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Chapter 1

Introduction

1.1 Research motivation

Mobility is an important part of human daily life, in which car travel is one of the
most popular modes. For instance, around 70 per cent of the total number of travel
distances in the Netherlands were done by car in recent years (KiM, 2019). The shared
proportion in 2017 is approximately 131 billion kilometres, of which the most frequent
reasons for travelling are to cover regular aspects of life such as work, social and recre-
ational activities. Therefore, having and maintaining high-quality mobility on highway
networks is arguably vital to transportation systems.

One of the main challenges of car traffic is to mitigate congestion which is the state
of still or slow-moving vehicles. It strongly impacts human life in various aspects
(Falcocchio & Levinson, 2015). From an economic perspective, the direct consequence
of traffic jams is increases in travel time; that means motorists waste their time in
congestion. Also, research has shown that increased congestion negatively influences
economic growth. Particularly, it dampens the growing rate of employment and income
(Jin & Rafferty, 2017; Hymel, 2009). Besides, from an environmental point of view,
the air quality surrounding the congested-intersections neighbourhood is also degraded
due to the high density of vehicle emissions (Hao et al., 2017).

In order to solve or reduce congestion, a better understanding of traffic or more ef-
fective traffic management and policy evaluation is needed. The achievement of this
would require extensive studies which are necessarily based on the foundation of un-
derlying (sensing) data representing related traffic. Reaching an effective solution for
congestion mitigation from data involves various steps. To concisely represent this
process, we adopt the so-called DIKW model (Ackoff, 1989; Rowley, 2007) which
represents knowledge as illustrated in Fig. 1.1. Collected measurements are at the
lowest level, i.e. the data level. In fact, increasing amounts of traffic data have been
collected on highways by using various sensory systems such as inductive loops, AVI
- Automatic Vehicle Identification and FCD - Floating Car Data. By combining these
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measurements, such as putting them into a time series or further adding spatial details,
the data start to generate more information into traffic. This is categorised as the sec-
ond layer of the model. The next level aims to gain knowledge, to answer the ’how’
questions, based on the information in the lower level. The outcomes are, for instance,
mathematical models that represent traffic dynamics or simulation tools based on those
models (e.g. (Van Lint et al., 2005; Wang et al., 2006; Calvert et al., 2011; Spiliopoulou
et al., 2014)). Such important pieces of knowledge are the stepping-stones for making
decisions at the top-most level. Those include policy evaluation (Van Lint et al., 2008;
Zheng et al., 2012), traffic management and control (e.g. van de Weg et al. (2018);
Soriguera & Robusté (2011); Vlahogianni et al. (2005)), to name just a few applica-
tions.

Figure 1.1: The pyramid of knowledge, i.e. the DIKW model

In the information layer, spatio-temporal representation of congestion, which shows
the status of traffic at multiple locations on a route over a certain time duration, pos-
sesses many advantages. From empirical assessment, such a map is very informative
as the onset and the dynamic (e.g., the propagation) of congestion can be conveniently
observed. Characteristics of congestion (and traffic, in general) like shock wave speed
can be measured intuitively by taking into account information in the spatial dimen-
sion (e.g. (Schönhof & Helbing, 2007)). Moving on to further studies, congestion
patterns can be beneficial to models development. Collecting a wide range of conges-
tion patterns can reveal recurrent instances which might be used for future prediction.
That means traffic having the same state to a previously seen pattern potentially leads
to similar future states. For instance, expected travel time can be predicted by pro-
jecting the current traffic state into the cluster of similar patterns in historical data
(Yildirimoglu & Geroliminis, 2013). Therefore, these 2D patterns of congestion are a
valuable source of information for various applications in the traffic domain.

Collecting, managing and making use of congestion patterns in the era of big data are
challenging tasks. Manual conduct is time-consuming and, therefore, inefficient and
most likely impractical. For instance, to validate a traffic model, the developers need to
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find relevant examples, e.g., congestion patterns, in data. Most of the time (if not all),
this is done using a try-and-error approach which is experience-based, therefore, less
effective. Consequently, these challenges call for automatic methods and tools to deal
with large traffic datasets. Bridging this gap could improve the effectiveness of various
studies in the field of transportation. In particular, having a rich layer of information (in
advance) essentially reduces or saves the expensive cost of processing massive datasets
at once. It assures that relevant information, for example, related to traffic congestion,
are ready to be further analysed by applications at higher layers. Furthermore, it can
also promote large-scale studies and probably encourage more thorough evaluations of
methods given a better utilisation and/or accessibility of big datasets. That is the main
focus of this thesis.

1.2 Research objective, questions and scope

The overall research objective of this thesis is as follows:

To develop efficient algorithms and methodologies to automatically collect and learn
congestion patterns from large volumes of traffic data, in order to enrich traffic infor-
mation.

To achieve this overall goal, key research questions are subsequently formulated as
follows.

Research question 1. How can congestion patterns be collected periodically from traf-
fic data in large-scale highway networks?

Traffic congestion reflects the quality of transportation networks although it is not the
dominant state of traffic. Thus, identifying and storing occurrence of congestion a
prior is beneficial to future retrieval. Congestion can propagate through intersections
and spread to upstream links. If network topologies or traffic is complicated enough,
multiple intersections might involve in. That means to have a complete set of spatio-
temporal representations of congestion require dealing with these intersections prop-
erly. In addition, traffic data are collected continuously, which means the developed
method needs to be computationally efficient to keep up with the incoming data.

Research question 2. What are the representative features of (highway) congestion pat-
terns?

Given, for instance, a nation-wide highway network, hundreds of congestion patterns
could be expected in a single day, and thousands are certainly possible over months.
Therefore, it is necessary to label them so that further retrieving is efficient. By putting
patterns into various categories, which represent different types of congestion, we can
reduce the searching space when looking for a target pattern. In order to annotate
patterns effectively, representative features need to be engineered carefully. Ideally,
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a good set of those infers small distance measures between patterns of similar types,
whilst longer distances are expected between those of different types.

Research question 3. How can domain-specific features, namely characteristics of traf-
fic congestion which are well recognized in the literature, be learned automatically?

This question is relevant in case of recognizing the advantages of domain-specific fea-
tures, which is highly possible, from the previous question. As mentioned previously,
thousands or millions of congestion patterns could be obtained over time. Manually or-
ganising/annotating such amount of data is cumbersome if not impossible at all. There-
fore, automation of the feature extracting method is crucially important.

Research question 4. How can similarities between congestion patterns be ranked us-
ing features that are learned previously?

There are possibly various features that can be learned from congestion patterns as the
result of answering the previous questions. Subsequently, it is important to combine
them in certain ways so that they can be used to measure pattern similarities quanti-
tatively. These quantities are the proxy for matching most similar patterns to a given
example. This is relevant to situations in which, given certain traffic congestion situ-
ation, we are interested in the most resembling patterns of congestion occurred in the
history or in other places (in a network).

The scope of this thesis is to look at spatiotemporal patterns of speeds on uninterrupted
motorway facilities. That means we will consider traffic speeds averaged over lanes.

1.3 Scientific contributions

Overall, in this thesis we develop automatic and efficient methodologies to enrich and
also boost the accessibility of traffic information from vast amounts of collected data.
In particular, we mainly focus on how to automatically identify and characterize traffic
congestion on large-scale highway networks. Key scientific findings from this thesis
are listed in the following.

1. The development of a method to identify and extract spatio-temporal patterns of
congestion from collected measurements of traffic on large-scale highway networks.
The method is computationally efficient and could be executed periodically for han-
dling streaming of traffic data (Question 1).

2. The development of a method to identify spatial and temporal extents of congestion
in resulting 2D patterns. The resultant spatio-temporal boundaries are beneficial to
further traffic-related measurements. For example, total delay due to congestion can
be accurately measured from data instead of (subjectively) assuming a threshold for
congested speed. (Question 3)
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3. The development of a Watershed-based method to separate (spatio-temporal) a pat-
tern of congestion into various segments which are related to different traffic phe-
nomena like wide moving jams and homogeneous congestion. This basically pro-
vides an efficient way to extract traffic-related characteristics of congestion pat-
terns. (Question 3)

4. The development of a method to disentangle congestion patterns for the identifi-
cation of bottleneck activations, especially in complicated situations where multi-
ple close bottlenecks are involved in a pattern. Bottlenecks are one of the main
sources of regular traffic congestion. Therefore, this work is highly relevant as it
reveals those hot spots automatically from traffic data. Long-term statistics can
subsequently be derived which essentially provide a rich source of information for
measuring the impacts of existing bottlenecks. In addition, by disentangling acti-
vations, primary and secondary bottlenecks are also identified. Such correlation
information is beneficial to traffic management and control such as making early
(and reasonable) decisions to mitigate traffic congestion in the future. (Question 3)

5. Insights into the comparison between generic and domain-specific feature schemes
from the perspective of congested traffic patterns. Both of these have their own
advantages and disadvantages. By transform speed maps into intensity images, the
so-called point-based features tend to group patterns with similar textures, which is
potentially one of the valuable features to measure pattern similarities. However,
due to the semantic gap (of local features and traffic patterns), it is a challenge to
interpret its outcomes. On the other hand, domain-specific features are more par-
simonious and better organize existing patterns with respect to traffic knowledge.
However, it requires the developments of related methods for extracting those cus-
tomized features. (Question 2)

6. The development of a method to match and rank similar patterns by combining both
generic and domain-specific features. The method indicates the advantages of the
combination of both feature schemes. In particular, the generic features favour the
similarities in the texture of (image) patterns, whilst the graph-based representation
of domain-specific features focus on the structure (i.e. the association of different
traffic phenomenon) of the presented congestion. (Question 4)

1.4 Practical contribution

This thesis designs a system that aims to manage congestion patterns emerging from
daily traffic data. It focuses on developing automatic methods and tools that are dedi-
cated to handling large amounts of data. The following lists all practical contributions
of this thesis.

1. The development of two methods to automatically detect congestion in large-scale
networks. The first method identifies individual clusters (alternatively, junks) of
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emerging congestion. The second method determines the spatial and temporal
extents of related congestion. To traffic managers or practitioners, consequences
of congestion, such as total delay, can be measured efficiently. In addition, the
automation feature assists greatly the calculation of either long-term statistics, or
large-scale networks. (Question 1, 4)

2. The development of a Watershed-based method to segment a spatio-temporal repre-
sentation of traffic state (namely speed) in congestion. The extents of wide moving
jams are effectively and automatically determined. This method can support the
calibration of shock wave speed in related traffic models. (Question 3)

3. The development of a method to automatically identify bottleneck activations in
traffic data. The resulting congestion is also obtained. These are key elements
to measure or rank the influences of existing bottlenecks on the performance of a
traffic network. Accordingly, relevant strategies can be evaluated based on these
measures to mitigate impacts of highway bottlenecks. (Question 3)

4. A proof-of-concept of a searching engine on large datasets. Patterns of congested
traffic are collected and annotated with representative features which facilitate fu-
ture retrieval. The system supports various ways of exploration such as using key-
words or example patterns. It can significantly and efficiently improve the accessi-
bility of traffic data to practitioners. (Overall objective)

1.5 Thesis outline

The structure of this thesis is depicted in Fig. 1.2.

Chapter 2 is dedicated to the conceptual design of the database of congestion pat-
terns developed in this thesis. It is so-called CoSI (Congestion Search engIne). CoSI
consists of all aspects which are related to the selection and management of spatio-
temporal patterns of congested traffic. In this chapter, we present the methodological
designs of all required components which are in fact addressed in following chapters.

In Chapter 3 we present a method to identify congestion from a (continuous) stream-
ing of high-volume traffic data, speed measurements in particular. Both spatial and
temporal dimensions are incorporated to construct 2D patterns of traffic congestion.
Divide-and-conquer strategy and parallel processing are adopted to enhance the feasi-
bility of the proposed approach on large-scale networks.

The next two chapters, Chapter 4 and Chapter 5, are related to feature learning. Ulti-
mately, the objective is to identify representative features of congestion patterns which
effectively discern them. These chapters show how image processing techniques can
be applied to the field of transportation to extract either generic features or traffic re-
lated characteristics. In the former chapter, we compare and analyse the advantages
and drawbacks of these features in the clustering and classification applications of
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Figure 1.2: Structure of the thesis

traffic patterns. In the latter chapter, we present an automatic method to disentangle
patterns for the information about bottleneck activations. The benefits of the method
are twofold: it provides an important feature into describing congestion patterns; it en-
ables extracting long-term statistics of traffic bottlenecks which are strongly relevant
to traffic management and control.

Chapter 6 presents the retrieving application on the collected patterns of congestion.
We focus on pictorial searching which is one of the most challenging problems in
image retrieval. Given various features learned in previous chapters, this chapter de-
scribes how they are used to represent congestion patterns. Furthermore, matching
algorithms which measure the similarity between any pair of patterns based on those
representations are proposed. The chapter also analyses and compares these two fea-
ture schemes and their combination with respect to the similarity ranking application.

Finally, Chapter 7 presents the conclusions, key findings based on our research. We
further discuss the practical implication of the CoSI system. We close the thesis with
recommendation on feature research.





Chapter 2

The CoSI methodological framework

The research in this thesis is devoted for the development of an intelligent search en-
gine for patterns of highway traffic congestion. This chapter discusses the conceptual
framework for a such system. Fundamental tasks and related components are identi-
fied, including (i) digitally traversing a highway traffic network to collect all patterns
of congestion that had occurred, (ii) extracting salient characteristics of these patterns,
which are critical for (iii) annotating patterns to benefit information retrieval at higher
layers. Related functional descriptions and requirements will be discussed which give
the foundation for research that will be presented in subsequent chapters.
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2.1 General framework

Vast amounts of traffic data have been being collected from sensory devices like in-
ductive loop detectors. These devices measure traffic variables like vehicular speed
or flow at a certain point in location and time. Individually, one measurement merely
provides an understanding of the ongoing traffic situation. Furthermore, navigating
through a great amount of these individual measurements for relevant information is
cumbersome. In this chapter, a conceptual framework for more effective utilisation of
collected traffic data is proposed as depicted in Fig. 2.1, which is named CoSI.

The CoSI framework comprises different components that conceptually can be cate-
gorised into database construction and application. The former is responsible for con-
structing a database of congestion patterns which can later promote smart retrieval. To
this end, the former part is designed with having three layers: (i) patterns collection,
(ii) feature extraction and (iii) pattern annotation. Essentially, given collected traffic
data, vehicular speeds for specific, the first layer gathers patterns of congestion that
have occurred in an entire network. Then, salient characteristics of these patterns are
learned by carefully designed machine learning methods. These features are vital for
the recognition of differences or similarities between patterns. This is an important
layer since it enables smart ways of organizing data and also accessing it. Think about
a library, for example, patterns are like books and they should be categorized smartly
for efficient and quick access. It is expected that similar books are placed closed to
each other. For that purpose, themes and/or topics of a book would be characters or
features to start with.

Figure 2.1: General design framework of CoSI

The main application in the CoSI framework is a smart search engine, or so-called
information retrieval engine. Traffic data is collected and mined which results in infor-
mative patterns of congestion. This application intends to provide an effective approach
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to deliver such information to users as quick and intuitive as possible. Three retrieval
options have been identified: contextual, pictorial and keyword-based. Details of these
layers/components are provided in the following sections. Furthermore, the connec-
tions between the conceptual design of CoSI and the research questions presented in
Chapter 1 are also be made clear when applicable.

2.2 Patterns collection

This section discusses the first layer of the pattern database construction, in which
spatio-temporal congestion patterns are collected from traffic networks. The design
of this pattern collection module is in line with the first research question (Research
question 1.).

2.2.1 Context

To better manage and control traffic networks, numerous amounts of sensor devices,
such as inductive loop detectors, have been implemented. They periodically measure
and record traffic information like speed, flow or travel time, etc. Individually, they
present traffic dynamics at local locations themselves which is limited as traffic is not
just temporal, but also spatial. Hence, there is a need to present traffic both spatially
and temporally so that better insights into traffic dynamics can be observed effectively.
This is the motivation of having spatio-temporal traffic patterns, of course, the focus is
on congestion.

A highway network contains a lot of intersections where congestion can occur at either
outgoing links or incoming links. To represent traffic in these situations using 2D
patterns requires two things: (i) a method to detect congested intersections and related
links, i.e. links that are congested, and (ii) extract all individual routes that congestion
can propagate through these intersections. As a result, there is one pattern representing
congestion in each route.

Traffic sensors, like loop-detectors, are implemented at sparse locations, hence they
only provide information locally. One link can have one or multiple detectors, but
there is a possibility that no detector is implemented. Therefore, to better understand
the traffic on a network, or a route, for example, one would need to incorporate various
sensors at different locations and apply traffic estimations to further derive information
at which no sensor is implemented.

Traffic data are being collected continuously, hence congestion patterns need to be
collected regularly. This is a repetitive process that requires efficient computation. If
a method takes more than one day to process one day of traffic data, it is obviously
not sufficient and should not be applied. Note that the pattern collecting module is just
the first step in building an intuitive database and there are other modules for further
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processing the collected patterns. Therefore, computation is an important aspect of
developing corresponding methodologies.

2.2.2 Conceptual framework and requirements

Based on the context described above, we proposed a framework for collecting con-
gestion patterns in a traffic highway network as shown in Fig. 2.2. It consists of three
main modules, namely congestion detection, congestion clustering and pattern extrac-
tion. In the first module, the network topology is cut into non-overlapping routes so
that the corresponding data can be retrieved and assimilated. Congestion is detected
upon granularly estimated data. This results in a so-called indicator map of congestion
on each route. The second module uses information from network topology to combine
those congestion indicating maps. It further clusters existing congestion into different
spatiotemporal groups. Note that a (spatiotemporal) region of congestion on a link at a
period is either connected to that of the neighbour links at the same period or the same
link at the preceding or succeeding period. Finally, the third module processes each
cluster separately. It finds all possible routes therein and then uses related traffic data
to construct the corresponding patterns of congestion. Details of the development of
methodologies for these modules are presented in Chapter 3.

Figure 2.2: Conceptual framework for Pattern collection

Regarding computation, a Split-Merge strategy is designed to deal with large highway
networks, e.g. nationwide. This approach has two advantages. Firstly, processing small
networks is less memory-demanded. Secondly, by having multiple independent sub-
networks, a parallel mechanism can be adopted that potentially speeds up the whole
process. Fig. 2.3 illustrates the proposed methodology. The split stage divides a large
network into smaller sub-networks. Then, each one of them will be processed indepen-
dently to extract congested routes by the procedure shown in Fig. 2.2. Depending on
the availability of computational resources, multiple sub-networks can be processed in
parallel for fast computing. Next, in the merge stage, these congested routes from dif-
ferent sub-networks are examined and stitched together to form complete routes. Note
that both spatial and temporal constraints are taken into account. Finally, congestion
patterns are constructed from related traffic data from those final routes.
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Figure 2.3: Parallel mechanism for the Pattern collection

2.3 Feature extraction

The previous section shows how all patterns of congestion are collected from loop-
detector data from large-scale networks. In this section, two different features schemes
for extracting representative characteristics in each pattern are discussed. Feature ex-
traction plays an important role in implementing a smart, intuitive dataset. The design
of this feature extraction module is related to the second and third research question
(Research question 2., Research question 3.). The objective is to differentiate (or detect
similar) patterns by identifying unique or discriminative features in each one. Conse-
quently, searching through the database can be conducted accurately based on these
features. Besides, insights into various collected patterns of congestion can be learned,
e.g. common types of congestion.

Generally, there are two approaches for feature extraction which are generic and domain-
specific. The former approach looks at (speed) patterns as intensity images and applies
well-developed techniques from computer vision to extract features. The speed (image)
maps are widely used by traffic researchers to visualize congestion both spatially and
temporally. Hence, regarding them as images is a natural or reasonable approach (In
essence, they are essentially 2D matrices of numeric values). Note that, features found
by this approach do not provide direct traffic meaning. They are rather related to gen-
eral features like image gradients, textures, etc. On the other hand, the latter extracting
approach aims to identify various features in patterns that are understood or explainable
by using traffic knowledge. In this thesis, we focus on the two most observed features
in congestion patterns which are the wide moving jam and activated bottlenecks.
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For validation, we further compare these two approaches on their abilities to learn
representative features. Consequently, two applications that can be of direct use are
clustering and classification. The former indicates how well these features can sepa-
rate different patterns while grouping similar patterns simultaneously. The latter shows
how accurately a pattern is placed into one of the predefined groups. These two ma-
chine learning processes are significantly relevant to the next module, which is pattern
annotation.

The necessary methodologies for this feature extraction module are presented in Chap-
ter 4 and Chapter 5.

2.4 Pattern annotation

Given a collection, i.e. a database, of many congestion patterns, it is important to an-
notate or associate each pattern with relevant labels. This is an important action to
achieve efficient information retrieval to the database. In this section, a framework is
conceptually designed for labelling congestion patterns, which includes two important
aspects. Firstly, there are many patterns of congestion that will be collected, therefore,
automatic labelling is required since a manual approach is arguably infeasible. Sec-
ondly, as congestion patterns are continuously collected, the adopted scheme needs to
cope with such new arrivals.

Figure 2.4: Conceptual framework for pattern annotation

The proposed framework consists of two phases, i.e. offline (learning) and online
(applying), as shown in Fig. 2.4. In the offline learning phase, patterns are clustered
and assigned names (class names) by traffic experts. Since the number of patterns is
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significantly high, a manual approach would be labour intensive. Therefore, clustering
analysis is performed on features that were learned in the previous layer. Then, experts
can simply examine and give labels to groups of patterns. This approach is much more
efficient. In the online phase, we also want to label newly collected patterns. Again, to
automate the process, a classifier is trained on the clusters learned during the offline
phase. This classifier is then applied to figure out labels for new patterns.

Although it has not been addressed in this thesis, it is worth mentioning the challenge
that a new class of patterns evolves. For that, two main components are required,
namely the outlier detection and classifier update. The former is responsible for iden-
tifying the emergence of a new type of congestion pattern. Theoretically, it is related
to the sensitivity of the classifier and other possibly relevant parameters of the defi-
nition of the existing clusters. The latter is concerned with how to update the current
classifier to cope with a new class.

2.5 Applications

This section discusses the ultimate goal of the CoSI framework, which is to support ap-
plications that use annotated patterns. Examples include case-based decision support
systems and applications related to traffic estimation and prediction. In this thesis, the
focus is on data retrieval and more specifically efficiently searching through large traf-
fic databases. This application emerges naturally as a number of patterns representing
congested traffic can probably be collected and stored by realisations of the database’s
design in previous sections. As shown on the right-hand side of Fig. 2.1, the pro-
posed framework promotes three options for the retrieving task, namely context-based,
keyword-based, and pictorial searching.

The first retrieval option finds patterns given contextual information such as where
(specific locations) and/or when (time) that traffic is congested. This is the most basic,
direct and simplest way to utilise the database. By successfully achieving the first layer
of constructing the database, i.e. pattern collection part, incorporating with metadata
(location/topology/time), this retrieval option can be completely fulfilled.

While the first option only relates to the context of traffic congestion, the remaining
two options concern the content therein. In particular, the second option finds patterns
by labels or annotations, which are the result of the learning done on collected patterns
in the database. Thus, this so-called keyword-based retrieval is related to the third part -
pattern annotation - of the database construction. Available keywords are subsequently
obtained by empirical studies on congestion patterns. In this framework, we adopt
different types of congestion as possible keywords for labelling and retrieving.

The third option is the so-called pictorial searching in which an example of expected
patterns of congestion is provided in advance, then the system looks for similar patterns
in the dataset. Developing this module also provides an answer to the fourth research
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question (Research question 4.). This is the most sophisticated retrieval method among
the available options since it requires the extraction of the example’s characteristics.
Hence, naturally, this part is linked to the second part of the database construction, i.e.
feature extraction. There are two possible deliveries of the outcomes at this stage. The
first one, which is similar to the keyword-based option, determines which category
an example pattern belongs to and retrieves some (arbitrary) patterns from that group.
The second approach is more thorough by locating patterns (probably in the identified
category as in the first approach) that share common characteristics as presented in the
given example.

Figure 2.5: Conceptual framework for pictorial retrieval

It can be seen that the last option is the most challenging functionality of the appli-
cation. Fig. 2.5 shows a general framework for similar pattern searching. The feature
extraction component is developed during the implementation of the second layer of the
database construction design. It identifies important characteristics in the given pattern
in the same regime as when processing other patterns in the database. The similarity
measurement component compares the features in the given pattern with features of
those patterns in the database. Then, the most similar patterns can be identified. The
detailed study of this pictorial retrieval is presented in Chapter 6. It is worth noticing
that the number of available patterns accumulates daily. Broadly discovering similar
patterns in the whole database might be impractical even though that depends greatly
on the approach. Therefore, a suitable scheme for reducing the search space is neces-
sary. That way, only a limited number of patterns are considered, hence, processing
time can be shortened, i.e. quicker response.



Chapter 3

Pattern collection

Traffic dynamics in general and congestion in specific are better observed in spatio-
temporal dimension. Hence, having these 2D representations of congested traffic a pri-
ori offers a convenient approach to explore traffic through sensory data. In a road net-
work, congestion can emerge at any location and propagate upstream through various
intersections and involve various roads. This chapter presents a framework for identify-
ing congestion in a traffic network and constructing 2D patterns of derived congested
traffic. The underlying conceptual framework has been given in Chapter 2. In addition,
specific modules and related methodologies are proposed and discussed in detail. The
source code of the developed methodologies in this chapter is publicly accessible at
this repository: https://github.com/nguyenthientin/pattern_collection

https://github.com/nguyenthientin/pattern_collection
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3.1 Introduction

At the corridor level, the dynamics of traffic are better observed by using spatiotem-
poral maps. Relevant quantities such as vehicular speeds or flows can be visualised
over both the spatial (i.e. over a path) and temporal dimensions. These status maps
potentially benefit different applications or studies. For instance, the characteristics
of traffic congestion are visually and intuitively illustrated. Accordingly, congestion
shock waves can be observed, and their related speeds are efficiently measured (e.g.
Schönhof & Helbing (2007)). Furthermore, collecting a wide range of these 2D maps
potentially reveals recurrent patterns of congestion that can benefit traffic state predic-
tion. For instance, an ongoing traffic state can be classified into a group with similar
patterns in historical data. Then experienced travel times from this cluster are used as
predictors for the expected travel time (Yildirimoglu & Geroliminis, 2013). We refer
to these 2D maps as spatiotemporal (or 2D) congestion patterns onward.

Once triggered in a network, congestion potentially propagates upstream and passes
through various intersections. This situation most likely happens during peak hours
when the travel demand increases significantly and surpasses the capacity of the under-
lying road section. Obtaining 2D congestion patterns is not a trivial task in those com-
plicated scenarios, especially when many intersections involve. Exhaustively search-
ing for all congestion patterns on all possible routes is not a feasible approach since
the possibilities grow exponentially with respect to the size (or the complication) of
the network. Hence, this calls for a method that automatically collects spatiotemporal
congestion patterns from traffic data on large-scale highway networks. The problem
is formulated in Definition 3.1. Some conditions are declared to assure a complete,
non-redundant set of congestion patterns.

Definition 3.1 Given a (highway) traffic network and related data over a certain pe-
riod, we propose that a method that collects existing patterns of congestion needs to
meet the following criteria.

C1. (Pattern definition) Each pattern is a spatiotemporal map of traffic states rep-
resenting congestion that occurred on a path over a period.

C2. (Pattern completeness) A pattern represents the entire propagation of related
congestion both spatially and temporally.

C3. (Collection completeness) A collection of patterns covers all instances (or spa-
tiotemporal regions) of congestion in the entire traffic network.

An example is illustrated in Fig. 3.1, which shows a toy network with two intersections
connecting five links. At the time instant t0, congestion involves three links e0, e2, e4,
while at the next time instant t1, link e3 becomes congested. Following the Definition
3.1, two patterns are expected from a pattern collection method: P0 which includes
{(e4, t0), (e2, t0), (e0, t0), (e4, t1), (e2, t1), (e0, t1)}; and P1 which includes {(e2,
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t0), (e0, t0), (e3, t1), (e2, t1), (e0, t1)}. These two patterns P0 and P1 essentially track
congestion on two paths p0, p1 (see Fig. 3.1), respectively. Both P0 and P1 satisfy
the condition C1 and C2. In addition, the collection {P0, P1} covers all the congested
regions in the network. An example of a violation of C2 is the pattern P on the path
(e4, e2, e1). This P does not trace the origin of congestion on e4, e2. Moreover, P is
entirely covered by P0 (with respect to congested regions); hence, it makes sense to
have P0 instead of P in the final pattern collection.

Figure 3.1: A toy example of a traffic network that consists of five links e0, e1, e2, e3,
e4. The arrows indicate the driving direction. Two instances of the network are associ-
ated with the time instants t0, t1. The dark highlighted regions indicate congestion.

The rest of the chapter is structured as follows. Section 3.2 represents the proposed
framework and related methods for collecting congestion patterns from traffic data.
The complexities of the proposed methods are analysed in Section 3.3. In Section
3.4, a case study is used to demonstrate the proposed method. Finally, Section 3.5
concludes this chapter.

3.2 Methodology

This section describes the proposed framework for identifying and collecting spatio-
temporal patterns of congestion that occurs in a highway network. It uses two fun-
damental inputs which are the topological information of the network and the related
traffic data (in particular, vehicular speeds). The framework comprises 3 main phases
which include the modules: network partitioning, data retrieval, traffic speed recon-
struction, congestion detection, congestion clustering, congestion-path tracking and
overlapping-paths merging. Fig. 3.2 illustrates the whole process. Details of all com-
ponents are discussed in the following sections.

To concisely represent all proposed algorithms in this study, a mathematical formula-
tion of a traffic network topology is provided in Definition 3.2.
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Figure 3.2: The proposed framework for spatio-temporal pattern collection in traffic
networks

Definition 3.2 The topology of a highway traffic network is modelled as a directed
graph G = (E,V ), where the node set V and the edge set E represent all intersections
and links (or segments) in the network, respectively.

V = {v1,v2, ...,vN}
E = {(vi,v j)|vi,v j ∈V 2, and there is a direct (travelling) link vi→ v j}

(3.1)

3.2.1 Network partitioning

Measurements from sensors, like loop-detectors, represent traffic at discrete locations.
To get a better or more complete representation of traffic on a network, it is necessary
to incorporate data from various sensors, particularly based on (travelled) paths (or
routes). The network partitioning module divides a traffic network into a set of paths,
from which traffic states can be reconstructed (or estimated) for locations without sen-
sory devices.

