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Summary

Over recent decades, climatic changes and significant variations in all key components of
the hydrological cycle have been observed in many regions worldwide, profoundly altering
water availability, river flow regimes, and the concentration of nutrients and pollutants.
Ecosystem is a key component of the terrestrial hydrological cycle as it shapes the hy-
drological functioning of catchments by regulating the long-term average partitioning of
water into drainage and evaporative fluxes (i.e. latent heat). In response to a changing
environment, ecosystems continuously adapt to allow the most efficient use of available
energy and resources. However, direct quantification of how ecosystems adapts to climatic
variability over long time periods and the mechanistic drivers thereof at the catchment-
scale is missing so far. As a consequence, it remains unclear how climatic variability, such
as precipitation regime or canopy water demand, influences the partitioning of water fluxes,
the hydrological response, and hydrological processes and transport mechanisms at the
catchment-scale. Therefore, the overarching objective of this thesis is to address the follow-
ing main research question: How does climatic variability affect the hydrological response
and transport mechanisms in a temperate-humid basin over multiple decades?

All analysis in this thesis is carried out in a large river basin, the Neckar basin,
Germany. A unique long-term dataset is used for this basin, consisting of 70 years of
hydrometeorological and tracer data. Hydrological and transport processes in the basin are
quantified using a state-of-the-art semi-distributed hydrological model that (i) includes spa-
tial heterogeneity in topography, vegetation and precipitation, (ii) accounts for ecosystem
adaptation to climate variability via a time-varying root zone water storage capacity, and
(iii) uses StorAge Selection (SAS) functions to account for mixing of tracers and to estimate
time-varying water age distributions at catchment scale. Multi-objective calibration of
the hydrological model using the long-term hydrometeorological and tracer dataset pro-
vides the basis for investigating how climatic variability affects hydrological and physical
transport processes in the Neckar basin.

The first research question focuses on ecosystem adaptation to climate variability via
changes in root zone storage capacity. The root zone storage capacity is a critical factor reg-
ulating latent heat fluxes and thus the moisture exchange between land and atmosphere as
well as the hydrological response and biogeochemical processes in terrestrial hydrological
systems. To be survive, root systems of vegetation and the associated vegetation-accessible
water storage capacity respond to the ever-changing conditions of its environment. How-
ever, as these changes occur at landscape scale and are mostly reflected by changes in
the composition of plant species present in a specific spatial domain, fluctuations in root
zone storage capacity occur largely at time-scales that reflect the life-cycles of individual
plants. However, it remains unclear whether root zone storage capacity adapts to climatic
variability and evolves over time, thereby reflecting ecosystem adaptation to changing
conditions. The thesis investigates this for the Neckar basin by quantifying long-term
changes in root zone storage capacity using two different methods, i.e. hydrological model



calibration and an independent water balance estimation method. The analysis provides
quantitative mechanistic evidence that root zone storage capacity significantly changes
over multiple decades reflecting ecosystem adaptation to climatic variability. However, the
analysis also suggests that accounting for temporal evolution of root zone storage capacity
with a time-variable formulation of that parameter in a hydrological model does not sig-
nificantly improve its ability to reproduce the hydrological response and may therefore
be of minor importance to predict the effects of a changing climate on the hydrological
response.

The second research question investigates the use of different isotopic tracers to
estimate water age distributions, i.e. age distributions of water fluxes (“transit time distri-
butions”, TTD) and water stored in catchments (“residence time distributions”, RTD) as
fundamental descriptors of hydrological functioning and catchment storage. These distri-
butions provide a way to quantitatively describe the physical link between the hydrological
response of catchments and physical transport processes of conservative solutes. However,
water age distributions cannot be directly observed, and instead have to be estimated with
tracer-aided models. Stable isotopes (𝛿18O) and tritium (3H) are frequently used as tracers
in environmental sciences to estimate age distributions of water. It has previously been
argued that seasonally variable tracers, such as 𝛿18O, generally and systematically fail to
detect the tails of water age distributions and therefore substantially underestimate water
ages as compared to radioactive tracers, such as 3H. Early approaches often relied on simple
lumped sine-wave or lumped parameter convolution integral models under the assumption
that water storage in catchments is at steady state. Here, these methods are compared with
the more realistic StorAge Selection (SAS) functions embedded in the dynamic hydrological
model used in this thesis. By comparing water age distributions inferred from 𝛿

18O and
3H with several different transport model implementations, this thesis demonstrates that
previously reported underestimations of water ages are most likely not a result of the
use of 𝛿18O or other seasonally variable tracers. Instead, these underestimations can be
largely attributed to choices of model approaches and complexity. It is therefore strongly
advocated to avoid the use of steady-state model types in combination with seasonally
variable tracers and to instead adopt SAS-based or other time-variant model formulations
that allow for the representation of transient conditions.

The third and final research question investigates the effects of temporal variability
of the hydrological response on physical transport processes over a spectrum of time-
scales from daily to multiple decades. Due to limited availability of tracer records over
longer durations in many catchments, most previous studies focused on daily time scales
to analyse temporal variability of water ages as metric of physical transport and the
underlying drivers. To improve understanding of long-term transport dynamics, this
thesis quantifies the variability in water ages, identifies the associated dominant controls
from daily to multi-decadal time scales, and analyses the associated temporal evolution
of water ages of streamflow and evaporation. It is shown that there are no major long-
term dynamics in water ages, driven by either internal processes or external transport
variability. Consequently, the physical transport dynamics in the upper Neckar basin, and
potentially in other basins with similar water age characteristics, are inferred to exhibit
near-stationarity over multiple decades.



Concluding, this thesis provides sufficient evidence that long-term varying root zone
storage capacity significantly reflects ecosystem adaptation to climatic variability. However,
the temporal evolution of root zone storage capacity does not control variation in the
partitioning of water fluxes and has no significant effects on fundamental hydrological
response characteristics of the studied semi-humid river basin in the near future under a
changing climatic condition. In addition, the thesis suggests physical transport processes
can be assumed to be near-stationary and predictable across multiple decades under either
internal (i.e., time-variant root zone storage capacity) or external transport variability
(i.e., climatic variability), which contrasts with the frequently reported fractal pattern in
stream water solute dynamics. This finding is crucial for management of subsurface water
quality and the design of restoration interventions for groundwater affected by legacy
contamination such as nitrate.





Samenvatting

In de afgelopen decennia zijn klimaatveranderingen en significante variaties in alle belang-
rijke componenten van de hydrologische cyclus waargenomen in vele regio’s wereldwijd.
Deze veranderingen hebben een diepgaande invloed op de beschikbaarheid van water,
rivierregimes en de concentratie van nutriënten en verontreinigingen. Het ecosysteem is
een cruciaal onderdeel van de hydrologische cyclus, omdat het de hydrologische werking
van stroomgebieden vormgeeft door de langetermijnverdeling van water in drainage en
verdamping (d.w.z. latente warmte) te reguleren. In reactie op een veranderende omgeving
passen wortelsystemen van het ecosysteem zich continu aan om zo efficiënt mogelijk
gebruik te maken van beschikbare energie en bronnen. Echter, directe kwantificering
van hoe het ecosysteem zich aanpast aan klimaatschommelingen over lange perioden en
de mechanistische drijfveren daarvan op stroomgebiedschaal ontbreekt tot nu toe. Als
gevolg hiervan is het onduidelijk hoe klimaatschommelingen, zoals neerslagregimes of
waterbehoefte van het ecosysteem, de verdeling van waterstromen, de hydrologische
respons, en hydrologische processen en transportmechanismen op stroomgebiedschaal
beïnvloeden. Het overkoepelende doel van dit proefschrift is daarom om de volgende
hoofdonderzoeksvraag te beantwoorden: Hoe beïnvloeden klimaatschommelingen de hy-
drologische respons en transportmechanismen in een gematigd-vochtig stroomgebied over
meerdere decennia?

Alle analyses in dit proefschrift zijn uitgevoerd in een groot stroomgebied, het stroom-
gebied van de Neckar in Duitsland. Voor dit stroomgebied wordt een unieke langeter-
mijndataset gebruikt, bestaande uit 70 jaar aan hydrometeorologische en tracergegevens.
Hydrologische- en transportprocessen in het bekken zijn gekwantificeerd met behulp
van een modern semi-gedistribueerd hydrologisch model dat (i) ruimtelijke heterogeni-
teit in topografie, ecosysteem en neerslag in rekening brengt, (ii) rekening houdt met
de aanpassing van het ecosysteem aan klimaatschommelingen via een tijdsafhankelijke
wateropslagcapaciteit in de wortelzone, en (iii) StorAge Selection (SAS) functies gebruikt
om rekening te houden met transport van tracers en om de tijdsafhankelijke leeftijdsdistri-
butie van water op stroomgebiedschaal te schatten. Kalibratie van meerdere parameters
van het hydrologische model met behulp van de langetermijns hydrometeorologische
en tracer dataset worden vervolgens gebruikt voor het onderzoeken van hoe klimaat-
schommelingen hydrologische en fysieke transportprocessen in het Neckar-stroomgebied
beïnvloeden.

De eerste onderzoeksvraag richt zich op de aanpassing van het ecosysteem aan klimaat-
schommelingen door middel van veranderingen in de opslagcapaciteit van de wortelzone.
De opslagcapaciteit van de wortelzone is een cruciale factor die de latente warmtestromen
reguleert en daarmee de vochtuitwisseling tussen land en atmosfeer, evenals de hydrologi-
sche respons en biogeochemische processen in terrestrische hydrologische systemen.Om
te overleven reageren wortelsystemen van vegetatie en de daarmee samenhangende door
vegetatie toegankelijke wateropslagcapaciteit op de voortdurend veranderende omge-



vingscondities. Aangezien deze veranderingen echter op landschapsniveau plaatsvinden
en grotendeels worden weerspiegeld in veranderingen in de samenstelling van planten-
soorten binnen een specifiek ruimtelijk gebied, vinden schommelingen in de wortelzone-
opslagcapaciteit voornamelijk plaats op tijdschalen die de levenscycli van individuele
planten weerspiegelen. Het is echter onduidelijk of de opslagcapaciteit van de wortelzone
zich aanpast aan klimaatschommelingen en in de loop van de tijd evolueert, en zo de
aanpassing van het ecosysteem aan veranderende omstandigheden weerspiegelt. Het proef-
schrift onderzoekt dit voor het Neckar-stroomgebied door langetermijnsveranderingen
in de opslagcapaciteit van de wortelzone te kwantificeren met behulp van twee verschil-
lende methoden, namelijk kalibratie van een hydrologisch model en een onafhankelijke
waterbalansschattingsmethode. De analyse levert kwantitatief mechanistisch bewijs dat de
opslagcapaciteit van de wortelzone aanzienlijk verandert over meerdere decennia, wat wijst
op de aanpassing van het ecosysteem aan klimaatschommelingen. De analyse suggereert
echter ook dat het in rekening brengen van de temporele evolutie van de opslagcapaciteit
van de wortelzone met een tijdsvariabele formulering van die parameter in een hydrolo-
gisch model, de capaciteit om de hydrologische respons te reproduceren niet significant
verbetert en daarom mogelijk van ondergeschikt belang is voor het voorspellen van de
effecten van een veranderend klimaat op de hydrologische respons.

De tweede onderzoeksvraag onderzoekt het gebruik van verschillende isotopische
tracers om waterleeftijdsverdelingen te schatten, dat wil zeggen leeftijdsverdelingen van
waterstromen ("transitietijdverdelingen", TTD) en water opgeslagen in stroomgebieden
("verblijftijdverdelingen", RTD) als fundamentele beschrijvingen van hydrologische wer-
king en stroomopslag. Deze verdelingen bieden een manier om de fysieke link tussen de
hydrologische respons van stroomgebieden en de fysieke transportprocessen van conser-
vatieve opgeloste stoffen kwantitatief te beschrijven. Waterleeftijdsverdelingen kunnen
echter niet direct worden waargenomen en moeten in plaats daarvan worden geschat
met tracer-ondersteunde modellen. Stabiele isotopen (𝛿18O) en tritium (3H) worden vaak
gebruikt als tracers in milieuwetenschappen om leeftijdsverdelingen van water te schatten.
Eerder is betoogd dat seizoensgebonden variabele tracers, zoals 𝛿18O, over het algemeen
systematisch falen in het detecteren van grotere waterleeftijden en daarom de waterleeftij-
den aanzienlijk onderschatten in vergelijking met radioactieve tracers, zoals 3H. Vroege
benaderingen vertrouwden vaak op eenvoudige, sinusgolf of parameterconvolutie-integrale
modellen, waarbij werd aangenomen dat wateropslag in stroomgebieden in een stationaire
toestand verkeert. Hier worden deze methoden vergeleken met de meer realistische Stor-
Age Selection (SAS) functies, die geïntegreerd zijn in het dynamische hydrologische model
dat in dit proefschrift wordt gebruikt. Door waterleeftijdsverdelingen afgeleid van 𝛿18O en
3H te vergelijken met verschillende transportmodelimplementaties, toont dit proefschrift
aan dat eerder gerapporteerde onderschattingen van waterleeftijden waarschijnlijk niet
het gevolg zijn van het gebruik van 𝛿18O of andere seizoensgebonden variabele tracers.
Deze onderschattingen kunnen in plaats daarvan grotendeels worden toegeschreven aan
de keuzes van modelbenaderingen en complexiteit. Daarom wordt sterk aanbevolen om het
gebruik van stationaire modellen in combinatie met seizoensgebonden variabele tracers
te vermijden en in plaats daarvan SAS-gebaseerde of andere modelformuleringen aan te
nemen die de simulatie van niet-stationaire systemen mogelijk maken.



De derde en laatste onderzoeksvraag richt zich op de effecten van temporele varia-
biliteit van de hydrologische respons op fysieke transportprocessen over een spectrum
van tijdschalen, variërend van dagelijks tot meerdere decennia. Vanwege de beperkte be-
schikbaarheid van tracergegevens over langere perioden in veel stroomgebieden, richtten
eerdere studies zich voornamelijk op dagelijkse tijdschalen om de temporele variabiliteit
van waterleeftijden als maatstaf voor fysiek transport en de onderliggende factoren te
analyseren. Om het inzicht in de langetermijn-transportdynamiek te verbeteren, kwantifi-
ceert dit proefschrift de variabiliteit in waterleeftijden, identificeert het de bijbehorende
dominante factoren voor tijdschalen van dagelijks tot meerdere decennia, en analyseert
het de bijbehorende temporele evolutie van waterleeftijden in afvoer en verdamping. Er
wordt aangetoond dat er geen grote langetermijndynamiek is in waterleeftijden, gedreven
door interne processen of externe transportvariabiliteit. Bijgevolg wordt geconcludeerd
dat de fysieke transportdynamiek in het Neckar-stroomgebied, en mogelijk in andere
stroomgebieden met vergelijkbare waterleeftijdskarakteristieken, over meerdere decennia
een quasi-stationair gedrag vertoont.

Concluderend biedt dit proefschrift voldoende bewijs dat de langetermijnvariatie in
de opslagcapaciteit van de wortelzone de aanpassing van het ecosysteem aan klimaat-
schommelingen weerspiegelt. Echter, de temporele evolutie van de opslagcapaciteit van de
wortelzone bepaalt niet de variatie in de verdeling van waterstromen en heeft geen signifi-
cante effecten op fundamentele hydrologische responskarakteristieken in het bestudeerde
stroomgebied in de nabije toekomst onder veranderende klimatologische omstandigheden.
Daarnaast suggereert het proefschrift dat fysieke transportprocessen als quasi-stationair
en voorspelbaar kunnen worden beschouwd over meerdere decennia, zowel onder interne
(d.w.z. tijdsvariabele opslagcapaciteit van de wortelzone) als externe transportvariabiliteit
(d.w.z. klimaatschommelingen), wat contrasteert met het vaak gerapporteerde fractale pa-
troon in de dynamiek van opgeloste stoffen in stroomwater. Dit inzicht is cruciaal voor het
beheer van de kwaliteit van grondwater dat is aangetast door langetermijn-verontreiniging
zoals nitraat.
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1
Introduction

Climate is what we expect, weather is what we get.

Mark Twain

This chapter is partly based on:
Wang, S. et al. “Stable water isotopes and tritium tracers tell the same tale: no evidence for
underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function
models”. In: Hydrology and Earth System Sciences 27.16 (2023), pp. 3083–3114. issn: 1607-7938. doi:
10.5194/hess-27-3083-2023.
Wang, S. et al. “Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation
to hydro-climatic variability has minor effects on the hydrological response in the Neckar basin,
Germany”. In: Hydrology and Earth System Sciences 28.17 (2024), pp. 4011–4033. issn: 1812-2116. doi:
10.5194/hess-28-4011-2024.
Wang, S. et al. “Multi-decadal stability of water ages and tracer transport in a temperate-humid river
basin”. In: Environmental Research letters (2024). Under review.

https://doi.org/10.5194/hess-27-3083-2023
https://doi.org/10.5194/hess-28-4011-2024
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2 1 Introduction

1.1 Hydrological system under climatic change

T he climate is a complex, nonlinear, dissipative, and heterogeneous system that
operates outside of thermodynamic equilibrium (Trenberth, 1992; Ghil and Lucarini,

2020; Jones and Ricketts, 2021). It is subject to both internal dynamics, such as the El
Niño-Southern Oscillation, and external forcings, including anthropogenic influences
(Timmermann et al., 2018; Cai et al., 2021). Climate variability occurs across all temporal
scales, from annual fluctuations to changes spanning decades, centuries, and millennia.
Extensive research has documented the significant spatial and temporal heterogeneity in
impacts of climate variability (Elmendorf et al., 2012; Shrestha et al., 2012; Di Cecco and
Gouhier, 2018; Cheng et al., 2021; Jia et al., 2022; Braga and Laurini, 2024). Over the
past century, climate variability has notably affected the rate of global average surface
temperature increase, with distinct differences observed between land and ocean regions,
as well as that between high and low latitudes. Specifically, high-latitude regions have
experienced increased precipitation, whereas tropical and subtropical land areas have
seen a decline in precipitation (Lee and Romero, 2023). It is broadly predicted that the
climatic variability will increase with the ongoing planet warming (Salinger, 2005; Mora
et al., 2013; Thornton et al., 2014).

Climate variability exerts extensive and profound impacts on ecosystem functions,
particularly on the hydrological cycle (Loaiciga et al., 1996; Bonan, 2008; Wagener
et al., 2010; Yang et al., 2014). Climate variability alters global precipitation patterns,
with precipitation in high latitudes and equatorial regions generally increasing, while
mid-latitude arid and semi-arid regions experience declines (Nicholson, 2000; Dore, 2005;
Alizadeh and Babaei, 2022; Huang et al., 2023). This uneven distribution on precipitation
patterns affects local available water and ecosystem functions significantly. Then this
directly influences stream flow, with some regions experiencing increased runoff and
frequent floods due to higher precipitation, whereas others face reduced runoff and
frequent droughts due to diminished precipitation. Such changes in the hydrological
cycle impact freshwater ecosystems and some terrestrial ecosystems dependent on such
water resources. Additionally, the rise in temperatures induced by global warming
enhances evaporation and evapotranspiration rates, especially in tropical and subtropical
regions (Dai, 2011; Li et al., 2012; Wu et al., 2012; Cook et al., 2014; Thirumalai
et al., 2017). This not only accelerates the water cycle but also potentially reduces soil
moisture, adversely affecting plant growth and ecosystem productivity (Polley, 2002;
Huntington, 2006; Gornall et al., 2010; Pugnaire et al., 2019; Zhou et al., 2021). Following
variations in precipitation patterns and evaporation rates, groundwater recharge rates
also are influenced. As the critical water resources for many ecosystems, groundwater
may experience reduced recharge, leading to the desiccation of wetlands, rivers, and
vegetation, thereby compromising ecosystem stability. Moreover, extreme weather
events driven by climate variability, such as floods and droughts, significantly affect
the physical and chemical properties of river systems (Whitehead et al., 2009; Wetz
and Yoskowitz, 2013; Khan et al., 2015; Leigh et al., 2015). Floods can cause soil
erosion, increasing turbidity and pollutant levels in rivers, while droughts may lead to
the concentration of rivers, elevating harmful substance concentrations and impacting
aquatic organism safety and human water use. Hence, researching the long-term
impacts of climate change on hydrological systems is imperative.
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Vegetation, as a fundamental component of the hydrological cycle and ecosystems,
profoundly influences the hydrological functioning of catchments by modulating the
long-term partitioning of water into drainage and evaporative fluxes, commonly
expressed as runoff ratio and evaporative index, respectively. Vegetation transpiration,
despite inherent uncertainties (Coenders-Gerrits et al., 2014), constitutes the largest
portion of global evaporative fluxes (Jasechko, 2018). This process is systematically
regulated by the dynamic interplay between canopy water demand and subsurface
water supply (Donohue et al., 2007; Yang et al., 2016; Jaramillo et al., 2018; Mianabadi
et al., 2019). For vegetation to thrive, continuous access to subsurface water that
is accessible to roots is critical to meet canopy water demands. Thus, the existing
vegetation, particularly its active root system, is indicative of its successful adaptation
to prevailing climatic conditions in a region (Laio et al., 2001; Schenk and Jackson,
2002; Rodríguez-Iturbe and Porporato, 2007; Donohue et al., 2007; Gentine et al., 2012;
Liancourt et al., 2012). Irrespective of the geometry, distribution, or structure of root
systems, the maximum volume of water accessible to vegetation in the unsaturated
root zone, referred to as root zone storage capacity, encapsulates the hydrologically
relevant attributes of root systems (Rodríguez-Iturbe and Porporato, 2007; Nijzink et al.,
2016a; Savenije and Hrachowitz, 2017; Gao et al., 2023). Consequently, root zone storage
capacity directly reflects the hydrologically significant properties of root systems at
the catchment scale. In response to environmental changes, vegetation root systems
continuously adapt to optimize the use of available energy and resources for survival.
Therefore, the factors driving changes in root systems also drive changes in root zone
storage capacity, as it inherently represents root system adaptations. Nevertheless, a
major knowledge gap persists: it remains unclear whether root zone storage capacity
adapts to climatic variability and evolves over time, thereby reflecting vegetation
adaptation to changing conditions.

In contrast, it is well understood that, due to the importance of vegetation for the
hydrological functioning of terrestrial systems, anthropogenic land use management
practices, such as de- and afforestation (Brown et al., 2005; Brath et al., 2006; Fenicia
et al., 2009; Alila et al., 2009; Jaramillo et al., 2018; Teuling et al., 2019; Stephens et al.,
2021; Hoek van Dijke et al., 2022; Ellison et al., 2024) or irrigation (e.g. AghaKouchak
et al., 2015; Van Loon et al., 2016; Roodari et al., 2021) can induce major shifts in
the partitioning between the major components of the terrestrial water and energy
cycles, and thus between evaporative index and runoff coefficient. Two detailed recent
studies with well documented information on deforestation in several experimental
catchments established explicit mechanistic links between the reduction of root zone
storage capacity by > 50% following deforestation and decreases in evaporative index
(and thus increases in runoff coefficient) from 0.4 – 0.5 to 0.1 – 0.3, depending on
the catchment and the scale of deforestation (Nijzink et al., 2016a; Hrachowitz et al.,
2021). Some studies suggest that using a time-variant root zone storage capacity as
the parameter in hydrological models can provide more reliable predictions of future
hydrological responses in catchments. For example, Bouaziz et al. (2022) demonstrated
this in the Meuse basin located at the North-West Europe. Their findings revealed that
adjusting the root zone storage capacity in response to projected climatic conditions, as
indicated by the aridity index, can induce substantial shifts in seasonal water supply
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for hydrological system. Specifically, this adaptation results in an increased root zone
storage capacity, thereby enhancing the volume of sub-surface water available to
vegetation. This mechanism leads to a potential increase in summer evaporation by
up to 15%, consequently reducing groundwater recharge rates. The reduced recharge
subsequently causes a decrease in late-summer and autumn groundwater storage by
approximately 10%. Moreover, winter flows could be up to 20% lower in comparison
to model simulations utilizing constant root zone storage capacity values based on
historical hydro-climatic data. These outcomes are qualitatively in agreement with the
findings of Van Oorschot et al. (2024) and Tempel et al. (2024) in such a somewhat
more humid environment. However, it remains unclear how climatic variability, such as
precipitation regime or canopy water demand, affects root zone storage capacity and
how fluctuations in root zone storage capacity may influence the partitioning of water
fluxes and therefore, also affect the hydrological response at a semi-humid catchment
like the Neckar river basin in Germany.

Climate variability not only affects water quantity but also water quality, such
as nutrient-induced eutrophication and eutrophication and its related aquatic hypoxia,
which pose significant threats to ecosystem stability. Addressing these challenges, it is
necessary to develop models for improving scientific understanding of the hydrological
system, supported by comprehensive knowledge to precisely characterize how water
and solutes move through a river basin.

Water ages and transit time distributions (TTDs) serve as a critical connection
between hydrology and water quality at the catchment scale, serving as a fundamental
metric of physical transport within a hydrological system (Hrachowitz et al., 2016).
Consequently, they play a critical role in elucidating how water, and thereby nutrients
and pollutants, are stored within catchments and subsequently released via diverse flow
pathways (Birkel and Soulsby, 2015; Rinaldo et al., 2015; Sprenger et al., 2018; Benettin
et al., 2022).

While extensive research has explored the temporal variability of celerity-driven
hydrological responses across timescales from minutes to decades (Thompson and
Katul, 2012; Berghuijs et al., 2014; Sivapalan and Blöschl, 2015; McMillan, 2020;
Berghuijs and Slater, 2023), studies focusing on velocity-driven transit times have
predominantly examined shorter periods such as daily, monthly, and seasonal scales.
These investigations demonstrate significant fluctuations in water ages in fluxes like
streamflow and evaporation, primarily influenced by changes in water availability and
the magnitude of precipitation inputs (Heidbüchel et al., 2012; Benettin et al., 2015b,
Benettin et al., 2017b; Harman, 2015; Hrachowitz et al., 2015; Soulsby et al., 2016;
Rodriguez et al., 2018; Kuppel et al., 2020; Wilusz et al., 2020; Kaandorp et al., 2018;
Knapp et al., 2019; Stockinger et al., 2019; Birkel et al., 2016; Remondi et al., 2018;
Heidbüchel et al., 2013; Birkel et al., 2015; Von Freyberg et al., 2018; Wilusz et al., 2017;
Stockinger and Stumpp, 2024). However, due to limited availability of tracer records
over longer durations in many catchments, few studies have analyzed water ages
over periods exceeding 10 to 20 years (Hrachowitz et al., 2010b; Wang et al., 2023).
Consequently, understanding variability over extended timescales and the resulting
long-term dynamics of water ages, including potential systematic trends, remains an
area requiring further exploration.
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The existing gaps in knowledge pose significant challenges for accurately predicting
the long-term behavior of legacy solutes such as nitrate (Basu et al., 2010; Howden
et al., 2011) and chloride (Hrachowitz et al., 2015) over decadal timescales, as well as
the dynamics of solute mobilization at shorter temporal scales, including phosphorus
(e.g., Dupas et al., 2018), amidst changing environmental conditions. Compounding
these challenges is the observed fractal scaling of solute concentrations in stream water
(e.g., Kirchner et al., 2000; Hrachowitz et al., 2009b, Hrachowitz et al., 2015; Godsey
et al., 2010; Kirchner and Neal, 2013; Aubert et al., 2014) and their non-self-averaging
properties. This phenomenon implies that the variability in daily, monthly, yearly,
or decadal averages of solute concentrations does not conform to typical statistical
expectations where averages stabilize over time. Instead, these non-self-averaging time
series exhibit persistent variability, complicating the interpretation of trends and their
reliability in predicting future solute dynamics, as elucidated by Kirchner and Neal, 2013.
Therefore, despite advances in understanding solute transport and transformation in
river systems, the persistence of non-self-averaging behaviors highlights the need for
refined modeling approaches and expanded datasets. Addressing these complexities will
be crucial to improve our ability for predicting the impacts of climatic change on solute
dynamics in aquatic ecosystems.

1.2 Research concepts and methodology
1.2.1 Water balance
Over the years, numerous hydrological models have been developed to simulate
hydrological processes. Notable examples include the HBV model (Bergström et al.,
1985), SUPERFLEX (Fenicia et al., 2011), FLEX-Topo (Gao et al., 2014a), SWAT (Arnold
et al., 1998), VIC (Liang et al., 1994), and MIKE-SHE (Christian Refsgaard et al., 2010).
Although these models vary in their complexity, they all fundamentally rely on the
principle of the water balance. Then water balance asserts that the inflows (i.e.,
precipitation) to any water system or area are equal to its outflows (i.e., streamflow and
evaporation) plus the change in storage over a specified time interval. In hydrology, a
water balance equation is employed to describe the movement of water into and out of
a system. This system can represent various hydrological or water domains, such as a
soil column or a drainage basin. And the water balance concept can be used to estimate
the root zone storage capacity that is in detail described in previous papers (e.g. Gao
et al., 2014b; Nijzink et al., 2016a; De Boer-Euser et al., 2016; Wang-Erlandsson et al.,
2016; Bouaziz et al., 2020; Hrachowitz et al., 2021). In addition, based on the assumption
of negligible storage change for averaging periods ≥ 10 years for a large majority of
catchments worldwide, the Budyko framework is an expression of the long-term average
water balance for a catchment (Schreiber, 1904; Ol’Dekop, 1911; Budyko, 1974; Zhang
et al., 2004b). According to the Budyko curve, the long-term water partitioning of input
water into two fluxes including evaporation and drainage is controlled by the aridity
index. Therefore, it is usually used for mapping the relationship between aridity index
and the evaporative index.

Within the Budyko framework, it has been observed that land conversions from
forest to grass- and rangeland vegetation result in shifts to lower evaporative index as a
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function of the aridity index (Schreiber, 1904; Ol’Dekop, 1911; Budyko, 1974). This
observation corresponds well with prior studies that suggest catchments dominated by
grass consistently exhibit lower evaporative indices at the same aridity index compared
to forested environments (e.g., Zhang et al., 2001, Zhang et al., 2004b; Oudin et al.,
2008). These variations in long-term average evaporative indices are explained by
parametric reformulations of the Budyko framework, such as the Tixeront-Fu equation
(Tixeront, 1964; Fu, 1981). The lumped parameters (e.g., 𝜔) in these models delineate
long-term average catchment-specific positions within Budyko space, encapsulating
vegetation characteristics and other hydro-climatic and physiographic properties unique
to each catchment, aside from the aridity index (e.g., Roderick and Farquhar, 2011;
Berghuijs and Woods, 2015). A common assumption is that with changes in climatic
conditions, represented by the aridity index, individual catchments will shift to new
associated positions in evaporative index, following specific trajectories defined by
parameter 𝜔 (e.g., Zhou et al., 2015; Bouaziz et al., 2022). However, multiple studies have
demonstrated that catchments in various regions worldwide often deviate from their
expected new evaporative index following changes in the aridity index (e.g., Jaramillo
and Destouni, 2014; Van der Velde et al., 2014; Jaramillo et al., 2018; Reaver et al., 2022;
Ibrahim et al., 2024; Tempel et al., 2024).

1.2.2 Water age distributions
Age distributions of water fluxes (“transit time distributions”, TTD) and water stored
in catchments (“residence time distributions”, RTD) are fundamental descriptors of
hydrological functioning (Botter et al., 2011; Sprenger et al., 2019) and catchment storage
(Birkel et al., 2015). They provide a way to quantitatively describe the physical link
between the hydrological response of catchments and physical transport processes of
conservative solutes. While the former is largely controlled by the celerities of pressure
waves propagating through the system, the latter, in contrast, occur at velocities
that can be up to several orders of magnitude lower (McDonnell and Beven, 2014;
Hrachowitz et al., 2016).

Water age distributions cannot be directly observed. Instead, they can, in principle,
be inferred from observed tracer breakthrough curves. While practically feasible at
lysimeter (e.g. Asadollahi et al., 2020; Benettin et al., 2021) and small hillslope scales
(e.g. Kim et al., 2022), lack of adequate observation technology together with logistical
constraints make this problematic at scales larger than that. At the catchment-scale,
estimates of water age distributions are therefore typically inferred from models that
describe the relationships between time-series of observed tracer input and output
signals.

Two types of environmental tracers have in the past been frequently used to
estimate water age distributions with the above models. The first type are tracers
that are characterized by distinct differences in their seasonal signals. They include
stable isotopes of water (2H, 18O; e.g. Małoszewski et al., 1983; Vitvar and Balderer,
1997; Fenicia et al., 2010) or solutes, such as Cl– (e.g. Kirchner et al., 2001, Kirchner
et al., 2010; Shaw et al., 2008; Hrachowitz et al., 2009a, Hrachowitz et al., 2015). With
these tracers, water ages and (metrics of) their distributions can be estimated by the
degree to which the seasonal amplitudes of the precipitation tracer concentrations are
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time-shifted and/or attenuated in the stream flow (McGuire and McDonnell, 2006;
Kirchner, 2016). Broadly speaking, the stronger the attenuation of the seasonally variable
tracer amplitude in stream flow (𝐴𝑠) as compared to its amplitude in precipitation
(𝐴𝑝), i.e., the lower the amplitude ratio 𝐴𝑠/𝐴𝑝 , the older stream water is, on average.
The second type of commonly used tracers are radioactive isotopes, such as tritium
(3H). Forming the basis for many water dating studies going back to the 1950s (e.g.
Begemann and Libby, 1957; Eriksson, 1958; Dinçer et al., 1970; Stewart et al., 2007;
Morgenstern et al., 2010; Duvert et al., 2016; Gallart et al., 2016; Rank et al., 2018;
Visser et al., 2019), water age can be estimated with radioactive tracers based on the
level of radioactive decay experienced by precipitation input signals experience before
they reach the stream. Stewart et al. (2010), Stewart et al. (2012) argued that water
older than that remains hidden to stable water isotopes and other seasonally variable
tracers, which inevitably results in a misleading truncation of water age distributions
and further argue that the use of radioactive tracers, such as 3H, can largely avoid the
truncation of the long tails of TTDs. There are only a few studies that have directly and
systematically compared estimates of water age derived from both, seasonally variable
(2H, 18O) and radioactive tracers (3H) at the same study site and based on (at least
partly) comparable model approaches (Małoszewski et al., 1983; Uhlenbrook et al., 2002;
Stewart et al., 2007; Stewart and Thomas, 2008). However, a recent study by Rodriguez
et al. (2021) indicated that their results cast some doubt on “[. . . ] the perception
that stable isotopes systematically truncate the tails of TTDs” (Rodriguez et al., 2021).
However, their interpretation was questioned by Stewart et al. (2021), who pointed out
that simply no older water may be present in their study catchment.

1.2.3 Transport modelling
Over the past decades a wide spectrum of transport models for estimating water age
distributions has been developed. Early approaches often relied on simple lumped
sine-wave (hereafter: SW) or lumped parameter convolution integral models (hereafter
CO; Małoszewski and Zuber, 1982; Małoszewski et al., 1983; McGuire and McDonnell,
2006), originally developed for aquifers. In spite of their wide-spread application, these
models feature multiple critical simplifying assumptions. Most importantly, the vast
majority of these model implementations work under the assumption that water storage
in catchments is at steady state and that, as a consequence, TTDs are time-invariant
and can be a priori defined or calibrated. While the role of storage as first order control
on water ages was described early in the general definition of mean turnover times
(e.g. Eriksson, 1958; Bolin and Rodhe, 1973; Nir, 1973), the steady state assumption,
i.e. constant storage, may have limited effect on TTDs in aquifers, as the fraction of
transient water volumes in such systems is typically rather low. However, given the
temporal variability in the hydro-meteorological system drivers (e.g. precipitation,
atmospheric water demand) and the spatial heterogeneity in near-surface hydrological
processes, this assumption is violated in most surface water systems world-wide and
can lead to misinterpretations of the model results. This triggered the development of a
more coherent framework to estimate water age distributions without the need of an a
priori definition of time-invariant TTDs. Instead, probability distributions, referred to as
StorAge Selection (SAS) functions, are a priori defined or calibrated, and changes in
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water storage are explicitly accounted for. Thus, water fluxes within and released from
the system are sampled from water volumes of different ages stored in the system
according to these SAS functions (Botter et al., 2011; Rinaldo et al., 2015). The general
concept is firmly rooted in the development of hydro-chemical routing schemes for
the Birkenes, HBV or similar models going back to at least the 1970s (e.g. Lundquist,
1977; Christophersen and Wright, 1981; Christophersen et al., 1982; Seip et al., 1985;
De Grosbois et al., 1988b; Hooper et al., 1988; Barnes and Bonell, 1996), as illustrated by
Figure 1 in Bergström et al. (1985). Although functionally very similar to CO model
implementations that allow for transient, i.e. time-variant TTDs (Nir, 1973; Niemi, 1977),
the sampling procedure based on SAS functions has the advantage to explicitly track
the history of water (and tracer) input to and output from the system through the water
age balance. As such, it does explicitly account for non-steady state conditions, which
in turn leads to the emergence of time-variable TTDs and RTDs (see review Benettin
et al., 2022).

1.3 Research objective
To improve our understanding of the long-term hydrological response and transport
dynamics in response to climatic variability in the Neckar basin, we benefit from the
long-term hydrometeorological data and tracer data, with a tracer-aided semi-distributed
hydrological model, to quantity the effects of climatic changing on hydrological response
through vegetation adaptations and on transport dynamics through temporal evolution
of water ages. Specifically, the following objectives were addressed:

1. to quantify the multi-decadal fluctuation of catchment-scale root zone storage
capacity following the notion that vegetation, i.e. individual plants but also
the species composition of plant communities, continuously adapts to climatic
conditions;

2. to determine the effects of a time-dynamic implementation of root zone storage
capacity on the long-term partitioning of drainage and evaporation, and the
representation of streamflow in a hydrological model;

3. to explore how different factors contribute to the apparent underestimation of
water ages by water stable isotopes compared with tritium using long-term data,
including potential effects of uncertainties arising from short data records, spatial
aggregation and the use of oversimplified time-invariant, lumped models;

4. to quantify the variability in water ages as well as to identify the associated
dominant controls across time-scales from daily to multi-decadal and to analyze
the associated temporal evolution of water ages for streamflow and evaporation.

