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2
Introduction

2.1. Background
Erosion is a phenomenon present in several industrial processes. In dredging, the jetting of sand in
dragheads, erodes the sand-bed. In construction of offshore infrastructure such as wind turbines, oil
and gas production units, marine pipelines, erosion of material near the foundations can put the stability
of structures at stake. Furthermore, rivers or even tsunamis are some of the natural phenomena that
can be cause of erosion.

This thesis will treat about fluid mechanics and sediment transport modelling. Sand-water mixtures
can be modeled using the continuum approach if the chosen control volumes are big enough, meaning
that the volume of a particle is much smaller than the volume of a cell. Leading to the use of the
finite-volume method. The latter, allows a conservative assessment of the terms of the Navier-Stokes
equations, if combined with the divergence theorem. Eases the implementation of boundary condi-
tions and can easily be adapted to complex geometries. Using the continuum approach for modelling
sediment transport, leads to consider the sediment as a volume fraction (volumetric concentration)
being transported by the fluid. Furthermore, an Eulerian approach is preferred here to the Lagragian
approach as it reduces the computational cost. Regarding sediment transport, a granular non-cohesive
material (sand) is here considered.

Erosion is the removal of material of a sand-bed caused by viscous and turbulent stresses due to
fluid motion. Bisschop et al. [1], distinguished two regimes for the pick-up function of saturated sand.
On the one had erosion at low Shield’s parameter, velocities of 0.5-1𝑚.𝑠ዅኻ, is dependent on the size
and the density of the grains. On the other hand, high speed erosion creates a rearrangement in the
structure of the sand-bed. The shearing of sand particles in the sand-bed, produces a rearrangement
of sand particles, yielding to an increase of the void ratio in the sand-bed. This dilatant behaviour leads
to a drop in the pressure in the interior of the sand-bed, inducing a hydraulic gradient. Water to flows
towards the interior of the sand-bed, in order to fill the voids. The hydraulic gradient caused by the drop
in pressure acts against the eroding forces, adding resistance to the erosion process. 𝜃፜፫ኺ, also known
as the Critical Shield’s parameter, see [2], is the stability criterion and, accounts for the forces resisting
to erosion. The implementation of this added resistance is formulated as a correction parameter to the
Critical Shield’s parameter as proposed by C. van Rhee [3], the corrected stability criterion is noted 𝜃፜፫.
This formulation of the stability criterion takes into consideration the bulk properties of the sand-bed,
its porosity and permeability, as well as the sand grain size and density.

High speed erosion of sand is present in applications as:

• Dredging

• Mining

• Trenching

OpenFOAM and foam-extend 3.2 are continuum mechanics library freely available. Unfortunately,
the user is challenged by the diversity of the versions available and a high level C++ code. The version
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4 2. Introduction

or flavour used here is the foam-extend 3.2 framework because a moving mesh routine is readily
implemented.

2.2. Research aim
This research aim is to numerically model high speed erosion. Erosion is the removal of material
from a surface. High speed erosion, other than removing material from a sand-bed, will produce a
rearrangement of the sand particles inside the bed, therefore, adding an extra resistance to erosion.
In order to determine the shear stresses that the fluid exerts on the sand-bed, the P.I.S.O algorithm
is used. The balance of sediment in the sand-bed is assured by the moving mesh module, readily
implemented in the foam-extend framework.

2.3. Research Methodology
The methodology implemented here consists first in a literature revue of the existing implementations
of high speed erosion, erosion and scour problems. Inspired by the literature revue, implement and
test the result of the model, by comparing the numerical solutions to 2 experimental tests. The first
test will show the capabilities of the code in a settling test, then a high speed erosion test is studied.

2.4. Outline
The modelling of sand-bed using a moving mesh, updated depending on the removal or addition of
sand, (also called morphological updating routine) has gained popularity. X. Lui [4] in 2008 and N. G.
Jacobsen [5] in 2011, proposed codes for modelling of erosion and scour coupled with wave generation
and free surface modelling based in the OpenFOAM framework. An application of the moving mesh
approach is the modelling of hopper sedimentation proposed by C. van Rhee in 2002 [6]. In 2015, C.
van Rhee, F. Bisschop at al. extended the approach proposed by C. van Rhee in 2002 and proved that
the high speed erosion process can be modelled with a moving mesh.

Erosion is due to the stresses applied by the fluid on the sand-bed. These stresses are responsible
of the resuspension of sand grains. The erosion rate is expressed by a pick-up function, the van Rijn
pick-up function [7] is expressed as:

Φ = 0.00033𝐷ኺ.ኽ∗ (𝜃 − 𝜃
ᖣ
፜፫

𝜃ᖣ፜፫
)
ኻ.኿

Here, 𝜃 is the Shield’s parameter and is dependent on the fluid forces acting on the sand particles. As
for 𝜃፜፫ is the stability criterion and accounts for the forces resisting to erosion. In order to determine
the forces being applied to the bed surface, the fluid behaviour needs to be modelled. The fluid is
modelled by solving the Navier-Stokes equations in a discretized space.

In order to model the erosion process, the main equations that are numerically solved are:

• Mass conservation equation

• Momentum conservation equation

• Sediment transport equations

• Equation of mesh motion

The momentum conservation equation is determined using a pressure correction method, the
P.I.S.O method is explained in section 5.2.1. Turbulence is modelled using Reynolds Averaged Navier
Stokes (RANS) approach, because of its low computational cost and applicability to 2D problems. A
2-equations model, the k-𝜖 approach determines the turbulent eddy viscosity (section 3.2) accounting
for the dissipation of energy due to turbulent mixing.

The sediment transport is composed by suspended sediment transport and bed-load transport. The
suspended sediment transport is presented in section 4, it is solved by using an advection-diffusion
relation. The interaction between the sand-bed and the suspended sediment, is depicted by the erosion
and deposition phenomena. The mathematical formulation of erosion and deposition is discussed in
sections 4.2.1 and 4.2.3. Finally, the bed-load transport is presented in section 4.3.



3
Governing equations of fluid

motion
In this section, the governing equations of fluid motion are presented. In section 3.1, the well known
Navier-Stokes equations are introduced in their general conservative form, the incompressibility hy-
pothesis is formulated and the Boussinesq approximation to account for the momentum exchange
between sediment and fluid is discussed. Finally, the turbulence model is depicted in subsection 3.2.

3.1. Fluid model
The Navier-Stokes equations (from now on ”NS equations” for simplicity), are a set of coupled equa-
tions that depict the motion of fluids. The three equations that conform the NS set of equations are,
namely, the mass conservation equation 3.1, also called continuity equation, the momentum conser-
vation equation 3.2 and the energy conservation equation. The aforementioned set of equation is
presented in their differential conservative form for an Eulerian reference frame hereafter. The energy
equation is omitted.

Mass conservation equation:

𝜕𝜌
𝜕𝑡 + ∇⃗ ⋅ (𝜌𝑢⃗) = 0 (3.1)

Momentum conservation equation:

𝜕𝜌𝑢⃗
𝜕𝑡 + ∇⃗ ⋅ (𝜌𝑢⃗ ⊗ 𝑢⃗) = −∇⃗𝑝 + ∇⃗𝜏 + 𝜌𝑓 (3.2)

Where:
𝜌, the density of the fluid considered.
𝑝, the pressure.
𝑢⃗, the velocity.
t, the time.
𝑓, the body forces.
𝜏, the shear stress tensor.

The density of the slurry (sand-water mixture), 𝜌፦, can be expressed as a function of the volumetric
concentration, c, the density of sand, 𝜌፬ and the density of water, 𝜌፰, as follows:

𝜌፦ = 𝑐𝜌፬ + (1 − 𝑐)𝜌፰ (3.3)

𝜌፦ can be decomposed in an average and a perturbation:

𝜌፦ =< 𝜌፦ > +𝜌ᖣ፦ (3.4)

5



6 3. Governing equations of fluid motion

From equations 3.3 and 3.4, we can identify:

< 𝜌፦ >= 𝜌፰ (3.5)

and,
𝜌ᖣ፦ = 𝑐(𝜌፬ − 𝜌፰) (3.6)

The mass conservation equation can be formulated for the slurry as follows:

𝜕𝜌፦
𝜕𝑡 + ∇⃗ ⋅ (𝜌፦𝑢⃗) = 0 (3.7)

P. Wesseling in [8], explained that for small variation of the density ( ᎞ᖤᑞ
ጺ᎞ᑞጻ«1), the flow can be

considered incompressible by neglecting this fluctuations. A concrete example of an incompressible
fluid with a non-constant density is salty water. Therefore, if the temporal and spatial variation of the
slurry density are considered negligible. The mass conservation equation yields the continuity condition
for incompressible flows:

∇⃗ ⋅ 𝑢⃗ = 0 (3.8)

And the momentum conservation reads:

𝜕𝑢⃗
𝜕𝑡 + (𝑢⃗ ⋅ ∇⃗)𝑢⃗ = −

∇⃗𝑝
𝜌፦

+ 𝜈∇ኼ𝑢⃗ + 𝑓 (3.9)

The mixture is subjected to Earth’s gravity field. As stated previously, the density of the mixture is
not constant, the inhomogeneous presence of sediment in the fluid will yield gravity/density induced
body forces. This body forces are accounted in the term 𝑓 in the r.h.s of equation 3.9. This body forces
can be expressed as follows

𝑓 = 𝜌፦ − 𝜌፰
𝜌፰

𝑔⃗

if:
𝜌፤ =

𝜌፦ − 𝜌፰
𝜌፰

then:

𝑓 = 𝜌፤𝑔⃗
The Boussinesq approximation neglects the impact of density variations in all the terms of the momen-
tum equation 3.9, except for the body forces. Furthermore, this approximation neglects the interactions
between sand particles.

In figure 3.1, the relation between the volume fraction and the density of the resulting mixture has
been plotted. Remark that the mixture density can vary from 1000 𝑘𝑔/𝑚ኽ for clear water to 2000
𝑘𝑔/𝑚ኽ for a saturated sand-bed, which represent 100% variation of the density. This large variation
of density of the mixture makes it possible to chose different approaches to account for the interaction
between the fluid and the sediment in terms of momentum exchange. For very low concentrations,
c≈0, considering sand as a passive scalar can lead to satisfactory results. The formulation of the
incompressibility can be made if:

𝜌ᖣ፦
< 𝜌፦ >

<< 1

From equation 3.3, we can write:

𝑐(𝜌፬ − 𝜌፰)
𝜌፰

<< 1

𝑐( 𝜌፬𝜌፰
− 1) << 1
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Figure 3.1: Representation of the mixture density with respect to the volume fraction of sand (᎞ᑤᑒᑟᑕ ዆ ኼዀ኿ኺ፤፠/፦Ꮅ)

If 𝜌፬ = 2650𝑘𝑔/𝑚ኽ and 𝜌፰ = 1000𝑘𝑔/𝑚ኽ then:

𝑐 << 0.625

A concentration of c=0.0625 leads to a variation of the mixture density of 10%, this is considered
for this work as the upper limit of validity for the incompressibility hypothesis and the Boussinesq
approximation. For higher concentration, the exchange of momentum between the sediment and the
fluid is non-negligible and the incompressibility hypothesis does not stand, therefore, more elaborated
fluid/sediment model should be used, for example, the continuous flow model proposed by C. van
Rhee and J.C. Goeree [9]. The concentrations studied in the settling test are of 0.2 and 0.3, as for
the erosion test, the concentration can go up to 0.45. These concentrations are higher than 0.0625,
thus, the continuous flow model should be used. For simplicity, the Boussinesq approximation is used
instead in this work.

