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Abstract

The loads that are used for the assessment of existing reinforced concrete slab bridges are
the self-weight, superimposed loads, and distributed and concentrated live loads. As such, the
shear capacity of reinforced concrete slabs under a combination of distributed and concentrated
live loads is a topic of practical relevance. For slabs subjected to a single concentrated load, a
plastic model for assessment exists: the Extended Strip Model, developed based on the Strip
Model for concentric punching shear. A further adaptation of the model to assess slabs subjected
to distributed and concentrated loads is presented in this paper. The proposed model is compared
to experiments on slabs subjected to a single concentrated load and a line load. The conclusion of
this comparison is that the Extended Strip Model results in a safe estimate of the maximum
concentrated load on the slab, and that the method can be used for the assessment of existing

bridges subjected to heavy truck loads.
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1. Introduction
1.1 Assessment of existing bridges in the Netherlands

As the average age of the existing bridges in many parts of the world is increasing, the
importance of methods for the assessment of these existing bridges is increasing as well. A
common bridge type in the Netherlands [1] is the reinforced concrete solid slab bridge. Many of
these slab bridges were built between the late 1950s and the early 1980s. The loads that are used
for assessment in the Netherlands are the self-weight of the structure, the superimposed load, and
the live loads. The live loads are given in NEN-EN 1991-2:2003 [2] and consist of a design
tandem in each lane, combined with a distributed lane load. For shear assessment, the capacity of
both reinforced concrete beams and slabs is taken as the one-way shear strength given in NEN-
EN 1992-1-1:2005 [3]. Typically, the evaluation is then expressed based on a Unity Check: a
ratio of the resulting shear stress from the applied loads over the shear capacity. If the Unity
Check is larger than 1, the evaluated bridge is considered as not fulfilling the requirements [4].
For the existing reinforced concrete slab bridges, it is often found that the shear capacity is
insufficient. Therefore, the shear capacity of reinforced concrete slab bridges has been a topic of
research in the Netherlands for the past decade.
1.2 Methods for one-way and two-way shear

Reinforced concrete slab bridges subjected to concentrated loads such as the design
tandem failing in shear are cases that are situated at the transition between one-way shear (beam
shear) and two-way shear (punching shear) [5]. Traditionally, shear models are strictly
subdivided into methods for one-way shear and two-way shear. The models for one-way shear
are compared with experiments on beams in three- or four-point bending [6-8], whereas the

models for two-way shear are compared with experiments on slab-column connections [9]. The
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loading case of a reinforced concrete slab bridge subjected to the load combination used for
assessment lies somewhere in between these situations.

The most commonly used models for one-way shear are semi-empirical formulas derived
from analysing the existing beam shear experiments [6, 7]. The shear capacity prescribed by
NEN-EN 1992-1-1:2005 [3] and ACI 318-14 [10] follows a semi-empirical formula. Another
model that has a theoretical basis and that has been introduced into design codes is the Modified
Compression Field Theory [11]. In this theory, cracked concrete is considered as a separate
material with its own constitutive equations, derived from panel tests. A simplification of the
theory [12] can be found in the AASHTO LRFD 2015 code [13] and the fib Model Code 2010
[14].

For two-way shear, the most commonly used models are also semi-empirical formulas
derived from the results of slab-column connection tests [9]. The punching shear capacity
prescribed by NEN-EN 1992-1-1:2005 [3] and ACI 318-14 [10] is described by a semi-empirical
formula. Improvements to the punching shear provisions from NEN-EN 1992-1-1:2005 have
been suggested [15]. Another model that has a theoretical basis is the Critical Shear Crack
Theory [16, 17]. This theory is the basis for the provisions in the Swiss Code SIA 262:2003 [18]
and the fib Model Code 2010 [14]. Recently, a simplified punching shear model has proposed
that is based on the Critical Shear Crack Theory [19].

