be valuable, they often encounter
limitations stemming from a restricted exploration of design pos-
sibilities. By relying solely on intuition, designers may overlook
alternative perspectives and innovative solutions, leading to a
narrower design space. For instance, while TPMS with varying
Gaussian curvatures can be designed and fabricated,[42] the
parameterization lacks generalizability to a broad and diverse
range of smooth surfaces with tailored curvature profiles.

To overcome this limitation, a machine learning (ML)
framework is introduced for generating smooth porous
microstructures with inverse-designed curvature profiles
(see Figure 1). By analyzing vast amounts of experimental and
computational data, ML algorithms can bypass inefficient

trial-and-error methods and efficiently unravel hidden high-
dimensional structure–property relations, leading to the design
of novel materials with tailored properties. Employing a diverse
array of ML techniques—from classical Bayesian optimization[43]

to modern approaches such as variational autoencoders,[44] gen-
erative adversarial networks,[45] and diffusion models[46]—recent
applications span a wide range of domains, including
mechanical metamaterials,[22,47–51] composites,[52] photonics,[53]

biomaterials,[54] and more. In the context of metamaterials
and porous materials, while mechanical properties such as stiff-
ness, Poisson’s ratio, buckling modes, diffusivity, wave propaga-
tion, etc., have been inverse-designed, microstructural curvature
as a design modality has not been explored.

To this end, we enable instant identification of microstructural
topologies with precise targeted curvature profiles and unlock
new possibilities in design of metamaterials and porous
microstructures. This is achieved by strategically using a dual
deep-neural-network (NN) setup[22,47,55] in tandem with a
phase-field framework driven by curvature-based energetics[33]

that bypasses both the aforementioned key challenges—namely,
the computational bottleneck of phase-field methods and the
ill-posedness in inverse design.

With the ability to generate tailored microstructural curvature
profiles, we further investigate the interlink between curvature
and mechanics. The membrane-flexural coupling appearing in
the mechanics of shell/curved structures is strongly linked with
their principal curvatures,[56] i.e., the redistribution of applied
loads in the form of bending and stretching/compressive loads
depends on the two principal curvatures of a curved surface. For
a selection of micro-architectures with diverse curvature profiles,
this load redistribution is studied by decomposing the stored
strain energy into membrane and bending strain energies.
Since a dominance of membrane deformation over bending
deformation is known to promote higher mechanical resilience,

Figure 1. Natural materials and structures such as trabecular bone, soap films, porous ceramics, and vascular systems tend to have smooth curved
topologies. Borrowing inspiration from those topologies, the ML-based inverse design framework provides a unified solution for on-demand rational
design or mimicry of various smooth topologies with targeted curvature profiles. Since the curvature profile of a topology is directly related to its
mechanical properties, this approach provides an efficient pathway to designing mechanical metamaterials with superior properties for applications
in lightweight engineering materials, biomimetic structures, bio-implants, and more. Images adapted: trabecular bone by Laboratoires Servier,
CC BY-SA 3.0, via Wikimedia Commons;[79] soap film by Blinking Spirit, CC0, via Wikimedia Commons;[80] porous ceramics by Onnovisser1979,
CC BY-SA 3.0, via Wikimedia Commons;[81] vasculature by I’m in the garden, CC BY-SA 3.0, via Wikimedia Commons.[82]
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the study of ratios of membrane to bending strain energies for
diverse curvature profiles can guide the design of superior
mechanical metamaterials through the presented inverse design
approach.

In the following, we first introduce the design space and
discuss the phase-field approach for topology generation.
Subsequently, the ML framework for inverse design is intro-
duced. Next, we demonstrate successful inverse design generali-
zation for target curvatures beyond those in the training domain
and show application to the design of topologies that mimic
trabecular bone, spinodoid surfaces, and nodal surfaces.
Lastly, mechanical aspects of the curvature-based microstruc-
tures are presented by investigating a set of topologies with
diverse curvature profiles for their distribution of membrane
and bending strain energies.