This chapter proposes a naive method that partitions a network for a set of non-overlapping
routes. It mostly depends on the topology of the network and related (physical) proper-
ties regardless of resulting traffic information. Having said that, different heuristics can
be defined to maximize the utilisation of sensory devices and subsequently effectively
reconstruct (or estimate) traffic information on locations without sensors.
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In essence, the proposed partitioning method is a depth-first search algorithm (Tarjan,
1972). At each node, the order of selecting the next node, and subsequently the next
link, is governed by a heuristic rule. In particular, links representing main (or primary)
roadways are preferable to those representing secondary roadways. A secondary road
is for leaving the road network (off-ramps) or later connecting to another road in the
network (turning roads). Topology-wise, characteristics of a main road/link (such as
the number of lanes) is more similar to that of the downstream main road/link than the
turning road (if available). Therefore, traffic states could be estimated more accurately
on the path connecting these main roads, given the presence of detectors thereon. Ac-
cordingly, origin nodes on main roads are selected to process first compared to those
on connector roads like on-ramps. This heuristic rule allows keeping multiple links of
the same main road together.

An example is illustrated in Fig. 3.3. Out of the three paths shown in the figure, r0 is
prefered the most. Firstly, it starts from an origin node that stays on a primary road;
therefore, r0 is preferable to r2, which starts with an on-ramp. Secondly, while links
of r0 belong to the same main road, r1 connects two different main roads (via the
connector road). Our proposed heuristics prioritize r0 over r2.

Figure 3.3: An illustration of adopted heuristic rules

The resulted set of paths is formulated in Equation 3.2.

R = {r0,r1, ...,rK}
ri = (vm0,vm1, ...,vmNi

)
(3.2)

where, Ni is the number of nodes in path ri, vm j ∈V,0≤ m j ≤ N,(vmi,vmi+1) ∈ E, and
K is the number of paths in the collection R.

3.2.2 Traffic speed reconstruction

Measuring devices, like loop-detectors, are implemented on highways, their spacing
differs from few hundreds to thousands of meters. To reconstruct spatiotemporal
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speeds at a finer resolution (both spatially and temporally), traffic network is cut into
multiple paths by the module described in the previous section. In this module, a filter
is adopted to interpolate traffic speeds at (finely equidistant) locations in each of the
obtained paths.

For our purposes, we average speeds over carriageways (see Section 1.2 for the research
scope), and apply the well-known Adaptive Smoothing Method (ASM) (Treiber &
Helbing, 2002; Van Lint & Hoogendoorn, 2010) as the main data assimilation tool. In
essence, it is a filter that takes two well-observable traffic phenomena into account:
(i) free traffic perturbations propagate in the direction of traffic flow, i.e. driving
direction, and (ii) congested traffic propagates upstream in the opposite direction of
driving with speeds of approximately -18 km/h (the negative sign indicates moving
against traffic direction). ASM offers two advantages in working with loop-detector
data. First, it interpolates traffic variables (i.e. speed, in our application) at locations
between detectors or recording time instants. Second, ASM also reduces the effects of
noises in the collected data. ASM results in more complete pictures of traffic dynamics
which are significantly valuable for further studies.

3.2.3 Congestion marking

To collect congestion patterns on a road network, we propose to firstly identify conges-
tion on individual paths in R. Then, the topology of the network can be incorporated
to associate different parts of congestion to construct corresponding patterns. This
section presents a method for detecting congested traffic in spatiotemporal patterns.

As mentioned previously, ASM-filtered data give a better representation of traffic
speeds. Hence, it is used as the input data for identifying traffic congestion. In addi-
tion, it can be expected that traffic congestion can be better detected in spatiotemporal
maps than in individual data points. Besides, the aforementioned state estimation of
traffic on a road network has already resulted in a set of paths with (ASM-filtered) data.
Therefore, it is logical to identify congestion on these paths. This chapter proposes a
(simple) detection method of congestion as follows.

1. Initiating: Define two relaxed thresholds for congested Uc and free U f traffic
speeds. These are responsible for an initial filter. Basically, U f is used to leave
out all (spatio-temporal) parts (or data points) that represent high speed traffic
since they are not of our interest. The interpretation of Uc is that traffic jams in
which vehicular speeds do not drop down below that threshold are disregarded.
An option for these parameters are Uc = 60 km/h, U f = 85 km/h. Note that
more sophisticated methods like percentiles over long periods could reflect local
traffic data better.

2. Congestion marking: Mark all speeds below the congested speed threshold as
congested. This yields an initial congestion mask Mi

c← u <Uc.
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3. Free flow marking: Mark all speeds higher than the free speed threshold as free.
We get the free speed mask Mi

f ← u >U f .
4. Congestion region growing: Expand the congested region (represented by Mi

c)
both spatially and temporally (to get Mc) using dilation operator in image pro-
cessing (Haralick et al., 1987). As compared to setting another higher congested
speed threshold, this approach has two advantages. Firstly, we do not have to
choose a single value for the threshold which can vary amongst different pat-
terns (of congestion). Secondly, this approach assures that the congestion of
interest causes traffic speed to drop below a certain speed, which is specified by
Uc. Equivalently, it serves as a filter to eliminate minor or noise-created conges-
tion. On the other hand, we need to specify how far the Mi

c needs to extend. One
can expect sharp changes (either decreases or increases) in traffic speeds at its
head and tail. Based on our experiment, we select 2 km and 15 minutes for the
parameters used in the dilation operator.

5. Strimming: Due to possible over-expansions in the previous step, the Mc can
include free flow areas. To reduce the impact of this miss-detection, we use the
free flow mask Mi

f to remove high speeds points from being falsely masked by
Mc. In other words, Mi

f acts as the boundary of the expansion in the previous
step. The mask after strimming is the final congestion mask.

3.2.4 Congestion graph generation

The previous sections describe the first phase - congestion detection - of the proposed
framework, which results in the mask Mc of traffic congestion in ASM-data. Since this
data represents traffic in fine granularities, a great amount needs to be processed. To
reduce the complexity of the problem, this section describes a method for an efficient
representation of traffic jams in a road network.

The idea is to magnify any positive indicator of congestion (at one location and time in-
stance) to the related link. That means, at a time instance, a link is considered congested
if there is congestion at any location on it. This augmentation keeps the complexity of
further components at the scale of the original network. Besides, since regions of con-
gestion from different paths need to be associated later, a so-called congestion graph
is employed to represent congestion in a traffic network. In principle, this graph is
directly related to the network topology and attributed with the time dimension by
duplicating nodes for different time instances. Subsequently, each congested link is
translated into two connected nodes in the congestion graph. These nodes are anno-
tated with the identifications of corresponding nodes in the network topology. As a
result, congestion regions from connected (or intersected) paths could be linked by
their common nodes.

The congestion graph potentially consists of numerous nodes and links depending on
how severe the related congestion is in terms of spatial or temporal extents. It can be
simplified by combining congested nodes that are temporally continuous and forming
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new super nodes. A time interval representing all the time instances of individual
nodes is stored as an attribute of the related super node. All incoming and outgoing
links of individual nodes are preserved on the corresponding super node.

3.2.5 Congestion clustering

Image the evolution of network traffic state being presented as a stack in which each
layer presents the status at a time interval. By looking into this stack, one can ob-
serve congestion occurring at different locations and different time intervals. More-
over, these instances of congestion can form clusters of congested, connected nodes
and links at sequential time stamps. Both the upstream and downstream fronts of any
(spatial-temporal) instance of congestion is bounded by the associated cluster. Hence,
congestion patterns from different clusters are independent of one another. This (con-
gestion clustering) module aims to identify those clusters so that they can be indepen-
dently processed further.

Each cluster of congestion is (by definition) a weakly connected component as all nodes
are connected to each other by some path, given directions of edges are ignored. Hence,
a simple yet efficient solution is to first clone the graph while losing all directions, i.e.
having an undirected projection of the congested graph. Then, a network traversing
algorithm like depth-first search (Tarjan, 1972) is applied to partition nodes and the
related links to different connected components, i.e. clusters.

3.2.6 Congestion-path tracking

Given a (weakly) connected graph representing a (spatial-temporal) cluster of conges-
tion, this module is devoted to tracking all (spatiotemporal) propagations of congestion
therein. The expected outcome is a set of sub-graphs with each one representing the
evolution of an instance of congestion both temporally (continuous intervals) and spa-
tially (links of a particular route).

Three requirements are defined for each sub-graph: (i) is a weakly connected com-
ponent, (ii) consists of nodes and links that project into only a single path, (iii) is the
largest, meaning it is not covered by any other sub-graphs that satisfy both (i) and (ii).
The first two conditions guarantee that each sub-graph is equivalent to a 2D (spatio-
temporal) pattern of congestion. The last condition, in combination with the first two,
assures that each sub-graph represents a complete trace of congestion both in the spatial
and temporal dimensions.

Algorithm 3.1 describes the proposed algorithm which operates recursively. It is in-
spired by the depth first search algorithm (Tarjan, 1972). The spatial network (Gc

x) is
utilized to keep track of the underlying path. The idea is to keep track of possible paths
and related (congestion) graph components at each node.
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Algorithm 3.1 Congestion graph traversal for path-based sub-graphs
1: procedure TRAVERSE_NODE(s,Gc

x,G,M, isVisted)
Gwc: a (simplified) weakly connected component of the congestion graph
Gc

x: the underlying spatial network (with respect to Gc)
s = (vi, tm): the currently processed node
M: traversing outcomes (if available) of nodes in the network
isVisited: the indicator if a node had already traversed

2: if isVisited(s) then
3: return . stop here since the node had already been processed
4: end if

. Scan spatially
5: S← Successor(Gwc,s) . get all successor nodes of s
6: Sx← Successor(Gc

x,vi) . get all (spatially) possible successor nodes of s
7: R← /0 : List of paths
8: P← /0 : List of sub-graphs
9: for each v j ∈ Sx do

10: S j←{(v j,∗) ∈ S}
11: if S j 6= /0 then
12: for each s j ∈ S j do
13: TRAVERSE_NODE(s j,Gwc,Gc

x,M, isVisted)
14: R← R∪M(s j)(R) . add routes from s j

15: P← P∪M(s j)(P) . add graph components from s j

16: end for
17: else
18: R← R∪ empty_route
19: P← P∪ empty_graph
20: end if
21: end for
22: Add vertex vi to all routes in R
23: Add all nodes in T to all graphs in P
24: M(si)(R)← R,∀si ∈ {T,s}
25: M(si)(P)← P,∀si ∈ {T,s}
26: end procedure

3.2.7 Overlapping-path merging

The previous module tracks the propagation of any origin (spatio-temporal) nodes. If
there is congestion on a (spatial) node is triggered at different instants and the related
congested regions only join at downstream locations, i.e. nodes, more than two sub-
graphs will have resulted. This leads to redundancy in the final set of patterns. To
avoid that, as well as to obtain prime patterns, the overlapping-path-merging module is
developed to combine such paths (accordingly, the related sub-graphs).

The most trivial procedure is described as part of Algorithm 3.2, in which mutual



26 3. Pattern collection

relations between paths are checked. If two paths overlap, they are combined as well
as the related sub-graphs. The shorter path is retained but in a different group, as
components for further comparisons. The longer path as well as its related sub-graph
are updated with the joined path and sub-graph.

Algorithm 3.2 Complete congested path and related patterns extraction
Require:

The congestion graphs Gc

The underlying spatial network Gc
x

1: SS← Get all source nodes
2: M← /0
3: isVisited(s)← False,∀s ∈ G
4: for each source node s = (vi, tm) ∈ SS do
5: TRAVERSE_NODE(s,Gc,Gc

x,M, isVisited) . traverse this node
6: end for

. Combine paths, sub-graphs
7: Pa : List of all (overlapping) paths in M
8: Gs

a : List of all corresponding sub-graphs in M
9: (Ps,Gs

s)← ( /0, /0): List of shorter paths and their related sub-graphs, initiated with
empty sets.

10: for each path, sub-graph (pi,gi) ∈ (Pa,Gs
a) do

11: for each path, sub-graph (p j,g j) ∈ (Ps,Gs
s) do

12: if p j ⊆ pi then
13: Update pi← pi∪ p j

14: end if
15: end for
16: for each path, sub-graph (p j,g j) ∈ (Pa,Gs

a) do
17: if p j ⊆ pi then
18: pi← pi∪ p j

19: (Ps,Gs
s)← (Ps,Gs

s)∪ (p j,g j) . move (p j,g j) to set (Ps,Gs
s)

20: (Pa,Gs
a)← (Pa,Gs

a)\ (p j,g j) . remove (p j,g j) from (Pa,Gs
a)

21: else if pi ⊆ p j then
22: Update p j← p j∪ pi

23: (Ps,Gs
s)← (Ps,Gs

s)∪ (pi,gi) . move (pi,gi) to set (Ps,Gs
s)

24: (Pa,Gs
a)← (Pa,Gs

a)\ (pi,gi) . remove (pi,gi) from (Pa,Gs
a)

25: end if
26: end for
27: end for
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3.3 Complexity analysis

This section discusses the complexities of various components in the proposed frame-
work. By doing this, the feasibility of applying them to large-scale networks can be
justified analytically.

Network partitioning As the network partitioning module only requires topological
information, it can be conducted in advance. In addition, the outcome can be reused
as long as the network remains the same. Hence, its complexity might not be a major
concern. Nevertheless, a simple algorithm with a path growing approach would have a
complexity of O(|E|), in which |E| is the number of edges in the graph G.

Traffic speed reconstruction In (Schreiter et al., 2010a), the authors have provided
an in-depth analysis of the ASM method with respect to different algorithms. Table
3.1 provides a summary of the results, which suggest that the complexity of the ASM
method is linear in the size (total length X) of a network. Also, the authors have proven
that the method is scalable to large-scale networks.

Table 3.1: The complexity of algorithms implementing the ASM method, repro-
duced from (Schreiter et al., 2010a). Where X is the total length of road segments,
T is the time duration, ∆x,∆t are spatial and temporal resolution, subscripts raw,out
indicate raw data and filtered outputs, respectively, σ ,τ,a are the spatial parameter,
the temporal parameter and the width factor of the kernels used in the ASM filter
(Schreiter et al., 2010a).

Algorithm Complexity
Conventional O(X×T × στa2

∆xout∆tout∆xraw∆traw
)

Cross-correlation O(X×T × στa2

∆x2
out∆t2

out
)

Fast Fourier Transform O(X×T × 1
∆xout∆tout

× log XT
∆xout∆tout

)

Congestion marking The complexity of the proposed detection method for link con-
gestion can be divided into different steps as follows.

1. Congestion/Free-flow masking: comprises of comparison operations (with the
related thresholds, respectively) at all nodes. Hence, the complexity of this step
is O(|X |× |T |).

2. Congestion growing: can be done by a convolutional operation of the congestion
mask and the chosen (growing) kernel. Assuming the size of the kernel is α , the
complexity of this step is O(α×|X |× |T |)

3. Strimming: is simply an element-wise masking operation, hence, the complexity
is equivalent to the number of elements, meaning O(|X |× |T |).
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It can be seen that all the operations are done in the complexity that is equivalent to the
size of the processed data. In summary, the complexity of the link congestion detection
is O(|X |× |T |).

Congestion graph simplification All nodes and links are only needed to processed
once. That leads to the complexity of this module being O(|Ec|× |V c|).

Congestion clustering A depth-first search algorithm is used, hence, the complexity
of this component is linear to the size of the congestion graph, i.e. O(|Ec|+ |V c|).

Congestion-path tracking Algorithm 3.1 aims to identify all possible expansions
from a given node, both spatial and temporal dimensions are taken into consideration.
By introducing the variable isVisited, each node is traversed only once. Also, each
link is checked once as well. Hence, the complexity for the traversing is proportional
to |Ec|+ |V c|. Another complexity of the algorithm is operations after paths and sub-
graphs have been learned from upstream nodes (successors). They are combined into
the final (path/sub-graphs) sets of the current node. As this is similar to what happens
in the next component, the complexity of this part is discussed in detail in the following.

Overlapping-path merging Algorithm 3.2 combines paths and sub-graphs into a
final collection. In principle, each path/sub-graph is compared with all other paths.
This leads to a total of N2

p comparisons, in which, Np is the number of paths found by
all origin nodes, i.e. all paths in M after traversing the weakly connected components
of the congestion graph. It is not trivial to analyse the complexity of this component
since Np is strongly dependent on both the characteristics of the graph and how related
congestion evolves. A worst case could lead to exponential complexity. However,
the problem can be compromised by utilizing a great deal of memory to index all
possible paths in the spatially projecting graph. Nevertheless, to avoid unnecessary
complications, computation time could be evaluated to check whether improvements
are required. This is reflected in the case study described later.

Conclusion The overall complexity is determined mainly by that of the ASM method
and the number of comparisons in merging overlapping paths. The former is linear to
the size of the filtered data, while the latter might be exponential w.r.t. the graph size of
the related cluster of congestion. The complexity of the latter term depends solely on
the realised congestion. Our experiment suggests small numbers of congestion paths
in M, hence, we can expect a dominant significance of the former in general. Ac-
cordingly, it can be expected that the proposed methods are scalable with the size of
the underlying (highway) network due to the linear complexities of all the proposed
components (except for the overlapping-path merging).
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3.4 Case study

This section presents a case study, in which the proposed framework is applied to
collecting congestion patterns from a nationwide traffic network. We analysed the
performance of the framework in the following aspects.

• Computation: the time efficiency of the developed framework.

• Correctness: the ability to form congestion patterns that satisfy the condition C2
in Definition 3.1.

• Quality: some insights into the quality of collected patterns.

3.4.1 The Netherlands highway network

In this study, the highway traffic network in the Netherlands is used to evaluate the
developed framework. This network is one of the densest highway networks in the
world. It is approximately 64 km per 1000 km2 and includes more than 2500 km of
roadways (Netherlands Transport, 2020).

The geographical representations (shapefiles) of the Dutch highway network are pub-
licly accessible (Ministry of Infrastructure and Water Management, 2020). Given one
of these files, an equivalent graph representing the network topology is constructed,
which serves as one of the main inputs of the framework. Specifically, the shapefile in
June 2018 is arbitrarily chosen for this study. The resulted graph after preprocessing
has 9592 nodes and 11595 edges.

3.4.2 Traffic data

In this study, traffic data from loop detectors are used. They are implemented at around
10000 locations on the Dutch highways. Fig. 3.4 gives a general idea of the distribution
of these detectors on the Dutch highway network. Vehicular speeds and flows are
logged every minute which constitutes the raw dataset. The data on June 01, 2018, are
retrieved for extracting congestion patterns.

The raw data are filtered by the ASM method as described in our framework. In par-
ticular, 200 meters and 30 seconds are chosen as spatial and temporal resolutions,
respectively, of the estimated data.

3.4.3 Computational resource

Regarding the power resource, we ran our experiment on a desktop computer equipped
with an Intel(R) Xeon(R) CPU E5-1620 v3 @3.50 GHz. The CPU has 4 physical cores
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Figure 3.4: Distribution of loop detectors on the Dutch highway network

which are divided into 8 logical processors. The random access memory (RAM) is of
16 GB capacity.

3.4.4 Results

Practical efficiency

Various processing times are provided in Table 3.2. The whole process took around
35 minutes to identify and construct all congestion patterns. The most expensive task,
data retrieval, is related to input/output (i/o) access, which is highly dependent on how
measurements are stored. In specific, a great deal of time was spent on map-matching
detector locations to retrieving paths. The network partitioning was done in 4 seconds
(note that this step only needs to be executed once). It took 178 seconds for the ASM
method to filter the raw data. Congestion marking took 231 seconds. The congestion
graph was processed in less than 1 minute in total. For a nationwide traffic network, it
can be concluded that this performance is practically efficient.

The majority of the execution time was spent on those components whose input data are
as large as filtered data (i.e. X ,T in total lengths and time intervals). The tasks related
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Table 3.2: Executing time of various proposed components for collecting congestion
patterns during the June 1, 2018

Component Executing time (seconds)
Network partitioning 4
Data retrieval 1489
Traffic speed reconstruction 178
Congestion marking 231
Graph simplification 11
Network traversal 15
Overlapping-paths merging 14

Total 1942

to the congestion graph was done much more quickly, in particular, 41 seconds (as
compared to 409 seconds). This suggests that improving Algorithm 3.1 or Algorithm
3.2 is not a priority. In addition, this further strengthens the scalability of the proposed
framework and related methodologies to larger-size traffic networks.

Figure 3.5: The five largest clusters of congestion identified on June 1st, 2018

Intermediate outputs

The network partitioning step results in 1531 paths, of which, 593 paths have loop
detectors implemented. From these paths, raw data are retrieved accordingly. The
congestion marking (which is applied on the ASM-filtered data) results in a congested
graph with 611523 nodes and 2002344 links. This graph is significantly simplified to
a graph with 26355 nodes and 169346 links, which are equivalent to reductions of 95%
and 91%, respectively.
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For the studied day, 472 clusters of congestion are formed by identifying connected
components of the congestion graph Gc. Fig. 3.5 highlights the five largest clusters
found in terms of total extent distance. They are mostly located in the Randstad area
which includes many major cities, e.g. Amsterdam, Rotterdam and Utrecht. The most
critical cluster covers nearly 240 kilometres of roadway and occurred during the morn-
ing hours and covered a large part of the A2 highway, which is one of the busiest roads
in the Netherlands. The cluster expands to three major cities, namely Amsterdam,
Utrecht and ’s-Hertogenbosch.

Figure 3.6: A few examples of congestion patterns collected from data on June 1st,
2018

From the identified clusters, 949 spatial-temporal patterns of congestion are constructed.
Fig. 3.6 shows a few examples from the pattern collection. Different appearances of
congested traffic are involved, such as singularly wide moving, stop-and-go, homoge-
neous and complicated congestion. With these patterns ready at hand, the resulting
dynamics of congestion at different locations on a traffic network are more intuitively
observed. In addition, possible relations of traffic between different locations are visu-
alized in these 2D patterns.

Fig. 3.7 (a) shows one of the complex patterns found, which is approximately 55 kilo-
metres in travelled distance. The topological plot shows that the pattern is constructed
by successfully stitching congested regions from different paths (which are resulted
from partitioning the network). The congestion involved several bottlenecks. Two of
them were strongly congested. The downstream bottleneck caused a number of distur-
bances which only resolved after reaching the farthest upstream bottleneck. (see Fig.
3.7 (b)).

As shown in Fig. 3.7, there is a region of congestion at the upper-left corner. To a
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(a) (b)

Figure 3.7: An example of congestion pattern on June 1st, 2018, (a) 30-second-
aggregated vehicular speeds and (b) topological information of the related path as well
as the underlying original paths, (of which links are stitched to form this congestion
path), shown in colours other than red

certain extent, this can stand as an independent pattern since it is not connected with
the remaining congestion regions in the pattern. The reason for obtaining this entire
image as one pattern is simply the employed congestion detection. More sophisticated
methods can be applied to obtain more finely isolated patterns. The trade-off is mostly
the required computation time.

Overlapping patterns

Condition C2, pattern completeness, in Definition 3.1 assures a complete view of con-
gestion is provided by any pattern. Together with topological information, this com-
pleteness is necessary for analysing the congestion. However, this can result in patterns
that are highly overlapping. Fig. 3.8 gives an example extracted from the resulted pat-
terns. Approximately 90% of the two patterns are the same. An investigation into the
topologies of those two paths shows that the difference is due to the existence of par-
allel roads. It should be noticed that whether to avoid overlapping patterns is a design
choice and probably depends on target applications. Nevertheless, if deciding against
overlapping, one can introduce various criteria on the final congestion paths, such as
paths need to have a certain percentage of distinction, for instance, 80 per cent.



34 3. Pattern collection

(a)

(b)
(c)

Figure 3.8: An example of overlapping patterns. (a,b) speed maps, (b) the topologi-
cal information of the two underlying paths. The zoomed-in section (in grey colour)
indicates the starting part of the difference between two paths. Specifically, one path
contains the main carriageway along the eastern ring of Rotterdam and the other path
includes part of the parallel carriageway.

3.5 Conclusion

This chapter has presented a framework and related methods to mine traffic data for
patterns of congestion. Each pattern represents the evolution of traffic congestion both
spatially, i.e. how it propagates upstream, and temporally in a complete fashion, i.e.
from the onset until the recovery of free-flow traffic. The task is achieved by processing
through three phases, namely congestion detection, congestion clustering and patterns
extraction. In the first phase, by cutting a traffic network into individual paths, traffic
speeds over the network are effectively reconstructed which results in a fine resolution
of (vehicular speed) data. This outcome is beneficial to the detection of congestion
on each path. The second phase utilizes the graph concept and the underlying topol-
ogy of the traffic network to associate congestion from different paths. This leads to a
three-dimensional graph where each node represents congestion at a specific place and
a particular time. A connected component of this graph represents a cluster of conges-
tion, e.g. traffic jams from multiple locations reaches and mixes at upstream locations.
These components are identified and isolated for the tracking of corresponding con-
gestion paths in the third phase. A graph-based traversing algorithm is developed to
follow congestion while pertaining to only one single path.
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The analyses of various components indicate an expectation of linear complexity of the
overall framework. In particular, it is scalable with the size of the underlying highway
network. The case study on the Dutch national highways suggests that the framework is
applicable for large-scale traffic network. The method has found a number of different
clusters of congestion, from which many congestion patterns are tracked and extracted
successfully.

In the next chapters, characteristics of congestion patterns are studied using different
approaches. The objective is identify salient features that can match/contrast simi-
lar/different patterns.





Chapter 4

Feature Extraction (i) -
Generic Key-points versus
Traffic-related Patterns

Determining salient characteristics of traffic congestion (in spatiotemporal representa-
tion for specific) plays a vital role in discriminating different patterns. The extracted
features are beneficial to the development of machine learning methods to classify
and/or label congestion patterns automatically. In this chapter, we analyse two fun-
damentally different feature approaches, namely generic and domain-specific. While
the former inherits the knowledge of general image classification, the latter looks for
characteristics from a traffic-domain point of view.

This chapter is an edited version of the following published paper:

Nguyen, T. T., P. Krishnakumari, S. C. Calvert, H. L. Vu, H. Van Lint (2019) Feature ex-
traction and clustering analysis of highway congestion, Transportation Research Part
C: Emerging Technologies, 100, pp. 238–258.
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4.1 Introduction

Highway traffic congestion is one of the central aspects concerning mobility manage-
ment. To study it, traffic data has been collected for decades using various sensory
systems such as inductive loops, AVI - Automatic Vehicle Identification and FCD -
Floating Car Data. This includes relevant important traffic indicators like speed, flow
or travel time which can be used for various purposes by road administrators, indus-
try and academia, including policy evaluation (e.g. Van Lint et al., 2008; Zheng et al.,
2012), traffic management (e.g. Soriguera & Robusté, 2011; Vlahogianni et al., 2005),
traffic modelling and simulation (e.g. Wang et al., 2006; Spiliopoulou et al., 2014), to
name just a few applications. National Data Warehouse (NDW) ndw, for instance, is a
Dutch organisation that has been doing data collection for almost ten years over more
than 7000 kilometres of freeways and provincial roads in the Netherlands. They have
now stored more than 200 TB of traffic data which is a huge informative source to
understand traffic dynamics.

Massive amounts of traffic data are a rich source of information; however, they also
pose a challenge on how to manage them efficiently, for example regarding fast access
and search-ability. Classification, i.e. adding meaningful labels to the data, is an essen-
tial step to enhance the utilisation of the storage and also to gain insights in the types of
traffic congestion patterns that can be found in the collected data. A well-indexed and
labelled dataset, for instance, can result in efficient search engines, which are essential
for data retrieval. Both processing time and accuracy are of significant concern in this
regard. The simplest way is to annotate traffic patterns manually; however, manual
classification is likely only suitable for datasets with limited amounts of items since
manual annotation is time-consuming and susceptible to bias. For large size datasets,
an automatic approach is undoubtedly required.

Classification of highway traffic congestion has been conducted in different ways (as
shown in the literature), mainly focused on either a theory-laden or data-driven ap-
proach. Theoretical approaches explain congestion by mathematical equations which
describe relationships between fundamental traffic variables such as speed and flow.
Hence, different taxonomies can be derived in association with supporting theories.
Schönhof & Helbing (2007) simulate traffic using the nonlocal gas-kinetic based model
to produce five different types of congestions - pinned localized cluster, moving local-
ized cluster, Stop-and-go waves, oscillating congested traffic and homogeneous con-
gested traffic. These patterns are also found in their empirical studies. Kerner (2002)
defines a different taxonomy based on his three phase traffic theory. It constitutes of
two fundamental types - general pattern (GP) and synchronized pattern (SP). Although
these classifications are underpinned by solid conceptual and mathematical ideas about
traffic dynamics, no automated methods for applying them on traffic patterns have
been reported yet. In contrast, data-driven approaches instead focus on similarities be-
tween congested patterns represented in traffic data. Machine learning approaches in
this direction provide more opportunities for automation. A recent idea is to conceive
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spatio-temporal maps as images (Nguyen et al., 2016; Krishnakumari et al., 2017). By
doing so, advanced computer vision methods for image classification can be employed
to classify traffic patterns. In Nguyen et al. (2016); Krishnakumari et al. (2017), a
supervised learning approach was adopted, i.e. classifiers were trained based on man-
ually labelled datasets. These works also show that lacking of traffic-domain knowl-
edge (Nguyen et al., 2016) or simple image processing like naive contour extraction
(Krishnakumari et al., 2017), can lead to low accurate levels of classification.

Clustering analysis is unsupervised learning which aims to find an intrinsic partition of
a dataset without any labelled items. Using spatio-temporal representations of highway
traffic data like speed or flow, different elements of congested traffic can be noticeably
observed. Thus, we aim to employ clustering analysis on highway congestion. By us-
ing images to represent traffic data, visual features can be extracted. To this end, this
chapter proposes and compares two inherently different feature extraction methods,
namely point-based and area-based approach. While the former searches for automatic
features which are motivated by computer vision, the later extracts domain knowledge-
driven characteristics based on image segmentation. The case study demonstrates the
ability of Watershed technique (Beucher & Meyer, 1992) in segmenting image (conges-
tion) patterns into different segments on which corresponding features can be extracted
sufficiently. In addition, by conducting cluster analysis on a dataset, a hierarchical rep-
resentation of congestion with respect to their similarities is constructed. From which,
typical patterns in the dataset are explored, and an initial categorization of the dataset
can be created automatically and efficiently. Accordingly, appropriate labels can be
generated for annotating congested patterns automatically. Finally, the effectiveness
of domain knowledge in pattern representation is shown by comparing the two feature
schemes.

The rest of the chapter is organized as follows: Section 2 presents the literature review
on the classification of congestion patterns. Section 3 represents the methodology in
detail, which comprises of two approaches. Next, available data and evaluation metrics
for clustering analysis are described in Section 4. Then, results and discussion are
provided in Section 5. The conclusion in Section 6 justifies the work and proposes
further research.