A category of models that can be used for one-way and two-way shear are plasticity-
based models, which can be subdivided in lower- and upper-bound methods. While plasticity-
based methods for shear [20-22] are not directly found in design codes, plasticity-based methods
are the basis of engineering tools such as strut-and-tie models for D-regions [23], the strip

method for flexure [24, 25], and yield line analysis [26].
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1.3 Experiments on slabs under a single concentrated load

To study the behavior of reinforced concrete slabs under a single concentrated load close
to the support, a number of laboratory experiments were carried out. This load configuration was
chosen, as it represents the case with the design tandem close to the support, which results in the
largest shear stress for assessment. The specimens were half-scale reinforced concrete slab
specimens of 5 m x 2.5 m x 0.3 m with a span of 3.6 m, tested close to a simple and continuous
support, to represent a continuous slab bridge. In total, 127 experiments on 18 specimens were
carried out [27-30]. The parameters varied in these experiments were: the position of the load in
the transverse direction, the position of the load in the longitudinal direction, the amount of
transverse reinforcement, the effect of previous cracking, the size of the loading plate, the
moment distribution at the support, the concrete compressive strength, the overall width (with
2.5 m as a reference), the type of reinforcement (deformed bars as compared to plain bars), and
the type of support (line supports as compared to elastomeric bearing blocks). The main
conclusion of these experiments was that the three-dimensional load path in a reinforced
concrete slab differs significantly from the two-dimensional load path in a reinforced concrete
beam, and results in a larger shear capacity. This effect was also called the transverse load
distribution capacity of slabs in shear [31]. This conclusion, and the experimental results, also
led to the development of recommendations [1] for the assessment of reinforced concrete slab
bridges when using the Eurocode provisions NEN-EN 1992-1-1:2005 [3] and NEN-EN 1991-

2:2003 [2].
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2. Extended Strip Model for slabs under combinations of loads
2.1 Extended Strip Model for slabs under a single concentrated load

The Extended Strip Model for reinforced concrete slabs under a single concentrated load
[32] is developed based on the Strip Model for concentric punching shear in slabs [33-35]. The
Strip Model is a lower-bound plasticity-based model that describes a possible load path prior to
failure. As such, it shares features with the Strip Method for designing slabs in flexure [24, 25].
In slabs under concentrated loads, a complex loading situation of one-way shear, two-way shear,
and flexure develops. This situation is reflected in the Strip Model by combining beam strips that
work in arching action (an element of one-way shear) together with slab quadrants that work in
two-way flexure. This principle is sketched in Figure 1, which shows a column with strips
branching out from the column, and the resulting quadrants. The length of the strip lsyip is
considered from the face of the column to a position of zero shear. The load path may function
until a limiting one-way shear is reached at the interface between the strip and the quadrant. This
limiting one-way shear is taken as the inclined cracking load given in ACI 318-14 [10]. The
maximum load is then achieved by summing the capacities of the four strips, assuming that the
limiting one-way shear is achieved on the interface between the strip and the quadrant. The
maximum load that can be carried in the quadrants is thus wac), the inclined cracking load given
in ACI 318-14, see Figure 1.

The Extended Strip Model [32, 36, 37] extends the concepts of the Strip Model for
application to slabs of a finite size, with a single concentrated load. This load can be placed at
any position on the slab, so that the Extended Strip Model can study asymmetric loading
situations. The model is well-suited to combine the effects of one-way shear, two-way shear, and

flexure that govern the loading case of a reinforced concrete slab subjected to a concentrated
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load. To take into account the finite dimensions of the slab, and possible asymmetric loading, it
is necessary to take into account the geometry of the slab, the bending moment and shear
diagrams, as well as the effect of torsion. The resulting Extended Strip Model is then as shown in
Figure 2. The effects of the geometry and asymmetry now influence the resulting one-way shear
at the intersection between the quadrants and strips. As a result, the capacity of each single strip
is different. Again, the maximum concentrated load is found by summing the capacities of the
strips.