1.4 Research outline
Following the introduction, the rest of this thesis is structured as follows:

Chapter 2 presents the data for the case study river basin used in this thesis, i.e.
the Neckar river basin in Germany, and details the semi-distributed, process-based
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hydrological model for this basin based on the flexible DYNAMITE modular modelling
framework.

Chapters 3, 4, and 5 use the data and hydrological model from Chapter 2 to
investigate effects of climatic variability from three perspectives.

In Chapter 3, this model is used to quantify multi-decadal fluctuation of
catchment-scale root zone storage capacity following vegetation adaptation to climatic
conditions. From that, the effects of a time-dynamic implementation of root zone
storage capacity on the long-term partitioning of drainage and evaporation, and the
representation of streamflow in a hydrological model in the Neckar River basin is
analyzed.

In environmental sciences, stable isotopes (𝛿18O) and tritium (3H) are frequently
utilized as tracers to estimate the water age distributions. However, it has been argued
that seasonally variable tracers, such as 𝛿18O, generally and systematically fail to detect
the tails of water age distributions. Consequently, these kinds of tracers substantially
underestimate water ages compared to radioactive tracers like 3H. In Chapter 4, several
unresolved questions of how different factors may or may not contribute to the apparent
underestimation of water ages by seasonally variable tracers are explored, including
potential effects of uncertainties arising from short data records, spatial aggregation and
the use of oversimplified time-invariant, lumped models.

The temporal dynamics of water ages provide crucial insights into hydrological
processes and transport mechanisms, yet there remains a significant gap in quantifying
water age variability across different temporal scales. In Chapter 5, a comprehensive
dataset spanning 70 years of hydrological observations and tritium records with the
developed semi-distributed hydrological model with an integrated tracer routing routine
based on StorageAge Selection functions, is used to quantify the temporal variability in
water ages as well as to identify their dominant controls across time-scales from daily
to multi-decadal and to analyze the associated temporal evolution of water ages for
streamflow and evaporation.

Finally, Chapter 6 provides a synthesis, including a summary of the main findings,
and discusses limitations and opportunities for further research.





22
Developmentofa

hydrologicalmodelforthe
Neckarbasin

Water is the driving force of all nature.

Leena Arif

This chapter is partly based on:
Wang, S. et al. “Stable water isotopes and tritium tracers tell the same tale: no evidence for
underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function
models”. In: Hydrology and Earth System Sciences 27.16 (2023), pp. 3083–3114. issn: 1607-7938. doi:
10.5194/hess-27-3083-2023.
Wang, S. et al. “Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation
to hydro-climatic variability has minor effects on the hydrological response in the Neckar basin,
Germany”. In: Hydrology and Earth System Sciences 28.17 (2024), pp. 4011–4033. issn: 1812-2116. doi:
10.5194/hess-28-4011-2024.
Wang, S. et al. “Multi-decadal stability of water ages and tracer transport in a temperate-humid river
basin”. In: Environmental Research letters (2024). Under review.

https://doi.org/10.5194/hess-27-3083-2023
https://doi.org/10.5194/hess-28-4011-2024


2

12 2 Development of a hydrological model for the Neckar basin

2.1 The Neckar basin

T he Neckar basin, located in South-West Germany, is used as case study in this
thesis. Due to its ecological and landscape diversity, the Neckar basin is important

in various aspects including freshwater resources, agriculture, hydropower, recreation,
industry and urban development. And a unique long-term comprehensive data sets in
this basin, including not only hydrometeorological data but also tracer data, provides a
potential opportunity to improve our understanding of the effects of climatic changes
on hydrological response and physical transport dynamics.

2.1.1 Landscape
The Neckar River basin covers an area of ∼13,000 km2 in Southwestern Germany, with
a varying topography with the elevation ranging from 122 m at the outlet in the north
to about 1019 m in the South (Fig. 2.1a; Table 2.1). Following the elevation gradient, the
landscape is remarkably diverse with the Black Forest in the western part, the Swabian
Jura in the middle regions, and the northern regions (Fig. 2.1c). Specifically, Black Forest
is the location where the Neckar river originates, dominated by increasingly steep and
narrow dense coniferous forested valleys towards the southern parts, and the soils are
coarse-textured and well drained. Swabian Jura is characterized by terrace-like elements
and undulating hills with wide valleys used as grass- and croplands in lower regions,
mainly with the loamy and loess soils. And there are mainly vineyards, orchards, and
croplands in the northern region, with flat grassland in river valley bottoms, dominated
by alluvial, loamy and sandy loam soils.

2.1.2 Climate
The Neckar basin is characterized by a temperate-humid climate, with warm, moderately
wet summers and cold winters. The streamflow is affected by precipitation patterns,
presenting a remarkable seasonal variation with lower flows in summer and high lows
in winter. Briefly, the snowmelt from Black Forest and rainfall in spring and early
summer causes higher streamflow, however, less rainfall and higher evaporation rate
make the streamflow decreased in summer, with short-time increases due to summer
storms. Therefore, the streamflow seasonal characteristics reflects the seasonality of
potential evaporation. The Neckar basin exhibits an obvious precipitation gradient
from the high region Black Forest to lower region in the north part. Annual mean
precipitation (P) over the whole river basin has a considerable spatial heterogeneity
ranging from ∼660 mm y-1 in the lower parts of the basin to ∼1600 mm y-1 over the
Black Forest with catchment average long-term mean precipitation (P) reaching ∼909
mm yr-1 (Fig. 2.1b, Table 2.1). Precipitation exhibits some seasonality with ∼500 mm yr-1
for summer months (from May to October) and ∼380 mm yr-1 for winter months (from
November to April), respectively. Although snow is in general not a major component
of precipitation in the study region, snowmelt can have a significant influence during
individual storm events. The long-term mean temperature is about 8.9 °C and potential
evaporation (𝐸𝑃 ) is around ∼870 mm yr-1 with a runoff ratio 𝐶𝑟 = 𝑄/𝑃 ∼ 0.43 and an
aridity index 𝐼𝐴 = 𝐸𝑃/𝑃 ∼ 0.98.



2.1 The Neckar basin

2

13

#0

#0
#0

#0

#0

#0

#0

#0

#0

#0
#0

#0

#0
#0

#0

#0

!

!

!

!

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!

#0

#0
#0

#0

#0

#0

#0

#0

#0

#0
#0

#0

#0
#0

#0

#0

!

!

!

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!

#0

#0
#0

#0

#0

#0

#0

#0

#0

#0
#0

#0

#0
#0

#0

#0

!

!

!

Hydrological response units
Forest dominated land
Grass dominated land
Wetland

±
0 40 8020

km

#0 Precipitation station
!. Meteorology station
! Discharge station

Precipitation zone
Sub-catchment

(a)

(b) (c)

P2

Germany

P4

P3

P1

Mean annual precipitation 
(mm yr-1)

1599
660

Elevation (m)

122
1019

C1

C2

C3

C3

C2

C1

P2
P4

P3

P1

P4

P2

P1

P3

C3

C1

C2

Figure 2.1: (a) Elevation of the Neckar catchment with discharge and hydro-meteorological stations as well
as the water sampling locations used in this study, (b) the spatial distribution of long-term mean annual
precipitation in the Neckar catchment and the stratification into four distinct precipitation zones P1 –
P4 (black line), (c) hydrological response units classified according to their land-cover and topographic
characteristics.
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Table 2.1: Characteristics of the Neckar catchment in Germany

Characteristics
latitude (N) 48

◦
2
′
0
′′ - 49

◦
33

′
45

′′

longitude (E) 8
◦
18

′
45

′′ - 10
◦
18

′
45

′′

Area (km2) 13,041
Average annual precipitation (mm yr-1) 909
Average annual temperature (°C) 8.9
Aridity index (-) 0.98
Elevation range (m) 122-1019
Mean elevation (m) 569
Slope range (°) 0-53
Mean slope (°) 5.1
Forest dominated land (%) 38.1
Grass dominated land (%) 51.2
Wetland (%) 10.7

2.2 Hydrological model
2.2.1 Identification of precipitation zones
To account in the subsequent model applications, at least to some degree, for spatial
heterogeneity in precipitation, the Neckar River basin is stratified into precipitation
zones that each are characterized by distinct long-term average annual precipitation
totals based on several precipitation stations which is described briefly in the following
chapters individually. Goovaerts (2000) and Lloyd (2005) showed that areal precipitation
estimates informed by elevation data were often more accurate than those based
on precipitation gauge observations alone. Thus, to interpolate and to estimate
areal precipitation across the basin we used Co-Kriging, considering elevation, as
a preliminary analysis suggested lower errors. Finally, the individual precipitation
estimates for each grid cell were used with K-means clustering to establish four clusters,
representing the four precipitation zones P1 – P4 (see Fig. 2.1b).

2.2.2 Classification of Landscape
To distinguish different hydrological response dynamics associated with different observed
landscape units, the height above the nearest drainage (HAND; Gharari et al., 2011),
slope and land use datasets (https://land.copernicus.eu/pan-european/corine-land-cover)
were used for deriving a hydrologically meaningful landscape classification. The
landscape units for the Neckar basin have been classified into wetland with HAND ≤ 5
m and slope ≤ 10%, forest-dominated land with slope > 10% and dominated with forest ,
and grass dominated land for the rest of the landscape elements (Fig. 2.1c). For this
purpose, the 90 m × 90 m digital elevation model of this basin (Fig. 2.1a) was obtained
from the HDMA database of the USGS (Verdin, 2017; https://doi.org/10.5066/F7S180ZP)
and used to derive the local topographic indices including HAND and slope. According
to this classification, the wetland areas cover 10.7%, forest-dominated areas cover 38.1%
and grass dominated areas cover 51.2% (Fig. 2.1c; Table 2.1).

https://land.copernicus.eu/pan-european/corine-land-cover
https://doi.org/10.5066/F7S180ZP
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2.2.3 Model structure
Loosely based on the flexible DYNAMITE modular modelling framework (e.g. Hrachowitz
et al., 2014), we here developed a semi-distributed, process-based model. Similar versions
of that model, have previously been successfully implemented and tested for many
other contrasting environments world-wide (e.g. Prenner et al., 2018; Hulsman et al.,
2021a, Hulsman et al., 2021c; Hanus et al., 2021; Bouaziz et al., 2022). Briefly, this
hydrological model consists of a suite of storage components and associated water fluxes
between them. The influence of functionally different landscape elements, i.e. forest,
grass-/cropland and flat valley bottoms, for brevity hereafter referred to as wetland, is
represented by parallel hydrological response units (HRU), linked by a common storage
component representing the groundwater system (Fig. 2.2), as previously implemented
and successfully tested in many contrasting environments (e.g. Gao et al., 2014a;
Gharari et al., 2014; Euser et al., 2015; Nijzink et al., 2016b; Prenner et al., 2018; Hanus
et al., 2021). Briefly, precipitation 𝑃 (mm d-1) falling on days with temperatures below
threshold temperature 𝑇𝑡 (°C), is accumulated as snow 𝑃𝑠𝑛𝑜𝑤 (mm d-1) in the snow
storage 𝑆𝑠𝑛𝑜𝑤 (mm). On days with temperatures higher than that, precipitation enters
the system as rainfall 𝑃𝑟𝑎𝑖𝑛 (mm d-1) and, based on a simple degree-day approach, water
is released from 𝑆𝑠𝑛𝑜𝑤 as snow melt 𝑀𝑠𝑛𝑜𝑤 (mm d-1), controlled by melt factor 𝐶𝑚𝑒𝑙𝑡
(mm d-1 °C-1; e.g. Gao et al., 2017; Girons Lopez et al., 2020). Rain water is then routed
through the interception storage 𝑆𝑖 (mm). With 𝐸𝑖 (mm d-1) as interception evaporation
at the potential evaporation rate, effective precipitation 𝑃𝑟𝑒 (mm d-1) generated by
overflow once the maximum interception capacity (𝑆𝑖𝑚𝑎𝑥 ) is exceeded, together with
𝑀𝑠𝑛𝑜𝑤 , enters the unsaturated root-zone 𝑆𝑢 (mm). From 𝑆𝑢 water can then be released
as vapor via a combined soil evaporation and transpiration flux 𝐸𝑎 (mm d-1). Drainage
of liquid water from 𝑆𝑢 can either recharge the groundwater 𝑆𝑠 (mm) over a percolation
flux 𝑅𝑝𝑒𝑟𝑐 (mm d-1) and a faster preferential recharge 𝑅𝑝𝑟𝑒𝑓 (mm d-1). Alternatively, it
can be routed via 𝑅𝑢𝑓 (mm d-1) to a faster responding component 𝑆𝑓 (mm) from where
it is directly released to the stream as 𝑄𝑓 (mm d-1), representing lateral preferential flow.
Rain and snow melt entering the wetland HRU directly reach 𝑆𝑢. Soil moisture levels in
the wetland 𝑆𝑢 are further sustained by a fraction of groundwater 𝑅𝑐𝑎𝑝 (mm d-1) that is
upwelling into 𝑆𝑢 from 𝑆𝑠 (e.g., Hulsman et al., 2021a). The detailed equations of the
model are provided as Table 2.2.
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model parameters are shown in red. All symbols are described in Table 2.3.
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To balance the need for spatial detail to some extent with the adverse effects of
increased parameter uncertainty (e.g. Beven, 2006) and computational capacity, we here
implemented the hydrological model in parallel in the four precipitation zones P1 – P4
and forced it with the corresponding input (e.g. P, tracers) for each precipitation zone as
described in section 2.2.1. Each precipitation zone was further discretized (1) into 100 m
elevation zones for a stratified representation of the snow storage 𝑆𝑠𝑛𝑜𝑤 (e.g. Mostbauer
et al., 2018) and (2) into three HRUs, i.e., forest, grassland, wetland as described in
section 2.2.2 (Fig. 2.2; e.g. Gharari et al., 2014; Hanus et al., 2021). Rain 𝑃𝑟𝑎𝑖𝑛 and
melt water 𝑀𝑠𝑛𝑜𝑤 from the different elevation zones was aggregated according to their
associated spatial weights in each elevation zone. This total liquid water input was then
routed through the three parallel HRUs. In total, there are therefore 12 individual,
parallel model components, i.e., three HRUs in each of the four precipitation zones, not
counting the elevation zones for the snow module. All flux and storage variables of the
12 components are weighted according to their areal fractions. While each of the three
HRUs was characterized by individual parameters (e.g. Gao et al., 2016; Prenner et al.,
2018), the same parameter values were used in all four precipitation zones in distributed
moisture accounting approach (e.g. Ajami et al., 2004; Euser et al., 2015; Hulsman et al.,
2021b; Roodari et al., 2021). Overall, the spatially distributed implementation has 19
model parameters, including five global parameters (𝑇𝑡 , 𝐶𝑚𝑒𝑙𝑡 , 𝐶𝑎, 𝐾𝑠 and 𝑆𝑠,𝑝) that are
identical for each HRU and 14 HRU-specific parameters (Table 2.3; Fig. 2.2).
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3 Vegetation adaptation to climatic variability: Testing the effects of temporal evolution

of root zone storage capacity on long-term hydrological response

Summary
Climatic variability can considerably affect the catchment-scale root zone storage
capacity (𝑆𝑢𝑚𝑎𝑥 ) which is a critical factor regulating latent heat fluxes and thus the
moisture exchange between land and atmosphere as well as the hydrological response
and biogeochemical processes in terrestrial hydrological systems. However, direct
quantification of changes in 𝑆𝑢𝑚𝑎𝑥 over long time periods and the mechanistic drivers
thereof at the catchment-scale are missing so far. As a consequence, it remains unclear
how climatic variability, such as precipitation regime or canopy water demand, affects
𝑆𝑢𝑚𝑎𝑥 and how fluctuations in 𝑆𝑢𝑚𝑎𝑥 may influence the partitioning of water fluxes
and therefore, also affect the hydrological response at the catchment-scale. Based
on long-term daily hydrological records (1953-2022) in the Upper Neckar river basin
in Germany, it was found that variability in hydroclimatic conditions, with aridity
index 𝐼𝐴 (i.e. 𝐸𝑃/𝑃 ) ranging between ∼ 0.9 and 1.1 over multiple consecutive 20-year
periods was accompanied by deviations Δ𝐼𝐸 between -0.02 and 0.01 from the expected 𝐼𝐸
inferred from the long-term parametric Budyko curve. Similarly, fluctuations in 𝑆𝑢𝑚𝑎𝑥 ,
ranging between ∼95 and 115 mm or ∼20%, were observed over the same time period.
While uncorrelated with long-term mean precipitation and potential evaporation, it was
shown that the magnitude of 𝑆𝑢𝑚𝑎𝑥 is controlled by the ratio of winter over summer
precipitation (𝑝 < 0.05). In other words, 𝑆𝑢𝑚𝑎𝑥 in this basin does not depend on the
overall wetness condition as for example expressed by 𝐼𝐴, but rather on how water
supply by precipitation is distributed over the year. However, fluctuations in 𝑆𝑢𝑚𝑎𝑥 were
found to be uncorrelated with observed changes in Δ𝐼𝐸 . Consequently, replacing a
long-term average, time-invariant estimate of 𝑆𝑢𝑚𝑎𝑥 with a time-variable, dynamically
changing formulation of that parameter in a hydrological model did not result in an
improved representation of the long-term partitioning of water fluxes, as expressed by
𝐼𝐸 (and fluctuations Δ𝐼𝐸 thereof), nor in an improved representation of the shorter-term
response dynamics.

Overall, this chapter provides quantitative mechanistic evidence that 𝑆𝑢𝑚𝑎𝑥
significantly changes over multiple decades reflecting vegetation adaptation to climatic
variability. However, this temporal evolution of 𝑆𝑢𝑚𝑎𝑥 cannot explain long-term
fluctuations in the partitioning of water (and thus latent heat) fluxes as expressed by
deviations Δ𝐼𝐸 from the parametric Budyko curve over multiple time periods with
different climatic conditions. Similarly, it does not have any significant effects on
shorter term hydrological response characteristics of the upper Neckar catchment. This
further suggests that accounting for temporal evolution of 𝑆𝑢𝑚𝑎𝑥 with a time-variable
formulation of that parameter in a hydrological model does not improve its ability
to reproduce the hydrological response and may therefore be of minor importance to
predict the effects of a changing climate on the hydrological response in the study
region over the next decades to come.
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3.1 Introduction

V egetation is a key component of the terrestrial hydrological cycle as it shapes
the hydrological functioning of catchments by regulating the long-term average

partitioning of water into drainage and evaporative fluxes (i.e. latent heat), frequently
expressed as runoff ratio 𝐶𝑟 = 𝑄/𝑃 [-] and evaporative index 𝐼𝐸 = 1−𝑄/𝑃 = 𝐸𝐴/𝑃 [-],
respectively. More specifically, vegetation transpiration, that in spite of uncertainties
(Coenders-Gerrits et al., 2014) globally constitutes the largest fraction of all evaporative
fluxes (Jasechko, 2018), is systematically controlled by the interplay between canopy
water demand and water supply from the subsurface (Donohue et al., 2007; Yang
et al., 2016; Jaramillo et al., 2018; Mianabadi et al., 2019). To survive, vegetation
needs continuous access to water stored in the subsurface and accessible to roots to
satisfy its canopy water demand. As a consequence, the vegetation present at any
moment, and in particular its active root system, reflects its successful adaptation to
the prevalent climatic conditions in a region (Laio et al., 2001; Schenk and Jackson,
2002; Rodríguez-Iturbe and Porporato, 2007; Donohue et al., 2007; Gentine et al., 2012;
Liancourt et al., 2012). Irrespective of geometry, distribution or structure of root systems,
the maximum vegetation-accessible water storage volume in the unsaturated root zone
of the subsurface, hereafter referred to as root zone storage capacity 𝑆𝑢𝑚𝑎𝑥 [mm],
represents the hydrologically relevant information of root systems (Rodríguez-Iturbe
and Porporato, 2007; Nijzink et al., 2016a; Savenije and Hrachowitz, 2017; Gao et al.,
2024). Therefore, the 𝑆𝑢𝑚𝑎𝑥 is directly reflects the hydrologically relevant information of
root-systems at the catchment-scales. In response to a changing environment, these root
systems of vegetation continuously adapt to allow the most efficient use of available
energy and resources for surviving. The driving factors of changes in root systems
are thus also the driving factors for changes in 𝑆𝑢𝑚𝑎𝑥 , as 𝑆𝑢𝑚𝑎𝑥 inherently represents
adaptations of the root system.

As a central part of hydrological systems, 𝑆𝑢𝑚𝑎𝑥 is also a critical parameter in
hydrological and land-surface models. As such, it can, in principle, be estimated as a
function of root depths and the subsurface pore volume between field capacity and
permanent wilting point (Scrivner and Ruppert, 1970; Sivandran and Bras, 2012, 2013).
However, these data are typically not available at sufficient levels of detail. Alternatively,
catchment-scale 𝑆𝑢𝑚𝑎𝑥 can be estimated by three broad approaches. Firstly, it can be
obtained by calibration as parameter of a hydrological model (Nijzink et al., 2018;
Bouaziz et al., 2020; Wang et al., 2023; Sriwongsitanon et al., 2023; Roberts et al., 2021;
Bahremand and Hosseinalizadeh, 2022; Sadayappan et al., 2023; Tong et al., 2022).
Secondly, based on optimality principles, there are some variables like transpiration,
nitrogen uptake or carbon gain that can be maximized to quantify 𝑆𝑢𝑚𝑎𝑥 (Guswa, 2008;
McMurtrie et al., 2012; Sivandran and Bras, 2012; Yang et al., 2016; Speich et al., 2018).
Thirdly, 𝑆𝑢𝑚𝑎𝑥 can be robustly estimated at the catchment scale directly from annual
water deficits based on observed hydro-climatic data, i.e. precipitation and transpiration
(e.g., Donohue et al., 2012; Gentine et al., 2012; Gao et al., 2014a; De Boer-Euser et al.,
2016; Nijzink et al., 2016a; Dralle et al., 2021; McCormick et al., 2021; Hrachowitz et al.,
2021; Stocker et al., 2023; Van Oorschot et al., 2021; Van Oorschot et al., 2024). For
applications of hydrological and land-surface models 𝑆𝑢𝑚𝑎𝑥 (or equivalent parameters)
has, except for very few exceptions (Wagener et al., 2003; Merz et al., 2011; Bouaziz
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et al., 2022; Tempel et al., 2024) been assumed constant over time. As a major knowledge
gap, it remains so far unknown if 𝑆𝑢𝑚𝑎𝑥 follows climatic variability and evolves over
time, thereby reflecting vegetation adaptation to changing conditions.

In contrast, it is well understood that, due to the importance of vegetation for the
hydrological functioning of terrestrial systems, anthropogenic land use management
practices, such as de- and afforestation (Brown et al., 2005; Brath et al., 2006; Fenicia
et al., 2009; Alila et al., 2009; Jaramillo et al., 2018; Teuling et al., 2019; Stephens et al.,
2021; Hoek van Dijke et al., 2022; Ellison et al., 2024) or irrigation (e.g. AghaKouchak
et al., 2015; Van Loon et al., 2016; Roodari et al., 2021) can induce major shifts in
the partitioning between the major components of the terrestrial water and energy
cycles, and thus between 𝐼𝐸 and 𝐶𝑟 . Two detailed recent studies with well documented
information on deforestation in several experimental catchments could establish explicit
mechanistic links between the reduction of 𝑆𝑢𝑚𝑎𝑥 by > 50% following deforestation and
decreases in 𝐼𝐸 (and thus increases in 𝐶𝑟 ) from ∼ 0.4 – 0.5 to ∼ 0.1 – 0.3, depending on
the catchment and the scale of deforestation (Nijzink et al., 2016a; Hrachowitz et al.,
2021).

Mapping the shifts to lower 𝐼𝐸 that followed these land conversions from forest to
grass- and rangeland type vegetation as a function of the aridity index 𝐼𝐴 = 𝐸𝑃/𝑃 in the
Budyko framework (Schreiber, 1904; Ol’Dekop, 1911; Budyko, 1974) corresponds well to
the results of previous studies that suggest that, across the world, catchments dominated
by grass exhibit consistently lower 𝐼𝐸 at the same 𝐼𝐴 than forest environments (e.g.
Zhang et al., 2001, Zhang et al., 2004a; Oudin et al., 2008). These differences in long-term
average 𝐼𝐸 are accounted for by parametric reformulations of the Budyko framework,
such as the Tixeront-Fu equation (Tixeront, 1964; Fu, 1981). The lumped parameters
(here: 𝜔) of these expressions define long-term average catchment-specific positions in
the 𝐼𝐴 – 𝐼𝐸 space. As such, the parameters are typically interpreted to encapsulate
vegetation characteristics and all other hydro-climatic and physiographic properties
of individual catchments besides 𝐼𝐴 (e.g. Roderick and Farquhar, 2011; Berghuijs and
Woods, 2015). A frequent assumption is that with changes in climatic conditions, here
represented by 𝐼𝐴, individual catchments can be expected to move to the associated
new positions 𝐼𝐸 , following their specific trajectories defined by 𝜔 (e.g. Zhou et al.,
2015; Bouaziz et al., 2022). However, several studies have demonstrated that catchments
in many regions world-wide experience deviations Δ𝐼𝐸 from their expected new 𝐼𝐸

following a change in 𝐼𝐴 (e.g. Jaramillo and Destouni, 2014; Van der Velde et al., 2014;
Jaramillo et al., 2018; Reaver et al., 2022; Ibrahim et al., 2024; Tempel et al., 2024).

From the above the following questions arise: (1) following the notion that
vegetation, i.e. individual plants but also the species composition of plant communities,
continuously adapts to climatic conditions, does catchment-scale root zone storage
capacity 𝑆𝑢𝑚𝑎𝑥 change over multi-decadal time scales? (2) do multi-decadal changes
in the vegetation response, expressed by changes in 𝑆𝑢𝑚𝑎𝑥 , explain deviations Δ𝐼𝐸

from expected 𝐼𝐸? (3) does a time-variable representation of 𝑆𝑢𝑚𝑎𝑥 as parameter
in a hydrological model improve the models’ ability to reproduce the hydrological
response?

Building on previous studies, the objectives of this chapter are therefore to provide
an analysis of multi-decadal changes in 𝑆𝑢𝑚𝑎𝑥 as a result of changing climatic conditions
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over a 70-year period (1953 – 2022), and how this further affects hydrological dynamics.
More specifically, three hypotheses are tested: (1) 𝑆𝑢𝑚𝑎𝑥 significantly changes over
multiple decades reflecting vegetation adaptation to climatic variability, (2) changes in
𝑆𝑢𝑚𝑎𝑥 affect the long-term partitioning of drainage and evaporation and thus control
deviations Δ𝐼𝐸 from the catchment-specific trajectory in the Budyko space and (3) a
time-dynamic implementation of 𝑆𝑢𝑚𝑎𝑥 improves the representation of streamflow in a
hydrological model.

3.2 Study area
The hypotheses are tested in the Upper Neckar basin in South-West Germany (Fig. 3.1),
due to availability of the essential long-term hydrometeorological data. Covering an
area of ∼4000 km2, this basin is upper part of the entire Neckar basin described in
Chapter 2, with the similar landscape composition and similar climatic characteristics
(Table 3.1). This basin is characterized by a temperate-humid climate, with warm, wet
summers (from May to October) and cold, drier winters (from November to April), more
detailed climatic information is described in Table 3.2.
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Figure 3.1: (a) Elevation of the Neckar catchment with discharge and hydro-meteorological stations as well
as the water sampling locations used in this study, (b) the spatial distribution of long-term mean annual
precipitation in the upper Neckar catchment and the stratification into three distinct precipitation zones P1
– P3 (black outline), and the red outlines indicate three sub-catchments (C1:Rottweil, C2: Plochingen
at Files river, and C3: Horb) within the upper Neckar basin, (c) hydrological response units classified
according to their land-cover and topographic characteristics.
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Table 3.1: Characteristics of the Upper Neckar catchment in Germany.

Characteristics
Latitude (N) 48

◦
2
′
0
′′ - 48

◦
46

′
59

′′

Longitude (E) 8
◦
18

′
45

′′ - 9
◦
56

′
33

′′

Area (km2) 3968
Average annual precipitation (mm yr-1) 880
Average annual temperature (°C) 8.39
Elevation range (m) 250-1019
Mean elevation (m) 554
Slope range (°) 0-53
Mean slope (°) 5.80
Forest dominated land (%) 39.6
Grass dominated land (%) 49.6
Wetland (%) 10.8

3.3 Data sets
Daily hydro-meteorological data were available for the period 01/01/1953 – 31/12/2022
(Fig. 3.2). Daily precipitation and daily mean air temperature were obtained from
stations operated by the German Weather Service (DWD). Precipitation was recorded at
15 stations and temperature measurements were available at 8 stations (Fig. 3.1) in
or close to the study basin. Daily potential evaporation 𝐸𝑃 (mm d-1) was estimated
using the Hargreaves equation based on the observed daily maximum and minimum
temperature, which has been used in many previous studies and shown to be a suitable
method for modelling applications (Oudin et al., 2005). Daily mean discharge data for
the period 01/01/1953 – 31/12/2022 at the outlet of the upper Neckar basin at Plochingen
station were provided by the German Federal Institute of Hydrology (BfG). In addition,
to test the representation ability of the hydrological model on spatial hydrological
response differences, data of daily mean discharge for the same time period from three
sub-catchments within the upper Neckar basin (Fig. 3.1) at the gauges Rottweil (C1; 422
km2), Plochingen at the Fils river (C2; 706 km2) and Horb (C3; 1111 km2) were available
from the Environmental Agency of the Baden-Württemberg region (LUBW).

Based on the CORINE Land Cover data set of the upper Neckar river basin during
the period 01/01/1953 – 31/12/2022 (https://land.copernicus.eu/pan-european/corine-land-
cover), there is only very minor change (< 2%) for all defined land cover classes (Fig. 3.1c).
The 90 m × 90 m digital elevation model of the study region (Fig. 3.1a) was obtained
from the HDMA database of the USGS (Verdin, 2017; https://doi.org/10.5066/F7S180ZP)
and used to derive the local topographic indices including height above nearest drainage
(HAND) and slope.
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Figure 3.2: (a) Time series of observed monthly precipitation 𝑃 ; (b) daily cumulative evaporative fluxes for
entire time period (1953-2022), where the dark brown line indicates potential evaporation 𝐸𝑃 and the
yellow lines and the light orange shaded areas show the actual evaporation 𝐸𝐴 modelled using the best
fit parameter sets and the associated 5th/95th percentiles of all feasible solutions calibrated based on
entire time period; (c) monthly maximum values of snow water equivalent (SWE) for 1953-2022 time
period where green line indicates the most balanced solution and light green shade indicates the 5th/95th
inter-quantile range obtained from all Pareto optimal solutions calibrated based on entire time period; (d)
observed (blue line) and modelled daily streamflow 𝑄; red line indicates the most balanced solution and
the shaded area indicates the 5th/95th percentile of all feasible solutions calibrated based on entire time
period, respectively; the different green background shades from lighter to darker indicate sub-time periods
from 𝑡1 to 𝑡4; (e) and (f) zoom-in to the observed and modelled streamflow for the selected wet year(light
gray shade, 01/01/1988 – 31/12/1988) and dry year (gray shade, 01/01/2003 – 31/12/2003) respectively.
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Table 3.2: Mean annual precipitation 𝑃 , potential evaporation 𝐸𝑃 , temperature 𝑇𝑀 , aridity index 𝐼𝐴 ,
evaporative index 𝐼𝐸 , parameter 𝜔 for parametric Budyko framework, root zone storage capacity 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵

and 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙 based on respectively water balance data and hydrological model calibration for scenario 1
(entire time period T: 1953-2022) and scenario 2 (four sub-periods t1:1953-1972, t2:1973-1992, t3:1993-2012,
and t4:2013-2022).

Scenario 1 Scenario 2
T (1953-2022) t1 (1953-1972) t2 (1973-1992) t3 (1993-2012) t4 (2013-2022)

𝑃 (mm yr-1) 876 870 907 915 811
𝐸𝑃 (mm yr-1) 867 836 840 884 906
𝑇𝑀 (°C) 8.4 7.4 7.9 8.7 9.5
𝐼𝐴(-) 0.97 0.96 0.93 0.97 1.12
𝐼𝐸 (-) 0.57 0.58 0.56 0.56 0.59
𝜔 (-) 1.95 2.01 1.98 1.93 1.89

𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 (mm) 105 95 115 95 100
𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙 (mm) 116 98 123 99 107

3.4 Methods
To explore the climatic variability and the fluctuations of the key vegetation parameter,
i.e. the root zone storage capacity 𝑆𝑢𝑚𝑎𝑥 over long time scales, the available data record
1953-2022 was divided into four subsequent sub-periods (𝑡1 – 𝑡4 in Table 3.2). To
be survive, root systems of vegetation and the associated vegetation-accessible water
storage capacity 𝑆𝑢𝑚𝑎𝑥 respond to the ever-changing conditions of its environment.
However, as these changes occur at landscape scale and are mostly reflected by changes
in the composition of plant species present in a specific spatial domain, fluctuations in
𝑆𝑢𝑚𝑎𝑥 occur largely at time-scales that reflect the life-cycles of individual plants. Thus,
periods of at least 20-years are required to reflect this and to allow for meaningful
estimates of 𝑆𝑢𝑚𝑎𝑥 , as also demonstrated by many other studies (e.g. Gao et al., 2014c;
Wang-Erlandsson et al., 2016; Singh et al., 2020; Stocker et al., 2023). Therefore, it is
necessary to strike a balance between the number of independent time periods (here: 𝑡1
– 𝑡4) and the robustness of the associated 𝑆𝑢𝑚𝑎𝑥 estimates.

This chapter deliberately chose to emphasize fewer but longer time periods and
thus rather reliable estimates of 𝑆𝑢𝑚𝑎𝑥 . For the main objectives of this chapter, the
following stepwise approach is designed: (1) Estimate the observed deviations Δ𝐼𝐸 from
the long-term average expected 𝐼𝐸 for four consecutive periods 𝑡1 – 𝑡4 in the study
period (Table 3.2), (2) Estimate the root zone storage capacity over the entire study
period (𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑇 ) as well as for the four individual periods 𝑡1 – 𝑡4 (𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡 ) based
on observed water balance data, (3) Estimate the root zone storage capacity over the
entire study period (𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑇 ) and the four individual periods 𝑡1 – 𝑡4 (𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑡 ) by
calibration of a hydrological model over the respective time periods to evaluate whether
the changes in calibrated 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙 reflect changes in 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 directly estimated from
water balance data from step (2), (4) Estimate the modelled deviations (Δ𝐼

𝐸,𝑚𝑇 ,𝑂
′ ) from

expected 𝐼𝐸 using both, a long-term average time-invariant 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑇 and individual
𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡 for the four periods 𝑡1 – 𝑡4 as model parameters.
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3.4.1 Estimation of the temporal trajectory in the Budyko
framework

Mapping aridity 𝐼𝐴 = 𝐸𝑃/𝑃 , where 𝐸𝑃 is potential evaporation [mm d-1] and 𝑃 is
precipitation [mm d-1], against the evaporative index 𝐼𝐸 = 𝐸𝐴/𝑃 = 1−𝑄/𝑃 , where 𝐸𝐴 is
actual evaporation [mm d-1] and 𝑄 is stream flow [mm d-1], the Budyko framework is
an expression of the long-term average water balance for a catchment. It is based on the
assumption of negligible storage change over the averaging time period, i.e. 𝑑𝑆/𝑑𝑡 ∼ 0.
As demonstrated by Han et al. (2020), this assumption holds for averaging periods
≥ 10 years for a large majority of catchments worldwide. Note, that hereafter the term
evaporation is used to refer to all combined evaporative fluxes, including interception
and soil evaporation (𝐸𝑖) as well as transpiration (𝐸𝑇 ), following the terminology
proposed by Savenije (2004) and Miralles et al. (2020).

The analysis in this paper is based on the parametric Tixeront-Fu formulation of
the Budyko framework (Tixeront, 1964; Fu, 1981):

𝐼𝐸,𝑇 = 1+ 𝐼𝐴,𝑇 −(1+ 𝐼
𝜔𝑇

𝐴,𝑇
)
1−𝜔𝑇 (3.1)

where 𝐼𝐸,𝑇 is the observed evaporative index based over a chosen averaging period
𝑇 , 𝐼𝐴,𝑇 is the observed aridity index over the same period and 𝜔𝑇 is the associated
catchment-specific parameter that represents all combined catchment properties other
than 𝐼𝐴.