3.2. Turbulence model
Turbulence has an important role in erosion, bed-load transport and resuspension of sediment, as
shown in [10] and in [11]. A Reynolds Averaged Navier-Stokes (R.A.N.S) method is used, with a stan-
dard two equation k-𝜖 model. The velocity can be decomposed into time averaged values (< 𝑢⃗ >) and
a perturbation (𝑢⃗ᖣ). This is called the Reynolds decomposition:

𝑢⃗ =< 𝑢⃗ > +𝑢⃗ᖣ

𝑝 =< 𝑝 > +𝑝ᖣ

𝑓 =< 𝑓 > +𝑓ᖣ

The decomposed quantities are included in the incompressible NS equations, the subscripts here
refer to the reference base vectors.
The continuity equation:

𝜕 < 𝑢⃗ >።
𝜕𝑥።

= 0 (3.10)

The momentum equation:

𝜕 < 𝑢⃗ >።
𝜕𝑡 + < 𝑢⃗ >፣

𝜕 < 𝑢⃗ >።
𝜕𝑥፣

+ ⟨𝑢⃗ᖣ፣
𝜕𝑢⃗ᖣ።
𝜕𝑥፣

⟩ =< 𝑓 >። −
1
𝜌
𝜕 < 𝑝 >
𝜕𝑥።

+ 𝜈𝜕
ኼ < 𝑢⃗ >።
𝜕𝑥።𝜕𝑥፣
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Rearranging and averaging in time yields:

𝜌 < 𝑢⃗ >፣
𝜕 < 𝑢⃗ >።
𝜕𝑥፣

= 𝜌 < 𝑓 >። +
𝜕
𝜕𝑥፣

[− < 𝑝 > 𝛿።፣ + 2𝜇 < 𝑆።፣ > −𝜌 < 𝑢⃗ᖣ።𝑢⃗ᖣ፣ >]

Where:

< 𝑆።፣ >=
1
2 (

𝜕 < 𝑢⃗ >።
𝜕𝑥፣

+
𝜕 < 𝑢⃗ >፣
𝜕𝑥።

)

𝛿።፣, the delta Kronecker.
𝜇, is the dynamic viscosity of the fluid.
Note that here the indexes (i,j) represent the components.

The term 𝜌 < 𝑢⃗ᖣ።𝑢⃗ᖣ፣ > is called the Reynolds stresses. In order to determine this quantity, Boussinesq
proposed in 1877 the concept of eddy viscosity. This concept considers that the turbulent shear stresses
are proportional to the velocity gradient as for the viscous stresses in a laminar flow.

𝜌 < 𝑢⃗ᖣ።𝑢⃗ᖣ፣ >= −𝜌𝜈፭
𝜕𝑢⃗።
𝜕𝑥፣

The turbulent eddy viscosity (𝜈፭) accounts for the dissipation of energy due to turbulence and it is a
property of the flow field and not the fluid.

An expression for the turbulent eddy viscosity is:

𝜈፭ = 𝐶᎙
𝑘ኼ
𝜖 (3.11)

This turbulent viscosity is added to the kinematic viscosity of the fluid 𝜈. The effective viscosity 𝜈፞፟፟
can then be formulated as follows:

𝜈፞፟፟ = 𝜈፭ + 𝜈
The k-𝜖 model introduces a new set of two coupled equations, where k represents the turbulent

kinetic energy and 𝜖 the dissipation rate of turbulent kinetic energy.

𝜕𝑘
𝜕𝑡 + ∇⃗ ⋅ (𝑘𝑢⃗) = ∇⃗ ⋅ (

𝜈፭
𝜎፤
∇⃗𝑘) + 𝑃𝜌 − 𝜖 (3.12)

𝜕𝜖
𝜕𝑡 + ∇⃗ ⋅ (𝜖𝑢⃗) = ∇⃗ ⋅ (

𝜈፭
𝜎Ꭸ
∇⃗𝜖) + 𝐶Ꭸኻ

𝑃𝜖
𝜌𝑘 − 𝐶Ꭸኼ

𝜖ኼ
𝜌𝑘 (3.13)

where:

Table 3.1: Constant values for turbulent calculations

𝐶᎙ 𝜎፤ 𝜎Ꭸ 𝐶Ꭸኻ 𝐶Ꭸኼ
0.09 1.00 1.3 1.44 1.92

The turbulent eddy viscosity (𝜈፭), is used as the diffusivity in the sediment transport equation. The
K-𝜖 model used in Foam-extend 3.2 does not include a buoyancy production term.



4
Sediment transport

The sediment transport for this work is decomposed in three main components, namely, the suspended
sediment transport, suspended sediment/bed interaction and the bed-load transport. The suspended
sediment transport formulates the motion of sediment particles when governed by gravity and fluid
forces. The expression used to determined the motion of the suspended particles is the transport
equation 4.1. The suspended sediment/bed interaction is mathematically formulated by the erosion
and the deposition rate. Finally, the bed-load transport is a transport from the sand-bed to the sand-
bed. It is determined by numerically solving the partial differential equation of a curves plane in the
3D space, see equation 4.27.

4.1. Suspended sediment transport
Suspended sand is transported by the fluid and is here considered as a continuum. This phenomenon is
represented mathematically by an advection-diffusion equation as presented in Eq.4.1. The diffusivity
coefficient is taken as the turbulence viscosity. The grains of sand are considered uniform, meaning
that multiple fraction are not implemented in this model.

𝜕𝑐
𝜕𝑡 + ∇⃗ ⋅ [𝑐(𝑢⃗ + 𝑤⃗፬፞፭)] = ∇⃗ ⋅ (𝜈፭∇⃗𝑐) (4.1)

Where:
c, the voumetric concentration of sediment.
𝑢⃗, is the fluid velocity vector.
𝑤⃗፬፞፭, is the hindered settling velocity vector.
𝜈፭, the turbulent eddy viscosity.
Note that the sediment is advected by the velocity 𝑢⃗ + 𝑤⃗፬፞፭, which is the velocity of a grain of sand
being transported by a flow with a velocity 𝑢⃗ and its hindered settling velocity 𝑤⃗፬፞፭. The hindered
settling velocity 𝑤⃗፬፞፭ accounts for the impact of the gravity on the grains of sand and the influence of
concentration. This is explained in the next section.

4.1.1. Settling velocity and hindered settling
If the bulk density of sediment is higher than the density of water (𝜌፬ > 𝜌፰), then, suspended grains
of sediment will sink. This phenomenon is called settling, thus, the velocity at which particles settle is
called the settling velocity. In this work, the expression for the settling velocity of a single particle of
sand is determined using the formulation presented by Ferguson and Church [12].

𝑤ኺ =
Δ𝑔𝑑ኼ

𝐶ኻ𝜈 + √0.75𝐶ኼΔ𝑔𝑑ኽ
(4.2)

Δ, the submerged specific density.
g, the gavitational acceleration.
d, the grain size diameter, here the 𝐷኿ኺ.

9
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Figure 4.1: Forces acting on a single idealized grains of sand

𝑤ኺ, the terminal settling velocity.
𝜈, the fluid viscosity.
𝐶ኻ and 𝐶ኼ can take different values depending on the shape of the particles studied. 𝐶ኻ=18 and 𝐶ኼ=0.4
are used for smooth spheres. For sand grains of random shapes, 𝐶ኻ=18 and 𝐶ኼ=1.0 are used. The
advantage of using this equation for the settling velocity of sand grains is that it is valid for a large
range of Reynolds numbers [12].

The settling of multiple particles, interactions between particles and their disturbance of the fluid
need to be considered. The settling of multiple particles will produce upward flow. The settling velocity
will be reduced by the increased drag due to this upward flow. This effect is called hindered settling,
a well known semi-empirical relation to estimate the settling velocity was proposed by Richardson and
Zaki [13]:

𝑤ᖣ፬፞፭
𝑤ኺ

= 𝑒፧ (4.3)

where:
e=1-c, is the voidage ratio.
c, the concentration.

Furthermore, if the velocity of a particle is small compared to the velocity of the fluid and for small
particle Reynolds number, Mirza and Richardson (1979)[14], stated that to assess the relative settling
velocity of a particle with respect to the fluid, the following formula should be used:

𝑤፬፞፭
𝑤ኺ

= 𝑒፧ዅኻ (4.4)

where:

𝑤፬፞፭ =
𝑤ᖣ፬፞፭
𝑒 (4.5)

In 3D coordinates, if 𝑧 is in the upward direction:

𝑤⃗፬፞፭ = (0, 0, −𝑤፬፞፭)

n, the exponent, was formulated as a function of the particle’s Reynold number by Rowe [15]. The
particle’s Reynold number is defined as 𝑅𝑒፩ = ፰Ꮂ፝

᎚ .

𝑛 =
4.7 + 0.41𝑅𝑒ኺ.዁኿፩
1 + 0.175𝑅𝑒ኺ.዁኿፩

(4.6)

In fig. 4.2, the hindered settling velocity has been plotted as function of the concentration of sed-
iment. The settling velocity of a single particle with a diameter of d=125𝜇m is 𝑤ኺ = 0.011 𝑚.𝑠ዅኻ.
It’s possible to visualize an important reduction of the fall velocity because of hindered settling. For a
concentration close to 0, the fall velocity is close to the settling velocity of a single particle. For a con-
centration of sediment of 0.1, the fall velocity is reduced to 𝑤፬፞፭ = 0.007 𝑚.𝑠ዅኻ and for a concentration
of 0.6 the fall velocity is close to 0. After some test, results using the formulation of Eq. 4.3 present
better results in the settling test. This formulation is then kept for the erosion test.
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Figure 4.2: Impact of the concentration on the fall velocity of particles for different particle size. The settling velocity is determined
with relation 4.2.

4.2. Suspended sediment/sand-bed interaction
In this subsection 3 processes are explained. First, the deposition of sediment in a bed, then, the
erosion of a sand bed, and finally, the intra-bed mass exchange. These processes can be expressed
as the Exner equation 4.7, proposed by Austrian meteorologist and sedimentologist Felix Maria Exner.
This expression was presented in the works of Exner, see [16] and [17]. It has been used in similar
works and has been expressed in the following manner, by X. Liu [4] and N.G. Jacobsen [5]:

𝜕𝜂
𝜕𝑡 =

1
𝑛ኺ − 1

[−∇ ⋅ 𝑞⃗፛ + 𝑆 − 𝐸] (4.7)

where:
𝜂, represents the bed elevation.
∇ ⋅ 𝑞⃗፛, the bed load transport or sediment flux.
S, the rate of deposition of material in the bed.
E, the rate of erosion of bed due to the viscous and turbulent forces applied to the bed.
𝑛ኺ, the sand-bed porosity. The concentration of the bed is then 𝑐፛፞፝ = 1 − 𝑛ኺ

The Exner equation is the formulation of the mass balance between the bed and the suspended
sediment. The mass balance is translated in the Exner equation by the evolution of the bed height (Ꭷ᎔Ꭷ፭ ).
In this work, the contributions of sedimentation and erosion(S, E) of the Exner equation are assessed
using the sedimentation velocity concept. The deposition (S) represents the amount of sand settling
that has reached the bed, and it is explained in the following section. The erosion (E) accounts for the
quantity of materials being removed from the bed by the flow due to viscous and turbulent stresses.
These stresses are also responsible for an intra-bed transfer of sediment, the bed-load (∇ ⋅ 𝑞⃗፛). The
bed-load term can take into consideration various phenomena as saltation or rolling of sand grains,
sliding of sediment, etc... For more information about bed-load transport, the reader is referred to the
work of van Rijn [18]. As stated previously the erosion and bed-load are both linked to the viscous
and turbulent stresses. The notion of incipient motion is the key to understand the bed physics. This
notion is explained in section 4.2.2.