Whereas the effect of torsion could be neglected in the original Strip Model that studied
only symmetric loading cases, it becomes more important for asymmetric loading cases. The
effect of torsion was studied in a series of linear finite element models in which the ratio between
bending moment and torsional moments was analyzed [38]. The result of this analysis is a
simplified expression for the relative effect of torsion:

ﬂzO.Sd%% forOs%sZ.SandOs%s% (1)
If the effect of torsion is at its largest, the value of £ = 0 and it is considered that all capacity is
used to resist the effects of torsion. If the effect of torsion is negligible, the value of =1 and it
is considered that all capacity is available to develop the required load path to resist the shear
effects. When a/dy > 2.5, the value of a/dy in Eq. (1) is replaced by 2.5, and only the effect of the
position along the width direction on the torsional behavior remains. The strips influenced by
torsion carry the factor g in Figure 2.

For loads close to the support, the effect of direct load transfer between the load and the

support is taken into account by increasing the capacity of the strip between the load and the

support. For loads close to the free edge, the physical length of the strip leqge N€eds to be
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compared to the loaded length of the strip l,,. If the loaded length is longer than the actual strip
length, then the strip length instead of the loaded length should be used. This influence of the
geometry is called the edge effect.

The effect of the overall bending moment diagram is reflected in Figure 2 by using the
distance between the points of contraflexure L and the distance ay, which is the smallest of the
distance between the load and the support, or the distance between the load and the point of
contraflexure. The effect of the self-weight of the slab, which becomes important for the
assessment of slab bridges, is taken into account on the shear diagram by considering the stress
vp of the dead load caused at the position of the concentrated load. Additionally, the Extended
Strip Model includes the size effect in shear on the limiting shear stress wac,. This limiting shear
stress is calculated differently for the x- and y-directions of the slab, to take into account the
different value of the effective depth depending on the layer of reinforcement that is considered.
Therefore, Figure 2 uses Wacix and wac,y for the different directions.

In the Extended Strip Model, the total maximum concentrated load Pesy is calculated as:

I:)ESM = Px + Psup + I:)y + Pedge (2)

P :\/2(1+18)Msag,xWAC|,x (3)
2

Psup = a(jx \/2(1+ﬁ)Ms,XWACI,x (4)

L
Py:\/z[L—a stvy(wAC,’y—vDL) (5)
M
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The loaded length of the strip is determined as:

The moment capacities are determined as:
Ms,x = Msag,x +;imomenchog,x

Msvy = Msag,y +2’momenchog,y
with:

ﬂ, — MSUP

moment M
span

and Mgyp and Mspan follow from the moment diagram of the slab subjected to all loads. At a

(6)

(7)

(10)

simple support, the value of Anoment becomes 0, and the moment capacities from Egs. (8) and (9)

become the sagging moment capacities Msagx and Msag,y.

The one-way shear capacity is calculated based on ACI 318-14 [10], but a correction for

the size effect has been added [39]:

1

WAC|,X 20.166dy\/f:d((1oodmmj3

1

W, , =0.166d, /T, (100dmm]3

(11)

(12)
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In Figure 2, the resulting loads are shown when the effects of the geometry, torsion, the acting
dead load, the static equilibrium, the position of the point of contraflexure, and the size effect are
taken into account.

2.2 Application to slabs under combinations of loads

When a slab is subjected to a combination of loads the Extended Strip Model can be used
as well. When only a single tandem is used, the Extended Strip Model can be used by taking the
perimeter of the four considered wheel prints, and considering this area as one large concentrated
load from which the strips and quadrants are developed. Based on a field experiment on the
Ruytenschildt Bridge, which was tested to failure [40], it was shown that this application of the
Extended Strip Model results in a safe prediction of the maximum load in the test [36].

When a slab is subjected to a combination of concentrated and distributed loads, for
example as used in the live load model from NEN-EN 1991-2:2003 [2], the Extended Strip
Model can be used as well. The effect of the distributed load can now be taken into account in
the span direction as a reduction of the shear capacity. This effect of the distributed load is
represented by the shear stress caused by the distributed load at the position of the concentrated
load, vgist. As a result, the loading on the quadrants and strips becomes as shown in Figure 3.
Since the effect of the distributed load is only considered in the span direction, only the values of

Py and Pegqe from Egs. (5) and (6) are changed for this application of the Extended Strip Model:

L
Py :\/Z(L—a st,y(WACI,y_VDL _Vdist) (13)
M
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L
\/Zﬂ( ]Ms,y (WACI,y — VoL _Vdist) for Iw < Iedge

L-a
Pedge = M (14)
L
ﬂ[ L-a J(WACI’y ~You _Vdi“)ledge forl, > Iedge
M

As a result, the loaded length of the strip between the load and the support is now determined as:

S,y

_[ 2M

L (15)

\]ﬂ(WAcLy — VoL _Vdist)Li

—_ a‘M
An overview of these changes to the model is represented by the loads on the strips and

quadrants shown in Figure 3.