In a theoretical catchment that only experiences changes in 𝐼𝐴 and no changes in
any other hydro-climatic and/or physical catchment characteristics, it can be assumed
that 𝜔𝑇 remains constant over time so that 𝜔𝑇 = 𝜔𝑡𝑖

= 𝜔𝑡𝑖+1
. This implies that following

a disturbance Δ𝐼𝐴 in a subsequent time period 𝑡𝑖+1 the catchment stays on its specific
curve defined by 𝜔𝑇 , to a new 𝐼𝐸,𝑡𝑖+1

. In such a case, 𝜔𝑇 can thus be used to predict
future hydrological partitioning 𝐼𝐸 . Based on this assumption, the complete available
hydro-climatic data record is used to estimate the long-term average 𝜔𝑂𝑇 as reference
over the entire 1953 – 2022 study period. The sub-division into the four time periods 𝑡1
– 𝑡4: as shown in Table 3.2, then allowed to estimate the expected 𝐼

𝐸,𝑡
′

𝑖

in the individual
periods 𝑡1 – 𝑡4: depending on the shift in the observed aridity index along the x-axis
in ti (Δ𝐼𝐴,𝑇 ,𝑡𝑖 = 𝐼𝐴,𝑡𝑖 −𝐼𝐴,𝑇 ), a catchment will move along its parametric Budyko curve
defined by 𝜔𝑂𝑇 to a new expected position 𝐼

𝐸,𝑡
′

𝑖

(Fig. 3.3).
Based on the available data we then estimate the individual observed 𝐼𝐸,𝑡𝑖 together

with the associated 𝜔𝑡𝑖 for each of the four time periods 𝑡1 – 𝑡4 (Fig. 3.4) For each
of the four time periods 𝑡1 – 𝑡4 the deviation of 𝐼𝐸,𝑡𝑖 from the catchment-specific
expected 𝐼

𝐸,𝑡
′

𝑖

,corresponding to a shift from 𝜔𝑇 to 𝜔𝑡𝑖 ≠ 𝜔𝑇 was then computed as
Δ𝐼
𝐸,𝑡𝑖 ,𝑡

′

𝑖

= 𝐼𝐸,𝑡𝑖
−𝐼

𝐸,𝑡
′

𝑖

.



3

30
3 Vegetation adaptation to climatic variability: Testing the effects of temporal evolution

of root zone storage capacity on long-term hydrological response

0 . 0 1 . 00 . 0

1 . 0

I E , t i

I E , t i '

W a t e r  l i m i t

E n e r g
y  l i m

i t

� t i

� T

t i

t i '

I E [
-]

I A  [ - ]

T

( I A ) T  ( I A ) t i

� � � E , t i , t i '

� � � � A ) T , t i

Figure 3.3: Representation of the Budyko space, which shows the evaporative index (𝐼𝐸 = 1−Q/𝑃 ) as a
function of the aridity index (𝐼𝐴 = 𝐸𝑃/𝑃 ) and the water and energy limit. A catchment with the long term
mean aridity index 𝐼𝐴,𝑇 = 𝐸𝑃,𝑇 /𝑃𝑇 and evaporative index 𝐼𝐸,𝑇 = 1−𝑄𝑇 /𝑃𝑇 , which is derived from observed
entire-time-period data, plots at location 𝑇 on the parametric Budyko curve with 𝜔𝑇 (yellow line) as the
baseline. Based on observed sub-time-period data, with the aridity index 𝐼𝐴,𝑡𝑖 = 𝐸𝑃,𝑡𝑖/𝑃𝑡𝑖 and evaporative
index 𝐼𝐸,𝑡𝑖 = 1−𝑄𝑡𝑖

/𝑃𝑡𝑖
, the same catchment plots at location 𝑡𝑖 on the parametric Budyko curve with 𝜔𝑡𝑖

(green line). A movement in the Budyko space towards 𝑡′
𝑖
along the 𝜔𝑇 curve is shown as a result of a

change in the aridity index 𝐼𝐴,𝑡𝑖 with the assumption that the long-term mean Budyko curve trajectory and
the parameter 𝜔 is transferable across time for an individual catchment, which results in a significant
deviation Δ𝐼

𝐸,𝑡𝑖 ,𝑡
′

𝑖

between the observed evaporative index 𝐼𝐸,𝑡𝑖 and the predicted evaporative index 𝐼
𝐸,𝑡

′

𝑖

.

Figure 3.4: (a) Green dots from light "•" to dark "•" indicate the observed positions for four sub-time
periods from 𝑡1 to 𝑡4. The black dot "•" 𝑡′

4
indicates the expected location on the parametric Budyko curve

with 𝜔𝑇 derived from observed entire time period. We select time period 𝑡4 as an example to present the
modelled positions in the zoom-in plot (b). The gray dot "•" 𝑡4,𝑚𝑇 indicates the modelled position based on
cenario 1 which is with 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑇 , and the orange dot "•" 𝑡4,𝑚𝑡 indicates the modelled position based on
scenario 2 which is with 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡4

. Δ𝐼
𝐸,𝑚𝑇 ,𝑂

′ (black arrow) indicates the deviation between modelled
𝐼𝐸,𝑚𝑇 ("•") based on Scenario 1 and expected 𝐼

𝐸,𝑂
′ ("•"). Δ𝐼

𝐸,𝑚𝑡,𝑂
′ (orange arrow) indicates the deviation

between modelled 𝐼𝐸,𝑚𝑡 ("•") based on Scenario 2 and expected 𝐼
𝐸,𝑂

′ ("•"), Δ𝐼𝐸,𝑚𝑇 ,𝑂 (gray arrow) indicates
the deviation between modelled 𝐼𝐸,𝑚𝑇 ("•") based on Scenario 1 and observed 𝐼𝐸,𝑂 ("•"), Δ𝐼𝐸,𝑚𝑡,𝑂 (green
arrow) indicates the deviation between modelled 𝐼𝐸,𝑚𝑡 ("•") based on Scenario 2 and observed 𝐼𝐸,𝑂 ("•").



3.4 Methods

3

31

3.4.2 Estimation of root zone storage capacity derived by
water balance method

The root zone storage capacity is the maximum volume of water which can be held
in soil pores of the unsaturated zone and which is accessible to root systems of
vegetation for transpiration. Here the water balance method that is in detail described
in previous papers (e.g. Gao et al., 2014a; Nijzink et al., 2016a; De Boer-Euser et al.,
2016; Wang-Erlandsson et al., 2016; Bouaziz et al., 2020; Hrachowitz et al., 2021) is
used to determine 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵. Briefly, 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 is estimated based on daily observations
of precipitation (𝑃 ), potential evaporation (𝐸𝑃 ) and stream flow (𝑄). As a first step,
effective precipitation 𝑃𝑒 [mm d-1] that enters the subsurface is computed by accounting
for interception evaporation by:

𝑃𝑒(𝑡) = 𝑃(𝑡)−𝐸𝑖(𝑡)−𝑑𝑆𝑖/𝑑𝑡 (3.2)

where 𝐸𝑖 (mm d-1) is daily interception evaporation, 𝑆𝑖 (mm) is the interception
storage.

For each time step, 𝐸𝑖 is determined by:

𝐸𝑖(𝑡) =

{

𝐸𝑃 (𝑡) if 𝐸𝑃𝑑𝑡 < 𝑆𝑖
𝑆𝑖

𝑑𝑡
if 𝐸𝑃𝑑𝑡 ≥ 𝑆𝑖

(3.3)

Then further to estimate the effective precipitation 𝑃𝑒 (mm d-1) according to:

𝑃𝑒(𝑡) =

{

0 if 𝑆𝑖 < 𝑆𝑖𝑚𝑎𝑥
𝑆𝑖−𝑆𝑖𝑚𝑎𝑥

𝑑𝑡
if 𝑆𝑖 ≥ 𝑆𝑖𝑚𝑎𝑥

(3.4)

where 𝑆𝑖𝑚𝑎𝑥 (mm) is the maximum interception storage. As 𝑆𝑢𝑚𝑎𝑥 is not very
sensitive to the choice of 𝑆𝑖𝑚𝑎𝑥 as previously shown by Hrachowitz et al., 2021 and
Bouaziz et al., 2022, we used here a value of 𝑆𝑖𝑚𝑎𝑥 = 2 mm, which was previously also
used by de De Boer-Euser et al. (2016). Hereafter, the long-term mean transpiration (𝐸𝑟
(mm d-1) is estimated from the long-term water balance, with the assumption of no
additional gains or losses:

𝐸𝑟 = 𝑃𝑒 −𝑄𝑜 (3.5)

where 𝑃𝑒 (mm d-1) is the long-term mean effective precipitation and 𝑄𝑂 (mm d-1)
is the long-term mean observed streamflow. Considering the seasonal fluctuation of
energy input, the daily transpiration 𝐸𝑟 (mm d-1) is estimated by subsequently scaling
the daily potential evaporation 𝐸𝑃 (mm d-1) minus the interception evaporation 𝐸𝑖 (mm
d-1) (see Eqs 3.2&3.3) by the long-term mean transpiration 𝐸𝑟 (mm d-1), according to
(Bouaziz et al., 2022, Hrachowitz et al., 2021):

𝐸𝑟 (𝑡) =

𝐸𝑟

𝐸𝑃 −𝐸̄𝑖 (𝐸𝑃 −𝐸𝑖)

(3.6)
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Where 𝐸𝑃 (mm d-1) is the long-term mean potential evaporation, 𝐸̄𝑖 (mm d-1) is the
long-term mean interception evaporation. From daily storage deficits 𝑆𝑟𝑑,𝑛(𝑡) (mm)
during dry periods, estimated as the cumulative sum of daily effective precipitation
𝑃𝑒 (mm d-1) minus transpiration 𝐸𝑟 (mm d-1), the maximum storage deficit 𝑆𝑟𝑑,𝑛 of a
specific year 𝑛 is then computed as follows:

𝑆𝑟𝑑,𝑛 =

{

∫
𝑡
0,𝑑

𝑡0,𝑤

(𝑃𝑒(𝑡)−𝐸𝑟 (𝑡))𝑑𝑡, if ∫
𝑡
0,𝑑

𝑡0,𝑤

(𝑃𝑒(𝑡)−𝐸𝑟 (𝑡))𝑑𝑡 ≤ 0

0 if ∫
𝑡
0,𝑑

𝑡0,𝑤

(𝑃𝑒(𝑡)−𝐸𝑟 (𝑡))𝑑𝑡 > 0

(3.7)

𝑆𝑟𝑑,𝑛 =max(|𝑆𝑟𝑑,𝑛(𝑡)|) (3.8)

Where 𝑡 is the time step (d), 𝑡0,𝑤 is the day at the end of the wet period when the
storage deficits are zero but 𝑃𝑒(𝑡)−𝐸𝑟 (𝑡) < 0 , and 𝑡0,𝑑 is the day when storage deficits
return to zero again after the begin of the next wet period when the water supply
exceeds canopy water demand, i.e., (𝑃𝑒(𝑡)−𝐸𝑟 (𝑡)) > 0. Any cumulative precipitation
surplus is assumed to be drained from root zone and released from the system either
directly as streamflow or via recharge of the groundwater.

The Gumbel extreme value distribution (Gumbel, 1941) was previously used for
estimating the root zone storage capacity through the water balance approach by
several other studies (Gao et al., 2014c; Nijzink et al., 2016a; De Boer-Euser et al., 2016;
Bouaziz et al., 2020, Bouaziz et al., 2022; Hrachowitz et al., 2021). Based on fitting the
Gumbel distribution to the maximum annual storage deficits for all n years during one
of the four time periods 𝑡1 – 𝑡4, the root zone storage capacity 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 can be derived
from various return periods of the sequence of n maximum annual storage deficits 𝑆𝑟𝑑 .
Previous studies suggested that vegetation develops root zone storage capacities large
enough to survive in dry spells with return periods of ∼ 20 – 40 years (Gao et al.,
2014c; De Boer-Euser et al., 2016; Wang-Erlandsson et al., 2016; Hrachowitz et al., 2021).
Therefore, 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 here is defined as the maximum storage deficit in a 40-year period
so that 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 = 𝑆𝑟𝑑,40𝑦𝑟 .

Using the above water balance based method, the entire study period 1953 – 2022
(𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑇 ) as well as individually for the four time periods 𝑡1 – 𝑡4 (𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡 ) are
determined to quantify potential fluctuations of root zone storage capacity reflecting the
adaptation to changing climatic conditions.

3.4.3 Hydrological model
Model architecture
Given that 𝑆𝑢𝑚𝑎𝑥 is a critical parameter in hydrological models, the semi-distributed,
process-based model, developed in Chapter 2, was also used as the alternative method
for estimating 𝑆𝑢𝑚𝑎𝑥 . It is noted that the same method as Chapter 2 was used to
stratify the Upper Neckar basin into three precipitation zones P1 – P3 by distinct
long-term precipitation pattern (hereafter: precipitation zones), represented in Fig. 3.1b.
Overall, the model consists of snow (𝑆𝑠𝑛𝑜𝑤), interception (𝑆𝑖), unsaturated root zone
(𝑆𝑢), fast responding (𝑆𝑓 ) and slow responding storage (𝑆𝑠) components for each HRU
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and precipitation zone (Figure 2.2 in Chapter 2). The maximum storage volume in
the unsaturated root zone component in each HRU is defined by the corresponding
calibration parameters 𝑆𝑢𝑚𝑎𝑥,𝐹 , 𝑆𝑢𝑚𝑎𝑥,𝐺 and 𝑆𝑢𝑚𝑎𝑥,𝑊 , respectively. The catchment
average 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙 is then inferred by aggregating these parameters according to their
spatial weights. Water can be released from unsaturated root zones as combined soil
evaporation and transpiration flux 𝐸𝑡 (mm d-1) which is a frequently applied way to
represent vegetation water stress (e.g., Bouaziz et al., 2021, Gharari et al., 2013; Gao
et al., 2014a).

Model calibration
The model was run with a daily time step and has 18 calibration parameters. Briefly,
the model parameters were calibrated by using the Borg_MOEA algorithm (Borg
Multi-objective evolutionary algorithm; Hadka and Reed, 2013) and based on uniform
prior distributions (Table 2.3 in Chapter 2). To best reflect different aspects of the
hydrograph, including high flows, low flows and the partitioning of precipitation into
runoff and evaporation, the parameters are calibrated using a multi-criteria approach
that includes 7 objective functions as performance metrics 𝐸𝑄,𝑛 (Table 3.3). There are
multiple ways to deal with sets of pareto front solutions as in detail described by e.g.
(Efstratiadis and Koutsoyiannis, 2010) or (Gharari et al., 2013). We chose to use all
solutions on the Pareto front to obtain a conservative estimate of uncertainty. The 7
performance metrics were subsequently also combined into an overall performance
metric based on the Euclidian distance (𝐷𝐸), where 𝐷𝐸 = 1 indicates a perfect fit. To find
a somewhat balanced solution in absence of more detailed information all individual
performance metrics were here equally weighted (e.g., Hrachowitz et al., 2021; Hulsman
et al., 2021a; Wang et al., 2023):

𝐷𝐸 = 1−

√

∑
𝑁

𝑛=1 (1−𝐸𝑄,𝑛)

2

𝑁

(3.9)

where 𝑁 = 7 is the number of performance metrics with respect to stream flow
(𝐸𝑄,𝑛). Note that the different units and thus different magnitudes of residuals in the
individual performance metrics introduce some subjectivity in finding the most balanced
overall solution according to 𝐷𝐸 (Eq. 3.9).

However, a preliminary sensitivity analysis with varying weights for the individual
performance metrics in 𝐷𝐸 suggested limited influence on the overall results and is thus
not further reported here. In addition, the model was tested for its ability to represent
spatial differences in the hydrological response by evaluating it against streamflow
observations in three sub-catchments (C1 – C3) of the upper Neckar catchment without
further re-calibration whereby each one of the sub-catchments largely represents the
hydrological response from one of the precipitation zones (Fig. 3.1).

The model is calibrated following two distinct calibration scenarios as indicated in
Table 3.2. In the first scenario, the model and thus also 𝑆𝑢𝑚𝑎𝑥,𝐹 , 𝑆𝑢𝑚𝑎𝑥,𝐺 and 𝑆𝑢𝑚𝑎𝑥,𝑊 are
calibrated over the full length of the 70-yr study period from 1953 – 2022. This reflects
the common assumption of a system that is stable over time. By extension, this also
implies that the role of vegetation and thus 𝑆𝑢𝑚𝑎𝑥 does not change and that vegetation
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does not adapt to climatic variability. In the second scenario, individual calibration to
the four time periods 𝑡1 – 𝑡4 allowed to estimate fluctuations in the parameters 𝑆𝑢𝑚𝑎𝑥,𝐹 ,
𝑆𝑢𝑚𝑎𝑥,𝐺 and 𝑆𝑢𝑚𝑎𝑥,𝑊 between the time periods as indicator of vegetation adaption to
changing climatic conditions.

Table 3.3: Signatures of flow and the associated performance metrics used for model calibration and
evaluation. The performance metrics include the Nash–Sutcliffe efficiency (NSE) and the relative error (RE).

Signature Symbol Performance metric
Time series of stream flow 𝑄 𝑁𝑆𝐸𝑄

Time series of log(Q) log(𝑄) 𝑁𝑆𝐸
log(𝑄)

Flow duration curve of log(Q) 𝐹𝐷𝐶
𝑙𝑜𝑔(𝑄)

𝑁𝑆𝐸
𝐹𝐷𝐶 log(𝑄)

Seasonal runoff coefficient 𝐶𝑟 𝑁𝑆𝐸𝐶𝑟

Autocorrelation function of flow (AC) 𝐴𝐶 𝑁𝑆𝐸𝐴𝐶

Runoff coefficient in summer 𝐶𝑟,𝑠𝑢𝑚𝑚𝑒𝑟 𝑅𝐸𝐶𝑟 ,𝑠𝑢𝑚𝑚𝑒𝑟

Runoff coefficient in winter 𝐶𝑟,𝑤𝑖𝑛𝑡𝑒𝑟 𝑅𝐸𝐶𝑟 ,𝑤𝑖𝑛𝑡𝑒𝑟
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Figure 3.5: The annual and seasonal variability (i.e., winter and summer) of selected climatic indices
including annual averages of precipitation (P), potential evaporation (𝐸𝑃 ), estimated snow melt water,
the number of precipitation days (𝑃𝑛𝑢𝑚) and precipitation intensity (𝑃𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ) for four sub-time periods
(𝑡1:1953-1972, 𝑡2:1973-1992, 𝑡3:1993-2012, and 𝑡4:2013-2022). (a) – (e) the annual variability of selected
climatic indices; (f) – (j) the seasonal variability of selected climatic indices in winter periods; (k) – (o) the
seasonal variability of selected climatic indices in summer periods.
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3.5 Results
3.5.1 Observed multi-decadal hydroclimatic variability
Based on the initial analysis of water balance data for four sub-time periods, significant
differences were observed in the variability of different hydroclimatic indicators over
the 1953 – 2022 study period (Fig. 3.5). While periods 𝑡1 and 𝑡4 were characterized by
rather low mean annual precipitation of ∼ 870 and 811 mm yr-1, respectively, periods 𝑡2
and 𝑡3 were subject to, on average, higher precipitation with ∼ 911 mm yr-1. While
summer precipitation remained rather stable over the study period (Fig. 3.5f), the above
was mostly caused by fluctuations in winter precipitation (Fig. 3.5k). In contrast,
potential evaporation 𝐸𝑃 has gradually increased by 7% from 836 to 906 mm yr-1 (Fig.
3.5b). Similarly reflecting increases in temperature (Fig. 3.5b), the annual snowpack and
associated snowmelt have continuously decreased from around 98 mm yr-1 to around
50 mm yr-1 between 𝑡1 and 𝑡4 (Fig. 3.5c). A slight decrease of the number of days
with precipitation from ∼ 264 to 251 (Fig. 3.5d), on average, mostly due to changes in
the summer months (Fig. 3.5n) was accompanied by some rather limited variability
in precipitation intensities (Fig. 3.5e), mostly during winter (Fig. 3.5j). Overall, the
comparatively humid periods 𝑡1 – 𝑡3 that were characterized by 𝐼𝐴 fluctuating between
0.93 – 0.97 were followed by a markedly more arid period 𝑡4 with 𝐼𝐴 = 1.12 (Table 3.2;
Fig. 3.4). In response to the multi-decadal variability in 𝐼𝐴, expressed as movement along
the x-axis in the Budyko framework, the catchment experienced 𝐼𝐸 to vary between 0.56
and 0.59 (Table 3.2; Fig. 3.4). However, this observed variability was somewhat lower
than the variability 𝐼𝐸,𝜔𝑇 = 0.55 – 0.61 that would have been expected based on 𝜔𝑇 .
This illustrates that the hydrological response did not consistently follow its long-term
trajectory defined by 𝜔𝑇 . Instead, deviations Δ𝐼𝐸,𝑡𝑖 from the expected positions, and thus
values of 𝜔𝑡𝑖 that are different to 𝜔𝑇 , were observed for the individual periods. More
specifically, the deviations gradually decreased from Δ𝐼𝐸,𝑡1

= 0.01 in 𝑡1 to Δ𝐼𝐸,𝑡4
= −0.02

in 𝑡4 (Fig. 3.4). This systematic shift towards lower (more negative) Δ𝐼𝐸,𝑡𝑖 and thus also
lower 𝜔𝑡𝑖 indicates that at the same 𝐼𝐴 a smaller fraction of precipitation is released as
evaporation, i.e. 𝐼𝐸 , now than at the start of the 70 year study period. Although the
magnitude of deviations remains with Δ𝐼𝐸,𝑡𝑖

≤ ±0.02 rather minor, similar to what has
been recently reported elsewhere (Ibrahim et al., 2024; Tempel et al., 2024), in particular
their systematic shift into one direction implies that changes in the system other than
𝐼𝐴 have a visible effect on the hydrological response pattern.

3.5.2 Root zone storage capacity 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 estimated from
water balance data

As the baseline of our study, the annual maximum storage deficits fluctuate between 97
mm in 2022 and 16 mm in 1970 (Fig. 3.6a). Assuming an adaptation to dry spells with
40-yr return periods the root zone storage capacity over the entire 1953 – 2022 study
period (Scenario 1) was estimated to 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑇 = 105 mm (Table 3.2; Fig. 3.6b). In the
next step, the storage deficits and the associated root zone storage capacity for each
period 𝑡1 – 𝑡4 was estimated (Scenario 2). 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡1

and 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡3
for periods 𝑡1 and

𝑡3, respectively, are estimated at the same value of 95 mm. In contrast, and somewhat
counterintuitively, the highest value over the study period is found in the wettest period
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(𝑡2) and reaches 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡2
= 115 mm, while the driest period (𝑡4) is characterized by

𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡4
= 100 mm (Table 3.2; Fig. 3.6c-j). These pattern suggest that 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 did

vary by ∼20 mm, equivalent to ∼20% throughout the 1953 - 2022 period. In contrast to
Δ𝐼𝐸,𝑡𝑖

that was characterized by a systematic shift towards more negative deviations
over time, no evidence was found for a systematic, one-directional shift in 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵.
Instead, 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 evolved following a somewhat cyclic pattern.
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Figure 3.6: (a), (c), (e), (g) and (i) The time series of storage deficits as calculated by Eq. 3.7, for entire time
period 𝑇 (1953-2022) and four sub-time periods (green shades from light to dark for time period from 𝑡1 to
𝑡4). The maximum annual deficits are indicated by the dots. (b), (d), (f), (h) and (j) Estimation of 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵

as the storage deficit associated with a 40-year return period using the Gumble extreme value distribution
for different time periods. The orange crosses indicate the values of 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 for different time periods.
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3.5.3 Root zone storage capacity 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙 estimated as
calibration parameter

Model calibration for 1953 – 2022 (Scenario 1)
The model parameter sets obtained as feasible after calibration over the entire 1953-2022
study period in Scenario 1 reproduce the main features of the hydrological response (Fig.
3.2d). More specifically, the modelled hydrographs in particular describe well the timing
of high flows, albeit somewhat underestimating flow peaks for the best-performing
model in terms of the 𝐷𝐸 (Eq. 3.9). The low flows and the shapes of recessions
are in general well captured (𝑁𝑆𝐸log𝑄 = 0.67). Crucially, the model also reproduces
well the other observed stream flow signatures such as the flow duration curves
(𝑁𝑆𝐸log𝐹𝐷𝐶 = 0.96), the autocorrelation function (𝑁𝑆𝐸𝐴𝐶 = 0.99) as well as the long-term
and seasonal runoff coefficients (𝑁𝑆𝐸𝐶𝑟 = 0.90, 𝑅𝐸𝐶𝑟 ,𝑠𝑢𝑚𝑚𝑒𝑟 = 0.83 and 𝑅𝐸𝐶𝑟 ,𝑤𝑖𝑛𝑡𝑒𝑟 = 0.91).
The latter further implies that the modelled long-term actual evaporative fluxes 𝐸𝐴
(Fig. 3.2b) and thus 𝐼𝐸,𝜔𝑇 are, on average, consistent with the observed ones, which
can be seen in Figure 6. The model, calibrated on the overall response of the Upper
Neckar basin, also exhibited considerable skill to represent spatial differences in the
hydrological response by reproducing observed stream flow in the three sub-catchments
(C1 – C3) similarly well (Fig. 3.7) without any further re-calibration. The overall model
skill to mimic the hydrological response corresponds well to a similar implementation
of the model in the greater study region by Wang et al., 2023. The detailed list of
performance metrics is provided in Table 3.4.
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Figure 3.7: Selected model performance metrics in the entire time period 01/01/1953 – 31/12/2022 of the
upper Neckar basins against the model performance in uncalibrated sub-catchment C1: Rottweil, C2:
Plochingen at files river, and C3: Horb based parameter sets derived from the calibration for entire time
period. The dots indicate all pareto optimal solutions in the multi-objective model performance space. The
shades from dark to light indicate the overall model performance based on the Euclidean Distance 𝐷𝐸 , with
the black solutions representing the overall better solutions (i.e. larger 𝐷𝐸).
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The model calibration resulted in pronounced differences in the root zone storage
capacity parameters for three individual landscape classes. While for forest dominated
land it was estimated at 𝑆𝑢𝑚𝑎𝑥,𝐹 = 158 mm for the best performing model (5th/95th
percentile of all feasible solutions: 138–168 mm), it reached 𝑆𝑢𝑚𝑎𝑥,𝐺 = 95 mm (5th/95th:
71 – 123 mm) for grass/cropland and 𝑆𝑢𝑚𝑎𝑥,𝑊 = 61 mm for wetland (5th/95th: 49–68 mm),
which reflects differences in vegetation type and position in the landscape (cf. Fan et al.,
2017). Remarkably, the catchment root zone storage capacity, estimated by aggregating
the individual values according to their areal fractions, came with 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙 = 116 mm
(5th/95th : 99 – 130 mm, Fig. 3.8a) very close to the estimate 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 = 105 mm that is
directly derived from water balance method without any calibration, as described in
section 3.5.2.

3.5.4 Model calibration for individual periods 𝑡1 – 𝑡4

(scenario 2)
The model parameter sets obtained from the individual calibration for each period 𝑡1 - 𝑡4
reproduce the hydrographs of the corresponding periods as well or slightly better than
when using the long-term average parameters from Scenario 1 (see detailed performance
metrics in Table 3.4). In particular, the runoff coefficients could with 𝑁𝑆𝐸𝐶𝑟 ∼ 0.86 –
0.91, 𝑅𝐸𝐶𝑟 ,𝑠𝑢𝑚𝑚𝑒𝑟 ∼ 0.84 – 0.90 and 𝑅𝐸𝐶𝑟 ,𝑤𝑖𝑛𝑡𝑒𝑟 ∼ 0.88 – 0.92 be rather well mimicked.
Similarly, the daily dynamics with 𝑁𝑆𝐸log𝑄 ∼ 0.63 – 0.72 for the best- performing model
of each period and most other hydrological signatures, could be reproduced marginally
better.
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Figure 3.8: (a) 𝑆𝑢𝑚𝑎𝑥 values derived from water-balance method and hydrological model for different time
periods. The yellow boxes from light to dark indicate the range of 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙 for the sub-time period from
𝑡1 to 𝑡4 and entire time period T based on the corresponding parameter sets derived from the model,
yellow dots indicate the corresponding 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑏𝑎𝑙 based on the most balanced solution, and green dots
indicate the corresponding 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 derived from water-balance method. (b) the values of 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑏𝑎𝑙
against 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 . The yellow-green dots from light to dark indicate the values of 𝑆𝑢𝑚𝑎𝑥 for the sub-time
period from 𝑡1 to 𝑡4 and entire time period 𝑇 .
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Figure 3.9: Relationships between the deviations Δ𝐼
𝐸,𝑂,𝑂

′ and the values of 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵 and 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙 for four
sub-time periods (𝑡1-𝑡4) which are respectively derived from the water-balance-method (green circles) and
hydrological model calibration (yellow circles).

The individual calibration over each period 𝑡1 – 𝑡4 resulted in associated differences
in the catchment-scale root-zone storage capacity of each period. Based on the
best-performing models, the calibrated values varied between low values for 𝑡1 and 𝑡2,
with 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑡1 = 98 mm and 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑡3 = 99 mm and higher values for the two other
periods with 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑡2 = 122 mm and 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑡4 = 107 mm (Table 3.2; Fig. 3.8a). The
magnitudes of 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑡𝑖 obtained by calibration in the individual time periods 𝑡1 – 𝑡4
are with a difference of 5 mm (∼ 5%), on average, very close to 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡𝑖

estimated
on basis of the water balance for the same periods. Perhaps even more notably the
temporal evolution of 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑡𝑖 and 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡𝑖

follows the same sequence over time
(𝑅2 = 0.95, 𝑝 = 0.05; Fig. 3.8b).

3.5.5 Effect of 𝑆𝑢𝑚𝑎𝑥 on temporal fluctuation in the
trajectories of the Budyko curve

The deviations Δ𝐼
𝐸,𝑂,𝑂

′ between expected evaporative index 𝐼
𝐸,𝑂

′ and observed
evaporative index 𝐼𝐸,𝑂 for all periods 𝑡1 – 𝑡4 become gradually more negative from 𝑡1

(Δ𝐼
𝐸,𝑂,𝑂

′ = 0.013) to 𝑡4 (Δ𝐼
𝐸,𝑂,𝑂

′ = −0.020), which is consistent with decreases of 𝜔𝑡𝑖 and
downward shifts of the associated parametric Budyko curves over time as described in
section 3.5.1. These systematic reductions of Δ𝐼

𝐸,𝑂,𝑂
′ over the 70-year study period are

not reflected in the fluctuations of root zone storage capacities, irrespective of how they
were estimated, i.e. 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡𝑖

(𝑝 = 0.85) or 𝑆𝑢𝑚𝑎𝑥,𝑐𝑎𝑙,𝑡𝑖 (𝑝 = 0.96), as illustrated by Figure
3.9.

The above is further corroborated by comparing the modelled 𝐼𝐸 from Scenarios 1
and 2 for each period 𝑡1 – 𝑡4. More specifically, in Figure 3.10c it can be seen that
Scenario 1, based on a long-term average, time-invariant 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑇 obtained over the
entire 1953 – 2022 period, generates deviations Δ𝐼

𝐸,𝑚𝑇 ,𝑂
′ from the expected long-term
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average 𝐼
𝐸,𝑂

′ for each period 𝑡1 – 𝑡4. In this case, the modelled 𝐼𝐸 does not follow the
expected 𝐼

𝐸,𝑂
′ . However, it also does not follow the sequence of increasingly negative

deviations from 0.013 in 𝑡1 to – 0.020 in 𝑡4 as observed in reality (Δ𝐼
𝐸,𝑂,𝑂

′ ). Instead,
Δ𝐼
𝐸,𝑚𝑇 ,𝑂

′ remains negative for all time periods and fluctuates between Δ𝐼
𝐸,𝑚𝑇 ,𝑂

′ = −0.005

and −0.029 (white boxplots in Fig. 3.10c). Replacing the time-invariant 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑇

by individual 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡𝑖 for each period 𝑡1 – 𝑡4 in Scenario 2, accounts for the
different effects of vegetation in the individual periods. If 𝑆𝑢𝑚𝑎𝑥 controlled the observed
deviations from expected 𝐼

𝐸,𝑂
′ , Scenario 2 would generate estimates of Δ𝐼

𝐸,𝑚𝑡𝑖,𝑂
′ that are

closer to the observed ones than those of Scenario 1. However, no evidence was found
for that: the deviations Δ𝐼

𝐸𝑚𝑡,𝑂
′ obtained by Scenario 2 with time-variable 𝑆𝑢𝑚𝑎𝑥 for

each period 𝑡1 – 𝑡4 are largely indistinguishable (orange boxplots in Fig. 3.10c) from
those generated by Scenario 1 with time-invariant Sumax . As a consequence, the
evaporative index 𝐼𝐸 modelled with time-variable 𝑆𝑢𝑚𝑎𝑥,𝑊𝐵,𝑡𝑖

is not found to be closer to
the observed 𝐼𝐸 for Scenario 2 than for Scenario 1. On the contrary, the deviations
Δ𝐼𝐸𝑚,𝑂 from the observed 𝐼𝐸 obtained from the time-invariant Scenario 1 are in most
time periods, albeit only slightly, less pronounced (Fig. 3.10d).

3.5.6 Effect of 𝑆𝑢𝑚𝑎𝑥 on stream flow
Corresponding to the above findings, there is no significant difference in modelled
average streamflow between Scenario 1, using long-term average 𝑆𝑢𝑚𝑎𝑥 , and Scenario 2,
using individual 𝑆𝑢𝑚𝑎𝑥 values for each time period (Fig. 3.11d). While the model for
both scenarios consistently and similarly underestimates high flows (Q5th, Fig. 3.11a) by
∼10%, it overestimates median flow by ∼15% with both time-invariant and time-variable
𝑆𝑢𝑚𝑎𝑥 , for all time periods (Fig. 3.11b). Interestingly, the low flows are over-predicted by
∼ 10 – 20% in the first two periods, while they are under-predicted by up to ∼20% in
the later periods in both Scenarios (Fig. 3.11c). In addition, it was found that using
time variable 𝑆𝑢𝑚𝑎𝑥 in Scenario 2 did also not have any discernible effect on seasonal
flow pattern. The fact that both scenarios generate similar estimates over different
flow percentiles and, in particular, that the time-variable Scenario 2 reflects the same
systematic shift in the ability of the model to reproduce low flows as Scenario 1,
suggests, together with the very minor effects of time-variable 𝑆𝑢𝑚𝑎𝑥 in Scenario 2
on the model performance metrics, that the adaptation of 𝑆𝑢𝑚𝑎𝑥 to changing climatic
conditions does not significantly affect the average hydrological response pattern in the
Neckar basin.
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Figure 3.10: (a) The gray boxes (𝐼𝐸,𝑚𝑇 ) indicate the modelled evaporative index based on all Pareto front
solutions for four sub-time periods based on Scenario 1 with a stationary 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵,𝑇 and gray dots based
on the most balanced solution based on Scenario 1. The green circles from light to dark in (a) and
(b) indicate the observed evaporative index for four sub-time periods from 𝑡1 to 𝑡4. (b) The orange
circles (𝐼𝐸,𝑚𝑡 ) indicate the modelled evaporative index based on all Pareto front solutions for four sub-time
periods (from lighter to darker shades) based on Scenario 2 with time-variant 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵,𝑡𝑖 and the orange
circles based on the most balanced solution for Scenario 2. Black boxes in (c) indicate the deviations
Δ𝐼
𝐸,𝑚𝑇 ,𝑂

′ = 𝐼𝐸,𝑚𝑇 − 𝐼𝐸,𝑂′ (Δi)based on all Pareto front solutions for four sub-time periods, and the dark
gray circles based on the most balanced solution based on Scenario 1. Orange boxes in (c) indicate the
deviations Δ𝐼

𝐸,𝑚𝑡,𝑂
′ = 𝐼𝐸,𝑚𝑡 −𝐼𝐸,𝑂′ (Δiii) based on all Pareto front solutions for four sub-time periods, and

the orange circles based on the most balanced solution for Scenario 2. The gray dots indicate the deviation
Δ𝐼
𝐸,𝑂,𝑂

′ (Δ ii) between observed 𝐼𝐸,𝑂 for each sub-time period and corresponding expected 𝐼
𝐸,𝑂

′ . Light gray
boxes in (d) indicate the deviations Δ𝐼𝐸,𝑚𝑇 ,𝑂 = 𝐼𝐸,𝑚𝑇 −𝐼𝐸,𝑂 (Δ j) based on all Pareto front solutions for four
sub-time periods, and the gray circles based on the most balanced solution. Green boxes in (d) indicate the
deviations Δ𝐼𝐸,𝑚𝑡,𝑂 = 𝐼𝐸,𝑚𝑡 −𝐼𝐸,𝑂 (Δjj) based on all Pareto front solutions for four sub-time periods, and the
green circles based on the most balanced solution.
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Figure 3.11: The relative errors of observed and modelled high (Q5th), median (Q50th), and low (Q95th)
flow quantiles and the mean 𝑄 for different time periods based on two scenarios. The gray shades and
corresponding dots indicate the relative errors based on scenario 1 with all Pareto front solutions and the
gray circles indicate the most balanced solution. The corresponding values for scenario 2 are shown in
green.
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3.6 Discussion
3.6.1 Multi-decadal changes in root zone storage capacity
As Gao et al. (2023) suggested, considering the terrestrial ecosystem structure can
improve our understanding of hydrological processes and how the ecosystem can be
survived and developed. It is valuable to explore how ecosystems adapt to climatic
variability, reflected by fluctuations in 𝑆𝑢𝑚𝑎𝑥 , and how this affects on the long-term
partitioning of drainage and evaporation and hydrological response. This study is the
first to systematically and explicitly quantify how root zone storage capacity 𝑆𝑢𝑚𝑎𝑥
changes with changing climatic conditions over time. The values of root zone storage
capacity, estimated from both, water balance data and as model calibration parameter,
show indeed significant and corresponding fluctuations over multiple decades, varying
by up to ±20%. The overall estimated magnitudes fall with 𝑆𝑢𝑚𝑎𝑥 ∼ 95 – 115 mm
well within the range of long-term average values reported previously for the greater
region (e.g. Bouaziz et al., 2021; Hrachowitz et al., 2021; Tempel et al., 2024) and
other temperate, humid environments (e.g. Kleidon and Lorenz, 2004; Gao et al.,
2014a; De Boer-Euser et al., 2016; Wang-Erlandsson et al., 2016; Stocker et al., 2023;
Van Oorschot et al., 2024).