4.2 Literature Review

There have been a significant number of studies investigating traffic dynamics with a
focus on describing and understanding the resulting spatio-temporal traffic patterns.
One of the main objectives is to discern different states of congested traffic. In general,
there are two approaches for this, namely theory-laden and data-driven. The theoretical
approach represents traffic dynamics mathematically. Related models are validated by
their abilities to reproduce congested states or patterns that are observed in real life.
On the other hand, the data-driven approach explores the various observed congestion
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patterns and analyses their characteristics further. This section reviews some of the
related works and provides discussion on the ability to automate classification. Fig.
4.1 provides a taxonomy of research on this topic in the literature.

Figure 4.1: Taxonomy of research on classification of congestion patterns. Color
scheme code: black-existing research, green-possibility and blue-elements used in this
study.

A notable study in the theory-laden approach is performed by Schönhof & Helbing
(2007), which employs a gas-kinetic model, which is a second-order model, to simulate
traffic flow. By manipulating the relation between upstream flow (Qup) and bottleneck
strength, e.g. on-ramp flow (∆Q), the model is able to reproduce five typical con-
gested patterns, which are also confirmed by empirical data - namely pinned localized
cluster (LC), moving localized cluster (MLC), Stop-and-go waves (SGW), oscillating
congested traffic (OCT) and homogeneous congested traffic (HCT). Subsequently, a
2D phase diagram is constructed which correlates different congestion patterns with
combinations of Qup and ∆Q. This concept of analyzing these two variables is also
investigated in previous research (Helbing et al., 1999; Lee et al., 2000). Although
there is a solid conceptual and mathematical foundation for the method, there are two
challenges for applying this phase diagram to real traffic data. Firstly, estimating (Qup)
and (∆Q) is not a trivial task, and there is no accurate methodology that has been val-
idated yet. Secondly, assuming the information on types of congestion is given, as in
(Schönhof & Helbing, 2007), the obtained empirical phase diagram shows high inter-
ference between different congested traffic patterns. Therefore, the application of this
phase diagram in the classification of traffic patterns (with real data) is not feasible.

Another well-known study is done by Kerner (2002) which is based on his proposed
three phase traffic flow theory. Two main categories of congested traffic at freeway
bottlenecks were introduced, namely general pattern (GP) and synchronized pattern
(SP). Variations of congestion are asserted to emerge from these two main classes. Ac-
cording to this theory, traffic exists in one of three states, namely "free flow", "synchro-
nized" and "wide moving jam". For recognizing and monitoring congestion patterns,
Kerner developed two models - FOTO (Forecasting of Traffic Objects) and ASDA
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(Automatic Tracking of Moving Traffic Jams). These two models identify and keep
track of traffic in "wide moving jam flow" and "synchronized flow" respectively. Con-
sequently, every traffic state in spatio-temporal maps is automatically classified into
one of the three states. There are two critical points which might limit the expansion
of these models into traffic congestion classification. First, one of the underlying foun-
dations of these models is the set of various fuzzy rules, (4 and 13 for the basic and
extended sets, respectively), which consist of a number of parameters. Their values
are found solely based on experiments (Kerner et al., 2004). Hence, to apply them to
a different road or highway, they need to be calibrated by properly understanding the
model and conducting experiments with empirical data. A systematic methodology for
defining and calibrating the model still needs to be developed. Second, these models
only focus on classifying traffic into three states, from which a qualitative analysis can
be conducted to distinguish different spatio-temporal congested traffic, for instance,
the GP or SP pattern. As for automating the classification of congestion patterns, no
automatic method based on these three phases has been reported yet.

The data-driven approach constitutes two vital components - learning model and fea-
ture extraction. Depending on the availability of data, i.e. ground truth or labelled pat-
terns, there are three learning models: supervised, unsupervised and semi-supervised
(Witten et al., 2016). The supervised learning infers a pattern-label mapping func-
tion by learning from examples in a training dataset, while unsupervised learning does
not require labelled patterns and explore connectivities between patterns instead. The
semi-supervised learning aims to leverage the unlabelled data to improve the perfor-
mance of the learners which are inferred from a few labelled items. The second compo-
nent, feature extraction, concerns how to represent a pattern using specific variables.
They are ideally chosen in a way to increase the chance of discriminating different
patterns. Very few studies follow this approach and most (if not all) of them used su-
pervised learning method. In (Nguyen et al., 2016), a dataset of congested patterns
is manually partitioned into five different classes namely isolated wide moving jam,
large scale heterogeneity I, large scale heterogeneity II, homogeneous and mixed class
on traffic data from two of the busiest highways in the Netherlands. This study applies
automatic feature extraction in computer vision to traffic patterns. Then, a classifier
based on support vector machine (Cortes & Vapnik, 1995) is trained on this dataset
to classify traffic patterns. Another approach describes contours of congested patterns
by shape model (Krishnakumari et al., 2017). The authors to some extent take traf-
fic knowledge into account, i.e. using wide moving jam as one of the features. The
classification accuracy is not high due to the naive contour extraction.

One of the obstacles in approaching with supervised learning is the availability of a
training dataset, specifically labelled patterns. Manually processing numerous traffic
congested objects is time-consuming and non-efficient as human judgment is ordinar-
ily subjective and inaccurate. This can be tackled by applying methods from unsu-
pervised or semi-supervised learning approach. In particular, clustering analysis is a
well-studied subject in the field of unsupervised learning which aims to divide a given
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dataset into different groups of items, so-called clusters. Each cluster can represent a
typical pattern of the dataset. Despite the absence of a precise definition, the underly-
ing principle is to maximize the similarity between items in the same cluster and to also
maximize the dissimilarity of items from different clusters. Its applications encompass
various domains and fields - data mining, text analysis, information retrieval, data an-
notation and pattern recognition to name a few (Xu & Wunsch, 2005). An extensive
body of literature on existing clustering algorithms can be found in (Xu & Tian, 2015;
Fahad et al., 2014; Jain, 2010).

In the traffic domain, clustering analysis has been applied broadly to explore differ-
ent datasets. For example, Depaire et al. (2008) cluster traffic accidents into different
types given related variables such as vehicle type, gender and road type. The authors
found that the employed clustering model is beneficial to the followed-up injury anal-
ysis by, for example, revealing new influenced variables for the injury outcome. Kim
and Mahmassani extend a density-based clustering algorithm to cluster vehicle trajec-
tories (Kim & Mahmassani, 2015a,b). Representative trajectories are then determined
for the obtained clusters which show major traffic flow patterns over a network. Ce-
likoglu & Silgu (2016) uses multivariate clustering, (as an extension to their previous
dynamic classification approach (Celikoglu, 2013)), to partition flow patterns over the
fundamental diagram. The method is able to capture sudden changes or transitions of
flow patterns between successive times which are promising for non-recurrent conges-
tion detection and control. These studies have shown advantages of clustering analysis
in exploring potential partitions of data, where applicable. Obtaining clusters can also
assist experts in doing classification and interpreting datasets at a higher level.

This chapter aims to explore the potential of unsupervised learning in traffic conges-
tion classification. The outcomes are expected to bring first insights into a database of
patterns and help annotate those automatically which certainly saves a lot of manual la-
belling effort. We further develop and analyse the two approaches to feature extraction
- automatic and domain knowledge related.

4.3 Methodology

4.3.1 Overall framework

Given a set of raw traffic speed data, the goal is to obtain an automatic classification
of congested patterns. For this reason, a scheme for representing traffic patterns needs
to be developed in which certain characteristics are extracted. In this chapter, two dif-
ferent approaches are described and compared. They both conceive patterns as general
images and apply different computer-vision methods to process them. One approach
searches for generally local features while the other explores traffic-related character-
istics. A clustering method then can be applied based on these features in an attempt to
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find reasonable structure of the given dataset. Fig. 4.2 illustrates the proposed frame-
work including three main steps: (i) preprocessing data, (ii) extracting representative
features from a pattern, and (iii) clustering the dataset based on these features. For the
sake of clarity, this section briefly describes various parts of this framework.

Detectors data
(speed / flow)

Data pre-processing

Feature extraction

Clustering analysis

(SURF)
Point - based

(Watershed)
Area - based

Key point identification

(Automatic) feature vector

formulation

Pattern segmentation

Customized feature vector
formulation

Figure 4.2: General framework for pattern clustering

Data preprocessing

Spatio-temporal maps have been used extensively to gain insights into traffic dynamics.
Particularly, information such as speed or flow of a road stretch during a certain time
period can be analyzed at a broader perspective, i.e. complete space-time view, than at
just local detectors. An example of such spatio-temporal map is shown in Fig. 4.3a.
The speed measurements are collected from the detectors distributed sparsely along
the road stretch over fixed intervals.

(a) Raw speed (b) Filtered speed

Figure 4.3: Spatio-temporal speed maps of traffic on A12 highway in the Netherlands
on April 12th, 2016, from 06:30am to 10:30am. The horizontal and vertical axises
represent time and detector locations respectively. The driving direction is from top to
bottom. For visualisation purpose, a colormap is used to emphasise different patterns
inside this congestion, e.g., wide moving jams. Colors code: red implies low speeds
(congested condition) while blue is for high speeds (free flow condition).
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As seen from Fig. 4.3a, instant speeds are represented by a corresponding point in
the figure. This poses a question about traffic dynamic around those detectors where
no data is available. The well-known adaptive smoothing method (ASM) serves the
purpose of interpolating the unseen traffic data. For details about this technique, we
refer the reader to (Treiber & Helbing, 2002; Van Lint & Hoogendoorn, 2010; Schre-
iter et al., 2010a). The result of applying this filtering technique to the raw speed is
shown in Fig. 4.3b. The advantage of ASM is two-fold. Firstly, ASM fills in missing
values and smooths out (high frequency) noise in raw speed measurements. Secondly,
detectors are implemented at locations which are not necessarily at equal distances (see
gaps between horizontal lines in Fig. 4.3a). The ASM produces an equidistant grid of
smooth speeds (see Fig. 4.3b). Both of these points support better application of image
processing techniques in the feature extraction step.

For consistency throughout the chapter, we define a pattern of congestion as a numeric
array of speeds representing (congested) traffic states over spatial and temporal dimen-
sions. These patterns can be visualised using heat maps as shown in Fig. 4.3 (left:
based on raw data; right: result of ASM filtered speeds). Since throughout the chap-
ter we use ASM filtered speeds, a congestion pattern in the ensuing is based on such
filtered data.

Feature extraction

Feature extraction is one of the crucial steps to obtain an efficient representation of
input patterns for data mining applications like clustering or classification. The key is
to identify distinct features that make traffic patterns distinguishable from each other.
The high quality of ASM filtering result (Fig. 4.3b) motivates a vision-based approach
in which spatio-temporal patterns of congested traffic are conceived as grayscale im-
ages (or intensity images). Each pixel intensity is assigned by the corresponding speed
value. These values are scaled to the range [0; 255] to fit with 8-bit representation of
grayscale images. Notice that, they are, in essence, numeric matrices of filtered speed
measurements. By considering them as grayscale images, we can apply advances of
computer vision to traffic field.

We consider two approaches from different domains and compare their performances
in clustering traffic patterns - namely point-based features and area-based features as
shown in Fig. 4.2. As its name suggests, the point-based method explores local features
which are in images. Some examples include corners, blobs or locations where pixel
intensities change sharply. On the other hand, the area-based method is more about
higher level features such as shapes or areas to build a customized feature vector which
could potentially later incorporates traffic domain knowledge. Further details of these
two methods are given in Section 4.3.2 and 4.3.3.
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Clustering analysis

The clustering aims at finding typical congestion patterns in a dataset. Overall, there
are two approaches for clustering analysis, namely hierarchical and partitioning (Jain,
2010). We have chosen the hierarchical clustering as our main clustering method for
two reasons. Firstly, this approach constructs a hierarchical representation of a given
dataset which, in turn, provides an overview of the distribution of existing congestion
patterns. Secondly, hierarchical clustering provides the ability of reproducibility of
resulting clusters. This avoids the sensitivity to random initiations that most of parti-
tioning clustering methods, e.g. k-means, encounter.

Hierarchical clustering can work in two different fashions - agglomerative and divisive
- which are inherently bottom-up and top-down strategies for constructing a binary
tree. The latter considers the entire dataset as one cluster and gradually divides it
into smaller clusters. Since there are 2n-2 ways of splitting a cluster of n patterns,
heuristic rules are normally applied. In contrast, the former initiates each pattern as
a single cluster and examines connectivities between patterns or intermediate clusters.
The underlying idea is to combine the two closest patterns or (intermediate) clusters
into a new cluster. Hence, we employ an agglomerative approach to conduct clustering
analysis. The connectivity between any two patterns is calculated using Manhattan
distance, also known as city block. For the distance between two clusters, the average-
link scheme is implemented, which takes the average distance between all pattern pairs
from those clusters (see Eq. 4.1). This process continues until only one cluster remains,
meaning all patterns are in the same cluster.

d(p,q) =
D

∑
l=1
|p(l)−q(l)|

d(R,S ) =

|R|
∑
i

|S |
∑
j

d(xR
i ,xS

j )

|R|× |S |

(4.1)

Where,

p,q are two feature vectors representing two patterns which have D dimensions
p(l) is the l_th element of vector p
R,S are two clusters
|R|, |S | are the numbers of patterns in cluster R,S respectively
xR

i is the feature vector representing the i_th pattern in cluster R

4.3.2 Point-based feature extraction

Using point-based features is one of the most common practices for extracting im-
age characteristics in computer vision. The point-based features are known as interest
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points (or key-points) – which indicates distinctive locations in an image that contain
prominent local information. As mentioned previously, the work in (Nguyen et al.,
2016) demonstrated the ability of this method on classifying different traffic patterns.
Here we summarize this method and also refer to the original work for further details.

Generally, the point-based method constitutes two mains steps, namely (i) key point
identification and (ii) feature vector formulation. It is indicated so in Fig. 4.2. The
first step explores important points in an image, i.e. traffic pattern, which are defined
by their local features. A collection of these points is expected to distinguish different
images. Given detected points, the second step formulates a feature vector for pattern
representation.

Key point identification

The key point identification step comprises of two pivotal elements - key point detector
and key point descriptor. The key point detector is responsible for identifying interest
points in an image. They present at various special locations such as L-corners, blobs,
T-junctions or Y-junctions. These points have been widely used as local features for
distinguishing between images. Several examples of such points are indicated by small
circles on three different traffic patterns shown in Fig. 4.4. It can be easily observed
that these key points usually occur around the edges of these traffic patterns. A number
of different detectors can be found in the literature (Harris & Stephens, 1988; Lowe,
1999; Kadir & Brady, 2001). Amongst those, the Fast-Hessian detector is claimed
to be highly accurate and fast (Bay et al., 2008). The underlying idea is to find strong
changes in surface curvature represented by intensities in an image. For that, the so-call
Hessian matrices are constructed using second-order derivatives of the image (see Eq.
4.2). I(x, t) represents speed values over time and space dimensions. The determinant
of the Hessian matrix is used as the indicator of key points in the input image. In
addition, such determinants are also calculated in different scales of input images (so-
called scale space) to assure the repeatability of detecting same key points in images
at different sizes. A non-maximum suppression is then applied to identify maxima of
determinants in 3D space (space-time-scale) as key points of the image.

H(x, t) =
[

∂ 2I(x, t)/∂x2 ∂ 2I(x, t)/∂x∂ t
∂ 2I(x, t)/∂x∂ t ∂ 2I(x, t)/∂ t2

]
(4.2)

The second element, key point descriptor, aims to construct a distinctive representation
for key points found previously. In generally, this is done by applying an appropriate
method to represent surrounding of corresponding points. Speed-Up Robust Feature -
SURF - descriptor (Bay et al., 2008) is adopted in this chapter. Given a key point at
(x, t,s), a window with the size of 20s, (s indicates the scale at which the corresponding
key point is found), is formed surrounding the key point. Then, the neighbourhood
determined by the window is divided into 4x4 sub-regions on which Haar wavelet
transform (Chui, 2016) responses are performed. This results in a 64-dimensional



4.3. Methodology 47

real valued feature vector for any given key point (the so-called SURF-64 (Bay et al.,
2008)). We refer the readers to (Bay et al., 2008) for a comprehensive description and
parameter analysis related to this method.

Figure 4.4: Point-based feature extraction using the bag-of-visual-word method. This
figure is reproduced from Fig. 5 in (Nguyen et al., 2016).

Feature vector formulation

The first step results in a number of interest points in an image pattern. They are
represented by a 64-dimensional feature vector. The feature vector formulation step
describes a method to build representations for image patterns by accommodating these
key points. It adopts the "bag-of-word" idea which is a well-known method in the topic
of document classification where a document is represented by a set of its words. In
that way, word order or any combinations are discarded and only their occurrence
frequencies are preserved. When it comes to computer vision, it is also known as
"bag-of-visual-word".

The "bag-of-visual-word" comprises of two main steps. It starts by constructing a
visual word dictionary - an analogy with word dictionary. Since the feature vector rep-
resenting key points consists of 64 real values which are continuous, they are grouped
into discretised groups to facilitate the construction of such dictionary. This is illus-
trated in the second row of Fig. 4.4. In this framework, k-mean clustering method
is implemented to partition all the key points collected from all image patterns. The
number of clusters is specified a prior. By doing this, similar points are expected to
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be in the same groups and they all only represent a typical pattern of key points. Con-
sequently, a visual word dictionary is constructed which has size as number of groups
and each key in the dictionary is a typical key point, so-called visual word. For exam-
ple, in Fig. 4.4, points are divided into 4 groups with different shapes/colors; hence,
the corresponding dictionary comprises of 4 different visual words.

Next, all key points found in an image pattern are matched with visual words in the
constructed dictionary. This is a classification problem in which we need to classify
each of the detected key points to one of the visual words. A k-nearest neighbour
(Cover & Hart, 1967) (knn) based classifier is trained on the clustering results from
the previous step, which classifies a point into one of the visual words. Notice that,
for those patterns which are used to construct the visual word dictionary, the clustering
step already classifies their key points into different visual words. However, for new
patterns, the knn classifier is needed.

The final step is to form feature vectors for image patterns by counting the occurrences
of all key points in each image pattern. Given a new image of congested traffic, interest
points found by Fast-Hessian detector are classified into typical key points using the
knn classifier. Next, a histogram which counts the number of points in each of the typ-
ical groups is formed and conceived as the feature vector of given pattern. The bottom
part of Fig 4.4 illustrates clearly these two steps. Eq. 4.3 formulates the point-based
feature vector for a pattern of congested traffic. It can be seen that, the pre-specified
number of typical key points is the dimension of the feature vector of congested pat-
terns.

fP = (n1,n2, ...,nK) (4.3)

Where,

K is the number of visual words (groups of typical key points) in the visual word
dictionary
ni is the number of i_th visual word in the pattern

4.3.3 Area-based feature extraction

In contrast to the point-based method, the area-based approach explores features at
higher abstract levels. The authors in (Krishnakumari et al., 2017), for instance, discern
different congested patterns by employing the so-called Active Shape Model (Cootes
et al., 1995) to represent different interested contours found in speed images. Al-
though their approach is promising, the classification accuracy is limited due to the
insufficiency of the naive contour extraction. Here, we extend this method further to
overcome this shortcoming by using more sophisticated segmentation method to more
accurately identify shapes of different (and relevant) elements in congestion patterns.
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Furthermore, a more refined feature vector is also formulated to have a more descrip-
tive representation of congestion patterns.

We propose three steps for extracting high-level custom features from a traffic pattern:
(i) segmentation of congestion patterns, (ii) feature vector formulation which extracts
traffic-related features from segmented patterns and then formulate a suitable feature
vector. Fig. 4.5 represents the outline of the process. Each of the building blocks are
detailed further below.

Sobel Gradient Canny Edge

Watershed Region Merging

I. Pattern Segmentation

II. Customized Feature Vector Formulation

Disturbances Demand-SupplyScale

Time

S
p
ac

e

(ASM) Filtered Speeds

Figure 4.5: Area-based feature extraction using the segmentation approach

Pattern segmentation

One of the main reasons for false negative classification of the classifier in (Krish-
nakumari et al., 2017) was the contour/area detection from the traffic patterns. This
segmentation step aims to divide image representation of traffic patterns into segments.
Here, we use Watershed which is a sophisticated segmentation method in the field of
image processing (Beucher & Meyer, 1992).
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Watershed algorithm uses the gradient information of the original image. Gradients
of speed images represent a space time map of (estimated) mean accelerations. The
edges in speed images are detected and labelled with the maximum value of gradient.
Watershed is then applied to the gradient image. This algorithm usually leads to over-
segmentation and hence, a refine step - region growing - is further implemented. These
steps are illustrated in Fig. 4.5 and detailed in the following sections.

Gradient image Gradient image describes how strong the (speed) value changes
across spatio-temporal (pixel) location in the original speed map. It is calculated by
Sobel method (Sobel, 1990), in which gradient is measured in both dimension of space
and time. This is done by applying convolution of the speed map and appropriate Sobel
operators as follows (t, x indicate temporal and spatial, respectively:

St =

+1 0 −1
+2 0 −2
+1 0 −1

, Sx =

+1 +2 +1
0 0 0
−1 −2 −1


The horizontal and vertical gradients (Gt , Gx) of the pattern, which has speed matrix
indicated by I(x, t), are calculated as shown in Eq. 4.4 (in which, ~ indicates convolu-
tion operation).

Gt = St ~ I

Gx = Sx ~ I
(4.4)

Eq. 4.5 combines these multicomponent gradients to yield the magnitude of the final
gradient.

G =
√

G2
t +G2

x (4.5)

The last step is to normalize the gradient value.

G0 =
G

max(G)
(4.6)

Watershed Watershed is one of the main morphological operators in the field of
mathematical topology which has been applied in image segmentation (Beucher &
Meyer, 1992). The basic concept of this method is to consider a gray-scale image as
a topographic surface in which altitude of a point is set to its intensity value. Fig. 4.6
demonstrates the concept using a simple 2D signal. The surface is gradually immersed
into water. Virtual holes at all minima can let the water rise through. When a minimum
is reached by the water, a (catchment) basin is formed accordingly. As shown in Fig.
4.6a, water level will first reach the lower minimum, and then water will spread into
the surrounding area. A blue basin is formed for this minimum. A moment later, water
will then reach the second minimum and also form the green basin (see Fig. 4.6b).
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Water level continue rising and when it reaches the local maximum, the water from
two basins are about to meet. At this point, a dam, which is labelled by red colour, is
built to prevent this as depicted in Fig. 4.6c. Dams will get higher as water level gets
higher. This process continues until the surface is completely flooded. As a result, we
will get various image segments, in different colours, separated by shed lines or dam
as simply shown in the figure.

water level

(a)

water level

(b)

water level

(c)

Figure 4.6: Demonstration of fundamental steps in Watershed segmentation. Water
level reaches the first minimum (a), water level reaches the second minimum (b) and
red dam prevents water merging (c).

Algorithm 4.1 presents the Hill climbing algorithm for Watershed segmentation (Ram-
babu & Chakrabarti, 2008). It illustrates precisely the principle of immersion/flooding
process above, although it is derived from topological-based definition of Watershed
transform. S comprises the top part of the topographic surface that is above the wa-
ter level and 1-pixel high part that is just reached by the water (In initial state, only
the boundary of this part is included). The pixel x taken from step six has the lower
intensity, i.e. the pixel that is just reached by the water level. The algorithm assumes
water growing from this x to its neighbors x′. If x′ has not been labeled yet, it will be
assigned to the same basin with part of water that touched it, i.e. x’s label. On the other
hand, if it is assigned to a different basin, water from two different basins meets here
and hence, this should belong to the watershed line. The algorithm continues until all
pixels are visited.

Region merging This step is to deal with the common over-segmentation conse-
quence of watershed. The strategy is to merge a region with its neighbors, if reasonable,
to obtain a larger region. The criteria to determine where to merge two neighbor re-
gions is that their speed difference should not be too large. Consequently, edges should
not be present between these two regions. Therefore, canny edge (Canny, 1986), an
extremely well-known technique in image processing, is used as a criteria for region
merging. In principle, it comprises of four main steps: (1) image is smoothed out
by a Gaussian filter in order to remove noise, (2) Sobel gradient is calculated on the
smoothed image, (3) applying non-maximum suppression to find local maximum in-
tensities in gradient image which correspond to edge points, and (4) two upper-bound
and lower-bound thresholds are used to filter out unwanted edge points.
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Algorithm 4.1 Hill Climbing algorithm for Watershed transform
Require:

Gray scale image represented by intensity function f
Set of regional minima M = {mi}, i = 1 : M with value αi respectively

Initialization
1: for each mi ∈M do
2: ∀p ∈ mi, label(p)← i
3: S ←{p ∈ mi|∀p′ ∈ NG(p) : f (p′) = αi} /* All interior points of regional

minima */
4: end for
5: S ←{p /∈S }
Processing
6: while S 6= /0 do
7: p = argmin

p∈S
f (p) /* Take the lowest point */

8: S ←S \ p /* Remove p from set S */
9: for each p′ ∈ NG(p)∩S do /* neighbors of p in S */

10: if label(p′) =Unknown then
11: label(p′)← label(p)
12: else if label(p′) 6= label(p) then
13: label(p′)← SHEDLINE
14: end if
15: end for
16: end while

The proposed algorithm for this merging is represented in pseudo-code, see Alg. 4.2.
Given a region, the general idea is to repeat merging it with its appropriate neighbors.
The common boundary can be extracted by using fundamental morphological opera-
tors such as dilation and erosion (Haralick et al., 1987). The former operator dilates a
connected region in binary images with respect to given number of pixels, while the
latter one does exactly the opposite. The dilation operator expands a region to surpass
the shed line separating neighbor regions. Hence, the common boundary can be iden-
tified by the intersection of these expansion parts. Afterward, erosion operator shrinks
the obtained boundary to its original size for further steps.
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Algorithm 4.2 Region merging algorithm
Require: R: set of regions, E : set of edges

1: for each r ∈R do
2: repeat
3: Nr← Neighbours(r)
4: isNewMerge = false
5: for each nr ∈Nr do
6: c← common boundary of nr and r
7: if c∩E = /0 then
8: merge nr and r: r← r∪nr

9: isNewMerge = true
10: end if
11: end for
12: until ¬isNewMerge
13: end for

Customized Feature Vector Formulation

To have a better view on which features we should extract from a pattern of conges-
tion, we look further into the pattern in Fig. 4.5. This pattern is significantly notable in
the sense that it encompasses different typical elements. A severe congestion occurred
which is likely caused by an accident and results in homogeneously and heavily con-
gested traffic - represented by a large region of red colour in the related speed image.
For the sake of simplicity regarding name convention, we refer to this as (heavily con-
gested) demand-supply component. Following up are numerous disturbances which
spill back against driving direction. Being motivated by this, a two-level hierarchical
definition of congestion pattern is formed, namely phenomenon and pattern levels. At
the lower level, three important elements related to traffic flow domain are explored
to describe a congestion pattern: space-time scale, disturbances, and demand-supply
components. The first element approximates the extension of a congestion pattern by
measuring its temporal and spatial extent. The second element is identified in (Kr-
ishnakumari et al., 2017) as the most common traffic phenomenon where both of its
upstream and downstream heads move against traffic direction. The last element has
downstream front be stationary for longer time spans and heavily congested traffic up-
stream. At the higher level, a congestion pattern can be conceived as a combination
of lower-level elements. The area-based approach aims to identify this higher-level
congestion pattern. Following sections describe those lower-level elements in further
details.

Congestion scale The congestion scale encompasses two measurements: spatial and
temporal extents of congestion. The former is the total length of the road stretch be-
ing reached by traffic congestion. The latter indicates approximately how long the
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congestion lasts. For each location, the duration for which congestion has occurred is
calculated. The highest value (over space) is used as the representative duration for the
temporal extent. An illustration is shown in Fig. 4.5.

Disturbances identification Disturbances are observed in traffic very often. They
occur either as a small disturbance inside synchronised traffic near a bottleneck or as
a wide moving jam. Krishnakumari et al. (2017) successfully proposed using Active
Shape Model to identify WMJs. Since small disturbances and wide moving jams have
similar shapes except for their sizes, this chapter further employs this method to deter-
mine disturbances in congestion patterns.

The Active Shape Model technique (Cootes et al., 1995) describes a shape using a
mean shape and its variations derived from a set of similar shapes. Thus, given a new
shape, the error while fitting the shape model to this shape can be used for identify-
ing/classifying the shape. Krishnakumari et al. (2017) gives a detailed explanation of
how to build a shape model of WMJ and how it can be used as a shape classifier. For
this work, we only consider the WMJ shape, so the feature vector for classifying a
given shape slightly varies to include (i) fitting error to WMJ shape model, (ii) affine
transformation parameters of the fitted shape, (iii) time extent of WMJ shape, and (iv)
space extent of WMJ shape. A simple logistic classifier is used on this feature vector
to identify whether a shape is a WMJ (meaning disturbances in our case).

Demand-Supply identification In contrast to disturbances, demand-supply (DS) re-
lated elements commonly have downstream head being fixed at a location. In this work,
we defined noticeable DS elements with following criteria: (1) average speed is equal
or lower than 30 km/h, and (2) downstream head is stationary for at least 15 minutes.
This time period is chosen arbitrarily and is certainly changed according to application
interest. In general, the longer this time is, the longer congestion is experienced at the
bottleneck; hence severer the situation is. They are formulated as in Eq. 4.7. Due to the
existence of noise in traffic data, the second requirement is relaxed as having congested
traffic for at least 15 minutes at downstream part of the region. This means the location
of long lasting congestion could be at any location downstream of a congested region.
We have taken 30 percent of corresponding (congested) roach stretch as the searching
area for this location.

isDS(r) =

1
µspeed(r) ≤ 30 km/h and
congested_time(downstream head) ≥ 15 minutes

0 otherwise
(4.7)

Where,

r is a congested region
µ denotes average
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Feature Vector Formulation Based on these three feature components, we construct
a feature vector for representing a traffic pattern as follows:

fA = (lSpace, lTime,nDisturbances, isDS) (4.8)

Where,

lSpace is the spatial extent of the congestion

lTime is the temporal extent of the congestion

nDisturbances is the number of disturbance instances

isDS indicates if any Demand-Supply elements exist in the congestion

In order to equalise the degree of influence of each feature dimension on the clustering
decision, we normalised both the feature vectors from the two feature schemes fP and
fA to the range of (0,1).

4.3.4 Synthesis

This section has described in depth three fundamental components which constitutes
the whole procedure required to cluster a given dataset of congestions. The prepro-
cessing component uses ASM to turn traffic data in spatiotemporal dimension into
corresponding image representation, which enables the application of computer vision
techniques upon. Furthermore, two feature extraction approaches, i.e. point-based
and area-based, explore various types of features that are special local points or do-
main knowledge characteristics. Watershed segmentation is proposed as a method for
segmenting a congestion (image) pattern into different areas. Finally, hierarchical clus-
tering is used to analyse the structure of the given set of congestions. In the following
sections, the proposed framework is applied to a case study and performances of dif-
ferent methods are assessed and compared.