3. Experiments on slabs under combinations of loads
3.1 Test setup

To assess the behavior of slabs under a combination of loads, representative of the load
combination used for the assessment of reinforced concrete slab bridges, experiments were
carried out [41]. The tested specimens were eight slabs in total, each with the same size of 5 m x
2.5 m x 0.3 m. In total, 23 experiments were carried out on these slabs, with two or four tests
carried out per slab depending on the loading configuration. The load combination used for the
assessment of reinforced concrete slab bridges consists of the self-weight, the superimposed dead
load, and distributed and concentrated live loads. Since the application of a uniformly distributed
load in a laboratory setting in combination with concentrated loads becomes complex, a

simplified loading scheme was used for these experiments. A single concentrated load close to
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the support (as used in the first series of experiments described in §1.3) was combined with a line
load acting over the full width of the slab, as can be seen in Figure 4.

In the experiments, the line load was applied in force-controlled manner first. Then, the
concentrated load was increased in a displacement-controller manner until failure of the slab.
The maximum value of line load was 240 kN/m. This load was calculated as the load causing
50% of the failure shear stress at the support as determined in experiments on wide beams [28].
The basic assumption here was that the behavior of a slab subjected to a line load would be
similar to the behavior of a beam subjected to a concentrated load [42]. However, the behavior of
a slab subjected to a line load and a concentrated load was unknown when preparing these
experiments.

Two types of supports were used for the experiments: steel bearings or elastomeric
bearings. For some specimens, a steel strip of 1200 mm wide was used. As a result, the value of
the support width by, changes, see Table 1.

A test was carried out at the simple support (sup 1 in Figure 4) as well as at the
continuous support (sup 2 in Figure 4) when the load was placed in the middle (b, = 1250 mm).
Two tests were carried out at each support when the load was placed close to the edge (b= 438
mm). Whereas the slab specimen only had one span, it was built to represent continuous slab
bridges. Therefore, prestressing bars coupled to the strong floor of the laboratory were used to
create a moment over support 2, creating the moment distribution of a continuous slab, as shown
in Figure 5. The moment diagram in Figure 5 is also used to show the difference between the

distances a, am, L and lspan.
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The standard span length is 3.6 m, as shown in Figure 4. For a limited number of
experiments, a temporary support was used to test at the continuous support, as testing at the

simple support had resulted in large damage to the slab.

3.2 Specimens

The concrete used in the specimens was delivered by truck mixer. The concrete quality
C28/35 was used. Glacial river aggregates with a maximum aggregate size of 16 mm were used.
The concrete compressive strength was measured in the laboratory on cubes. For the conversion
to the cylinder compressive strength, a factor 0.82 was used [43], as recommended for the
assessment of reinforced concrete slab bridges in the Netherlands. The resulting concrete
compressive strengths of the individual specimens can be found in Table 1.

The reinforcement layout of the slabs is shown in Figure 6. All bars were deformed bars
of steel quality S500. The measured yield strength of the @ = 20 mm bars was 542 MPa and of
the @ = 10 mm bars f,, = 537 MPa. For all specimens, the longitudinal reinforcement ratio was
Pxsag = 0.996% and the transverse reinforcement ratio was py sag = 0.258%.

