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Abstract

In this thesis, we derive a multivariate analogue of Ruijsenaars’s 2F1-generalisation R. We use
Hopf algebra representation theory of the modular double of sl(2), a Hopf algebra structure
strongly related to quantum groups, to relate the function R to overlap coefficients of eigenfunc-
tions. Using properties of the algebra and the representation, we derive an Askey-Wilson type
difference equation. We moreover recover Ruijsenaars’s unitary transformation kernel  .

Expanding on the Hopf algebra structure, we extend our derivations to the multivariate
version of R. Employing representation theory, we obtain multivariate difference equations.
Furthermore, we demonstrate that the multivariate function enables the definition of a unitary
transformation on multivariate functions in L2((0,∞)N ).
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Chapter 1

Introduction

This study aims to derive a multivariate analogue of Ruijsenaars’s generalised hypergeometric
function R. Ruijsenaars initially developed this function as a generalisation of the family of 2F1
functions in the context of Calogero-Moser many-particle systems [40]. Several properties of
the function R were proven in the subsequent works [36, 37, 38]. For this study, it is important
to note that the function R is an eigenfunction of a system of Askey-Wilson type difference
equations and can be used to construct the kernel of a unitary map. The main objective of this
thesis is to extend these two properties to a multivariate version of the function R. We will
demonstrate that the multivariate version of our function is an eigenfunction of a multivariate
difference operator and also serves as the kernel of a unitary map on multivariate functions.

1.1 Background

The derivations in this thesis have a close relationship with the study of Krawtchouk polynomials.
To provide some context, I will briefly highlight the parallels between our work and the study of
these polynomials. It is important to note that no prior knowledge of Krawtchouk polynomials is
necessary to understand this thesis; this section is only meant to provide additional background.
The article [34] by Nomura and Terwilliger offers an excellent overview of the connection
between Krawtchouk polynomials and the Lie algebra sl(2). Many of the results presented in
this thesis have corresponding counterparts in their work.

Krawtchouk polynomials form a set of polynomials that are orthogonal with respect to a
discrete measure. These polynomials are proven to be equal to matrix elements of the natural
representation on the Lie group SU (2) [30]. Alternatively, they can be expressed as matrix
elements of the symmetric power representation of the Lie algebra sl(2) on polynomials of
two variables. In this case, the polynomials in two variables are acted upon by sl(2) through
differentiation [34, lem 3.20].

In [34, thms 3.23 and 3.24], eigenfunctions of two elements ℎ and ℎ∗ are used to derive
difference equations for the Krawtchouk polynomials. The representation theory can also be
employed to establish the orthogonality of these polynomials ([34, thm 3.22]). As a consequence
of their orthogonality, the Krawtchouk polynomials can be used to construct an invertible
transformation. Properties of this transformation have been studied in [10].
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The study of Krawtchouk polynomials shares similarities with our research. In this study,
we employ representations of a deformation of the Lie algebra sl(2), which we refer to as the
quantum group or quantum deformed algebra. We denote this deformation as Uq(sl(2)) or
simply Uq . (Furthermore, we extend this deformation to a larger structure known as the modular
double, discovered by Faddeev ([7]). This extension allows us to broaden the range of a pair of
positive base parameters to complex conjugate parameters.)

We discover eigenfunctions of two classes of elements in the deformation and compute their
overlap coefficients, a continuous generalisation of the matrix elements found in the case of
Krawtchouk polynomials. The resulting overlap function, denoted as  , is found to be equivalent
to Ruijsenaars’s generalised hypergeometric function R, up to certain prefactors. This result is
not surprising, as van de Bult ([4]) has previously derived a closely related outcome.

We employ the representation theory of Uq to derive difference equations for the function  ,
in a similar way as described in [34]. We demonstrate that these difference equations for  are
equivalent to the Askey-Wilson difference equations, with appropriate prefactors.

Although the concept of orthogonality does not directly transfer from the Krawtchouk
polynomials to  , we establish that the latter can still be regarded as the kernel of an invertible
Hilbert space isomorphism. With some scaling, this isomorphism can be modified into a unitary
transformation.

Having derived these results for  , we proceed to generalise the function to its multivari-
ate version. This multivariate function shares similarities with a multivariate version of the
Krawtchouk polynomials studied in [45]. Our derivation follows an algebraic approach similar
to the derivations in the studies of multivariate Askey-Wilson functions and Askey-Wilson
polynomials presented in [15, 16]. These articles provide a method for deriving a multivariate
difference equation, which we also adopt.

