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Comparative analysis of nonparametric change-point detectors commonly used in
hydrology
Changrang Zhou, Ronald van Nooijen, Alla Kolechkina and Markus Hrachowitz

Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

ABSTRACT
Several commonly-used nonparametric change-point detection methods are analysed in terms of
power, ability and accuracy of the estimated change-point location. The analysis is performed with
synthetic data for different sample sizes, two types of change and different magnitudes of change. The
methods studied are the Pettitt method, a method based on the Cramér von Mises (CvM) two-sample
test statistic and a variant of the CUSUM method. The methods differ considerably in behaviour. For all
methods the spread of estimated change-point location increases significantly for points near one of
the ends of the sample. Series of annual maximum runoff for four stations on the Yangtze River in China
are used to examine the performance of the methods on real data. It was found that the CvM-based
test gave the best results, but all three methods suffer from bias and low detection rates for change
points near the ends of the series.
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1 Introduction

Today environmental scientists are well aware of the changes
that affect the systems they study. Changes in land use,
increasing urbanization and climate change combine to com-
plicate the process of predicting the future behaviour of these
systems (Kundzewicz 2011, Montanari et al. 2013, McMillan
et al. 2016). These predictions are needed to answer practical
questions like “How high should this dam be to be functional
for 50 years?” or “Can we safely develop this coastal area?”.
Given the inherent uncertainty about the future, predictions
inevitably involve statistics, for instance, the probability of
certain amounts of precipitation or runoff. These statistics
may or may not be influenced by changes in the environment.

One type of change one may look for is a change point
(Pettitt 1979, Gao et al. 2010), a moment in time where there
is an abrupt change in one or more of the properties of the
time series such as the mean, the median, or the standard
deviation.

The art of finding change points was studied first to detect
changes in product quality in manufacturing (Dudding and
Jennett 1942, p. 1954). One of the earliest papers that
addressed this question by developing and using a formal
statistical test in a hydrological context was written by
McGilchrist and Woodyer (1975). They looked for change
points in an 88-year-long series of yearly rainfall at Walgett,
New South Wales, Australia.

Change-point analysis was initially restricted to univariate
time series of independent variables under the assumption of
“At Most One Change” (AMOC). It was extended to series
with multiple change points (Lebarbier 2005, Lavielle and
Teyssiere 2006) and to multivariate time series (Matteson

and James 2014). New methods were developed to consider
dependence within a series, or high-dimensional multivariate
time series (Ray and Tsay 2002, Berkes et al. 2006, Lund et al.
2007, Gombay 2008, Shao and Zhang 2010, Xie et al. 2012,
Shao 2015, Cho and Fryzlewicz 2015, Zhang and Lavitas
2018). Detecting change points in a series with trend was
studied by analysing a two-phase regression model, see for
example Lund et al. (2007), Wang (2003) and Beaulieu et al.
(2012).

Hydrological processes are widely thought to have chan-
ging properties (Thirel et al. 2015, Hajani et al. 2017, Sa’adi
et al. 2017). Many types of human intervention may result in
change points in hydrological time series, for instance, con-
struction of dams, changes in instrumentation or measure-
ment protocol and relocation of measurement stations.

Sometimes the potential cause of a change point in a time
series is known, for example, the relocation of a measurement
station. These are referred to as “documented change points”,
where detected change points can be examined in context.
But on other occasions, there are no explicitly documented
potential causes for change points and only the outcome of
the statistical change point analysis can be used to judge the
reliability of the result (Lund and Reeves 2002, Menne and
Williams Jr 2005, Reeves et al. 2007, Wang 2008).

As in other areas of statistics, there are parametric and non-
parametric (distribution free) methods for change-point detec-
tion. Parametric methods assume that observations are from
a known parametrized family of distributions. A number of
classical parametric methods have been developed, see for
example Chernoff and Zacks (1964), Kander and Zacks
(1966), Hawkins (1987), or Gurevich and Vexler (2010). In
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practice, there is often not enough information on the type of
distribution of a hydrological sample to make an informed
choice for the distribution family and subsequently perform
a parametric change-point detection analysis. Therefore, only
nonparametric tests are studied in this paper.

Previous studies have analysed Pettitt’s method in terms of
its ability to detect the correct time of change for different
distributions (Xie et al. 2014) and sensitivity for the gamma
distribution (Mallakpour and Villarini 2016), but comparative
studies of multiple methods are rare.

Time series analysis of hydrological data is a complex
topic due to dependence in the time series and the complex-
ities of multivariate data. This study considers only one
specific context: under ideal circumstances and for a time
series containing only one variable, can change-point analy-
sis be used for exploratory data analysis and what are its
limitations? Questions to be answered are:

● Can the probability of incorrectly signaling a change
point be predicted?

● What is the probability of correctly detecting a change
point?

● How close are the estimates to the correct location?
● What is the effect of time series length?
● Is there a relationship between the size of the change

and the answers to the above questions?
● Does it matter when our series starts or ends? In other

words: is it safe to look at parts of a time series that
contain a given range of potential change points, but
have different start or end years?

The following change-point detection methods are consid-
ered: the method described in Pettitt (1979), which we refer
to as “Pet-CP”, a method based on the two-sample Cramér
von Mises test statistic, which we refer to as “CvM-CP”
(Holmes et al. 2013, Xiong et al. 2015), and a method based
on CUSUM median statistics, which we refer to as “CUSUM-
CP” (McGilchrist and Woodyer 1975, Chiew and McMahon
1993, Rahman et al. 2018). Xiong et al. (2015) used CvM-CP
to detect the change point in multivariate time series, but this
paper applies CvM-CP in the univariate situation.