2. Results and Discussion

2.1. Design Space from Curvature-Based Energy Functional

We adopt the curvature-based phase-field framework of Song,[33]

which makes it possible to unify topologies with spherical, tubu-
lar, and membranous features as well as their combinations with
seamless transition. Briefly, for a given surface S, let us consider
an energy functional F based on the surface curvatures as

F½S� ¼
Z
S
f ½S� dS with

f ½S� ¼ a20κ21 þ a11κ1κ2 þ a02κ22 þ a10κ1 þ a01κ2 þ a00

(1)

where the integrand f ½S� (i.e., surface energy density) is a
second-degree polynomial of the principal curvatures κ1, κ2
(by convention, κ1 ≥ κ2) at the point S on the surface S and
parameterized by the coefficients fa20, a11, a02, a10, a01, a00g.
Similar to energy functional of the canonical Cahn–Hilliard
equation,[22,34,57] minimizing this energy functional represents
a compromise between minimizing the bending energy versus
the surface area. The energy functional is minimized under con-
stant volume constraint and periodic boundary conditions to
yield diverse topologies. The energy minimization can be approx-
imated by a phase-field model using a mass-preserving H�1 gra-
dient flow of a two-phase system as

u
: ¼ Δ

∂Fε

∂u
ðuÞ with m0 ¼

1
jΩj
Z
Ω
u dV (2)

where u∶Ω ! ½�1, 1� denotes the phase field, i.e., a concentra-
tion field of one phase in the domain Ω. Without loss of gener-
ality, we assume a nondimensionalized domain Ω ¼ ½0, 100�3
(consequently, all subsequent length dimensions are normalized
relative to the domain size). We assume the phase field contains
diffused interfaces with a hyperbolic tangent profile and thick-
ness length scale of ε � 1. Fε is the corresponding phase-field
approximation of F. m0 denotes the constant volume constraint.
u is initialized with random noise. After solving the gradient flow
problem, the final surface S is extracted by applying the zero-level
set on the resulting phase field. The zero-level set is not obtained
exactly but rather approximated as a triangular surface mesh Ŝ by

using the marching cubes algorithm.[58] Figure 2a shows a sche-
matic of the topology generation process.

Within the phase-field approximation, we speak of diffused
curvatures (or curvatures of diffused interfaces). Since the phase
field u has a hyperbolic tangent profile, the diffused principal cur-
vatures correspond precisely to the respective principal curva-
tures[59] at level sets of u. Detailed mathematical proof of
phase-field approximation as well as implementation details
can be found in ref. [33].

Let Θ ¼ ða20, a11, a02, a10, a01, a00,m0Þ⊺ be a vector of the
design parameters that uniquely characterize the gradient flow
and hence the topology generation. Note that the topologies
are still stochastic due to the random initial conditions.
Figure 2b shows a representative selection of diverse topologies
and their corresponding curvature profiles obtained for different
values of Θ.

For the curvature profile to be interpretable to the NN-based
design algorithm, an encoding of the curvature profile is created
for a given meshed surface Ŝ. The probability of Ŝ containing the
principal curvatures ðκ1, κ2Þ is defined as

pðκ1, κ2jŜÞ ¼
Pe

i¼1 δððκ1, κ2Þ, ðκ̂1,i, κ̂2,iÞÞâiPe
i¼1 âi

(3)

where δ denotes the Kronecker delta, e is the total number of
elements, and âi and ðκ̂1,i, κ̂2,iÞ denote the area and principal
curvatures of the ith element in the mesh, respectively. Next, this
probability distribution in κ1–κ2 is discretized on a uniform grid
of 200 � 200 bins (i.e., a 2D histogram) yielding a ½0, 1�200� 200

matrix encoding of the curvature profile. Note that this discrete
probability matrix is lower triangular due to the convention of
κ1 ≥ κ2. To reduce the computational cost, the lower triangular
part is serialized into a k ¼ 20, 100-dimensional encoding
χ ∈ ½0, 1�k, which is used in the downstream ML tasks.