4.2.1. Deposition and sedimentation velocity
The settling of sand grains is due to the action of gravity. These settling particles that have reached
the bottom will add mass to the sand bed. In this work, the interface fluid-bed, is represented by a
moving boundary. The moving boundary adapts the height of every point depending on the balance of
settled/eroded material at the time step. The deposition rate can be seen as the quantity of material
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Figure 4.3: Figure representing a control volume near the settled bed. Source: On the sedimentation process in a Trailing
Suction Hopper Dredger, 2002, van Rhee C. [6]
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Figure 4.4: Comparison between 2 formulations of the sedimentation velocity for a particle diameter d=125e-6m

passing from the fluid domain through the sand-water interface. The deposition flux also called settling
flux by van Rhee [6] can be expressed in the following fashion:

𝑆 = 𝜌፬𝑐፛[𝑤⃗፬፞፭ ⋅ 𝑁⃗] (4.8)

𝜌፬, the density of sand.
𝑁⃗, the unit normal to the boundary
𝑐፛, the near bed concentration From this settling flux, it is possible to define the sedimentation veloc-
ity. The sedimentation velocity as defined by van Rhee [6] is: the vertical velocity of the bed-water
interface.

𝑣⃗፬፞፝ ⋅ 𝑁⃗ =
𝑆

𝜌፬(1 − 𝑛ኺ − 𝑐፛)
(4.9)

This formulation of the sedimentation velocity gives an indication on the velocity of the bed when
only deposition is present with no lateral transport of sediment. For more information about the deriva-
tion of this quantity, the reader is referred to the book of C. van Rhee [6]. As explained in the latter,
𝑣⃗፬፞፝ has a term accounting for the near bed concentration, 𝑐፛, in the denominator, not including this
term yield a large error when computing high concentration settling, see figure 4.4. Equation 4.9 is a
simplified version of the sedimentation velocity, not accounting for the erosion. In order to account for
the erosion flux explained in section 4.2.3, the sedimentation velocity has to be modify. The erosion
rate, presented in further sections, is here included in equation 4.9.

𝑣⃗፬፞፝ ⋅ 𝑁⃗ =
𝑆 − 𝐸

𝜌፬(1 − 𝑛ኺ − 𝑐፛)
(4.10)



4.2. Suspended sediment/sand-bed interaction 13

Note that the velocity is called sedimentation velocity, but if the erosion flux is higher, then, this
quantity could be named the erosion velocity. For simplicity, this quantity is referred as sedimentation
velocity. As stated previously in this section, 𝑣⃗፬፞፝ is the velocity of the bed, calculated from the balance
of the erosion/deposition fluxes. The bed height can therefore be calculated in an explicit manner as
follows:

𝜕𝜂
𝜕𝑡 = 𝑣⃗፬፞፝ ⋅ 𝑁⃗ (4.11)

The erosion flux needs to be determined in order to have a full expression of the sedimentation
velocity, but first, lets have a look at the notion of incipient motion.

4.2.2. Threshold of motion
The threshold of movement is defined as, the moment at which the motion of a particle at the bed
starts. The forces acting on a bed particle are separated into resisting forces and driving forces. In
the driving forces we can account the fluid forces, in other words the lift and the drag. As for the
resisting forces acting on a settled particle it’s possible to name the weight and the friction between
particles. As stated previously the threshold of motion is defined as the instant when the driving forces
are in static equilibrium with resisting forces. The erosion process will occur when the particles get into
suspension. In the bed-load transport process, depending on the shear velocity the transport mode of
particles would be different. The sediment transport mechanism can go from saltation for high shear
velocities to sliding and rolling for lower shear velocities. In order to assess the state of the forces
acting on a particle, we need an indicator. The indicator for the state of the forces acting on the bed
surface particles is the Shield’s parameter or adimensional shear, which was expressed by A. Shield [2]
as:

𝜃 = 𝑢ኼ∗
Δ𝑔𝐷 (4.12)

Where the friction velocity, 𝑢∗, can be defined by the well known law of the wall:

𝑈፩
𝑢∗
= 1
𝜅 𝑙𝑛 (

32𝑦፩
𝑘፬

) (4.13)

Where:
𝑘፬, the bed roughness height
𝜅, the von Kármán constant.
𝑈፩, the velocity at the wall nearest cell.
𝑦፩, the distance between the boundary and the first cell center.

The log law of the wall, depicts the logarithmic behaviour of the averaged velocity distribution of
a fluid in a turbulent flow at a 𝑦ዄ > 30 of a wall. The relation between the wall shear stress and the
friction velocity is:

𝑢ኼ∗ =
𝜏፛
𝜌፦

(4.14)

The shear stress in a turbulent flow can be expressed by equating 4.13 and 4.14:

𝜏፛ =
𝜌፦𝑈ኼ፩

( ኻ᎗ 𝑙𝑛(
ኽኼ፲ᑡ
፤ᑤ ))

ኼ (4.15)

thus the Shield’s parameter can be expressed by:

𝜃 = 𝜏፛
𝜌፦Δ𝑔𝐷

(4.16)

The latter gives a formulation for the forces acting on the bed particle, but does not tell us if the
particle is moving or not. In order to determine if a particle has undertaken motion or is still at the sand-
bed, a second parameter needs to be introduced. The critical Shield’s parameter or critical shear is the
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stability criterion at which particles undertake motion. Brownlie [19], fitted a curve to the experimental
values of Shield’s. Expression 4.17 is the fit found by Brownlie. This expression is used as a threshold
of a particle’s motion.

𝜃፜፫ኺ = 0.22𝑅𝑒ᖣ፩ዅኺ.ዀ + 0.06𝑒ዅኻ዁.዁዁ፑ፞
ᖤᑡᎽᎲ.Ꮈ (4.17)

Where 𝑅𝑒ᖣ፩ = ፝√ጂ፠፝
᎚ is a modified particle Reynolds number.

Are available at the moment, an indicator of the state of the forces acting on the bed particles
(Shield’s parameter) and, a stability criterion (Critical Shield’s parameter). The stability criterion as
presented in expression 4.17 and expresses the resistance to erosion solely by means of the particle
size. Additional resistance to erosion can be included in the stability criterion (𝜃፜፫ኺ). In fact, the removal
(erosion) or addition (deposition) of sediment to the bed, will produce slopes. Therefore 𝜃፜፫ኺ has to
be corrected to take into account the slope effect. In high speed erosion, a resistance produced by
the bulk properties of sand comes into play. To accoun for all this processes, the formulation of the
stability criterion is:

𝜃፜፫ = 𝜃፜፫ኺ (𝜃፬፥፨፩፞ + 𝜃፯ፑ) (4.18)

Engelund and Fredsøe [20] have proposed the following expression to account for slope effect:

𝜃፬፥፨፩፞ = cos𝛽√1 − sinኼ 𝜙 tanኼ 𝛽
𝜇ኼ፬

− cos𝜙 sin𝛽
𝜇፬

(4.19)

Here 𝜙 is the angle between the friction velocity vector and the bed steepest slope, 𝛽 is the slope
angle of the bed with respect to the flat bed and 𝜇፬ is the static friction coefficient. This correction takes
into consideration the slope of the bed and the impact of the flow direction with respect to the slope.
This means that if the flow acts against the slope, 𝜃፜፫ is higher. The resistance of bed particles to being
picked up is greater. The opposite happens when the fluid acts down the slope, the erosion process
is amplified. The critical Shield’s parameter depicted above represents the resistance of a particle to
get into suspension. For velocities lower than 1-1.5 m/s, the process of erosion is mainly dependent of
the particle size. As presented in by F. Bisschop in [1], for higher flow velocities, the bulk properties of
sand come into play. Sand, as a bulk material, has a different behaviour to shearing depending on it’s
porosity, see [3] and [21]. If sand is loosely packed, shearing leads to a decrease in the void ration, this
is a contractant behaviour. The inverse, the dilatant behaviour is observed for densely packed sand.
In high speed erosion, the sand at the top layer of the sand bed is sheared, leading to an increase in
the void ratio, thus creating a hydraulic gradient. The hydraulic gradient over the top layer as defined
as van Rhee [3]:

𝑖 = |𝑣፞|
𝑘
𝑛፥ − 𝑛ኺ
1 − 𝑛፥

(4.20)

where:
|𝑣፞|, is the norm of the vector is the erosion velocity 𝑣፞.
𝑛፥, is the maximum porosity or porosity at loose state.
𝑛ኺ, the bed porosity and A a coefficient.
k, the permeability.

The formulation used to calculate the permeability is the expression of Den Adel (1987)

𝑘 = 𝑔
160𝜈𝐷

ኼ
ኻ኿
(1 − 𝑛ኺ)ኽ

𝑛ኼኺ
(4.21)

The correction of the critical Shield’s parameter can be expressed as:

𝜃፯ፑ =
|𝑣⃗፞|
𝑘
𝑛፥ − 𝑛ኺ
1 − 𝑛፥

𝐴
Δ (4.22)
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Δ, the immerse density.
𝐴 = ኻ

ኻዅ፧Ꮂ , is used for a continuum approach, 𝐴 = ኽ
ኾ is used for a single particle.

𝜃፜፫ = 𝜃፜፫ኺ (𝜃፬፥፨፩፞ +
|𝑣⃗፞|
𝑘
𝑛፥ − 𝑛ኺ
1 − 𝑛፥

𝐴
Δ) (4.23)

The stability criterion for high speed erosion processes is formulated by 𝜃፜፫ and accounts for the
resistance to erosion produced by the particle size, the slope of the sand-bed and the bulk properties
of sand. Now that the notion of incipient motion has been explained, let’s see how it is implemented
in the calculation of the erosion flux.

4.2.3. Erosion
In this work, erosion is referred as the removal of sediment due to the action of viscous and turbulent
stresses on the sand-bed. As a matter of fact, if the fluid forces acting on the sand-bed are strong
enough, then the grains of sand can get into suspension and be transported by the fluid. Nevertheless,
the assessment of the quantity of eroded material has not a well established theoretical background
and the complexity of this process has led scientist to search for answers in the empirical formulations
as for the Critical Shield’s parameter. The erosion process is determined using empirical formulations
that are calibrated to experiments and is often represented by a pick-up flux:

Φ = 𝐸
𝜌፬√𝑔Δ𝐷

(4.24)

A formulation of this adimensional pick-up flux is the expression proposed by van Rijn in 1984.
Other pick-up functions are depicted in his work [7]:

Φ = 0.00033𝐷ኺ.ኽ∗ (𝜃 − 𝜃፜፫𝜃፜፫
)
ኻ.኿

(4.25)

𝐷∗ is defined as an adimensional particle diameter: 𝐷∗ = 𝑑Ꮅ√ጂ፠
᎚Ꮄ .