The values of 𝑆𝑢𝑚𝑎𝑥 obtained from both methods are very similar and within an
error margin of merely ∼5%. In addition, they both follow a comparable change over
time. Together, this lends support to the underlying assumption that this temporal
evolution of 𝑆𝑢𝑚𝑎𝑥 may indeed be a fingerprint of vegetation adaptation to changing
climatic conditions. More specifically, as 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵 is explicitly based on the estimates of
transpiration 𝐸𝑟 (Eq. 3.9), it could be plausibly argued that during specific years merely
more water is used for Er but that the size of the water storage volume accessible for
roots may not necessarily change. In that case, changes in 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵 would not reflect
actual changes of the active root system but only in how much water was used by them.
In contrast, 𝑆𝑢𝑚𝑎𝑥 ,𝑐𝑎𝑙 inferred as calibration parameter of a hydrological model does
not only regulate transpiration, but, critically, also the generation of streamflow. If
therefore the active root system did in reality not change and fluctuations in 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵

were a mere artifact of changes in water uptake from a fixed-size volume instead
of an actual change in of maximum vegetation-accessible subsurface water volumes,
fluctuations in 𝑆𝑢𝑚𝑎𝑥 ,𝑐𝑎𝑙 would not mirror those of 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵 and the use of 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵 in
the hydrological model would, due to the non-linear character of the flow generation
function in the model (Eq. 2.17), lead to misrepresentations of streamflow dynamics. Yet
here, no deteriorations of the model performance with changing 𝑆𝑢𝑚𝑎𝑥 were found.
Even more, the fact that 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵 and 𝑆𝑢𝑚𝑎𝑥 ,𝑐𝑎𝑙 are characterized by very similar
magnitudes and fluctuations does add further evidence that their evolution over time
is a manifestation of vegetation adapting its active root system to changing climatic
conditions.

Several previous studies in similar environments found that the root zone storage
capacity 𝑆𝑢𝑚𝑎𝑥 can decrease by 50% or more after deforestation and that these changes
do not only cause reductions in 𝐼𝐸 by -0.2 or more, which reflect changes in 𝜔 and
thus changes of the overall functioning of the system, but also influence hydrological
dynamics at short time scales, such as the magnitudes of flow peaks (Nijzink et al.,
2016a; Hrachowitz et al., 2021). In contrast to the above studies, the ±20% fluctuations of
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𝑆𝑢𝑚𝑎𝑥 here did not lead to similarly marked shifts in 𝐼𝐸 or 𝜔. This is further corroborated
by an analysis of different variables as potential controls on 𝑆𝑢𝑚𝑎𝑥 and Δ𝐼𝐸 as shown in
Figure 13. Fluctuations of 𝑆𝑢𝑚𝑎𝑥 can to a large part be attributed to the variability in the
ratio of winter precipitation over summer precipitation (Fig. 3.12s) as simplified metric
for precipitation seasonality. This comes as no surprise, as the computation of 𝑆𝑢𝑚𝑎𝑥 ,𝑊𝐵

is explicitly based on the seasonal water deficit (Eq. 3.7). It merely visualizes that the
more precipitation falls in summer, in a time when evaporative demand is highest,
the lower 𝑆𝑢𝑚𝑎𝑥 needs to be to provide vegetation sufficient and continuous access to
water for continuous vegetation transpiration. All other tested variables do not exert
any major influence on 𝑆𝑢𝑚𝑎𝑥 in the study region. Conversely, it was found that the
deviations Δ𝐼𝐸 are largely independent of the seasonality of precipitation (Fig. 3.12g).
Instead, increases in summer 𝐸𝑃 are correlated with decreases in Δ𝐼𝐸 (Fig. 3.12h) and
thus with a reduction of 𝐸𝑇 . The observed systematic shift towards more negative
Δ𝐼𝐸 which indicates proportionally less evaporation thus coincides with the gradually
increasing summer 𝐸𝑃 over time. This points towards different controls on Δ𝐼𝐸 than on
𝑆𝑢𝑚𝑎𝑥 and the potential role of increased vegetation water stress in summer as main
driver of Δ𝐼𝐸 . Thus, while there is compelling evidence for fluctuations in 𝑆𝑢𝑚𝑎𝑥 , the
above illustrates that these changes cannot explain the observed deviations from the
expected long-term Budyko trajectory in the study region.

It is also important to note that the temporal fluctuations of both 𝑆𝑢𝑚𝑎𝑥 and Δ𝐼𝐸 can
be subject to uncertainties. In spite of the findings reported by Han et al., 2020, that for
most river catchments world-wide 𝑑𝑆/𝑑𝑡 ∼ 0 holds over averaging periods similar to the
ones used here (𝑡1 - 𝑡4), this assumption may not completely hold in the study region. In
relation with that, we also did not consider potential effects of unobserved groundwater
import or export on the long-term water balance (Bouaziz et al., 2018).

As only < 2% of the study area experienced documented land use change over
the 1953 – 2022 period and no major reservoirs are present upstream of the study
basin outlet, we here interpret fluctuations in 𝑆𝑢𝑚𝑎𝑥 as a reflection of adaptation of
root-systems to changing hydroclimatic conditions. However, some of the fluctuations
may be the consequence of land management practices not quantified by available
gridded land cover products such as CORINE, including forest thinning (cf. Hrachowitz
et al., 2021) or rejuvenation (cf. Teuling and Hoek van Dijke, 2020). In addition,
although we here attribute changes in 𝑆𝑢𝑚𝑎𝑥 mainly to changes in root systems, these
may be complemented by additional effects of changes in vegetation water use due to
feedbacks with increases in atmospheric CO2 (e.g. Berghuijs et al., 2017; Jaramillo et al.,
2018).
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3.6.2 Effect of changing 𝑆𝑢𝑚𝑎𝑥 on the representation of
stream flow in a model

Reflecting its lack of explanatory power for the changes in Δ𝐼𝐸 , our results
correspondingly indicate that signatures of both annual flow, such as the average Q5th,
Q50th or Q95th but also of seasonal flow are not better reproduced by the hydrological
model when replacing a time-invariant, long-term average 𝑆𝑢𝑚𝑎𝑥 by a temporally
dynamic 𝑆𝑢𝑚𝑎𝑥 . Overall, these results are in contrast to previous studies that quantified
the effect of a time variable 𝑆𝑢𝑚𝑎𝑥 parameter following deforestation. For example,
Nijzink et al. (2016a) reported that adjusting parameter 𝑆𝑢𝑚𝑎𝑥 to a lower value does
improve a model’s ability to reproduce streamflow after deforestation. These findings
were strongly supported by Hrachowitz et al. (2021), who found that post-deforestation
model recalibration resulted in lower 𝑆𝑢𝑚𝑎𝑥 and a significantly better performance
compared to using parameters from pre-deforestation calibration. However, our results
are also different to those reported by Duethmann et al. (2020), who found that
accounting for vegetation dynamics in a model in form of changing surface resistances
to vegetation improved the long-term performance of the model. Similarly, Bouaziz
et al. (2022), who estimated future 𝑆𝑢𝑚𝑎𝑥 based on projected future hydro-climatic
conditions. In a somewhat more humid environment, they found that an estimated
∼25% future increase of 𝑆𝑢𝑚𝑎𝑥 from ∼ 170 mm to 226 mm may lead to reductions in
mean and maximum annual 𝑄 of ∼ 5%. More pronounced effects were reported at the
intra-annual time scale, with reductions of autumn and winter 𝑄 by up to ∼15%. This
was accompanied by up ∼15% increases in summer evaporation and 10% decreases in
winter groundwater levels. Irrespective of the additional uncertainties in their study
introduced by future projections, the much less pronounced effects we found in our
analysis are most likely a consequence of the lower absolute magnitude of 𝑆𝑢𝑚𝑎𝑥 that
remains below 115 mm in the study region. These lower 𝑆𝑢𝑚𝑎𝑥 values reflect lower
storage requirements in summer, due to a precipitation pattern in the Neckar basin that
is more evenly spread throughout the year. In other words, the fact that here ∼55 – 60
% of the annual precipitation falls in summer (Fig. 3.3f, k) when it is needed most by
vegetation due to high 𝐸𝑃 , removes the need for larger 𝑆𝑢𝑚𝑎𝑥 as water storage buffer to
allow vegetation to survive. However, the lower the magnitude of 𝑆𝑢𝑚𝑎𝑥 , the more
frequently storage deficits can be overcome by even rather small rainstorms and the
less water is (or needs to be) stored. Thus even if the relative changes are similar
between Bouaziz et al. (2022) and Tempel et al. (2024) in a somewhat more humid
environment and our study, abundant summer precipitation causes absolute 𝑆𝑢𝑚𝑎𝑥
fluctuations of less than ±20 mm over time in the Neckar. This in turn limits the
influence of the changes on the hydrological response, which has wider implications
on the use of models in the Neckar basin and potentially in other temperate regions
with similar hydro-climatic characteristics. More specifically, it has been argued that
a changing climate will affect the properties of terrestrial hydrological systems (e.g.
Stevenson et al., 2021). As these properties are represented by typically time-invariant
parameters in hydrological or land surface models, accounting for changing system
properties with time-variable formulations of parameters may facilitate more reliable
predictions. For many model parameters such a time-variable formulation to estimate
their future values is not trivial due to frequently insufficient data and a general lack of
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mechanistic understanding of the underlying processes. The estimation of 𝑆𝑢𝑚𝑎𝑥 and its
temporal evolution based on observed historical or projected future water balance data
opens an opportunity to estimate its magnitude under future conditions for use in
models. However, in contrast to the findings in other regions (e.g. Merz et al., 2011)
and as discussed above, adapting 𝑆𝑢𝑚𝑎𝑥 to changing conditions in the Neckar basin
does not lead to improved modelled representations of the hydrological response. It is
therefore plausible to assume that the use of a time-variable parameter 𝑆𝑢𝑚𝑎𝑥 does not
substantially improve future predictions and is thus not necessarily required for at least
the next few decades to come and that the use of a long-term average 𝑆𝑢𝑚𝑎𝑥 , obtained
either by calibration or based on the water balance is sufficient in the Neckar basin and
in hydro-climatically similar regions. This in itself is already an interesting finding as it
gives modelers process-based evidence that the use of time-invariant 𝑆𝑢𝑚𝑎𝑥 as model
parameter will be also sufficient for meaningful hydrological predictions in the near
future in such an environment. However, it can also be expected that in more arid
regions with less summer precipitation and generally higher 𝑆𝑢𝑚𝑎𝑥 (see e.g. Gao et al.,
2014c; Stocker et al., 2023) changes in 𝑆𝑢𝑚𝑎𝑥 will play a more prominent role.

3.7 Conclusions
The catchment-scale root zone storage capacity (𝑆𝑢𝑚𝑎𝑥 ) is a critical factor reflecting the
moisture exchange between land and atmosphere as well as the hydrological response
in terrestrial hydrological systems. However, as a major knowledge gap, it is unclear
if 𝑆𝑢𝑚𝑎𝑥 at the catchment-scale evolves over time, reflecting vegetation adaptation to
changing climatic conditions. As a consequence, it also remains unclear how potential
changes in 𝑆𝑢𝑚𝑎𝑥 may affect the partitioning of water fluxes and as a consequence, the
catchment-scale hydrological response. In this study, for the upper Neckar catchment,
based on long-term daily hydrological data (1953 – 2022), we quantify and analyze how
𝑆𝑢𝑚𝑎𝑥 dynamically evolves over multiple decades reflecting vegetation adaptation to
climate variability and the effects on the hydrological system.

The main findings of this analysis are the following:

1. 𝑆𝑢𝑚𝑎𝑥 has fluctuated by ±20 % between 95 and 115 mm, in response to climatic
variability over the 70-year study period.

2. Estimates of 𝑆𝑢𝑚𝑎𝑥 obtained from both methods, i.e. based on water balance data
and as model calibration parameter, respectively, were with differences of ∼5%
highly consistent with each other and correlated in time (𝑅2 = 0.95, 𝑝 = 0.05).
Findings (1) and (2) support the hypothesis that 𝑆𝑢𝑚𝑎𝑥 , even in temperate, humid
climates such as in the Neckar basin, significantly changes over multiple decades,
reflecting vegetation adaptation to climatic variability.

3. The estimated fluctuations of 𝑆𝑢𝑚𝑎𝑥 were inconsistent with the temporal sequence
of observed deviations Δ𝐼𝐸 ∼ ±0.02 from the expected 𝐼𝐸 over the study period
(𝑅2 = 0.02, 𝑝 = 0.85).

4. As a consequence, replacing a long-term average, time-invariant parameter 𝑆𝑢𝑚𝑎𝑥
in a hydrological model with a time variable formulation of 𝑆𝑢𝑚𝑎𝑥 does not lead to
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a better representation of the observed Δ𝐼𝐸 . Based on (3) and (4), the hypothesis
that 𝑆𝑢𝑚𝑎𝑥 affects the long-term partitioning of drainage and evaporation and
thus controls deviations Δ𝐼𝐸 from the catchment-specific trajectory in the Budyko
space therefore needs to be rejected for the Neckar basin.

5. Replacing time-invariant 𝑆𝑢𝑚𝑎𝑥 with a time-variable 𝑆𝑢𝑚𝑎𝑥 in the hydrological
model leads to only very minor improvements of the model to reproduce
streamflow dynamics. The hypothesis that a time-dynamic implementation of
𝑆𝑢𝑚𝑎𝑥 improves the representation of streamflow in the hydrological therefore
also needs to be rejected for the Neckar basin.

Overall, this analysis is the first to systematically document the temporal evolution
of 𝑆𝑢𝑚𝑎𝑥 , and although limited to the Neckar basin, it provides clear quantitative
evidence that 𝑆𝑢𝑚𝑎𝑥 can significantly change over multiple decades reflecting vegetation
adaptation to climate variability. However, these changes do not cause deviations from
the long-term average Budyko curve under changing climatic conditions. This implies
that the temporal evolution of 𝑆𝑢𝑚𝑎𝑥 does not control variation in the partitioning
of water fluxes and has no significant effects on fundamental hydrological response
characteristics of the Upper Neckar basin. As the use of time-variable 𝑆𝑢𝑚𝑎𝑥 over
the 70-year study period does not improve performance of the hydrological model, it
can plausibly be assumed that in the study region the use of time-invariant 𝑆𝑢𝑚𝑎𝑥 as
model parameter will be sufficient for meaningful predictions over at least the next few
decades.
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Summary
Stable isotopes (𝛿18O) and tritium (3H) are frequently used as tracers in environmental
sciences to estimate age distributions of water. However, it has previously been argued
that seasonally variable tracers, such as 𝛿18O, generally and systematically fail to detect
the tails of water age distributions and therefore substantially underestimate water ages
as compared to radioactive tracers, such as 3H. In this chapter, based on a >20-year
record of hydrological, 𝛿18O and 3H data, the above postulate together with the potential
role of spatial aggregation effects to exacerbate the underestimation of water ages
were systematically scrutinized . This was done by comparing water age distributions
inferred from 𝛿

18O and 3H with a total of 21 different model implementations, including
time-invariant, lumped parameter sine-wave (SW) and convolution integral models
(CO) as well as SAS-function models (P-SAS) and a SAS-function integrated into the
hydrological model described in Chapter 2 (IM-SAS).

It was found that, indeed, water ages inferred from 𝛿
18O with commonly used

SW and CO models are with mean transit times (MTT) ∼ 1 – 2 years substantially
lower than those obtained from 3H with the same models, reaching MTTs ∼ 10
years. In contrast, several implementations of P-SAS and IM-SAS models did not
only allow simultaneous representations of storage variations and stream flow as
well as 𝛿18O and 3H stream signals, but water ages inferred from 𝛿

18O with these
models were with MTTs ∼ 11 – 17 years much higher and similar to those inferred
from 3H, which suggested MTTs ∼ 11 – 13 years. Characterized by similar parameter
posterior distributions, in particular for parameters that control water age, P-SAS and
IM-SAS model implementations individually constrained with 𝛿18O or 3H observations,
exhibited only limited differences in the magnitudes of water ages in different parts of
the models as well as in the temporal variability of TTDs in response to changing
wetness conditions. This suggests that both tracers lead to comparable descriptions
of how water is routed through the system. These findings provide evidence that
allowed us to reject the hypothesis that 𝛿18O as a tracer generally and systematically
“cannot see water older than about 4 years” and that it truncates the corresponding tails
in water age distributions, leading to underestimations of water ages. Instead, our
results provide evidence for a broad equivalence of 𝛿18O and 3H as age tracers for
systems characterized by MTTs of at least 15 – 20 years. The question to which degree
aggregation of spatial heterogeneity can further adversely affect estimates of water
ages remains unresolved as the lumped and distributed implementations of the IM-SAS
model provided inconclusive results.

Overall, this study demonstrates that previously reported underestimations of water
ages are most likely not a result of the use of 𝛿18O or other seasonally variable tracers
per se. Rather, these underestimations can be largely attributed to choices of model
approaches and complexity not considering transient hydrological conditions next to
tracer aspects. Given the additional vulnerability of time-invariant, lumped SW and CO
model approaches in combination with 𝛿18O to substantially underestimate water ages
due to spatial aggregation and potentially other, still unknown effects, we therefore
advocate to avoid the use of this model type in combination with seasonally variable
tracers if possible, and to instead adopt SAS-based models or time-variant formulations
of CO models.
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4.1 Introduction

A ge distributions of water fluxes (“transit time distributions”, TTD) and water stored
in catchments (“residence time distributions”, RTD) are fundamental descriptors of

hydrological functioning (Botter et al., 2011; Sprenger et al., 2019) and catchment storage
(Birkel et al., 2015). They provide a way to quantitatively describe the physical link
between the hydrological response of catchments and physical transport processes of
conservative solutes. While the former is largely controlled by the celerities of pressure
waves propagating through the system, the latter, in contrast, occur at velocities
that can be up to several orders of magnitude lower (McDonnell and Beven, 2014;
Hrachowitz et al., 2016).

Water age distributions cannot be directly observed. Instead, they can, in principle,
be inferred from observed tracer breakthrough curves. While practically feasible at
lysimeter (e.g. Asadollahi et al., 2020; Benettin et al., 2021) and small hillslope scales
(e.g. Kim et al., 2022), lack of adequate observation technology together with logistical
constraints make this problematic at scales larger than that. At the catchment-scale,
estimates of water age distributions are therefore typically inferred from models that
describe the relationships between time-series of observed tracer input and output
signals.

Over the past decades a wide spectrum of such models has been developed.
Early approaches often relied on simple lumped sine-wave (hereafter: SW) or lumped
parameter convolution integral models (hereafter CO; Małoszewski and Zuber, 1982;
Małoszewski et al., 1983; McGuire and McDonnell, 2006), originally developed for
aquifers. In spite of their wide-spread application, these models feature multiple
critical simplifying assumptions. Most importantly, the vast majority of these model
implementations work under the assumption that water storage in catchments is at
steady state and that, as a consequence, TTDs are time-invariant and can be a priori
defined or calibrated. While the role of storage as first order control on water ages was
described early in the general definition of mean turnover times (e.g. Eriksson, 1958;
Bolin and Rodhe, 1973; Nir, 1973), the steady state assumption, i.e. constant storage,
may have limited effect on TTDs in aquifers, as the fraction of transient water volumes
in such systems is typically rather low. However, given the temporal variability in the
hydro-meteorological system drivers (e.g. precipitation, atmospheric water demand)
and the spatial heterogeneity in near-surface hydrological processes, this assumption is
violated in most surface water systems world-wide and can lead to misinterpretations
of the model results. This triggered the development of a more coherent framework
to estimate water age distributions without the need of an a priori definition of
time-invariant TTDs. Instead, probability distributions, referred to as StorAge Selection
(SAS) functions, are a priori defined or calibrated, and changes in water storage are
explicitly accounted for. Thus, water fluxes within and released from the system are
sampled from water volumes of different ages stored in the system according to these
SAS functions (Botter et al., 2011; Rinaldo et al., 2015). The general concept is firmly
rooted in the development of hydro-chemical routing schemes for the Birkenes, HBV or
similar models going back to at least the 1970s (e.g. Lundquist, 1977; Christophersen
and Wright, 1981; Christophersen et al., 1982; Seip et al., 1985; De Grosbois et al., 1988a;
Hooper et al., 1988; Barnes and Bonell, 1996), as illustrated by Figure 1 in Bergström
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et al., 1985. Although functionally very similar to CO model implementations that allow
for transient, i.e. time-variant TTDs (Nir, 1973; Niemi, 1977), the sampling procedure
based on SAS functions has the advantage to explicitly track the history of water (and
tracer) input to and output from the system through the water age balance. As such
it does explicitly account for non-steady state conditions, which in turn leads to the
emergence of time-variable TTDs and RTDs (see review Benettin et al. (2022)).

Irrespective of the modelling approach, two types of environmental tracers have in
the past been frequently used to estimate water age distributions with the above models.
The first type are tracers that are characterized by distinct differences in their seasonal
signals. They include stable isotopes of water (2H, 𝛿18O; e.g. Małoszewski et al., 1983;
Vitvar and Balderer, 1997; Fenicia et al., 2010) or solutes, such as Cl– (e.g. Kirchner
et al., 2001, Kirchner et al., 2010; Shaw et al., 2008; Hrachowitz et al., 2009a, Hrachowitz
et al., 2015). With these tracers, water ages and (metrics of) their distributions can be
estimated by the degree to which the seasonal amplitudes of the precipitation tracer
concentrations are time-shifted and/or attenuated in the stream flow (McGuire and
McDonnell, 2006; Kirchner, 2016). Broadly speaking, the stronger the attenuation of the
seasonally variable tracer amplitude in stream flow (𝐴𝑠) as compared to its amplitude in
precipitation (𝐴𝑝), i.e., the lower the amplitude ratio 𝐴𝑠/𝐴𝑝 , the older stream water is,
on average. The second type of commonly used tracers are radioactive isotopes, such as
tritium (3H). Forming the basis for many water dating studies going back to the 1950s
(e.g. Begemann and Libby, 1957; Eriksson, 1958; Dinçer et al., 1970; Stewart et al., 2007;
Morgenstern et al., 2010; Duvert et al., 2016; Gallart et al., 2016; Rank et al., 2018; Visser
et al., 2019), water age can be estimated with radioactive tracers based on the level of
radioactive decay experienced by precipitation input signals experience before they
reach the stream.

The relationship between the tracer amplitude ratios 𝐴𝑠/𝐴𝑝 and water age that is
exploited by seasonally variable tracers is highly non-linear. With increasing attenuation
of the tracer signal in the stream, i.e., a lower 𝐴𝑠/𝐴𝑝 , water therefore does not only
become older but the age estimates become more sensitive to changes in the amplitude
ratio (Kirchner, 2016). This implies that the older the water, uncertainties in the
observed amplitude ratios lead to increased uncertainties in water age estimates. As a
consequence, there is an upper limit to the age of water which can be practically and
feasibly determined with seasonally variable tracers. A rare attempt to quantify this
potential upper detectible age limit was reported by DeWalle et al. (1997). With an
observed 𝛿18O precipitation amplitude 𝐴𝑝 = 3.41‰, an assumed lowest possible 𝛿18O
stream water amplitude that equaled the observational error 𝐴𝑠 = 0.1‰, and the use
of a lumped, time-invariant exponential TTD (“complete mixing”) they determined a
maximum detectable mean transit time (MTT) of around 5 years at their study site.
Several authors subsequently emphasized that estimates of MTT and in particular of
maximum detectable MTT such as reported by DeWalle et al. (1997) are specific to
𝐴𝑝 at individual study sites (McGuire and McDonnell, 2006) and highly sensitive to
choices in the modelling process (Stewart et al., 2010; Seeger and Weiler, 2014; Kirchner,
2016). For example, multiple previous studies demonstrated that the use of gamma
distributions with a shape parameter 𝛼 ∼ 0.5 as TTD produces model results that are
more consistent with observed tracer data than the use of exponential distributions
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(i.e. 𝛼 = 1) in a wide range of contrasting environments world-wide (Kirchner et al.,
2001; Godsey et al., 2010; Hrachowitz et al., 2010b; Hrachowitz et al., 2010a). Merely
replacing the exponential distribution by a gamma distribution with 𝛼 = 0.5 as TTD at
the study site of DeWalle et al., 1997 leads, in a quick back-of-the-envelope calculation,
to a substantial increase of the maximum MTT from the reported 5 years to ∼ 90 years.
This is exacerbated by the potential presence of spatial aggregation bias in the lumped
implementation of that model, which may cause further considerable underestimation of
MTT as demonstrated by Kirchner (2016).

The relevance of the above assumptions is often overlooked and in spite of little
additional quantitative evidence, it remains widely assumed that water ages in systems
characterized by MTTs > 4 – 5 years cannot be meaningfully quantified with seasonally
variable tracers. Most notably, Stewart et al., 2010; Stewart, 2012 argued that water older
than that remains hidden to stable water isotopes and other seasonally variable tracers,
which inevitably results in a misleading truncation of water age distributions. Such a
pronounced and systematic underestimation of water ages would have far reaching
consequences for estimates of water storage (e.g. Birkel et al., 2015; Pfister et al., 2017)
and the associated turnover times of nutrients and contaminants in catchments (e.g.
Harman, 2015; Hrachowitz et al., 2015). Stewart (2012), further argue that the use of
radioactive tracers, such as 3H, can largely avoid the truncation of the long tails of
TTDs. This is mostly owed to the 3H half-life of 𝑇

1/2
= 12.32 years. Even with the

current atmospheric 3H concentrations that, after peaking in the early 1960s, have been
converging back towards pre-nuclear bomb testing levels, precipitation 3H signals can
be detected in the system for several decades, making 3H an effective tracer now
and for the foreseeable future (Michel et al., 2015; Harms et al., 2016; Stewart and
Morgenstern, 2016). Indeed, a range of studies, based on 3H and often in conjunction
with lumped parameter convolution integral approaches, suggest that many catchments
and larger river basins world-wide are characterized by MTTs that are decadal or higher
(e.g. Stewart et al., 2010 and references therein). It is further rather remarkable that
such elevated water ages are largely absent in estimates derived from lumped parameter
convolution integral studies based on seasonally variable tracers, which often indicate
MTTs between 1 – 3 years (e.g. McGuire and McDonnell, 2006 and references therein;
Hrachowitz et al., 2009b; Godsey et al., 2010), as correctly and importantly pointed out
by Stewart et al. (2010). This in itself could be supporting evidence for the failure of
seasonally variable tracers to detect long tails of TTDs, as postulated by Stewart et al.
(2012). However, it could just as well be a mere artifact arising from a sample bias due
to the different catchments analyzed or from choices in the modelling process. There are
only a few studies that have directly and systematically compared estimates of water age
derived from both, seasonally variable (2H, 18O) and radioactive tracers (3H) at the same
study site and based on (at least partly) comparable model approaches (Małoszewski
et al., 1983; Uhlenbrook et al., 2002; Stewart et al., 2007; Stewart and Thomas, 2008). The
MTT estimates derived from seasonally variable tracers in these comparative studies are
consistently, but to varying degrees lower than estimates based on 3H. However, these
studies are nevertheless subject to limitations that may weaken the generality of the
conclusion that seasonally variable tracers underestimate catchment water ages. More
specifically, tracer data were available for only rather short time periods of about 2 – 3
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years, including, for some studies, only a handful of 3H data points. Many these studies
relied on lumped parameter convolution integral approaches with time-invariant TTDs
whose pre-defined functional form when applied with seasonally variable tracers was
limited to shapes (e.g. exponential) that already a priori precluded the representation of
heavy-tails and thus a meaningful representation of old ages. In addition, the models
to estimate water ages in these studies were implemented in a spatially lumped way,
which further exacerbates the potential for underestimating water ages due to spatial
aggregation effects in environments that are likely subject to considerable heterogeneity
in hydrological functioning (Kirchner, 2016).

Addressing some of the concerns above, a recent study by Rodriguez et al. (2021)
compared catchment water ages inferred from two-year data records of a seasonally
variable tracer (2H; 1088 data points) and 3H (24 data points) using a spatially lumped
implementation of a previously developed simple tracer circulation model based on the
SAS approach, which generates time-variable TTDs (Rodriguez and Klaus, 2019). In
spite of consistently higher age estimates obtained from 3H, the absolute differences to
2H inferred estimates were very minor. While the difference in mean transit times was
estimated at ΔMTT ∼ 0.22 years for MTTs ∼ 3 years, the difference in the estimate of
the 90th percentile of water ages, as metric for the presence of old ages, was with
Δ90th ∼ 0.15 years even lower. The authors concluded that these results cast some
doubt on “[. . . ] the perception that stable isotopes systematically truncate the tails of
TTDs” (Rodriguez et al., 2021). However, their interpretation was questioned by Stewart
et al. (2021), who pointed out that simply no older water may be present in their study
catchment.

Building on the above work of Rodriguez et al. (2021), the objective of this chapter
is therefore to further scrutinize the notion that the use of seasonally variable tracers
leads to truncated estimates of water age distributions in a systematic comparative
experiment. The novel aspects of this analysis for the ∼13.000 km2 Neckar River
basin in South-West Germany,described briefly in Chapter 2, include: (1) long-term
records, i.e. > 20 years, of hydrological data as well as of seasonally variable (18O) and
radioactive tracers (3H) together with (2) a suite of lumped and spatially semi-distributed
implementations of (3) SW, CO and SAS-function based models, including a formulation
of an integrated, process-based model to simultaneously reproduce hydrological and
tracer response dynamics and to track temporally variable water age distributions in the
system. The above points allow to, at least partially, explore several unresolved questions
how different factors may or may not contribute to the apparent underestimation of
water ages by seasonally variable tracers, including potential effects of uncertainties
arising from short data records, spatial aggregation and the use of oversimplified
time-invariant, lumped models. More specifically, the hypothesis is tested that 18O as
tracer generally and systematically cannot detect tails in water age distributions and
that this truncation leads to systematically younger water age estimates than the use of
3H.
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Figure 4.1: (a) Elevation of the Neckar catchment with discharge and hydro-meteorological stations as well
as the water sampling locations used in this study, (b) the spatial distribution of long-term mean annual
precipitation in the Neckar catchment and the stratification into four distinct precipitation zones P1 –
P4 (black line), (c) hydrological response units classified according to their land-cover and topographic
characteristics.
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4.2 Data
4.2.1 Datasets
Daily hydro-meteorological data were available for the period 01/01/1970 – 31/12/2016.
As the forcing data of the hydrological models, daily precipitation and daily mean air
temperature were obtained from stations operated by the German Weather Service
(DWD). Precipitation was recorded at 16 stations and temperature measurements
were available at 12 stations (Fig. 4.1) in or close to the study basin. Daily mean
discharge data for the period 01/01/1970 – 31/12/2016 at the outlet of the Neckar basin
at Rockenau station were provided by the German Federal Institute of Hydrology
(BfG). In addition, data of daily mean discharge for the same time period from three
sub-catchments within the Neckar basin (Fig. 4.1) at the gauges Kirchentellinsfurt (C1;
2324 km2), Calw (C2; 584 km2) and Untergriesheim (C3; 1827 km2) were available from
the Environmental Agency of the Baden-Württemberg region (LUBW).

Long-term volume-weighted monthly 𝛿18O data in precipitation was available for
the period 01/01/1978 – 31/12/2016 at the Stuttgart station. At the sampling gauge,
a monthly accumulation bottle was filled with the collected daily precipitation, and
all collected water was mixed together. Therefore, the water samples of precipitation
reflect the volume-weighted monthly isotopic composition. Then, a monthly isotope
sample bottle for stable isotope (i.e., 18O) was filled with 50 ml precipitation water from
the corresponding monthly accumulation bottle. All precipitation samples were tightly
sealed and stored in a dark room at ∼4°C before analysis. Monthly stream water samples
were collected at Schwabenheim, close to the Rockenau discharge station, by the BfG for
the period of 01/10/2001 – 31/12/2016 (Schmidt et al., 2020; Königer et al., 2022). Note
that the available data do not represent instantaneous grab samples but bulk samples
from mixed daily samples. River water was sampled automatically by samplers (SP
III-XY-36, Maxx Meb- und Probenahmetechnik GmbH, Germany), which contained 36
bottles (each with a volume of 2.5 L). Every 30 minutes, 50 ml river water was pumped
into one bottle (48 subsamples per day). A new bottle was filled every 24 h with the
same procedure. All daily river water samples were stored in the sample compartment
at ∼4°C and were subsequently combined into monthly samples in the laboratory of
BfG. This means the stream water samples reflect a non-flow-weighted monthly average
isotopic composition. The stable isotopes ratios were analyzed with dual-inlet mass
spectrometry and a laser-based cavity ring-down spectrometer (L2120-i/L2130-i, Picarro
Inc.) at Helmholtz Zentrum München, Germany. When changing from dual-inlet mass
spectrometry to cavity ring-down spectrometry, the long-term precision of the analytical
systems (±0.15 ‰ and ±0.1 ‰, respectively, for 𝛿18O) was ensured (Stumpp et al., 2014;
Reckerth et al., 2017).

Long-term monthly 3H data in precipitation were obtained for the period 01/01/1978
– 31/12/2016 at Stuttgart station (same station as 18O data in precipitation; Schmidt
et al., 2020). For the purpose of establishing robust initial conditions for the model
experiment (see section 4.4.2) the tritium record in precipitation was reconstructed
for the preceding 1970-1977 period by bias correcting data from the sampling station
Vienna, available from the Global Network of Isotopes in Precipitation which is a
joint database of the International Atomic Energy Agency (IAEA) and the World



4.2 Data

4

59

1 9 7 0 / 1 / 1 1 9 7 9 / 1 / 1 1 9 8 8 / 1 / 1 1 9 9 7 / 1 / 1 2 0 0 6 / 1 / 1 2 0 1 5 / 1 / 1

1 0

1 0 0

3 H[
TU

]

3 H i n p r e c i p i t a t i o n ( V i e n n a )
3 H i n p r e c i p i t a t i o n ( S t u t t g a r t )

M o n t h l y

Figure 4.2: Long term 3H data in precipitation at Vienna station and Stuttgart (thin violet line for Vienna
station and dark violet line for Stuttgart station).

Metrological Organization (WMO) (Fig. 4.2). The precipitation for tritium data was
sampled based on the same method as that for 18O in precipitation which means that
the precipitation samples for tritium also reflect the volume-weighted monthly isotopic
composition. Stream water samples for tritium were collected based on the same
method as that for as 18O in stream. Therefore, tritium stream water samples also
reflect non-volume-weighted monthly average isotopic compositions. The tritium stream
water samples are not influenced by water release from nuclear power stations. All
water samples were analyzed for tritium concentrations by the BfG Environmental
Radioactivity Laboratory using liquid scintillation counters (Ultima Gold LLT) with a
2-sigma analytical uncertainty (Schmidt et al., 2020).

Land use types of the catchments are determined using the CORINE Land Cover
data set of 2018 (https://land.copernicus.eu/pan-european/corine-land-cover). The 90
m × 90 m digital elevation model of the study region (Fig. 4.1a) was obtained from
https://www.usgs.gov/ and used to derive the local topographic indices including height
above nearest drainage (HAND) and slope.

4.2.2 Data pre-processing
For the subsequent model experiment (section 4.4.2), the basin was stratified into four
regions P1 – P4 that are characterized by distinct long-term precipitation pattern
(hereafter: precipitation zones) as defined in Chapter 2. In the following the procedure
to estimate the associated differences in 𝛿18O and 3H input is described.

Spatial extrapolation of precipitation 𝛿18O to precipitation zones
Records of observed precipitation 𝛿18O are available at one location close to the center
of the Neckar Basin (Fig. 4.1). However, it is well described (e.g. Kendall and McDonnell,
2012) that precipitation 𝛿18O input can be subject to considerable spatial heterogeneity,
largely controlled by topographic and meteorological influences. Stumpp et al., 2014
specifically identified latitude, elevation and temperature as the key factors controlling
𝛿
18O input heterogeneity in the greater study region. To at least partially account for

https://land.copernicus.eu/pan-european/corine-land-cover
https://www.usgs.gov/
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these effects and to locally adjust 𝛿18O input signals throughout the study basin, we
made use of the sinusoidal isoscapes method (Allen et al., 2018, Allen et al., 2019).
Briefly, this method exploits the seasonal pattern in 𝛿18O precipitation signal by fitting
sine functions to observed 𝛿18O input signals for a large sample of locations:

𝛿
18
𝑂𝑃 (𝑡) = 𝑎𝑃 sin(2𝜋𝑡 −𝜙𝑃 )+𝑏𝑃 (4.1)

with 𝑎𝑃 [‰] the amplitude of the seasonal precipitation signal, 𝑏𝑃 [‰] a constant
offset and 𝜙𝑃 [rad] the phase of the signal. For each of the three fitting parameters,
i.e., 𝑎𝑃 , 𝑏𝑃 and 𝜙𝑃 , multiple regression relationships were previously developed (Allen
et al., 2018). Depending on the fitting parameter, predictor variables included a selection
of latitude, longitude, elevation, range of annual temperature range and mean annual
precipitation (Allen et al., 2018). The relationships defined by these predictor variables
then allow to estimate 𝑎𝑃 , 𝑏𝑃 and 𝜙𝑃 , and thus the seasonal signal of 𝛿18OP for
locations where no precipitation 𝛿18O observations are available.

Here, we adopted the method as described in the following. In a first step, we
estimated the sine wave parameters for the time series of precipitation 𝛿18O observed at
the station Stuttgart, using the procedure described by Allen et al., 2018. Subsequently,
we estimated the associated sine wave parameters 𝑎𝑃 , 𝜙𝑃 and 𝑏𝑃 in each of the four
precipitation zones (P1 – P4; Table 4.2) based on following Eqs. 4.2 – 4.4, using the
above-described individual predictor variables, averaged for each precipitation zone
(Table 4.2). We then used the estimated sine wave parameters to construct an individual
𝛿
18OP sine wave for each precipitation zone (Eq. 4.1). In a last step, we adjusted the

observed 𝛿18O input for the four precipitation zones by rescaling and bias correcting
the observed 𝛿18O signal according to the differences between the sine waves at the
observation station and sine waves estimated for each precipitation zone, respectively
(Fig. 4.3).