3.3 Results

The results of the 20 experiments are given in Table 1. In this table, the position of the
load is indicated with CS/SS (testing at the continuous or simple support), a, the center-to-center
distance between the load and the support, and by, which equals 1.25 m when the concentrated
load is applied in the middle of the width, or 0.438 m when the concentrated load is applied close
to the free edge - see Figure 4 for the two positions of the load. The result of the experiment is
expressed as Pcone, the maximum value of the concentrated load, and vjine, the distributed load

applied by the line load. The failure mode is either “B”, a beam shear failure with a clear shear
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crack on the side face of the slab, or “WB”, a wide beam shear failure for which the crack is
inside the slab, and inclined cracks indicating shear stress can be observed on the bottom face of
the slab. These failure modes are shown in Figure 7. For all experiments, a loading plate of 300
mm x 300 mm was used, except for S20T2b, where a loading plate of 200 mm x 200 mm was

used.

4. Comparison between experiments and Extended Strip Model

To verify the proposed Extended Strip Model and its application to slabs subjected to
concentrated and distributed loads, the maximum concentrated load P, from experiments from
Table 1 are calculated with the Extended Strip Model, Pesy. The value of Pegy is determined as
given in Eq. (2), with Py and Peqge as given in Egs. (13) and (14). The results of all calculations,
with the formulas as outlined in 82.2, are given in Table 2. A beam diagram is used to find the
moment and shear diagrams along the span direction of the slab. Based on this moment diagram,
the value of 1 is determined. For example, for S24T2 the support moment is 188 kNm and the
span moment at the position of the concentrated load is 695 kNm, as can be seen in Figure 5. As
aresult, A = 188kNm/695kNm = 0.27. The effect of torsion is taken into account with the factor
B, see Eq. (1), which equals 1 if the effect of torsion is negligible and which approaches 0 as the
effect of torsion increases. The value of the loaded length of the strip I, is determined as given in
Eq. (15). The capacity of the x-direction strip between the load and the support is determined as
Psup, according to Eq. (4). The capacity for the x-direction strip between the load and the position
of zero shear, Py is not affected by the formation of a direct strut, and is determined according to
Eqg. (3). The capacity of the y-direction strip between the edge and the load is affected by torsion

and the edge effect, and is determined as given in Eq. (14). The capacity of the y-direction strip
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between the load and the far side of the slab is determined as given in Eg. (13). Then, the
capacity of the four strips is determined, and summed to find Pesy, see Eq. (2). It can be seen
that, as a result of the direct strut that forms between the load and the support for concentrated
loads close to the support, the value of Py, is larger than the value of Py. For the experiments
with a concentrated load close to the free edge, the value of Pegqe becomes significantly smaller
than the value of Py.

As can be seen in Table 2, all predicted values of the maximum concentrated load are
conservative estimates; all values of P¢onc/Pesw are larger than one. The mean value (AVG) of
Pconc/Pesv equals 1.47. The standard deviation (STD) is 0.18, which results in a coefficient of
variation (COV) of 12.5%. Given the complexity of the problem, which is a combination of one-
way shear, two-way shear, and two-way flexure, the obtained value of the coefficient of variation
is acceptable, especially since the presented method allows for a quick estimate of the maximum
load with a hand calculation. The characteristic value (5% lower bound, assuming a normal
distribution) equals 1.17, as would be expected from a lower-bound method. It can thus be
concluded that the method is suitable for design and assessment purposes.

The comparison between the tested and predicted results is shown graphically in Figure
8. From this figure, it can be seen that the general trend of the data follows a line that is parallel
to the 45° line that is drawn in Figure 8. From Figure 8, it can be concluded as well that the
Extended Strip Model provides a safe lower bound estimate of the maximum concentrated load
on a reinforced concrete slab subjected to a combination of a concentrated load and a distributed
line load. The actual distribution of the tested to predicted results is shown in a histogram in

Figure 9. From the cumulative distribution, it can be found that the 5% lower bound of P¢onc/Pesm
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equals 1.12, which is similar to the value that was found based on the assumption of a normal

distribution.