2 Methodology and data

This study contains two groups of experiments. The first
experiment uses synthetic data series to examine how well
the methods perform. The second experiment takes four time
series of the maximum runoff observed in a given year and
uses the methods to look for change points in the full series
and subseries for different start and/or end years.

From a statistical point of view, a time series of hydro-
logical measurements of length n can be seen as a vector of
n observations (x1, x2, . . ., xn) corresponding to one sample
of a random vector (X1, X2, . . ., Xn). The vector compo-
nents may or may not be independent, and they may or
may not have the same marginal distribution. The methods
for change point analysis used in this study has three
components:

● a test statistic;
● an exact (or approximate) distribution of the test statis-

tic under the null hypothesis; and
● an estimator τ̂ for the point in time τ where the change

occurs (the change point).

For these tests the null hypothesis is: There is no change
point. To apply one of these methods, first a significance level
is set, next the statistic is calculated and, finally, if the null
hypothesis is rejected, the estimator τ̂ is applied and the
resulting change point location is reported.

All tests given here are described in a form suitable for
independent vector components and the presence of at most
one change point, so either the n vector components have the
same distribution, or the first τ are from one distribution and
the remaining n – τ are from a second distribution. If the
vector components are not independent, then either adjust-
ment of the distribution of the test statistic, or pre-processing
of the time series is indicated (Kundzewicz and Robson 2000),
and if there are multiple change points, then the tests need to
be extended; both are outside the scope of this paper.
Background information on change detection can be found
in Kundzewicz and Robson (2000, 2004).

2.1 Change-point detection methods

2.1.1 CvM-CP method
The original Cramér von Mises (CvM) test was intended to
determine whether all observations in a sample of n indepen-
dent observations were drawn from a given probability dis-
tribution (Anderson and Darling 1954). A modification can
be used to test whether or not two samples were drawn from
the same distribution (Anderson 1962). Holmes et al. (2013)
developed a method on the basis of the two-sample CvM test
statistic to detect the change point within the multivariate
series. This was a further development of the approach pro-
posed by Gombay and Horváth (1999). According to Bücher
et al. (2014), the method developed by Holmes et al. (2013)
performs much better than that based on the two-sample
Kolmogorov-Smirnov test statistic. Moreover, it is not only
useful in detecting the change point within a univariate time
series, but can also be applied to get the marginal distribution
of a multivariate hydrological time series, such as copula-
based rainfall–runoff multivariate series (Xiong et al. 2015).
The notation from (Xiong et al. 2015) is used to describe the
CvM-CP detection method. We start by defining:

1 x � yð Þ ¼ 0 : x> y
1 : x � y

�
(1)

which, in the one-dimensional case, is a step function. This is
used to define the empirical distribution function for the part
of the sample up to a potential change point:

Fτ Xkð Þ ¼ 1
τ

Xτ

i ¼ 1
1 Xi � Xkð Þ (2)

and the empirical distribution function for the part of
a sample after the potential change point:
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F�n�τ Xkð Þ ¼ 1
n� τ

Xn

i¼ τþ 1
1 Xi � Xkð Þ (3)

For a time series of one variable, the CvM-CP test statistic is
defined in terms of n – 1 two-sample statistics:

Sτ ¼ 1
n

Xn

k¼ 1
D τ;Xkð Þ½ �2 (4)

D τ;Xkð Þ ¼ τ n� τð Þ
n3=2

Fτ Xkð Þ � F�n�τ Xkð Þ� �
(5)

The CvM-CP statistic is given by:

Sn ¼ max
1�τ< n

Sτ (6)

The distribution for this value under the null hypothesis is
not known exactly and an asymptotic distribution is not
available. It was approximated empirically from a sample of
size 10 000 taken from the standard uniform distribution, as
in Holmes et al. (2013). If the null hypothesis does not hold,
then the estimator for the change-point location is:

τ̂ ¼ min argmax
1�τ < n

Sτ

 !
(7)

The general approach of choosing the lowest index τ if there
are multiple equal maxima was proposed in Antoch et al.
(1997).

2.1.2 Pet-CP method
The Pettitt test was specifically designed to detect a single
change point (Pettitt 1979). To define the statistic, we need:

sgn xð Þ ¼
�1 if x < 0
0 if x ¼ 0
1 if x > 0

8<
: (8)

and the following two-sample test statistic:

Uτ ¼
Xτ

i¼ 1

Xn

j¼ τþ 1
sgn Xi � Xj
� �

(9)

Note that the sign function can be expressed in terms of the
step function:

sgn Xi � Xj
� � ¼ 1 Xj � Xi

� �� 1 Xi � Xj
� �

(10)

The Pettit test statistic itself is given by:

Kn ¼ max
1�τ< n

Uτj j (11)

If the null hypothesis does not hold, then the estimator for
the change-point location is:

τ̂ ¼ min argmax
1�τ < n

Uτ

 !
(12)

According to Pettitt (1979), the limit distribution of Kn for
large n is given by:

Pr Kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

n2 þ n3

r
� a

 !
¼ 1þ 2

X1
j¼ 1

�1ð Þje�2j2a2 (13)

where the right-hand side represents the cumulative distribu-
tion function (cdf) of the Kolmogorov distribution. Most
papers that apply this test use this limit distribution, so it
will be used here as well.

2.1.3 CUSUM-CP method
Page (1954) was the first to suggest the use of a cumulative
sum to find changes in a parameter of interest. McGilchrist
and Woodyer (1975) used it to detect a change point for even
sample lengths; this is the variant used in this study. Chiew
and McMahon (1993) used this method to detect change in
annual flow of Australian rivers.