𝑎𝑃 = (−7.90 ⋅ 10
−6

) ⋅ 𝐿𝑎𝑃 +(−2.62 ⋅ 10
−6

) ⋅ 𝐿𝑜𝑃 +0.0006 ⋅𝐻𝑃 +0.28 ⋅ 𝑇 𝑟𝑃 −0.009 ⋅ 𝑃𝑃 (4.2)
𝜙𝑃 = (−6.29 ⋅ 10

−7

) ⋅ 𝐿𝑎𝑃 +1.82 (4.3)
𝑏𝑃 = (3.45 ⋅ 10

−6

) ⋅ 𝐿𝑎𝑃 +(1.19 ⋅ 10
−6

) ⋅ 𝐿𝑜𝑃 −0.002 ⋅𝐻𝑃 −0.18 ⋅ 𝑇 𝑟𝑃 −5.83 (4.4)

with 𝐿𝑎𝑃 [°] latitude, 𝐿𝑜𝑃 [°] longitude, 𝐻𝑃 [m] elevation, 𝑇 𝑟𝑃 [°C] mean annual
range of monthly temperatures, and 𝑃𝑃 [cm] mean annual precipitation. Note that all of
the above individual spatial predictor variables, averaged for each precipitation zone (P1
– P4) (Table 4.2).
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Table 4.1: The sine parameters’ predictor variables in different precipitation zones in the Neckar river basin.

Precipitation zone 𝐿𝑎𝑃 [°] 𝐿𝑜𝑃 [°] 𝐻𝑃 [m] 𝑇 𝑟𝑃 [℃] 𝑃𝑃 [cm]
P1 48.42 8.87 568.04 19.90 93.28
P2 48.92 9.12 322.20 20.05 80.87
P3 49.05 9.71 420.53 20.09 88.97
P4 48.56 8.52 673.21 19.76 105.27
Stuttgart station 48.83 9.20 314.00 20.04 69.08

Table 4.2: The estimates of sine parameters for different precipitation zones and Stuttgart station.

𝑎𝑃 [‰] 𝜙𝑃 [rad] 𝑏𝑃 [‰]
P1 4.64 1.82 -10.55
P2 4.65 1.82 -10.08
P3 4.65 1.82 -10.29
P4 4.56 1.82 -10.73
Stuttgart 4.75 1.82 -10.06
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Figure 4.3: The 18
O𝑃 sine wave for precipitation zones (P1 – P4) and Stuttgart station.
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Spatial extrapolation of precipitation 3H to precipitation zones
As for 𝛿18O, it is well documented that 3H exhibits spatial heterogeneity that is
to some extent controlled by geographical factors. It has been shown that the 3H
concentration in precipitation increases with latitude, with highest concentrations in
polar regions (Rozanski et al., 1991). In addition, 3H concentrations in precipitation
increase with elevation due to the 3H-enriched upper troposphere and isotopic exchange
between liquid water and atmospheric moisture, depleting 3H in lower tropospheric
layers (Tadros et al., 2014). Considering the above effects, we established a multiple
linear regression relationship between 3H concentrations in precipitation observed
at 15 multiple locations across Germany (Fig. 4.4) as available through the WISER
database (IAEA and WMO, 2022; Schmidt et al., 2020), and their corresponding elevation
and latitude, respectively (Fig. 4.5). We then used this relationship to adjust the 3H
precipitation input for the four precipitation zones according to their corresponding
average latitude and elevation estimate:

3
HP(𝑡) = −0.75(𝐿𝑃 −𝐿𝑜)−0.002(𝐸𝑃 −𝐸𝑜)+

3
H𝑜 (4.5)

where 3HP is the latitude- and elevation-adjusted tritium precipitation concentration
for each precipitation zone (P1 – P4), 3Ho is the tritium precipitation concentration
observed at the Stuttgart station, 𝐿𝑃 and 𝐸𝑃 are the mean latitude and elevation,
respectively, of each precipitation zone and 𝐿𝑜 and 𝐸𝑜 are the latitude and elevation,
respectively, of the Stuttgart station.
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Figure 4.4: 3H concentrations in precipitation observed at 15 multiple locations across Germany.
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4.3 Methods
The experiment to test the hypothesis that the use of 𝛿18O data systematically leads
to truncated water age distributions and associated underestimations of water ages
is designed and executed in a step-wise approach. 21 different scenarios of model
types and spatial implementations thereof are sequentially calibrated and tested to
reproduce observed 𝛿18O and 3H signals in stream flow. For each of these models,
several metrics of water age distributions resulting from the 2 independent calibration
procedures, i.e., for 𝛿18O and 3H, respectively, are then estimated and compared.
As a baseline and to ensure comparability with previous studies, water ages are
quantified with spatially lumped, time-invariant implementations of twelve commonly
used SW/CO model scenarios (Table 4.3): sine-wave models using exponential (SW-EM)
and gamma distributions as TTDs (SW-GM; only 𝛿18O), lumped parameter convolution
integral models using exponential (CO-EM) and gamma distributions as TTDs (CO-GM),
two parallel reservoirs (CO-2EM), three parallel reservoirs (CO-3EM) as well as an
exponential piston flow (CO-EPM) implementation. The above baseline scenarios are
complemented by nine additional models on the basis of SAS-functions (Table 4.4). In
order of increasing complexity, these include three spatially integrated formulations of
a “pure” SAS-function approach with one storage component and based on observed
stream flow (P-SAS), three implementations of a spatially integrated hydrological model
with tracer routing based on SAS-functions (IM-SAS-L) as well as three spatially
distributed implementations of the same integrated hydrological model in combination
with SAS-functions (IM-SAS-D).

4.3.1 Models
Sine-wave model (SW)
As demonstrated by Małoszewski et al. (1983), sine waves fitted to 𝛿18O precipitation
and stream flow signals can be used to indicatively determine water ages. More
specifically, the ratio of the amplitudes of the fitted sine waves, i.e. 𝐴𝑠/𝐴𝑝 , can be used
together with the assumption of a shape of the TTD to estimate the associated MTT
of a system. In the case of a gamma distribution as TTD, this is done according to
(Kirchner, 2016):

𝜏̄ = 𝛼𝛽, (4.6)

with

𝛽 =

1

2𝜋𝑓

√

(𝐴𝑠/𝐴𝑝)

−2/𝛼

−1, (4.7)

where 𝜏 is the MTT, 𝛼 is a shape parameter, 𝛽 is a scale parameter and f here is the
frequency for the seasonal 𝛿18O signal, i.e., 𝑓 = 1 yr-1. Here we analyze the two
cases 𝛼 = 1 (SW-EM) and 0.5 (SW-GM). Note that with 𝛼 = 1, the gamma distribution
is equivalent to an exponential distribution. The sine wave model is a simplification
of a convolution integral model and can be directly derived from that. For a more
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detailed description of the method and underlying assumptions we refer to McGuire and
McDonnell (2006) and Kirchner (2016).

Time-invariant, lumped parameter convolution integral model
(CO)
While the sine wave approach requires regular cyclic signals of tracer composition,
i.e., sine waves fitted to the observations, convolution integral models make direct use
of the observed tracer data (e.g. Kreft and Zuber, 1978). Tracer composition in the
system output can thus be estimated based on a convolution operation of the tracer
composition in the system input together with an a priori assumption of a TTD (e.g.
Małoszewski and Zuber, 1982; Kirchner et al., 2001):

𝐶𝑂(𝑡) = ∫

∞

0

𝑔(𝜏)𝐶𝑖(𝑡 −𝜏)𝑒
𝜆𝜏
𝑑𝜏 (4.8)

where 𝐶𝑜(𝑡) is the tracer composition of the system output (here: stream flow) at time
𝑡, 𝐶𝑖(𝑡 −𝜏) is the tracer composition of the system input (here: precipitation) at any
previous time 𝑡 −𝜏, 𝜆 is the radioactive decay constant (𝜆 = 0.00015 d-1 for 3H and 𝜆 = 0

d-1 for stable isotopes) and 𝑔(𝜏) is the distribution of transit times 𝜏. Here, we used
gamma distributions as basis for a flexible and general formulation of TTDs in the
different CO scenarios tested in this study:

𝑔(𝜏) =

𝑁

∑

𝑖=1

𝜂𝑓𝑖

𝜏
𝛼−1

𝛽
𝛼

𝑖
Γ(𝛼)

𝑒

−𝜏

𝜂𝛽
𝑖

+
1

𝜂
−1 for 𝜏 ≥ 𝜏𝑚(𝑙 −𝜂),𝑔(𝜏) = 0 otherwise (4.9)

with the 𝛼 and 𝛽𝑖 being the shape and scale parameters, respectively, 𝑓𝑖 the fraction
of the contribution of the 𝑖th reservoir, so that ∑𝑓𝑖 = 1 and 𝜂 the ratio of the exponential
volume to the total volume. For a single exponential TTD (CO-EM) with 𝛼 = 1, 𝑁 = 1,
𝜂 = 1 and 𝑓1 = 1, 𝛽1 was the only calibration parameter. The two parallel exponential
TTD model (CO-2EM) with 𝛼 = 1, 𝑁 = 2, 𝜂 = 1 and 𝑓2 = 1−𝑓1, required 𝛽1, 𝛽2 and 𝑓1
as calibration parameters, while the three parallel exponential TTD model (CO-3EM)
with 𝛼 = 1, 𝑁 = 3, 𝜂 = 1 and 𝑓3 = 1−𝑓1−𝑓 2, required 𝛽1, 𝛽2, 𝛽3 as well as 𝑓1 and 𝑓 2 as
calibration parameters. The exponential piston flow model (CO-EPM) with 𝛼 = 1, 𝑁 = 1

and 𝑓1 = 1 was characterized by the two calibration parameters 𝛽1 and 𝜂. In contrast,
the Gamma distribution model (CO-GM), with 𝑁 = 1, 𝜂 = 1 and 𝑓1 = 1, used both, 𝛼 and
𝛽1 as free calibration parameters.

The MTTs associated with the above parameters in the individual model
implementations are then obtained with Eq. 4.10.

𝜏̄ =

𝑁

∑

𝑖=1

𝑓𝑖𝛼𝛽𝑖 (4.10)

For more detailed description of the method and the individual shapes of TTDs
considered here, refer to McGuire and McDonnell (2006).
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1
†-)
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†)

1
†)

1
†)

1
†)
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SAS-function models (P-SAS, IM-SAS)
The storage-age selection function (SAS) concept as outlined byRinaldo et al., 2015
requires the explicit tracking of water and tracer storage volumes. The age compositions
of water fluxes are then sampled from the age composition in the associated storage
volume. Two alternative and frequently used approaches to account for the evolution of
water storage volumes were explored here: firstly, a “pure" SAS-function model in which
the observed stream flow was used to account for changes in water storage volumes
(P-SAS) and secondly, an integrated process-based hydrological model that generates
stream flow and other fluxes in the system (IM-SAS). Water ages, their distributions,
and the associated moments thereof were then estimated by tracking water and tracer
fluxes through the models.

Hydrological model
The hydrological component of the “pure" SAS-function model (P-SAS) was implemented
as described in Benettin et al., 2017a. This model consists of one single storage volume,
which receives observed precipitation P as input and releases observed stream flow
as output. Evaporation 𝐸𝐴 from that storage is modelled following the simplifying
assumption that there is negligible storage change over the entire 47-year study period
(01/01/1970 – 31/12/2016), as expressed by:

𝐸𝐴(𝑡) = 𝐸𝑃 (𝑡)
(

𝑃 −𝑄̄

𝐸𝑃 )
(4.11)

With 𝑃 and 𝑄̄ being long-term mean daily precipitation 𝑃 (mm d-1) and discharge
𝑄 (mm d-1), respectively, and 𝐸𝑃 the long-term mean daily potential evaporation 𝐸𝑃
(mm d-1).

In contrast, the water storage fluctuations and fluxes in the IM-SAS approach were
modelled based on the semi-distributed hydrological model developed in Chapter 2. The
detailed equations of the model are provided as Table 2.2 in Chapter 2.

Tracer transport model
𝛿
18O and 3H were routed through the above-described storage components of both the

P-SAS and the IM-SAS (Fig. 2.2 in Chapter 2) models by sampling the observed (i.e. 𝑄
in P-SAS) and modeled outflow volumes (i.e. 𝐸𝑎 in P-SAS; all outflows in IM-SAS) that
leave the individual components at each time step t (d) (e.g. 𝑀𝑠𝑛𝑜𝑤 , 𝑅𝑝𝑒𝑟𝑐 , 𝐸𝑎, etc.) from
the individual water volumes of different age T (d) that are stored in the associated
storage component (e.g. 𝑆𝑠𝑛𝑜𝑤 , 𝑆𝑢, etc.) at each time step according to a SAS function.
The distribution of water volumes of different ages in each storage component, i.e.,
the residence time distribution RTD, depends on the past sequence of inflows 𝐼 (mm
d-1) and outflows 𝑂 (mm d-1) and therefore varies over time. As a consequence of
being sampled from RTDs that evolve over time, both, inflows 𝐼 and outflows 𝑂 are
correspondingly characterized by water age distributions (or transit time distributions
TTD) that change over time. A straightforward implementation of this SAS concept is
facilitated by the formulation of age-ranked storages 𝑆𝑇 (𝑇 , 𝑡) (mm). As emphasized by
Benettin et al. (2017a), 𝑆𝑇 (𝑇 , 𝑡) describes “at any time t the cumulative volumes of water
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in a storage component as ranked by their age 𝑇 ”. Correspondingly, the total inflow (𝐼 )
into as well as the total outflow volumes (𝑂) from different storages can be expressed in
terms of their cumulative, age-ranked volumes 𝐼𝑇 (𝑇 , 𝑡) and 𝑂𝑇 (𝑇 , 𝑡) (mm d-1). At any
time, closing the resulting water age balance for each storage component j (e.g. 𝑆𝑠𝑛𝑜𝑤 ,
𝑆𝑢, etc.) also leads to an updated age-ranked storage 𝑆𝑇 ,𝑗 (𝑇 , 𝑡) for that component,
formulated as (Benettin et al., 2015c; Rinaldo et al., 2011; Harman, 2015; Van der Velde
et al., 2012):

𝜕𝑆𝑇 ,𝑗 (𝑇 , 𝑡)

𝜕𝑡

+

𝜕𝑆𝑇 ,𝑗 (𝑇 , 𝑡)

𝜕𝑇

=

𝑁

∑

𝑛=1

𝐼𝑇 ,𝑛,𝑗 (𝑇 , 𝑡)−

𝑀

∑

𝑚=1

𝑂𝑇 ,𝑚,𝑗 (𝑇 , 𝑡), (4.12)

where 𝜕𝑆

𝜕𝑇
is the aging process of water in storage. Here, the water age balance (Eq. 4.12)

was formulated individually for each storage reservoir 𝑗 , also accounting for different
numbers 𝑁 of storage component inflows 𝐼 (e.g. 𝑃𝑟𝑎𝑖𝑛, 𝑀𝑠𝑛𝑜𝑤 , 𝑅𝑝𝑒𝑟𝑐) and numbers 𝑀 of
outflows 𝑂 (e.g., 𝑅𝑝𝑒𝑟𝑐 , 𝑅𝑝𝑟𝑒𝑓 , 𝐸𝑎) (Fig. 2.2 in Chapter 2), similar to previous studies (e.g.
Hrachowitz et al., 2021). For a daily modelling time step, it can in the water age balance
be assumed that precipitation 𝑃(𝑡) that is falling on day 𝑡 is characterized by an age
𝑇 = 0. This implies for the age ranked inflow 𝐼𝑇 ,𝑃,𝑗 (0, 𝑡) = 𝑃𝑇 (0, 𝑡) = 𝑃(𝑡). Note, that
all other age ranked inflows 𝐼𝑇 ,𝑛,𝑗 (𝑇 , 𝑡) that enter a storage component are equivalent
to the corresponding age ranked outflows 𝑂𝑇 ,𝑚,𝑗 (𝑇 , 𝑡) that leave a “higher" storage
component.

Depending on the total volume of outflow 𝑂𝑚,𝑗 (𝑡) and the cumulative distribution
of ages 𝑃𝑜,𝑚,𝑗 (𝑇 , 𝑡) of that flow, an age-ranked outflow 𝑂𝑇 ,𝑚,𝑗 (𝑇 , 𝑡) for each flux m
released from each storage component 𝑗 can be defined as:

𝑂𝑇 ,𝑚,𝑗 (𝑇 , 𝑡) = 𝑂𝑚,𝑗 (𝑡)𝑃𝑜,𝑚,𝑗 (𝑇 , 𝑡), (4.13)

While the outflow 𝑂𝑚,𝑗 (𝑡) from any storage component 𝑗 is computed for each
time step 𝑡 by the hydrological model described above, the associated 𝑃𝑜,𝑚,𝑗 cannot be
assumed to be known as it is controlled by the temporally evolving distribution of
water ages present in that storage component 𝑆𝑇 ,𝑗 (𝑇 , 𝑡) at 𝑡. However, the temporally
variable 𝑃𝑜,𝑚,𝑗 can be inferred for each time step t by defining for each storage 𝑗 and for
each outflow m released from 𝑗 a SAS function 𝜔𝑜,𝑚,𝑗 together with its cumulative form
Ω𝑜,𝑚,𝑗 . These functions then describe how the water volumes of different ages, stored in
component 𝑗 at time 𝑡, i.e. 𝑆𝑇 ,𝑗 (𝑇 , 𝑡), are sampled and combined into the corresponding
total outflow volume Ω𝑚,𝑗 :

𝑃𝑜,𝑚,𝑗 (𝑇 , 𝑡) = Ω𝑜,𝑚,𝑗 (𝑆𝑇 ,𝑗 (𝑇 , 𝑡), 𝑡) , (4.14)

The probability density function 𝑝𝑜,𝑚,𝑗 (𝑇 , 𝑡) associated with the cumulative
distribution of ages 𝑃𝑜,𝑚,𝑗 (𝑇 , 𝑡), then represents the transit time distribution TTD of that
outflow and can be written as:
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𝑝𝑜,𝑚,𝑗 (𝑇 , 𝑡) = 𝜔̄(
𝑜,𝑚, 𝑗)(𝑆(𝑇 , 𝑗)(𝑇 , 𝑡), 𝑡)

𝜕𝑆𝑇 ,𝑗

𝜕𝑇

, (4.15)

Conservation of mass dictates that

Ω𝑜,𝑚,𝑗 (𝑆𝑇 ,𝑗 (𝑇 , 𝑡) → 𝑆𝑗 (𝑡), 𝑡) = 1, (4.16)

Where 𝑆𝑗 (mm) is the total volume of water stored in component 𝑗 at time 𝑡.
The resulting need to rescale 𝜔𝑜,𝑚,𝑗 for each time step was here avoided by instead
normalizing and therefore bounding the age ranked storage to the interval [0,1]

according to

𝑆𝑇 ,𝑛𝑜𝑟𝑚,𝑗 (𝑇 , 𝑡) =

𝑆𝑇 ,𝑗 (𝑇 , 𝑡)

𝑆𝑗 (𝑡)

, (4.17)

Note that 𝑆𝑇 ,𝑛𝑜𝑟𝑚,𝑗 also represents the RTD of storage component 𝑗 at time 𝑡.
For the P-SAS model implementation in this study, we used power law distributions
with one parameter to sample streamflow (𝑘𝑄) and evaporation (𝑘𝐸), respectively, as
described by Benettin et al. (2017a). In contrast, we used uniform distributions in the
form of 𝜔 = const. as SAS function in each storage component in the IM-SAS model
implementations as previously shown to be effective in many studies (e.g. Birkel et al.,
2011; Van der Velde et al., 2015; Benettin et al., 2015b, Benettin et al., 2017a; Ala-Aho
et al., 2017; Kuppel et al., 2018; RRodriguez et al., 2018). The latter implies random
sampling and the assumption that each storage component is fully mixed and that
there is no preference for sampling younger or older water. However, note that due to
distinct storage capacities and time-scales of the individual storage components, the
“combined" SAS functions of all storage components will not lead to an overall fully
mixed system response. Uniform SAS functions were here chosen over other shapes,
such as beta-distributions (e.g. Van der Velde et al., 2012; Hrachowitz et al., 2021), as
they do not need additional model parameters and avoid the need for explicit calculation
of TTDs at each model time step to route tracers through the model (Benettin et al.,
2015b), thereby drastically reducing computer memory requirements and computational
time (Benettin et al., 2022).

To adequately damp tracer input signals, suitable system storage volumes have
to be defined as calibration parameters. In the P-SAS implementation the parameter
𝑆𝑡𝑜𝑡 is used, reflecting the initial total system storage (e.g. Benettin et al., 2017a). In
contrast, the IM-SAS implementations made use of additional and hydrologically passive
storage volumes (e.g. Christophersen and Wright, 1981; Birkel et al., 2010; Hrachowitz
et al., 2015, Hrachowitz et al., 2016), which physically represents groundwater volumes
below the river bed, as illustrated by Zuber (1986; Fig.1 therein). Such a passive water
storage volume 𝑆𝑠,𝑝 (mm), characterized by 𝑑𝑆𝑠,𝑝/𝑑𝑡 = 0, was thus added as calibration
parameter to the active groundwater storage Ss (Fig. 2.2 in Chapter 2). While the
outflow 𝑄𝑠 from the groundwater storage is exclusively regulated by the temporally
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varying storage volume in 𝑆𝑠 (Eq. ?? in Table 2.2, Chapter 2), the tracer and age
composition of that outflow is also randomly sampled from the total groundwater
storage volume 𝑆𝑠,𝑡𝑜𝑡 = 𝑆𝑠 +𝑆𝑠,𝑝 .

The 𝛿18O and 3H concentrations were then routed through each individual storage
component according to (e.g. Harman, 2015; Benettin et al., 2017a):

𝐶𝑜,𝑚,𝑗 (𝑡) = ∫

𝑆𝑗

0

𝐶𝑠,𝑗 (𝑆𝑇 ,𝑗 (𝑇 , 𝑡), 𝑡)𝜔𝑜,𝑚,𝑗 (𝑆𝑇 ,𝑗 (𝑇 , 𝑡), 𝑡)𝑒
−𝜆𝑇

𝑑𝑆𝑇 , (4.18)

Where 𝐶𝑜,𝑚,𝑗 is the tracer concentration in outflow m from storage component 𝑗
at time 𝑡, 𝐶𝑠,𝑗 is the tracer concentration of water in storage at time 𝑡 and 𝜆 is the
radioactive decay constant (𝜆 = 0 d-1 for 𝛿18O and 𝜆 = 0.00015 d-1 for 3H).

4.3.2 Model implementation
Spatially lumped model implementation
The original argument that the use of seasonally variable tracers underestimates water
ages was exclusively based on lumped, time-invariant implementations of sine-wave
and convolution integral models (Stewart et al., 2010). For a baseline comparison and
to check whether the above conclusion would also have been reached for our study
basin using the same methods, we here similarly implemented the sine-wave (SW-EM,
SW-GM) and convolution integral (CO-EM, CO-GM, CO-2EM, CO-3EM, CO-EPM) in a
spatially lumped way. For this baseline case the catchment average tracer input was
estimated as the spatially weighted mean from the four precipitation zones P1 – P4 as
described in section 4.2.2. The calibration parameters of the CO implementations are
shown in Table 4.3.

The “pure" SAS-model (P-SAS; Table 4.4) and the spatially lumped implementation
of the integrated model (IM-SAS-L) were also forced with the same spatially averaged
input. In addition, the spatial fractions of the grassland and wetland HRUs for IM-SAS-L,
respectively, were set to 0 and the entire study basin therefore represented by one HRU
which is equivalent to the forest HRU described in distributed model, similar to many
traditional lumped formulations of process-based conceptual models (Bouaziz et al.,
2021; Clark et al., 2008; Fenicia et al., 2006; Fovet et al., 2015; Seibert et al., 2010). This
implementation has 11 calibration parameters (Table 4.4).

Spatially distributed model implementation
To balance the need for spatial detail to some extent with the adverse effects of
increased parameter uncertainty (e.g. Beven, 2006) and computational capacity (in
particular for the calculation of TTDs), we here implemented the integrated model
in parallel (IM-SAS-D) in the four precipitation zones P1 – P4 and forced it with the
corresponding input (e.g. 𝑃 , 𝛿18O and 3H) for each precipitation zone as described in
section 4.3.2. Each precipitation zone was further discretized (1) into 100 m elevation
zones for a stratified representation of the snow storage 𝑆𝑠𝑛𝑜𝑤 (e.g. Mostbauer et al.,
2018) and (2) into three HRUs, i.e., forest, grassland, wetland (Fig. 2.2 in Chapter 2; e.g.
Gharari et al., 2014; Hanus et al., 2021). Rain 𝑃𝑟𝑎𝑖𝑛 and melt water 𝑀𝑠𝑛𝑜𝑤 from the
different elevation zones was aggregated according to their associated spatial weights
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in each elevation zone. This total liquid water input was then routed through the
three parallel HRUs. The classification into the three HRUs was based on the metric
Height-above-nearest-drainage (HAND; Gharari et al., 2011) and land cover. While
landscape elements with HAND < 5 m were classified as wetland, all other parts of
the landscape were classified as forest or grassland according to land-use data. In
total, there are therefore 12 individual, parallel model components, i.e., three HRUs in
each of the four precipitation zones, not counting the elevation zones for the snow
module. All flux and storage variables of the 12 components are weighted according to
their areal fractions. While each of the three HRUs was characterized by individual
parameters (e.g.Gao et al., 2016; Prenner et al., 2018), the same parameter values were
used in all four precipitation zones in distributed moisture accounting approach (e.g.
Ajami et al., 2004; Euser et al., 2015; Hulsman et al., 2021b; Roodari et al., 2021).
Overall, the spatially distributed implementation has 19 model parameters, including
five global parameters (𝑇𝑡 , 𝐶𝑚𝑒𝑙𝑡 , 𝐶𝑎, 𝐾𝑠 and 𝑆𝑠,𝑝) that are identical for each HRU and 14
HRU-specific parameters (Table 4.4; Fig. 2.2 in Chapter 2).

4.3.3 Model calibration and post-calibration evaluation
The models were run at a daily time step, whereby the observed volume-weighted
monthly tracer concentration in precipitation was used as model input for each day
of that month together with the daily data of precipitation. Model performance was
evaluated based on the Mean Square Error (MSE) as error metric. The time-invariant,
lumped convolution integral models, using uniform prior parameter distributions as
shown in Table 4.3, were individually calibrated to the observed 𝛿18O (calibration
strategy C

𝛿
18O; Table 4.3) and 3H stream water concentrations (C3H), respectively. In

contrast, a multi-objective calibration approach was applied for the integrated IM-SAS
models to simultaneously reproduce stream flow volumes and tracer concentrations
thereof (e.g. 3H and/or 𝛿18O). Briefly, the model parameters were calibrated by using
Borg_MOEA algorithm (Borg Multi-objective evolutionary algorithm; Hadka and Reed,
2013) and based on uniform prior distributions (Table 4.4). The model performances
were evaluated based on the models’ ability to simultaneously reproduce multiple
signatures of stream flow as well as signatures of tracer dynamics as shown in Table 4.6.
The sets of pareto optimal solutions obtained from the calibration procedures were then
retained as acceptable solutions for the subsequent analysis. To compare the water age
distributions (i.e., TTDs and RTDs) and thus to test the research hypothesis, different
calibration strategies, C

𝛿
18O,Q, C3H,Q and C

𝛿
18O,3H,Q, were adopted (Table 4.4). While in

strategy C
𝛿
18O,Q the models were calibrated to simultaneously reproduce signatures of

stream flow and 𝛿18O, C3H,Q combined the stream flow signatures with 3H. In strategy
C
𝛿
18O,3H,Q the model was finally calibrated to simultaneously reproduce the six stream

flow signatures, 𝛿18O, and 3H dynamics. For each strategy, all performance metrics
were also combined into an overall performance metric based on the Euclidian distance
(𝐷𝐸), where 𝐷𝐸 = 0 indicates a perfect fit. To find a somewhat balanced solution in
absence of more detailed information all individual performance metrics were here
equally weighted (e.g., Hrachowitz et al., 2021; Hulsman et al., 2021b):
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√

1

2 (

∑
𝑁

𝑛=1 (𝐸𝑀𝑆𝐸,𝑄,𝑛)
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𝑁

+

∑
𝑀

𝑚=1 (𝐸𝑀𝑆𝐸,𝑡𝑟𝑎𝑐𝑒𝑟,𝑚)

2

𝑀 )

, (4.19)

Where 𝑁 = 6 is the number of performance metrics with respect to stream flow
(𝐸𝑀𝑆𝐸,𝑄,𝑛) and M is the number of performance metrics for tracers (𝐸𝑀𝑆𝐸,𝑡𝑟𝑎𝑐𝑒𝑟,𝑚) in
each combination (e.g. 𝑀 = 1 for C

𝛿
18O,Q, and C3H,Q, 𝑀 = 2 for C

𝛿
18O,3H,Q). Note that the

different units and thus different magnitudes of residuals introduce some subjectivity in
finding the most balanced overall solution according to 𝐷𝐸 (Eq. 4.19). However, a
preliminary sensitivity analysis with varying weights for the individual performance
metrics in 𝐷𝐸 suggested limited influence on the overall results and is thus not further
reported here.

After a warm-up period 01/01/1978 – 30/09/2001 the models were calibrated for the
01/10/2001 – 31/12/2009 period. The calibration period was chosen so that observations
of all three calibration variables, i.e., 𝑄, 3H and 𝛿18O, are available for the entire
calibration period to allow a consistent comparison. The long model warm-up period
was deemed necessary to meaningfully approximate the model initial conditions due to
the potential and a priori unknown relevance of old water in the study basin, and thus
to avoid underestimation of water ages inferred from 3H data. The pareto optimal
solutions (parameter sets) of the Neckar basin model were then used to test the model
in the post-calibration evaluation period 01/01/2010 – 31/12/2016. In addition, the
model was tested for its ability to represent spatial differences in the hydrological
response by evaluating it against streamflow observations in three sub-catchments (C1 –
C3) of the Neckar without further re-calibration whereby each one of them largely
represents the hydrological response from one of the precipitation zones (Fig. 4.1). The
water age distributions, i.e., TTDs and RTDs, extracted from the individual models and
calibration strategies were then estimated based on the corresponding sets of pareto
optimal solutions obtained for each calibration strategy.
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4.4 Results
4.4.1 Model performance
The stream tracer responses of the lumped baseline models were found to be broadly
consistent with the available observations (Table 4.6). For the SW models (scenarios 1, 2)
in particular the sine wave fitted to the stream water 𝛿18O observations provides a
robust characterization of the observed signal with MSE

𝛿
18
O
= 0.121 and 0.144 ‰ for

calibration and model evaluation periods, respectively (Fig. 4.6). Similarly, the CO
models (scenarios 3, 5, 7, 9, 11) reproduced the overall pattern of seasonal fluctuations
and the degree of dampening of the 𝛿18O response (Fig. 4.7). The best performing
model, the CO-3EM model, was characterized by MSE

𝛿
18
O
= 0.171 and 0.191 ‰ for the

calibration and model evaluation periods, respectively while, in comparison, the CO-EM
implementation with exhibited considerably higher errors with MSE

𝛿
18
O
= 0.327 and

0.432 ‰ (Table 4.6). When used with 3H data (scenarios 4, 6, 8, 10, 12), the CO models
do capture the general decrease in the magnitude of stream water 3Hconcentrations
although fluctuations at shorter timescales are not well reproduced (Fig. 4.8). The
CO-2EM model gives the best performance with MSE3

H
= 5.171 and 3.964𝑇𝑈

2 for the
calibration and evaluation periods, respectively, while the CO-EPM model resulted in
MSE3

H
= 5.926 and 5.115𝑇𝑈

2 (Table 4.6). It is also noted that the models already mimic
the 3H response well in the 1978 – 2001 pre-calibration model warm-up period.
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Figure 4.6: The time series of stream 𝛿
18O reproduced by SW models, i.e., calibration strategy 𝐶𝑥 (scenario

1, 2), for the model calibration and evaluation periods. (a) Observed 𝛿 18O signals in precipitation (light
grey dots) and modelled 𝛿 18O signals in precipitation (dark grey dots), and observed stream 𝛿

18O signals
(orange dots) as well as modelled stream 𝛿

18O signals (light green dots), (b) zoom-in of observed and
modelled 𝛿 18O signals for the 01/01/2007 – 31/12/2012 period.
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Figure 4.7: The time series of stream 𝛿
18O reproduced by CO models, i.e., calibration strategy 𝐶

𝛿
18
O

(scenario3, 5), for the model calibration and evaluation periods. (a) Observed 𝛿 18O signals in precipitation
(light grey dots; size of dots indicates the precipitation volume) and observed stream 𝛿

18O signals (orange
dots) as well as the modelled stream 𝛿

18O signals (light green dots) for scenarios 3, (b) zoom-in of
observed and modelled 𝛿 18O signals in the stream for the 01/01/2007 – 31/12/2012 period for scenarios 3,
(c) Observed 𝛿 18O signals in precipitation and in stream same as (a), and the modelled stream 𝛿

18O signals
(relatively darker green dots) for scenarios 5, (d) zoom-in of observed and modelled 𝛿 18O signals in the
stream for the 01/01/2007 – 31/12/2012 period for scenarios 5.
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Figure 4.8: Time series of stream 3H reproduced by CO models, i.e., calibration strategy 𝐶𝐻
3

(scenario4, 6),
for the model calibration and evaluation periods. (a) Observed 3H signals in precipitation (light blue-purple
dots; size of dots indicates associated precipitation volume) and in streamflow (pink dots) as well as the
modelled 3H stream signal (light purple dots), (b) zoom-in of observed and modelled 3H signals for the
01/01/2007 – 31/12/2012 period for scenarios 4, (c) Observed 3H signals in precipitation and in stream same
as (a), and the modelled stream 3H signals (relatively darker purple dots) for scenarios 6, (d) zoom-in of
observed and modelled 3H signals in the stream for the 01/01/2007 – 31/12/2012 period for scenarios 6.
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The P-SAS implementations (scenarios 13 – 15; Table 4.7; Fig. 4.9a – d and
Fig. 4.11a – d) show a somewhat higher skill to reproduce the dampening of 𝛿18O
response with MSE

𝛿
18
O
= 0.069 – 0.078 ‰ for the calibration and 0.215 – 0.231‰ for the

evaluation periods, respectively, as well as the general decrease in the magnitude of
stream water 3H with MSE3

H
< 3𝑇𝑈

2. In contrast to the above, the implementations of
the integrated model IM-SAS (Table 4.7) aim to not only to reproduce the 𝛿18O or
3H stream signals, but to additionally and simultaneously describe the hydrological
response (Table 4.7). Both, the lumped IM-SAS-L (scenario 16; Fig. 4.10a, b) and the
distributed IM-SAS-D (scenario 19) reproduce the seasonal fluctuations as well as the
degree of dampening of the 𝛿18O signals with MSE

𝛿
18
O
= 0.079 – 0.083 ‰ for the

calibration and 0.273 – 0.332 ‰ for the evaluation periods similar to or better than the
baseline SW/CO models. The IM-SAS models do also describe the evolution of the 3H
stream signals rather well (scenarios 17 and 20). With MSE3

H
< 3𝑇𝑈

2, IM-SAS-L (Fig.
4.12) and IM-SAS-D (Fig. 4.11e – h) do not only outperform the baseline models with
respect to the overall magnitude of 3H, but do, in spite of somewhat underestimating
the magnitude of seasonal amplitudes, also provide a better representation of these
intra-annual fluctuations. Similar to the SW/CO baseline models, both the P-SAS and
IM-SAS implementations also very well capture the overall decline of the stream water
3H levels in the 1978 – 2001 pre-calibration model warm-up period. The simultaneous
calibration to the hydrological response and the 𝛿18O and 3H stream signals (scenarios
18 and 21) led to a comparable model skill to reproduce the tracer signals. In addition
to the tracer concentrations, all IM-SAS implementations do also reproduce the main
features of the hydrological response (Table 4.7). More specifically, the modelled
hydrographs in particular describe well the timing of peaks as well as the shape of
recessions, although inishishn some cases peak flows were underestimated and low
flows overestimated as shown for scenario 21 in Figure 4.14 (similar results for scenarios
16 – 20, Fig. 4.13 and Appendix B Figs. B.1 – B.4). The resulting in MSEQ remains
≤ 0.336 mm2 d-2 across all IM-SAS implementations (scenarios 16 – 21). Crucially, the
models also reproduce well the other observed stream flow signatures such as the flow
duration curves (MSE𝐹𝐷𝐶𝑄 ≤ 0.047 mm2 d-2; Fig. 4.14d), the seasonal runoff coefficients
(MSE𝑅𝐶 ≤ 0.008; Fig. 4.13e) and the autocorrelation functions (MSE𝐴𝐶𝑄 ≤ 0.007; Fig.
4.14f). The model, calibrated on the overall response of the Neckar basin, also exhibited
considerable skill to represent spatial differences in the hydrological response by
reproducing observed stream flow in the three sub-catchments (C1 – C3) similarly well
(Fig. 4.15) without any further re-calibration.
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Figure 4.9: The time series of stream 𝛿
18O reproduced by models P-SAS (scenarios 13 and 15) and

IM-SAS-D (scenarios 19 and 21) based on different calibration strategies. IM-SAS-D model based on
simultaneous calibration to 𝛿 18O and the streamflow signatures, i.e. calibration strategy C

𝛿
18O,Q (scenario

19) and C
𝛿
18O,3H,Q (scenario 21), for the model calibration and evaluation periods. (a) Observed 𝛿 18O signals

in precipitation (light grey dots; size of dots indicates the precipitation volume) and observed stream 𝛿
18O

signals (orange dots) as well as the most balanced modelled 𝛿 18O signal in the stream (light green dots) for
scenario 13 from calibration strategy C

𝛿
18O, (b) zoom-in of observed and modelled 𝛿 18O signals in the

stream for the 01/01/2007 – 31/12/2012 period for scenario 13, (c) Observed 𝛿 18O signals in precipitation
and in stream same as (a), and the modelled stream 𝛿

18Osignals (relatively darker green dots) for scenario
15 from calibration strategy C

𝛿
18O,3H, (d) zoom-in of observed and modelled 𝛿 18O signals in the stream for

the 01/01/2007 – 31/12/2012 period for scenario 15. (e) Observed 𝛿
18O signals in precipitation and in

stream same as (a), and the modelled stream 𝛿
18O signals (relatively darker green dots) for scenario 19

and the 5th/95th percentile of all retained pareto optimal solutions obtained from calibration strategy
C
𝛿
18O,Q (light green shaded area), (f) zoom-in of observed and modelled 𝛿 18O signals in the stream for the

01/01/2007 – 31/12/2012 period for scenario 19, (g) Observed 𝛿 18O signals in precipitation and in stream
same as (a), and the modelled stream 𝛿

18O signals (relatively darker green dots) for scenario 21 and the
5th/95th percentile of all retained pareto optimal solutions obtained from calibration strategy C

𝛿
18O,3H,Q

(light green shaded area), (h) zoom-in of observed and modelled 𝛿
18O signals in the stream for the

01/01/2007 – 31/12/2012 period for scenario 21.
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Figure 4.11: The time series of stream 3H reproduced by models P-SAS (scenarios 14 and 15) and IM-SAS-D
(scenarios 20 and 21) based on different calibration strategies. IM-SAS-D model based on simultaneous
calibration to 3H and the streamflow signatures, i.e. calibration strategy C3H,Q (scenario 20) and C

𝛿
18O,3H,Q

(scenario 21), for the model calibration and evaluation periods. (a) Observed 3H signals in precipitation
(light blue-purple dots; size of dots indicates the precipitation volume) and observed stream 3H signals
(pink dots) as well as the most balanced modelled 3H signal in the stream (light purple dots) for scenario
14 from calibration strategy C3H, (b) zoom-in of observed and modelled 3H signals in the stream for the
01/01/2007 – 31/12/2012 period for scenario 14, (c) Observed 3H signals in precipitation and in stream same
as (a), and the modelled stream 3H signals (relatively darker purple dots) for scenario 15 from calibration
strategy C

𝛿
18O,3H, (d) zoom-in of observed and modelled 3H signals in the stream for the 01/01/2007 –

31/12/2012 period for scenario 15. (e) Observed 3H signals in precipitation and in stream same as (a), and
the modelled stream 3H signals (relatively darker purple dots) for scenario 20 and the 5th/95th percentile
of all retained pareto optimal solutions obtained from calibration strategy C3H,Q (light purple shaded area),
(f) zoom-in of observed and modelled 3H signals in the stream for the 01/01/2007 – 31/12/2012 period for
scenario 20, (g) Observed 3H signals in precipitation and in stream same as (a), and the modelled stream
3H signals (relatively darker green dots) for scenario 21 and the 5th/95th percentile of all retained pareto
optimal solutions obtained from calibration strategy C

𝛿
18O,3H,Q (light green shaded area), (h) zoom-in of

observed and modelled 3H signals in the stream for the 01/01/2007 – 31/12/2012 period for scenario 21.