5. Discussion

Previous research [36] has shown that the Extended Strip Model can be used for
reinforced concrete slab bridges subjected to a single tandem. The current research shows that
the Extended Strip Model can be used for reinforced concrete slab bridges subjected to a
concentrated load and a distributed load. Extrapolating the results from the previous research
makes it likely that the Extended Strip Model can be applied to reinforced concrete slab bridges
subjected to a single tandem and the distributed loads. For these distributed loads, the effect of
the load on the strips would be taken into account for the y-direction strips in the same way vp, is
accounted for in Figure 2. As such, the proposed method can be used for the assessment of
bridges with a limited width, for estimating the maximum load that can be used in proof load
testing, and for the assessment of superloads. For bridges with a limited width of a single lane,
the loading combination of a single tandem and the distributed loads is the load combination
required for assessment. For proof load testing [44], a single tandem is applied during the proof
load test, and the distributed loads of the self-weight and the superimposed dead loads remain
acting on the structure. Similarly, for the assessment of superloads, the superload can be
simplified into a large surface of a concentrated load. The bridge then is subjected to this
concentrated load, and the distributed loads of the self-weight of the bridge and the

superimposed dead load.
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The currently proposed method gives a lower bound of the maximum concentrated load.
Since the method is based on the lower-bound theorem of plasticity, conservative results are
expected. Moreover, in the derivation of the effect of torsion and other loads, conservative
approaches were used. The goal of the developed method is to be able to estimate a maximum
load with a quick hand calculation. For more precise results, it is recommended to use more
advanced methods, such as nonlinear finite element models.

Currently, the proposed method cannot yet be extended to the use of multiple tandems
staggered in different lanes. For this application, further research is required to evaluate how the
tandems can be joined in the Extended Strip Model. However, no experimental results are

available to compare the Extended Strip Model to this loading type.

6. Summary and conclusions

For the shear assessment of reinforced concrete slab bridges, a load combination
consisting of permanent loads and live loads is used. The permanent loads are distributed loads,
whereas the live loads are a combination of distributed lane loads, sometimes with different
values for the distributed load for each lane, and concentrated loads that represent concentrated
truck loads. This loading case represents a complex case, combining one-way shear, two-way
shear, and two-way flexure.

To safely estimate the maximum concentrated load that can be applied to a reinforced
concrete slab, representing a reinforced concrete slab bridge, the Extended Strip Model was

developed. The Extended Strip Model combines strips working in arching action (one-way



10

11

12

13

14

15

16

17

18

19

20

21

22

18

shear) with quadrants working in two-way flexure, and shows a possible load path prior to the
collapse state of the slab. It is a lower-bound plasticity-based method.

In the presented research, the Extended Strip Model is extended further to estimate the
maximum concentrated load for the case of a reinforced concrete slab subjected to a concentrated
load and distributed loads. This loading situation was used, as experiments on reinforced
concrete slabs, representing reinforced concrete slab bridges, subjected to a concentrated load
close to the support and a line load acting over the full slab width are available for comparison.
The main features of the test setup, properties of the eight specimens, and results of the twenty
experiments are repeated in this paper for convenience.

To evaluate the performance of the proposed changes to the Extended Strip Model for the
application to a combination of a concentrated load and a distributed load, the experimental
results were compared to the predicted values with the Extended Strip Model. This comparison
showed that the Extended Strip Model leads to conservative estimates for the maximum
concentrated load. Given that the proposed method is an easy-to-use hand calculation, it can be
used to have a quick estimate of the maximum concentrated load for bridges with a single lane,

in the case of proof load testing, and for the passing of a superload.
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a center-to-center distance between load and support
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20
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am

ay

by

bsup

Oself
Vdist
VbL
Viine
Wacli
Waclx

Wacly

center-to-center distance between load and support or between load and point of
contraflexure, whichever is smaller

face-to-face distance between load and support

slab width

distance between free edge and center of load along the width direction
width of the support

average of dy and d,

effective depth to the x-direction reinforcement

effective depth to the y-direction reinforcement
characteristic concrete compressive strength

average concrete compressive cylinder strength

average steel yield strength

length of the strip between the load and the edge

span length

loaded length of the strip

failure mode

distributed load caused by self-weight

shear stress caused by the distributed load

shear stress caused by the dead load

applied line load over the width of the slab

one-way shear capacity given by ACI 318-14

one-way shear capacity based on dy given by ACI 318-14

one-way shear capacity based on dy given by ACI 318-14
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I:pres
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position along span length