1.2 Outline

The body of this thesis is divided into three parts. Part I can be considered a preliminary
part, introducing the quantum group Uq(sl(2)), its modular double, and its representation on
meromorphic functions. These concepts provide the necessary tools for the algebraic derivations
later in this study. The structure of the quantum group Uq resembles that of a Hopf algebra, of
which we use some properties. TTo keep this thesis self-contained, we will start the first part
with a chapter on Hopf algebras (chapter 2). In principle, no general knowledge on the concept
of Hopf algebras is needed, so that the contents of chapter 2 may be considered background
knowledge. The reader may safely skip over it if they wish to do so. Chapter 3 introduces and
discusses the quantum group Uq and its modular double, while we study its representations in
chapter 4.

Part II focuses on specific elements of the modular double. In the case of Krawtchouk
polynomials, the polynomials could be derived from eigenfunctions of certain elements ℎ and
ℎ∗ in the Lie algebra sl(2). In our approach, we replace these elements ℎ and ℎ∗ with a type of
elements known as skew-primitive elements. We define those elements in chapter 5. It is followed
by the introduction of the hyperbolic gamma function in chapter 6. This hyperbolic gamma,
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equivalent (up to reparametrisation) to the double sine function (cf. [31]) and the quantum
dilogarithm (cf. [27, 9]) generalises the regular gamma function. We employ this hyperbolic
gamma function in chapter 7 to express eigenfunctions of the skew-primitive elements.

In part III, we use the eigenfunctions derived in the previous part to construct the function  ,
which we do in chapter 8. In that same chapter, we establish the relationship between the function
and Ruijsenaars’s function R, as well as the related functions Rren and  . Additionally, we
reproduce results concerning the analyticity of the function, and we extend Ruijsenaars’s results
regarding its asymptotics to complex parameters. In chapter 9, we derive a difference equation
 and show how it relates to the Askey-Wilson difference equations. Chapter 10 demonstrates
that  and  serve as kernels for Hilbert space isomorphism, which allows us to define a unitary
transformation on L2(0,∞) using these functions. The methods used in this chapter are related
to those used in [24, 28, 17, 18, 23]. Its results extend the results of Ruijsenaars for different
choices of the parameters.

In chapter 11 lastly, all the results converge. We use the Hopf algebra structure of the modular
double to generalise the skew-primitive elements to a tensor product of Hopf algebras and derive
their multivariate eigenfunctions. The latter will be used to define novel multivariate versions of
the maps  and  . We demonstrate that the multivariate  satisfies a multivariate difference
equation, and that the multivariate  serves as the kernel for a unitary multivariate integral
transform on L2((0,∞)N ).
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Part I

The quantum group Uq(sl(2))

This initial part can be considered preliminary. In chapter 2, we introduce the concept of co-
algebras and Hopf algebras. Then, in chapter 3, we describe a special Hopf algebra Uq(sl(2))
known as the quantum enveloping algebra of (the Lie algebra) sl(2) or the quantum group of
sl(2), as well as its modular double D. This Hopf algebra will be the underlying algebra, upon
which we built the results of this thesis. In chapter 4, we introduce a class of representations on
Uq(sl(2)) and D. The contents of these chapters are drawn from a variety of prior sources and
do not include novel results. Readers who are already familiar with the ideas of Hopf algebras
and the quantum group of sl(2) may proceed directly to chapter 4.





Chapter 2

Hopf algebras

Hopf algebras were first introduced in the work of Heinz Hopf in the early 1940s. A formal
definition of the concept was given in 1956 by Pierre Cartier. From the late 1980s onwards, Hopf
algebras and its representation have been an object of study within many areas of mathematics
and mathematical physics, such as category theory, combinatorics and conformal field theory
([1]).

In this chapter, we introduce the concept of Hopf algebras in the following steps. We
recapitulate the definition of an algebra, as a preparation for introducing the dual concept of a
coalgebra. Next, we introduce bialgebras, which combines the structures of algebra and coalgebra.
Adding the aditional structure of an antipode, we arive at Hopf algebras. We complete our
introduction of Hopf algebras by adding a star structure to them.

To illustrate the concepts we introduce, we will provide some simple examples. Some of
these examples will be directly relevant to our main study. Other examples are included solely
for the purpose of illustrating the concepts they exemplify. Their goal is to aid the reader in
understanding the notions we have introduced.

In later chapters we will exclusively consider vector spaces over the ground field ℂ. The
majority of the ideas covered in this chapter are applicable to arbitrary ground fields. Therefore,
we use the symbol K to represent the ground field throughout this chapter. Except where other
references are given, the information in this chapter is based on the introduction to Hopf algebras
in [25].

2.1 Algebras

An algebra is a vector space A equipped with a bilinear map called the product map. The algebra
is unital if it contains an element I such that for all x ∈ A, Ix = xI = x. Often, the product
map is assumed to be associative, which we do from now on, unless explicitly stated otherwise.
Moreover, again unless stated differently, we assume algebras to be unital.