4

84
4 Transport model and tracers: No evidence for underestimation of catchment transit

times inferred by water stable isotopes in SAS function models

Figure
4.12:

Tim
e
series

of
stream

3H
reproduced

by
m
odelIM

-SAS-L
based

on
sim

ultaneous
calibration

to
tracer

and
the

stream
flow

signatures,i.e.calibration
strategy

C
3H

,Q
(scenario

17)
and

C
𝛿
18O

, 3H
,Q

(scenario
18),

for
the

m
odel

calibration
and

evaluation
periods.

(a)
O
bserved

3H
signals

in
precipitation

(light
blue-purple

dots;size
of

dots
indicates

associated
precipitation

volum
e)and

in
stream

flow
(pink

dots)as
w
ellas

the
m
odelled

3H
stream

signalbased
on

the
m
ost

balanced
solution,i.e.

low
est

D
E
(light

purple
dots),and

the
5th/95th

inter-quantile
range

of
all

retained
pareto

optim
al

solutions
obtained

from
calibration

strategy
C

3H
,Q

(light
purple

shaded
area)

for
scenario

17,(b)
zoom

-in
of

observed
and

m
odelled

3H
signals

for
the

01/01/2007
–
31/12/2012

period
for

scenario
17,

(c)
Observed

3H
signals

in
precipitation

and
in

stream
sam

e
as

(a),and
the

m
odelled

stream
3H

signals
(relatively

darker
purple

dots)
and

the
5th/95th

percentile
of

allretained
pareto

optim
alsolutions

obtained
from

calibration
strategy

C
𝛿
18O

, 3H
,Q

(light
purple

shaded
area)

for
scenarios

18,(d)
zoom

-in
of

observed
and

m
odelled

3H
signals

in
the

stream
for

the
01/01/2007

–
31/12/2012

period
for

scenarios
18.



4.4 Results

4

85

Figure 4.13: Hydrograph and selected hydrological signatures reproduced by IM-SAS-L, following a
simultaneous calibration to the hydrological response, 𝛿 18O and 3H (C

𝛿
18O,3H,Q; scenario 18). (a) Time series

of observed daily precipitation; (b) observed and modelled daily stream flow (𝑄); (c) stream flow zoomed-in
to the 01/01/2007 – 31/12/2012 period; (d) flow duration curves (FDCQ); (e) seasonal runoff coefficients
(𝑅𝐶𝑄 ) and (f) autocorrelation functions of stream flow (𝐴𝐶𝑄 ) for the calibration period. Blue lines indicate
values based on observed streamflow (𝑄𝑜 ), light red lines are values based on modelled stream flow 𝑄𝑚

representing the most balanced solutions, i.e., lowest 𝐷𝐸 and the red shaded areas show the 5th/95th
inter-quantile ranges obtained from all pareto optimal solutions.
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Figure 4.14: Hydrograph and selected hydrological signatures reproduced by IM-SAS-D, following a
simultaneous calibration to the hydrological response, 𝛿 18O and 3H (C

𝛿
18O,3H,Q; scenario 21). (a) Time

series of observed daily precipitation; (b) observed and modelled daily stream flow (𝑄); (c) stream flow
zoomed-in to the 01/01/2007 – 31/12/2012 period; (d) flow duration curves (FDCQ); (e) seasonal runoff
coefficients (𝑅𝐶𝑄 ) and (f) autocorrelation functions of stream flow (𝐴𝐶𝑄 ) for the calibration period. Blue
lines indicate values based on observed streamflow (𝑄𝑜 ), red lines are values based on modelled stream
flow 𝑄𝑚 representing the most balanced solutions, i.e., lowest 𝐷𝐸 and the red shaded areas show the
5th/95th inter-quantile ranges obtained from all pareto optimal solutions.
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Figure 4.15: Selected model performances in the 01/01/2010 – 31/12/2016 validation period of the overall
Neckar basins against the model performance in uncalibrated sub-catchment (a) Kirchentellinsfurt (C1), (b)
Calw (C2) and (c) Untergriesheim (C3) based on Scenario 19. The dots indicate all Pareto-optimal solutions
in the multi-objective model performance space. The shades from dark to light indicate the overall model
performance based on the Euclidean Distance 𝐷𝐸 , with the black solutions representing the overall better
solutions (i.e. smaller 𝐷𝐸)
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4.4.2 Model parameters
Parameters of the SW/CO baseline models (scenarios 1 – 12) directly define the shapes
of parametric TTDs and thus the associated metrics of water age, such as MTT
following Eqs. (4.6 – 4.10). The CO models representing 3H signals (scenarios 4, 6, 8, 10,
12) are characterized by values of parameters 𝛾1, 𝛾2 and 𝛾3 that are by a factor of up to
∼ 10 higher than the same parameters of models calibrated to 𝛿18O signals (Table 4.3).
For example, 𝛾1 = 513 d for the CO-EM in scenario 3 and 3795 d in scenario 4.

The individual parameters of the P-SAS and IM-SAS model implementations
(scenarios 13 – 21), in contrast, do not directly define parametric TTDs nor can they be
readily and directly be linked to water ages. However, it has been previously shown that
the sizes of water storage volumes is an important control on water ages (e.g. Harman,
2015) and that in particular total storage volumes, represented by parameter Stot in
P-SAS, and the hydrologically passive storage volumes, represented by parameter 𝑆𝑠,𝑝 in
IM-SAS models, are key to regulate in particular older water ages in many systems
(e.g. Hrachowitz et al., 2016). Calibration of P-SAS to 𝛿18O in scenario 13 suggested
𝑆𝑡𝑜𝑡 ∼ 15595 mm while calibration of the lumped IM-SAS-L to 𝛿18O and stream flow
(C
𝛿
18O,Q) in scenario 16 led to a moderately well identifiable range of this parameter

𝑆𝑠,𝑝 ∼ 4107 – 10029 mm across all pareto optimal solutions and in the same order
of magnitude as P-SAS (Fig. 4.16a, Table 4.4). Reflecting the water storage capacity
in the unsaturated root zone, which is an important control on younger water ages
(Hrachowitz et al., 2021), the parameter 𝑆𝑢𝑚𝑎𝑥𝐹 was found to range between ∼ 314
– 415mm (Fig. 4.16b, Table 4.4) for the same IM-SAS-L scenario. The calibration of
the same models to 3H (scenarios 14, 17) resulted in a similar parameter ranges for
𝑆𝑡𝑜𝑡 ∼ 16638 mm, 𝑆𝑠,𝑝 ∼ 3924 – 9339 mm (Fig. 4.16a) as well as, albeit slightly lower,
𝑆𝑢𝑚𝑎𝑥𝐹 ∼ 236 – 355 mm (Fig. 4.16b). The similarities between these two scenarios
are also reflected in the parameter ranges obtained from the simultaneous calibration
to 𝛿18O and 3H (C

𝛿
18O,3H,Q) in scenarios 15 and 18. The calibration of the distributed

IM-SAS-D model following all the three calibration strategies in scenarios 19 – 21,
resulted in values for 𝑆𝑠,𝑝 ∼ 3270 – 9011 mm (Fig. 4.16c) that are broadly in the similar
ranges as for IM-SAS-L (𝑆𝑠,𝑝 ∼ 3924 – 13676 mm). In contrast, the distinction into
the individual HRUs led to clear differences between 𝑆𝑢𝑚𝑎𝑥𝐹 , 𝑆𝑢𝑚𝑎𝑥𝐺 and 𝑆𝑢𝑚𝑎𝑥𝑊 (Fig.
4.16d-f), reflective of the different hydrological functioning of these HRUs. Nevertheless,
the area-weighted average of these parameters comes close to the equivalent parameter
from the lumped model implementation (𝑆𝑢𝑚𝑎𝑥𝐹 ). The general consistency of these
parameters obtained from the different calibration strategies is exacerbated by the
limited differences in the most balanced solutions (smallest 𝐷𝐸) between the different
scenarios. For example the most balanced solutions of 𝑆𝑠,𝑝 fall between ∼ 4000 – 5000
mm for all IM-SAS scenarios 16 – 21 (Fig. 4.16a, c). All other parameters, which are less
clearly related to water ages, exhibit different levels of variation across the individual
scenarios yet not following any clear and systematic pattern (Table 4.4).
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Figure 4.16: Pareto-optimal distributions of selected parameters of the IM-SAS models (i.e., IM-SAS-L,
IM-SAS-D) shown as the associated empirical cumulative distribution functions (lines). Light green shades
indicate scenario 16, light purple shades indicate scenario 17 and light brown shades indicate scenario 18 in
(a) and (b); relatively darker green shades indicate scenario 19, relatively darker purple shades indicate
scenario 20 and relatively darker brown shades indicate scenario 21 in (c) - (f). The dots indicate the
parameter values associated with the most balanced solution, i.e. lowest 𝐷𝐸 .
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(b)

C
O

S
W

(a)

Figure 4.17: Stream flow TTDs derived from the 12 SW/CO model scenarios with the different associated
calibration strategies based on different lumped, time-invariant models. The TTDs represent the best fits of
the respective time-invariant TTD. Green shades represent the TTDs inferred from 𝛿

18O (from lighter to
darker for scenarios 1, 2, 3, 5, 7, 9, 11) in (a) and (b); the purple shades represent TTDs inferred from 3H
(from lighter to darker for scenario 4, 6, 8, 10 and 12); the black dots in (b) indicate the mean transit time
for each model scenario.

4.4.3 Water age distributions
Based on a 𝛿18O amplitude ratio 𝐴𝑠/𝐴𝑝 = 0.21 (Table 4.4), the results of the SW models
(scenarios 1, 2) suggest a system that is characterized by rather young stream water
with MTT ∼ 0.7 – 1.8 yr, depending on the choice of TTD (Table 4.8; Fig. 4.17). The
TTDs obtained from the CO models calibrated to 𝛿18O (scenarios 3, 5, 7, 9, 11) are
broadly consistent with that, suggesting MTT ∼ 1.4 – 2.4 yr. These TTDs suggest mean
water ages that are up to ∼ 9 yr lower than estimates from CO models calibrated to 3H
(scenarios 4, 6, 8, 10, 12) with MTT ∼ 9.4 – 10.4 yr (Table 4.8; Fig. 4.17). For higher
percentiles the differences in water ages can even reach more than 20 years (Table 4.8).
Correspondingly, the fractions of water younger than 3 months, 𝐹(𝑇 < 3𝑚), exhibit
considerable differences of -2 – 22% points between 𝛿18O and 3H inferred estimates,
which further increase to differences of 30 – 64% for 𝐹(𝑇 < 3𝑦𝑟).
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In contrast, from the implementations of the P-SAS and IM-SAS models in scenarios
13 – 21, it can be clearly seen that the stream water ages inferred from 𝛿

18O are across
most percentiles by a factor of around 10 higher than those from SW and CO models,
resulting in volume-weighted average MTT ∼ 11 – 17 yr over the modelling period
(Table 4.9; Fig. 4.18). Similarly, all water fractions below 20 years are substantially lower
for the P-SAS and IM-SAS models than for SW and CO models. The most pronounced
difference is observed at 𝐹(𝑇 < 5yr) that reaches 38 – 57% for SAS-functions models and
91 – 100% for SW and CO, which equals to a difference of more than 50%. As such,
these water age estimates from 𝛿

18O in SAS-function models (scenarios 13, 16, 19) are
not only very similar to the estimates from 3H in these models (scenarios 14, 17, 20) but
𝛿
18O suggests, against the expectations, even slightly older water than 3H does. More

specifically, while 𝛿18O results in stream water MTT 11 -17 yr (scenarios 13, 16, 19),
the 3H-based estimates reach MTT ∼ 11 – 13 yr (scenarios 14, 17, 20) and thus up to
five years younger (Table 4.9; Fig. 4.18). The differences between 𝛿18O and 3H water
ages from individual P-SAS and IM-SAS model implementations (scenarios 13 – 21) are
similar over all percentiles with Δ𝑇𝑇𝛿

18O-3H, on average, ∼ 1.4 yr and not exceeding ∼

5.5 yr. Accordingly, the fractions of water of any given age up to T < 20 years is ∼ 1 –
8 % higher for 3H than for 𝛿18O, suggesting higher fractions of old water modelled with
𝛿
18O (Table 4.9). Equivalent pattern and comparable magnitudes are found for the

combined use of 𝛿18O and 3H in scenarios 15, 18 and 21.
An explicit comparison between the lumped IM-SAS-L (scenarios 16 – 18) and the

distributed IM-SAS-D (scenarios 19 – 21) also suggests a good correspondence between
the respective inferred water ages for both tracers. While IM-SAS-L generates MTT ∼

11.2– 17.4 years, the MTT obtained from IM-SAS-D reach ∼ 12.8 – 15.6 years (Table 4.9;
Fig. 4.18). Besides the MTT, also the differences in water ages across all percentiles is
minor and reaches a maximum of 4.6 years at the 75th percentile. Accordingly, the
fractions of water with ages 𝑇 < 20 yr exhibit only marginal differences between the
lumped (IM-SAS-L) and distributed model (IM-SAS-D) implementations. It is noted that
these overall water ages from IM-SAS-D for the entire Neckar basin emerge from the
aggregation of TTDs of the four individual precipitation zones P1 – P4 (Table 4.10; Fig.
4.19), which are characterized by pronounced differences with MTT ranging from ∼ 8 –
10 years in P4 and ∼ 18 – 22 years in P2, depending on the scenario.
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Figure 4.18: Stream flow TTDs derived from the 9 model scenarios with the different associated calibration
strategies of P-SAS (scenarios 13 – 15), IM-SAS-L scenarios 16 – 18) and IM-SAS-D model implementations
(scenarios 19 – 21). The TTDs represent the volume weighted average daily TTDs for the modelling period
01/10/2001 – 31/12/2016. Green shades represent the TTDs inferred from 𝛿

18O (from lighter to darker for
scenario 13, 16, 19), the purple shades represent TTDs inferred from 3H (from lighter to darker for
scenario 14, 17, 20), the brown lines represent TTDs inferred from combined 𝛿 18O and 3H (brown shades
from lighter to darker for scenario 15, 18, 21); the black dots in (b) indicate the mean transit time for each
model scenario. Note that the mean transit time was estimated by fitting Gamma distributions to the
volume-weighted mean TTDs of each individual scenario.
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Figure 4.19: Stream flow weighted-TTDs of four precipitation zones (P1-P4) derived from the IM-SAS-D
model with the different associated calibration strategies (scenarios 19 – 21). The TTDs represent the
volume weighted average daily TTDs for the modelling period 01/10/2001 – 31/12/2016. Green shades from
light to dark represent the TTDs inferred from scenario 19 for P1 to P4 in (a) and (b); purple shades
from light to dark represent the TTDs inferred from scenario 20 for P1 to P4 in (c) and (d); brown
shades from light to dark represent the TTDs inferred from scenario 21 for P1 to P4 in (e) and (f); the
black dots in (b), (d) and (f) indicate the mean transit time for each precipitation zone derived from the
corresponding scenario. Note that the mean transit time was estimated by fitting Gamma distributions
to the volume-weighted mean TTDs of each individual precipitation zone and the long term-mean
precipitation for four precipitation zones P1-P4: 𝑃2 < 𝑃3 < 𝑃1 < 𝑃4.
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The consistency between water ages inferred from 𝛿
18O and 3H, respectively, in all

SAS-function model scenarios is further illustrated by the direction and magnitude of
change in water age distributions as a consequence of changing wetness conditions. In
particular during wet-up and wet periods, a marked variability of daily TTDs can be
observed, with young water fractions F(T < 3 m) ranging between ∼ 20 – 65% for
𝛿
18O-based estimates and ∼ 25 – 70% for 3H (Fig. 4.20a, b, e, f). Less variability in daily

TTDs is found under drying and dry conditions with generally F(T < 3 m) in the range
of ∼ 1 – 20%, with only very few outliers > 30%. Overall, the volume-weighted average
TTDs for wet conditions suggest slightly older water inferred from 𝛿

18O with a median
water age of ∼ 3 year and F(T < 3 m) ∼ 30%, for wet conditions than from 3H, for
which a median age of ∼ 1 year and F(T < 3 m) ∼ 40 % were found (Fig. 4.20d, h). This
is in opposite to dry conditions for which the differences between 𝛿18O and 3H-derived
water age estimates become mostly negligible (Fig. 4.20d, h).

With P-SAS and IM-SAS models, not only MTT/TTD in streams can be derived but
also in any fluxes/storages (i.e., transpiration flux 𝐸𝑎, ground water storage). An even
more pronounced young water variability in daily TTDs was found for the transpiration
flux 𝐸𝑎 leaving the unsaturated root zone storage 𝑆𝑢 in the IM-SAS models (scenarios 16
– 21). As shown in Figure 21a, the transpiration TTDs inferred from 𝛿

18O suggest a
median transpiration age during wet conditions of ∼ 2 – 40 days and F(T < 3 m) ∼ 60 –
100%. This variability shifts to median ages between ∼ 30 – 100 days and F(T < 3 m) ∼
30 – 95% for dry conditions. This pattern of variability in daily TTDs in wet and dry
periods is very closely matched by the estimates based on 3H (Fig. 4.21b). Overall, the
volume-weighted average TTDs of transpiration suggest median ages of around 14 days
for wet conditions and between 35 days (3H) and 70 days (𝛿18O) for dry conditions (Fig.
4.21d).
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Figure 4.20: Daily streamflow (Q) TTDs extracted from the most balanced model solutions of P-SAS
(scenarios 13 – 15) based on (a) calibration strategy C

𝛿
18O (scenario 13), (b) calibration strategy C3H

(scenario 14) and (c) calibration strategy C
𝛿
18O,3H (scenario 15), and IM-SAS-D implementations (scenarios

19 – 21), based on (e) calibration strategy C
𝛿
18O,Q (scenario 19), (f) calibration strategy C3H,Q (scenario 20)

and (g) calibration strategy C
𝛿
18O,3H,Q (scenario 21). The line colors represent the transition between dry

and wet periods. Panel (d) shows the volume weighted average TTDs for the wet and dry periods
respectively for P-SAS model, the light shades represent calibration strategy C

𝛿
18O (scenario 13), the

intermediate shades indicate calibration strategy C3H (scenario 14) and the dark shades are calibration
strategy C

𝛿
18O,3H (scenario 15). Panel (h) shows the volume weighted average TTDs for the wet and dry

periods respectively for IM-SAS-D model, the light shades represent calibration strategy C
𝛿
18O,Q (scenario

19), the intermediate shades indicate calibration strategy C3H,Q (scenario 20) and the dark shades are
calibration strategy C

𝛿
18O,3H,Q (scenario 21). For illustrative purposes, also the fraction of water younger

than 3 months F (T < 3 m) is indicated.
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Figure 4.21: Daily transpiration (𝐸𝑎) TTDs extracted from the most balanced model solutions of the
IM-SAS-D implementations (scenarios 19 – 21), based on (a) calibration strategy C

𝛿
18O,Q (scenario 19), (b)

calibration strategy C3H,Q (scenario 20) and (c) calibration strategy C
𝛿
18O,3H,Q (scenario 21). The line colors

represent the transition between dry and wet periods. Panel (d) shows the volume weighted average TTDs
for the wet and dry periods, respectively. The light shades represent calibration strategy C

𝛿
18O,Q (scenario

19), the intermediate shades indicate calibration strategy C3H,Q (scenario 20) and the dark shades are
calibration strategy C

𝛿
18O,3H,Q (scenario 21). For illustrative purposes, also the fraction of water younger

than 3 months 𝐹(𝑇 < 3m) is indicated.

The modelled groundwater, in comparison, was found to be characterized by
substantially less temporal variability in TTDs and older water ages (Fig. 4.22). The
TTDs inferred from both, 𝛿18O and 3H, are similar and characterized by a median age
of ∼ 10 years under both, wet and dry conditions. While F(T < 3 m) of the groundwater
largely remains < 1%, around 20 – 25% of the groundwater is older than 20 years.
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Figure 4.22: Daily groundwater (𝑆𝑠) RTDs extracted from the most balanced model solutions of the
IM-SAS-D implementations (scenarios 19 – 21), based on (a) calibration strategy C

𝛿
18O,Q (scenario 19), (b)

calibration strategy C3H,Q (scenario 20) and (c) calibration strategy C
𝛿
18O,3H,Q (scenario 21). The line colors

represent the transition between dry and wet periods. Panel (d) shows the volume weighted average RTDs
for the wet and dry periods, respectively. The light shades represent calibration strategy C

𝛿
18O,Q (scenario

19), the intermediate shades indicate calibration strategy C3H,Q (scenario 20) and the dark shades are
calibration strategy C

𝛿
18O,3H,Q (scenario 21). For illustrative purposes, also the fraction of water younger

than 3 months 𝐹(𝑇 < 3m) is indicated.
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4.5 Implications, limitationsandunresolvedqestions
What can we learn from the above? We believe the results obtained in this study have
several implications for the utility of different tracer and model types, as described in
detail below.

4.5.1 The individual roles of the choices of tracers and
models for underestimation of water ages

The overall magnitude of water ages here estimated from time-invariant, lumped SW
and CO models in combination with 𝛿18O reach MTTs of ∼ 2 years (Table 4.8; Fig. 4.17).
These values fall within the age ranges reported for comparable model experiments
with seasonally variable tracers in many other catchments world-wide (see McGuire and
McDonnell, 2006; Godsey et al., 2009; Hrachowitz et al., 2009b; Stewart et al., 2010 and
references therein). Similarly, the water ages estimated with the same CO models in
combination with 3H are with MTTs ∼ 10 yrs by a factor of ∼ 5 higher (Table 4.8; Fig.
4.17), and also well reflect the findings of previous studies, many of which suggest
3H-inferred catchment MTTs of ∼ 10 – 15yr (Stewart et al., 2010 and references therein).
This suggests that the Neckar basin does not exhibit unusual or unexpected water age
characteristics. By themselves, these results would therefore lend further supporting
evidence for the interpretation provided by Stewart et al. (2010) and, crucially, lead us to
the same conclusion, that the use of 𝛿18O and comparable seasonally variable tracers
truncate stream water ages.

However, and in stark contrast, the estimates of water age obtained from all P-SAS
and IM-SAS model implementations in this study, i.e., scenarios 13 – 21, are similar to
each other irrespective of the tracer used. Water ages estimated from 𝛿

18O are, with
MTT > 11.4 yr, not only substantially older than those inferred from the SW and CO
models (scenarios 1 – 3, 5, 7, 9, 11), but, most importantly, similar to those inferred from
3H in P-SAS and IM-SAS models, which reach MTT ∼ 11 – 13 yr (Table 4.9; Fig. 4.18).
These water ages highlight the importance of old water in the Neckar basin, similar to
what is suggested by the use of 3H in CO models (scenarios 4, 6, 8, 10, 12).

It is important to note that the IM-SAS and, to a lesser degree, P-SAS models
can simultaneously reproduce several signatures of the hydrological response together
with the 𝛿18O and 3H stream water signals. They therefore provide a more holistic
description of physical transport processes in the system (Table 4.7; Fig. 4.9 – 4.14) than
the SW and CO models (Table 4.6 Fig. 4.6 – 4.8), which mimic one single tracer signal
and thus one isolated variable at a time. In addition, the P-SAS and IM-SAS model
parameters that are most linked to tracer circulation, e.g. 𝑆𝑡𝑜𝑡 , 𝑆𝑠,𝑝 and 𝑆𝑢𝑚𝑎𝑥 (Fig. 4.15),
exhibit little difference when obtained from calibration to 𝛿18O or 3H, respectively. This
implies that both, 𝛿18O and 3H, provide similar information about how tracers are
routed through the model and how water is stored in and released from the system. As
a consequence, also the simultaneous representation of all three types of variables under
consideration, i.e., the hydrological response as well as the 𝛿18O and 3H stream signals,
in these models is consistent with the observed data (scenarios 18, 21).

The above is further corroborated by how water ages in the Neckar basin respond
to changing wetness conditions. Although not identical, 𝛿18O and 3H-inferred daily
TTDs exhibit nevertheless broad agreement in the directions and magnitudes of change
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in response to changing wetness conditions (Fig. 4.20). Changes in stream flow TTDs in
IM-SAS are not primarily caused by changes of water ages within individual storage
components. In particular, the modelled water age distributions in the groundwater 𝑆𝑠
show limited sensitivity to changing wetness conditions, with MTT varying between ∼

18 years in dry periods and ∼ 17 years in wet periods (Fig. 4.22). The TTDs in the
transpiration flux 𝐸𝑎, which are reflective of the water ages in the unsaturated root zone
𝑆𝑢, exhibit with MTTs between ∼ 0.20 and 0.12 years in dry and wet periods (Fig. 4.21),
respectively, magnitudes and fluctuations over time that are similar to what has been
previously reported in other studies (e.g., Hrachowitz et al., 2015; Soulsby et al., 2016;
Visser et al., 2019; Birkel et al., 2020; Kuppel et al., 2020). However, the level of these
age fluctuations alone is insufficient to explain the magnitude of change in stream flow
TTDs, which can vary by several years. Instead, the temporal variability of stream flow
TTDs is largely controlled by switches in the relative contributions of individual storage
components to stream flow under different wetness conditions. Under increasingly
wet conditions, considerably increasing proportions of comparably young water from
𝑆𝑢 contribute over shallow preferential flow pathways (𝑆𝑓 ) to stream flow, while the
relative proportion of groundwater contributing to stream flow under such conditions is
reduced (Hrachowitz et al., 2013). Both tracers, 𝛿18O and 3H, generate these patterns in
a corresponding way.

Altogether, this suggests that the P-SAS and IM-SAS models and the resulting
estimates of water ages inferred from both, 𝛿18O and 3H, provide plausible descriptions
of transport processes and thus water ages in the Neckar basin. Clearly, with current
observation technology, it is impossible to know the real water age distribution at river
basin scale. However, the water ages and their temporal variability inferred from both,
𝛿
18O and 3H using P-SAS and IM-SAS models are widely consistent. This is suggestive

that it is not the use of 𝛿18O per se that leads to truncation of TTDs, but rather that
time-invariant, lumped convolution integral models are incapable of extracting sufficient
information from 𝛿

18O signals. These results mirror anecdotal evidence from several
previous studies (e.g., Hrachowitz et al., 2015, Hrachowitz et al., 2021; Ala-Aho et al.,
2017; Buzacott et al., 2020; Yang et al., 2021). Although no direct comparison with 3H
data is provided in these studies, they demonstrated the potential of 𝛿18O in SAS-based
model approaches to estimate water age distributions with considerable fractions of
water older than 5 – 10 years and Birkel et al. (2020) explicitly estimated MTTs of up to
18 years. Our results also strongly support the findings and general conclusions of
Rodriguez et al., 2021, who undertook a direct comparison of water ages inferred from
𝛿
18O and 3H. In their study for a small catchment and based on shorter tracer time

series, i.e., 2 years, and a system that is characterized by rather low MTT of ∼ 3 years,
they found that although 3H led to higher MTTs than 𝛿18O, the absolute difference
between these ages estimates was with 0.2 years limited and even decreasing for higher
percentiles of the water age distributions.

It is therefore argued that the evidence emerging from our results and the above
considerations is strong enough to reject the hypothesis that 𝛿18O as a tracer generally
and systematically “cannot see water older than about 4 years” (Stewart et al., 2010,
Stewart, 2012) and the corresponding tails in water age distributions, leading to
underestimations of water ages. We further argue that previous underestimations of
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water ages are rather a consequence of the use of time-invariant, lumped parameter
convolution integral model techniques that cannot resolve the information contained
𝛿
18O signals in a meaningful way for catchments with transient flow conditions. In

contrast, the combined information using hydrological and tracer data and thus the
consideration of transient flow conditions results in similar MTTs, independent of the
used tracer. Note, that for this reason, time-variant implementations of convolution
integral models that can describe transient conditions may hold the potential to similarly
generate water age estimates from 𝛿

18O signals that reflect the results of the P-SAS and
IM-SAS models tested here.

However, and notwithstanding the rejection of the above hypothesis it is important
to note that overall and in spite of the similarity between 𝛿18O and 3H inferred water
ages in the study basin on the basis of P-SAS and IM-SAS models, there may be no
general equivalence between 𝛿18O and 3H tracers. Instead, it is plausible to assume that
differences will gradually increase with higher water ages. In systems characterized by
water older than the water in the Neckar study basin, and where the amplitudes of
the 𝛿18O stream signal are attenuated to below the analytical precision, the water age
estimates from 𝛿

18O will indeed become subject to increasing uncertainty up to the
point where further attenuation and thus older water ages cannot be discerned anymore
independent of modelling approaches. The specific magnitude of such a water age
threshold remains difficult to quantify with the available data. However, given the
results in the Neckar study basin, the question raised by Stewart et al. (2021), if 𝛿18O
allows to see “the full range of travel times”, can to some extent be answered: it can be
assumed that, when used with a suitable model, 𝛿18O contains sufficient information
for a meaningful characterization of water ages in systems characterized by MTTs of
at least ∼ 15 – 20 years, which encompasses the vast majority of river basins so far
analyzed in literature (see Stewart et al., 2010 and references therein). As a step
forward, the original hypothesis above can, for future research, be reformulated into:
𝛿
18O-inferred water age estimates are subject to increasing uncertainty and bias when

compared to 3H-inferred estimates when stream water MTTs of ∼ 15 – 20 years are
exceeded in systems characterized by increasingly old water.

4.5.2 The role of spatial aggregation on underestimation of
water ages

In addition to the above, Kirchner (2016) demonstrated that the use of seasonally
variable tracers with time-invariant, lumped parameter model approaches, i.e., SW and
CO, has considerable potential to underestimate water ages due to spatial aggregation of
heterogeneous MTTs in systems characterized by large spatial contrasts in MTTs. We
could here not reproduce that exact experiment, as stream observations were available
only at one location for each tracer. However, in the distributed implementation of the
IM-SAS-D model (scenarios 19 – 21), we nevertheless explicitly accounted, albeit to a
limited degree, for heterogeneity in the system input variables as well as for potential
differences in landscape types, as expressed by the three model HRUs. This resulted in
different TTDs for the individual precipitation zones (Table 4.10; Fig. 4.19) and elevation
zones and HRUs therein. The comparison between the lumped IM-SAS-L (scenarios 16 –
18) and the distributed IM-SAS-D models does not show major differences in their ability
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to reproduce the various hydrological signatures nor the 𝛿18O and 3H stream signals
(Table 4.7). Against evidence from various previous studies (e.g., Euser et al., 2015; Gao
et al., 2016; Nijzink et al., 2016a; Nguyen et al., 2022), this reflects to some degree the
conclusion by Loritz et al., 2021, who found in a comparative analysis that distributed
model implementations do not necessarily improve a model’s ability to reproduce the
hydrological response as compared to spatially lumped formulations. In addition, the
contrasts in water ages between the discretized model components, with MTTs reaching
from ∼ 8 to ∼ 22 yrs in the individual precipitation zones, may not be sufficient to
significantly affect basin overall MTTs. As a consequence, the results of IM-SAS-L and
IM-SAS-D also do not show major differences in the associated water age estimates,
with MTTs ∼ 11 – 17 yrs and 12 – 16 yrs, respectively (Table 4.9; Fig. 4.18).

How can this be interpreted? If significantly older ages were inferred from the
distributed IM-SAS-D implementation, this would have provided strong supporting
evidence for the role and effect of spatial heterogeneity on water ages as demonstrated
by Kirchner (2016). However, the similar water ages inferred from the spatially
lumped and distributed implementations, respectively, allow two possible but mutually
contradicting interpretations. Either, it could indicate that the aggregation of spatial
heterogeneity does not have any discernible effect on water ages inferred from the
IM-SAS model in the study basin or, on the contrary, the spatial contrasts in water ages,
limited by the spatial resolution of the model and the available data, were not sufficient
to detect any significant differences. The evidence found here therefore remains
inconclusive and further research is required to describe the role of the aggregation of
spatial heterogeneity for estimates of water ages using IM-SAS type of models.

For any estimates of water ages in this study – as in any other study – it is
important to bear in mind that they are conditional on the available data and models
used. Uncertainties can and do arise from both, data and from decisions taken in the
modelling process (e.g., Beven, 2006; Kirchner, 2006). One challenge in this study
was that precipitation 𝛿18O and 3H compositions were only available at rather coarse
spatial and temporal resolutions. This chapter has used the best available information
to spatially extrapolate the tracer precipitation data from the individual sampling
stations to estimate their spatial variation across the Neckar basin including stations
outside the study basin. The monthly 𝛿18O and 3H distribution in precipitation within
South-Germany is generally similar (Stumpp et al., 2014; Schmidt et al., 2020); still,
regional correction for 𝛿18O might not be sufficient to explain local differences in 𝛿18O
precipitation data. A similar limitation applies to the temporal resolution of tracer
composition in precipitation as only monthly information was available. However, as the
available data nevertheless reflect the seasonal variation in 𝛿18O and 3H precipitation
input, the uncertainties arising can be assumed to largely affect the short-term dynamics
of tracers in the stream and thus rather young water ages, whereas the objective of
this analysis was focused on the right tail of the water age distributions and thus on
old ages. Notwithstanding these uncertainties, the overall model performances with
respect to the hydrological and tracer responses, suggest that the choice of input data
and the model formulations led to model results that are largely consistent with the
observed responses in the stream. The observation that there is little ambiguity in



4.6 Conclusions

4

105

the results further suggests that the remaining uncertainties are unlikely to affect the
overall interpretation and conclusions of this study.

4.6 Conclusions
𝛿
18O and 3H are frequently used as tracers in environmental sciences to estimate age

distributions of water. However, it has previously been argued that seasonally variable
tracers, such as 𝛿18O, fail to detect the tails of water age distributions and therefore
substantially underestimate water ages as compared to radioactive tracers, such as 3H.
In this chapter, based on a >20-year record of hydrological, 𝛿18O and 3H data we
systematically scrutinized the above postulate by comparing water age distributions
inferred from 𝛿

18O and 3H with a total of 21 different model implementations. The
main findings of this analysis are the following:

1. Water ages inferred from 𝛿
18O with commonly used time-invariant, sine wave

(SW) and lumped parameter convolution integral models (CO) are with MTTs ∼ 1
– 2 years substantially lower that those obtained from 3H with the same models,
reaching MTTs ∼ 10 years.

2. In contrast, the concept of SAS-functions in combination with hydrological models
(P-SAS, IM-SAS) did not only allow simultaneous representations of water storage
fluctuations together with 𝛿18O and 3H stream signals, but water ages inferred
from 𝛿

18O were with MTTs ∼ 11 – 17 years much higher and even higher than
inferred from 3H, which suggested MTTs ∼ 11 – 13 years.