4.4 Evaluation Methodology

The methodology for evaluating the different elements of the framework is designed
and presented in this section. Firstly, the dataset used for applying the proposed clus-
tering methodology is introduced. Then, comprehensive methods are described to
evaluate the two main elements of the proposed framework - (i) Watershed segmenta-
tion performance, and (ii) clustering results from the two feature schemes. Watershed
segmentation will be evaluated for its ability to divide a congested pattern into different
spatio-temporal areas so that the domain-knowledge characteristics are derived. Sim-
ilarity of intra-class patterns and dissimilarity of inter-class patterns are interpreted to
evaluate the clustering results.
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4.4.1 Dataset

In this study, we use speed data from the loop detectors as input for testing the two ap-
proaches. This data is provided by National Data Warehouse (NDW) ndw, which is an
organization managing a large amount of traffic data from most of the Dutch highways.
We chose two busy roadways - A12 and A13 a12; a13 - for our case study. The data is
collected for four months: from April to July in 2016 (This temporal period is chosen
arbitrarily). Congestion patterns are searched over every single day via the following
steps. First, a smoothing method - the Adaptive Smoothing Method - is applied to
obtain an image representation (a speed matrix) of traffic state during that day. Param-
eters of the filter are set based on the settings in (Schreiter et al., 2010a); some basic
ones are shown in Table 4.1. Second, a speed threshold of 80 km/h is used to filter
congested pixels in the image. Then, relevant image morphological operators such as
opening or dilating are applied to remove noises and connect nearby congestion-related
pixels, which have speed values lower than the speed threshold. This results in con-
nected spatiotemporal regions of congested traffic. Bounding boxes of these connected
regions are generated to extract congested patterns thereafter. Applying this for the A12
raw dataset results in 232 congested traffic patterns which constitute a primary dataset
for our analysis. The two proposed methods will be evaluated on this A12 dataset. In
addition, we obtained 196 patterns on A13 which is used as a secondary dataset for
further evaluation as shown in Sec. 4.5.3 - Qualitative. Table 4.1 summarizes some
details related to the parameters used in this study.

Table 4.1: Parameters and a few descriptions of the traffic patterns used in this study
(A12 and A13 highway, the Netherlands, from April to July, 2016).

Adaptive Smoothing Method
Temporal resolution 0.5 minutes

Spatial resolution 100 m

Traffic wave speed -18 km/h

Congested patterns extraction Congested speed threshold 80 km/h

A12 dataset (primary)
Number of patterns 232

Time range 10 – 320 minutes

Space range 2.4 – 40.4 km

A13 dataset (secondary)
Number of patterns 196

Time range 10 – 248 minutes

Space range 2.4 – 18.8 km

4.4.2 Watershed segmentation evaluation

Watershed segmentation is the core component in the area-based feature scheme; it di-
vides a congestion pattern into different spatio-temporal areas, particularly to separate
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disturbances. Since having a ground truth set is not trivial, we visually assess the seg-
mented patterns. An important qualitative criterion is a clear separation of disturbances
in traffic congestions. Various examples with multiple levels of complexity are chosen
to evaluate the Watershed segmentation results. In addition, since one of the main rea-
sons for adopting this technique is to overcome the shortcoming of previous contour
extraction, a qualitative comparison between these two techniques is conducted.

4.4.3 Clustering evaluation

Since cluster analysis is an unsupervised learning problem, an appropriate validation
is not trivial. However, there are generally two validation criteria in the literature: in-
ternal and external (Rendón et al., 2011; Jain, 2010). An internal criterion validates
a clustering result based on properties inherent to the given dataset. In contrast, an
external criterion matches a clustering result with prior information on structure of
the dataset, which is generally referred to as true labels. Such information is, how-
ever, normally either subjective or unavailable. Therefore, in this work, we focus on
internal criteria to evaluate the clustering results. Our evaluation metrics comprises
of qualitative and quantitative measures. The former examines patterns from each of
the resulting clusters by visually assessing their similarity. The latter evaluates how
well clusters are separated from each other by using quantifying the confidence level
of appropriate classifiers trained on the corresponding clustered data.

Qualitative evaluation

The qualitative evaluation step assesses the similarity of patterns in each of resulting
clusters. There is no quantitative definition of similarity, instead we base our assess-
ment on the appearances of congestion patterns over space and time, equivalently to
compare images of these patterns. Attempts to draw some common characteristics on
these patterns are driven by traffic knowledge, which has received significant attention
in the literature such as (temporal, spatial) scale of congestion or disturbances.

Quantitative evaluation

For quantitative evaluation, we analyse the separability of resulting clusters. This is
motivated by the follow-up application in which new traffic patterns are classified
preferably without repeating the clustering for the whole dataset (previous and new
patterns). Hence, resulting clusters are used as a training set, on which a suitable clas-
sifier is trained to classify new patterns. The separability criterion is then measured by
the confidence level of this classifier’s decisions to assign patterns to clusters. It is gen-
erally expected that well separated clusters would confuse the classifier less, meaning
higher confidence in classification.
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To quantify the confidence level of a classifying decision, we adopt the family of clas-
sifiers which gives the membership probability that a pattern belongs to a class. The
higher the probability, the stronger the classifier believes in its decision. Since the
number of clusters can be higher than 2, we have a multi-class classification problem.
In this work, we choose multinomial logistic classifier as our base classifier for evalu-
ating the clustering results. A brief description of this method is provided later in this
section.

Alg. 4.3 summarizes the procedure for quantitative evaluation of clustering results.
K-fold cross validation is used to obtain a stable result. It starts by dividing the whole
dataset into a number of groups (step 1). In each run, one fold is taken as a test set and
the rest are combined into a training set. We perform cluster analysis on this training
set to obtain clusters and subsequently class labels for its patterns (step 2). Next, a
multinomial logistic classifier (F ) is trained on these samples (step 3) and then ap-
plied on the test set (step 4). F provides membership probabilities of a given pattern
to all classes. The class associated with the highest probability is chosen to label the
pattern This probability also shows the confidence level of the classifier. We apply F

to all patterns in the test set and collect all confidence levels (step 5) to evaluate the
separability of the clustering results. In particular, The distribution of these probabil-
ities are subsequently constructed for different number of clusters. We compare these
for the two feature schemes to achieve a quantitative evaluation of clustering results.

Algorithm 4.3 Quantitative evaluation scheme of a clustering result
Initialization
1: Randomly divide the dataset into N folds (groups): Di, i = 1 : N
Evaluation
2: for each fold Di do
3: Cluster the set of other folds {D j, j 6=i}
4: Learn a multinomial logistic classifier, Fi, given the obtained clusters as a

training set
5: Fit Fi on every pattern in Di. Collect classifier’s confidence levels which are

the probabilities that Fi provides to support its decisions to classify patterns (to
one of the obtained clusters)

6: end for

Multinomial logistic regression The multinomial logistic regression (MLR) (Böhning,
1992) is an extension of the well-known binomial logistic regression that deals with
multiclass classification problems. A softmax function is used instead of a logit func-
tion to calculate the membership probability that an observation (or pattern) belongs to
one particular group. Thus, it is also called softmax regression. The predicted proba-
bility of ith category is calculated by Eq. 4.9, given a feature vector x and a coefficient
matrix W . The input for the softmax function is a linear combination of feature vector
and coefficients of class i, which is the corresponding row in W .
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(4.9)

The coefficient matrix W can be optimized using different methods to fit the MLR
model (Huang et al., 2010; Yu et al., 2011; Gao et al., 2007). In this work, we use the
dual coordinate descent method for the optimization (Yu et al., 2011).

4.5 Results and Discussion

This section presents and discusses the Watershed segmentation and clustering results
of the two feature schemes in the proposed framework. Details are presented in the
following sections.

4.5.1 Size of the (visual) word dictionary

The number of key points in a dictionary is represented by K (see Eq. 4.3), which is
also a parameter of the applied k-means clustering. To determine an appropriate value
for K, we minimize the ratio between intra-cluster (SSE - sum of squared errors) and
inter-cluster (distance to the closet cluster) distances (defined in Eq. 4.10) as proposed
by Ray & Turi (1999).

Dintra(= SSE) = ∑
k

∑
i
(xCk

i − ck)
2

Dinter = min
p6=q

(cp− cq)
2

ck =
1
|Ck|∑i

xCk
i

(4.10)

in which, Ck is the k_th cluster and has |Ck| instances, xCk
i is the i_th instance of Ck, and

ck is the centroid of Ck. In our case, the minimisation of the ratio resulted in K = 16.

4.5.2 Watershed segmentation of congested patterns

As described in the evaluation methodology, we visually analyze the performance of
Watershed segmentation (WS) on a variety of congested patterns. Additionally, a
qualitative comparison with contour extraction from (Krishnakumari et al., 2017) is
provided. Fig. 4.7a shows examples of congestions from the dataset with different
complexity, such as congestion with a single isolated disturbance, multiple sparse dis-
turbances in a congested area and finally, a highly dense congested area. Generally,
segmenting these patterns becomes harder as the complexity becomes higher due to
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the spacing between the disturbances becoming less evident. Corresponding WS re-
sults are shown in Fig. 4.7b. Different regions in a pattern are separated by shed lines,
which are indicated in dark blue. The region colours are mapped from the (arithmetic)
mean speed of all the interior pixels of a segment. Free flow regions are coloured with
the same colour as the shed line since they are referred to as uninterested regions in
this study.

(a) (b) (c) (d)

Figure 4.7: Examples of segmenting congested patterns into different areas. The left
column (a) are some various congestions in spatio-temporal representations. Results
of the Watershed segmentation is shown in column (b). The corresponding contours
extracted from the Watershed-based segments and the naive contour extraction are in
column (c) and (d) respectively.

We can see that the WS follows and groups pixels in moving jams. Since there is no
ground truth for the segmentation, we do not assess the accuracy at the pixel level, but
assess the ability of the WS to give distinct disturbances or wide moving jams. In the
first pattern in Fig. 4.7a, WS performs satisfactorily as it can separate the prominent
pattern, i.e. the moving disturbance, from the other regions. In the second congestion
pattern, several disturbances occur with various sizes and most of them are relatively
far apart from each other. The WS result shows that noticeable disturbances are sep-
arated clearly. The third pattern is a highly dense congestion with many moving jams
being extremely close to each other. Their heads are mixed with the upstream bottle-
neck which is the potential reason for their emerging. The corresponding WS result
presents acceptable segmented regions. Moving jams are tracked and separated cor-
rectly eventhough they are sometimes merged together as shown in the third pattern in
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Fig. 4.7b. It is clear that tracking and separating these moving jams manually is also
difficult. To summarize, segmentation results obtained from WS method show a high
ability of separating disturbances in patterns of congestion.

The contour extraction from (Krishnakumari et al., 2017), also termed as naive contour
extraction in this chapter, is also applied to these patterns to provide a comparison. The
main criterion is how well they support the disturbance identification step. The corre-
sponding contour extraction results are shown in Fig. 4.7d. For the WS, the contours
are obtained by extracting the outlines of the corresponding regions as shown in Fig.
4.7c. It can be observed that, for the simple pattern with one single disturbance, the
first one in Fig 4.7a, contours obtained from the two methods are able to identify the
corresponding disturbance. However, for more complex patterns, naive contour extrac-
tion is unable to identify different contours of moving jams. Hence, WS-based contour
extraction performs superior to naive contour extraction method and can improve the
quality of detecting disturbances.

In summary, some insights can be deduced from the performance of the WS as follows:

• Watershed segmentation is capable of tracking the propagation of a disturbance.
It also works well for densely congested areas where multiple moving jams are
close to each other.
• Contours extracted based on WS segmentation appear to capture moving distur-

bances better than that of naive contour extraction.

Since Watershed relies on the gradients in image patterns, its performance in recognis-
ing disturbances is likely affected by the choices of ASM parameters. Nonetheless, our
analysis suggests that this method is quite robust with respect to ASM parameters. We
refer readers to Appendix A for the complete analysis.

4.5.3 Clustering of congested patterns

This section presents the clustering results corresponding to the two feature sets de-
scribed in the framework - point-based and area-based. They are evaluated using the
methodology described in Section 4.4.3. The hierarchical agglomerative clustering
technique results in a hierarchy of data points and is effectively represented by dendro-
grams, which are binary tree-based representations. The height at which two branches
are combined denotes their distance or dissimilarity. Fig. 4.8 shows two dendrogram
plots of the clustering results using the point-based and area-based features respec-
tively.

Upon initial inspection, it can be seen that these two trees exhibit strikingly different
properties in at least two perspectives: (i) leaf- combinations, (ii) inter-cluster dissimi-
larities. Firstly, leaf combinations show how similar any pairs of patterns (i.e. leaves)
are. In the point-based tree, most of the patterns connect to fairly long vertical stems;
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Figure 4.8: Dendrogram representations of hierarchical clustering results from dif-
ferent feature schemes: (a) Point-based features and (b) Area-based features. On the
horizontal axis lie all the patterns in the dataset. For a clear visualization, the dendro-
gram organizes all patterns in a way that allows patterns in the same cluster (at any
iteration of the hierarchical clustering algorithm) stand next to each other and form a
group. (Notice that, there are different orders that satisfy the requirement). The verti-
cal axis shows distances measured between two clusters. One can observe the dendro-
gram from bottom to top and see when (the order) and which two patterns/clusters are
grouped into a bigger cluster.

this indicates certain levels of dissimilarities between these patterns. On the other hand,
the majority of the (direct) leaf connections in the area-based dendrogram are through
extremely short vertical stems, meaning strong similarities between them. (Intuitively,
one can easily observe this by looking at the dense parts at the bottom of each of the two
dendrograms.) Secondly, regarding (intermediate) cluster differences, the two dendro-
grams show different properties. One can look at the upper vertical stems, which are
not directly connecting leaves, to analyse these inter-cluster dissimilarities. While in
the left dendrogram, the lengths of these stems hardly get longer from bottom to top (as
clusters are becoming bigger), the right dendrogram shows significant increases of the
lengths of these stems. This suggests a higher level of difference between patterns rep-
resenting by the area-based feature scheme compared to that the point-based scheme.
There are two possible hypotheses for these differences in these two dendrograms: the
dimensionality of feature vector and the characteristics conveyed by extracted features.
In fact, one can expect that the higher the dimension of a feature vector is, the further
the distances between patterns is likely to be. In addition, traffic engineers consider
phenomena happening in patterns to judge if they are similar. To some extent, this
is inline with the approach of area-based method which looks at patterns at a global,
abstract level. The point-based looks into more local features which can possibly find
differences between similar patterns. Although this does not imply a better clustering
of the area-based approach, this explains the correlation of feature characteristics and
resulting dendrograms.
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Concerning the choice of the number of potential clusters in the dataset, one can cut a
dendrogram at a certain horizontal level. From these, separated sub-trees are formed,
each with an individual cluster. It is not clear from the point-based dendrogram where
to cut the tree since the inter-cluster dissimilarities are mostly much smaller than that
of intra-cluster. In contrast, the area-based tree does suggest some potential number of
clusters. For instance, we can cut the tree in fig. 4.8b by a horizontal line at distance
1.00 to obtain 4 different clusters. The following sections evaluate these clustering
results using the proposed qualitative and quantitative methods.

Qualitative

To assess the quality of the clustering results, we consider different (intermediate) clus-
ters, i.e. branches, suggested by the two dendrograms in Fig. 4.8. The quality of a clus-
tering is measured based on similarities between patterns in the same cluster. Here we
visually analyse patterns with respect to their spatio-temporal appearances and traffic
knowledge as described in the evaluation methodology.

For the point-based dendrogram, we first look at the two topmost sub-trees (or branches)
and see that: While the left sub-tree consists of small, simple patterns of disturbances,
the right sub-tree observes a variety of pattens. Therefore, we further look at clusters
that (i) are at low distances, meaning high similarities between patterns, and (ii) have a
relatively high number of patterns, for instance, clusters with less than ten objects that
are not considered. By doing so, we found five types of traffic congestion. Some exam-
ples of those are shown in Table 4.2. Their locations in the dendrogram are highlighted
in Fig. 4.9.
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Figure 4.9: Visualization of four typical congestion patterns found in the dataset by
applying hierarchical agglomerative clustering on the point-based feature scheme

It can be seen from Table 4.2 that this approach is capable of capturing some typical
patterns of congestion. The left (topmost) sub-tree encompasses two clusters of pat-
terns, namely Moving disturbances (WMJ) - PC1 and Small disturbances - PC2. Most
of the patterns in PC1 present single or a very few disturbances spilling back against the
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driving direction, which are so called wide moving jam (WMJ). The PC2 comprises
of very light disturbances that are both spatially and temporally short. In cluster PC3
and PC4, there are many moving disturbances in various combinations. The striking
difference between these two is that those in PC4 emerge from fixed bottleneck loca-
tions while that is not the case in PC3 where origins of disturbances are at different
locations. Therefore, to discern between these patterns, we call them High frequency
of WMJs and High frequency of WMJs emerging from bottlenecks, respectively. The
last cluster (PC5) shows traffic congestion that is stationary at fix bottlenecks for long
periods; hence, we name it Bottleneck.

Table 4.2: Description of point-based clustering result. These clusters are correspond-
ing with clusters shown in the dendrogram in Fig. 4.9. It should be noticed that they
are represented in a deliberate order to facilitate the corresponding discussion.

Cluster
Number

of
patterns

Examples

PC1 90

PC2 39

PC3 19

PC4 15

PC5 13

Despite the four typical patterns that have just been described, there are some limita-
tions of this approach as follows. Firstly, the clusters listed in Table 4.2 are sub-trees
of the corresponding dendrogram (as highlighted in Fig. 4.9), which in aggregation
does not cover the whole dataset. It takes much effort, e.g. trial-and-error, to explore
and locate them in the dendrogram. Secondly, from a traffic knowledge point of view,
similar patterns are expected to be grouped at as much lower level (of distances). This
requirement is not met with the point-based results. For instance, the PC2 consists of
two (yellow) sub-trees which are not directly connected with each other even though
they describe the same pattern. Moreover, there are many patterns such as WMJs and
small disturbances in black colour that are not partitioned to their corresponding PC1
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and PC2. Their unexpected positions are rather hard to explain; one might need to
investigate their extracted key points to do so. As shown previously, key points essen-
tially captured characteristics of neighbourhoods surrounding particular locations in
images. Additionally, the construction of a dictionary of visual words disregards po-
tential spatial or temporal correlations of these points and only considers their occur-
rence frequencies. That means, to some extent, losing potentially valuable information
is inevitable.

For the area-based approach, we also examine patterns from various (intermediate)
clusters. The obtained result include five clusters with strong intra-cluster similarities.
Table 4.3 presents some examples from these clusters together with their sizes. Addi-
tionly, their corresponding locations are highlighted in the dendrogram in Fig. 4.10.
It can be seen from the dendrogram that these clusters encompass the whole dataset.
Statistically, the smallest cluster - AC5, has 15 patterns while most of the patterns, par-
ticularly 154, are categorized into the first cluster (AC1). This means AC1 is the most
recurrent congestion found in the A12 road segment for the four studied months.

The first cluster (AC1) shows congestion with one or a very few disturbances. Most of
them describe so-called wide moving jam with the minor are insignificant disturbances,
see examples in Table 4.3. We therefore name this cluster disturbance. The second
cluster (AC2) shows patterns with a number of moving disturbances. Consequently, a
reasonable label for this cluster is high frequency of disturbances. It is noticeable that
most of the patterns in the first two clusters constitute of moving disturbances. The
third cluster (AC3) illustrates bottleneck congestion as described in the point-based
approach. Patterns in cluster AC4 are small scaled both spatially and temporally com-
pared to those in other clusters. Furthermore, they mainly show the demand-supply
patterns, which cause slow traffic. Since traffic presented inside these patterns is ho-
mogeneous, a suitable label for this cluster is small scaled homogeneous congested
traffic. Lastly, the fifth cluster (AC5) shows complex patterns with compounds of ho-
mogeneous congestions and moving disturbances. Additionally, their spatio-temporal
scale is large. Hence, these are defined as Homogeneous & Disturbances clusters.

The dendrogram in Fig. 4.10 can lead to some insights into similarity scores within
each of the five clusters. Cluster AC4, in blue, has the lowest distance, meaning lowest
variance. The construction of the feature vector is likely to account for this minimal
intra-cluster dissimilarity. Firstly, the demand-supply elements are logically indicated
as existing in these patterns, regardless of its properties (such as shape or scale). Sec-
ondly, there are very few, if not no, disturbances in these patterns. Thirdly, the conges-
tion is in small scale. These three characteristics lead to a minimal distance between
patterns in cluster AC4. Intra-cluster distances of AC3 and AC4 are more or less at the
same level. AC2 is a bit higher in comparison and AC5 is the most diverse one. The
complexity of Homogeneous & Disturbance patterns - large differences in scales and
various number of disturbances (see examples in Table 4.3) - appears to account for
this highest distance in AC5.

It is noteworthy that obtaining these five clusters by cutting the dendrogram with one
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Figure 4.10: Visualization of five typical congestion patterns found in the A12 dataset
by applying hierarchical agglomerative clustering on the area-based feature scheme

horizontal line is not possible. This situation is caused by high levels of dissimilarity
of patterns in the compound pattern cluster. To automate the process of getting these
five clusters, one can define a hierarchical approach as follows. (1) The first step is
to cut the dendrogram into two clusters, which are the two branches with and without
demand-supply elements in congestion patterns. Let us call them CisDS and CnoDS
respectively. (2) The second step deals with these clusters separately. The CisDS is
cut into two branches, which are AC4 and AC5. The CnoDS is cut into three branches
which are AC1, AC2, AC3. An alternative approach can be a manipulation of the
distance function or feature weighting to control the distance between AC5 patterns.
However, we do not explore this further in this study.

A comparison between these two clustering results can be made from two perspectives.
First, regarding classification application, the area-based approach successfully groups
patterns into corresponding categories as its five clusters cover the whole dataset. In
contrast, the four clusters from the point-based approach only capture a part of the
dataset. Second, from a viewpoint of typical pattern recognition, both approaches show
clusters of bottlenecks and WMJs. We ignore the fact that the point-based approach can
miss some of these patterns and rather focus on the typical emerging patterns. While
the area-based approach groups all the High frequency of WMJs together, the point-
based approach can separate them into those that originate from bottlenecks and those
that do not. The area-based approach can identify and separate demand-supply pat-
terns into simple ones and compound ones that are most likely to be omitted by the
point-based approach. This comparison suggests that the area-based approach is ap-
plicable for the classification of congestion patterns at a high abstraction level, and the
point-based approach tends to work well with a lower detail level. This is well aligned
with the methodology adopted in these two approaches. Hence, one can hierarchically
start with the area-based approach to obtain the five clusters and use the point-based
approach to partition the High frequency of WMJs further, for instance.
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Table 4.3: Description of area-based clustering result. These clusters are correspond-
ing with clusters shown in the dendrogram in Fig. 4.10. They are ordered deliberately
to facilitate the corresponding discussion

Cluster
Number

of
patterns

Examples

AC1 154

AC2 30

AC3 16

AC4 17

AC5 15

Interestingly, the five clusters resulting from the area-based method coincide largely
with the five manually selected labels in previous work (Krishnakumari et al., 2017;
Nguyen et al., 2016) (as mentioned in Section 4.2). It can be seen that these classes
are well captured with the clusters in Table 4.3. The first two classes (WMJ + low
frequency of WMJs) are generally grouped in cluster one, high frequency of WMJs in
cluster two, homogeneous congestion in cluster four and mixed class cluster in cluster
five. It should be noted that dividing traffic oscillation into low and high frequency is
somewhat subjective due to the decision of threshold number of moving jams. There
is a difference to the approach described here; stationary bottleneck patterns are clus-
tered by the area-based method which is not considered in (Krishnakumari et al., 2017;
Nguyen et al., 2016).

The area-based clustering results are also in line with the classification in (Helbing
et al., 2009) that we discussed in Section 4.2. Our C1 cluster matches with the moving
cluster C1. Both SGW and OCT comprise a frequent occurrence of moving jams,
which can also be represented by cluster AC2. As noticed by the authors in (Helbing
et al., 2009), differences between these two types are not straightforward. However, one
might suggest to depend on the (temporal) distances between moving jams to discern



68 4. Feature Extraction (i) - Generic Key-points versus Traffic-related Patterns

them. Subsequently, introducing further variables to the feature vector such as density
of moving jams over time, might separate AC2 into SGW and OCT. PLC is essentially
recognized by cluster AC3 and HCT by AC4. The WSP is not recognized in this result.
This is likely due to the choice of the low-speed threshold, which might discard these
patterns.
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Figure 4.11: Visualization of five typical congestion patterns found in the A13 dataset
by applying hierarchical agglomerative clustering on the area-based feature scheme.

In order to test the transferability of the area-based method, we apply it to clustering
of congestion patterns in the A13 dataset. The resulting dendrogram has a similar
structure to that obtained from A12 dataset, from which five clusters are identified and
highlighted, as shown in Fig. 4.11. Four of them are comparable with those found
in A12 dataset: disturbances, high frequencies of disturbances, homogeneous and mix
of homogeneous and disturbances. The cluster AC3 consists of bottleneck related pat-
terns like those in cluster AC3 (A12 dataset); however, it also includes patterns that
have many disturbances but with spatially short extents. Hence, it appears that short
space, long duration and having disturbances are the common features of patterns in
AC3. Some of these patterns can belong to AC2. This is possibly because that al-
though the area-based feature vector includes disturbances and scales of patterns, it
ignores the spatial length of such disturbances. One might include this information
(disturbance lengths), in an appropriate approach, to distinguish spatially short distur-
bances in bottlenecks with long moving disturbances in AC2. Nonetheless, the result
from A13 dataset indicates that the area-based approach is transferable and able to
cluster a dataset into meaningful groups.

Quantitative

We apply the evaluation methodology described in Section 4.4.3 with the following
settings: 100 folds (N = 100) of the dataset and number of clusters varying from three
to eight. We collect every confidence level of the classifier when assigning class labels
to patterns; those levels, calculated by the classifier, are probabilities associating with
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corresponding labels. Box plots are used to present the distribution of these levels of
confidence in each option of the number of clusters. Fig. 4.12 shows the final result.
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Figure 4.12: Quantitative evaluation results of the area-based and point-based ap-
proaches. Each box plot includes following elements: short horizontal bars, so-called
whisker, at top and bottom extremes indicate maximum and minimum values respec-
tively; the lower bound of each rectangular is at 25 percentile and the upper bound at
75 percentile; the horizontal red line inside the rectangle of each box plot indicates the
median value.

Overall, a general declining trend is observed for both methods. This tendency is
generally expected since the problem becomes more challenging when the dataset is
partitioned into a higher number of clusters. In fact, the corresponding classifier be-
comes less confident in its decisions when more classes are involved. Additionally,
given the same features, the separability of clustering decreases when the number of
clusters increase. This leads to the decrease in the confidence level of the classifier.
Fig. 4.12 also shows that the result of the area-based approach is superior to that of
the point-based approach because of the higher locations of the rectangle boxes, which
encapsulate the central 50% population of confidence values. Additionally, the median
confidence levels of the area-based scheme are considerably higher than that of the
point-based scheme over all the choices of the number of clusters. The highest median
confidence level observed with the point-based approach is approximately 80 with 3
clusters. Additionally, the confidence level drops to around 50% for larger number of
clusters, which indicates a high confusion level of the classifier. On the other hand, all
the median confidence levels in the area-based approach are higher than 65%. Three of
them are higher than 80%, hence, higher than the highest value in the other approach.
This indicates that the confidence of classifiers learned from area-based clustering is
strong compared to the point-based. Hence, it can be concluded that the area-based



70 4. Feature Extraction (i) - Generic Key-points versus Traffic-related Patterns

approach results in a higher level of separability of the data set than the point-based
approach.

4.6 Conclusions

This chapter explores two methods to automatically label and separate traffic patterns
that come in the form of images (heatmaps of speeds over space and time along a road
corridor). Both methods have their origins in image processing and conceive spatio-
temporal traffic patterns as images where each pixel represents speed in a particular
space-time area. The point-based (bag-of-feature) approach explores key points - lo-
cations - in traffic (image) patterns. These points do not necessarily have a direct
meaning related to traffic. The area-based method uses the Watershed operator to seg-
ment a pattern into different areas from which three main traffic related elements are
extracted—spatial and temporal scales, disturbances and (heavily congested) demand-
supply areas. In this respect, this second new approach is a hybrid method that com-
bines image processing and (traffic) domain knowledge. Hierarchical agglomerative
clustering is performed on the feature sets derived from both methods which results in
different hierarchies of the data set.

Since labelling traffic (congestion) patterns is highly subjective, we test the methods
both qualitatively, (does the method result in meaningful clusters / labels?) and quan-
titatively (does the method separate the resulting feature space such that we can have
high confidence in the results when applying a classifier using the labels on (large
amounts of) unseen (data)?) From the findings, we conclude the following:

• Both qualitatively and quantitatively, the hybrid area-based method is superior to
the point-based method. The resulting labels of the first method are more intu-
itive and explicable (e.g. we see clusters with homogeneous congestion; isolated
wide moving jams and high complex mixed patterns); and the separability of the
resulting feature space is excellent over the entire range of number of clusters
tested.

• More specifically:

– The area-based method results in (by design) directly interpretatable fea-
tures (e.g. disturbances, heavily congested regions, total spatio-temporal
extent of congestion)

– The obtained segmentation provides a way to process different elements
in the corresponding pattern separately and allows various features to be
derived. This may be beneficial in wider applications, e.g., in the identifi-
cation of wave speeds or shock fronts from the segmented regions.

– The area-based method yields a much smaller feature space and is thus
(much) more parsimonious than the point based method.
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However, our results do not suggest one should dismiss the point-based approach alto-
gether. In contrast, our result highlight its capability for recognizing more detailed and
subtle differences between clusters (labels). This suggests a hierarchical approach to
clustering data sets may be possible:

• The area-based approach may be used as a top level approach to partition the
data set based on domain knowledge.

• Subsequently, the point-based approach could be employed to further discrim-
inate between patterns in more detail, without a priori conceptions about what
these differences (physically) entail. By doing this, traffic patterns can be anno-
tated with meaningful labels at both abstract and detail levels which potentially
describe them better.

These latter bullets indicate one important line of further research (hierarchical and
mixed clustering, labelling and classification). A second line of further research lies
in the embedding of these methods in an overall (database) search engine that uses the
reduced feature space to query the (fast growing) 200TB traffic database of the Dutch
National Data-warehouse and for fast retrieval, visualisation and analysis of traffic pat-
terns. We finally highlight some important limitations in this work. In this study, only
a limited number of features are used in area-based approach; there are still opportuni-
ties for further improvement in this direction. Adding (extracting) more traffic-related
features can be used for exploring typical patterns from different perspectives. Fur-
thermore, the ability to recognize new traffic patterns is also an important topic for
future research. In this respect, we seek a classifier that learns new patterns, without
“forgetting" existing patterns.