2.2. Geometric Interpretation of the Design Space

The parameters fa20, a11, a02, a10, a01, a00g in Θ admit a charac-
teristic geometric interpretation that directly correlates to the cur-
vature profile of the resulting microstructure. The surface energy
density in Equation (1) can be reformulated as a quadratic surface
in the κ1–κ2–f space such that

f S½ � ¼ g κ̃⊺Mκ̃� cð Þ with

κ̃ ¼
cos θ sin θ

� sin θ cos θ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rotation

κ1 � κc1

κ2 � κc2

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

translation

and

M ¼
1 0

0 α

 !
|fflfflfflfflffl{zfflfflfflfflffl}
aspect ratio

(4)

Here, ðκc1, κc2Þ⊺ ∈ ℝ2, θ ∈ ½�π=2, π=2Þ, and α ∈ ℝ represent
the translation, (counterclockwise) rotation, and aspect ratio in
the κ1–κ2 plane, respectively. The parameters c ∈ ℝ and
g ∈ ℝþ denote a vertical translation or bias along f and scaling
factor, respectively; the latter does not affect the interrelations
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between the individual curvature terms of the overall energy
density. Section S1, Supporting Information, provides
conversion formulas between the design parameters Θ and
the equivalent geometrically interpretable ones, i.e.,
Θ̃ ¼ ðκc1, κc2, θ, α, c, g,m0Þ⊺. In the cases when α is positive, zero,
and negative, the quadratic surface is respectively an elliptic
paraboloid, parabolic cylinder, and hyperbolic paraboloid, and
consequently produce elliptic, linear, and hyperbolic contours
on the κ1–κ2 plane. Figure 3 illustrates how the combination

of rotation, translation, and aspect ratios yields a rich design
space of surface energy densities.

The geometric interpretation of the surface energy density is
reflected in the curvature profiles as the density plots are aligned
with the contours of the quadratic surface of the surface energy
density (see Figure 3 for representative examples). This is
expected as the hot spots in the density plots qualitatively corre-
spond to the regions of low surface energy density with respect to
the principal curvatures.

Figure 2. a) Schematic of topology generation using computationally expensive phase-field simulation based on curvature-driven energy functional.
b) Representative selection of diverse topologies and their corresponding curvature profiles for different design parameters Θ. Typical microstructural
features include spheres, tubules, or membranes. The curvature profile is visualized as the density scatter of the (surface) element-wise principal cur-
vatures (κ1 and κ2); the density color of each scatter point is proportional to the cumulative surface area of the elements with similar principal curvatures
in the mesh. Two elements are said to have similar principal curvatures if they lie in the same cell of a finely gridded κ1–κ2 plane.
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2.3. Data-Driven Inverse Design

In light of the aforementioned relation between the design
parameters and the curvature profile, we aim to invert this
design–property space, i.e., identify the optimal Θ to achieve a
target curvature profile. However, as discussed earlier, there
are two key challenges: 1) the phase-field approach for topology
generation is computationally expensive and therefore, a trial-
and-error approach to inverse design is intractable; 2) the inverse
design problem is ill-posed as multiple designs can have similar
curvature profiles. To this end, we introduce a dual deep-NN
setup (see Figure 4a for a schematic). A forward NN ( f-NN) first
surrogates the phase-field framework and maps the design
parameters to the resulting microstructural curvature profile.
An inverse NN (i-NN) then inverts the aforementioned
design-to-curvature map and outputs the appropriate design

parameters (and corresponding phase-field energetics) required
for a targeted curvature profile.