3. Constraining P-SAS and IM-SAS model implementations individually with 𝛿18O
and 3H observations resulted in similar values for parameters that control water
ages, such as the total storage Stot (P-SAS) or passive groundwater volumes Ss,p
(IM-SAS) In addition, 𝛿18O and 3H-constrained models both exhibited limited
differences in the magnitudes of water ages in different parts of the models as
well as in the temporal variability of TTDs in response to changing wetness
conditions. This suggests that both tracers lead to comparable descriptions of how
water is routed through the system.

4. Based on the points above, we reject the hypothesis that 𝛿18O as a tracer
generally and systematically “cannot see water older than about 4 years” (Stewart
et al., 2010; Stewart et al., 2012) and that it truncates the corresponding tails in
water age distributions, leading to underestimations of water ages.

5. Instead, these results provide evidence of broad equivalence of 𝛿18O and 3H as
age tracers for systems characterized by MTTs of at least 15 – 20 years.

6. The question to which degree aggregation of spatial heterogeneity can further
adversely affect estimates of water ages remains unresolved as the lumped and
distributed implementations of the IM-SAS model provided similar and thus
inconclusive results.

Overall, this chapter demonstrates that previously reported underestimations of water
ages are most likely not a result of the use of 𝛿18O or other seasonally variable
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tracers per se. Rather, these underestimations can be largely attributed to the choices
of model approaches which rely on assumptions not frequently met in catchment
hydrology. Given the vulnerability of lumped, time-invariant parameter convolution
integral approaches in combination with 𝛿18O to substantially underestimate water
ages due to transient flow conditions, spatial aggregation and potentially other, still
unknown effects, it is therefore strongly advocated to avoid the use of this model type
in combination with seasonally variable tracers and to instead adopt SAS-based or other
model formulations that allow for the representation of transient conditions.
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Summary
The temporal dynamics of water ages provide crucial insights into hydrological processes
and transport mechanisms, yet there remains a significant gap in quantifying water age
variability across different temporal scales. This study utilizes a comprehensive dataset
spanning 70 years of hydrological observations and tritium records (1953 – 2022) with a
semi-distributed hydrological model with integrated tracer routing routine based on
StorageAge Selection functions SAS, to explore the temporal evolution of water ages in
the 4000 km2 Upper Neckar River basin, Germany. Our findings indicate a systematic
convergence of the variability of young water fractions and other metrics of water age
in riverflow and evaporation towards stable values when averaging over increasing
time scales. While at daily scales exhibiting considerable variability with young water
fractions in riverflow 𝐹𝑤𝑦,𝑄 ∼ 0.01 – 0.91 and in evaporation 𝐹𝑤𝑦,𝐸 ∼ 0.02 – 0.75, the
variability of 𝐹𝑤𝑦,𝑄 and 𝐹𝑤𝑦,𝐸 gradually reduces with increasing averaging time scales
and converge to 0.45 – 0.47 and 0.96 – 0.97, respectively, between individual decades.
Liquid water input (𝑃𝐿), comprising rainfall and snow melt, emerges as the dominant
driver of 𝐹𝑤𝑦,𝑄 across all time scales. In contrast, 𝐹𝑤𝑦,𝐸 shows varying controls with
time scale: soil moisture content governs daily fluctuations, whereas 𝑃𝐿 dominates at
the decadal scale. As a consequence, water ages demonstrate remarkable stability with
only minor deviations: a 20% fluctuation in average decadal 𝑃𝐿 results in only ∼ 4%
variation in 𝐹𝑤𝑦,𝑄 and ∼ 1% in 𝐹𝑤𝑦,𝐸 over the study period. These findings suggest a
lack of major long-term dynamics in water ages, driven by either internal processes or
external transport variability. Consequently, these results suggest that the physical
transport dynamics in the Upper Neckar River basin, and potentially in comparable
river basins with similar water age characteristics, can be considered near-stationary
over multiple decades.
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5.1 Introduction

A s the crucial link between hydrology and water quality at the catchment scale,
water ages and distributions thereof (i.e. transit time distributions; TTDs) are a

metric of physical transport through a hydrological system (Hrachowitz et al., 2016). As
such they are a descriptor of how water and, as a consequence, nutrients and pollutants
are stored in and released from catchments via different flow paths (Rinaldo et al.,
2015; Sprenger et al., 2018; Benettin et al., 2022). The celerity-driven hydrological
response, including riverflow and evaporation, acts at different time scales than the
velocity-driven TTDs that underlie the water quality response in catchments (Weiler
et al., 2003; McDonnell and Beven, 2014; Hrachowitz et al., 2016). Temporal variability
of the hydrological response over a spectrum of time-scales from minutes to multiple
decades has been extensively described in literature (Thompson and Katul, 2012;
Berghuijs et al., 2014; Sivapalan and Blöschl, 2015; McMillan, 2020; Berghuijs and Slater,
2023). In contrast, the majority of studies that seek to analyze temporal variability of
water ages and the underlying drivers have so far focused on daily time scales. These
studies demonstrate that water ages in fluxes such as riverflow or evaporation, can
fluctuate considerably at this time scale and that the main driver behind this variability
is the available water supply and the associated magnitude of precipitation input at that
time scale (Benettin et al., 2015a, Benettin et al., 2017b; Harman, 2015; Hrachowitz et al.,
2015; Soulsby et al., 2016; Rodriguez et al., 2018; Kuppel et al., 2020; Wilusz et al., 2020).
Beyond that, several studies have reported significant, albeit attenuated variability at
time scales from monthly (Kaandorp et al., 2018; Knapp et al., 2019; Stockinger et al.,
2019) over seasonal (Birkel et al., 2016; Remondi et al., 2018) to yearly (Heidbüchel et al.,
2013; Birkel et al., 2015; Von Freyberg et al., 2018; Wilusz et al., 2017; Stockinger and
Stumpp, 2024). At these scales, switches between distinct storage compartments, such as
the unsaturated root-zone or the groundwater, as dominant source of water can become
an additional factor regulating variability of water ages (Hrachowitz et al., 2013).

However, as a result of insufficiently long tracer records in many catchments, there
is only a handful of studies that have analyzed water ages over time periods longer than
10 – 20 years (Hrachowitz et al., 2010b; Wang et al., 2023). Thus, little is known about
the variability over such longer time scales and the resulting long-term dynamics of
water ages, including potentially systematic trends over time arising therefrom. This is
in particular concerning as there is evidence that changes in land management and the
associated changes to (sub-)surface flow paths and water storage volumes do affect
water ages at such time scales (Danesh-Yazdi et al., 2016; Hrachowitz et al., 2021).
Similarly, altered precipitation and atmospheric water demand due to climate change
can, as “external transport variability” (Kim et al., 2016), directly impact water ages.
As a knock-on effect, catchment properties such as vegetation cover may adjust to a
changing climate, potentially leading to additional changes in subsurface flow paths
and/or water storage volumes (Wang et al., 2024a), as “internal transport variability”
(Kim et al., 2016).

This knowledge gap increases uncertainties in our ability to predict removal of
legacy solutes such as nitrate (Basu et al., 2010; Howden et al., 2011) or chloride
(Hrachowitz et al., 2015) over time-scales of several decades but also the mobilization
of solutes at shorter time-scales, such as phosphorus (e.g. Dupas et al., 2018) under
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changing environmental conditions. The problem would be further exacerbated if water
ages are non-self-averaging. Such a behavior has been widely observed for tracer and
solute concentrations in stream water and is related to the fractal scaling of these
variables (Kirchner et al., 2000; Hrachowitz et al., 2009b; Godsey et al., 2010; Kirchner
and Neal, 2013; Aubert et al., 2014). In non-self-averaging time series, the variability of
their daily, monthly, yearly or decadal means remains constant or converges towards
stable averages at rates lower than predicted by the central limit theorem. Such
non-self-averaging time series can give rise to trends that can be robust but nevertheless
unreliable predictors of future solute dynamics, as demonstrated by Kirchner and Neal,
2013.

The objective of this chapter is to quantify the temporal variability in water
ages as well as to identify their dominant controls across time-scales from daily to
multi-decadal and to analyze the associated temporal evolution of water ages for
riverflow and evaporation in the Upper Neckar basin, Germany, which has been used
to test the effects of climatic variability on hydrological response in Chapter 3. The
analysis is based on long-term hydrological data and tritium records over a 70-year
period (1953 – 2022), together with the SAS-function integrated into the hydrological
model suggested by Chapter 4, to estimate water age distributions in riverflow and
evaporation. More specifically, we test the hypotheses that (1) water ages of riverflow
and evaporation are non-self-averaging and thus unpredictable over decadal time-scales,
that (2) different drivers control variability of water ages at different time scales and
that (3) water ages are subject to significant long-term dynamics on decadal time scales,
reflecting hydro-climatic variability and associated changes in catchment (sub-)surface
structure.
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Figure 5.1: (a) Elevation of the Neckar catchment with discharge and hydro-meteorological stations as well
as the water sampling locations used in this study, (b) the spatial distribution of long-term mean annual
precipitation in the Neckar catchment and the stratification into four distinct precipitation zones P1 –
P4 (black line), (c) hydrological response units classified according to their land-cover and topographic
characteristics.
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5.2 Data
For the analysis, the same daily hydro-meteorological data records for the time period
01/01/1953 – 31/12/2022 as Chapter 3 are used here (Fig. 5.1a; Fig. 5.2). In addition,
the long-term monthly 3H data (Schmidt et al., 2020) records (Fig. 5.2) are available
from the Global Network of Isotopes in Precipitation and the Federal Institute of
Hydrology (BfG). Tritium (3H) data in precipitation and riverflow were available from
the stations Stuttgart and Obertürkheim close to the basin outlet for the period 1978 –
2018. Briefly, Long-term monthly 3H data in precipitation were obtained for the period
01/01/1978 – 31/12/2016 at the Stuttgart station. The tritium record in precipitation
(the gray dots in Fig. 5.2d) was reconstructed for the preceding 1953-1977 period
by bias correcting data from the sampling stations Ottawa (1953-1960) and Vienna
(1961-1977) to establish robust initial conditions for model calibration, available from
the Global Network of Isotopes in Precipitation, which is a joint database of the
International Atomic Energy Agency (IAEA) and the World Metrological Organization
(WMO). The tritium precipitation samples do not represent instantaneous grab samples
but bulk samples from mixed daily samples, which reflect the volume-weighted monthly
isotopic composition (Wang et al., 2023). However, tritium stream water samples reflect
non-volume-weighted monthly average isotopic compositions based on the used stream
water sampling method (Wang et al., 2023).
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Figure 5.2: (a) The dark blue bars indicates time series of observed daily precipitation P and the blue line
indicates time series of daily observed streamflow Q; (b) daily snowmelt for entire time period (1953-2022),
where the relatively dark pink line shows the modelled snowmelt using the best fit parameter sets and the
light pink shaded area indicates the associated 5th/95th percentiles of all feasible solutions calibrated based
on entire time period; (c) monthly maximum values of estimated soil moisture Su for 1953-2022, where
green line indicates the most balanced solution and light green shade indicates the 5th/95th inter-quantile
range obtained from all pareto optimal solutions calibrated based on entire time period; (d) Observed
3H signals in precipitation (dark gray circles; size of circles indicates the precipitation volume) and
observed stream 3H signals (pink dots). Note that the tritium record in precipitation (the gray dots) was
reconstructed for the preceding 1953-1977 period by bias correcting data from the sampling station Ottawa
(1953-1960) and Vienna (1961-1977) to establish robust initial conditions for model calibration, available
from the Global Network of Isotopes in Precipitation which is a joint database of the International Atomic
Energy Agency (IAEA) and the World Metrological Organization (WMO).
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5.3 Methods
The semi-distributed process-based hydrological model developed in Chapter 2, which
has been implemented and tested for Chapter 3. Briefly, this model features three
parallel hydrological response units, i.e. forest, grass/cropland and wetland, which are
linked through a common storage component representing the groundwater system
(Fig. 2.2 in Chapter 2). Overall, the model consists of an elevation-stratified snow
storage (𝑆𝑠𝑛𝑜𝑤) as well as individual interception (𝑆𝑖), unsaturated root zone (𝑆𝑢), fast
responding (𝑆𝑓 ) and slow responding groundwater storage (𝑆𝑠) components for each
hydrological response unit.

The storage-age selection function (SAS) approach (e.g. Rinaldo et al., 2015, see
section 4.3.1.3 in Chapter 4) was integrated with the hydrological model to trace 3H
fluxes, which has been tested and suggested by Chapter 4. Briefly, each storage
component used a uniform distribution as SAS function. Although this entails that each
storage is fully mixed, the different time-scales of the individual storage components,
lead to a “combined” SAS functions that does not result in an overall fully mixed system
response. The passive water storage 𝑆𝑠,𝑝 (mm), characterized by 𝑑𝑆𝑠,𝑝/𝑑𝑡 = 0, that
physically represents groundwater volumes below the level of the river bed (Zuber,
1986), was added as parameter to the active groundwater storage 𝑆𝑠 for a sufficiently
large mixing volume (Birkel et al., 2011; Fig. 2.2 in Chapter 2). Note that while the
outflow 𝑄𝑠 from the groundwater storage is exclusively regulated by the active storage
volume in 𝑆𝑠 (Eq. 2.24 in Table 2.2 in Chapter 2), the 3H of that outflow is sampled
from the total groundwater storage volume 𝑆𝑠,𝑡𝑜𝑡 = 𝑆𝑠 +𝑆𝑠,𝑝 .

Following a multi-objective strategy to ensure a plausible representation of model
internal processes, the model was calibrated to simultaneously reproduce seven river
flow signatures and river water 3H dynamics (Table 5.1). To reflect the vegetation
adapting its active root system to changing climatic conditions during the 70-year study
period, we independently estimated the model root-zone storage capacity parameter
𝑆𝑢𝑚𝑎𝑥 for each decade, as described by Chapter 3 and accordingly hardcoded the
different values of 𝑆𝑢𝑚𝑎𝑥 in the model, varying between 95 and 115 mm throughout
the study period. Tracking the 3H signals through the model allowed to estimate the
distributions of water ages in riverflow (𝑄) and actual evaporation, which here is the
sum of interception evaporation and transpiration (𝐸 = 𝐸𝑖+𝐸𝑡 ). Hereafter young water
fractions (𝐹𝑤𝑦 ), i.e. water younger than 3 months (Kirchner, 2016) as well as other age
metrics, such as 𝐹𝑤10, i.e. fraction of water younger than 10 years, are used as robust
descriptor to describe water ages in this Chapter. Detailed descriptions of the model
implementation and calibration in the study region are provided by Chapter 3 and
4.
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Table 5.1: Signatures of stream flow (𝑄) and tritium concentration (3H) and the associated performance
metrics used for model calibration and evaluation. The performance metrics include the Nash–Sutcliffe
efficiency (𝑁𝑆𝐸) and the relative error (𝑅𝐸).

Signature Symbol Performance metric
Time series of stream flow Q NSEQ
Time series of log(Q) log(Q) NSElog(Q)
Flow duration curve of log(Q) FDClog(Q) NSEFDClog(Q)
Seasonal runoff coefficient Cr NSECr
Autocorrelation function of flow (AC) AC NSEAC
Runoff coefficient in summer Cr,summer RECr,summer
Runoff coefficient in winter Cr,winter RECr,winter
Time series of 3H in streamflow 3H NSE3H

5.4 Results and discussion
The model reproduces the main features of the hydrological response over the entire
study period, both at the basin outlet (Fig. 5.1b; Table 5.2 and Fig. 5.3) and, as
model test without further re-calibration, in three nested sub-catchments, same as that
showed in Figure 3.7 in Chapter 3. It does not only capture the timing of flows (Fig.
5.3a), but also simultaneously reproduces well other observed riverflow signatures
including the flow-duration curves (Fig. 5.3d), seasonal runoff coefficients (Fig. 5.3c) and
autocorrelation functions (Fig. 5.3e). Similar to a previous implementation in the greater
study region by Chapter 4 tested the entire Neckar basin, the model also captures
the overall decline of river water 3H levels with 𝑁𝑆𝐸3

H
> 0.93. In spite of somewhat

underestimating peaks, the magnitude of seasonal 3H amplitudes and intra-annual
fluctuations are represented well (Fig. 5.1c; Fig. 5.4).

Table 5.2: Values of the performance metrics for the most balanced solution and quantiles of all
performance metrics for the full set of pareto optimal solutions from the multi-objective calibration.

Performance metric Balanced (5th-95th) quantiles

NSEQ
0.59
(0.06-0.55)

NSElog(Q)
0.67
(0.34-0.64)

NSEFDC log(Q)
0.96
(0.92-0.99)

NSECr
0.99
(0.56-0.97)

NSEAC
0.90
(0.86-0.91)

RECr,summer
0.83
(0.82-0.89)

RECr,winter
0.91
(0.89-0.91)

NSE
𝛿
18O

0.93
(0.94-0.97)

DE
0.80
(0.57-0.78)
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Figure 5.3: Hydrograph and selected hydrological signatures reproduced by the integrated hydrological and
tracer transport model, following a simultaneous calibration to Q and 3H. (a) Time series of observed and
modelled daily stream flow (Q), where the red dashed line indicates the most balanced solution, i.e., highest
𝐷𝐸 , and the red shaded area the 5th/95th inter-quantile range obtained from all pareto optimal solutions;
(b) stream flow zoomed-in to the period 1/1/2001 to 31/12/2010; (c) seasonal runoff coefficients (𝑅𝐶𝑄 ), (d)
flow duration curves (𝐹𝐷𝐶𝑄 ), and (e) autocorrelation functions of streamflow (𝐴𝐶𝑄 ) for the entire time
period. Blue lines indicate values based on observed streamflow (𝑄𝑜 ), red dashed lines are values based on
modelled stream flow (𝑄𝑚) representing the most balanced solutions, i.e., highest 𝐷𝐸 and the red shaded
areas show the 5th/95th inter-quantile ranges obtained from all pareto optimal solutions.
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Figure 5.4: The time series of stream 3H reproduced by the integrated model based on simultaneous
calibration to 3H and the streamflow signatures for the entire time period. (a) Observed stream 3H signals
(pink dots) as well as the most balanced modelled 3H signal in the stream (purple dots) and the 5th/95th
percentile of all retained pareto optimal solutions (light purple shaded area) (b) zoom-in of observed and
modelled 3H signals in the stream for the period 1/1/2001 to 31/12/2010.
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5.4.1 How dowater ages vary over different time scales?
Tracking water fluxes through the model, a median non flow-weighted fraction of young
water 𝐹𝑤𝑦,𝑄 ∼ 0.34 emerged for riverflow on a daily time scale. At the same time, a
pronounced variability with daily 𝐹𝑤10,𝑄 fluctuating between 0.01 and 0.91 (5th/95th
percentile) was observed, reflecting differences in daily preciptiation and evaporation
(Fig. 5.5a,b). Describing older river water, daily 𝐹𝑤10,𝑄 varied between 0.41 and 0.95
and thus to a lesser degree in response to changing daily hydroclimatic conditions
(Fig. 5.5a,b). To analyse the variability of water ages at different time scales, we
computed block averages of 𝐹𝑤𝑦 , aggregating to weekly, monthly, seasonal, yearly and
decadal values. With increasing averaging time scales, a reduction of variability was
found. While average monthly 𝐹𝑤𝑦,𝑄 oscillates between 0.02 and 0.75, this is eventually
reduced to 0.44 – 0.47 for decadal averages with similarly reduced variability for 𝐹𝑤10,𝑄
(Fig. 5.5a,b) and other age fractions (Table 5.3). The observed convergence towards
increasingly stable water ages is an indicator for a self-averaging process. As robust
quantity to further test for self-averaging behaviour in the time series of water ages we
plotted the root mean square differences (RMSD) of pairs of adjacent averages against
the time interval over which the averages were computed (Fig. 5.5c) as suggested by
Kirchner and Neal, 2013. It was found that at averaging time scales of > 1 month, the
rates of convergence of both 𝐹𝑤𝑦,𝑄 and 𝐹𝑤10,𝑄 come close to n−0.5, which describes a
self-averaging and thus stationary process (e.g. white noise) as dictated by the central
limit theorem. Such a process is characterized by weak persistence and thus little
long-term fluctuations in water ages at low frequencies over time that here applies to
time scales of at least multiple decades.

Evaporation is characterized by a markedly different age structure that is dominated
by much younger water as illustrated by median 𝐹𝑤𝑦,𝐸 ∼ 0.96 and 𝐹𝑤10,𝐸 > 0.99,
respectively. The daily 𝐹𝑤𝑦,𝐸 ranges from 0.56 to 1, while fractions of older water do not
decrease below 𝐹𝑤10,𝐸 ∼ 0.75 and thus exhibit less variability (Fig. 5.5d,e). Similar to
riverflow, the variability in evaporation ages decreases with increasing averaging time
scales (Table 5.4), as illustrated by average monthly 𝐹𝑤𝑦,𝐸 that ranges from ∼ 0.81 to 1
which further decreases to a range of 0.96 to 0.97 for decadal averages (Fig. 5.5d,e).
Correspondingly, the traces of RMSD of adjacent means as function of the averaging
time scale for both 𝐹𝑤𝑦,𝐸 and 𝐹𝑤10,𝐸 show convergence rates close to n−0.5 at averaging
time scales larger than 6 months (Fig. 5.5f). This suggests that the age structure of
evaporation is not subject to major long-term fluctuations and can thus also be assumed
stationary at multi-decadal time scales.
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Figure 5.5: The variability of riverflow TTDs (𝑒𝐶𝐷𝐹𝑄 ) and evaporation TTDs (𝑒𝐶𝐷𝐹𝐸) from the most
balanced model solution over various time scales. (a) The blue shades from lighter to darker indicate the
5th/95th intervals of the eCDFQ from daily to decadal averaging time-scales, (b) the blue and navy blue box
plots (whiskers indicate 5th/95th percentiles) from lighter to darker indicates 𝐹𝑤𝑦,𝑄 and 𝐹𝑤10,𝑄 from daily to
decadal, respectively, (c) Self-averaging behavior in 𝐹𝑤𝑦,𝑄 (the gradient blue line) and Fw10,Q (the gradient
navy blue line) by root mean squared differences between successive average values (RMSD), (d) the orange
shades from lighter to darker indicate the eCDFE from daily to decadal, (e) the yellow and brown boxes
from lighter to darker indicates 𝐹𝑤𝑦,𝐸 and 𝐹𝑤10,𝐸 from daily to decadal, respectively, (f) Self-averaging
behavior in 𝐹𝑤𝑦,𝐸 (the gradient yellow line) and 𝐹𝑤10,𝐸 (the gradient brown line) RMSD between successive
average values. Note that the dashed grey line is the slope of -0.5 predicted by the central limit theorem
for self-averaging time series.
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Table 5.3: The water fraction Metrics of stream flow TTDs. The TTD metrics represent the best fits of the
respective time-invariant TTD. The water fractions are shown as the fractions of water younger than a
specific year n, i.e. 𝐹𝑤𝑛,𝑄 . *Note that the fraction of water younger than 3 months 𝐹𝑤𝑦,𝑄 is comparable to
the fraction of young water as suggested by Kirchner (2016).

Time scales → Daily Weekly Monthly Seasonal Yearly DecadalTTD metrics ↓

W
at
er

fra
ct
io
ns

(%
)

𝐹𝑤𝑦,𝑄∗

35
(4/71)

38
(6/69)

42
(16/63)

46
(37/52)

45
(45/50)

46
(44/47)

𝐹𝑤1 ,𝑄

38
(8/73)

41
(11/71)

45
(20/65)

48
(40/55)

48
(48/53)

49
(47/50)

𝐹𝑤3 ,𝑄

45
(19/76)

48
(21/74)

51
(30/69)

54
(47/60)

54
(54/58)

55
(53/56)

𝐹𝑤5 ,𝑄

51
(28/79)

54
(30/77)

57
(38/73)

59
(53/65)

59
(59/64)

60
(58/61)

𝐹𝑤10 ,𝑄

64
(47/84)

66
(48/83)

68
(54/80)

70
(65/74)

70
(70/73)

70
(68/72)

𝐹𝑤20 ,𝑄

80
(71/91)

81
(71/91)

83
(75/89)

83
(81/86)

83
(83/85)

84
(83/84)

𝐹𝑤40 ,𝑄

96
(91/100)

96
(91/100)

96
(92/100)

96
(94/100)

96
(95/100)

96
(95/100)

Table 5.4: The water fraction Metrics of evaporation TTDs. The TTD metrics represent the best fits of the
respective time-invariant TTD. The water fractions are shown as the fractions of below a specific year n,
i.e. 𝐹𝑤𝑛,𝐸 . * Note that the fraction of water younger than 3 months 𝐹𝑤𝑦,𝐸 is comparable to the fraction of
young water as suggested by Kirchner (2016).

Time scales → Daily Weekly Monthly Seasonal Yearly DecadalTTD metrics ↓

W
at
er

fra
ct
io
ns

(%
)

𝐹𝑤𝑦,𝐸

95
(86/99)

96
(88/99)

96
(90/99)

96
(92/98)

96
(95/98)

96
(96/97)

𝐹𝑤1 ,𝐸

97
(92/100)

97
(93/100)

98
(94/100)

98
(96/99)

98
(97/98)

98
(97/98)

𝐹𝑤3 ,𝐸

97
(92/100)

98
(94/100)

98
(95/100)

98
(97/99)

98
(97/99)

98
(98/98)

𝐹𝑤5 ,𝐸

98
(93/100)

98
(94/100)

98
(95/100)

98
(97/99)

98
(97/99)

98
(98/98)

𝐹𝑤10 ,𝐸

98
(95/100)

98
(96/100)

99
(96/100)

99
(98/99)

99
(98/99)

99
(98/99)

𝐹𝑤20 ,𝐸

99
(97/100)

99
(98/100)

99
(98/100)

99
(99/100)

99
(99/99)

99
(99/99)

𝐹𝑤40 ,𝐸

100
(99/100)

100
(99/100)

100
(99/100)

100
(100/100)

100
(100/100)

100
(100/100)
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5.4.2 What are the hydro-climatic drivers of water age
variability at different time scales?

To explore which factor can best explain variability in Fwy regression analysis was used.
For the entire 70-year study period 1953-2022, the pronounced variability of young water
fractions in riverflow 𝐹𝑤𝑦,𝑄 at a daily time-scale is to first order controlled by daily
liquid water input 𝑃𝐿 = 𝑃𝑟𝑎𝑖𝑛+𝑀𝑠𝑛𝑜𝑤 (Fig. 5.6a). This is illustrated by the sensitivity (𝜓)
of 𝐹𝑤𝑦,𝑄 to 𝑃𝐿, approximated by a linear relationship 𝜓 = Δ𝐹𝑤𝑦,𝑄/Δ𝑃𝐿 ∼ 0.03 (𝑅2 = 0.34).
Other potential hydro-climatic drivers, including riverflow 𝑄 as aggregate metric of
catchment wetness (𝑅2 = 0.22), evaporation 𝐸 (𝑅2 = 0.22) or root-zone moisture content
𝑆𝑢 (𝑅2 = 0.20) exert weaker controls on 𝐹𝑤𝑦,𝑄 . Across all tested averaging time-scales,
𝑃𝐿 remains the strongest driver, reaching 𝑅2 = 0.89 with a sensitivity 𝜓 ∼ 0.07 at the
decadal time-scale. 𝑃𝐿 also becomes relatively more important compared to the other
hydro-climatic variables (𝑅2 = 0.25 – 0.82; Fig. 5.6). At the seasonal time- scale it
is notable that 𝐹𝑤𝑦,𝑄 is somewhat more sensitive to 𝑃𝐿 in winter (𝜓 ∼ 0.10) than in
summer (𝜓 ∼ 0.07). Further analysis revealed that this effect can be attributed to the
influence of winter snow melt. Periods of snow cover preceding snow melt, are
characterized by low 𝐹𝑤𝑦,𝑄 ∼ 0.2, on average (Fig. 5.7b). Snow melt water is rather
young as the presence of snow over periods longer than a few weeks is rare in the
study region. As a consequence, snow melt inputs (Fig. 5.7a) increase 𝐹𝑤𝑦,𝑄 to ∼ 0.7.
In contrast, 𝐹𝑤𝑦,𝑄 preceding summer rainfall events (Fig. 5.7e) is, on average, with
𝐹𝑤𝑦,𝑄 ∼ 0.4 considerably higher (Fig. 5.7f). Although summer 𝐹𝑤𝑦,𝑄 also reaches ∼ 0.7,
the rate of increase from 0.4 to 0.7, and thus its sensitivity, is lower. Overall, controls on
fractions of older water 𝐹𝑤10,𝑄 correspond to those above with 𝑃𝐿 being the strongest
control on 𝐹𝑤10,𝑄 (Fig. 5.8).
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Figure 5.6: Relationship between the young water fraction in riverflow (𝐹𝑤𝑦,𝑄 ) and hydro-climatic variables
over different time scales from daily to decadal including (a) liquid precipitation 𝑃𝐿(rainfall +snowmelt), (b)
liquid precipitation intensity 𝑃𝐿,𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 , (c) riverflow 𝑄𝑜 , (d) evaporation 𝐸 (e) soil moisture 𝑆𝑢. the dashed
lines indicate the linear relationship between the 𝐹𝑤𝑦,𝑄 and the various hydro-climatic variables x, used to
approximate the sensitivity 𝜓 = Δ𝐹
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Figure 5.7: Sensitivity analysis of variability of the young water fractions (<3 months) in riverflow
(𝐹𝑤𝑦,𝑄 )and evaporation (𝐹𝑤𝑦,𝐸) as well as soil moisture 𝑆𝑢 in response to the selected snowmelt events in
winter in (a)-(d) and rainfall events in summer in (e)-(h).
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Figure 5.8: Relationship between the young water fraction in riverflow (𝐹𝑤10,𝑄 ) and hydro-climatic variables
over different time scales from daily to decadal including (a) liquid precipitation 𝑃𝐿(rainfall +snowmelt), (b)
liquid precipitation intensity 𝑃𝐿,𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 , (c) riverflow 𝑄𝑜 , (d) evaporation 𝐸 (e) soil moisture 𝑆𝑢. the dashed
lines indicate the linear relationship between the 𝐹𝑤10,𝑄 and the various hydro-climatic variables x, used to
approximate the sensitivity 𝜓 = Δ𝐹

𝑤10,𝑄/Δ𝑥
.
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The variability in daily young water fractions in evaporation 𝐹𝑤𝑦,𝐸 are driven to a
lesser degree by liquid water input 𝑃𝐿 (𝑅2 = 0.07; 𝜓 ∼ 3 ⋅ 10

−3), but are more dependent
on soil moisture 𝑆𝑢 (𝑅2 = 0.21, 𝜓 ∼ 10

−3; Fig. 5.9). Aggregating the history of water
input and release over the past weeks, 𝑆𝑢 captures the interaction between water supply
and atmospheric water demand. However, with increasing averaging time-scale the
strength of 𝑆𝑢 as driver gradually reduces to 𝑅2 < 0.01 (𝜓 ∼ 10

−5). Instead, 𝐸 exhibits
the strongest relation with 𝐹𝑤𝑦,𝐸 at seasonal scale, with 𝑃𝐿 emerging as dominant
control on 𝐹𝑤𝑦,𝐸 at the decadal time-scale (𝑅2 = 0.60; 𝜓 ∼ 0.01). This switch from 𝑆𝑢

over E to 𝑃𝐿 as dominant control illustrates that the history of water supply and release
interactions in 𝑆𝑢 preserves merely the system’s memory of the past few weeks. At
time-scales longer than that, the water fluxes released from the system become better
predictors, while over decadal time-scales variations in water supply, expressed as 𝑃𝐿,
control fluctuations in 𝐹𝑤𝑦,𝐸 . It can also be observed that at seasonal time-scale, 𝐹𝑤𝑦,𝐸 is
more sensitive to 𝑃𝐿 and E in winter than in summer (Fig. 5.9). For 𝑃𝐿, this difference is
explained by the higher sensitivity of 𝐹𝑤𝑦,𝐸 to winter snow melt (Fig. 5.7c) than to
summer rainfall (Fig. 5.7g), similar to 𝐹𝑤𝑦,𝑄 . Low evaporation due to low temperatures
together with little input of new liquid water during periods with snow cover cause
water to remain in 𝑆𝑢 longer, resulting in older ages during such periods (and thus
lower 𝐹𝑤𝑦,𝐸). With higher temperatures, snow melt and thus input of young water
increases, accompanied by higher evaporation rates, that lead to quicker removal of
water from 𝑆𝑢. This younger water that is evaporated at higher rates then leads to
a faster turnover of water in 𝑆𝑢 and thus to a distinct switch (𝜓 ∼ 0.11) towards a
younger water pool from which evaporation is sourced and the markedly higher 𝐹𝑤𝑦,𝐸
(Fig. 5.9). Due to the absence of snow, the fluctuation in summer 𝐹𝑤𝑦,𝐸 is more gradual,
as evident by its lower sensitivity to 𝐸 (𝜓 ∼ 0.03). The controls on 𝐹𝑤10,𝐸 are comparable
to those of 𝐹𝑤𝑦,𝐸 (Fig. 5.10).
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Figure 5.9: Relationship between the young water fraction in evaporation (F𝐹𝑤𝑦,𝐸) and hydro-climatic
variables over different time scales from daily to decadal including liquid precipitation 𝑃𝐿(rainfall
+snowmelt) in (a1)-(a6), liquid precipitation intensity 𝑃𝐿,𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 in (b1)-(b6), (c) riverflow Qo, (d) evaporation
E (e) soil moisture 𝑆𝑢. The dashed lines indicate the linear relationship between the 𝐹𝑤𝑦,𝐸 and the various
hydro-climatic variables x, used to approximate the sensitivity𝜓 = Δ𝐹

𝑤𝑦,𝐸/Δ𝑥
.
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Figure 5.10: Relationship between the young water fraction in evaporation (F𝐹𝑤10,𝐸) and hydro-climatic
variables over different time scales from daily to decadal including liquid precipitation 𝑃𝐿(rainfall
+snowmelt) in (a1)-(a6), liquid precipitation intensity 𝑃𝐿,𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 in (b1)-(b6), (c) riverflow Qo, (d) evaporation
E (e) soil moisture 𝑆𝑢. The dashed lines indicate the linear relationship between the 𝐹𝑤10,𝐸 and the various
hydro-climatic variables x, used to approximate the sensitivity𝜓 = Δ𝐹

𝑤10,𝐸/Δ𝑥
.
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5.4.3 Temporal evolution and long-term dynamics of water
ages

Over the seven study decades, remarkably stable water ages can be observed (Fig.
5.11). As a consequence of the above, the fluctuations of average riverflow water ages
between the individual decades are very minor. The same is true for the inter-decadal
variabilities around these average water ages, for which merely some limited changes in
the extremes can be observed (Fig. 5.11c). In spite of higher absolute sensitivities to
hydro-climatic variability at decadal (𝜓 ∼ 0.07) than at daily time-scales (𝜓 ∼ 0.03), the
relative sensitivities or elasticities of 𝐹𝑤𝑦,𝑄 to 𝑃𝐿, expressed by 𝜀 = 𝜓 ⋅ (𝑃𝐿/𝐹𝑤𝑦,𝑄), were
for wide parts of the 𝑃𝐿-𝐹𝑤𝑦,𝑄 space much lower at the decadal time-scale (𝜀 ≤∼ 0.32)
than at the daily time-scale (𝜀 ≤∼ 1.5; Fig. 5.12). This implies that while average
inter-decadal 𝑃𝐿 varied by ∼ 650 – 803 mm yr-1 and thus by ∼ 20%, 𝐹𝑤𝑦,𝑄 varied
between 0.45 – 0.47 and thus by only ∼ 4%. For evaporation 𝐹𝑤𝑦,𝐸 it was found that
𝜀 ∼ 0.11, which entails that the 20% fluctuation in 𝑃𝐿 as dominant control led to a 𝐹𝑤𝑦,𝐸
fluctuation of merely ∼ 2%, making average 𝐹𝑤𝑦,𝐸 similarly stable throughout the study
period, (Fig. 5.11g-i).
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Figure 5.12: Elasticities, expressed as 𝜀 = 𝜓 ⋅ (𝑃𝐿/𝐹𝑤𝑦,𝑄) = (Δ𝐹𝑤𝑦,𝑄/𝐹𝑤𝑦,𝑄)/(Δ𝑃𝐿/𝑃𝐿) for (a) daily, (b) weekly,
(c) monthly, (d) seasonal, (e) yearly and (f) decadal time-scales. Note that here 𝜓 is obtained as least
square fit to the data points (see Figure 3a) representing the relationship between 𝑃𝐿 and 𝐹𝑤𝑦,𝑄 over
different time scales from daily to decadal respectively (grey dots). The black lines indicate various
elasticity levels, the dashed grey lines indicate the highest elasticity 𝜀 = 0.32 at decadal time-scale. Briefly,
an elasticity of 𝜀 = 1 implies that a 1% increase in 𝐹𝑤𝑦,𝑄 (i.e. Δ𝐹𝑤𝑦,𝑄/𝐹𝑤𝑦,𝑄 = 0.01) follows from a 1%
increase in 𝑃𝐿 (i.e. Δ𝑃𝐿/𝑃𝐿 = 0.01). In contrast, for example 𝜀 = 0.32 implies a 0.32% increase in 𝐹𝑤𝑦,𝑄

(i.e. Δ𝐹𝑤𝑦,𝑄/𝐹𝑤𝑦,𝑄 = 0.0032) in response to a 1% increase in 𝑃𝐿. At daily (𝜀 ≤∼ 1.5) to seasonal (𝜀 ≤∼ 0.5)
time-scales, a considerable proportion of liquid water inputs resulted in higher elasticities 𝜀 than at decadal
time scales (𝜀 ≤ 0.32).
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5.4.4 Implications
The general magnitudes of 𝐹𝑤𝑦,𝑄 and 𝐹𝑤𝑦,𝐸 from this analysis are broadly consistent
with previous studies (Von Freyberg et al., 2018; Rahimpour Asenjan and Danesh-Yazdi,
2020; Ceperley et al., 2020). The results also qualitatively correspond with previous
studies that report reductions in water age variability for timescales from daily to yearly
(Wilusz et al., 2017) and up to 8-years (Stockinger and Stumpp, 2024).