Chapter 5

Feature Extraction (ii) -
Bottleneck Detection and
Characteristics

Highway bottlenecks are responsible for the majority of traffic congestion. Although
the problem of bottleneck detection is not new, contemporary methods have not solved
the problem thoroughly with regards to bottleneck locations, activation time, and re-
lated congestion tracking. These elements are essential for identifying and characteriz-
ing a bottleneck. In this chapter, we propose a comprehensive framework for detecting
and extracting these features of highway bottlenecks from traffic data. We particularly
focus on questions (i) whether a bottleneck is the primary source of congestion or (ii)
whether it is activated due to congestion caused by another downstream bottleneck.

This chapter is an edited version of the following published paper:

Nguyen, T. T., S. C. Calvert, H. L. Vu, H. Van Lint (2021) An automatic detection
framework for multiple highway bottleneck activations, IEEE Transactions on Intelli-
gent Transportation Systems.
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5.1 Introduction

Highway bottlenecks are activated when traffic demand exceeds capacity. For exam-
ple, a high inflow from an on-ramp can increase the demand on the downstream road
which activates a bottleneck; or the closing of a lane reduces the road capacity which
might not meet its current demand and trigger a bottleneck. These bottlenecks account
for the majority of congestion that occurs on highways (Hale et al., 2016; Systematics,
2004). Detecting and/or understanding the characteristics of bottlenecks, such as lo-
cation, duration or delay, play a vital role in the management and control of mobility.
Sensing devices like inductive loop detectors have been implemented widely to provide
an essential source of information for studying traffic flow in general and bottlenecks
in particular. Knowing existing bottleneck locations and their effects on traffic enables
traffic experts to act quickly, albeit manually exploring or searching such data would
demand considerable time and effort. To effectively utilise increasing amounts of col-
lected data, the development of a new method that automatically analyses traffic data
for bottlenecks information is necessary due to three reasons. First, by exploring traffic
data automatically, such a method can simply save a lot of time and effort for network
operators. Second, the automation property enables the study of bottlenecks for long
periods, e.g. months or years; hence, their long-term related statistics can be obtained
for further characterizing and understanding traffic bottlenecks. Finally, the method
can be applied widely to large-scale freeway networks. In particular, bottlenecks on
region-wide or nation-wide highway networks can be extracted automatically to study
traffic network performances.

Different approaches have been proposed in the literature to identify and extract high-
way bottleneck characteristics automatically. Early approaches focus on pre-identified
bottleneck locations, which can be learned from either network topology or histori-
cal observations. Accordingly, traffic information such as speeds or flows are obtained
from related detectors (upstream and/or downstream). One can calculate the changes of
speed or flow over time, and define appropriate thresholds based on historical statistics
to detect the onsets and dissolves of the corresponding bottlenecks (Zhang & Levin-
son, 2010; Banks, 1991; Hall & Agyemang-Duah, 1991). Recent research focuses on
both the spatial and temporal evolution of activated bottlenecks. Instead of individual
bottleneck locations, data collected from long road segments are processed for infor-
mation about multiple existing bottlenecks. Speeds or flows are normally presented
by spatiotemporal maps, which are essentially matrices. Chen & Rakha (2017) pro-
posed a set of image-processing techniques to classify traffic states into congested or
non-congested. Thereafter, additional information is incorporated on the related net-
work topology to eliminate discharging areas from congestion, and inherently iden-
tify bottleneck locations in the original congestion. However, there are challenges
from the aforementioned methods that still need to be addressed. First, contempo-
rary approaches in the literature do not distinguish between stationary bottlenecks (at
fixed locations) and temporary bottlenecks that arise when so-called wide moving jams
propagate upstream. This misrecognition could result in false alarms of bottlenecks.
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Second, most (if not all) of the existing methods have been verified on rather simple
corridors where existing active bottlenecks are away from each other, which means that
they cause different (isolated) regions of congestion. Therefore, the problem of bottle-
neck identification is simplified to the detection of congestion. A gap remains for a
method that can detect bottlenecks in more complex road corridors where multiple
bottlenecks might be activated simultaneously and congestion from one of those prop-
agates to other upstream bottlenecks. This is a relevant problem since such a method
can provide more complete information about all potential bottlenecks on a corridor
(or even a network), and dependencies between them can be investigated to benefit
traffic management and control.

This chapter aims to develop a comprehensive framework for automatically detecting
bottleneck activations in complex highway corridors. To do this, we first need to de-
tect if there is a congestion pattern, which implies detecting its spatiotemporal extent.
Afterwards, we figure out which bottlenecks contribute to the cause of this congestion.
As a result, we develop a methodology (as described in Section 5.3) that contains two
main parts, namely a congestion pattern detection method and a bottleneck detection
method which are described in detail in Section 5.4 and Section 5.5 respectively. Our
method relies solely on the discontinuities of traffic speeds over a certain time duration
at (the small vicinity of) a location. Therefore, any type of bottlenecks, either due to
road topologies or incidents, that induces congestion with decreasing traffic speeds at
the upstream of the bottleneck locations is detected. We verify this framework with
simulated data in Section 5.6 and apply it to a real case study in Section 5.7. Besides,
a relevant literature review is presented in the next section.

5.2 Literature review

In this section, we review related research regarding the three main objectives, which
are mentioned previously: (1) detecting the activation of a bottleneck, (2) identifying
bottleneck locations and (3) tracking congestion forming upstream of a bottleneck due
to its activation.

Early studies aim to identify the activation and deactivation of a specific bottleneck,
of which the location is known a priori. Traffic data from e.g. inductive loop de-
tectors are collected to provide information into traffic at the bottleneck. These data
are time series showing the evolution of traffic variables like speed or flow. Banks
(1990) visually inspects time series of traffic speeds on both individual lanes and ag-
gregated over lanes of the road segment associated with a bottleneck. The drops in
speeds are used as the indicator of a bottleneck activation at that location. The method
is formulated by defining a speed threshold (which is derived based on experiments)
to filter 30-second-interval speed differentials (Banks, 1991). Following Bank’s ap-
proach, Hall & Agyemang-Duah (1991) derive a threshold of occupancy-to-flow ratio
to identify the formation and dissolution of a queue. Zhang & Levinson (2004, 2010)
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experimentally derive two thresholds of occupancy to classify traffic into 3 conditions:
congested, uncongested, and intermediate. Then, a bottleneck activation is detected
under the condition that upstream is congested and downstream is uncongested for at
least a minimal time, e.g. 5 minutes. Das & Levinson (2004) incorporate and analyse
both speed and flow information. In their method, traffic states are categorised into
four phases: free, synchronised, congested and recovered. A decision diagram is in-
troduced (based on various speed-flow conditions) to illustrate the changes of traffic
states. Drops of speeds and flows are the fundamental metrics in this diagram, based
on which bottleneck activation is identified accordingly. The authors also take into
account upstream and downstream flows to argue if the onset of congestion at the cur-
rent location is prone to the activation of bottleneck downstream. The aforementioned
methods require two conditions that make them unsuitable for a comprehensive bottle-
neck detection method. First, bottleneck locations have to be known in advance; hence
it can not locate bottlenecks but to detect activation of known bottlenecks. Second,
they require parameters (thresholds) that are derived from manually analysing (local)
related traffic data.

The second group of research incorporates both the temporal and spatial dimensions
to identify the location and activation time of bottlenecks observed in data. The most
popular method in this direction was introduced by Chen et al. (2004), so-called Chen’s
method. It processes all adjacent pairs of detectors and defines a set of rules to detect
if a bottleneck is activated between two locations. These rules consist of low speeds at
upstream locations, higher speeds at downstream locations, and (spatially) monotonic
decreases of speeds to a certain level. Upon detecting locations and activation time
of all bottlenecks on a highway, a speed threshold, which is learned through analysis
of traffic data, is chosen to determine if traffic is congested. Some important char-
acteristics can be subsequently derived such as activation frequency of bottlenecks or
average traffic delay. This method might work well in processing recurrent bottlenecks
and extracting characteristics for future activations, which most likely require the same
parameters for the detecting method. In line with Chen’s method, Zhang et al. (2018)
attempted to formulate the approach in a systematic way. Specifically, the speed thresh-
old is chosen as critical speeds, which are at the boundary between free and congested
traffic, on related links. Also, a post-processing step was proposed to associate relevant
activated points (indicating speed differences) together to form lines representing loca-
tion and time of bottleneck activations. Bai et al. (2011) proposed a similar approach to
Chen’s method, though they base their bottleneck activation definition on occupancy
instead of speed. As acknowledged by the authors in the original paper (Chen et al.,
2004), setting parameters for these methods require visually observing historical data,
and different bottlenecks will require different sets of those. For example, Wieczorek
et al. (2010) conducted a sensitivity analysis of three parameters (in Chen’s method)
by testing 125 distinct sets to find the best combination. Although Chen’s method and
other approaches can be effective, their parameters are sensitive to local bottlenecks;
hence, extensively applying the method to different bottlenecks will not be efficient.
Recently, Yang et al. (2020) have investigated the problem from a statistical approach.
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The authors proposed an optimization algorithm to estimate critical speeds by fitting
the fundamental diagram (flow-speed plot) with multi-source traffic data. These crit-
ical speeds are used to detect when traffic is oversaturated. Then, the frequencies
of congested states on various links can be calculated over a long period (e.g. three
months in their case study). Frequent or recurrent bottlenecks are then identified by
setting up a threshold on such frequencies. Hence, this approach could be suitable
for identifying significantly recurrent bottlenecks instead of specific bottlenecks on a
single pattern of congestion.

Activated bottlenecks cause upstream congestion, which results in slow traffic and
increases travel time. Hence, to quantify the impact of a bottleneck, it is important
to track the upstream congestion induced by its activation. For this purpose, traffic
information like speeds is evaluated in both spatial and temporal dimensions, which
constitute a 2D numerical matrix. Different methods have been proposed in the liter-
ature. As a follow-up improvement of Chen’s method (Chen et al., 2004), Bertini &
Horowitz (2008) added two more rules to mark the upstream congestion on the related
spatio-temporal map of traffic state if and only if (1) downstream detector is labelled
as congested, and (2) the speed at the current detector is below a speed threshold. The
latter condition assures that only congested (space-time) points associated with bot-
tlenecks are identified, which means low speeds due to disturbances and not caused
by bottlenecks are ignored. Palmer et al. (2009) suggest combining Chen’s method
with the FOTO model (Forecasting of Traffic Objects) and the ASDA model (Auto-
matic tracking of moving traffic jams) introduced by Kerner et al. (2004) to improve
the reliability of the resulted bottleneck detecting system. The emergence of different
patterns of upstream congestion related to bottlenecks identified by Chen’s method can
be detected and their evolutions can be tracked by Kerner’s methods. Analysing them
can yield further details such as wave speed and travel time loss, which are relevant
information of bottlenecks. Another direction of research classifies traffic states into
two common states, namely congested and free flow. Ban et al. (2007) use percentile
speeds on multiple days of traffic data to identify regularly recurrent positions of bot-
tlenecks. Then a speed threshold is chosen to binarize the (percentile-) speed map.
Jin et al. (2012) proposed coordinate transforming of the flow-density diagram into a
different feature space (so-called Uncongested Regime Shift (URS) - Perpendicular to
Uncongested regime Shift (PUS)) and used PUS as the indicator for congested traffic
state. A threshold is determined experimentally. As a result, a congestion contour map
of a corridor is obtained by calculating congestion frequencies at all detectors over
time. These methods give a statistical view of which road stretch and how often it is
affected by bottlenecks rather than the specific location and activation time of a bot-
tleneck. Elhenawy et al. (2013) proposed a bottleneck identification algorithm based
on the assumption that traffic states exist in two different phases, i.e., congested and
free flow, and speeds in these phases follow two Gaussian distributions. Accordingly,
a t-test is conducted on each space-time point to classify traffic state into one of these
phases. The distribution of speeds can vary significantly between different highways;
hence, their parameters need to be well adjusted before being further applied. Using
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the same assumption, Chen & Rakha (2017) generalize the problem of classifying traf-
fic states into two categories to image binarization, which is a well-developed topic in
computer vision. The authors proposed using Otsu’s method which, in essence, min-
imizes speed variances in individual categories as well as maximizing their variances
across categories. In addition, road geometry is incorporated to separate bottlenecks
which might be connected in a speed map, i.e. congested traffic from one bottleneck
propagating upstream and merging to congested traffic of the downstream one. One of
the main drawbacks of this approach is that the location of a bottleneck is an uncertain
quantity. For example, the activation can occur at any place downstream of an on-ramp.
Hence, although combining different sources of traffic data is a reasonable approach,
further research is required to enable extending this method to different locations or
roads.

Activations of bottleneck dampen vehicular speeds and the effect is visually strongly
observable in speed maps. In addition, applications of traffic state estimators can result
in satisfactory views of traffic over both the spatial and temporal dimensions with
equidistant resolutions. The Adaptive Smoothing Method (Treiber & Helbing, 2002;
Schreiter et al., 2010a) is a simple filter yet significantly effective estimator for filling
in traffic information (e.g., speeds) between detector locations. The resulted speed
maps are, therefore, easily seen/treated as images. Besides, computer vision is a well-
developed field where tools and techniques are available for wide-range applications.
Hence, image processing techniques have naturally come as a suitable approach for
analysing bottleneck activations.

In summary, the literature offers a range of methods to classify traffic patterns and
determine bottleneck locations and properties. However, these methods may not work
on road corridors with several bottlenecks in close vicinity. In this chapter, we pro-
pose a comprehensive method from an image-processing approach to (i) automatically
detect locations and activation/deactivation time of highway bottlenecks, and (ii) track
the congestion resulted upstream. Importantly, the method is able to disentangle dif-
ferent bottlenecks in complicated congestion existences in which multiple bottlenecks
are being activated concurrently and causing joint platoons of traffic jam. The re-
lated upstream congestion is identified to quantify the impacts of these bottlenecks on
traffic. The method can be easily extended to different highways to efficiently assist
(large-scale) studies of traffic bottlenecks.

5.3 Proposed framework

This section presents our proposed framework for the problem of bottleneck detection
and associated congestion identification, as illustrated in Fig. 5.1. Overall, the bottle-
neck detection method locates potential bottlenecks from traffic speeds. The results
are validated using other relevant sources of data, for example, road geometry can be
used to evaluate detected locations whether they are reasonable. The detection method,
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which is the core of our framework, consists of four main modules, namely congestion
detection, speed discontinuities detection, activation location and time identification,
and refinement.
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Figure 5.1: The overall framework of the proposed methods for bottleneck
detection

The first module classifies speed measurements into either congested or uncongested
states. Given a speed map representing traffic on a route over time, this module essen-
tially identifies congested regions which are our main region of interest. Additionally,
this also plays an important role in associating relevant (congested) regions to dif-
ferent bottlenecks that are going to be detected. Hence, together they can provide a
more complete picture of bottlenecks including activations and consequences. The
second module aims to highlight speed discontinuities in the traffic pattern since these
are probably the first necessary (and easily observable) evidence for the existence of
bottlenecks. This module also takes into account wide moving jams that introduce
speed reductions (although they are not necessarily static bottlenecks). The embed-
ded method can reduce their effects on detecting bottleneck-related discontinuities of
traffic speeds. Based on the highlighted speed disruptions, the next module identi-
fies potential bottleneck activations therein. To do so, it needs to gather and cluster
highlighted points by incorporating their spatial and temporal information. The goal
is to separate points associated with different activations of bottlenecks. Notice that,
the previous modules process data from loop-detectors (so-called raw data); hence, the
outcomes, i.e. activated locations, are locations of detectors.

In the proposed framework, raw data and ASM data are used in different modules
to utilize their advantages. Raw data are direct measurements collected from loop
detectors and ASM data are obtained from applying the Adaptive Smoothing Method
on the raw data. While we only have traffic measurements at sparse locations where
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loop detectors are available, ASM further estimates traffic data at equidistant locations
and provides a more complete view of traffic therein. In our framework, ASM data
are used for detecting congestion because an image-based representation of a traffic
pattern is more efficiently constructed from ASM data as compared to raw data. This
inherently benefits the identification of the originality of a bottleneck activation, i.e.
whether is is a primary or secondary bottleneck.

5.4 Congestion detection

This section presents a new approach based on image processing methods for con-
gestion detection in the first module. Given an image representation of a congestion
pattern, the objective is to detect various regions that are associated with congested
traffic. We propose to formulate this as an image segmentation problem in which the
target is to discern foreground objects from background areas which represent conges-
tion and uncongested traffic respectively. We first introduce a well-known approach
which is the so-called Chan-Vese model (Chan & Vese, 2001) from a general view on
object tracking. Afterwards, we show how the model is used to formulate the conges-
tion detection problem.

5.4.1 The Chan-Vese model

The Chan-Vese model (Chan & Vese, 2001) is an active contour model which evolves
a curve to boundaries of objects in images. The main principle of the algorithm is to
minimize an energy function F(c1,c2,C) defined as:

F(c1,c2,C) =µ Length(C)+ν Area(inside(C))

+λ1

∫
inside(C)

|u(x,y)− c1|2dxdy

+λ2

∫
outside(C)

|u(x,y)− c2|2dxdy

(5.1)

where u(x,y) is a given intensity image, C is any variable curve, c1,c2 are average
intensity values of u inside and outside C respectively, µ ≥ 0,ν ≥ 0,λ1,λ2 > 0 are
fixed parameters. The solution C is at the boundaries of foreground objects in the
image. For details of explanation or justification, we refer the readers to the original
paper (Chan & Vese, 2001).

The minimization problem can be solved by using the level set method (Osher &
Sethian, 1988) which describes all computations on a level set function φ having the
following features 

φ(x,y) = 0, for(x,y) ∈C

φ(x,y)> 0, for(x,y) ∈ inside(C)

φ(x,y)< 0, for(x,y) ∈ outside(C)

(5.2)
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The energy function is updated as a function of φ (see Equation 5.3) instead of C.

F(c1,c2,φ) = µ

∫
δ (φ(x,y))|Oφ(x,y)|dxdy

+ν

∫
H(φ(x,y))dxdy

+λ1

∫
|u(x,y)− c1|2H(φ(x,y))dxdy

+λ2

∫
|u(x,y)− c2|2(1−H(φ(x,y)))dxdy

(5.3)

where, H is the Heaviside step function and δ is the delta function; their definitions
are shown in Equation 5.4.

H(z) =

{
1, if z≥ 0

0, if z < 0

δ (z) =
dH(z)

dz

(5.4)

Consequently, a curve C can be defined implicitly by the zero-level set of the function
φ (i.e. set of points with φ(x,y) = 0). Accordingly, the motion of a curve can be
represented efficiently and easily by tracking the zero level set of the function φ . The
minimization of F(c1,c2,φ) can be solved by constructing the Euler-Lagrange equation
for φ (noting that c1,c2 are dependent and easily calculated from φ ). To satisfy the
differential condition, a small adjustment is made to make the Heaviside step function
and the delta function differentiable at around location z = 0. We call these adjusted
versions Hε and δε ; as ε→ 0 they converge to H and δ respectively. Now, the evolution
of φ (over virtual time t) is described by the following Euler-Lagrange equation

∂φ

∂ t
= δε

[
µ∇· Oφ

|Oφ |
−ν−λ1(u− c1)

2 +λ2(u− c2)
2
]

(5.5)

From Equation 5.5, the evolution of φ is controlled by two terms: the curvature κ =

∇· Oφ

|Oφ | , which preserves its smoothness and the so-called region term −λ1(u− c1)
2 +

λ2(u− c2)
2 affects the motion of the (zero-level set) curve.

5.4.2 The Chan-Vese model for traffic congestion detection

In traffic congestion detection, we aim to detect the curve C that surrounds congestion
regions presented in spatio-temporal speeds of a given pattern. This speed pattern
is equivalent to an intensity image u(x,y) where pixel values represent traffic speeds
at corresponding locations x and time y. The congestion region is the inside(C) and
the free flow traffic region is the outside(C). Based on this notation, our congestion
detection problem can be solved by applying the Chan-Vese method to the equivalent
image of traffic speeds. In Section 5.6 we will elaborate the Chan-Vese method step-
by-step and illustrate these steps with an example traffic data set (e.g. Fig. 5.3 and Fig.
5.4). Before doing so, we first explain the second key component of our methodology,
which is the bottleneck identification method.
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5.5 Bottleneck identification

In this chapter, we aim to detect activations of bottlenecks in two situations. Specifi-
cally we are interested in (i) whether a bottleneck is the primary source of congestion or
(ii) whether it is activated due to congestion caused by another downstream bottleneck.
We refer to these situations as primary and secondary bottlenecks. In the activation of
the former, there is no congestion downstream of the corresponding bottleneck, mean-
ing traffic is moving freely; whereas in the latter case, downstream of the bottleneck is
congested due to another bottleneck (further downstream). In a dense network where
there are multiple (topologically potential) bottlenecks located close to each other, con-
gestion due to an activation of a bottleneck can propagate upstream and trigger other
bottlenecks. Disturbances can emerge and possibly turn into wide moving jams which
can pass through upstream bottlenecks. These factors might hinder the detection of
activation of these secondary bottlenecks for (at least) two reasons: (1) interruptions
of traffic speeds at secondary bottlenecks are normally less significant as compared
to those at primary bottlenecks since traffic speeds are already low when approaching
these locations, and (2) the speed changes are interfered with wide moving jam which
can be observed more clearly along the direction of those jams. To avoid (falsely) rec-
ognizing the former phenomenon with any other speed disruptions (which are not due
to bottlenecks), one would need to observe the disruption on a temporal dimension to
test for longevity. Only if traffic has been congested for a certain long period, a bot-
tleneck can be a possible reason (though another possibility is incidents). Regarding
the second reason, it is generally accepted (i.e. there is abundant evidence (Cassidy &
Windover, 1995; Kerner & Rehborn, 1996; Treiber & Helbing, 2002; Schreiter et al.,
2010b)) that the dominant congestion wave speed is in the vicinity of -20km/h (the neg-
ative sign indicates opposite direction of traffic); hence, by introducing a filter along
this direction, one can expect to eliminate the interference of wide moving jam in the
detection of activations of secondary bottlenecks.

Based on the above observations, we have identified and developed a method for de-
tecting and identifying both location and activation time of bottlenecks, especially in
dense networks where there are multiple bottlenecks in close vicinity.

5.5.1 Speed discontinuities detection

In the spatio-temporal representation of traffic, a bottleneck activation is observed by
(temporally lasting) decreases of vehicular speeds at a certain location (or a vicin-
ity thereof). This phenomena holds in bottlenecks caused by either road topologies
or incidents. To identify bottleneck activation, we first detect speed discontinuities
along the direction of traffic flow under congested condition. In congested traffic dis-
turbances propagate against the direction of traffic flow. Accordingly, gradients are
calculated in this direction to highlight the disruptions (if they exist) of traffic speeds.



5.5. Bottleneck identification 83

Below we develop a method to construct and apply an appropriate gradient kernel for
that purpose.

Given a traffic speed pattern represented by intensity image u, Equation 5.6 shows
the procedure of calculating gradients, Gc, along congested waves. The kernel Pc is
defined by rotating a longitudinal gradient kernel P, which calculates speed differen-
tiations on the spatial dimension. The size of the kernel determines how many related
neighbouring pixels contribute to the speed discontinuity of a central pixel. Through-
out the chapter, traffic speed map u is presented in a way that the driving direction is
from bottom to top, and that is the decreasing order of indices in u.

Gc = u0 ∗Pc

Pc = rotate(P,wc)

P =

[
+1 +1 +1
−1 −1 −1

]
wc = wave speed≈−20km/h

(5.6)

One way to approximate the kernel Pc is to propagate the top row of the Prewitt kernel
P to the bottom row with the speed of wc, assuming the distance between them is ∆y.
This is to mimic the propagation of traffic waves in congestion. Its translated posi-
tion is calculated and the corresponding values in Pc are determined by discretization
afterwards. We propose a procedure as follows (see Fig. 5.2 for an illustration).

|Pc(p
dis
1
)| = 1− (x1

dx
− [x1

dx
])

Pc(p
dis
0
) = 1

wc

p0(x0, y0)

p1(x1, y1)

pdis
1
([x1

dx
], 1)

dy = ∆y

dx

Figure 5.2: A method to approximate the kernel Pc. dx,dy are temporal and spatial
resolution, respectively.

(i) Define a coordinate system to P with left-right and top-down as positive direc-
tions. Pick the top-left pixel and assign its coordinate as p0 = (x0,y0).

(ii) Translate p0 downward with speed wc and obtain p1 = (x1,y1). p1 is identified
based on the following equations. (∆y is the distance between two consecutive
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locations.)

y1 = y0 +∆y

x1 = x0 +
y1− y0

wc
= x0 +

∆y
wc

(5.7)

(iii) Now comes the discretization step with the spatial and temporal resolution (dx,dy).
By assuming the distance between two rows is the unit distance, we get dy = ∆y.
We determine which (leftmost) item that p1 sits on and its Pc value accordingly.
This can easily be done by discretizing x1 by the (temporal) unit dx. Accord-
ingly, its Pc value is proportional to the intersection of cell p1 and its discretized
cell pdis

1 .

pdis
0 = (0,0), pdis

1 = ([
x1

dx
],1)

Pc(pdis
0 ) = 1, |Pc(pdis

1 )|= 1− (
x1

dx
− [

x1

dx
])

(5.8)

(iv) Fill all items on the right of pdis
1 with 1’s and those on the left with 0’s. Then

construct a symmetric Pc with respect to its central item. Finally, change the sign
of all values in the bottom row to negative.

This procedure can be expanded to determine kernels with more elements if needed.
Note that, the above procedure uses the direct (mathematical) gradient kernel as the
underlying kernel, one might as well use different kernels such as Prewitt or Sobel.

5.5.2 Activation location and time identification

If a bottleneck is activated for a period, one can observe a speed disruption during that
time. Alternatively, the response (Gc) of the Pc-based filter presents minimal (nega-
tive) values at related time and locations. Due to various reasons e.g. heterogeneity of
traffic or disturbances of traffic at bottleneck location or noises in measurements, these
negative values are not only found at the bottleneck location but also nearby locations.
Besides, these locations also spread horizontally as long as the related bottleneck is
activated. To aim for a robust method, we group pixels with negative values (in the
response Gc) into rectangular clusters which each of them represents the speed dis-
ruption of a potential bottleneck spatially and temporally. We refer to them as bold
lines.

A mathematical approach for this clustering problem is to determine rectangular bound-
aries that minimize intra-distances of pixels inside the same boundaries, pixels outside
boundaries and/or maximize intra-distances between pixels inside boundaries and pix-
els outside boundaries. Despite that, in this section, we propose an algorithm to solve
the problem with a simplified yet effective approach. The underlying principle is to
find all minimum and extend the corresponding boundaries until they reach edges with
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average values approximately the same as the background value. The main steps of the
algorithm are as follows (see Algorithm 5.1 for a summary):

(i) Estimate the background response value by averaging negative responses outside
the congestion area.

(ii) Identify local minima in F by comparing each value with all eight of its neigh-
bours. We denote this set as M .

(iii) Pick the smallest minimum in M . For each side in {left, right, top, bottom},
calculate average Gc values. If it is larger than the estimated background value
Gc

bkg, expand the boundary to include this edge. Iterate this procedure until no
more expansion is possible. As a result, a (rectangular) boundary of the region
surrounding some minimal Gc can be determined. Next, remove all the minima
in this region from M and iterate the process until M is empty.

(iv) Bottleneck locations and activation time: For each one of the rectangular regions
found in the previous step, the location and activation time of the related (poten-
tial) bottleneck is identified by finding the line with the strongest sum/average
of Gc values. A map of all these lines, indicating all possible bottlenecks in the
given pattern, is obtained.

(v) Refinement: Relevant rules are applied to clean unnecessary lines, for example
very short lines due to disturbances or noise. One can define the minimum ac-
tivation time for bottlenecks of interest and eliminate lines with shorter lengths
accordingly. Also, lines or their parts that lie outside of the congestion mask,
identified in the previous section, are eliminated.

5.5.3 Identification of associated congestion

The previous sections have shown how to (1) detect congestion regions in a spatio-
temporal speed map, and (2) identify lines which indicate locations and activation
time potential bottlenecks therein. Based on these two elements, congestion regions
associated with detected bottlenecks can be identified. There are two underlying prin-
ciples in this algorithm. First, a spatio-temporal congestion region is attached to the
most downstream bottleneck (if it exists). Second, when a bottleneck is triggered, the
activation continues until congestion dissolves.

5.5.4 Primary or secondary bottleneck determination

In this section, we propose an algorithm to determine if a bottleneck is primary or sec-
ondary. It is based on the congested regions associated with the detected bottlenecks.
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Algorithm 5.1 Identification of bottleneck activation location and time
Require:

Response Gc of a speed pattern to kernel Pc

Congestion (image) region indicator, or congestion mask, Mc

I - Background value estimation
1: Free flow mask M f = Mc

2: Background filter response Gc
bkg =

∑
p∈M f

Gc(p)

|M f |

II - Local minimum
3: M = {m|m ∈ Gc,m is a local minima}

III - Bold lines identification
4: while M 6= /0 do
5: mi← argmin

m∈M
Gc(m)

6: re← the rectangular boundary of mi

7: while re is expanding do
8: for each neighbour edge e of re do

9: if
∑

p∈e
Gc(p)

|e| ≥ Gc
bkg then

10: re← re∪ e
11: end if
12: end for
13: end while
14: R←R ∪ re

15: M ←M \ re

16: end while

IV - Location and time identification
17: for each re ∈R do
18: s← vertical projection of Gc(re)

19: Activation location l← argmin
x∈s

s(x)

20: Activation time t as in re

21: end for

V - Refinement
22: Apply relevant constraints to eliminate unrelated lines

By identifying traffic states downstream of a bottleneck, i.e. their related congested
region, the source of the corresponding congestion can be identified effectively. Par-
ticularly, the condition for a primary bottleneck is that its downstream traffic is not
congested, meanwhile, congestion has already occurred downstream during the begin-
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ning of a secondary bottleneck. Our proposed procedure for identifying primary or
secondary bottlenecks is shown in Algorithm 5.2.

Algorithm 5.2 Primary or secondary bottlenecks classification
Require:

C : includes a separation of related congestion regions of detected bottleneck acti-
vations

Procedure
1: for each bi ∈B do
2: t i

0 is when bi is triggered/activated (which is associated with the top-left pixel
of ci)

3: d← downstream regions of ci at time t i
0

4: if d is not congested then
5: bi is a primary bottleneck
6: else
7: bi is a secondary bottleneck
8: end if
9: end for

5.6 Methodology verification

In this section, we verify the two main components of the proposed method, namely
traffic congestion detection and bottleneck identification. The former is compared with
the bimodal-based method, a well-known method for the classification of traffic into
either congested or uncongested states. For the latter, simulated data is used due to
their advantages over real data.