The test is defined in terms of a one-sample test statistic:

Vτ ¼
Xτ

j¼1
2� 1 K � Xj

� �� 1
� �

(14)

for each potential change point. In Equation (14), K is
a random variable corresponding to one of several quantities.
We follow McGilchrist and Woodyer (1975), who used the
sample median. The test statistic is:

Tn ¼ 2
n
max
1�τ< n

Vτj j (15)

and the estimator for the change-point location is:

τ̂ ¼ min argmax
1�τ< n

Vτj j
 !

(16)

According to McGilchrist and Woodyer (1975), under the
null hypothesis the limit distribution of Tn for large n is the
same as that of the Kolmogorov-Smirnov test statistic. It
follows that:

Pr Tn

ffiffiffi
n
4

r
< x

� �
¼ 1þ 2

Xþ1
j¼1

�1ð Þje�2j2x2 (17)

where the right-hand side represents the cdf of the Kolmogorov
distribution. Most papers that apply this test use this limit
distribution, so it will be used here as well.

2.2 Criteria used to evaluate the performance of the
tests

The first property to be checked is the empirical type I error
probability. For a significance level of 5% the test should reject
the null hypothesis, H0, “There is no change point”, for 5% of
the synthetic time series without change point.

To see how well the tests do when detecting change points,
we want to approximate the power of the test, which is defined
as the probability that a test correctly rejects H0 without con-
sidering the accuracy of the estimate of the change point
(Reich et al. 2012). If, for a set of N samples with a change
point, the test rejects Nrej, then the empirical probability of
correct rejection is:

power � Nrej

N
(18)

While high power is desirable, it is also important that the
estimate of the point in time where the change takes place is
accurate. A very strict measure of this is the ability of a change-
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point detection test. This is defined as the empirical probability
that the test will correctly reject the null hypothesis and cor-
rectly identify the location of the change point (Xie et al. 2014).
If for Ncor out of N samples the null hypothesis is rejected and
the change point correctly identified, then this is given by:

ability � Ncor

N
(19)

2.3 Data sources: synthetic and observational

2.3.1 Generation of the synthetic time series
Each synthetic time series consisted of n observations of
independent random variables where n = 10, 20, . . ., 100,
200, 500, 1000. Homogeneous synthetic series were generated
by sampling M times from the same distribution and used to
determine the rejection rate of the null hypothesis “there is no
change point”. Time series with exactly one change point τ,
with τ = n/10, 2n/10, . . ., 9n/10, were generated by sampling
from a given distribution type with mean μL and standard
deviation σL for the left-hand part of the series up to and
including Xτ and mean μR and standard deviation σR for the
right-hand part of the series. The following notation is used:

Δμ ¼ μR � μL;Δσ ¼ σR � σL (20)

To study the sensitivity to a change in the mean, series were
generated with μL = 0, σL = σR = 1 and μR = 0.5, 1, 2, 4, 8. To
study the sensitivity to a change in the standard deviation, series
were generated with μL = μR = 0, σL = 1 and σR = 0.5, 2, 4, 8.

To allow statistical analysis of the results for each specific
combination of type of distribution, Δμ, Δσ, change point loca-
tion τ, and series length n, we generatedM synthetic time series.
For most combinations,M was equal to 10 000, except for CvM-
CP in the case of series of length 200 and 500, where M = 1000
was used, and sample length of 1000, whereM = 5000 was used,
as CvM-CP turned out to be much more expensive to calculate
for long series than the other tests.

2.3.2 Type of distribution
The following four distribution types are considered:

● normal distribution;
● generalized extreme value (GEV) distribution with

shape – 0.15, which corresponds to the three-parameter
reverse Weibull distribution with shape 20/3;

● GEV distribution with shape 0, which corresponds to
the Gumbel distribution; and

● GEV distribution with shape 0.15, which corresponds to
the three-parameter Fréchet distribution with shape 20/3.
The value 0.15 was chosen as representative for thick-
tailed GEV distributions (Koutsoyiannis 2004).

Formulas for the GEV can be found in, for instance, van
Nooijen and Kolechkina (2012). Appendix A provides argu-
ments to limit the number of different parameter combina-
tions in case of location–scale distribution families such as
those given above.

2.3.3 Source of the real-world data
For a given location, the first and last year of a period for
which suitable data is available may depend on preprocessing,
willingness to allow for missing data and access to recent
data. This raises the question whether or not change-point
detection results depend on the choice of first and last year.
To examine this in the context of real data, measurements
from the Yangtze River in China were used. The methods
were applied to annual maximum runoff (AMR) observations
from four gauge stations: Cuntan (1893–2014), Yichang
(1946–2014), Hankou (1952–2014) and Datong (1950-2014)
collected by the Ministry of Water Resources of the People’s
Republic of China (1919-2014, 1950-2014). The locations of
the measurement stations are shown in Fig. 1 and the four
AMR time series used are shown in Fig. 2.

Over the last 70 years, the Yangtze River basin has been
subject to large-scale human intervention (Wang et al. 2013).
Reservoir construction has resulted in the building of over
10 000 dams since the 1960s (Yang et al. 2003). Information
on the largest two dams in the Yangzte and one in its
Hanjiang tributary is given in Table 1 (locations are shown
in Fig. 1).