Note in expression 4.25, the presence of the Shield’s (𝜃) and Critical Shield’s(𝜃፜፫) parameter. The main
unknown here is the Shield’s parameter. Remark that the higher the velocity of the fluid, the higher
the Shield’s parameter and the higher the pick up flux is. The mass flux of sediment being withdrawn
by the flow is then:

𝐸 = 𝜌፬√𝑔Δ𝐷0.00033𝐷ኺ.ኽ∗ (𝜃 − 𝜃፜፫𝜃፜፫
)
ኻ.኿

(4.26)

4.3. Bed-load transport
The bed-load transport account for the transport of sediment close to the bed. As explained in the work
of van Rijn [18], the notion of close to the bed has different interpretations. These interpretations have
an impact on the phenomena modelled. Einstein [22], considered the bed-load transport to happen
in a 2 particles diameter layer above the sediment bed. In this approach, the saltation of particles
is accounted in the suspended sediment transport and was followed by Engelund and Fredsøe [20].
Other scientist like van Rijn [18], formulate the bed-load transport as the transport of sediment being
dominated by the gravity forces, therefore, incorporating to some extend the saltation of particles.
For simplicity, in this work, the bed-load transport is considered to be a 2-D process which makes the
approach similar to the formulation of Einstein. The intra bed transfer of matter is model by solving
the following expression.

𝜕𝜂
𝜕𝑡 =

1
𝑛ኺ − 1

− ∇ ⋅ 𝑞⃗፛ (4.27)

𝑞⃗፛ represents the bed-load transport rate vector. Expression 4.27, is derived by not considering
the erosion and deposition is the Exner equation. This term takes into consideration several transport
modes happening at the surface of the sand bed. The transport modes included in the bed-load
transport are saltation, rolling of grains of sand and sliding of material. The different modes of bed-
load transport, are depedent on the bed shear velocity, in fact, if the Shield‘s parameter just exceeds
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the stability criterion, grains of sand will initialize their motion by rolling or sliding along the bed. If
the bed shear velocity is increased, the grains of sand are transported by jumps (saltation), the length
travelled by the particles during this jumps depends on the bed shear velocity. The components of the
bed load transport rate vector are calculated by the expression used by X. Liu [4].

𝑞። = 𝑞ኺ
𝜏፛,።
|𝜏፛|

− 𝐶|𝑞ኺ|
𝜕𝜂
𝜕𝑥።

, 𝑖 = 1, 2 (4.28)

C is a constant with values between 1.5-2.3, accounting for the slope effect on the sediment flux [4].
𝑞ኺ is the bed-load transport rate for a flat bed, it can be calculated using the following formula.

𝑞∗ = 𝑞ኺ
√𝑅𝑔𝑑𝑑

(4.29)

𝑞∗, the Einstein number or dimensionless bed-load transport, is calculated using the approach of En-
gelund and Fredsøe [20].

if 𝜃 > 𝜃፜፫:
𝑞∗ = 17.74(𝜃 − 𝜃፜፫)[𝜃

Ꮃ
Ꮄ − 0.7𝜃

ᖤ Ꮃ
Ꮄ፜፫ ]

else:
𝑞∗ = 0

Equation 4.28 shows that the horizontal transfer of mass within the bed has a component that
is dependent on fluid stresses, 𝜏፛, and a term that depends on the slope of the bed, Ꭷ᎔

Ꭷ፱ᑚ . In fact,
the resisting forces acting on a sand particle can become driving forces if the slope becomes steep
enough. To model this effect, a geotechnical approach of slope stability need to be considered. This
consideration are left for further studies and can be an extension of the proposed code in this work.
The bed-load transport was deactivated in the simulations, even though the equations have been
implemented.



5
Numerical implementation of

governing equations
In previous chapters, the equations of fluid motion and sediment transport have been formulated.
Nevertheless, partial differential equations need to be discretized in order to be solved numerically.
The discretization method is discussed in the following section. The fluid motion equations have two
unknowns, the velocity and the pressure. The solution of this two quantities is done by uncoupling
them by applying the continuity equation to the momentum equation, this is explained in section 5.2.1.
In order to have singular solution of the discretized equations, boundary and initial condition must be
set. The boundary conditions of the fields are explained further in this section.

5.1. Discretization method: The finite volume method
The discretization method used here to solve the governing equations of erosion/scour is the finite
volumes method. The finite volumes method is a method for solving partial differential equations in a
discretized space. Let’s consider a general conservation law written as:

𝜕𝑢
𝜕𝑡 + ∇ ⋅ 𝑓(𝑢) = 0 (5.1)

This partial differential equation is the conservation law of a quantity u with 𝑓(𝑢) being its flux
vector. The equation is solved in a computation space V. V is discretized in non overlapping control
volumes (𝑣።) such that:

𝑉 =⋃𝑣። , 𝑖 = 1, ..., 𝑛. 𝑖, 𝑛 ∈ ℕ (5.2)

The finite volume method has the advantage that integrating over any volume V, the divergence
term becomes a surface integral by applying the divergence theorem.

𝜕
𝜕𝑡 ∫ፕ

𝑢𝑑𝑉 + ∫
ፕ
∇ ⋅ 𝑓(𝑢) = 𝜕

𝜕𝑡 ∫ፕ
𝑢𝑑𝑉 + ∮

Ꭷፕ
𝑓 ⋅ 𝑛⃗𝑑𝜕𝑉 (5.3)

𝜕𝑉 is the closed surface boundary of volume V and 𝑛⃗ is the outward vector normal of surface 𝜕𝑉.
The divergence theorem make it easy to conservatively asses the divergence term as fluxes going in the
volume through the closed boundary are equal to the fluxes going out. In order to have an expression
of this conservation law for every control volume, let’s consider the control volume 𝑣።.

𝜕
𝜕𝑡 ∫፯ᑚ

𝑢𝑑𝑣። +∮
Ꭷ፯ᑚ
𝑓 ⋅ 𝑛⃗𝑑𝜕𝑣። (5.4)

Having the control volume average of quantity u in volume 𝑣። being equal to:

𝑢። =
1
𝑣።
∫
፯ᑚ
𝑢𝑑𝑣። (5.5)

17
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Then, the equation that has to be solved for every control volume is:

𝜕𝑢።
𝜕𝑡 +

1
𝑣።
∮
Ꭷ፯ᑚ
𝑓 ⋅ 𝑛⃗𝑑𝜕𝑣። = 0 (5.6)

if volume 𝑣። is a polyhedron with m faces:

∮
Ꭷ፯ᑚ
𝑓 ⋅ 𝑛⃗𝑑𝜕𝑣። =

፦

∑
፤዆ኻ

𝑓፤ ⋅ 𝑛⃗፤ (5.7)

then the conservation law can be written:

𝜕𝑢።
𝜕𝑡 +

1
𝑣።

፦

∑
፤዆ኻ

𝑓፤ ⋅ 𝑛⃗፤ = 0 (5.8)

5.2. Fluid motion
In Openfoam, the finite volume method is implemented for an arbitrarily unstructured mesh [23]. The
variables of the NS equations share the same control volume, therefore, the variables are collocated.
Figure 5.1, schematizes the collocated arrangement of discretized variables, the velocity 𝑢⃗ and the
pressure p in a 2D uniform Cartesian grid. Furthermore, the solution of the equations is done in a
Cartesian coordinates system, unchanged over time.

•x

•x •x

•x

•x

•x

•x

•x

•x

Δ𝑥

Δ𝑦𝑝።,፣
𝑢⃗።,፣

i,ji-1,j

i-1,j-1 i+1,j-1

i+1,j

i+1,j+1

i,j-1

i,j+1i-1,j+1

x 𝑝
• 𝑢⃗

Figure 5.1: Collocated variable arrangement in an uniform 2D Cartesian grid

5.2.1. Pressure-implicit with Separation of Operators (P.I.S.O)
In eq.3.9, there are two unknowns, the velocity field 𝑢⃗ and the pressure field p. Eq.3.9 could be solved
simultaneously, but for this work, a segregated approach of the velocity-pressure coupling is used. The
P.I.S.O algorithm, proposed by [24] is used for transient calculations. It consists in a predictor step,
which gives an estimate of the velocity at the next time step. The first estimate does not satisfy eq.3.8,
thus, one or more explicit correction steps are needed to find a suitable solution for eq.3.9.

∇⃗ ⋅ 𝑢⃗ = 0

𝜕𝑢⃗
𝜕𝑡 + (𝑢⃗ ⋅ ∇⃗)𝑢⃗ = −

∇⃗𝑝
𝜌 + 𝜈∇ኼ𝑢⃗ + 𝑓
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In eq.3.9 the advective term (𝑢⃗ ⋅ ∇⃗)𝑢⃗ is not linear. To linearize this term the advective velocity (𝑢⃗
inside the parenthesis) is taken at the previous time step and the advected velocity as the predicted
velocity. The mathematical implementation of this procedure is explained hereafter.

Implicit momentum predictor

A semi-discretized form of eq.3.9 is presented as a linear system:

Cu∗ = r− ∇pn + gn (5.9)

C: is a matrix of coefficients, build from the coefficients multiplying the predicted velocity. The
inclusion of viscous or turbulent stresses are made in this matrix.

u∗: the solution array containing the predicted velocities.
r= un

ጂ፭ : the right hand side array containing the velocities at the current time step.
gn: contains the source term due to the variation of density at time n.
∇pn: contains the gradient of the pressure at time n.
Solving this implicit linear system will give a prediction of the velocity. As stated previously, u∗ is

not divergence free, and one or more corrector steps are needed to find the solution.
Explicit corrector step

Operator C can be split into 2 matrices. A its diagonal and Hᖣ its off-diagonal, in other words,
A+Hᖣ = C.

Au∗ +Hᖣu∗ = r−∇pn + gn

Using the predicted velocity u∗, the previous time step un and the first corrected pressure p∗ we
get the expression for the velocity corrector.

Au∗∗ +Hᖣu∗ = r−∇p∗ + gn

if H = r−Hᖣu∗ and A is inverted, then the linear system yields:

u∗∗ = Aዅ1H− Aዅ1∇p∗ + Aዅ1gn (5.10)

This equation is the explicit velocity corrector. This expression cannot be determined as no ex-
pression for the corrected pressure p∗ has been defined so far. Remember that the corrected velocity
should conform to eq.3.8. Therefore, ∇⋅u∗∗ = 0.

∇⋅u∗∗ =∇⋅(Aዅ1H− Aዅ1∇p∗ + Aዅ1gn)

0 =∇⋅(Aዅ1H− Aዅ1∇p∗ + Aዅ1gn)
and finally:

∇ኼ(Aዅ1p∗) =∇⋅(Aዅ1H+ Aዅ1gn) (5.11)

∇ኼ() =Δ = Laplacian.
This expression is the explicit pressure corrector. The velocity corrector step and the pressure

corrector step can be performed several times depending on the accuracy desired. The advantage of
this algorithm is that the corrector step can be performed using the same operators. In literature, two
corrector steps are enough to reach a ”good” accuracy.

5.2.2. Boundary treatment for the velocity
In this work, 2 types of boundary conditions have to be introduced. The Dirichlet boundary conditions
are the ones prescribing a value for the fields themselves (pressure, velocity, etc ...). For example,
a Dirichlet boundary conditions for the velocity at a boundary with a normal, 𝑁⃗ = (0, 1, 0) can be
expressed in the following manner.

𝑢⃗ = (0, 𝑎, 0) (5.12)
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The velocity in the y direction is set to a. The Neumann boundary conditions, in the other hand, are
the boundary conditions prescribing a value for the derivative of the fields in question. For example,
a Neumann boundary conditions prescribing a zero variation of the velocity in the 𝑁⃗ direction can be
expressed in the following manner:

𝜕𝑢⃗
𝜕𝑁⃗

= (0, 0, 0) (5.13)

The derivative of every component of the velocity is 0 in the 𝑁⃗ direction.