beam shear failure

continuous support

load caused by prestressing bars coupling the slab to the strong floor of the laboratory
distance between points of contraflexure

bending moment

hogging moment capacity in the x-direction

hogging moment capacity in the y-direction

moment capacity in the x-direction

moment capacity in the y-direction

sagging moment capacity in the x-direction

sagging moment capacity in the y-direction

sagging moment in the span caused by all loads on the slab
hogging moment over the support caused by all loads on the slab
maximum load at the concentrated load in the experiments
capacity of strip between load and free edge

maximum load according to the Extended Strip Model
resultant of line load, maximum value

capacity of strip between load and support

capacity of a strip in the x-direction

capacity of a strip in the y-direction

simple support

wide beam shear failure
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S effect of torsion
pxsag  reinforcement ratio of the main flexural sagging moment reinforcement

pysag  reinforcement ratio of the transverse flexural sagging moment reinforcement
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Table 1 — Overview of experimental results

Test Ispan fcm a br bsup mode Pconc Vline
(m | MPa) | (m) | (m) | (M) (KN) | (KN/m)

S20T1 | SS | 3.6 | 49.62 | 0.60 | 1.250 | 0.28 B 1542 | 241.2
S20T2b | CS | 24 | 49.62 | 0.60|1.250|0.28| WB | 1552 | 2404
S20T3 |CS | 24 | 49.62 | 0.60 | 0.438 |0.28 | WB +B | 1337 | 240.4
S20T4 | CS | 2.4 | 49.62 | 0.60|0.438 | 0.28 | WB+B | 1449 | 2404

S21T1 |CS| 3.6 | 46.54 | 0.60|1.250 | 0.10 | WB +B | 1165 | 240.8
S21T2 | SS | 3.6 | 46.54 | 0.60|1.250 | 0.10 | WB+B | 1386 | 241.2

S22T1 | CS | 3.6 | 47.54 | 0.60|0.438|0.10 WB+B | 984 | 240.8
S22T2 |CS | 3.6 | 47.54 | 0.60|0.438 | 0.10 WB+B | 961 | 240.8
S22T3 | SS | 3.6 | 47.54 | 0.60|0.438|0.10 WB+B | 978 | 241.2
S22T4 | SS | 3.6 | 4754 | 0.60|0.438 | 0.10 WB+B | 895 | 2416

S23T1 | CS | 3.6 | 48.27 | 0.60 | 1.250 | 0.28 | WB +B | 1386 | 240.4
S23T2 | SS | 3.6 | 48.27 | 0.60|1.250 | 0.28 | WB+B | 1132 | 240.8

S24T1 | CS | 3.6 | 48.27 | 0.60 | 0.438 | 0.28 | WB+B | 1358 | 240.4
S24T2 | CS | 3.6 | 48.27 | 0.60 | 0.438 |0.28 | WB+B | 1182 | 240.4
S24T3 | SS | 3.6 | 48.27 | 0.60 | 0.438 | 0.28 | WB+B | 995 | 240.8
S24T4 | SS | 3.6 | 48.27 | 0.60|0.438 | 0.28  WB+B | 784 | 240.8

S25T2 | CS | 3.6 | 48.03 | 0.40|1.250 | 0.10  WB+B | 1620 | 240.4
S25T3 |CS | 3.6 | 48.03 | 0.40|0.438 | 0.10 | WB+B | 1563 | 240.8

S26T1 | SS | 3.6 | 48.03 | 0.42|0.438 | 0.10 | WB+B | 1448 | 240.8
S26T2 | SS | 3.6 | 48.03 | 0.42 | 0.438 | 0.10 B 1324 | 240.8
S26T3 | CS | 3.6 | 48.03 | 0.40|1.250 | 0.10 | WB+B | 1555 | 240.8
S26T4 | CS | 3.6 | 48.03 | 0.40 | 0.438 | 0.10 B 1363 | 240.8
S26T5 | CS | 3.6 | 48.03 | 0.40|0.438 | 0.10 | WB+B | 1451 | 240.8
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1 Table 2 — Comparison between test results and maximum load predicted with the Extended Strip