We start by creating a representative training dataset
D ¼ ffΘðiÞ, χ ðiÞg, i ¼ 1, : : : , ng consisting of n ¼ 18, 000 pairs
of design parametersΘ and the corresponding curvature profiles
encoded as χ . Since the probability encodings can be sparse and
skewed in distribution, independent nonlinear scaling is per-
formed on the individual components of χ to enhance the sen-
sitivity of the downstream ML approach. Section S2, Supporting
Information, provides further details on the aforementioned data
sampling and scaling strategy.

Let Fω∶ℝ7 ! ℝk denote an f-NN with a multilayer perceptron
architecture parameterized by the set of trainable weights and
biases ω. f-NN bypasses the phase-field evolution and directly
maps the design parameters Θ to the curvature encoding
χ ¼ Fω½Θ�. Since each design has a unique curvature profile

Figure 3. Geometric interpretation of the design space. For the cases when a) α> 0, b) α= 0, and c) α< 0, the surface energy density f ½S� can be
visualized as different kinds of quadratic surfaces (left column) and the corresponding contours (middle column) of κ1–κ2. For each case, a representative
example (right column) shows the qualitative correspondence between relevant contours of f ½S� and the resulting curvature profile.
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(in the sense of averaging across the stochastic effects in topology
generation), the forward problem is well-posed. Therefore, we
train the f-NN by minimizing (mean squared error) the loss
between the true and predicted curvature encodings with respect
to the f-NN-parameters ω, i.e.

Fω ←min
ω

1
n

Xn
i¼1

kFω½ΘðiÞ� � χ ðiÞk2 (5)

We now tackle the inverse challenge. Let Gτ∶ℝk ! ℝ7 denote
an i-NN with a multilayer perceptron architecture parameterized
by the set of trainable weights and biases τ. The i-NN maps an
input target curvature encoding χ to the design parameters
Θ ¼ Gτ½χ �. However, unlike the f-NN, a training strategy analo-
gous to (5) fails due to the ill-posedness of the inverse problem.
E.g., a high value of the naive loss kGτ½χ � �Θk2 may indicate that
the design parameters predicted by the i-NN and the ones from
the dataset are different but does not hint anything about the pos-
sibility that these dissimilar designs may have similar curvature
profiles. To counter this issue, we train the i-NN against the pre-
trained f-NN as

Gτ ←min
τ

1
n

Xn
i¼1

kFω½Gτ½χ ðiÞ�� � χ ðiÞk2: (6)

For the design predicted by the i-NN, i.e., Gτ½χ ðiÞ�, the f-NN recon-
structs the curvature encoding χ � ¼ Fω½Gτ½χ ðiÞ��; the loss of χ �

relative to the target χ from the dataset is minimized with respect
to the i-NN parameters τ. The advantage of this loss function and
training strategy over the naive approach is demonstrated later
and in Section S3, Supporting Information. Note that the ML
model is independent of the resolution and scale of the structure,
as it takes the probability distribution of the point-wise surface
curvatures (referred to as curvature encodings) as its input and
outputs the design parameters for the phase-field model.

Both NNs are trained using gradient-based optimization.
During i-NN training, the f-NN not only surrogates the compu-
tationally expensive phase-field evolution for curvature recon-
struction, but also provides a differentiable map between Θ
and χ . This differentiability is critical to computing the gradient
∂Fω= ∂Θ, which is in turn required for computing the sensitivity
of the loss function in Equation (6) with respect to the i-NN
parameters τ during training. Section S3, Supporting
Information, provides additional implementation details as well
as computational costs associated with both the NNs.