Walls

The boundary conditions for the velocity at walls, because of the viscous nature of the fluid, is
going to be a no slip boundary conditions. This is expressed by the fact that the velocity of the fluid
at the boundary is the velocity of the boundary. For a solid not moving wall, the boundary condition is
expressed as a Dirichlet boundary condition:

𝑢⃗ = (0, 0, 0) (5.14)

This boundary conditions is implemented at the sand bed. This is due to the fact the time step is
small and the bed velocity is considered negligible with respect to the fluid velocity. If the bed motion
is not negligible then the boundary condition of the velocity should be taken as the velocity of the sand
bed.

Inlet

For inlets, the boundary conditions used, is to prescribe the value for the velocity in the direction of
the normal of the boundary. For example, in the case of an inlet boundary with a normal, 𝑁⃗ = (1, 0, 0),
the value on the velocity is prescribed in the following manner:

𝑢⃗ = (𝑎, 0, 0)

or
𝑢⃗.𝑁⃗ = 𝑎 (5.15)

a, can be a time dependent value. For the erosion test, an external file prescribing the values at
each time step in implemented.

Oulet

The outlet boundary conditions for the velocity is of Neumann type and is mathematically expressed
as follows:

𝜕𝑢⃗
𝜕𝑁⃗

= (0, 0, 0) (5.16)

With 𝑁⃗ being the normal vector to the boundary. This boundary conditions applied to the advective
part of the momentum equation will allow the fluid to ‘go out‘ of the domain as the velocity calculated
at the boundary is the same as the one determined at the cells adjacent to the boundary.

5.2.3. Boundary treatment for the pressure
Walls

The boundary condition for the pressure at walls is formulate by a Neumann boundary condition.
In fact, the pressure exerted by a wall to the fluid is the reaction of the pressure of the fluid exerted
on the wall. Giving the following expression:

𝜕𝑝
𝜕𝑁⃗

= 0 (5.17)
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Inlet
For the inlet boundary condition of the pressure:

𝜕𝑝
𝜕𝑁⃗

= 0 (5.18)

Oulet

The boundary condition for the pressure at the outlet is formulated as a constant pressure boundary
conditions:

𝑝 = 0

TopWall

The boundary condition for the pressure at the top wall is formulated as a constant pressure bound-
ary conditions. Here:

𝑝 = 0
This allows the pressure to have a singular solution in the settling test.

5.2.4. Boundary treatment for kinetic turbulent energy
Walls

The boundary conditions for the kinetic turbulent energy is derived from wall functions. The wall
function for k in foam-extend3.2 is assessed by considering a Neumann boundary condition.

𝜕𝑘
𝜕𝑁⃗

= 0 (5.19)

Outlet

The outlet boundary condition used for k is the same as for the walls.

𝜕𝑘
𝜕𝑁⃗

= 0 (5.20)

Inlet

The inlet boundary condition of k is determined by a Dirichlet boundary condition. The value of k
for the inlet is determined using the following formula:

𝑘 = 3
2(𝑈𝐼)

ኼ (5.21)

Where:
U, the bulk inlet velocity.
I, the turbulence intensity, defined as:

𝐼 = 𝑢ᖣ
< 𝑢 > (5.22)
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Where:
𝑢ᖣ, the root mean square of turbulence velocity fluctuations.
<u>, the Reynolds averaged velocity.

I is taken as 5% in this work.

5.2.5. Boundary treatment for kinetic turbulent energy dissipation
Walls

𝜖 wall function is formulated in the foam-extend framework as :

𝜖 = 𝐶
Ꮅ
Ꮆ᎙
𝑘 ᎵᎴ
𝜅𝑦፩

if k can be formulated as:

𝑘 = 𝑢ኼ∗
√𝐶᎙

then

𝜖 = 𝑢ኽ∗
𝜅𝑦፩

(5.23)

The latter expression is used by C. van Rhee, see p. 143 in [6], in this work, the first formulation is used.

Inlet

As for k, the boundary value for 𝜖 at an inlet is expressed as a Dirichlet boundary condition.

𝜖 = 𝐶
Ꮅ
Ꮆ᎙
𝑘 ᎵᎴ
𝑙 (5.24)

Where l is the mixing length is formulated as:

𝑙 = 0.5𝐶᎙𝑑፡ (5.25)

with 𝑑፡ the hydraulic diameter.

Outlet

The outlet boundary condition for 𝜖 is again of the same type as k.

𝜕𝜖
𝜕𝑁⃗

= 0 (5.26)

5.2.6. Boundary treatment for turbulent viscosity
Modified sand-bed wall function

In the foam-extend 3.2 framework, the turbulent effect of the flow is included in the Naviers-Stokes
equation by the turbulent eddy viscosity in the calculation of the shear stress and is implemented in
foam-extend by the expression:

𝜏፛ = 𝜌፦(𝜈 + 𝜈፭)
𝜕𝑈
𝜕𝑦 (5.27)

From the log law of the wall 4.13 and the definition of the friction velocity 4.14, the shear stress ca
be formulated:

𝜏፛ =
𝜌፦𝑢Ꭱ𝑈፩

( ኻ᎗ 𝑙𝑛(
ኽኼ፲ᑡ
፤ᑤ ))

(5.28)
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Discretizing equation 5.27 and equating it to 5.28 leads to:

𝜌፦(𝜈 +𝜈፭)
𝑈፩ − 𝑈፛
𝑦፩

= 𝜌፦𝑢Ꭱ𝑈፩
( ኻ᎗ 𝑙𝑛(

ኽኼ፲ᑡ
፤ᑤ ))

(5.29)

If 𝑈፛ = 0, then:
𝜈፭ =

𝑦፩𝑢Ꭱ𝑈፩
𝑈፩ ( ኻ᎗ 𝑙𝑛(

ኽኼ፲ᑡ
፤ᑤ ))

− 𝜈

𝜈፭ = (
𝑦፩𝑢Ꭱ𝜅

𝜈 𝑙𝑛(ኽኼ፲ᑡ፤ᑤ )
− 1)𝜈

𝑦ዄ can be expressed in the following way:

𝑦ዄ =
𝑦፩𝑢Ꭱ
𝜈

Then the boundary condition of the turbulent eddy viscosity is expressed as follows:

𝜈፭ = ( 𝑦ዄ𝜅
𝑙𝑛(ኽኼ፲ᑡ፤ᑤ )

− 1)𝜈

Wall function

For other walls, the expression used to calculate the boundary value of 𝜈፭, is the default foam-extend
implementation which reads:

𝜈፭ = (
𝑦ዄ𝜅

𝑙𝑛(𝐸𝑦ዄ) − 1) 𝜈

here, E=9.8 which is the default value proposed by foam-extend 3.2.

Inlet and Outlet

The boundary values for 𝜈፭ are calculated from the values of k and 𝜖 using the following expression:

𝜈፭ = 𝐶᎙
𝑘ኼ
𝜖 (5.30)

5.3. Sediment transport
5.3.1. Implicit solution of sediment transport equation
The term Ꭷ፜

Ꭷ፭ is solved implicitly with a first order forward Euler discretization and ∇⃗ ⋅ [𝑐(𝑣⃗ + 𝑤⃗፬፞፭)] and
∇⃗ ⋅ (𝜈፭∇⃗𝑐) are solved explicitly and therefore are used as source terms in the solution of Ꭷ፜Ꭷ፭ .

5.3.2. Boundary treatment of sediment transport
Walls
The boundary condition for the concentration at walls is of Neumann type.

𝜕𝑐
𝜕𝑁⃗

= 0 (5.31)

This will disable the diffusion of sediment through the walls. As the velocity at the walls is 0⃗ then no
advection is possible.

Inlet
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There is no concentration of sediment coming from downstream therefore the boundary conditions
is:

𝑐 = 0 (5.32)

Outlet
For the outlet boundary condition for the concentration is that the sediment can go out of the

domain if it is transported either by the flow or either the settling of the sediment. The boundary
conditions is therefore:

𝜕𝑐
𝜕𝑁⃗

= 0 (5.33)

Sand-bed

For the sand bed boundary conditions, if the sedimentation flux is positive (Deposition of sediment)
then the boundary condition is taken as an outflow boundary condition.

𝜕𝑐
𝜕𝑁⃗

= 0 (5.34)

If the sedimentation flux is negative, erosion is present, then, the value of the concentration at
the cells adjacent to the boundary is prescribed depending on the balance between the erosion and
sedimentation flux.

𝑐፤ዄኻ። = 𝑐፤። + (𝐸።)Δ𝑡 (5.35)

Boundaries for 𝑤⃗፬፞፭

For the settling case, 𝑤⃗፬፞፭ is calculated at the boundaries from the concentration of sediment in
the adjacent cell except for the top boundary where the settling velocity is prescribed by a Dirichlet
boundary condition.

𝑤⃗፬፞፭ = 0⃗ (5.36)

5.4. Morphological routine and mesh handling
The mesh motion is dependent on the bed elevation. The bed elevation is calculated using the contri-
bution of the sedimentation velocity eq.4.11, accounting for the erosion and the deposition, and the
contribution of the bed-load transport, eq.4.27. Once the bed height is calculated at the face center,
these face values, are then linearly interpolated to the face vertex, as depicted for a 2-D case in figure
5.2. The mesh point corresponding to the face vertex, is move to the prescribed position (value of the
bed elevation at the face vertex). Once this points have been moved, the position of the mesh points
in the interior of the domain is calculated by using a laplacian equation explained by H. Jasak and Z.
Tuković [25].

∇ ⋅ (𝛾∇𝑣⃗) = 0 (5.37)

In this expression 𝛾 is the diffusion coefficient and 𝑣⃗ correspond the the grid motion velocity. The
new bed position is therefore calculated using:

𝑥⃗፤ዄኻ = 𝑥⃗፤ + 𝑣⃗Δ𝑡 (5.38)

𝑥⃗፤ዄኻ and 𝑥⃗፤ are the position vectors at k+1 and k.
The diffusivity used to calculated the grid motion velocity can have different expressions. As pre-

sented in [25], the diffusion coefficient can have different values. If the diffusivity is dependent on the
inverse of the distance and different laws can be fitted, see table 5.1.
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Table 5.1: Diffusion laws for the mesh motion solution

Inverse distance
linear ኻ

፥
Quadratic ኻ

፥Ꮄ
Exponential 𝑒ዅ፥

The distance between the sand-water interface and the pipe-wall under the sand-bed was deter-
mined. In order to stop the erosion when the sand-bed has reached the pipe-wall, the Critical Shield’s
parameter was set to very large number. Setting the Critical Shield’s parameter to a large number will
stop the erosion process and therefore, the mesh motion.