For the Yichang, Hankou and Datong series, previous
investigations suggest the series can be treated as uncorrelated
(Xiong and Guo 2004, Zhang et al. 2006) at the 5% signifi-
cance level. Zhang et al. (2012) used detrended fluctuation
analysis to find the long-range correlation of three datasets
from the Yangtze River and concluded that the daily stream-
flow (1893–2009) from Cuntan station showed no significant
correlation.

3 Analysis of the performance of the tests for
different input data

The results of the experiments with synthetic data are fol-
lowed by the results of the experiments on the time series of
observed annual maximum flows.

3.1 Synthetic experiment

3.1.1 No change point present
For all tests the significance level was set to 0.05. In other
words, it is allowed to incorrectly assume the existence of
a change point in 5% of all applications of the test. If the real
rejection rate of the null hypothesis “there is no change-
point” is higher than this value, then change points will
appear more likely than they are in reality, possibly leading
to unnecessary efforts to allow for non-existent change. If the
real rejection rate of the null hypothesis is lower than this
value, then change points will appear less likely than they are
in reality, possibly leading to a failure to allow for real change.

Figure 3 shows the rejection rates for the different methods
and distributions as a function of sample size.

We can see that Pet-CP and CUSUM-CP start well below
the expected rejection rate, while CvM-CP stays close to the
chosen significance level. Given that the CvM-CP rejection
rate was determined from an empirical distribution, it is not
surprising that it does so well; for the other tests we used
a limit distribution to approximate the quantile. It is clear
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that for small samples (n ≤ 100) the limit distributions are not
sufficiently accurate, and use of either the exact distribution
or an empirical distribution would be preferable. The tradi-
tional statistical remedy “use a larger sample” is not an option
for time series of extreme values where longer series are
simply not available. An alternative traditional remedy for
this problem, “use an improved approximation of the distri-
bution”, is simple in theory, but complicated in practice
because calculation of the exact distribution, or alternatively
the generation of an approximate distribution by Monte
Carlo methods can be quite expensive.

3.1.2 One change point present
3.1.2.1 Sensitivity to a change in the mean. The power and
ability to correctly identify the change point are shown in
Figs. 4 and 5, respectively.

We can see that for all tests both power and ability
increase considerably with an increase in the magnitude of
the change Δμ in the mean. The plots of power vs the location
of the actual change point τ are nearly symmetrical with
respect to a vertical line at τ = n/2. For Pet-CP and CvM-
CP the power is higher than for CUSUM-CP when Δμ ≤ 1,
except for GEV with k = 0.15 (see the bottom row in Fig. 4).
For Δμ ≥ 2, all tests have 100% power for τ = 20, 30, . . ., 80. If
we look at the ability as a function of the location of the
change point, then for Pet-CP and CvM-CP the function is
nearly symmetrical with respect to a vertical line at τ = n/2,
and the highest abilities are reached when the actual change
point is near n/2. From Figs. 4 and 5, it is clear that the power
and ability vary with location for each test; the ability tends to
be more sensitive to the magnitude of the change and the
location of the change point. For instance, for Pet-CP, when
the magnitude of change is the same, the ability (Fig. 5, row 1,

column 1) varies much more than the power (Fig. 4, row 1,
column 1). The differences in shape indicates the ability of
Pet-CP is much more sensitive to location of a change point
than the power.

For all three methods, the abilities increase as |Δμ|
increases and stabilize for |Δμ| ≥ 4. When τ is near the middle
of the series, the ability increases from less than 10% to nearly
100% for increasing |Δμ|. When τ is near the ends of the
series, the abilities stay well below 100%. For a series of length
100, detecting a change in the first or last 20 elements of the
series, there is a low probability of it being estimated cor-
rectly, regardless of the size of the change.

3.1.2.2 Sensitivity to a change in the standard deviation.
The results for power (Fig. 6) and ability (Fig. 7) show that
Pet-CP and CUSUM-CP cannot detect a change in the stan-
dard deviation.

While CvM-CP can detect a change in the standard
deviation, its ability to do so is much lower than in the
case of a change in the mean. For a change of a factor of
two in the standard deviation, the power is low as well (see
the first two columns in both Figs. 6 and 7). The power and
ability plots of CvM-CP are nearly symmetrical with respect
to a vertical line at τ = n/2, and they reach their highest
point when the actual change point is located near n/2. From
the first two columns in Fig. 7, the abilities of Pet-CP and
CUSUM-CP stay below 1%. The CvM-CP method shows
similar abilities for change points at locations τ and n – τ.
For τ = 10 and τ = 90, its ability is near zero (see the last
column in Fig. 7). It seems that only for very large changes
in standard deviation (Δσ ≥ 6) and only for the change
points τ = 40–60 near the midpoint of the series does the
ability rise above 50% (Fig. 7).

Cuntan

Yichang Datong

Hankou
TGD

GZB

DJK

90  E 120  E

120  E

110  E

110  E

100  E

100  E

35  N 35  N

30  N 30  N

25  N 25  N

Gauge station
Tributaries of Yangtze river
Main stream of Yangtze river

Estuary of Yangtze river
Border of Yangtze river basin

0 500250 Km

Dams DJK    Danjiangkou 
GZB    Gezhouba
TGD   Three Gorges Dam

Figure 1. Locations of four gauge stations and three dams on the Yangtze river used in the study.
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For Pet-CP, the lower sensitivity to a change in σ seems to
be known (Talwar and Gentle 1981), but the reasoning behind
this is difficult to find. One possible line of reasoning is given

in Appendix B. For CUSUM-CP, the original source states that
it is intended for detection of changes in the mean, so its
failure for the standard deviation was perhaps to be expected.