To evaluate the performance of the inverse design framework,
we create an additional test dataset of 2000 design parameters
and curvature encoding pairs, previously not seen by either of
the NNs during training. Figure 4b shows that both f-NN and

Figure 4. a) Schematic of the ML-driven inverse design. For a target curvature encoding χ , the inverse model i-NN outputs the design parameters Θ.
The pretrained forward model f-NN then bypasses the evolution of the phase field based on the energetics defined by Θ and directly reconstructs the
curvature encoding χ �. The difference between the target and reconstructed curvature encodings is then used to train the i-NN. b) Epoch-wise loss values
(evaluated on the training and test datasets separately) during iterative training of the f-NN and i-NN.
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i-NN achieve high accuracy (indicated by the low loss values)
across both training and test datasets without the presence of
any under-/overfitting. A gallery of 21 representative examples
in Figure 5 shows exceptional agreement in the target curvature
profiles versus the curvature profiles of the designs predicted by
the i-NN, thereby providing qualitative evidence of the accuracy
of the inverse design approach. Figure 6 shows three additional
examples along with a comparison of the design parameters Θ
(and the resulting topology) in the dataset and the ones predicted
by the i-NN.While the target and reconstructed curvature profiles
are in agreement with each other, the design parameters are sig-
nificantly different. It is further pronounced in the expectedly
poor correlation between the true design parameters of the test
dataset and the predicted design parameters from the i-NN; see
Section S3 and Figure S4, Supporting Information. This verifies
the ill-posedness of the inverse problem (i.e., multiple designs

parameters can lead to similar curvature profiles) and the advan-
tage of the i-NN training strategy presented in Equation (6).

2.4. Generalization beyond the Training Space

To demonstrate the generalization ability of our approach, we
inverse design the topologies for tailored curvature profiles that
are representative of three different (meta-)material/structural
classes.

2.4.1. Benchmark 1: Trabecular Bone

Recent works[31,42] have shown the important role of substrate
curvature in growth of bone cells on additively manufactured
implants. Motivated by this, we target the microstructural

Figure 5. A gallery of representative examples of targeted curvature profiles from the previously unseen test dataset versus curvature profiles of the
topologies predicted by the i-NN.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2300789 2300789 (7 of 13) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300789 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [16/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


topology of bone to benchmark our inverse design framework.
Specifically, we consider a trabecular bone sample from Tozzi
et al.[60] (see Figure 7a). The microstructural data is available
as gray scale 3D-voxelated image obtained directly from micro-
computed tomography. The surface representation of the trabec-
ular bone sample is extracted by using an appropriate image
processing and smoothing algorithm, the details of which are
provided in Section S4, Supporting Information.

2.4.2. Benchmark 2: Spinodal Decomposition

Diffusion-driven spinodal decomposition in a binary phase sys-
tem can produce complex and diverse topologies (which are also
used in spinodoid metamaterials[22]). Here, we briefly review the
formulation of topologies emergent from spinodal decomposi-
tion and refer to refs. [22,24] for details. The early stage of a spi-
nodal decomposition process is mathematically described by a

Gaussian random field, i.e., a linear superposition of Q ≫ 1
standing waves:

φðxÞ ¼
ffiffiffiffi
2
Q

s XQ
q¼1

cosðβvq ⋅ x þ γqÞ (7)

where φ∶Ω ! ℝ and β > 0 denote a phase field and a constant
wavenumber, respectively; the latter determines the microstruc-
tural length scale of the former. vq and γq denote, respectively, the
wave vector and phase angle of qth standing wave and are ran-
domly and uniformly sampled as

vq � U
v ∈ S2 ∶ ðjv ⋅ ê1j > cos θ1Þ⊕ ðjv ⋅ ê2j > cos θ2Þ

⊕ jv ⋅ ê3j > cos θ3ð Þ

( ) !

γp � Uð½0, 2πÞÞ
(8)

Figure 6. Comparisons between the design parameters Θ (and the resulting topologies) and the ones predicted by the i-NN for three representative
examples a,b), and c) from the dataset.
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where fe1, e2, e3g denote S2 which is the set of all unit vectors.
Parameters θ1, θ2, θ3 ∈ ½0, π=2Þ restrict the directional distribu-
tion of the wave vectors to respective angles from the
Cartesian basis vectors. This parametric distribution is inter-
preted as anisotropic mobility along preferred directions during
the spinodal decomposition process. The final topology is
obtained by extracting the phase interface which is given by a
level set as

φ ¼
ffiffiffi
2

p
erf�1ð2ρ� 1Þ, (9)

where ρ ∈ ½0, 1� is the volume fraction of one of the phases. For
the purpose of this benchmark, we generate a spinodoid topology
(see Figure 7b) with β ¼ 15π, Q ¼ 1000, θ1 ¼ 60°, θ2 ¼ 30°,
θ3 ¼ 10°, and ρ ¼ 0.3.