5.6.1 Traffic congestion detection

To evaluate the performance of the proposed approach on classifying traffic states in
congestion patterns, we first analyse the parameters in the Chan-Vese model. Then, we
compare our approach with the bimodal-based method (Chen & Rakha, 2017), which
is the most popular one found in the literature.

For the Chan-Vese model to converge quickly and precisely at the boundaries of con-
gestion regions, it is necessary to initialise the zero-level set curve, φ0, close to the
congestion boundaries. We have tested different initializations of φ0 with various val-
ues in this range and have come to the same (expected) conclusion. Namely, using
speed thresholds in between 30 and 60 km/h increases the reliability of congestion
classification in traffic patterns by the Chan-Vese model. As a demonstration, Fig. 5.3
shows the final contours with respect to different initial settings of φ0. The presented
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traffic goes through two road stretches with different speed limits which impose differ-
ent free speeds, congestion occurs in the downstream lower speed region and slightly
reaches the higher speed region. The energy function minimization (Equation 5.3) has
two (local) solutions on this pattern. Different initialisations of φ0 lead to different
classification of the pattern. If a high speed (e.g. 75km/h) is used, φ converges to the
function whose zero-level set is at the boundary with high free speeds upstream and
low speeds downstream (see the line of φ0 in Fig. 5.3b). Consequently, the deduced
congested region covers (almost) the whole region with low free speed, which is not the
desired result. On the other hand, by starting with low congested speeds (e.g. 40km/h),
the converged φ is at the boundary of the congestion that we observe from the pattern
(see Fig. 5.3a). Hence, by starting φ0 at the speed of 40km/h, the expected congested
region is identified sufficiently by the Chan-Vese model.

(a) (b)

Figure 5.3: Evolution of the zero-level set of φ according to different initializations
(a) initial mask is 40km/h (b) initial mask is 75km/h.

In addition, two different scenarios have been used to compare the method with the
bimodal-based method. In the first scenario, only one free traffic speed is available
in congestion patterns. Note that fluctuations of this free speed are normally observed
from traffic data. The second example has at least two different free speeds in con-
gestion patterns. Fig. 5.4 shows two examples of each of these scenarios and the cor-
responding outcomes of the two methods. As shown in the figure, both perform well
on the two topmost patterns. A quantitative comparison indicates that their identified
congested regions overlap by more than 99%. This shows that the proposed method
based on the Chan-Vese model delivers comparable results as that of the bimodal-based
method in simple layouts of road stretch, on which traffic speeds can be separated into
two distributions. On the other hand, the bottom two patterns are two examples where
the assumption of the bimodal does not hold. The presence of different road stretches
with various speed limits has led to unexpected results when applying the bimodal
method as shown in the middle figures. The congested regions are over-identified to
include the lower free speed regions of the downstream road stretch. One might sug-
gest to look for a local optimum of speed distributions in these patterns and identify
the one that most likely represents expected congestion boundaries. Having said that,
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this depends greatly on the histogram of traffic speeds and such congestion-related
optimum are not clearly shown and/or easily identified. Unlike the results from the
bimodal method, those from the Chan-Vese method do not cover the entire regions
with lower free speed. Qualitatively, they accurately cover the congested regions in the
related patterns (as can be seen from Fig. 5.4c). This has shown the superiority of the
Chan-Vese method over the bimodal-based method in detecting congestion in traffic
patterns.

10:00 10:45

Time (hh:mm)

9

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

20

40

60

80

100

10:00 10:45

Time (hh:mm)

9

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

0

0.2

0.4

0.6

0.8

1

10:00 10:45

Time (hh:mm)

9

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

0

0.2

0.4

0.6

0.8

1

06:32 07:17 08:02 08:47

Time (hh:mm)

12

11

10

9

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

20

40

60

80

100

120

06:32 07:17 08:02 08:47

Time (hh:mm)

12

11

10

9

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

0

0.2

0.4

0.6

0.8

1

06:32 07:17 08:02 08:47

Time (hh:mm)

12

11

10

9

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

0

0.2

0.4

0.6

0.8

1

14:26 15:11

Time (hh:mm)

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

20

40

60

80

100

14:26 15:11

Time (hh:mm)

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

0

0.2

0.4

0.6

0.8

1

14:26 15:11

Time (hh:mm)

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e
 (

k
m

)

0

0.2

0.4

0.6

0.8

1

12:30 13:15 14:00 14:45 15:30

Time (hh:mm)

11

10

9

8

7

6

5

4

3

2

1

0

D
is

ta
n

c
e

 (
k

m
)

20

40

60

80

100

(a) Speed patterns
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(b) Bimodal
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(c) Chan-Vese

Figure 5.4: Comparison of the Chan-Vese model and the Bimodal-based method
on different congestion patterns: the top two patterns have one speed limit, while
the bottom two have two different speed limits. The congestion detection results
of applying the bimodal method and the Chan-Vese model are shown in (b) and (c)
respectively.

Through experimenting with the proposed approach, using the Chan-Vese model for
the detection of congested regions in traffic patterns, it is positive to conclude that
the Chan-Vese method is a highly viable method that can perform well on different
congestion patterns.
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5.6.2 Verification of the bottleneck identification method

Verification approach

For verification of the proposed method, we aim to analyse: (1) its capability of detect-
ing bottleneck activations in congestion patterns, (2) how the setting of loop-detectors
affects the method’s outcomes. For these objectives, we make use of traffic simulation
to produce crisp data that is difficult to find from real traffic flow data. In partic-
ular, a microscopic traffic simulator can provide granular details into traffic such as
vehicle trajectories, traffic speeds on every short distance interval (by simply setting
up loop-detectors). Note that these cannot be provided by raw traffic data due to lim-
ited numbers of loop detectors. These features enable us to identify ground-truths of
bottleneck activation locations, which is necessary for evaluating the accuracy of the
proposed method. Additionally, by manipulating loop-detectors (in a simulator), we
can test if the method is capable of detecting activations of bottlenecks in deduced
traffic patterns and analyse how those settings affect the outcomes. Following are the
steps carried out.

- Design a road stretch with possible close bottlenecks that are activated concur-
rently with a high traffic demand. This ensures that a test can be performed with
heavy congestion.

- Set up loop-detectors with short intermittent distances, i.e. 100 meters, to record
traffic data. This provides a convenient base for changing the loop detector se-
tups later on. For example, we can eliminate loop detectors to get coarser traffic
patterns.

- Tuning incoming traffic flows to activate one or more of these bottlenecks.

- Repeatedly apply the proposed method and investigate the results.

Details of these steps are in the next sections.

Simulated example design In this study, we use the microscopic simulation tool
FOSIM (Freeway Operations SIMulation) (Vermijs & Schuurman, 1994) which was
developed at Delft University of Technology. It models traffic dynamics through the
simulation of the behavior of individual vehicles. An artificial road stretch is designed
as shown in Fig. 5.5. This road stretch has several potential bottlenecks which are two
on-ramps, one off-ramp and a road split. While the first on-ramp (ON1) is located
further, 2500 meters away, from the next (potential) bottleneck, the second on-ramp
(ON2) is quite close to the off-ramp (OFF1) which is just 500 meters downstream. This
is expected to create a complicated weaving section which will trigger congestion. The
road split is designed to also create a bottleneck when vehicles have to change lanes to
meet their desired destinations.
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Origin 1

5000m 2500m 2500m

300m

500m

1500m

200m

300m

200m

250m

250m

Summary
On-ramp 1 (ON1):
5200m - 5500m

On-ramp 2 (ON2):
7700m - 8000m

Off-ramp 1 (OFF1):
8500m - 8750m

ON1 ON2 OFF1

Destination 1

Destination 2

Figure 5.5: The layout of the example (simulated) road stretch.

Loop detectors are implemented every 100 meters (along this 12km road stretch) and
record traffic every 60 seconds. Hence, we can obtain fine simulated traffic data for
further investigation. This is much better than in reality where loop detectors can be
300 meters to more than 1000 meters apart.

Simulated congestion patterns Fig. 5.6 shows spatio-temporal speed maps of con-
gested traffic obtained from the FOSIM model on the road layout in Fig. 5.5. As
illustrated in the figure, two bottlenecks have been activated. The first one (ON2)
is at a distance of around 8000-meter from the Origin 1, and the second one (ON1)
is at a distance of around 5200-meter from the Origin 1 (see Fig. 5.5 for the road
schematic). For simplicity, from here on we use relative distances from the Origin 1
to identify different locations on the simulated road stretch. The congestion triggered
by the downstream bottleneck propagates further upstream and reaches the upstream
bottleneck. Hence, we have selected this as a typical example to verify the proposed
method. We have also varied distances between loop detectors to generate different
levels of details in raw data. Fig. 5.6 shows three deduced patterns with spacings of
300, 500, and 1000 meters between two consecutive detectors. Two activated bottle-
necks can be observed from these patterns clearly, although it is more difficult with
those in the p1000 pattern (Fig. 5.6d.

Verification results

The proposed method is applied to all the simulated patterns shown in Fig. 5.6. Sum-
mary of the results is given in Table 5.1. It is used to answer two questions: (1) Is
the method capable of detecting bottleneck activations, and (2) Do the locations ex-
tracted from different deduced patterns consistently point to the same locations? The
former, once confirmed, will show the effectiveness of the method, while the latter will
demonstrate its reliability.



92 5. Feature Extraction (ii) - Bottleneck Detection and Characteristics

(a) p100 (b) p300

(c) p500 (d) p1000

Figure 5.6: Simulated traffic patterns: (a) the original pattern with detectors at
every 100 meters, and other deduced patterns which are obtained by eliminating
loop detectors to maintain detector spacing distances of 300m (b), 500m (c), or
1000m (d).

The results indicate that the proposed method has successfully detected the activations
of the two major bottlenecks in all the simulated patterns. Consequently, this simple
experiment has shown the capability of the proposed method in detecting bottleneck
activations or speed discontinuities in congestion patterns.

The results show that most of the associated detectors (of detected bottlenecks) are
close to the activation points. In particular, the ON1 bottleneck is detected somewhere
downstream of the 5200m or 5100m detectors, which are very close to the actual ac-
tivated location - 5200m. Similarly, those detectors related to the ON2 bottleneck are
located at 7900m, 8000m, 8100m which are also close to the activation point - 8000m.
To correctly interpret these results, notice that raw data can only give rough estimates
of activated bottlenecks, i.e. the locations of closest upstream and downstream detec-
tors. Therefore, the actual locations might be anywhere in between. If intermediate
locations (between detectors) are used as predicted activation points, the error that the
method on raw data incurs grows as the detector spacing becomes larger (see the table
for details). For strong bottlenecks, like the ON1, the actual locations (5200m) are in
between the detected pairs of associated detectors. Whilst this is not always the case
with weak bottlenecks like the ON2, for which the detected pair (8100m-8600m) does
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Table 5.1: Summary of detected bottleneck locations obtained by using raw loop-
detector data. These locations are the upstream and downstream detector locations
with respect to detected bottlenecks.

Detector space (m) Detected locations Error Offset
Bottleneck: On-ramp 1 (ON1) 5200m

100 5200-5300 50
300 5200-5400 100
500 5100-5600 150

1000 5100-6100 400

Bottleneck: On-ramp 2 (ON2) 8000m
100 8000-8100 50
300 7900-8200 50
500 8100-8600 350

1000 8100-9100 600

not cover the actual activated location (8000m). There are two causes for explaining
this. First, speed accelerations, i.e. magnitudes of speed discontinuities, change more
sharply with stronger bottlenecks, therefore it is easier to detect their peaks. Second,
since we calculate differences of speeds at locations of detectors, how those detec-
tors are implemented also affects the accuracy of the detecting results. In particular,
detection of stronger bottlenecks are more sensitive to this.

5.6.3 Time complexity

The method for traffic congestion detection is based on the Chan-Vese model. The
numerical solution proposed in the original paper (Chan & Vese, 2001) evolves the
initial zero-level set over a predefined number of iterations, η . With a limited η , this
method of detecting congestion has a time complexity of O(|E|× |T |), where, |E|, |T |
are the sizes of spatial length and temporal duration of the (ASM-based filtering) speed
map, respectively.

The time complexities of the three main components of the bottleneck identification
method are as follows. Speed discontinuities are detected by filtering through all pixels
in the speed map, hence, it has a complexity of O(|E| × |T |). Activation location
and time are identified from raw data with the complexity of O(|Er| × |T r|), where,
|Er|, |T r| are the sizes of spatial length and temporal duration of the raw speed map,
respectively. Observe that this is (greatly) dominated by O(|E|× |T |) as filtered data
generally has higher resolutions than raw data.

By combining all the components complexities, it is expected that the complexity of
our proposed framework is linear to the size of ASM-based filtering speed map. It is
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also worth to note that actual processing time also depends on the selection of param-
eters, e.g. the number of iterations in the Chan-Vese model.

5.7 Case study

This section demonstrates an application of the proposed method. Given a route with
multiple topological disruptions, like on-ramp or off-ramp, the objective is to study (1)
which are the most frequently triggered bottlenecks and (2) are they the primary source
of congestion, i.e primary or secondary bottlenecks. Also, we aim to have the answer
over a long period, e.g. one year long, so that derived statistics can give more general
overview on the road stretch. For that, an automatic method like the proposed one is
highly relevant.

(a) The studied corridor on OpenStreetMap

Loop detectors

off-ramp on-ramp

on-ramp end-of-plus-lane

driving direction

d1d2d3d4

d5
d6d7d8d9d10

01776921280

1916
2395

2632301836073965
33038010001280

2750300035103965

(b) A simple schematic of the road

Figure 5.7: The studied corridor is on the ring road of Rotterdam, the Netherlands.
The relative distances of the detectors are shown next to the detector symbols.
Estimated distances of road topologies are shown in pairs of (begin, end) distances.

We have selected a corridor on the ring of Rotterdam, the Netherlands, to study (see
Fig. 5.7a for a snapshot from OpenStreetMap). There are several potential bottlenecks
on this stretch due to existing topological structures, namely an end of a plus lane
(EoPL) – a (left) lane dedicated for fast vehicles – at around 330m-380m, an on-ramp
(ON1) at around 1000m-1280m, an on-ramp (ON2) at around 2750m-3000m, and an
off-ramp (OFF) at 3510m-3965m. The numbers are relative distances from the chosen
route’s origin which is the first detector (d1). Fig. 5.7b presents a simple schematic of
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the road stretch. Regarding data, one year (2018) of 1-minute-aggregated speeds had
been collected for the whole ring road. The data are provided by the National Data
Warehouse (NDW), the Netherlands ndw. We have identified 778 traffic patterns that
have congestion propagating to the selected corridor.

5.7.1 Detection of bottlenecks on a field-data pattern

One example pattern of traffic on the selected corridor is given in Fig. 5.8a. The
objective is to detect the three activated bottlenecks. The top row shows the results
with respect to the speed discontinuities detection. It can be seen that the response to
the inclined kernel Pc (Fig. 5.8c) better highlights the locations and activation time of
the three bottlenecks as compared to the response to the vertical kernel P (Fig. 5.8b).
Notice that this advantage is more significant in cases that bottlenecks have high fre-
quencies of disturbances (due to the direction on which we calculate the gradient). The
second row shows the results obtaining from identifying bottleneck activation loca-
tions and time. Although different rectangles (i.e. bold lines) can be detected (see Fig.
5.8d), their representative lines lie on the corresponding bottleneck locations. By re-
moving the lines or parts that lie outside of the congestion region as well as those that
are too short, we obtain the final result as shown in Fig. 5.8f. This detection result is,
qualitatively, the expected outcome given the speed pattern in Fig. 5.8a. Also, related
congestion regions are sufficiently identified for each of the detected bottlenecks as
shown in Fig. 5.8g. This example and many others in our experiment have further con-
firmed the efficiency of our proposed method in detecting relevant features of activated
bottlenecks from traffic data.

5.7.2 Derived insights into the selected corridor

Fig. 5.9 illustrates the outcomes of applying the proposed method to the collected
data. There are several interesting findings from the left figure, which is from raw
data. First, the detectors d2, d9, and d8 are the most frequently detected activation
locations. Their annual counts are more than 400 times which indicate on average they
are activated every day. By associating with the topology information in Fig. 5.7,
these locations are located near three topological disruptions. Particularly, d2 is just
upstream of the end of the plus lane (EoPL) on the road stretch, d8 is at the end of
the ON2’s shoulder lane, and d9 is at the beginning of the weaving lane before the
off-ramp (OFF). Notice that, the combination of ON2 and OFF potentially creates a
weaving section which causes traffic congestion. The results also provide an overview
of the variance of bottleneck activated locations. While almost all the activations are
determined to trigger downstream of d2 in case of the EoPL bottleneck, there are more
varieties with the ON2-OFF bottleneck. This might be expected as the EoPL is a kind
of the lane drop bottleneck, and congestion usually occurs at the vicinity of the end-
ing of the lane. Additionally, the next detectors - d1 and d3 - are quite far away from
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Axes labels: vertical and horizontal axes repre-
sent (relative) distances along the driving direc-
tion and time (hh:mm), respectively.

Figure 5.8: Intermediate results when applying our proposed framework to a traf-
fic pattern. Top row - a pattern of traffic speed and its responses to different
kernels (with respect to the detection of speed discontinuities in Sec. 5.5.1): (a)
An example of traffic speed, (b) Response to the vertical kernel P, (c) Response to
the inclined kernel Pc. Second row - identifying locations and activation time of
(potential) bottlenecks (with respect to the proposed algorithm in Sec. 5.5.2): (d)
rectangular regions, or bold lines, the corresponding locations and activation time
before (e) and after (f) refinement. Bottom figure: (g) tracking congestion regions
associating with different bottlenecks. Note that the underlying path of this pattern
covers the entire selected corridor; therefore, its spatial extent is much longer than
the distance of the corridor shown in Fig. 5.7. (For better visualisation of these
plots, we refer the reader to the digital version.)
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the EoPL which might explain the dominant detections of discontinuities at d2. In the
case of ON2-OFF, the weaving traffic, namely trying to merge from the on-ramp and
to leave the highway to the off-ramp, can create a lot of disturbances and trigger con-
gestion when traffic is getting dense. Besides, congestion can also occur due to a high
demand of ON2 merging traffic. Hence, traffic speed disruptions detected at d8 and d9
are understandable. Fig. 5.9 also shows much fewer amounts of potential bottleneck
activations downstream of detectors d10, d6, and d1. This can be expected as there
are no topologically potential bottlenecks downstream of these detectors. The detector
d10 is the closest one to a physical disruption, however, it is located downstream of
the off-ramp which seems to fall into the discharging areas. There are also noticeable
amounts of activations at detector d4 which is just at the end of the first on-ramp’s
shoulder lane. The results suggest that this one does activate multiple times, although
it is not as considerable as the downstream one.
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Figure 5.9: Activation locations of bottlenecks on the studied corridor during
2018. Bottleneck locations are associated with the most upstream detectors,
with detector annotations are shown in Fig. 5.7b.

Regarding the originality of these bottleneck activations, we have two remarkable cases
to discuss here. First, the on/off-ramp bottleneck were mostly the primary bottleneck.
Approximately 90% of the detected activations originate at this location. The story is
opposite in the case of the end-of-plus-lane bottleneck. Nearly 90% of the occurrences,
it reacts to propagations of downstream congestion. The activation intervals of all
detected bottlenecks are aggregated and depicted in Fig. 5.10c. The plot indicates
strongly the two most outstanding bottlenecks on this corridor, namely the EoPL and
ON2-OFF. The heat map is also in line with the significant correlation of these two,
i.e. whenever the downstream is activated, most likely the upstream will be triggered.
Their specific activation time is shown in Fig. 5.10a and Fig. 5.10b, respectively.
These two bottlenecks active fairly often during morning and afternoon peak-hours,
although the peaks are in the morning (in both bottlenecks). The primary activation
counts (over time) are also depicted to reveal if there is any correlation with activation
time. In this case study, the figures suggest no indication that the chance of getting
primary activations differs with respect to morning or afternoon peak hours.
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Figure 5.10: Activation time of bottlenecks on the studied corridor during 2018.
Counts are aggregated over hours.

In conclusion, by automatically processing one year of traffic speeds, the proposed
bottleneck detection method has found two most frequent bottleneck locations on the
selected corridor, which is the EoPL and ON2-OFF. In addition, most of the time,
the ON2-OFF bottleneck causes congestion and it, later on, triggers the EoPL. These
findings suggest the majority of attention should be on the downstream location in
order to mitigate the impacts of congestion and improve the quality of traffic on this
corridor.

5.7.3 Time complexity

Fig. 5.11 shows the realised processing time of the proposed method. The complexity
of a pattern is represented by the number of measurements from related loop-detectors.
It appears that there is a linear correlation between processing time and pattern sizes,
which is in line with the theoretical analysis in Section 5.6.3. In addition, the majority
of patterns possess up to approximately 1.5× 104 measurements and took less than
6 seconds to be processed. Hence, we can conclude that the method is efficient for
offline processing bottleneck activations as well as potential for online applications.

5.8 Conclusion

This chapter has presented a method to automatically detect highway bottleneck ac-
tivations in congested traffic patterns using image processing techniques. First, con-
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Figure 5.11: Processing time for detecting bottleneck activations.

gestion regions are identified using the Chan-Vese model, which is the active contour
model without using edges. Second, the filtering kernel is constructed to detect speed
discontinuities in raw traffic data, which subsequently gives approximate locations of
bottlenecks. By calculating speed gradients along the direction of congestion waves,
speed disruptions are efficiently highlighted. This applies to secondary bottleneck
where their downstream traffic is congested; hence, assuring the detection thereof.
In addition, information on the temporal dimension is incorporated to associate indi-
vidual activating points at (the vicinity of) a location, which subsequently generate
a comprehensive detection (represented as bold lines) of location and time of the re-
lated bottleneck. Third, congestion associated with the detected bottleneck is identified
based on the results (overall congestion regions and bottleneck activation location and
time) from the first two steps. Based on that, characteristics of associated bottlenecks
can be calculated such as originality of congestion, i.e. primary or secondary source.
The proposed method is investigated using both simulated data and real loop-detector
data, based on which we have come to the following conclusions:

- Bottleneck activation locations can be determined efficiently by detecting speed
discontinuities along congestion wave direction in loop-detector data.

- The accuracy of detected locations (by loop-detector data, and perhaps generally
fixed-location data) depends on both bottleneck strengths and locations of loop
detectors. The stronger a bottleneck is, the finer detector spacing is so as to
determine where congestion saturates.

- Inherently from the above point, activated locations of weak bottlenecks, i.e.
those with long accelerating distances, can be sufficiently determined under
sparse spatial setting (500m to 1000m) of detectors.

For future studies, there are some opportunities for improving the method as following.

- The speed discontinuity kernel can be improved to not only account for con-
gested waves but also incorporate free traffic and deceleration/acceleration area.
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Given that every (spatio-temporal) traffic state is classified into congested or
uncongested class, this is directly feasible from the proposed method.

- Network topologies can be incorporated in order to realize precise bottleneck lo-
cations. That means the proposed method in this paper acts as a rough detection
of bottlenecks (by specifying related detectors).

Since the proposed method is automatic, it can process traffic patterns and extract
bottleneck-related characteristics systematically. Hence, one can easily apply the method
to large-amount of highway traffic data, which is increasing quickly over time, for con-
veniently mining relevant information. In addition, the association of congested traffic
regions to the corresponding bottlenecks provides a precise way to measure or eval-
uate consequences of individual bottlenecks or combinations thereof on traffic flow.
In practice, the automation and advanced consequence detection bring comprehensive
tools for stakeholders such as traffic manager or policymakers to get valuable insights
for important tasks such as bottlenecks evaluation and strategy assessment. As a result,
the impacts of highway bottlenecks can be reduced or prevented to improve mobility
on highways.



Chapter 6

Pattern Retrieval

In this chapter, we present pattern retrieval that essentially searches the database for
patterns of interest. Arguably, the search-by-example is the most challenging one as
the system needs to characterize given patterns and finds the most similar patterns
in the database afterwards. For that purpose, we have identified two crucial elements
involved, namely pattern representation and similarity measuring schemes. The former
is concerned with how to represent patterns of congestion based on features that are
learned previously. The latter applies relevant distance schemes on the representation
obtained from the former step to measure the similarities between patterns. This results
in their ranking of closeness towards a given pattern; hence, the most similar patterns
are identified.

This chapter is based on the following paper that is (at the time of writing this thesis)
in preparation for submission:

Nguyen, T. T., S. C. Calvert, G. Li, H. Van Lint. Pattern retrieval of traffic congestion
using graph-based associations of traffic domain specific features.
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6.1 Introduction

6.1.1 The necessity of congestion pattern retrieval

Innovation technologies have opened a new area of big data in many domains. On the
one hand, these data provide many opportunities to gain valuable insights which are
critically important for strengthening knowledge in any domain. On the other hand,
vast amounts of data pose huge challenges in management and utilisation. In the field
of transportation AVI - Automatic Vehicle Identification and FCD - Floating Car Data,
many highly relevant traffic quantities, such as vehicular speeds or volumes, can now
be collected in different degrees of spatial and temporal granularity, in part thanks
to a variety of sensing systems such as induction loops. These data are beneficial
for various purposes in road administration, industry and academia, including policy
evaluation (Van Lint et al., 2005; Wang et al., 2006; Calvert et al., 2011), traffic man-
agement (Calvert et al., 2018), traffic modelling and simulation (van de Weg et al.,
2018; Soriguera & Robusté, 2011; Vlahogianni et al., 2005).

The collected traffic data comprise of critical information for understanding many as-
pects of traffic, none so important as traffic congestion as a major nuisance and of
major economic influence. Traffic congestion can be triggered at many different times
and places due to various different reasons such as increasing travel demands at peak
hours or incidents on roads, but also minor behavioural disturbances. Hence, we can
expect numerous instances of congestion to exist in historical traffic data, which consti-
tutes a valuable source of insights into traffic congestion. Arguably, it is advantageous
to have a retrieval system that can identify similar congestion instances in historical
traffic data. Such a retrieval system can pave the way for the development of many
applications, such as traffic analysis and traffic prediction to analyse the recurrence of
congestion. By checking if similar types of congestion occurred in the past, we can
evaluate if a given congestion instance is recurrent or non-recurrent. In addition, if a
type of congestion is recurrent, (possible) variations can be revealed based on analysing
similarly occurring instances. A further step in this direction is to associate these sim-
ilar instances with other relevant sources of information, e.g. incidents or topology,
so that a more thorough understanding of certain types of congestion is derived. On
the traffic prediction branch, the ability to extract similar patterns in historical data
is a convenient tool for identifying (ir)regularities in traffic, which is highly valuable
for predicting traffic states (e.g., (Lopez et al., 2017)). To the best knowledge of the
authors, such a retrieval system for traffic congestion is currently lacking in transporta-
tion literature. This gap hampers the potential benefits of the collected traffic data,
in particular, to obtain similar instances of congestion for different purposes and aid
traffic analysis and prediction in congested traffic.

The dynamics of traffic involve both the spatial and temporal dimensions. Hence,
congestion is effectively observed or evaluated by constructing two-dimensional maps
of relevant data like speeds or flows. Such representation is visually intuitive and
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Figure 6.1: The overall framework for congestion pattern retrieval.

also reveals relevant insights into traffic phenomenon like wide-moving jams. This
2D representation of congestion motivates the creation of 2D maps, equivalently im-
ages, for traffic congestion occurrences, particularly at the corridor level. These maps
are so-called congestion patterns. Subsequently, various techniques from computer
vision will be applicable for different studies. For example, Nguyen et al. (2019) ap-
plied image segmentation methods to detect the two most common traffic phenomena,
namely traffic disturbances and homogeneous regions (Helbing et al., 2009). The paper
also shows that, compared to low-level image features (Bay et al., 2008), these traffic-
specific elements can lead to more crisp clusters of congestion patterns. Since the
constructed feature vector is a histogram of particular traffic regions, spatio-temporal
relationships are not taken into account, which can hinder the performance when di-
rectly applying to pattern retrieval, in which (probably a limited number of) the most
similar patterns are searched for from the dataset. Nevertheless, the benefits of repre-
senting congestion patterns as images motivate an approach focused for an image-like
pattern retrieval system for congested traffic.

In general, there are two types of frameworks for image retrieval systems exist, namely
text-based and content-based (Datta et al., 2008). In the former approach, each image
is annotated with labels or so-called keywords when preparing a database. By speci-
fying a particular keyword, the related patterns are easily identified and retrieved. The
advance of this approach is that the retrieval mechanism is simple to implement. How-
ever, annotating images is usually done by hand, which is time-consuming and prone
to errors due to numerous available items. Retrievals in the latter approach (see (Zhou
et al., 2017) for a recent literature survey) are proceeded by proving an example image
in advance. The retrieval system automatically extracts features from this image and
searches for matches from available images in a database. Commonly used features
are low-level information like colour, shape, texture. This approach can lead to an
uninterpretable connection between the low-level visual features and their conceptual
meanings. Therefore, this drawback limits the interpretations of retrieval outcomes.

To this end, this chapter proposes an information retrieval framework for occurrences
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of traffic congestion and simultaneously aims to achieve a high level of interpretability
of retrieval outcomes. In particular, each entire occurrence is captured and represented
by a two-dimensional speed map, which acts as a fundamental object in the frame-
work. Distinctive representation of a pattern is constructed at an abstract level using
a graph-based association of traffic-specific regions. Traffic-domain features are es-
sential for obtaining an abstract description of congestion patterns. The application
of graphs preserves (possible) relations between components in a pattern, which es-
sentially illustrate the overall structure. Moreover, to measure the similarity between
two patterns, a matching method is formulated and parameterised regarding several
observable characteristics of patterns. Accordingly, various expectations of patterns
obtained from a query can be intuitively translated into proper configurations of those
parameters.

6.1.2 General retrieval framework

Fig 6.1 illustrates the overall framework of our proposed retrieval system. There are
two major components which are the so-called pattern representation and similarity
measurement. The former consists of two sub-components: the feature extraction and
the relation-graph formulation. The feature extraction determines and extracts impor-
tant traits from a pattern, from which patterns can be compared. Afterwards, these
individual characteristics need to be integrated into a cohesive instance that represents
patterns. In this chapter, we propose employing graphs for that purpose due to their
capability to preserve relations between regions in a pattern. The combination of these
two sub-components leads to an abstract representation for any given congestion pat-
tern. The similarity measurement component determines the degree of resemblance
between two patterns. Its inputs include two relation graphs representing two patterns
with its output being a similarity score.