If 𝜂 > 𝜂፩።፩፞
𝜃፤፜፫ = 1𝑒6 (5.39)

𝜂 is the bed elevation.
𝜂፩።፩፞ is the elevation at which the pipe is present.

else
𝜃፤፜፫ = 𝜃፜፫ኺ (𝜃፤፬፥፨፩፞ + 𝜃፤፯ፑ) (5.40)

Here, the superscripts(𝑘,𝑘− ኻ
ኼ , 𝑘−1,𝑘−

ኽ
ኼ ...) represent the time at which the values are taken. Further-

more, the correction of the Critical Shield’s parameter leads to instabilities if implemented as presented
in equation 5.40. In fact, instantaneous small variations of the erosion velocity are amplified with time
leading to an erratic behaviour of the model. Let’s write the correction of the Critical Shield’s parameter
as follows:

𝜃፤፯ፑ =
|𝑣⃗፤ዅኻ፞ |
𝑘

𝑛፥ − 𝑛ኺ
1 − 𝑛፥

𝐴
Δ (5.41)

Then, in order to stabilize the calculated values of 𝜃፯ፑ, it’s value at the intermediate time step will be
used:

𝜃፤ዅ
Ꮃ
Ꮄ

፯ፑ = 𝜃
፤ዅኻ
፯ፑ

ጂ፭
ኼ +𝜃፤፯ፑ

ጂ፭
ኼ

ጂ፭
ኼ +

ጂ፭
ኼ

(5.42)

The final implementation of the Critical Shield’s parameter corrected for high speed erosion can be
formulated as follows:

𝜃፤፜፫ = 𝜃፜፫ (𝜃፤፬፥፨፩፞ + 𝜃
፤ዅ ᎳᎴ
፯ፑ ) (5.43)

•

•

•

•
• •

• •

•

Δ𝑥

Figure 5.2: Figure representing the calculated bed height at the face centers (Red points), the value linearly interpolated to the
edges ( blue points) and the actual bed elevation seen by fluid mesh (blue line)

5.4.1. Boundary treatment of mesh motion
TopWall in settling case
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The motion of the grid at the upper boundary is 0. Thus the boundary condition is formulated by:

𝑣⃗ = 0⃗ (5.44)

Lateral walls in settling case

The mesh slips along the lateral boundaries. The slip boundary condition can be expressed as:

𝜕𝑣⃗
𝜕𝑁⃗

= (0, 0, 0) (5.45)

Sand bed

The motion of the mesh is only prescribed by the bed boundary. Therefore, it is calculated by the
sedimentation velocity.

𝑣⃗.𝑁⃗ = 𝑣⃗፬፞፝ .𝑁⃗ (5.46)

Leading to:
𝑣⃗ = 𝑣⃗፬፞፝ (5.47)

Remember:
𝑣⃗፬፞፝ ⋅ 𝑁⃗ =

𝑆 − 𝐸
𝜌፬(1 − 𝑛ኺ − 𝑐፛)

Boundary condition of the mesh motion at the attachment points of the sand-bed for
the high speed erosion case.
For the high speed erosion test, the sand bed is attached to a wall and the outlet boundaries. The
boundary condition of the mesh motion at this two locations is an attached point therefore formulated
as boundaries of Dirichlet type:

𝑣⃗.𝑁⃗ = 0 (5.48)



6
Settling test

6.1. Experimental test
Meulenkamp et al. performed one-dimensional settling test, see [6]. This settling test, were carried
out with sand presenting the following particle size distribution:

Table 6.1: Particle size distribution

Particle diameter[𝜇m] 76.5 98 115.5 137.5 163.5 194.5 231 302.5
Volume fraction [-] 0.02 0.04 0.15 0.22 0.29 0.2 0.06 0.02

For more information about these tests, the reader is referred to the book cited above. The domain
is presented in figure 6.1. The initial dimensions of the fluid domain are 0.282 m width and 1.4m
height.

TopWall

LeftWall RightWall

bedWall

0.282m

1.4m

(41X93)

Figure 6.1: Schematized fluid domain for for settling tests

The initial concentration of sediment is considered to be homogeneous with a value of 0.3 and the
𝑑኿ኺ is taken as 150𝜇𝑚. The fluid is initially at rest. The results of the experimental tests are shown in
comparison to the simulated results in figures 7.11b, in the next section.

27
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Table 6.2: Simulation parameters

Parameter 𝜈 𝜌፬ 𝜌፰ g 𝑑኿ኺ 𝑛፥ 𝑛ኺ
Unit [፦

Ꮄ
፬ ] [ ፤፠፦Ꮅ ] [ ፤፠፦Ꮅ ] [፦፬Ꮄ ] [m] [-] [-]

Value 1e-6 2650 1000 9.81 150e-6 0.55 0.47

6.2. Numerical test
The sand is considered uniform, therefore, the diameter of the particles in the simulation is taken as
the 𝑑኿ኺ of the particle size distribution presented in table 6.1.

First, in section 6.2.1, the interaction between the sediment and the fluid is not considered, the
Boussinesq approximation is not used. This step will give indication about the behaviour of sediment
if considered as a passive scalar in the simulations. If the fluid is considered at rest, the only force
acting on the sand particles is gravity, thus, their settling is just described by the hindered settlement
velocity formula.

Then, in section 6.2.2, the action of buoyant forces (Boussinesq approach) is included in the calcu-
lations. The difference in the local density of the fluid due to presence of sediment will induce the fluid
into motion. In fact, the buoyancy induced motion of the fluid will add a new component to the settling
of sediment as the fluid will transport the sediment as depicted by the advective term in equation 4.1.

The fields needed to perform the simulation are the following:

• the concentration (c[-])

• the velocity (U[m/s])

• The kinematic turbulent energy (k[𝑚ኼ/𝑠ኼ])

• The kinematic turbulent energy dissipation (𝜖[𝑚ኼ/𝑠ኽ])

• the kinematic turbulent viscosity (𝜈፭[𝑚ኼ/𝑠ኻ])

• the dynamic pressure (𝑝᎞፠፡[𝑚ኼ/𝑠ኼ])

• the mesh point displacement field (displacement[m/s])

This fields, excepted the mesh point displacement field, are initialized in foam-extend as volume
fields, this means that the values are defined as the cell averaged quantities located at the cell centers.
The mesh point displacement field is defined as displacement of the cell vertex, it is therefore a point
field, and is defined as a vectorial quantity. This field is necessary for the computation of the mesh
motion and the position at each time step.

6.2.1. Sediment as passive scalar
The contribution for the suspended sediment transport solved in this simulations is:

The sediment transport equation:

𝜕𝑐
𝜕𝑡 + ∇⃗ ⋅ [𝑐(𝑢⃗ + 𝑤⃗፬፞፭)] = ∇⃗ ⋅ (𝜈፭∇⃗𝑐)

As the the fluid is considered at rest this equation is reduced to :

𝜕𝑐
𝜕𝑡 + ∇⃗ ⋅ [𝑐𝑤⃗፬፞፭] = ∇⃗ ⋅ (𝜈፭∇⃗𝑐)

The suspended sediment/ bed interaction is fully considered, this means that deposition and erosion
are being solved.
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Figure 6.2: Concentration is a settling test at t=50,100,150s for experimental results( ), simulations results using the Boussinesq
approach and omitting this approach( )

Concentration c=0.3
As explained in the introduction of this section, the link between the sediment and the flow motion is
not considered. As explained in p.29-30 in the work of C. van Rhee [6], the settlement of sand can
be approached with sufficient accuracy by the hindered settlement formula 4.3, because the distance
needed for the particles to reach their terminal velocity is in the order of magnitude of the particle’s
diameter. That is why, particles can be considered to be settling at their terminal settling velocity at
t=0s.
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Figure 6.3: Concentration profile for a simulation without Boussinesq aproximation at t=158.887s

In figure 6.2, are plotted the concentration at 50, 100 and 150 seconds. The increase of the sand
bed’s height in the numerical model can be visualized by the sharp increase of concentration from 0.3
to 0.53, the concentration of the bed. The hindered settling velocity used in the model, depicts the
settling velocity of sand as can be seen by the proximity between the calculated and the measured
concentrations. The model is not stable after 150s. In fact, for this simulation, the last stable time
step is 158.887s. The concentration at this time is presented in figure 6.3.

Mesh motion limit
Note that negative concentration are being calculated in figure 6.3. Other discretization schemes for
the advective term in the transport equation and different grid size were tested, leading to the same
error. To check the source of this error, a simple simulation of the mesh shrinking was performed. An
constant upward motion of the sand-bed boundary was prescribed and set to 1m.𝑠ዅኻ. The time step
size is Δ𝑡=1e-4s. The simulation stops at 0.7443s which means that the maximum bed height for this
mesh is 0.7443m.

Note that for two consecutive time-steps, the mesh is subjected to an drastic changes. The dark
blue zones in figure 6.4 represent zones with very small cells. At t=0.7433s the small cells are located
at the middle of the domain. At t=0.7434s, the small cells are present at the top and bottom of the
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(a) Mesh at t=0.7433s (b) Mesh at t=0.7434s

Figure 6.4: Mesh at 2 consecutive time steps

domain. This instability starts at the mesh motion calculations and is spread to the other fields. The
simulation using an initial condition for the concentration of sand in the domain of 0.3, will yield a bed
height higher than 0.7924m. As 0.7924m>0.7443m, the simulation will initial concentration of c=0.3
cannot be completed as the mesh calculation do not allow it. Nevertheless, if the initial concentration is
c=0.2, the maximum bed height would be 0.5283m<0.7443m. Further in this section, this simulation
is performed. The solution to the mesh problem would be to search a new law for the mesh motion or
a removal of cells. This is left for further studies.

Concentration c=0.2
Another simulation, this time with an initial concentration c=0.2 is tested. This will prove that the
instabilities are not produced by the transport of sediment equation.
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Figure 6.5: Calculated concentration for a settling test at t=50,100,150s for an initial concentration of c=0.2

At t=150s, the concentration in the fluid domain is 5𝑒 −6𝑚ኽ. This means that the sand has almost
completely settled. The calculated bed height at this time step is 0.527974m. These simulations are 2D,
nevertheless, a depth needs to be defined in order to perform the calculations (required by OpenFOAM).
The depth is z=0.1m, the initial domain height h=1.4m and the width w=0.282, therefore, the volume
of sediment contained in the bed is:

𝑉፬፞፭፭፥፞፝ = 𝜂𝑤𝑧(1 − 𝑛ኺ) (6.1)

The quantity of sediment in the fluid domain is defined is:

𝑉፬፮፬፩፞፧፝፞፝ = ℎ𝑤𝑧𝑐 (6.2)
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Table 6.3: Volume of suspended sediment and volume of settled sand at 0s and 150s of simulation time

Time [s] 𝑉፬፮፬፩፞፧፝፞፝[𝑚ኽ] 𝑉፬፞፭፭፥፞፝[𝑚ኽ] 𝑉፭፨፭[𝑚ኽ]
0 0.007896 0 0.007896
150 0.000005 0.007891 0.007896

Where:
c, the volumetric concentration of sediment.
𝑛ኺ, the bed porosity, (1-𝑛ኺ) the bed volumetric concetration of sediment.
𝜂, the bed elevation.
z, the depth of the domain.
w, the width of the domain.
h, the initial height of the domain.
𝑉፬፮፬፩፞፧፝፞፝, the volume of suspended sand in the domain.
𝑉፬፞፭፭፥፞፝, the volume of settled sand.

At t=150s, the volume of sediment in the fluid domain accounts for 5𝑒 − 6𝑚ኽ and the volume of
settled sand is 0.007891 𝑚ኽ. The total volume of sand in the system equates the initial volume of
suspended sediment. The volume of sediment in the system fluid domain + bed is plotted hereafter.
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Figure 6.6: Calculated volume of sand settled, suspended and the total during a simulation with initial concentration of c=0.2

As can be seen in figure 6.6, the sediment is conserved during the simulation.
Until the instabilities appear, the simulation with initial concentration c=0.3 is also sediment con-

servative.