2.4.3. Benchmark 3: Periodic Nodal Surfaces

These are smooth implicit surfaces composed of Fourier series
components[61,62] and are widely studied across different fields
in mathematics,[63–65] chemistry,[61,66,67] mechanics,[68,69] and
more. Periodic nodal surfaces (PNSs) are particularly popular
as closed-form approximations of minimal surfaces (i.e., zero
mean curvature) such as the famous Schwarz[70,71] and
Schoen[72,73] surfaces. Since minimal surfaces present a curva-
ture distribution (κ2 ¼ �κ1) trivial for a benchmark, here we
consider a non-minimal PNS given by

sinðxÞ sinð1.8yÞ þ sinðyÞ sinð1.8zÞ þ sinðzÞ sinð1.8xÞ ¼ 0.5 (10)

and visualized in Figure 7c.

Across all three benchmarks, we scale the topologies to the
same domain size as Ω and extract the curvature profile which
is passed as a design target to the i-NN. For each benchmark, the
i-NN successfully predicts a topology with a curvature profile that
closely matches the target (see Figure 7 and Section S5,
Supporting Information). Remarkably, the i-NN achieves this
despite no prior information about trabecular bone, spinodal
decomposition, or PNS topologies during the training stage
and indicates excellent generalization well beyond the scope of
the training dataset. The i-NN is also able to design for similar
curvature profiles despite key geometrical differences such as
periodicity (in the PNS benchmark) and anisotropy (in all
three benchmarks) in the target, which highlights further the
ill-posedness of the inverse design challenge and the benefit
of the proposed approach. In addition, the generalization capa-
bility is particularly useful for biomimetic implants and scaffolds
where large training datasets (of, e.g., bone) are particularly
scarce, and small amounts of patient-/site-specific data can be
used for fine-tuning or transfer learning of the pretrained
i-NN for improved accuracy.

2.5. Curvature Determines Mechanics

For slender structures—both natural (e.g., skull, egg shells, sea
shells) and man-made (e.g., aircraft fuselage, pressure vessels,
domes)—curved geometries are preferred as structural elements
over flat ones due to their ability to redistribute applied loads into
the stronger in-plane stretching-dominated behavior as opposed
to the weaker out-of-plane bending-dominated behavior.[11]

In the light of microstructures with tailorable curvature profiles,

Figure 7. Curvature-based surface inverse design applications including a) a computed tomography scan of trabecular bone specimen taken from Tozzi
et al.[60] b) spinodal surface created from six design parameters from Kumar et al.[22] and c) PNS surface governed by an implicit equation. The curvature
profile of targeted structures are queried through the i-NN which outputs the design parameters Θ. The corresponding topology is then generated
through the phase-field approach and the curvature profile is reconstructed for comparison with the original target. Additional benchmarks are presented
in Section S5, Supporting Information.
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Figure 8. Interplay of membrane and bending strain energies in diverse inverse-designed shellular topologies (numbered (i)–(v)) under unit tensile load.
a) Distribution of normalized membrane strain energy Ẽm in the topologies and b) their corresponding curvature profiles. c) Distribution of Ẽm over the
surface area of each topology. Topologies with close-to-zero mean curvature ((i) and (iii)) show relatively higher values of Ẽm, indicating a stretching-
dominated behavior. d) Distribution of mean and Gaussian curvatures; colored by the mean of Ẽm for the corresponding curvature values found within a
topology. Higher Ẽm (i.e., stretching-dominated deformation) is observed in the proximity of zero mean curvature (dashed cyan line) compared to other
curvatures.
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we explore this interplay between curvature and mechanics
across our design space.