To highlight the duality with the later definition of a coalgebra, we require a more abstract
concept of an algebra. In this abstract context, we consider the unit as a mapping from the
ground field into the algebra. Let’s introduce our formal definition:
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Definition 2.1 (Algebra). Let A be a vector space over K. Suppose � ∶ A × A → A is a bilinear
and associative map. The pair (A, �) forms an algebra, where � is called the (algebra) product.
An algebra (A, �) is called a unital algebra if we extend it with a linear map � ∶ K → A that
satisfies the condition of unity:

�(�(1), a) = �(a, �(1)) = a for all a ∈ A.

We denote the unital algebra by the triplet (A, �, �), and we refer to � as the unit map of the
algebra.

The unit element I and the unit map � are related through the relationship I = �(1), so
that the definitions are equivalent. If we speak of ‘an algebra A’ from now on, the existence
of the product � and unit � is implicitly understood. We may occasionally add a subscript to
their symbols (and e.g. write �A and �A) to avoid confusion. At times we might also denote the
product �(a, b) of two matrix elements by the simpler notation ab or a ⋅ b. Additionally, we use
the symbol I , 1A or just 1 to denote the element �(1) in A. The use of the more formal notation
is beneficial, however, for our study of the definition of a Hopf algebra.

Slightly abusing notation, we also write �(a ⊗ b) = �(a, b) for a ⊗ b ∈ A ⊗ A.1 We
then view � to be a map from A⊗A to A. Using this updated notation, we define an algebra
homomorphism as follows:
Definition 2.2 (Algebra homomorphism). Let A,B be two algebras over K. A linear map
f ∶ A → B is called an algebra homomorphism if it commutes with the algebra products and
sends the unit of A to the unit of B, that is, if both

f◦�A = �B◦(f ⊗ f ) and f◦�A = �B.

We say that an algebra homomorphism preserves the algebra structure.
Denote by End(V ) the algebra of linear maps from V to itself (endomorhpisms).

Definition 2.3 (Representation). Let A be an algebra and V a vector space. A representation is
an algebra homomorphism from A to End(V ).
Definition 2.4 (Subalgebra, ideal). Let (A, �) be an algebra, not neccesarily unital. A subspace
B of A is called a subalgebra if it is closed under the multiplication operation �, i.e., �(a, b) ∈ B
for all a, b ∈ B. A subalgebra I that satisfies �(x, a), �(a, x) ∈ I for all x ∈ I and a ∈ A, is
called an ideal of A.
Example 2.5 (Ground algebra). The field K equipped with its regular product and the unit map id
is an algebra. If (A, �, �) is another algebra, then the map � serves as an algebra homomorphism
from K to A. ∎

Example 2.6. Consider the vector space M2(K) of 2 × 2-matrices with elements in K. By
equipping M2(K) with the usual matrix product and the unit map � →

( � 0
0 �

), we transform it
into a unital algebra. ∎

1By the universal property of the tensor product, there is a unique map �′ from A⊗A to A such that �′(a⊗b) =
�(a, b) for all a, b ∈ A, justifying the notation.
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Example 2.7 (Tensor product of algebras). IfA andB are algebras, we can give the tensor product
space A⊗ B an algebra structure by defining the product and unit maps as follows:

�A⊗B(a1 ⊗ b1, a2 ⊗ b2) ∶= �A(a1, a2)⊗ �B(b1, b2) and �A⊗B(�) = ��A(1)⊗ �B(1).

As factors of the tensor product commute (i.e. (a ⊗ 1)(1⊗ b) = a ⊗ b = (1⊗ b)(a ⊗ 1)), we
can regard A and B as commuting subalgebras of A⊗ B. ∎

Example 2.8 (Tensor algebra). Let V be a vector space over K. We define the n-th tensor power
of V (n ∈ ℕ) as T nV = V ⊗n = V ⊗⋯⊗ V , with T 0V = K. The tensor algebra T (V ) is the
direct sum of all T nV ’s, i.e.,

T (V ) =
⨁

n∈ℕ
T nV = K⊕ V ⊕ (V ⊗ V )⊕⋯ .

We define the (associative) product � on elements in T mV and T nV by
�(u1 ⊗⋯⊗ um, v1 ⊗⋯⊗ vn) = u1 ⊗⋯⊗ um ⊗ v1 ⊗⋯⊗ vn ∈ T m+nV

and extend it to a bilinear map on T (V ). The unit map is defined by mapping 1 to the element 1
in T 0V ⊆ T (V ).