In the offline stage, patterns are processed such that related features and their rela-
tion graphs are built and registered on a database. Patterns are retrieved in the online
stage. If a retrieval outcome does not meet certain expectations, users can repeat the
retrieval process to improve the result. There are two approaches for designing this
iterative improvement, namely relevant feedback or parameter adjustment. In the for-
mer, users indicate whether individual obtained patterns are relevant or irrelevant. A
proper method is implemented that takes users feedback and revises the retrieval result
accordingly. In the latter approach, there the retrieval system is not automated. Based
on their understanding of the retrieval framework, users can tune parameters to obtain
desired patterns. Note that this last part is out of the scope of this chapter.

6.1.3 Chapter outline

The rest of the chapter is organized as follows. Section 6.2 describes the process of
extracting relevant features and constructing the so-called relation-graphs as the repre-
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sentation for congestion patterns. The measurement of similarity between two patterns
is presented in Section 6.3. In Section 6.4, we describe an experiment for evaluating
the proposed method. Finally, Section 6.5 concludes this study.

6.2 Pattern representation

To compare two patterns, we need to identify their representative characteristics, which
we will refer to as features. Furthermore, it is important to develop a suitable mecha-
nism for combining these features into a coherent structure. This allows the similarity
between patterns to be computed and assessed effectively. This section respectively
discusses these components in detail.

The feature extraction component aims to extract features that best describe an item,
i.e. a congestion pattern in our application. They need to be selected such that patterns
are well differentiated so that similarities are well measured. On the one hand, since
congestion patterns are represented as images, low-level attributes, such as colour,
shape, and texture, can be extracted to describe related patterns. On the other hand,
as these images represent traffic congestion, they possess traffic phenomena that are
well-acknowledged in the field. Traffic-related characteristics can provide a high-level
semantic approach in formulating representative features for congestion patterns. In
this chapter, we adopt the latter approach due to their ability to provide transparency
and interpretation. Before going into the details, for the coherence throughout the
chapter, we first define some common terminologies.

6.2.1 Terminology

Congestion patterns A congestion pattern represents congested traffic on a road
stretch (or corridor) over a certain temporal period. In essence, it is a two-dimensional
matrix of traffic states (such as speed, flow or density) where each value pertains to
a traffic state on a road section and time period. To obtain such discrete values over
location and time, we use the Adaptive Smoothing Method (Treiber & Helbing, 2002;
Schreiter et al., 2010a) to map the (irregularly available) sensor data on equidistant
grids. The result is equivalent to an (intensity) image, which is convenient for observ-
ing the traffic therein. In this chapter, the term congestion pattern refers to both the
image representation and the underlying 2D matrix of traffic states.

Region (Area) A region (or an area) refers to a group of connected pixels in the
equivalent image representation of a congestion pattern. The connection is either by
the spatial or temporal dimension.
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Traffic primitive (component) A traffic primitive (or component) refers to a region
representing a specified traffic phenomenon, which will be introduced in the following
sections.

6.2.2 Feature extraction

Congestion patterns can show instances of these widely-acknowledged phenomena, in-
cluding wide moving jam, homogeneously heavy congestion, and traffic bottlenecks.
These are visually observable in image patterns of congestion. The former two com-
ponents are used and evaluated by Nguyen et al. (2019). By combining these two
with the extents of congestion to formulate a feature vector, the authors derive different
meaningful clusters of congestion patterns. The latter component is also a regular phe-
nomenon of congestion as they are a common cause of traffic congestion. In this work,
we incorporate and evaluate these three components as fundamental domain features
of congestion.

Abstract primitives

Traffic disturbances Disturbances occur regularly in traffic and can be visualised
effectively by spatiotemporal maps or traffic (image) patterns. They can emerge from
a bottleneck where approaching vehicles try to synchronise with slow traffic therein.
These disturbances can propagate further upstream and form wide-moving jams. Kr-
ishnakumari et al. (2017) proposed and successfully applied Active Shape Model to
identify WMJs in image representation of traffic congestion. Since minor disturbances
and wide-moving jams have similar shapes except for their spatial extents, this chapter
further employs this method to determine those in congestion patterns.

The Active Shape Model technique (Cootes et al., 1995) describes a shape using a
mean shape and its variations, which are obtained from a set of similar training shapes.
Thus, given a new shape, the error of fitting the shape model to this shape can be used
to identify or classify the shape. To obtain these shapes, pattern images are segmented
using the Watershed transformation (Nguyen et al., 2019) into different traffic state
regions. The boundaries of these regions are identified and clustered by the Active
Shape Model for detecting traffic disturbances. We refer to the original paper (Nguyen
et al., 2019) for further details.

Homogeneous congestion The homogeneous congestion represents the spreading of
congested traffic over space and time with consistently low vehicular speeds. They
are normally associated with strong bottlenecks or accidents where the mismatch be-
tween traffic demand and local supply is significant. The regions associating with
homogeneous congestion are referred to as Demand-Supply element in (Nguyen et al.,
2019), in which the authors propose a simple condition to detect their existence. In
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this chapter, we adopt texture analysis for the identification of regions of homogeneous
congestion.

Haralick et al. (1973) proposed deriving various texture features of an image using
gray-level co-occurrence matrix (GLCM). It enables the calculations of different statis-
tics to quantify/represent texture characteristics of the related image. This method has
been one of the most popular approaches in image texture representation. Some widely
used features are energy, contrast, homogeneity, entropy. Each number in the GLCM
shows how frequent the related pair of intensities present in the related image with
respect to a pre-defined (two-dimensional) offset.

A preliminary analysis suggests that the energy feature is most promising for identify-
ing homogeneous regions in congestion patterns. In fact, energy is a measure of the
homogeneity of an image. It is defined by Equation 6.1. The number of grey levels in
a homogeneous region is expected to be low, which shifts the whole distribution to a
small group of pd(i, j) (pd(i, j) represents the frequency of having the co-occurrence
of intensities i and j at a certain distance d). The more homogeneous a region is, the
higher the energy feature gets.

Energy =
N

∑
i=1

N

∑
j=1

pd(i, j)2 (6.1)

Traffic bottleneck Traffic bottleneck detection has a large body of literature that
includes many approaches and methods. In this study, we adopt the framework in
(Nguyen et al., 2021), which identifies bottleneck location and activation time from
speed maps representing traffic congestion. Furthermore, the method also extracts the
boundaries of upstream congestion regions, which are beneficial for further analyses.
In principle, congestion regions are identified by applying the active contour model
without edges (Chan & Vese, 2001) - a well-known image segmentation technique in
computer vision. The model formulates congestion as foreground and free-flow re-
gions as background in the corresponding segmentation problem. Bottleneck locations
are detected by observing speed gradients along the direction of characteristic waves.
Discontinuities (drops of speed at upstream) of traffic speeds are associated with pos-
sible bottleneck activations. Both primary and secondary bottlenecks can be identified
successfully by this method. We refer to the original paper for a complete description
of the framework.

Primitive characteristics

The objective of pattern retrieval is to localise patterns that best resemble a given pat-
tern. The judgement of possible resemblances between two patterns can come from
different perspectives of traffic observers.
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We define two overall perspectives regarding the matching procedure of two conges-
tion patterns, namely pattern structure and element detail. The former represents how
the main traffic phenomena relate to each other within a congestion pattern. For ex-
ample, a bottleneck causes congested traffic upstream, in which disturbances may have
emerged and propagated upstream. The relevant traffic phenomena thus include the
bottleneck and those disturbances—together they form the high-level structure. The
latter perspective examines patterns within the structure by comparing details of dif-
ferent components,for example, the bottleneck severity and the frequency with which
disturbances have emerged.

Regarding pattern structures, we differentiate between structural integrity and struc-
tural completeness. The former prioritises similarities in overall structure (size, area)
as much as possible, and is tolerant of missing details in target patterns; whereas the
latter focuses on target patterns having as much of all the constituent elements as possi-
ble regardless of their placements (locations, times) and the resulting overall structure.

With respect to element details, there is possibly an infinite number of characteristics
that can be considered. To demonstrate the proposed framework, we therefore make
a selection. Specifically, we consider the size of the patterns and the constituting el-
ements, for which we look (i) at the relative proportions of elements in the related
pattern, (ii) the absolute size of elements. Large relative proportions imply having
similar patterns regardless of the absolute size, while absolute size focuses on actual
sizes of patterns. As an example application, the former is preferable when looking
for patterns with similar traffic phenomena, whereas the latter is more suitable when
matching the consequences of congestion is important.

6.2.3 Relation-graph formulation

Feature representation combines attributes that are extracted from patterns in such a
way that makes those patterns distinctive. In this chapter, we employ so-called relation-
graphs as an alternative to a vector (a list) of features. The difference between this
relation-graph and a feature vector representation is that a graph representation can
describe not just the list of relevant features (encoded in the nodes) but also their rela-
tionships (encoded in the links between those nodes).

Specifically, a node (or vertex) in our relation-graph represents a traffic phenomenon
from a limited set of so-called traffic primitives. We consider three such primitives
and therefore three types of nodes in this study: these are the bottleneck (B), regions of
homogeneous congestion (H) and disturbances (D), respectively. A node furthermore
contains attributes describing the corresponding traffic primitive. In this study the
main attribute of a node is size, in either absolute form [km × hour] or relative form
[proportion %]. A directed link (or edge) represents a spatiotemporal relation between
primitives (i.e. traffic components). This relation indicates a possible causality based
on the observation that the starting point t,x of one primitive is associated with the
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Figure 6.2: An example of relation graph: (a) a pattern of congested traffic at
a bottleneck which causes heavily homogeneously congestion and later some
small-scale disturbances, (b) its relation graph proposed by our method.

other primitive. For example, to represent many disturbances emerging from a single
bottleneck, the corresponding relation-graph has an edge from the related bottleneck
node to the related disturbance node, with the edge weight indicating the number of
disturbances. This representation results in compact relation-graphs (see Fig. 6.2).

A formal definition of this relation-graph is described in Definition 6.1.

Definition 6.1 The relation-graph representing a congestion pattern is an attributed,
directed graph G = (E,V,A). Descriptions of these sets are as follows.

V = {v|v is a primitive}
E = {(vi,v j)|vi (possibly) triggers v j}
A = (τ,sa,sp,w) attribute set

τ : V→{B−bottleneck,D−disturbance,H−homogeneous congestion}node label

sa : V→ R absolute size of a node

sp : V→ R relative size, i.e. the proportion (%), of a node

w : E→ R number of instances of the connection representing by the corresponding edge

Fig. 6.2 illustrates the principle with the traffic pattern (left) and the resulting relation-
graph (right). The pattern shows traffic congestion at a bottleneck which is likely
related to an incident. At the onset, traffic is heavily homogeneously congested. After
some time, a few (minor) disturbances emerge before traffic regains free-flow condi-
tion. The corresponding relation-graph is constructed by identifying the three main
elements in this pattern. These include the bottleneck - B node, homogeneous conges-
tion node - H node, and disturbances - D node. Edges are associated with w. Specif-
ically, the link (B-H) has a weight of 1 to represent 1 homogeneous region as shown
in the pattern, whilst the link (B-D) has a weight of 6 that shows the number of distur-
bances detected. Furthermore, each node consists of attributes, namely absolute size
and proportion.
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6.3 Similarity measurement

The previous section shows how to construct an abstract and intuitive relation graph
for a pattern of congestion. This section describes how similarities between congestion
patterns are measured based on those graphs. Overall, (in-exact) graph matching is
adopted, and a similarity function, which measures the resemblance between any pair
of nodes in two respective graphs, is proposed. This function reflects several aspects
of a pattern, including the similarities in the structure, the proportions and frequencies
of any extracted components. Details are given in the following paragraphs.

6.3.1 Brief overview of graph matching

By presenting congestion patterns using relation graphs, the measurement of similar-
ities is transformed into graph similarity or so-called graph matching. There are two
main categories in graph matching, namely exact graph matching and inexact graph
matching (also known as error-tolerant graph matching) (Conte et al., 2004; Foggia
et al., 2014; Riesen, 2015; Emmert-Streib et al., 2016). The former is strict in match-
ing two graphs with respects to mapping their nodes or edges. This category is mainly
intended for matching identical graphs. Meanwhile, the latter category is more flexi-
ble and allows differences in node/edge/subgraph mappings. In principle, these differ-
ences are tolerated with certain penalties when comparing graphs. This feature makes
the second category more applicable to real-world applications where exact matching
is not always guaranteed (if not rarely). In our application, matching relation-graphs
representing congestion patterns falls into the second category.

A graph matching is formulated as an optimisation problem, in which the cost of
a matching function is generally defined as shown in Equation 6.2 (rewritten from
(Foggia et al., 2014)). Note that, in inexact mapping, some nodes or edges of one
graph might not have matches from the other graph. To formally describe this, a spe-
cial so-called null node ε is introduced. Accordingly, the mapping f is annotated as
f : VA 7→ VB ∪{ε}. It is injective for nodes in VA that is not mapped to ε . For such
nodes, the cost is called replacement cost CN

R . Mapping a node to ε is reasonably seen
as the deletion of that node, and the related cost is called deletion cost CN

D . Besides,
edges are also needed to be mapped. Two similar types of mapping, i.e. replacement
and deletion, are relevant to edge mapping and are evaluated by the cost functions
CE

R ,C
E
D, respectively. Note that these individual cost functions are specialised, which

means their definitions depend greatly on specific applications.
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C( f ) = ∑
v∈VA

f (v)6=ε

CN
R (v, f (v))+ ∑

v∈VA
f (v)=ε

CN
D(v)+ ∑

v′∈VB
f−1(v′)=ε

CN
D(v
′)+

∑
e=(v1,v2)∈EA

e′=( f (v1), f (v2))∈EB

CE
R (e,e

′)+ ∑
e=(v1,v2)∈EA

e′=( f (v1), f (v2))/∈EB

CE
D(e)+ ∑

e′=(v′1,v
′
2)∈EB

( f−1(v′1), f
−1(v′2)/∈EA

CE
D(e
′)

(6.2)

Various approaches have been proposed for graph matching by reformulating an opti-
misation problem on the cost function C( f ) such as graph edit distance (Bunke, 1997;
Gao et al., 2010), graph kernels (Gärtner et al., 2003), iterative methods (Blondel et al.,
2004; Zager & Verghese, 2008). We refer to (Foggia et al., 2014; Emmert-Streib et al.,
2016) for an in-depth survey of these approaches. Our work is motivated by the iter-
ative approach. In principle, the similarities between nodes consider not only the two
nodes but also their neighbour nodes. Hence, this approach, to some extents, combines
the notations of different individual cost functions (Equation 6.2) into one similarity
function.

We propose a two-phase algorithm for measuring the similarity of two congestion pat-
terns based on their relation-graphs. Firstly, the similarities of all possible pairs of
nodes between the two graphs are calculated. Secondly, the total similarity score of
mapping all available nodes is optimised. The obtained score represents how similar
the two patterns are. The following subsections describes these two terms in detail.

6.3.2 Phase 1: Nodes similarity

The similarity between two nodes (source nodes) is measured in a recursive way as mo-
tivated by Zager & Verghese (2008). Specifically, the similarity of subsequent nodes
recursively contributes to the similarities score of their source nodes. Unlike in (Zager
& Verghese, 2008), where scores from all possible pairs of nodes are accumulated,
our proposed method only considers those from the best mapping between subsequent
nodes.

Similarity score for nodes

The overall similarity score between two nodes, nA ∈VA,nB ∈VB from GA,GB respec-
tively, is formulated as shown in Equation 6.3. The first part of the R.H.S, S0, measures
the similarity that is based intrinsically on their attributes (regardless of their neighbour
nodes). The second part represents the accumulation of similarities from their subse-
quent nodes. Here, the parameter θi regulates how much of subsequent nodes similarity
attributes to the similarity of two source nodes. Note that the contribution of subse-
quent node similarities is, to some extent, equivalent to the similarity of matching the
corresponding links (which is related to function CE

R in Equation 6.2).
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S(nA,nB) = S0(nA,nB)+θi×min
(
S0(nA,nB),argmax

f :CA→CB
∑

cA
i ∈CA

S(cA
i , f (cA

i ))
)

(6.3)

where CA,CB represents the sets of subsequent nodes of nA,nB, respectively.

Similar to the overall cost defined in Equation 6.2, the base similarity S0 captures
several possibilities of node matching, which depend on whether both nodes are in
the original graphs. Accordingly, two similar evaluations need to be defined, namely
the so-called replacement - SR(nA,nB) and deletion - CD(n). Equation 6.4 summarises
these cases.

S0(nA,nB) =


SR(nA,nB), if nA 6= ε,nB 6= ε

−CD(nA), if nB = ε

−CD(nB), if nA = ε

(6.4)

There are two cases when matching two non-null nodes regarding whether they rep-
resent the same primitive type. If these nodes are different types, their mapping is
equivalent to two deletion operations (see Equation 6.5).

SR(nA,nB) =

{
M(nA,nB), if τ(nA) = τ(nB)

−CD(nA)−CD(nB), if τ(nA) 6= τ(nB)
(6.5)

The previous setup leads to defining two basic functions, i.e. M(nA,nB) and CD(n).
Choices for these functions are specialised with respects to specific applications. In
our proposed framework, we formulate these functions with respects to the selected
attributes associated with nodes/edges in relation-graphs. Also, these functions are
parameterised by utilising certain parameters. The objective is to inject different per-
spectives when looking for similar characteristics from congestion patterns.

Balancing similarity and differences

Our proposed function for measuring similarity between two commonly labelled nodes
accounts for both the resemblance between their attributes and the importance of their
difference. For that, the designed function includes both their overlapping size and the
size of the referenced node. The former acts as a proxy to the similarity of the two
nodes. The latter is used to compensate for the difference (if any) between the two
nodes. The first node is selected as a referenced node in our set up. The parameter θg

regulates the scales of these two terms (see Equation 6.6).

The detailed similarity between two nodes is measured based on the overlapping size.
Note that a different function is possible when different properties are used for node
attributes. On the other hand, the unmatched size is also taken into account as this
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assists in ranking the closeness of different pairs of nodes. In particular, a logistic
function is formulated to translate the size difference (in terms of proportions to the
total size) to a number (i.e. weight) that scales the overall similarity. The contribution
of this difference is regulated by the parameter θs ≥ 0 (see Equation 6.6). In addition,
the difference in the occurrences (w) of the two nodes is also dealt with. A ’virtual
node’ nE , with relevant features, a (see Equation 6.13) and w, is created as shown in
Equation 6.11. The underlying idea is to apply deletion cost CD(nE) to the occurrence
difference when matching two nodes. Parameter θw ≥ 0 regulates the tolerance of this
difference.

M(nA,nB) =(1−θg)∗
[
2×wmin×amin×Lβ1,β0(θs,

∆a
∑a

)−CD(nE)
]

+θg×2×w(nA)×a(nA)

(6.6)

where,

Common size amin = min
(
a(nA),a(nB)

)
(6.7)

Size difference ∆a = |a(nA)−a(nB)| (6.8)

Total size ∑a = a(nA)+a(nB) (6.9)

Logistic function Lβ1,β0(θ ,x) = 1− 1
1+ eβ1(θx)+β0

(6.10)

Occurrence-difference node nE


a =

{
a(nA), if w(nA)> w(nB)

a(nB), if otherwise

w = fβ1,β0(θw,∆w)

(6.11)

Occurrence difference ∆w = |w(nA)−w(nB)| (6.12)

Size selection: a(n) =

{
sa(n), for absolute size, i.e. area (km×minute)

sp(n), for proportion (%)
(6.13)

Node deletion cost

As overlapping size are used for attributing commonly labelled nodes, the cost of delet-
ing a node can be justified by its size. A parameter θd is introduced here to regulate
how much penalty is applied for not finding a match for a node. Equation 6.14 give a
definition of this cost.

CD(n) = θt×a(n) (6.14)

Table 6.1 summarises all the parameters and their meanings in customising a similarity
measurement between any pair of nodes.
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Table 6.1: Parameters for customising similarity measurement between relation-graphs

Parameter Description
θs Penalise size difference
θg Regulates the trade-off between node size match (maximised

when θg = 0) and node type match (maximised when θg = 1)
θd Penalise node type difference, therefore, regulates the tolerance

of having unmatched nodes
θw Penalise the differences in frequency attribute: whether to focus

on overall structure or details
θi Regulate the contribution of subsequent-node similarities to the

matching of two source nodes

6.3.3 Phase 2: Nodes mapping

Given two relation graphs that represent two congestion patterns, the previous section
shows how to measure the similarity between any pairs of nodes therein. This section
describes how to come up with a similarity score at the pattern level.

To evaluate how the two patterns match, we formulate the problem as an assign-
ment problem which finds the so-called perfect matching between nodes from the two
graphs. That assignment maximises the total scores from all pairs of matched nodes
under the condition that one node is matched with exactly another one. This perfect
matching (once found) is considered the best mapping between the two source nodes.
The corresponding total score then indicates the similarity between the two patterns.
An illustration of our assignment problem is depicted in Fig. 6.3. A complete bipar-
tite graph is constructed to show all possible mapping of nodes from two graphs. The
weight of each edge is associated with the similarity score of corresponding nodes.
The solution of pattern mapping is the perfect matching with the maximum total edge’
weights. Equation 6.15 formulates this assignment approach in mathematical term.

S(pA, pB) = argmax
f :ΩA→ΩB

∑
n∈ΩA

S(n, f (n))

where,

ΩA =VA∪{ε, ...,ε}
ΩB =VB∪{ε, ...,ε}
|ΩA|= |ΩB|= |VA|+ |VB|

(6.15)

The assignment problem is solved by applying the well-known Hungarian algorithm
(also known as the Kuhn-Munkes algorithm), which was developed by Kuhn (1955).
It has polynomial complexity, in particular, O(n3).
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Figure 6.3: An illustration of how to formulate the pattern matching
as assignment problem between their node sets. Edges’ weights are
the similarities between the corresponding end nodes using Equation
6.3. A feasible assignment is highlighted in blue colour, in which one
node is exactly matched to another node.

6.4 Experiment results and discussion

In this section, we demonstrate the ability of the proposed retrieval framework in re-
trieving similar patterns from a collection of traffic congestion patterns. The analysis
includes three aspects. First, some exemplary queries are conducted, and their perfor-
mances are investigated with respect to the corresponding obtained patterns. Second,
we discuss the impacts of tuning the parameters (in Table 6.1) for reflecting different
perspectives on similarities between patterns. Third, we consider the computational
complexity as well as its implication in applying to large datasets of the proposed
method. Details are in the following sections.

6.4.1 Data & parameter settings

To evaluate the proposed method, we have selected a corridor on the ring of Rotter-
dam, which is one of the busiest roadways in in the Netherlands. Fig. 6.4 shows a
broad view of the road. It is approximately four kilometres long, and comprises sev-
eral active bottlenecks. These bottlenecks and downstream bottlenecks have caused
much recurrent traffic congestion, therefore, it is a suitable choice for evaluating our
proposed framework.

Speed data are provided by the National Data Warehouse (NDW), the Netherlands
ndw, in which each measurement is a one-minute aggregation of speed surpassing
the related induction-loop detector’s implemented location. To have a better view of
resulting traffic, we apply the ASM method (Adaptive Smoothing Method) (Treiber
& Helbing, 2002; Schreiter et al., 2010a) to estimate speeds at finer resolutions both
spatially and temporally, namely 100 meters by 30 seconds. We have processed data
from the entire 2018 to obtain 778 patterns, which constitute the collection of traffic
congestion patterns for evaluating our proposed method.
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Figure 6.4: A broad view of the selected corridor in the experiment.
The image is taken from Open Street Map (and reproduced from
(Nguyen et al., 2021))

.

For the similarity measurement, the settings for all parameters are given in Table 6.2.
By setting θt ,θs,and θw to 1, the total differences in type, size, and frequency, re-
spectively, are fed to the logistic function to measure related penalties. As θi is set to
1, similarities from subsequent-nodes are accumulated to the corresponding president
nodes. This, to some extent, takes pattern structure into consideration. Therefore, we
set θg to 0 for simplifying the base similarity function. This leads to full assessment
of related attributes when matching two nodes. Chosen values of β set the changing
point of the corresponding logistic function at the middle of input ranges. Note that
there are no strict regulations in selecting these parameters. The presented settings are
one of many possibilities and have lead to good results in our experiment.

Table 6.2: Parameter settings in the conducted experiment

Parameter Value
θs 1
θg 0
θt 1
θw 1
θi 1
logistics L

(β1,β0) (10, -5)

6.4.2 Retrieval results

To demonstrate the feasibility of the proposed relation-graph in the retrieval applica-
tion, we analyse some exemplary queries, namely for single disturbance, stop-and-go
congestion, homogeneous congestion and a mix of these. These are typical patterns of
congestion that are commonly observed in traffic data (Helbing et al., 2009; Nguyen
et al., 2016; Krishnakumari et al., 2017; Nguyen et al., 2019). Finding their occur-
rences provide meaningful information for various purposes. For instance, to analyse
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Figure 6.5: The 11 most similar patterns returned from searching
for a moving disturbance (shown in the top-left pattern). Patterns
are shown in the same resolution, hence, their size differences can
be relatively shown. Note that, regions of congestion at the edges
of some patterns should be ignored because they are the results of
cropping out the patterns, i.e. they are not included as (main) content
of the patterns. Besides, similarity scores are given as S for each of
the patterns.

how repetitively these types of congestion occur, and possible variations therein. This
leads to a more thorough understanding of popular types of congestion. Another appli-
cation for this is traffic model development, specifically model evaluation. Different
scenarios, which are derived from similar patterns, can be tested with respect to the
occurrences of certain congestion patterns.

Single disturbance retrieval

Figure 6.5 shows an example of retrieving patterns representing a single disturbance.
The implemented framework successfully returned patterns representing small distur-
bances as indicated in the query pattern. Note that, as disturbances are one of the
nodes in the relation-graph, this retrieval outcome is a direct result of the extracting
method. Regarding the order of these patterns, some might seem more similar than
those in higher-ranks. For example, the pattern p4 seems more resembling the query
pattern than the above two patterns (in the order list). The reason is that by choos-
ing areas as an attribute, we have reduced two dimensions, i.e. spatial and temporal,
down to only one. Therefore, introducing propagating lengths as attributes for distur-
bance nodes could fine-tune the results further. Nonetheless, in this work, we use the
same attributes for all the nodes to simplify the graph and focus on demonstrating the
feasibility of the proposed approach. We leave this enhancement for future work.
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Figure 6.6: Retrieval results of stop-and-go congestion.

Stop-and-go congestion retrieval

Stop-and-go traffic waves is another common type of congestion where multiple dis-
turbances occur over time. An example of retrieving such patterns is shown in Fig.
6.6. In the query pattern, a bottleneck is activated, from which many disturbances
emerge. All the obtained patterns represent the same traffic phenomena. By detecting
both the primary bottlenecks and probably the minor upstream secondary bottleneck,
along with multiple disturbances, the resulted relation-graphs are effective for locating
patterns with the same topology as in the query.

Homogeneous congestion retrieval

An example of retrieving homogeneous congestion is illustrated in Fig. 6.7. The given
pattern represents significantly slow traffic upstream of a bottleneck (probably due to
incidents like accidents). Hence, the two most important components of the corre-
sponding relation-graph for this pattern is a bottleneck node and a homogeneity node.
Overall, the obtained patterns do represent the main phenomenon. This effective re-
trieval is a direct outcome of the extracting method for domain-specific features.

Note that the shapes of homogeneous areas in the obtained patterns are not necessarily
identical to that of the one in the query pattern. This is explained by the fact that the
currently chosen attribute includes only sizes.

Complex congested traffic retrieval

Fig 6.8 illustrates an attempt to retrieve large scale congestion patterns. The query
pattern consists of various types of traffic jams, including disturbances that occur fairly
frequently, multiple bottleneck activations, and a homogeneous congested area. Many
obtained patterns can cope with these complications in the input pattern, meaning they
have different activations of bottlenecks that cause dense stop-and-go traffic. Some of
them show homogeneous regions. Regarding the overall structure, several patterns (for
instance, p1, p2 or p3) represent two clusters of disturbances that are potentially due to
the activations of two primary bottlenecks.
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Figure 6.7: Retrieval results of homogeneous congestion.

Figure 6.8: Retrieval results of meta congestion.
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Figure 6.9: Another retrieval result of the homogeneous congestion
in Fig. 6.5) with different parameter θs = 2.

6.4.3 Parameter impacts

In this section, we analyse how modifying parameters can change similarity scores,
hence, alter the ranks of obtained patterns. This is relevant for revising retrieval results
in case a result is not as expected. The list of all parameters is shown in Table. 6.1.

Size penalty θs

The parameter θs penalises the difference in sizes between two matched nodes. There-
fore, it regulates how important is searching for nodes of similar types. To demonstrate
this, we modify θs = 2 for the retrieval in Fig. 6.7. This modification enforces a stricter
condition on the sizes of matching nodes. The corresponding result is shown in Fig.
6.9. Overall, the similarity scores of returned patterns decrease. The order of patterns
consists of various changes such as the promoting of p1 (from the 2nd to the 1st place)
and p5 (from the 1st to the 5th). In addition, new patterns are also moved forward, such
as p10.

Weight penalty

The parameter θw controls the frequency of a component’s appearances. This is mostly
relevant to disturbances in stop-and-go traffic patterns. By increasing or decreasing
this parameter, the outcomes are adjusted to be against or in favour of the differences
in the frequencies of disturbances.

Fig. 6.10 demonstrates the impact of increasing θw on the searching made in Fig. 6.6.
Even though there is not much (overall) difference compared to the previous result, this
new result shows several changes in the order. The new ranking promotes those pat-
terns with more similar numbers of disturbances as in the example pattern. The overall
similarity scores are smaller due to the stricter condition of occurrence frequencies.
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Figure 6.10: Another retrieval result of the stop-and-go congestion in
Fig. 6.6 by increasing θw to 3.

Figure 6.11: Another retrieval result of the homogeneous congestion
in Fig. 6.7 by increasing θd to 2.

Unmatch penalty

There may be unmatched nodes from two relation graphs. How much this decrease the
similarity score is regulated by the parameter θd . By lowering this parameter, users opt
for finding the completion of the components in the query pattern, and at the same time
tolerate the existence of extra components in the target patterns. Similarly, increasing
θd aims for the compact of target patterns with respects to the given pattern.

An example of the effect of increasing θd is shown in Fig. 6.11, which is a modified
retrieval of the one in Fig. 6.7. Since θd has a higher value, those patterns with a more
compact representation of homogeneous regions, less other extra regions, are advanced
in the ranking list.