Figure 2. Annual maximum runoff of the four hydrological stations on the Yangtze river.

Table 1. Details on some of the dams on the Yangtze river and its tributary.

Dam name Location Construction time Capacity Reservoir capacity Location

Danjiangkou 111°29′17″E, 32°33′22″N 1958–1973 900 MW 17.45 km3 In Han River upstream of Hankou
Gezhouba 111°16′20″E, 30°44′23″N 1970–1988 2715 MW 1.58 km3 6 km upstream of Yichang
Three Gorges 111°00′12″E, 30°49′23″N 1993–2009 22500 MW 39.3 km3 44 km upstream of Yichang
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3.1.2.3 Uncertainty of the estimators for a change in the
mean. The ability gives the empirical probability that the esti-
mated change point coincides with the actual change point. In
cases where there is a large difference between power and ability,
additional information may be needed. The main question in
that case is whether the correctly detected, but incorrectly placed
change points are clustered near the correct value or not. Results
for the normal distribution are presented in Fig. 8. For all tests,

the boxplots for change-point estimates when the actual change
point is at k or n – k show very similar uncertainty.

For Δμ = 0.5, the systematic error (bias) near the ends of
the series and the spread in the estimate are both too large for
practical use. Take CvM-CP for example, and Δμ = 0.5 (Fig. 8,
row 3, column 1): for synthetic series of length 100 with
a change point at position 10, the boxplot of the estimates
has median near 42 and inter-quartile range of about 22. For

Figure 3. Rejection rate of H0 as a function of sample size for each of the tests (significance level α = 0.05). For sample lengths of 1000 and 5000, Monte Carlo
simulations are applied for the CvM test.
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a change point at position 20, the boxplot of the estimates
shows a median near 32 with an interquartile range of about
18. Similar, but negative, biases occur for change points near
the end of the series. Similar bias and spread occur for the
other methods at Δμ = 0.5.

For Δμ = 1, the systematic error near the ends is still large.
Moreover, the 95% confidence interval is large even for the
centre point of the series. For Δμ = 2, there are still problems
with the systematic error near the end of the series, but in the
case of CvM-CP (see the last plot in the last row of Fig. 8,

points between position 20 and position 80), the distribution
of the spread in the estimates approaches reasonable values.

The results presented here imply that change points near
the end of the series, if detected, will almost always result in
a relatively large error in the estimated change point.

3.1.2.4 Uncertainty of the estimators for a change in the
standard deviation. Results for the normal distribution are
presented in Fig. 9. For all tests, the boxplots for change point
locations k and n − k show very similar uncertainty. Take for

Figure 4. Power of all tests for a change in the mean (n = 100).
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example the row of boxplots for τ̂ as found by Pet-CP in
Fig. 9: when τtrue is located at k and n − k, the boxplots for
Pet-CP have similar widths and the interquartile distances are
close to 20. The wide interquartile ranges indicate consider-
able uncertainty for the location of changes in the standard
deviation.

For both Pet-CP and CUSUM-CP, it is clear from the
systematic error and the 95% confidence interval that the
methods cannot be used to detect a change in standard devia-
tion. The plots in the last row of Fig. 9 show that, for CvM-CP,

the results improve with increasing size of the change, but only
reach useable levels for the changes Δσ = 2. The spread and
bias in the estimated change point locations are illustrated by
the boxplot. Only for CvM-CP, Δσ ≥ 2 and τ = 40–60 is there
any hope of getting a reliable answer.

3.1.2.5 Influence of the sample size on ability. For the
mean, the ability of the detectors first increases as sample
size n increases from 10 to 100 (Fig. 10). When sample
size exceeds 100, the ability of the detectors becomes

Figure 5. Ability of all the tests for a change in the mean (n = 100).
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nearly constant, and the ability for n = 1000 is nearly the
same as for n = 100. From the first plot in the first row of
Fig. 10, for all magnitudes of change, the ability of Pet-CP
equals 0 when the sample size is 10. Therefore, when the
sample size is 10, Pet-CP is not capable of finding
a change point and it is visibly outperformed by CUSUM-
CP and CvM-CP.

Based on the first two plots in the bottom row of Fig. 10,
the ability of both Pet-CP and CUSUM-CP stays at very low
levels. Accordingly, in the case of Pet-CP and CUSUM-CP,
a detection of a shift in the standard deviation is not possible,
and the magnitude of Δσ has no significant influence on their
ability. For CvM-CP, the ability to detect a change in stan-
dard deviation increases considerably as the sample size

Figure 6. Power of all the tests for a change in the standard deviation (n = 100).
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increases from 30 to 100 (Fig. 10, last row, third column).
The ability found for length n = 1000 suggests this increase
continues more slowly between n = 100 and n = 1000.
Therefore, compared to Pet-CP and CUSUM-CP, CvM-CP
is superior in finding a change point in the standard devia-
tion. Considering that the performance of CvM-CP is com-
parable to that of Pet-CP and CUSUM-CP in detecting
a change point in the mean, its better performance in finding
a change point in the standard deviation makes CvM-CP
much more attractive in change-point detection.

For change points near the start (or end) of the series, both
power (Fig. 11) and ability (Fig. 12) decrease with increasing
series length. From the power and ability of Pet-CP and CvM-
CP shown in the first and third columns of Figs. 11 and 12, their
performance in finding a change point located near the start (or
end) is very similar and it stays constant till sample length 150;
after that their performance decreases rapidly to a relatively low
level. But for CUSUM-CP, its power and ability start decreasing
when the sample length exceeds 20. For instance, in the middle
column of Fig. 11, the power of CUSUM-CP decreases from

Figure 7. Ability of all the tests for a change in the standard deviation (n = 100).
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100% to 40% when the sample size changes from 20 to 30 for
Δμ = 8. From the experiments, we have observed that ability and
power for similar relative change point locations, for instance
2n/10, have similar values for different sample sizes. In brief:

adding points at the end of a series makes detection of change
points at the start of the series less likely. At the same time it
makes detection of change points that were near the end before
the addition of points at the end more likely.