Specifically, we consider five representative topologies with
diverse curvature profiles (see Figure 8) obtained from the
inverse design strategy. Each topology is modeled as a shellular
structure with the shell thickness equal to 1% of the domain
length (recall Ω ¼ ½0, 100�3) and made of a linearly elastic mate-
rial with Poisson’s ratio of 0.3 and a unit Young’s modulus. Note
that we restrict ourselves to curvature distributions that admit
bicontinuous topologies only as it would be physically required
for a self-standing shellular structure. We perform finite-element
analysis of the shellular structure undergoing quasi-static uniax-
ial tension, using six degrees of freedom quadratic shell elements
with the mixed interpolation of tensorial components (MITC)
formulation.[74] The choice of Young’s modulus and applied load
are arbitrary as they do not affect the following analysis.

For each case, we investigate the distribution of the total in-
plane membrane strain energy Em and out-of-plane bending
strain energy Eb (obtained by summing over the membrane
and bending strain energies of all the shell elements, respec-
tively). Figure 8a shows the spatial distribution of the normalized
membrane strain energy, i.e., Ẽm ¼ Em=ðEm þ EbÞ, with Ẽm ¼ 1
and Ẽm ¼ 0 denoting pure stretching- and bending-dominated
deformations respectively. In Figure 8b,c, the topologies with
curvature distribution closer to zero mean curvature (first and
third row) show higher mean and median in the distribution
of Ẽm, relative to the others, indicating higher stretching-
dominated deformation. Figure 8d further shows the distribu-
tion of element-wise Ẽm with respect to the mean and
Gaussian curvature. Notably, elements with or close to zero
mean curvature predominantly store stretching-dominated
energy, which largely corroborates the beneficial mechanical
properties of TPMS observed across several prior works.[75–77]

Moreover, a similar study is conducted under a shear load in
Section S5, Supporting Information, which shows that the dis-
tribution of strain energy between membrane and bending
modes follows the same correlation with curvature profile under
varying loading conditions.

3. Conclusion

The presented framework enables inverse design of smooth
topologies with tailored curvature profiles. This is achieved by
training a dual deep-NN setup to surrogate a phase field driven
by a curvature-based energy functional and then invert the pro-
cess. Our approach provides excellent generalization beyond
both the design space as well as the space of the training
data—as evidenced by successful reconstruction of curvature
of topologies from different data sources, including microtomog-
raphy of trabecular bone, spinodal surfaces, and implicit nodal
surfaces. Notably, the ML framework achieves accurate recon-
structions without any prior knowledge about these structures
and their symmetries during the learning phase. Linking with
mechanics, the analysis of strain energy distribution reveals a
correlation between curvature profile and stretching versus bend-
ing dominated deformations, which can be exploited for tailoring
the topology for improved mechanical resilience. Overall, our
framework unlocks curvature as a new design modality with

applications in mechanical metamaterials and bio-scaffolds/
implants.

Future directions of interest may include incorporating aniso-
tropic and higher-order curvature descriptors for a more gener-
alizable design space and integrating topology curvature with
nonlinear mechanical response in inverse design. Specifically,
two surfaces can have similar curvature distributions, yet the ori-
entation distribution of those surfaces can be significantly differ-
ent. Higher-order curvature descriptors such as Minkowski
functionals[78] can be introduced in the energetics of the
phase-field methods to preferentially bias both surface curvature
and orientation distributions simultaneously. This will expand
the design space to include anisotropic designs, and can be
relevant for controllable anisotropy in mechanical response of
metamaterials as well as mimicking topological anisotropy in
bio-scaffolds for improved bio-compatibility. Additionally, the
incorporation of spatially varying design parameters will facilitate
the creation of topologies with spatially graded curvature
variation (commonly observed in biological tissues and bones),
offering the potential for a more comprehensive modeling
approach.
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