Structural integrity

The parameters θg,θi are designed to promote the matching of pattern structures. A
demonstration of their use is illustrated in Fig. 6.12. Fig. 6.12a shows the example
in which both similarities of pairs of matched nodes and their subsequent nodes are
relatively important. On the other hand, by setting θg = 0.7, the importance of having
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(a) (θs,θgθd ,θw,θi) = (1,0,1,1,1)

(b) (θs,θgθd ,θw,θi) = (1,0.7,1,1,1)

Figure 6.12: The effect of the parameter θi.

the same structure becomes higher while that of node similarities are reduced. The
obtained patterns in Fig. 6.12b demonstrate the effect of this change. Differences
between components of the obtained patterns and those in the example patterns are
more tolerant. As a result, some good similar patterns are advanced to the top list, e.g.
p1, p3, p4, p8. Note that, increasing θi leads to low importance levels of node features.
This, therefore, can result in patterns that are quite different from the query example
despite sharing a common structure.

6.4.4 Time complexity

The processing time in the proposed method is spent mainly on relation-graph con-
struction and graph-similarity measurement. Regarding the former, relation-graphs of
all congestion patterns in the database are pre-processed and registered in advance.
Hence, at the moment of retrieval, only the example pattern needs to be parsed. The
processing time depends (almost) linearly on the size of the corresponding congestion
region (or pattern) as shown in Fig. 6.13. In addition, the majority of patterns have
sizes of approximately under 1000 (km×minutes) and take around 60 seconds to build
their relation-graphs.
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Figure 6.13: The constructing time of causality-graphs of all
the patterns in the experiment data.

Fig. 6.14 illustrates the computation of relation-graph similarity. This includes times
for matching every single pairs as shown in Fig. 6.14a and the total retrieving time
in the experiment dataset shown in Fig. 6.14b. It can be expected that the time com-
plexity of the proposed matching method for relation graphs is polynomial w.r.t graph
size (measured in the total number of nodes and edges). From a close examination
of Fig. 6.14b, it takes less than one minute to retrieve similar patterns for a pattern
of up to 30 nodes plus edges in its relation-graph. However, the waiting time can
be long for large-scale patterns or a collection of numerous patterns. Therefore, to
scale up the proposed method to larger datasets, further improvements are necessary.
One approach is to narrow down the searching space by some quick pre-processing.
For example, as suggested by Fig. 6.14a, when retrieving for small-scale patterns, a
(computationally) fast filter can be applied to keep only patterns with small numbers
of nodes in their relation-graphs. Another approach is to employ more computational
power where measuring similarities can be done in parallel processing, hence, reducing
the responding time.

6.4.5 An opportunity for semantic retrieval

The relation-graph essentially represents traffic patterns in an abstract form that com-
prises nodes representing traffic phenomena. Therefore, this graph can be used as an
alternative representation approach for describing expected patterns for retrieval. This
way of searching has the advantage that users have high control of what to expect from
the returned patterns, therefore, it is not limited by a given pattern. Take the following
expectation as an example: “bottleneck that causes upstream congestion with the size
of 500 km × minutes in which multiple disturbances (e.g. 15 instances) emerge”. A
corresponding retrieval can be carried out by constructing a relation graph with two
nodes, namely B and D. Their attributes are directly obtained from the description.
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(a) (b)

Figure 6.14: Computation time of measuring the similarity between two
relation-graphs: (a) single pair measurement, (b) retrieval time from the whole
data (of 778 congestion patterns).

6.5 Conclusion

This chapter presents a new method for pattern retrieval of highway traffic congestion
based on image processing techniques and a graph matching approach. We demon-
strate the efficacy and efficiency of the method on a large scale traffic database cover-
ing the entire Dutch freeway road network over several years.

From the image representations of congestion patterns, traffic-domain elements are
extracted by applying image processing techniques. Specifically, those include dis-
turbances (using the Watershed-based segmentation), bottlenecks (using gradient fil-
tering based on the direction of characteristic waves), and homogeneous congestion
(using texture-based analysis in this chapter). We propose a so-called relation graph
as an abstract representation of the overall congestion patterns with their constituent
components (bottlenecks, homogeneous congested regions and disturbances) so that
their spatial relations are preserved. We formulate a parameterised matching function
to measure the similarity between two relation graphs, reflecting different perspectives
on observing patterns, namely component sizes, redundancy penalties, disturbance fre-
quencies, individual completion and structural integrity.

The case study demonstrates the ability of the proposed method to successfully retrieve
complex patterns with various retrieval cases. Most importantly, we show that com-
bining domain knowledge with computer science techniques is highly effective. Using
traffic-domain features help to make query outcomes transparent and easily explain-
able. Moreover, via the customisable parameters, modifications are made possible to
improve a retrieval result according to users’ points of view on similarity, i.e. what
they are looking for. The relation-graph representation also offers a new opportu-
nity for semantic retrieval, in which expected patterns are described intuitively using
some well-known traffic phenomena. This successful development of a retrieval sys-
tem for 2D congestion patterns essentially motivates various studies in, for example,
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congestion analysis, traffic prediction. A broader and more thorough understanding of
variations of a type of congestion is beneficial for evaluating mitigation strategies for
the corresponding congested traffic. Furthermore, traffic states can be predicted at an
abstract level, i.e. pattern level, which in essence is another way to look at traffic at a
higher level.

There are open directions for future research to improve the proposed method. From
a practical viewpoint, computation time is important. One promising approach is to
start with a (rough) classification of the input pattern. Accordingly, the search space
is effectively reduced from an entire dataset to the partition representing one single
class of patterns. A different approach is a two-step approach that combines generic
feature approaches and the proposed approach. Since Euclidean distances are fast to
compute, similarities between patterns can be measured quickly based on the former
features. Then, the proposed approach only needs to be applied to a reasonable number
of top-ranked patterns thereof. Another future research direction is to incorporate more
relevant characteristics to the relation-graph to refine retrieval outcomes.





Chapter 7

Conclusion

The research presented in this thesis is motivated by the objective of mining collected
traffic data for relevant information, specifically patterns of congestion. A modular
research approach has been proposed with various components which together for-
mulate CoSI - Congestion Search EngIne. The realisation of CoSI includes both the
construction of an underlying database and algorithm developments for corresponding
data retrieval.

This chapter starts with key findings and the main conclusions are presented. Then,
we discuss related implications for practice. And finally, we close the chapter with
information on promising research directions resulting from contributions made in this
thesis.
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7.1 Main conclusions and Key findings

In this section, we summarise the key findings and main conclusions with respect to
the four research questions stated in Chapter 1.

Research question 1. How can congestion patterns be collected periodically from traf-
fic data from large-scale highway networks?

In Chapter 3, we proposed a framework for collecting spatio-temporal patterns of traf-
fic congestion (which essentially represent the evolutions of vehicular speeds over
space/route and time). It comprises of three stages, namely congestion detection, con-
gestion clustering and pattern extraction. Accordingly, we proposed appropriate algo-
rithms for different modules in these stages. In the first stage, a traffic network is cut
into singular routes to benefit data interpolation, which results in finer estimations of
traffic states thereof. Hence, traffic congestion can be detected more effectively. Dur-
ing the second stage, congested data points are associated (based on the underlying net-
work topology) to formulate a so-called congestion graph, from which isolated clusters
are determined to tailor further processing. Each congestion cluster is handled inde-
pendently in the last stage. Complete propagating paths of congestion - represented
as sub-graphs - are tracked and merged when possible. This results in a set of sub-
graphs representing different complete congestion patterns. The analysis suggests that
the overall complexity of the algorithms is most likely linear to the size of the network,
or more precisely the size of the filtered data. The case study on the Dutch highway
network indicates the feasibility of the proposed methodologies. Data for one entire
day is processed in less than 40 minutes, which results in many congestion patterns.

Research question 2. What are the representative features of (highway) congestion pat-
terns?

In Chapter 4, two types of feature schemes are analysed for the capability to discrim-
inate congestion patterns. These are so-called generic (or point-based) and domain-
specific (area-based). Even though both approaches consider traffic patterns as (inten-
sity) images and apply image processing techniques, they are fundamentally different
with respect to the semantic meanings of their derived features. On one hand, the
former approach explores key points in (image) patterns which are related to either a
blob, a corner or edges - i.e. object boundaries. These points, therefore, do not neces-
sarily have a direct meaning related to traffic. On the other hand, the latter approach
uses traffic-related elements as key features, namely the frequency of wide moving jam
instances, the frequency of homogeneous congested regions, longitudinal and tempo-
ral extents of represented congestion. Both approaches use a histogram of defined
features to formulate scalar feature vectors that act as representations of congestion
patterns. The Euclidean distances on these vectors are then used as measurements for
dissimilarities between congestion patterns. Since there is no ground-truth set of la-
bels, the quantitative assessment tests how well both methods can partition the feature
space they construct for the (large) database of traffic patterns. We argue that the more



7.1. Main conclusions and Key findings 129

crisp this separation is; the better the labelling has turned out. For this quantitative
comparison, we trained a multinomial classifier that maps unseen patterns to the la-
bels discovered by each of the two labelling approaches. The most important result
is that the classifier using the area-based feature vector achieves the highest average
levels of confidence in its decisions to classify patterns, implying a highly separable
feature vector space. Not only does the combination of image processing (Watershed)
and domain knowledge (traffic flow characteristics) lead to meaningful labels that can
be automatically retrieved from large databases of data; this method also leads to more
efficient separation of the resulting feature space.

Research question 3. How can domain-specific features, namely characteristics of traf-
fic congestion which are well recognized in the literature, be learned automatically?

By answering the previous question, traffic domain-specific features are recognised as
more beneficial to discrimination application of congestion patterns. Besides, as those
patterns represent traffic in a two-dimensional manner, i.e. both spatially and tempo-
rally, they are seen as (intensity) images and that allow image-processing techniques be
applied. This results in different methods for extracting traffic domain characteristics
presented in Chapter 4 and Chapter 5.

With the focus on congested traffic, in Chapter 5, we first identified the spatial and
temporal boundaries/extents of congestion by applying the Chan-Vese model. It is an
active contour model which evolves a boundary from an initial state (usually set by
relevant heuristics to achieve a fast convergence) to the state that separates congested
and free-flow traffic. Subsequently, congested regions/segments can be effectively
identified in spatio-temporal patterns of traffic speeds. This sufficiently paves a way
for further extractions of congestion characteristics like spatial and temporal extents.
In Chapter 4, the well-known Watershed operator is adopted to segment a pattern into
different areas from which three main traffic-related elements are extracted—spatial
and temporal scales, disturbances and homogeneously congested areas.

In Chapter 5, we proposed a framework to detect another dominant and well-observed
phenomenon of traffic congestion which are the bottleneck activations. Speed discon-
tinuities along the direction of characteristic waves provide an effective indicator for
the activations of related bottlenecks. The evaluation suggests that the framework is
capable of detecting multiple close-distance bottlenecks in singular patterns. In com-
bination with the detected congested regions, relationships between bottlenecks can be
identified, in particular, whether a bottleneck is primary or secondary. The method is
automatic and, therefore, can be applied to a large amount of data over long periods
and extract meaningful statistics for traffic managers.

Research question 4. How can similarities between congestion patterns be ranked us-
ing features that are previously learned?

Content-based pattern retrieval is a valuable application for databases of congestion
patterns as it can benefit various analyses. For instance, by investigating the under-
lying traffic control strategies from similar congestion patterns, their efficiencies can
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be compared and justified. In Chapter 6, we propose abstractly representing conges-
tion patterns by so-called relational graphs, in which nodes encode semantic pieces
within congestion patterns, and edges imply (temporal) relations between these pieces.
Pattern similarities are then measured by the graph matching method with an itera-
tive approach, i.e. similarities between a pair of nodes are aggregated with those from
their descendent nodes. Additionally, some parameters are introduced to reflect po-
tentially different perspectives when defining similar patterns. The case study quali-
tatively shows that the proposed approach is capable of locating similar patterns to a
query pattern. The introduction of the relation graph also results in a new method for
semantic retrieving, in which expected patterns can be manually constructed without
being given an example image. In other words, one can use the node/link concepts
in the relation graph to describe a pattern and use that as input for retrieval. Based
on the emergence of this searching scheme, the exploration of databases of congestion
patterns is made significantly more flexible and intuitive.

7.2 Implications for practice

The research in this thesis is dedicated to equip traffic management systems with an
intelligent retrieval application for relevant congestion patterns from massive amounts
of collected measurements. Several methods and algorithms have been designed and
implemented. Various validations have also been conducted to test those methods.
This section discusses the implications of these results for practice.

One of the main concerns in traffic is congestion, which essentially undermines the
flow of vehicles through a road network. In Chapter 3, we proposed a framework and
developed appropriate algorithms to detect all possible occurrences of congestion on a
network over a certain period. This piece of research is valuable for practice in the way
that different patterns of congestion can be automatically collected. They represent the
dynamics of traffic in general and congestion in specific over both spatial and temporal
dimensions. That is intuitively convenient for visualisation and observation. By having
such data ready a priori, time and efforts for preprocessing are saved when the need for
data analyses occurs.

Manually analysing thousands of movements of traffic congestion on a network is cum-
bersome if not impossible. The feature extraction techniques developed in Chapter 4
and Chapter 5 provide an automatic approach. Not only can they help to identify key
features of congestion quickly, but also to process large amounts of data is made ef-
fectively possible. For example, frequent disturbances can be detected (Chapter 4) and
measured for their upstream-propagating distances (with respect to wide moving jams).
This information potentially provides a proxy in assessing the effectiveness of traffic
control such as variable speed limits.

Bottlenecks are one of the dominant causes of traffic jams. Hence, detecting them
can play a vital role in developing congestion mitigating strategies. In Chapter 5, a
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comprehensive automatic detection framework for bottleneck activations on highways
is presented. The feasibility of the proposed method enriches an ITS (intelligent trans-
portation system) with an effective tool to identify various bottlenecks on a highway
network. Consequences of bottleneck activations, i.e. the incurred congestion, are au-
tomatically determined by the method. Some examples are how many disturbances
emerged, how homogeneous/heterogeneous is traffic during congestion, or how much
delay is caused. Furthermore, the method is also applicable to dense networks where
multiple bottlenecks might be involved in single instances of congestion. Relationships
between these activations, like whether one triggers another, are identified. This pro-
vides information for traffic managers about potentially critical bottlenecks to focus the
mitigation efforts on. More importantly, the method is automatic and can be applied
to handle data for a longer time horizon. Hence, characteristics of bottlenecks can be
derived and synthesized into informative statistics. This is significantly important for
traffic management systems.

Furthermore, the success in extracting key characteristics for congestion patterns (in-
cluding wide moving jam, homogeneity, bottleneck activation) helps generate a more
abstract and intuitive layer for a traffic congestion database over raw collected data.
And useful applications like data retrieval can be effectively built upon.

Pattern representation is significantly important based on which retrieval application
can be conducted sufficiently. The so-called relation graph proposed in Chapter 6 is
shown to be capable of providing intuitive representation for patterns of congestion.
Nodes are substitutions for traffic phenomena and links imply their relations. This
relation graph can be easily grasped by practitioners as they contain elements that
are traffic-semantically understandable and well-observable. In addition, the heuristic
definitions of costs incurred during the matching of such graphs consist of parameters
that reflect different perspectives on pattern similarities. This gives flexibilities for
users in describing their preferences on expected patterns from the retrieval system.

Finally, all the pieces of research in this thesis are greatly prepared for a realisation of
a smart database system of congestion patterns, which is the so-called CoSI. Its design
is discussed in Chapter 2. The developed algorithms are implemented and validated
in appropriate case studies which ensure its validity. This implies that CoSI is highly
ready for production as an advantageous component for any ITS system. By doing that,
collected traffic data can be accessed through a more efficient information retrieval
engine which we believe is significantly beneficial to many practice in the field of
transportation.

7.3 Recommendations for future research

The research presented in this thesis is dedicated to improve the use of traffic data, in
which, many methodologies are developed and key findings are shed light on. This
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section discusses potential research directions that can benefit greatly from these out-
comes of the thesis.

In Chapter 4, two feature schemes are investigated. The result suggests that both
schemes have their unique strengths. While the domain-knowledge specific features
are more effective in clustering congestion patterns, the generic features are more ca-
pable of identifying locally similar features, e.g. (image) textures. Combining these
two approaches is worth analysing. For instance, a potential direction is to employ a
hierarchical framework, in which the abstract features are at high levels and local fea-
tures are at low levels. Accordingly, the structure of a dataset can be further partitioned
which is valuable for many applications, e.g. classification, clustering and pattern re-
trieval.

Traffic prediction is certainly an important topic for both traffic managers and road
users, in which, congestion is one of the most critical factors since it impairs greatly the
quality of mobility. Being able to predict how congestion progresses is as important
as when it will occurs. The collected patterns as a result of research presented in
Chapter 3 provide a rich input for understanding how congestion evolves both spatially
and temporally. Although using traffic patterns for traffic prediction is not a new idea,
we expect by combining it with pattern classification it can lead to fruitful outcomes.
Specifically, instead of considering all available patterns of congestion occurred at
a single place, only relevant patterns are selected (by an appropriate classifier) for
predicting purposes. Hence, partial classification of congestion and quick retrieval of
relevant patterns are promising directions for future research.

Bottlenecks are one of the main causes of traffic congestion. Understanding the interac-
tions and/or dependencies between nearby bottlenecks is valuable for traffic prediction
and/or control strategies. The automatic detection framework developed in Chapter 5
can serve as an important milestone for further studying bottlenecks on a higher level,
such as nation-wide analysis. For example, an interesting direction is to identify and
classify bottlenecks in a (whole/partial) traffic network based on their characteristics
(or consequences), which can be measured from the related congestion patterns. In ad-
dition, a promising step could be to incorporate other sources of data such as network
topology. The correlations (if any) between classes of bottlenecks and traffic control
strategies are also worth assessing.

The retrieval application (see Chapter 6) on congestion patterns database is a valuable
module for utilising collected traffic data. Despite most of the main required elements
are studied and presented in this thesis, there is still opportunities for improvement.
A promising direction is to incorporate user judgments (so-called relevant feedback),
which is indicated by the (optional) loop in the overall CoSI framework design (see
Chapter 2). The idea is that searching outcomes can be further revised based on user
opinions. Furthermore, numerously increasing number of requests can potentially be
expected once the system is deployed. If properly designed, these significantly rele-
vant inputs can be collected for further interesting research like reinforcement learning,
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which essentially learns from the relevant feedback for enhancing responses to future
queries.

Traffic control is a vital part of intelligent traffic systems (ITS). Typically, the main
purpose is to maintain high capacities of traffic network and/or to mitigate the im-
pacts from congestion. The CoSI framework featured with (historical) spatio-temporal
congestion patterns and pattern retrieval engine is a promising tool in the process of
developing or analysing effective control strategies. For instance, sophisticated traffic
control typically associates operations from multiple controllers at different locations.
An interesting suggestion could be to identify relevant sets of relevant locations for
associating their control strategies. Upon achievement, this can reduce the complexity
of involving less-relevant controllers and simultaneously improve the efficiency of the
whole control system. The methods developed for pattern collection paves the way
for identifying clusters of related congestion patterns which is certainly beneficial for
identifying locations of interest.

Another potential research direction is the analysis of different control strategies. Specif-
ically, how a control algorithm affects traffic at the network level, i.e. taking into con-
sideration the effects on upstream roads. These affects can be investigated by looking
at large-scale patterns of congestion as they essentially trace congested traffic to all
possible paths over time until the dissolution of congestion. Profiles of the derived
patterns associated with each strategy can be created, which can include any impor-
tant information such as congestion type/class, duration, propagating distance, delay,
economic cost, etc. These can be used as a criterion for evaluating and/or comparing
traffic control strategies.
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Appendix A

Effects of ASM parameters on the
recognition of traffic disturbances

The ASM contains several parameters, which may affect the automated recognition
of patterns (shapes of e.g. disturbances) in the (smoothed) speed or flow image. In
this appendix we test the sensitivity of one representative gradient-based method, the
Watershed method used in Chapter 4, to a selection of four parameters. We expect
these four parameters to have the largest effect on the degree in which such gradient-
based methods can recognize patterns in the smoothed images, because they govern
the degree of smoothing and the directions in which the data are smoothed.

These parameters are σ and τ , which govern the width of the ASM kernels over space
and time, respectively; and cfree and ccong, the two wave speeds for freely flowing and
congested traffic respectively, along which the smoothing kernels are skewed.

(a) Raw detector data (b) ASM-filtered data

Figure A.1: A high frequency stop-and-go traffic congestion. The ASM parameters
σ ,τ,ccong,cfree are 1000m, 60s, -18km/h, 80km/h, respectively.

To test the sensitivity of the Watershed method with respect to these parameters, we
select a high frequency stop-and-go pattern for this analysis (see Fig. A.1). Visual
examination of the pattern reveals 23 disturbances that we would also expect the Wa-
tershed method to be able to detect if perfect detection takes place.
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A.1 Smoothing kernel broadness

To test the sensitivity with respect to σ ,τ , we keep the values of ccong and cfree constant.
In particular, -18km/h and 80km/h are chosen for ccong and cfree as recommended in the
literature (Schreiter et al., 2010a; Treiber & Helbing, 2002). Two ranges of values for
σ and τ are tested, namely 100 - 2000m and 30 - 180s, respectively. Various combina-
tions of these values are applied to filter the raw data, and the resulting numbers of dis-
turbances are compared with the expected value (i.e. 23). Fig. A.2 shows the obtained
result. It is reasonable that as σ and τ increase, the number of disturbances decreases
because ASM essentially uses a weighted smoothing kernel. When the widths of the
kernel increase, nearby disturbances are strongly affected and (potentially) smoothed
out, which results in blended regions (in corresponding spatiotemporal maps). (see
Fig. A.2 for an example). The heat map of deviations suggests the most efficient range
for τ is 60 - 90s, while the range for σ is more tolerable (as the deviations fluctuates
less on rows than on columns in the heat map plot). From the plot, we recommend
the range 1000 - 1500m for σ so that incurring errors are below 20 percent. Note that
the heat map shows some groups of cells with different and low deviations, namely 0,
0.1 and 0.2. Hence, we choose 20 percent as the expected lower bound error for the
recognition of disturbances.

(a) Number of disturbances (b) Relative error in number of disturbances

Figure A.2: The number of (recognised) disturbances with respect to different settings
of σ and τ . The deviation is calculated as the proportion of the expected number.

A.2 Propagation speed

To test the sensitivity with respect to ccong and cfree using the same approach as in the
previous section, we now keep τ and σ constant at values recommended in literature
(60s, 1000m) and evaluate the resulting numbers of disturbances when varying ccong

and cfree. Fig. A.4 shows the obtained result. Overall, increasing the absolute values
of both propagation speeds reduces the number of (recognised) disturbances. Fig. A.4
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(a) (τ,σ ,ccong,cfree) = (30,100,18,80) (b) (τ,σ ,ccong,cfree) = (180,2000,18,80)

Figure A.3: The ASM-filtered patterns using two extreme settings

shows that the method is very robust with respect to variations in cfree, which makes
sense: this parameter governs smoothing for non-congested areas.

(a) Number of disturbances (b) Relative error in number of disturbances

Figure A.4: The number of (recognised) disturbances with respect to different settings
of ccong and cfree. The deviation is calculated as the proportion of the expected number.

As predicted by Treiber & Helbing (2002), the congested wave speed has the largest
effect due to the so-called "egg-box" effect. If this parameter is chosen too large or too
small, paralel moving jam waves are either cut in smaller pieces or "glued together",
resulting in too many or too few recognized jam waves, respectively. Fig. A.4b il-
lustrates that the Watershed method is fairly robust to variations in ccong (within the
given range) with a maximum relative error of again 20% in the number of recognized
disturbances.

A possible automated method to minimize this error for any given circumstance is de-
scribed in (Schreiter et al., 2010b), in which both wave speeds are estimated directly
from raw data. Throughout this thesis, however, we have used the default values de-
scribed in literature, that is, cfree = 80 km/h, and ccong= -18 km/h.
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Summary

Traffic congestion occurs daily, which can have negative effects on not only the qual-
ity of mobility, but also other important aspects of life like economic growth, health
and environment. Both understanding and efficiently managing traffic are therefore
crucially important tasks. Vast amounts of data are collected daily to gain insights
into the dynamics of traffic. However, these data are typically stored in the form of
raw measurements, that might hamper their potential benefits to both researchers and
practitioners. A more informative and compact way to store traffic data is in the form
of spatio-temporal maps, which have been shown to have advantage in intuitively ob-
serving traffic states. However, collecting, managing and retrieving such 2D patterns
of congested traffic on large networks are challenging tasks. Accordingly, this disser-
tation is dedicated to developing methodologies and tools to advance the utilisation of
traffic data, in particular, congestion patterns.

A conceptual framework for an intelligent search engine for congestion patterns (so-
called CoSI) is designed. It covers the entire requirements necessary to develop such a
system, ranging from processing raw data to searching through the resulting database
of congestion patterns. Overall, the framework consists of two parts: database con-
struction and search application (or so-called pattern retrieval). Their designs and re-
lations are comprehensively presented in this research. The database construction is
responsible for preparing a database of patterns of congested traffic which is carefully
designed for the conveniences of a search application. Its conceptual design consists
of three layers (or phases): pattern collection, feature extraction and pattern annota-
tion. Regarding the search application, several possibilities for retrieving patterns are
identified in association with the aforementioned steps of constructing the underlying
database. These pieces of research are summarised as follows.

Congestion database construction

For the lowest layer in the database construction, this dissertation examines how to
harvest spatio-temporal patterns of congestion from local measurements on a highway
traffic network. This entails acknowledging and addressing several challenges. In a
road network, congestion can propagate from an initial location to upstream intersec-
tions and junctions. From there, spill-backs to different roads are possible. In addition,
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scalability is an important aspect that needs to be considered. As the size of the un-
derlying network becomes bigger, the need for a more efficient methodology occurs.
Taking these two requirements into consideration, a pattern collection framework is
proposed which includes several components. First, a heuristic partition method is
proposed to divide a traffic network into individual paths, from which traffic states are
estimated in a finer resolution. Congestion is detected based on the filtered data, then
followed by the construction of a three-dimensional graph associating related regions
of congestion at the network link level. This level switching significantly simplifies
the problem in terms of data size. A depth-first-search based method is developed to
traverse this graph in search for patterns of congestion. The whole framework is ap-
plied to loop-detector data on the Dutch national highway network. Different clusters
of congestion are identified, from which many congestion patterns are extracted, which
provide a more intuitively observable representation of traffic congestion. The result-
ing processing time suggests the feasibility of applying the framework to large-scale
traffic network.

The regular occurrence of traffic congestion can lead to a vast number of congestion
patterns accumulated over time. This poses a challenge for effectively retrieving rele-
vant congestion patterns, for instance, to locate a certain type of patterns that represent
a similar dynamic of congestion. The top two layers of the database construction, fea-
ture extraction and pattern annotation, are designed to address this challenge. The for-
mer identifies salient traits, i.e. so-called features, in a congestion pattern that separate
it from other patterns. The latter builds a classifier based on these features to annotate
patterns. In particular, this dissertation investigates two fundamentally different feature
schemes, which both use image representation for congestion patterns. The first one,
so-called point-based approach, uses a histogram of generic key points in (pattern) im-
ages as feature vectors. The second one, so-called area-based approach, applies image
segmentation to extract features at a higher level of abstraction by associating relevant
traffic domain knowledge to image regions. Clustering analysis and classification are
used to evaluate these approaches. Both the qualitative and quantitative results indicate
the dominance of the area-based features in dividing congestion patterns into more ho-
mogeneous groups. In addition, this directly results in interpretable features and yields
a much smaller feature space. On the other hand, the point-based approach is found ca-
pable of recognizing more detailed and subtle differences between clusters. Therefore,
a combination of these feature approaches possibly derives finer clusters of congestion
patterns.

The above study on the two feature schemes has demonstrated the advantages of using
domain-knowledge to formulate features for congestion patterns. This finding moti-
vates the study of traffic bottleneck activations, which empirical studies commonly
observe. Detecting bottlenecks and characterising their traits from patterns of conges-
tion can provide relevant inputs to investigate mitigating strategies. This dissertation
develops an automated detection framework for (stationary) highway bottleneck acti-
vations. It employs two fundamental observations as primary indicators for activation
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of bottlenecks, namely the temporal decrease of traffic speeds at a fixed location or
in its vicinity and the prominence of speed drops along the direction of characteristic
waves. The results suggest that the combination of raw and ASM-filtered data lead to
an efficient identification method for bottleneck activation locations. In particular, raw
data preserves speed discontinuities while smoothed data support the determination of
precise activated locations. Furthermore, to characterise the consequence of a bottle-
neck activation, the spatio-temporal fronts of the upstream congestion are identified by
applying image processing methods. Subsequently, primary and secondary bottlenecks
are identified and provide insights into the interaction between nearby bottlenecks on a
road network. This information is valuable for traffic managers and traffic controllers.
In addition, the developed framework is applied to one-year of traffic data on a selected
corridor of the Dutch highway system. Several bottlenecks have been identified, and
their relationships, i.e. the order of activations, have also been determined.

Pattern retrieval application

The first part of the CoSI framework, including pattern collection, feature extraction
and pattern annotation, is covered in the aforementioned research. The second part -
pattern retrieval - relates to the application of searching through a (congestion pattern)
database for relevant patterns. The conceptual design of CoSI identifies three possi-
bilities for such an application: contextual, keyword-based and similarity-based. The
first and second options are directly derived from the pattern collection and pattern
annotation, respectively. Whilst, the last option searches for patterns by providing one
example pattern. This is the objective of the final piece of research in this dissertation.

The feature extraction study develops methods for identifying domain-specific fea-
tures in each congestion pattern. Based on these elements, this dissertation proposes
a content-based approach, which includes relation-graph formulation and similarity
measurement. The former aims at preserving the spatio-temporal relations between
different regions of congestion patterns, each of which represents a traffic-domain fea-
ture. The latter develops a methodology with heuristic and parametrised matching
functions for comparing relation-graphs representing congestion patterns. For valida-
tion, a collection of hundreds of patterns are used. Each time, patterns are ranked based
on their similarities to a pre-selected pattern. The ranking results suggest the feasibil-
ity of the proposed methods in identifying similar patterns, i.e. assigning them to high
ranks. The research further analyses the meanings and practical use of the parameters
used in the graph matching function. In essence, each of these parameters reflects a
different aspect of congestion patterns that can alter similarity scores. This enables
informed users to interact with the retrieval system to achieve their expected results.

To conclude, this dissertation develops multiple frameworks and methodologies that
are particularly valuable for advancing the utilisation of collected traffic data, from
individual measurements to congestion patterns. As data have continuously been col-
lected, the contribution of the studies should also become more significant. First, con-
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gestion can be harvested automatically in forms of spatio-temporal patterns (pattern
collection module). Second, many of its characteristics are also derived automati-
cally (feature extraction module). Last but not least, relevant patterns in the resulted
database can be retrieved intuitively and semantically with the relation-graph (pattern
retrieval module).
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