Figure 8. Boxplots of the error in the change-point estimates based on 50 000 samples for a change in the mean. The whiskers are at 2.5% and 97.5%; the crosses
show the estimates outside that range.
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3.2 Application of the tests to historical data for the
Yangtze river

3.2.1 Effect of the start and end point of the series
To investigate the influence of the time series length in practice,
we took the longest time series corresponding to Cuntan station
(Fig. 2) and looked for change points in subseries. The
starting year was varied from 1893 to 1957 and the end year

from 1964 to 2014. The results are presented in Fig. 13, where
a marker at a given pair of years indicates whether or not
a change point was found.

In Fig. 13, the different coloured points denote the different
years of significant change for Cuntan station for subseries of
years with different start and end years. The bottom plot shows
that, depending on which subseries is used, CvM-CP may find

Figure 9. Boxplots of the error in the change-point estimates based on 50 000 samples for a change in the standard deviation. The whiskers are at 2.5% and 97.5%;
the crosses show the estimates outside that range.
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three different change points. Comparison of the top and
bottom rows shows a similar pattern of detection for subseries
ending after 1995 for CvM-CP and Pet-CP. For series ending
in 1980, Pet-CP detects 1966 as a change point for more
starting years than the other two methods.

For time series with different combinations of start/end year,
1944 and 1966 are found as change points in some subseries by
all three methods, but subseries with a significant change point
located at 1968 are only found by CvM-CP. It is clear that for all
methods the detection and location of a change point depend on
the choice of subseries. In other words, different combinations
of start/end year will lead to different change-point detection
results. The other time series showed similar effects.

As start and end year change, the change point appears,
disappears and reappears, possibly in a different year. This is
a cause for concern. If two researchers have access to datasets
with different start and end points, then they may come to
different conclusions about the presence and location of
change points. This is particularly unfortunate if, for example,
a design decision taken in 2020 on the basis of the absence of
a change point in a time series turns out to be invalid in 2030,
when the time series – now extended with data for the
intervening years – shows a change point in 2010 that inva-
lidates the analysis made in 2020.

Time series of yearly maxima increase in length by
one year each year. If this can lead to the appearance or
disappearance of change points far from the end of the series,
it calls into question the reliability of the results.

3.2.2 Change-point detection
The results of the application of the methods to the entire
AMR time series of four gauge stations are as follows:

Yichang station is the only one where change points are
detected at the 5% significance level (see Fig. 2). For that
station Pet-CP and CvM-CP find a change point in 1966
and CUSUM-CP finds one in 1962. The relative changes in
mean and standard deviation for the change points are given
in Table 2.

Other studies have also looked for change points in various
types of hydrological series in the Yangtze River basin. For
example, Xie et al. (2014) applied the Pettitt method and
found a change in 1962 in the series of annual maxima at
Yichang station for the period 1882–2010, with a p value of
0.0183. They also found a change in 1979 in the series of
annual maxima series for 1952–2000 at Hankou station, with
a p value of 0.2131. Xiong and Guo (2004) studied the time
series of mean annual flows at Yichang station and found
a peak in the posterior distribution for the change point in
1968, close to the points found in this study.

None of the methods found a significant change point at
a measurement station in the construction period of the dams
upstream of that station. For the Three Gorges Dam (TGD)
project the non-detection of a change point after the start of
construction is in line with the analysis of the Yichang series of
annual mean flows for the period 1882–2001 by Xiong and Guo
(2004), who found a peak only in the posterior distribution for
the change point in 1968. However, this does not necessarily
mean there is no change, Xiong and Guo (2004) wrote:

“As the change points for both the annual minimum and the
annual mean series occurred before 1993 (the year in which the
Three Gorges Project commenced), one can state that, since the
construction of the Three Gorges Project there have not been
any significant changes in the annual minimum or the annual
mean series. However, it is very possible that the above

Figure 10. Ability of the different tests for a change in the mean and standard deviation at the midpoint of the series as a function of sample size n.
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conclusions might change with time, as the Three Gorges
Project will definitely exert some influences on the flow regime
of the Yangtze River at the Yichang hydrological station. Any
change in the characteristics of the hydrological time series of
Yichang station in the future could be a reason for modifying
the initial construction and operation plan for the Three Gorges
Project.”

Our results for Yichang are consistent with those of earlier
studies. To our knowledge, no study has yet found definite
physical causes for a change point near 1966. It would be
tempting to conclude that, between 1946 and 2014, the con-
struction of the TGD project has not had a significant influ-
ence on Yichang station, but filling of the reservoir started
only in 2003, so any change point resulting from dam

operation would be very near the end of the gauge station
time series and therefore much less likely to be detected by
the methods used here.