As first to analyse water ages over multiple decades, wthis chapter has found
no evidence for pronounced non-self-averaging behaviour. The limited fluctuation of
decadal 𝐹𝑤𝑦,𝑄 and 𝐹𝑤𝑦,𝐸 in response to the ∼ 20% variation in 𝑃𝐿 and significant 10%
increase in EP over the 70-year study period suggests that the study basin buffers
water ages against long-term hydro-climatic variability so that water ages and the
associated conservative physical transport processes do not exhibit major long-term
dynamics and can thus be assumed near-stationary at decadal time-scales with limited
“external transport variability” (Kim et al., 2016). Wang et al. (2024a) have shown that
vegetation adaptation to inter-decadal hydro-climatic variability in the study basin led
to fluctuations in root-zone storage capacities, represented by parameter 𝑆𝑢,𝑚𝑎𝑥 in our
model. In spite of accounting for the fluctuations of this catchment subsurface property
in our analysis 𝐹𝑤𝑦,𝑄 and 𝐹𝑤𝑦,𝐸 remained remarkably insensitive to these changes. This
therefore also indicates limited “internal transport variability”, which is consistent with
the very minor changes to 𝐹𝑤𝑦,𝑄 from 0.12 to 0.13 as a result of deforestation that led to
a > 50 % reduction in 𝑆𝑢,𝑚𝑎𝑥 in a nearby catchment (Hrachowitz et al., 2021).

The self-averaging and temporally stable water ages contrast with the fractal
scaling and non-self-averaging behaviour that is frequently observed in dynamics of
river water solute concentrations and that indicates the potential presence of long-term
fluctuations or trends in solute circulation dynamics. In spite of several sources of
uncertainty in the modelling process (Beven, 2016), our findings that water ages are
near-stationary suggest that long-term solute dynamics as manifest by their fractal
scaling in many river basins are unlikely to arise from changes in conservative transport
processes but may instead largely result from fluctuations in other factors, such as
solute supply and/or mobilization. These may include variations in solute input (e.g.
fertilizer application, solute concentration in precipitation) but also alterations of
(bio-)geochemical transformation processes due to changing ambient conditions, such as
temperature or soil water content that regulate for example mineral dissolution kinetics
in the subsurface (e.g. Maher, 2011; Li et al., 2017) but also plant nutrient uptake (e.g.
Marschner and Rengel, 2023).

It can be expected that water ages may be more sensitive to hydro-climatic
variability in catchments which are characterized by younger water, i.e. higher 𝐹𝑤𝑦,𝑄 ,
and thus faster physical transport processes. However, it is plausible to assume that
physical transport processes in river basins with similar water age structure (Königer
et al., 2005; Stewart et al., 2010; Visser et al., 2019; Birkel et al., 2020) may exhibit
similarly low elasticity to hydro-climatic variability and thus only limited long-term
dynamics.

Overall, there are two wider implications following from the results of this chapter.
Firstly, predictions of future solute dynamics in riverflow over long-time scales may be
more robust than the frequently observed fractal scaling in river solute concentrations
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may suggest if estimated based on water ages instead of on the solute time series
themselves. Secondly, the low elasticity of water ages to variability in water supply and
the resulting long-term stability of physical transport processes poses practical limits for
mitigation and remediation measures of legacy contamination such as nitrate (Basu
et al., 2022) that may aim to alter not only reactive processes but also physical transport
characteristics by interventions such as wetland restoration or land management.

5.5 Conclusions
Based on hydro-climatic records and 3H data we have analyzed the variability of water
ages, described by the fraction of young water in riverflow (𝐹𝑤𝑦,𝑄) and evaporation
(𝐹𝑤𝑦,𝐸), at daily to decadal time-scales in the Upper Neckar Basin, Germany over the
70-year period 1953 – 2022. The main findings of this chapter are the following:

1. Riverflow is with 𝐹𝑤𝑦,𝑄 ∼ 0.4 characterized by considerably older water than
evaporation with 𝐹𝑤𝑦,𝐸 > 0.95 across all time-scales.

2. The variabilities of both, 𝐹𝑤𝑦,𝑄 and 𝐹𝑤𝑦,𝐸 systematically decreases with increasing
averaging time-scale: average 𝐹𝑤𝑦,𝑄 fluctuates merely between 0.45 – 0.47 and
𝐹𝑤𝑦,𝐸 between 0.96 – 0.97 across individual decades. This indicates that 𝐹𝑤𝑦,𝑄 and
𝐹𝑤𝑦,𝐸 can be considered near-stationary across several decades. These results
therefore provide no evidence to support the hypothesis that 𝐹𝑤𝑦,𝑄 and 𝐹𝑤𝑦,𝐸 are
non-self-averaging and unpredictable.

3. Liquid water input 𝑃𝐿 is the dominant driver of 𝐹𝑤𝑦,𝑄 across all time-scales. In
contrast, 𝐹𝑤𝑦,𝐸 is characterized by varying drivers: while soil moisture is the
dominant control at daily time-scale, this switches to liquid water input 𝑃𝐿 at the
decadal time-scale. Thus the hypothesis that the dominant controls on 𝐹𝑤𝑦 vary
across different time-scales can only be rejected for 𝐹𝑤𝑦,𝑄 .

4. Average water ages were rather stable and subject to minor fluctuations over
time. In response to a 20% fluctuation in decadal 𝑃𝐿, 𝐹𝑤𝑦,𝑄 varied only by ∼ 4%
and 𝐹𝑤𝑦,𝐸 by ∼ 1% over the study period. The hypothesis that water ages are
subject to major long-term dynamics on decadal time scales in the study basin
was therefore rejected.

Overall, as first to systematically analyse water ages over multiple decades, it
demonstrates that there is no evidence for non-self-averaging and unpredictable in
water ages, and long-term average water ages were rather stable and subject to minor
fluctuations in the Upper Neckar basin. Consequently, the associated physical transport
processes can be assumed to be near-stationary across multiple decades, under either
internal or external transport variability.
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T he goal of this thesis was to obtain more insights of the effects of climatic variability
on the hydrological system over multi-decades, with specific focus on the Neckar

basin, Germany. Due to the complexity of the hydrological system, not only the water
quantity but also the water quality, these effects on the hydrological system are not
easy to quantify. Therefore, this thesis also aimed to set-up and use a tracer-aided
semi-distributed hydrological model and systematic model experiments to explore the
long-term variations of hydrological response and water age distributions in response to
climatic variability for the Neckar basin.

6.1 Novel contributions
Long-term evolution of root zone storage capacity to
hydro-climatic variability
As one of the most important parts of the hydrological system, root zone storage
capacity (𝑆𝑢𝑚𝑎𝑥 ) not only directly represents the hydrologically relevant information of
root-systems at the catchment scale, but also is a critical parameter in hydrological
models. This thesis is the first to systematically and explicitly quantify how 𝑆𝑢𝑚𝑎𝑥

changes with varying hydro-climatic conditions over multi-decades, based on two
methods: water-balance method and hydrological model calibration. As only < 2% land
use change over multi-decades is observed, it is concluded that 𝑆𝑢𝑚𝑎𝑥 significantly
changes over multiple decades reflecting vegetation adaptation to hydro-climatic
variability in the Neckar basin. Furthermore, it is found that values of 𝑆𝑢𝑚𝑎𝑥 derived
from calibration of a hydrological model correspond to that from water-balanced
method, with very similar magnitudes and fluctuations. This does provide further
evidence that multi-decadal evolution of 𝑆𝑢𝑚𝑎𝑥 is a fingerprint of the active root system
of vegetation adapting to changing hydro-climatic conditions in temperate, humid
climates such as in the Neckar basin.

Minor effects of time-variant root zone storage capacity on
the long-term hydrological dynamics
Knowing that root zone storage capacity (𝑆𝑢𝑚𝑎𝑥 ) is a critical factor regulating latent
heat fluxes and thus the moisture exchange in hydrological cycle, the influence of
time-variant 𝑆𝑢𝑚𝑎𝑥 was tested on: precipitation partitioning and hydrological response.
It is concluded that time-variant 𝑆𝑢𝑚𝑎𝑥 cannot explain the observed deviations from the
expected long-term Budyko trajectory in the Neckar basin. This means that the temporal
evolution of 𝑆𝑢𝑚𝑎𝑥 lacks explanatory power for the long-term variations in precipitation
partitioning into streamflow and evaporation. Similarly, this thesis correspondingly
suggests that a hydrological model with time-variant 𝑆𝑢𝑚𝑎𝑥 cannot better reproduce
the hydrological response characteristics compared with a model with stationary
𝑆𝑢𝑚𝑎𝑥 . Therefore, using a time-variable parameter 𝑆𝑢𝑚𝑎𝑥 does not significantly enhance
future predictions and is therefore not essential for at least the next few decades. In
other words, this thesis provides process-based evidence for modelers that utilizing
time-invariant 𝑆𝑢𝑚𝑎𝑥 as model parameter will be also sufficient for predicting meaningful
hydrological response in the near future in such a temperate-humid basin.
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Water stable isotopes and tritium tell the same tale with
time-variant models
Water age distributions are the physical link between the hydrological response and
physical transport processes of conservative solutes in catchments. They are frequently
estimated by seasonally variable tracers (i.e., water stable isotopes, 𝛿18O) and radioactive
isotopes, such as tritium (3H). To scrutinize the notion that seasonally variable tracers
are blind to old water compared with 3H, the influence of potential factors to the
underestimation of water ages was tested: tracers, models, limited data records, and
spatial aggregation. It is concluded that the previously reported underestimations of
water ages can be largely ascribed to models based on assumptions that are seldom met
in catchment hydrology, rather than the use of seasonally variable tracers. Due to
limited data sets, spatial aggregation and potentially other unknown effects, considering
the susceptibility of lumped, time-invariant convolution integral approaches integrated
with 𝛿18O to significantly underestimate water ages, this thesis strongly recommends
avoiding the use of this model type with seasonally variable tracers. Instead, the
adoption of SAS-based or alternative time-variant model formulations allowing for the
representation of transient conditions are advocated.

Multi-decadal near-stationary physical transport dynamics
After testing the potential factors for the underestimation of water ages, to ensure
reliability for estimating water age distributions, a comprehensive multi-decadal dataset
(hydrological and tritium records) with a tritium-aided semi-distributed hydrological
model integrated with StorageAge Selection (SAS) functions was used to analyse water
age variability across different temporal scales from daily to decadal in the Upper Neckar
basin under changing climatic conditions. This thesis suggests that there is no evidence
for long-term dynamics in water ages of both riverflow and evaporation. Instead,
long-term average water ages were rather stable and subject to minor fluctuations in the
Upper Neckar basin. As a consequence, the associated physical transport processes can
be assumed to be near-stationary and predictable across multiple decades under either
internal (i.e., time-variant root zone storage capacity) or external transport variability
(i.e., climatic variability), which contrasts with the frequently reported fractal pattern in
stream water solute dynamics.

6.2 Implications
As one of the most important components of the terrestrial hydrological cycle, vegetation
controls the long-term precipitation partitioning into two main fluxes (i.e., streamflow
and evaporation), which influences the hydrological functioning at catchment scales. For
surviving, in response to climatic variability, vegetation needs continuously access to
available energy and resources for root systems to satisfy its canopy water demand,
which is directly reflected by root zone storage capacity. Therefore, it can be expected
that a larger root zone storage capacity is required to bridge dry spells when the
climatic conditions change from wetter to drier. However, the fluctuation in root
zone storage capacity values in response to a changing environment does not simply
follow this generalized expectation. This fluctuation largely depends on the season in
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which dry spells mainly occur. If the changing climatic condition is due to reduced
precipitation in winter, but unchanged precipitation in summer when evaporative
demand is highest, the computation of root zone storage capacity explicitly based on the
seasonal water deficit indicates that the value of root zone storage capacity needs to
remain stable, which is essential to provide vegetation with sufficient and continuous
access to water for sustained transpiration. On the contrary, if the drought occurs in
summer, leading to reduced summer precipitation, a larger root zone storage capacity is
required to maintain vegetation transpiration.

Furthermore, the magnitude of root zone storage capacity is significantly
influenced by the climatic characteristics of the catchment, particularly the seasonal
distribution of precipitation. In river basins such as the Neckar basin, characterized
as a temperate-humid basin with wet summers, a more evenly distributed annual
precipitation pattern results in reduced storage requirements during the summer.
This is evidenced by the lower absolute magnitude of root zone storage capacity.
Specifically, approximately over half of the annual precipitation occurs during the
summer, coinciding with the period when vegetation demand for water is at its peak due
to high potential evaporation. This reduces the necessity for a larger root zone storage
capacity to act as a water buffer for vegetation survival. Conversely, a lower magnitude
of root zone storage capacity means that even relatively small rainstorms can frequently
mitigate storage deficits, thus reducing the reliance on stored water. This, in return,
constrained fluctuation limits the impact of these changes on the hydrological response,
which has broader implications for the application of models in the Neckar basin and
potentially other temperate regions with similar hydro-climatic characteristics.

As the maximum volume of water accessible to vegetation within the unsaturated
root zone of the subsurface, fluctuations in root zone storage capacity also reflect
the variability of this catchment subsurface property. However, water ages spanning
multiple decades have remained remarkably insensitive to this internal variability.
Moreover, in the face of significant external variability, such as long-term hydro-climatic
changes, water ages and the associated conservative physical transport processes can be
assumed to exhibit limited transport variability at decadal timescales. The self-averaging
and temporally stable water ages, emphasized in this thesis, contrasts with the fractal
scaling and non-self-averaging behavior frequently observed in the dynamics of water
solute concentrations in rivers, which reflects long-term fluctuations or trends in solute
circulation dynamics. As evidenced by the fractal scaling in many river basins and the
near-stationary water ages, it is unlikly that long-term solute dynamics result from
variability of conservative transport processes. Instead, other factors, like variations in
solute input and alterations in (bio-)geochemical transformation processes, may largely
explain these dynamics. Consequently, the low sensitivity of water ages to variability
in water supply and limited internal and external transport variability, on one hand,
provide possibility for the predictation of future solute dynamics in riverflow over
long-time scales, on other hand, poses a limitation to mitigation and remediation of
legacy pollution such as nitrate.
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6.3 Outlook
This thesis highlighted the long-term hydrological response and physical transport
dynamics in response to climatic variability, with specific focus on the Neckar basin,
Germany. However, there remain some potential opportunities yet to be explored as
illustrated in the next sections.

The role of climatic characteristics of catchments
In this thesis, the temporal evolution of root zone storage capacity does not control
variation in the partitioning of water fluxes and has no significant effects on fundamental
hydrological response characteristics over multi-decades, which is limited in the Upper
Neckar basin, a cool-temperature climate with ample summer precipitation. However,
this result is different to those reported by (Duethmann et al., 2020) and (Bouaziz
et al., 2022), who found more pronounced effects on hydrological response by the
changing vegetation dynamics reflected by fluctuations of root zone storage capacity in
a somewhat more humid environment. Despite the additional uncertainties introduced
by future projections in these previous studies, the significantly less pronounced effects
observed in this thesis are likely a result of the smaller magnitude of root zone storage
capacity. This lower magnitude is primarily attributed to the climatic characteristics
of the basin, particularly the abundant summer precipitation. Therefore, it would be
interesting to quantify the magnitude of root zone storage capacity and test if changes
of it plays a more prominent role over long time period in more arid basins with less
summer precipitation.

Time-variant convolution integral models
By comparing water age distributions derived from water stable isotopes (i.e., 𝛿18O) and
tritium (3H) with several transport model implementations, this thesis provides robust
evidence to reject the hypothesis that 𝛿18O as a tracer generally and systematically
“cannot see water older than about 4 years” (Stewart et al., 2010, Stewart et al., 2012)
and the corresponding tails in water age distributions, which lead to underestimations
of water ages. Additionally, this thesis argues that previous underestimations of water
ages are primarily due to the use of time-invariant, lumped parameter convolution
integral models, which are inadequate for resolving the information contained in 𝛿18O
signals in a meaningful way for catchments with transient flow conditions. This thesis,
however, only examines SAS function-based time-variant transport models. It would be
beneficial to also examine time-variant implementations of convolution integral models
capable of describing transient conditions, as they may possess the potential to generate
similar water age estimates by 𝛿18O signals that reflect the results obtained from the
SAS function-based models tested herein.

The comparison of uncertainty of old water estimation
inferred from 𝛿18O and 3H
Although the water age distributions inferred by 𝛿

18O and 3H are similar in the
Neckar basin using SAS function-based models, a general equivalence between 𝛿18O
and 3H may not be universally applicable. Indeed, this thesis indicates that 𝛿18O



6

138 6 Conclusions and outlooks

provides sufficient information for a robust characterization of water ages in systems
with mean water ages of approximately 15 to 20 years in the Neckar basin. This
already encompasses the majority of river basins analysed in previous studies (see
Stewart et al., 2010, and references therein). However, in river basins containing older
water than that in the Neckar basin, where the amplitudes of the 𝛿18O stream signal
are attenuated below analytical precision, the water age estimations derived from
𝛿
18O may be increasingly uncertain. This uncertainty escalates as further attenuation

occurs, eventually reaching a point where older water ages can no longer be discerned,
irrespective of the modelling approaches utilized. The specific magnitude of this water
age threshold remains challenging to quantify with the data available in this thesis.
Consequently, future research should consider that water ages inferred from 𝛿

18O are
likely to exhibit increasing uncertainty for older water ages compared to those inferred
from 3H in river basins characterized by water ages exceeding approximately 15 to 20
years.

The effects of Spatial aggregation onwater age estimations
Considering that spatial aggregation may be one of the potential reasons for the
underestimation of water ages (Kirchner, 2016), this thesis explicitly accounted for the
spatial heterogeneity of input variables as well as potential differences in landscape
types (i.e., forest, grassland, and wetland) through the implementation of three model
HRUs, despite the limitation of available data at only one location for both 𝛿

18O
and 3H in the Neckar basin. If significantly older ages had been inferred from the
spatially distributed implementations, this would strongly support the role and effect of
spatial heterogeneity on water ages, as demonstrated by Kirchner (2016). However, the
comparison between the spatially lumped and distributed implementations does not
show major differences in their ability to reproduce various hydrological signatures,
𝛿
18O and 3H stream signals, and water ages. This could indicate either that the

aggregation of spatial heterogeneity does not have a discernible effect on water ages
inferred from the distributed implementations within the Neckar basin, or that the
spatial contrasts in water ages, limited by the spatial resolution of models and available
datasets, were insufficient to detect significant differences. Therefore, the evidence
presented in this thesis remains inconclusive, and further research is required to explore
the role of spatial aggregation in estimating water ages using spatially distributed
models with sufficient datasets.

In conclusion, as a key component of the terrestrial hydrological cycle, the active root
system of vegetation has to adapt to changing external hydro-climatic conditions for
surviving, which directly causes the internal variability of the hydrological system such
as subsurface properties. However, under significant external and internal environmental
changes, the long-term hydrological response and conservative physical transport
dynamics can be assumed to be near-stationary and predictable in temperate-humid
climates. This thesis provides us with new information and sufficient analysis with a
tracer-aided semi-distributed hydrological model and several model experiments, which
help to improve our understanding of the effects of a changing climate in the terrestrial
hydrological system. In the future, more research on ecohydrology under climate
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changing are expected to be developed and tested in several regions with varying
climatic features, with higher quality of spatial and temporal hydrological and tracer
datasets, as well as the methods explored in this thesis can be further refined.
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Table A.1: The prior parameter ranges and the ranges of the pareto optimal solutions from two calibration
cases (Scenarios 1 – 2) are shown here.

Parameter Unit Prior range
Posterior distribution

Scenario 1 Scenario 2
T
(1953-2022)

t1
(1953-1972)

t2
(1973-1992)

t3
(1993-2012)

t4
(2013-2022)

𝑇𝑡 °C -2.5-2.5 0.40
(-0.80-0.64)

-0.08
(-2.46-0.88)

-0.08
(-2.19-0.97)

0.19
(-1.31-1.69)

1.18
(-1.42-2.49)

𝐶𝑚𝑒𝑙𝑡 mm °C-1 d-1 1-5 4.46
(3.14-4.87)

2.75
(1.79-4.35)

1.77
(1.29-4.55)

1.97
(1.58-4.30)

3.08
(1.24-3.95)

𝐶𝑎 - 0.1-0.7 0.66
(0.43-0.68)

0.51
(0.41-0.62)

0.60(
0.49-0.67)

0.61
(0.39-0.67)

0.67
(0.42-0.63)

𝐾𝑠 d-1 0.002-0.2 0.03
(0.02-0.07)

0.03
(0.03-0.07)

0.05
(0.03-0.15)

0.04
(0.03-0.18)

0.03
(0.01-0.05)

𝑆𝑖𝑚𝑎𝑥𝐹 mm 0.1-5 1.55
(1.55-2.87)

2.54
(2.00-4.82)

2.43
(1.93-4.76)

1.82
(1.79-4.69)

3.03
(1.75-3.82)

𝑆𝑢𝑚𝑎𝑥𝐹 mm 50-200 158
(138-167)

148
(114-165)

149
(130-174)

120
(100-159)

125
(122-169)

𝛾𝐹 - 0.1-5 3.43
(0.58-4.51)

1.02
(1.02-4.18)

2.02
(1.22-4.46)

0.69
(0.39-4.14)

0.44
(0.54-3.43)

𝐷 - 0-1 0.09
(0.04-0.21)

0.06
(0.01-0.43)

0.33
(0.07-0.77)

0.41
(0.10-0.72)

0.27
(0.25-0.97)

𝐶𝑝𝑚𝑎𝑥𝐹 mm d-1 0.1-4 2.15
(1.97-2.83)

1.83
(0.53-2.53)

0.21
(0.92-2.95)

0.92
(0.91-3.47)

0.12
(0.35-3.42)

𝐾𝑓 𝐹 d-1 0.2-5 0.41
(1.48-3.19)
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(0.22-4.45)
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(0.23-4.63)
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(0.21-3.95)
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(0.44-1.50)

0.93
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(0.01-1.02)

𝑆𝑢𝑚𝑎𝑥𝐺 mm 50-200 94.6
(71.4-123)
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(66.2-124)

115
(88.5-123)

93.2
(67.9-119)

102
(86.4-141)

𝛾𝐺 - 0.1-5 4.61
(.033-4.34)
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(0.22-1.53)
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(0.24-4.11)

𝑆𝑢𝑚𝑎𝑥𝑊 mm 50-200 60.9
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(27.2-69.0)
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(20.3-58.9)
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𝛾𝑊 - 0.1-5 0.35
(0.14-2.40)
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(0.22-4.65)

1.26
(0.17-4.73)

0.63
(0.09-3.66)

𝐶𝑟𝑚𝑎𝑥 mm d-1 0-4 1.05
(0.76-2.17)

0.98
(0.32-2.80)

1.13
(0.41-2.11)

1.33
(0.09-2.51)

0.03
(2.34-3.76)
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Figure A.1: The mean monthly streamflow for four sub-time periods 𝑡1-𝑡4 based on two scenarios ( (a)-(d):
scenario 1, (e)-(h): scenario 2). The blue lines indicate the observed streamflow. The dashed lines and
shaded areas show the most balanced solution and 5th – 95th percentiles based on the pareto front
solutions retained as feasible.

Figure A.2: The mean monthly actual evaporation 𝐸𝐴 for four sub-time periods 𝑡1-𝑡4 based on two
scenarios ( (a)-(d): scenario 1, (e)-(h): scenario 2). The dashed lines and shaded areas show the most
balanced solution and 5th – 95th percentiles based on the pareto front solutions retained as feasible.
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Figure A.3: The mean monthly unsaturated zone storage Su for four sub-time periods 𝑡1-𝑡4 based on two
scenarios ( (a)-(d): scenario 1, (e)-(h): scenario 2). The dashed lines and shaded areas show the most
balanced solution and 5th – 95th percentiles based on the pareto front solutions retained as feasible.

Figure A.4: The mean monthly groundwater storage 𝑆𝑠 (active storage) for four sub-time periods t1-t4 based
on two scenarios ( (a)-(d): scenario 1, (e)-(h): scenario 2). The dashed lines and shaded areas show the
most balanced solution and 5th – 95th percentiles based on the pareto front solutions retained as feasible.
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Figure B.1: Hydrograph and selected hydrological signatures reproduced by IM-SAS-L, following a
simultaneous calibration to the hydrological response and 𝛿

18O (C
𝛿
18O,Q; scenario 16). (a) Time series

of observed daily precipitation; observed and modelled (b) daily stream flow (𝑄), where the light red
line indicates the most balanced solution, i.e., lowest 𝐷𝐸 , and the light red shaded area the 5th/95th
inter-quantile range obtained from all pareto optimal solutions; (c) stream flow zoomed-in to the 01/01/2007
– 31/12/2012 period; (d) flow duration curves (FDC), (e) seasonal runoff coefficients (𝑅𝐶𝑄 ) and (𝑓 )
autocorrelation functions of stream flow (𝐴𝐶𝑄 ) for the calibration period. Blue lines indicate values based
on observed streamflow (𝑄𝑜 ), light red lines are values based on modelled stream flow (𝑄𝑚) representing
the most balanced solutions, i.e., lowest 𝐷𝐸 and the light red shaded areas show the 5th/95th inter-quantile
ranges obtained from all pareto optimal solutions.
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Figure B.2: Hydrograph and selected hydrological signatures reproduced by IM-SAS-L, following a
simultaneous calibration to the hydrological response and 3H (C3H,Q; scenario 17). (a) Time series of
observed daily precipitation; observed and modelled (b) daily stream flow (Q), where the light red
line indicates the most balanced solution, i.e., lowest 𝐷𝐸 , and the light red shaded area the 5th/95th
inter-quantile range obtained from all pareto optimal solutions; (c) stream flow zoomed-in to the 01/01/2007
– 31/12/2012 period; (d) flow duration curves (𝐹𝐷𝐶), (e) seasonal runoff coefficients (𝑅𝐶𝑄 ) and (𝑓 )
autocorrelation functions of stream flow (𝐴𝐶𝑄 ) for the calibration period. Blue lines indicate values based
on observed streamflow (𝑄𝑜 ), light red lines are values based on modelled stream flow (𝑄𝑚) representing
the most balanced solutions, i.e., lowest 𝐷𝐸 and the light red shaded areas show the 5th/95th inter-quantile
ranges obtained from all pareto optimal solutions.
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Figure B.3: Hydrograph and selected hydrological signatures reproduced by IM-SAS-D, following a
simultaneous calibration to the hydrological response and 𝛿 18O (C𝛿 18O,Q; scenario 19). (a) Time series
of observed daily precipitation; observed and modelled (b) daily stream flow (Q), where the light red
line indicates the most balanced solution, i.e., lowest 𝐷𝐸 , and the light red shaded area the 5th/95th
inter-quantile range obtained from all pareto optimal solutions; (c) stream flow zoomed-in to the 01/01/2007
– 31/12/2012 period; (d) flow duration curves (FDC), (e) seasonal runoff coefficients (RCQ) and (f)
autocorrelation functions of stream flow (𝐴𝐶𝑄 ) for the calibration period. Blue lines indicate values based
on observed streamflow (Qo), light red lines are values based on modelled stream flow (𝑄𝑚) representing
the most balanced solutions, i.e., lowest 𝐷𝐸 and the light red shaded areas show the 5th/95th inter-quantile
ranges obtained from all pareto optimal solutions.
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Figure B.4: Hydrograph and selected hydrological signatures reproduced by IM-SAS-D, following a
simultaneous calibration to the hydrological response and 3H (C3H,Q; scenario 20). (a) Time series of
observed daily precipitation; observed and modelled (b) daily stream flow (Q), where the red line indicates
the most balanced solution, i.e., lowest 𝐷𝐸 , and the light red shaded area the 5th/95th inter-quantile range
obtained from all pareto optimal solutions; (c) stream flow zoomed-in to the 01/01/2007 – 31/12/2012
period; (d) flow duration curves (FDC), (e) seasonal runoff coefficients (RCQ) and (f) autocorrelation
functions of stream flow (𝐴𝐶𝑄 ) for the calibration period. Blue lines indicate values based on observed
streamflow (Qo), red lines are values based on modelled stream flow (𝑄𝑚) representing the most balanced
solutions, i.e., lowest 𝐷𝐸 and the light red shaded areas show the 5th/95th inter-quantile ranges obtained
from all pareto optimal solutions.
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Scenario 19

(a) (b)Scenario 16 Scenario 17 Scenario 18

Scenario 20 Scenario 21

(c)

(d) (e) (f)

Figure B.5: The Gamma distributions to the volume-weighted mean stream flow TTDs of model IM-SAS
(i.e., scenarios 16-21) based on model IM-SAS-L in (a)-(c) and model IM-SAS-D in (d)-(f). Grey shades in
(a)-(f) indicate volume-weighted mean TTDs and colored shades indicate the corresponding fitting Gamma
distributions, respectively.

Scenario 19

(a) (b)Scenario 16 Scenario 17 Scenario 18

Scenario 20 Scenario 21

(c)

(d) (e) (f)

Figure B.6: The Gamma distributions to the volume-weighted mean transpiration (𝐸𝑎) TTDs of model
IM-SAS (i.e., scenarios 16-21) based on model IM-SAS-L in (a)-(c) and model IM-SAS-D in (d)-(f). Grey
shades in (a)-(f) indicate volume-weighted mean TTDs and colored shades indicate the corresponding fitting
Gamma distributions, respectively.
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Scenario 19

(a) (b)Scenario 16 Scenario 17 Scenario 18

Scenario 20 Scenario 21

(c)

(d) (e) (f)

Figure B.7: The Gamma distributions to the volume-weighted mean groundwater (𝑆𝑠) RTDs of model
IM-SAS (i.e., scenarios 16-21) based on model IM-SAS-L in (a)-(c) and model IM-SAS-D in (d)-(f). Grey
shades in (a)-(f) indicate volume-weighted mean RTDs and colored shades indicate the corresponding fitting
Gamma distributions, respectively.

(a) (b)

Scenario 16 Scenario 17 Scenario 18

(c)

(d) (e) (f)

Figure B.8: The Gamma distributions to the volume-weighted mean stream flow TTDs for the wet and dry
periods of model IM-SAS-L (i.e., scenarios 16-18) based on wet periods in (a)-(c) and dry periods in
(d)-(f). Grey shade and blue shades in (a)-(c) indicate volume-weighted mean TTDs for wet periods
and the corresponding fitting Gamma distributions, respectively; grey shade and red shades in (d)-(f)
indicate volume-weighted mean TTDs for dry periods and the corresponding fitting Gamma distributions,
respectively.
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(a) (b)

Scenario 16 Scenario 17 Scenario 18

(c)

(d) (e) (f)

Figure B.9: The Gamma distributions to the volume-weighted mean transpiration (𝐸𝑎) TTDs for the wet
and dry periods of model IM-SAS-L (i.e., scenarios 16-18) based on wet periods in (a)-(c) and dry periods
in (d)-(f). Grey shade and blue shades in (a)-(c) indicate volume-weighted mean TTDs for wet periods
and the corresponding fitting Gamma distributions, respectively; grey shade and red shades in (d)-(f)
indicate volume-weighted mean TTDs for dry periods and the corresponding fitting Gamma distributions,
respectively.

(a) (b)

Scenario 16 Scenario 17 Scenario 18

(c)

(d) (e) (f)

Figure B.10: The Gamma distributions to the volume-weighted mean groundwater (𝑆𝑠) RTDs for the wet
and dry periods of model IM-SAS-L (i.e., scenarios 16-18) based on wet periods in (a)-(c) and dry periods
in (d)-(f). Grey shade and blue shades in (a)-(c) indicate volume-weighted mean RTDs for wet periods
and the corresponding fitting Gamma distributions, respectively; grey shade and red shades in (d)-(f)
indicate volume-weighted mean RTDs for dry periods and the corresponding fitting Gamma distributions,
respectively.
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(a) (b)

Scenario 19 Scenario 20 Scenario 21

(c)

(d) (e) (f)

Figure B.11: The Gamma distributions to the volume-weighted mean steam flow TTDs for the wet and dry
periods of model IM-SAS-D (i.e., scenarios 19-21) based on wet periods in (a)-(c) and dry periods in
(d)-(f). Grey shade and blue shades in (a)-(c) indicate volume-weighted mean TTDs for wet periods
and the corresponding fitting Gamma distributions, respectively; grey shade and red shades in (d)-(f)
indicate volume-weighted mean TTDs for dry periods and the corresponding fitting Gamma distributions,
respectively.

(a) (b)

Scenario 19 Scenario 20 Scenario 21

(c)

(d) (e) (f)

Figure B.12: The Gamma distributions to the volume-weighted mean transpiration (𝐸𝑎) TTDs for the wet
and dry periods of model IM-SAS-D (i.e., scenarios 19-21) based on wet periods in (a)-(c) and dry periods
in (d)-(f). Grey shade and blue shades in (a)-(c) indicate volume-weighted mean TTDs for wet periods
and the corresponding fitting Gamma distributions, respectively; grey shade and red shades in (d)-(f)
indicate volume-weighted mean TTDs for dry periods and the corresponding fitting Gamma distributions,
respectively.
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(a) (b)

Scenario 19 Scenario 20 Scenario 21

(c)

(d) (e) (f)

Figure B.13: The Gamma distributions to the volume-weighted mean groundwater (𝑆𝑠) RTDs for the wet
and dry periods of model IM-SAS-D (i.e., scenarios 19-21) based on wet periods in (a)-(c) and dry periods
in (d)-(f). Grey shade and blue shades in (a)-(c) indicate volume-weighted mean RTDs for wet periods
and the corresponding fitting Gamma distributions, respectively; grey shade and red shades in (d)-(f)
indicate volume-weighted mean RTDs for dry periods and the corresponding fitting Gamma distributions,
respectively.

(a) (b) (c)

Figure B.14: The Gamma distributions to the volume-weighted mean steam flow TTDs (i.e., scenarios 13-15).
Grey shades in (a)-(c) indicate volume-weighted mean TTDs and colored shades indicate the corresponding
fitting Gamma distributions (green for Scenario 13, purple for scenario 14 and brown for scenario 15),
respectively.

(a) (b) (c) (d)

Figure B.15: The Gamma distributions to the volume-weighted mean steam flow TTDs of each precipitation
zone based on model IM-SAS-D from scenario 19. Grey shades in (a)-(d) indicate volume-weighted mean
TTDs of four precipitation zones (P1-P4) and colored shades indicate the corresponding fitting Gamma
distributions, respectively.
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(a) (b) (c) (d)

Figure B.16: The Gamma distributions to the volume-weighted mean steam flow TTDs of each precipitation
zone based on model IM-SAS-D from scenario 20. Grey shades in (a)-(d) indicate volume-weighted mean
TTDs of four precipitation zones (P1-P4) and colored shades indicate the corresponding fitting Gamma
distributions, respectively.

(a) (b) (c) (d)

Figure B.17: The Gamma distributions to the volume-weighted mean steam flow TTDs of each precipitation
zone based on model IM-SAS-D from scenario 21. Grey shades in (a)-(d) indicate volume-weighted mean
TTDs of four precipitation zones (P1-P4) and colored shades indicate the corresponding fitting Gamma
distributions, respectively.
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(a)

(b)

(c)

Figure B.18: Stream flow TTDs derived from the 6 model scenarios based on IM-SAS models with the
different associated calibration strategies (scenarios 16-21). The selected volume weighted average daily
TTDs during the modelling period 01/10/2001 – 31/12/2016 are given. (a) The TTDs inferred from 𝛿

18O; the
lightest green lines represent the TTDs based on selected solutions with scenario 16; the relatively lighter
green lines represent the TTDs based on selected solutions with scenario 19; the green line represents the
TTDs based on best-fit solution with scenario 16; the dark green line represents the TTDs based on best-fit
solution with scenario 19; (b) The TTDs inferred from 3H; the lightest purple lines represent the TTDs
based on selected solutions with scenario 17; the relatively lighter purple lines represent the TTDs based
on selected solutions with scenario 20; the purple line represents the TTDs based on best-fit solution with
scenario 17; the dark purple line represents the TTDs based on best-fit solution with scenario 20; (c)
The TTDs inferred from combined 𝛿 18O and 3H; the lightest brown lines represent the TTDs based on
selected solutions with scenario 18; the relatively lighter brown lines represent the TTDs based on selected
solutions with scenario 21; the brown line represents the TTDs based on best-fit solution with scenario 18;
the dark brown line represents the TTDs based on best-fit solution with scenario 21.
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Propositions
accompanying the dissertation

Long-term hydrological response and physical transport
dynamics in response to climatic variability

Insights from the Neckar basin
by

SiyuanWang

1. The root zone storage capacity is not always as important as frequently considered
in hydrological models, especially for temperate-humid climates with ample
summer precipitation. [this thesis]

2. The long-term stability of physical transport processes, despite external and
internal changes in the system, can limit the options available for water quality
management. [this thesis]

3. The age of streamwater depends on the model used for estimation, not the tracer
employed. [this thesis]

4. How ecosystem adapt to a changing climate is not the same for all catchments.
[this thesis]

5. Each water particle serves as both a component of outflows and a carrier of
information about the duration of water’s journey..

6. Any model should strike a balance between accurately representing underlying
processes and minimizing uncertainty.

7. Water neither stops for anyone or changes for anyone, yet it can adapt to any
form.

8. All things are both small and magnificent.

9. In science flowers and thorns coexist, much like success and failure are
intertwined.

10. Large floods can arise from small streams.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor Dr. M. Hrachowitz and copromotor Dr.ir G.H.W. Schoups.