6.2.2. Boussinesq approximation
The contribution for the suspended sediment transport solved in this simulations is:
The sediment transport equation:

𝜕𝑐
𝜕𝑡 + ∇⃗ ⋅ [𝑐(𝑢⃗ + 𝑤⃗፬፞፭)] = ∇⃗ ⋅ (𝜈፭∇⃗𝑐)

Here, the fluid is initially considered at rest, nevertheless, the momentum equation accounts for the
Boussinesq approximation of the body forces due to the variation of the density of the mixture:

𝜕𝑢⃗
𝜕𝑡 + (𝑢⃗ ⋅ ∇⃗)𝑢⃗ = −

∇⃗𝑝
𝜌 + 𝜈∇ኼ𝑢⃗ + 𝜌፦ − 𝜌፰𝜌፰

𝑔⃗

Density differences will lead the mixture into motion.
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Unstable simulation
As stated in previous sections, the Boussinesq approximation is a simplification that neglects all the
compressive forces except for the buoyant/gravity forces. The action of this force is mathematically
implemented as body forces in the momentum conservation equation. In reality, the momentum
exchange between sediment and fluid is a much more complex phenomenon to what the Boussinesq
approximation can model. Nevertheless, this approximation was chosen because of its simplicity. Buoy-
ancy forces appear when there is an inhomogeneous distribution of sediment. A higher concentration
of sediment yields to a higher density. Heavier fluids tend to sink and lighters rise. In this section, the
sedimentation process is study if buoyant forces are considered. Several simulations were performed
and this lead to the conclusion that the model as it is defined was not stable. The instabilities find their
origin in other reasons than for the non-Boussinesq simulations. The results of unstable simulation are
shown hereafter.

(a) Initial concentration field c=0.3 (b) Concentration field at t=20s

Figure 6.7: Concentration field at different time steps

In figures 6.7, the concentration field (s in the simulations) is presented at t=0s and t=20s. In one
hand, subfigure 6.7a depicts the initial concentration field, in the other, subfigure 6.7b shows the field
state at t=20s. In the latter, a local increase/decrease of the concentration can be noted in the bottom
of the domain. In subfigure 6.7b, it can be seen that the local increase/decrease of the concentration
at the bottom of the fluid domain leads to an irregular local sedimentation. The irregular bed height
is the proof of this process. This irregular local sedimentation is the root of the instabilities in the
simulations using the Boussinesq approach.

As the sediment is settling, the difference in density will yield to a fluid motion. This motion is
irregular and will lead to a local increase/decrease of concentration in the vicinity of the sand bed.
Figure 6.8 shows the component of the velocity in the x direction. Note that in the lower part of the
domain, there is a motion of the fluid from the lateral boundaries towards the center of the domain.
The velocity component in the x direction reaches its maximum near the two small dunes that have
appeared and then reduce its magnitude towards the center of the domain. In term of sediment
transport this leads to an increase of sediment in certain cells. In other words, if a cell is receiving
more sediment than what it gives, then the amount of sediment in the cell will increase.

The end result of this instabilities are presented in figure 6.9. This figure shows the magnitude of
the velocity field, when the irregular sedimentation is amplified it leads to an unusable mesh. See that
the velocity magnitude reaches almost 0.8 𝑚.𝑠ዅኻ, this velocity magnitude leads to some erosion of the
sand bed. Furthermore, the behaviour of the fluid can be derived from figure 6.9. The fluid is try to
go up near the center of the domain. As the fluid is coming from the bottom of the domain and it has
picked up sand from the bed, the concentration it is carrying is higher than in the surrounding fluid,
thus, its density is higher and has to go down near the right boundary.
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Figure 6.8: Component in the x direction of the velocity at t=20s

Figure 6.9: Component in the x direction of the velocity at t=66.4s

Stable simulation
In the previous subsection, it has been explained how and why the Boussinesq approximation leads
to instabilities in the simulations. In order to achieve a stable solution to the sedimentation problem,
the diffusivity near the sand-bed has been increased. It is expected that this increase in the diffusivity
coefficient in the sediment transport equation will lead to a smearing of the concentration in the cells
above the sand-bed, thus, increasing the homogeneity of the sedimentation process. The transport
equation of sediment 4.1 at the cells bordering with the sand-bed will then have a modified diffusivity
coefficient in the Laplacian term defined as 𝐾 = 𝜈፭ + 𝐶፝።፟፟. Where 𝐶፝።፟፟ is a constant.

Figures 6.10 show that the hypothesis of adding diffusion to the transport equation for the cells
in contact with the sand bed smear the concentration and leads to more homogeneous settling. For
the simulation using 𝐶፝።፟፟=5e-4, large slopes can be spotted. In the contrary, if 𝐶፝።፟፟=1e-3 then the
settling is clearly more uniform. Some gentle slopes are present closer to the boundaries. The initial
volume of sand in suspension is 𝑉፬፮፬፩፞፧፝፞፝=0.007896 𝑚ኽ. The final calculated volume in the sand bed
is 𝑉፬፞፭፭፥፞፝=0.00790266 𝑚ኽ. The error done by the model is then err=0.084% of the initial volume of
sand.

The settling results using the Boussinesq
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(a) ፂᑕᑚᑗᑗ=5e-4 (b) ፂᑕᑚᑗᑗ=1e-3

Figure 6.10: Screenshot of the concentration field at t=250s(simulation end) for different values of ፂᑕᑚᑗᑗ

6.3. Summary
In section 6.2.1, it was shown that the combination of the formulae for the settling velocity of a single
particle, eq.4.2, the hindered settlement velocity, eq.4.3, and the formulation of the exponent by Rowe,
eq. 4.6, yield a good approximation of the behaviour of suspended sand, see figures 6.2. In the latter
figures, the bed is present when the concentration is c=0.53. The formulation of the sedimentation
velocity, eq.4.9, proposed by van Rhee give a conservative assessment of the quantity of sand passing
the sand-water interface using the aforementioned approach of the settling of suspended sand.

Section 6.2.1 gave an idea of the limitations of the mesh deformation, and showed that the simula-
tion using an initial concentration of c=0.3 was not stable for very long simulations, see figure 6.2. It
is proven by figures 6.4, that the mesh solution get unstable for a certain shrinking of the mesh. This
instabilities are responsible for the negative values of the concentration in figure 6.3. The problem does
not take its root in the transport equation as simulations using smaller initial concentrations seems to
yield good results, see section 6.2.1. A better look at the solution of equation 5.37 should be done in
further works.

In section 6.2.2, the buoyancy forces acting on the fluid have been included. These forces lead the
fluid into motion yielding an increase of the concentration in cells adjacent to the sand-bed boundary.
This increase in concentration will produce localized sedimentation making the mesh unusable after a
certain time, see figure 6.9. In order to solve the problem produced by the localized sedimentation, in
section 6.2.2, it is proposed to use a constant diffusion coefficient that is added to the eddy turbulent
viscosity in the sediment transport equation. This constant coefficient smears the concentration in the
cells next to the boundary and the homogeneity of the sedimentation is dependent on the value of the
coefficient. Two simulations with different values for the coefficient are presented in figures 6.10.



7
High speed erosion test

7.1. Experimental test

Figure 7.1: Schematic description of the experimental set up used by Bisschop et al.(2015)[1]

High speed erosion tests (HSET) have been performed at the Dredging department of Delft Univer-
sity of Technology. In figure 7.1 the experimental setup present in the Dredging lab of the faculty of
Mechanical, Maritime and Materials Engineering (3Me) is depicted.

In this work, a short description of the experimental setup is done, for a full description of the
experimental setup, the reader is referred to Bisschop et al.(2015)[1]. The erosion process undergoing
in measurement section is depicted in figure A.1. The test in in question for this work is test 54.

Conductivity probes

At 𝑡 = 0 of the HSET, the measurement section has a settled sand-bed. Through the experiment, the
sand-bed height is measured by conductivity probes placed in the Lexan window in the measurement
section. These probes are used to measure the concentration of sand. The vertical position of the
conductivity probes is presented in the following table.

The measurements of concentration by the conductivity probes, are presented in figure 7.2. The
conductivity probes measure the concentration of sediment in their vicinity. The concentration mea-
sured by the probes for t<2s, is of c=0.55 for probes a-n. Probes o and p measure a concentration of
c=0. This means than the sand-bed interface is somewhere in between probe n and o. The sand-bed
erosion can be seen by the sudden decrease in concentration for the probes already under the bed

35
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Table 7.1: Vertical position of the concentration probes with respect to the bottom of the measurement section

Probe a b c d e f g h
Vertical Height [m] 0.0142 0.0242 0.0342 0.0442 0.0542 0.0642 0.0742 0.0842

Probe i j k l m n o p
Vertical Height [m] 0.0942 0.1042 0.1142 0.1242 0.1342 0.1442 0.1742 0.2242

(a-n). Probes o and p read a concentration of sediment for t>2.5s, sediment reaching this 2 probes is
due to the effect if the diffusion/ dispersion of sediment.

Figure 7.2: Concentration measured by the conductivity probes during the erosion test

Sand properties
The type of sand studied is ”Geba” sand with a particle size distribution as shown in table 7.2. The
bulk density of ”Geba” sand is 1350𝑘𝑔.𝑚ዅኽ.

Table 7.2: Particle size distribution

Particel diameter[𝜇m] 30 53 75 90 106 125 150 180 212 500
% smaller 0 1.1 3.2 7.8 21.8 49.9 80.2 91 98.5 100

Fluid velocity
The bulk velocities of the fluid in the measurement section are shown in figure 7.3. The 2D numerical

experiment will use a domain that is a 1:1 copy of the measurement section. The inlet velocities for
the numerical experiment are then to be taken at the entrance on the measurement section. As the
experiments are 2D, the height of the measurement section and its entrance can be considered as the
area of the section. Therefore, the mass conservation in a pipe can be expressed as the conservation of
discharge. 𝑈።፧፥፞፭ is determined from the conservation of discharge, the dimensions of the measurement
section and the velocity in the measurement section 𝑈፦፞ፚ፬፮.፬፞፜፭።፨፧

𝑈።፧፥፞፭ = 1.92𝑈፦፞ፚ፬፮.፬፞፜፭።፨፧ (7.1)

𝑈።፧፥፞፭ is then calculated from 𝑈፦፞ፚ፬፮.፬፞፜፭።፨፧, the continuous line in figure 7.3. This gives the bound-
ary condition for the inlet velocity in the numerical model and introduces the next section.

7.2. Numerical model setup
In previous sections, we have described the equations governing the erosion process. The fluid motion
is modelled using an incompressible P.I.S.O algorithm. The Boussinesq approximation, if implemented,
accounts for buoyant forces due to the presence of sediment in the fluid. The van Rijn pick up function
will calculate the amount of sediment being suspended by the flow. In order to perform the calculation,
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Figure 7.3: Experiments bulk velocities of the fluid for an empty pipe (continuous line) and for a pipe with a sand-bed (+ marks)

Table 7.3: Simulation parameters

Parameter 𝜈 𝜌፬ 𝜌፰ g 𝑑኿ኺ 𝑛፥ 𝑛ኺ
Unit [፦

Ꮄ
፬ ] [ ፤፠፦Ꮅ ] [ ፤፠፦Ꮅ ] [፦፬Ꮄ ] [m] [-] [-]

Value 1e-6 2650 1000 9.81 125e-6 0.55 0.45

discretization schemes and boundary conditions are applied to the constitutive relations of flow and
sediment transport. In this section, the numerical setup of the model is presented, boundary conditions,
experimental setup and further more.