4 Conclusions

The performance of several methods to detect an abrupt
change in the statistical properties of synthetic and real
times series was examined. The methods studied were
Pettitt’s test (Pet-CP), a CUSUM-based test (CUSUM-CP)
and a test based on the Cramér von Mises two-sample test
(CvM-CP). Based on experiments with synthetic data series
from four distribution families: normal, generalized extreme

Figure 11. Power of the different tests for a change in mean at location 10 as a function of sample size n (number of samples M = 1000).
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value (GEV) with shape k = – 0.15 (reverse Weibull), GEV
with shape k = 0 (Gumbel) and GEV with shape k = 0.15
(Fréchet), it was found that the CvM-CP method had the best
overall performance. However, all three methods have
a serious short-coming: not only do they have great difficulty
in detecting changes near the start or end of the time series,
but they also tend to make large systematic errors in estimat-
ing the location of such changes.

The methods Pet-CP and CUSUM-CP could not detect
a change in standard deviation for any of the distributions.
For CvM-CP, the probability of correctly signalling a change
in the standard deviation was much lower than for a change

in the mean. The tests showed that, for a change in the mean,
test ability did not differ much for samples from the different
distributions.

For Pet-CP, CvM-CP and CUSUM-CP the power and
ability to detect change points plotted as a function of the
change point are roughly symmetrical relative to a vertical
line at n/2.

For the initial application of the tests to the annual max-
imum runoff time series from four gauge stations on the
Yangtze River, the methods found change points only in the
Yichang station series. Moreover, no change points were
found after 1993, the start of the Three Gorges Dam project.

Figure 12. Ability of the different tests for a change in mean at location 10 as a function of sample size n (number of samples M = 1000).
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This is in line with findings by Xiong and Guo (2004) for the
period up to 2001, but the findings presented in this study on

detection of change points near the end of a time series
suggest that this cannot be considered as evidence that the
TGD project did not cause an abrupt change in statistical
properties of annual maximum runoff.

With respect to the questions posed in at the start of this
study we found the following answers:

For the probability of incorrectly signaling a change point,
it was found that, for CvM-CP, where an empirical distribu-
tion of the test statistic was used, the false positive rate was

Figure 13. Plot of change points found in subseries of the Cuntan data by the three methods. A marker at a given coordinate pair (x,y) indicates whether or not
a change point was found for a series starting in year x and ending in year y.

Table 2. Change in the mean (μ) and standard deviation (σ) at each detected
change point – Yichang station.

Change point μ
(m3/s)

σ
(m3/s)

μL
(m3/s)

μRμR
(m3/s)

σL
(m3/s)

σR
(m3/s)

Δμ/σ
(-)

Δσ/σ
(-)

1962 49104 8642 55047 47101 4065 8876 –0.91 0.56
1966 54152 46896 4847 9038 –0.84 0.48
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correct. For Pet-CP and CUSUM-CP, where a limit distribu-
tion of the test statistic was used, this turned out not to be
fully justified even when the total time series length reached
100. For short series (less than 100 points) the asymptotic
estimates of distribution quantiles for Pet-CP and CUSUM-
CP were too high, and the resulting null hypothesis rejection
rates were too low. We would recommend to either use
special small sample approximations of the distribution, or
generate an empirical distribution by a Monte Carlo method
and use that as the test statistic distribution.

The probability of correctly detecting a change point for
a change in the mean near the start and end of a time series
was low (less than 10% for a change in the mean correspond-
ing to one times the standard deviation, 1SD, of the signal).
For a change in the standard deviation, only CvM-CP showed
reasonable power.

When we considered all estimated change point locations,
we found that estimates of change points near the start and
end of a time series have a large bias (97.5% of all location
estimates of a change at location 10 was beyond location 20
for a series with a change in the mean corresponding to 1SD
of the signal) and a large uncertainty in the location estimate.

The effect of the length of the time series was twofold. For
a change in the mean and a change point located in the middle
of the series, it seems that the detection rate improves until
a length of about 70 is reached. However, for a change point
location at a fixed distance from the end of the series, the ability
and power will decrease as the series length increases. This is
particularly dramatic in case of a change point close to the start
of the series, say at year 10. For a change in the standard
deviation and a change point located in the middle of the series,
only CvM-CP detects anything; and here detection keeps
improving up to at least series length 200.

As was to be expected, larger changes result in better
detection results. However, it is clear that relatively large
changes are needed to get acceptable results.

Moreover, it mattered what start or end year was chosen
for a time series. In other words: it was not safe to look at
parts of a time series that contain a given range of potential
change points, but had different start or end years.
Application of the tests to real data series showed that when
different start and end years were used, different results were
indeed obtained. These experiments with detection of change
points in subseries of annual maxima demonstrated that
change points may seem to appear and disappear when the
end points of the series are shifted.

In summary, we found that, even under ideal circumstances
of independent variables, no trend and, at most, one change
point, the results of these methods need to be interpreted with
great care: a few years of additional data or missing data may
change the outcome of the detection experiment and change
points near the start or the end of the time series are likely to be
either missed or reported in the wrong location.
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Appendix A Change-point statistics under scaling
and shifting

For CvM-CP, the calculation of the change point statistic of a sample
(x1, x2, . . ., xn) depends only on the values of 1 xi � xj

� �
for all pairs i,

j = 1, 2, . . ., n with i ≠ j. Shifting the entire sample does not change the
value of these expressions, and neither does scaling the entire sample by
a strictly positive value. As a result, the value of the statistic does not
change if we shift and scale the entire sample. For Pet-CP we can use
Equation (10) to replace the sign function, and then the same reasoning
holds. For CUSUM-CP the calculation of the change point statistic of
a sample depends only on 1 c � xj