2 Model
Test Pconc A B IW Px Psup Py Pedge PESM Pconc/PESM
(KN) m | kN | kN | kN | kN | kN

S20T1 | 1542 | 0.00 | 0.91|0.877 294|503 | 61 | 58 | 917 1.682
S20T2b | 1552 | 0.73 | 0.91 | 0.728 | 240 | 465 | 85 | 81 | 872 1.781
S20T3 | 1337 |0.81 | 0.32|1.545| 245|562 | 106 | 11 924 1.447
S20T4 | 14491 0.7210.32 | 1.502 | 245|549 | 104 | 11 | 909 1.595
S21T1 |1165|0.330.91|1.161|289 |441 | 61 | 55 847 1.376
S21T2 | 1386 |0.000.91]0.955|289|383| 5 | 53 | 781 1.774
S22T1 | 984 | 0.37 1 0.32|1.949| 242 | 375 | 64 5 685 1.436
S22T2 | 961 | 0.36 | 0.32|1.942 | 242 | 373 | 63 5 684 1.406
S22T3 | 978 | 0.00 | 0.32 | 1.582 | 242 | 320 | 57 6 625 1.565
S22T4 | 895 | 0.00 | 0.32 | 1.581 | 242 | 320 | 57 6 625 1.432
S23T1 | 1386 |0.2710.91|1.085|292|562 | 63 | 60 | 977 1.419
S23T2 | 1132 0.00|0.91]0.918| 292|499 | 58 | 56 | 905 1.251
S24T1 | 1358 | 0.27 | 0.32 | 1.833 | 243 | 468 | 63 6 779 1.744
S24T2 | 1182 |0.27 | 0.32 | 1.834 | 243 | 468 | 63 6 779 1.518
S24T3 | 995 | 0.00 | 0.32 | 1.553 | 243 | 415 | 58 6 722 1.378
S24T4 | 784 |1 0.00 | 0.32 | 1.547 | 243 | 415 | 59 6 722 1.085
S25T2 | 1620 | 0.43 | 0.60 | 1.486 | 267 | 848 | 63 | 36 | 1215 1.333
S25T3 | 1563 | 0.43 | 0.21 | 2512 | 232 | 736 | 63 3 | 1035 1.511
S26T1 | 1448 | 0.00 | 0.22 | 1.952 | 233 | 562 | 56 4 855 1.693
S26T2 | 1324 | 0.00 | 0.22 | 1.949 | 233 | 562 | 56 4 855 1.548
S26T3 | 1555 | 0.53 | 0.60 | 1.544 | 267 | 877 | 65 | 36 | 1245 1.249
S26T4 | 1363 | 0.62 | 0.21 | 2.685 | 232 | 783 | 67 3 | 1085 1.256
S26T5 | 1451 0.58 | 0.21 | 2.653 | 232 | 774 | 66 3 | 1076 1.349

AVG 1.471

STD 0.184

CovVv 0.125
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Figure 1 — Overview of strips and quadrants [33].

Figure 2 — Load in quadrants and resulting loads on strips for the Extended Strip Model.

Figure 3 — Load in quadrants and resulting loads on strips for the Extended Strip Model for the
case of a concentrated load and one or more distributed loads.

Figure 4 — Overview of test setup used in the laboratory to study the combination of a
concentrated and distributed load.

Figure 5 — Detail at continuous support: (a) coupling slab to strong floor of laboratory with
prestressing bars; (b) beam scheme of applied loads, with values for S24T2; (c) resulting bending
moment diagram for S24T2.

Figure 6 — Reinforcement layout of slabs, top view of slab.

Figure 7 — Observed failure modes: (a) WB — bottom view of slab, S20T2b; (b) B — side view of
slab, S26T2.

Figure 8 — Graphical comparison between the maximum concentrated load as obtained from the
experiment Ponc and the predicted maximum concentrated load with the Extended Strip Model
Peswm.

Figure 9 — Histogram of P¢one/Pesm.