7.2.1. The domain
As stated in section 5.4, the mesh is modified every time step depending on the balance of sediment
in the sand-bed. The initial position of the sand-bed is presented in figure 7.4. Note that for the
simulations, a 5cm pipe section has been added, see figure 7.4. This addition helps the flow stabilize
as a uniform inlet boundary condition is used. The fluid domain is a 1:1 copy of the measurement
section presented in figure A.1. The sand-bed height in the middle of the measurement section is set
to 0.1445m. The sand-bed porosity is considered to be 𝑛ኺ = 0.45.

TopWall

Inlet Outlet

pipeWall

bedWall

Pipe section Measurement section

Figure 7.4: Schematized fluid domain for pipe with a sediment bed

The erosion process is blocked by simulation a surface with a very high Critical Shield´s parameter
when the sand-bed reaches the position of the pipe wall. The shape of the empty domain is schematized
in figure 7.5. In the latter figure, the number of cells at each part of the domain are presented as well.
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(5X30) (30X30) (100X30) (30X30)

Figure 7.5: Schematized fluid domain for an empty pipe, the number of cells for each part of the pipe are presented as (cells in
x direction X cells in y direction)

7.3. Result
7.3.1. Erosion velocity
The high speed erosion, was performed with a Δ𝑡 = 10ዅኾ. The calibration parameter for this test
is the bed roughness (𝑘፬). The condition to choose the value of 𝑘፬ is that the sand-bed has to be
reached the conductivity probe a (see table 7.1) at the same time as the experimental test. Figure 7.2
depicts the measured concentration by the conductivity probes. The probes are reached by the bed,
when the measured concentration presents a sudden decrease. In the case of probe a, it is possible
to consider that it is reached at 𝑡 ≈ 10𝑠. The value of 𝑘፬ for which probes a is reached at 𝑡 ≈ 10𝑠 is
𝑘፬ ≈ 1.05𝑒 − 2𝑚. The bed roughness is introduced by the log law of the wall in the calculation of the
turbulent shear stresses and the boundary condition at the sand-bed for the turbulent eddy viscosity.

𝜏፛ =
𝜌፦𝑈ኼ፩

( ኻ᎗ 𝑙𝑛(
ኽኼ፲ᑡ
፤ᑤ ))

ኼ (7.2)

As can be seen in the previous formulation, if the bed roughness is lower, then the calculated shear
stresses is lower, thus, the erosion velocities is lower and vice-versa.

As state previously, the value of 𝑘፬ for which probes a is reached at 𝑡 ≈ 10𝑠 is 𝑘፬ ≈ 1.05𝑒 − 2𝑚. A
comparison of the erosion velocity of the simulation using 𝑘፬ ≈ 1.05𝑒 − 2𝑚 to the experiment and the
simulation performed by C. van Rhee is presented in figure 7.6. In comparison the simulation 𝑘፬=1.05e-
2m, presents higher erosion velocities than the simulation of van Rhee and the experiment of Bisschop
[26]. The erosion velocities calculated by the model developed in this work, where calculated by having
an output at every Δ𝑡 = 10ዅኼs of the concentration at each probe. This could introduced rounding
errors in the erosion velocity calculation. The bulk velocity above the bed, was taken as the average
velocity seen at probe o, this could be improved by implementing a module in foam-extend 3.2 that
could calculate the bulk velocity in a section.

7.3.2. Conductivity probes
After fitting the erosion time in the simulations performed for this thesis with the erosion time mea-
sured in the experiments, it is interesting to compare the concentration of sediment measured by the
conductivity (figure 7.2) in the experiments and the calculated concentration by the model (figure 7.7).
The probes are disposed as presented in figure 7.9.

In these figures, the sand-bed reaching the probes is shown by the sudden drop of the measured
concentration. In figures 7.7 and 7.2, between 4𝑠 < 𝑡 < 6𝑠, an undergoing fast erosion can be seeing.
This process becomes slower after this interval. The magnitude of the erosion process can be assessed
by the intervals at which the probes are reached by the sand-bed. As seen in figure 7.3, the fluid
experience and important acceleration between 3.5s and 6s passing from 1.2 𝑚.𝑠ዅኻ to 4 𝑚.𝑠ዅኻ. The
important increase in velocity is responsible for the fast erosion process. After the 6th second, the
velocity continues its increase at a slower pace, going from 4 𝑚.𝑠ዅኻ to 4.5 𝑚.𝑠ዅኻ at the end of the
simulation and the experiment, see figure 7.3. In figures 7.7 and 7.2, an increase in the time at which
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Figure 7.6: Comparison of the erosion velocity between 2 simulations (፤ᑤ=1.05e-2m and van Rhee) and the experiments of
Bisschop.
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Figure 7.7: Concentration at probes locations over simulation time

probes are reached is presented for t>6s. This shows a slower erosion rate, produced by the reduction
of the velocity above the bed due to an erosion induced increase of the hydraulic diameter. The latter
statement can be proved by plotting the calculated velocity above the bed and the bulk velocity above
the bed determined by the experiment.
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Figure 7.8: Comparison between the bulk velocity above the bed in the experiment and the velocity at probe o in the simulation

7.3.3. Bed height
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Figure 7.9: Bed height for every second of simulation for t>=2s

In figure 7.9, the side view of the measurement section is shown with the sand-bed height at
every second. This figure shows that the hydraulic passage is increased due to the erosion process.
Furthermore, it is possible to see some numerical instabilities in the right and left slope. This instabilities
have not been studied in detail but their origin seems to be the geometry leading to some velocity
fluctuations. Further work should be performed to find the origin of this problem. In figure 7.10, the
position of the bed at the position of the probes has been plotted over time. It shows a good correlation
between the calculated bed position and the measurements.
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Figure 7.10: Comparison between the measured and calculated position of the bed during the simulation

7.3.4. Velocity, concentration and turbulent eddy viscosity profiles
The profiles of concentration, velocity magnitude and turbulent eddy viscosity are observed at a position
x=3.175 of the measurement section.
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Figure 7.11: Turbulent eddy viscosity, velocity and concentration profiles at x=3.175m for every simulation second

In figure 7.11, the section profile of the turbulent eddy viscosity (a), the velocity(b) and the con-
centration (c) are plotted for every second of simulation. In subfigure (b) the height at which velocities
reach zero (the non-slip boundary condition) is the sand-bed height at the simulation time. In subfigure
(a), the turbulent eddy viscosity is presented. Remark that the modification of the boundary value of
𝜈፭ for the sand-bed is well taken into consideration, the value of 𝜈፭ is higher close to the sand-bed.
This reduces the velocity of the fluid close to the sand-bed boundary condition, see subfigure (b).

In subfigures (a) and (b) of figure 7.11, the values in the upper cells present a non-accurate be-
haviour. This behaviour is a result of the automated mesh modifications. In fact, the upper cells present
the higher increase ratio. Other laws for the distribution of mesh points were tested leading to similar
errors. This distribution law implies that the cells close to the sand-bed will have small deformations.
More research should be performed on the mesh deformation module.
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The behaviour of the sediment transport module is depicted by subfigure (c). The concentration of
sand is higher next to the bed, because, the sand-bed is the source of sediment, the action of gravity
and buoyancy incorporated by the Boussinesq approximation and the settling velocity in the transport
equation. The concentrations observed in the numerical test of high speed erosion, using the proposed
approach, can reach up to 0.25. This range of volumetric concentration should be model using other
hypotheses.

7.3.5. Sediment volume conservation
The focus in this subsection is to check that the model does not act as a source or a sink of sediment.
In order to verify this, the volume of eroded sediment, the volume of suspended sediment and the
volume of sediment leaving the domain, are presented in figure 7.12.

0 2 4 6 8 10 120

1

2

3

4

5
⋅10ዅኼ

Time[𝑠]

Vo
lu
m
e
[𝑚

ኽ ]

Suspended Sed.
Eroded Sed.
Sed. Out

Figure 7.12: Comparison of the cumulative eroded sediment, cumulative suspended sediment leaving the domain through the
outlet boundary and the instantaneous suspended sediment in the fluid domain

Between t=2s and t=3s, the sediment is eroded and almost its totality is accounted in the suspended
sediment. For t>3s, the sediment is being transported outside of the measurement section. The
quantity of sediment being eroded and the quantity leaving the domain seem to balance between 3
and 4.5s maintaining a almost constant volume of sediment in suspension. The suspended sediment
reaches its maximum at around 5 seconds, right in the middle of the fastest erosion rates. The volume
of sediment in suspension slowly decreases after its peak due to lower erosion rates and the sand
leaving the measurement section. Finally the quantity of sediment reaches the quantity of eroded
sediment while the volume of suspended sediment tends to 0. The balance of the quantities presented
above is presented in figure 7.13. The balance of this quantities is calculated as follows:

𝑉𝑜𝑙፛ፚ፥ፚ፧፜፞ =
𝑉𝑜𝑙፞፫፨፝፞፝ − (𝑉𝑜𝑙፬፮፬፩፞፧፝፞፝ + 𝑉𝑜𝑙፬፞፝.፥፞ፚ፯።፧፠፝፨፦ፚ።፧)

𝑉𝑜𝑙፞፫፨፝፞፝ ፚ፭ ፬።፦.፞፧፝
The initial volume of sand in the bed is calculated geometrically and yield 0.044506𝑚ኽ. The volume

eroded at t=13s is 0.0444477𝑚ኽ. A small amount of sand is still present after 13s simulation. In figure
7.9, on the bottom left corner of the measurement section, the sand bed has not reached the pipe wall.
Figure 7.13 shows the volume balance during the simulation time. The sediment balance error at the
end of the simulation is of 0.015%.
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Conclusion

It is proposed in this work a numerical model of settling and high speed erosion. The model was
implemented in the foam-extend 3.2 framework. The solver buoyantBoussinesqPisoFoam was the base
solver as it is already a transient incompressible flow solver including the Boussinesq approximation of
the buoyancy forces. The equation of the density of the fluid and other modifications of the solver are
mathematically depicted in chapters 2 and 3. In chapter 4 is shown the derivation of the modified sand-
bed wall function boundary condition for the turbulent eddy viscosity, that was implemented as well.
The numerical model proposed for this thesis presents satisfactory results compared to experimental
data in settling and erosion modeling. Simulations with different parameters should be compared to
experimental data in order to verify the behaviour and accuracy of the model. For the erosion test,
the simulated shear stresses are in the same order of magnitude as experimental results. The order
of magnitude of the simulated shear stresses is 200 - 300 Pa while test results show shear stresses of
200-600 Pa.

Some limitations are present and some improvements could be done. An example of improvement,
is the implementation of smoother inlet boundary condition. In figure 7.8, the instantaneous velocity at
probe o are higher than the bulk velocities determined by the tests. Subfigure (b) of figure 7.11, shows
the velocity distribuition. The behaviour of the velocity field close to the sand-bed is caused by rough
boundary condition implemented via the turbulent eddy viscosity, see subfigure (a). Therefore, the
velocity at probe o depends on the distance between the bed and probe o. In figure 7.8, the calculated
average velocity shows that the average velocity in the section is lower than the velocity at probe o.
This average was done by adding the values using ParaView as an output. It would be more accurate
to use length-averaged, and further, face-averaged values for the calculation of the average velocity.
As a recommendation, this approach could be implemented. This would help not just for this work but
would greatly simplify the comparison between results from foam-extend 3.2 and experimental data.

As seen in figures 7.11, the implementation of the mesh modification presents some limitations
concerning the modelling of erosion and deposition of granular material, see section 6.2.1. Further
work could be done on better understanding the automated mesh motion. Automatic mesh refinement
could be explored.

Discretization schemes other than a limited scheme of the advective term of the sediment transport
equation can be tested or even improved.
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