� �
for all j = 1, 2, . . ., n and c the

sample median. Again, shifting the entire sample does not change the
value of this function, and neither does scaling the sample by a strictly
positive value. As a result, the value of the statistic does not change if we
shift and scale the entire sample.
Now, suppose that the random variables in the time series are from

the same distribution family, and that this family is a location-scale
family F �; ζð Þ, with location parameter � and scale parameter ζ. In that
case Xh ¼ ζhYh þ �h, with Yh the independent identically distributed
(iid) random variables for h = 1, 2, . . ., n. We see that, for all three test
statistics, the statistics for a series where Xi has parameters �L; ζLð Þ for
i � τ and �R; ζRð Þ for i> τ is equivalent to a series with location zero and
scale 1 up to τ, but location �R � �Lð Þ=ζL and scale ζR=ζL beyond that
point. This implies that, for a location scale family, the distribution of
the test statistic, when a change point is present, depends only on the
properties of Yh and the quantities �R � �Lð Þ=ζL and ζR=ζL. For the
normal distribution, the mean is the location parameter, and the stan-
dard deviation is the scale parameter.
For the GEV distributions and a change in the mean, the distribution

of the test statistic when a change point is present will depend only on
μR � μL
� �

=σL. If there is a change in the standard deviation while the
mean value stays the same, then this corresponds to a change in both the
scale and the location of the original distribution. After scaling, it turns
out the change in the location is constant, and the change in distribution
depends on this constant and σR=σL.

Appendix B Sensitivity of the Pettitt test statistic to
scale changes

Suppose that the random variables in the time series are from
a location-scale family that is symmetric with respect to the median,
such as the normal distribution. In that case, it is possible to show
that the probability distribution of the sign function for the difference
of two of different random variables taken from the series does not
depend on the scale. This can be done as follows:
Suppose i�j and that at the change point only the scale changes.

Shifting all random variables in the series to place the median of at zero
does not change the distribution of any of the random variables. Now,
for i; j � τ or i; j> τ, we have fi ¼ fj, so:

Pr Sij ¼ 1
� 	 ¼ Pr Xi � Xj

� 	 ¼
ð1

xj¼�1

ðxj
xi¼�1

fi xið Þfj xj
� �

dxidxj

¼
ð1

xj¼�1

ðxj
xi¼�1

fi xið Þfi xj
� �

dxidxj

¼
ð1

xj¼�1
fi xj
� � ðF xjð Þ

y¼0

dydxj ¼
ð1

xj¼�1
fi xj
� �

Fi xj
� �

dxj

¼
ð1
z¼0

zdz ¼ 1
2

(B1)

For i � τ< j (similar reasoning holds for j � τ< i) the following holds:

Pr Sij ¼ 1
� 	 ¼ Pr Xi � Xj

� 	 ¼¼
ð1

xj¼�1

ð1
xi¼�1

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

(B2)

We split the integration into the four quadrants to obtain:

Pr Sij ¼ 1
� 	 ¼

ð1
xj¼0

ð1
xi¼0

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

þ
ð0

xj¼�1

ð0
xi¼�1

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

þ
ð0

xj¼�1

ð1
xi¼0

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

þ
ð1

xj¼0

ð0
xi¼�1

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

(B3)

For all xi and xj within the integration bounds of the fourth integral, the
function 1 xi � xj

� �
in the integrand equals one. In the third integral on

the right hand side 1 xi � xj
� �

equals zero. This allows us to write:

Pr Sij ¼ 1
� 	 ¼

ð1
xj¼0

ð1
xi¼0

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

þ
ð0

xj¼�1

ð0
xi¼�1

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

þ
ð1

xj¼0

ð0
xi¼�1

fi xið Þfj xj
� �

dxidxj

(B4)

Next, we introduce a new integration variable yi ¼ �xi whenever there is
a negative integration boundary:

Pr Sij ¼ 1
� 	 ¼

ð1
xj¼0

ð1
xi¼0

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

þ
ð1

yj¼0

ð1
yi¼0

1 �yi � �yj
� �

fi �yið Þfj �yj
� �

dyidyj

þ
ð1

xj¼0

ð1
yi¼0

fi �yið Þfj xj
� �

dyidxj

(B5)

We use symmetry around zero to replace fi �yið Þ by fi yið Þ in the second and
third integrals and rewrite the inequality in the second integral to obtain:

Pr Sij ¼ 1
� 	 ¼

ð1
xj¼0

ð1
xi¼0

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

þ
ð1

yj¼0

ð1
yi¼0

1 yj � yi
� �

fi yið Þfj yj
� �

dyidyj

þ
ð1

xj¼0

ð1
yi¼0

fi yið Þfj xj
� �

dyidxj

(B6)

Next we rename the integration variables yi and yj to obtain:
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Pr Sij ¼ 1
� 	 ¼

ð1
xj¼0

ð1
xi¼0

1 xi � xj
� �

fi xið Þfj xj
� �

dxidxj

þ
ð1

yj¼0

ð1
yi¼0

1 xj � xi
� �

fi xið Þfj xj
� �

dxidxj

þ
ð1

xj¼0

ð1
yi¼0

fi yið Þfj xj
� �

dyidxj

(B7)

By combining the first and second integral we obtain:

Pr Sij ¼ 1
� 	 ¼

ð1
xj¼0

ð1
xi¼0

fi xið Þfj xj
� �

dxidxj

þ
ð1

xj¼0

ð1
yi¼0

fi yið Þfj xj
� �

dyidxj

(B8)

By symmetry, both remaining integrals equal ¼, so Pr Sij ¼ 1
� 	 ¼ 1=2

irrespective of the change in scale. While this does not prove that the
distribution of the test statistic is independent of the scale change, it does
indicate that any recoverable information on a change in scale can only
be in the correlation structure between the Sij.
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