For notational convenience, we can omit the tensor product sign from our notation, using
expressions like v1⋯ vn instead of v1⊗⋯⊗vn. We extend this convention to linear combinations
as well. In the upcoming chapter on the quantum group Uq(sl(2)), we will make use of this
tensor algebra, and of the quotient algebra introduced in the following example. ∎

Example 2.9 (Quotient algebra). LetA be a vector space over K and I an ideal ofA. The quotient
algebra A∕I is the space of equivalence classes of elements in A. We represent elements in
A∕I as [a] ∶= a + I for a ∈ A. We have [a] = [b] whenever a − b ∈ I . The product on A∕I
is defined as [a][b] = [ab], and addition is defined as [a] + [b] = [a + b]. The map a → [a]
preserves the product and the unit, so that it is an algebra homomorphism. We might ocassionally
drop the square brackets from our notation. ∎

2.2 Coalgebras

The condition of associativity of � in the definition of an algebra is equivalent to the commuta-
tivity of the following commutation diagram:

A⊗A⊗A A⊗A

A⊗A A

�⊗id

id⊗�

�

�

(2.1)
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Similarly, the condition of unity of � is equivalent to the commutatitity of this diagram:2

K⊗A A⊗A A⊗ K

A

�⊗id

�

id⊗�

≅≅
(2.2)

The triple of a vector space A, a product �∶ A × A → A, and a unit �∶ K → A satisfying the
above commutation relations define an algebra. Inverting all arrows in this expression, we arrive
at the definition of a coalgebra:
Definition 2.10 (Coalgebra). Let C be a vector space over K and let Δ∶ C → C ⊗ C and
�∶ C → K be two linear maps such that the following two diagrams commute:

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

id⊗Δ

Δ⊗id

Δ

Δ (2.3)

K⊗C C ⊗ C C ⊗ K

C

�⊗id id⊗�

≅≅
Δ (2.4)

The triple (C,Δ, �) is called a coalgebra. The maps Δ and � are called the coproduct and counit,
respectively. The condition that (2.3) commutes is called coassociativity; the commuting of
(2.4) defines the notion of counity.

We define a coalgebra homomorphism by reversing directions in the definition of an algebra
homomorphism (definition 2.2):
Definition 2.11 (Coalgebra homomorphism). Let C and D be two coalgebras over K. A linear
map f ∶ C → D is called a coalgebra homomorphism if both equations

(f ⊗ f )◦ΔC = ΔD◦f and �C = �D◦f

are satisfied.
Example 2.12 (Ground coalgebra). A very simple example of a coalgebra is the triple (K,ΔK, id)
with ΔK ∶ � → �(1⊗ 1). If (C,ΔC , �C ) is another coalgebra, then �C is a coalgebra homomor-
phism from C to K. ∎

Example 2.13. For a slightly more elaborate example of a coalgebra, let X be a set and let
C = KX be the vector space spanned by elements of the set X, i.e., C is a vector space with
basis X. Set Δ(x) ∶= x⊗x and �(x) ∶= 1 for all basis vectors x ∈ X and extend them to linear
maps on C . Then (C,Δ, �) is a coalgebra.

We can, for instance, take X = {
( 1 0
0 0

)

,
( 0 1
0 0

)

,
( 0 0
1 0

)

,
( 0 0
0 1

)

}. We can identify the span of
X with the vector space of 2 × 2-matrices. Defining the coproduct Δ and counit � as indicated,

2Observe that for any vector space V over K, the tensor product spaces K⊗ V and V ⊗ K are isomorphic to V .
The isomorphism from K⊗V → V is given by �⊗v → �v, with inverse v → 1⊗v. The isomorphism V ⊗K → V
is defined similarly.
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given a matrix ( a b
c d

), we would have

Δ
( a b
c d

)

= a
( 1 0
0 0

)

⊗
( 1 0
0 0

)

+ b
( 0 1
0 0

)

⊗
( 0 1
0 0

)

+ c
( 0 0
1 0

)

⊗
( 0 0
1 0

)

+ d
( 0 0
0 1

)

⊗
( 0 0
0 1

)

.
( a b
c d

)

⊗
( a b
c d

)

and �X
( a b
c d

)

= a + b + c + d. ∎

Example 2.14 (Tensor product of coalgebras). The tensor product of two coalgebras C and D
can be made into a coalgebra itself by in the following way: for c ∈ C and d ∈ D, we define

ΔC⊗D(c, d) ∶= (id⊗ �C,D ⊗ id)◦(ΔC ⊗ ΔD)(c, d) and �C⊗D(c, d) ∶= �C (c)�D(d),

where �C,D ∶ C ⊗D → D⊗C is defined as �C,D(x ⊗ y) = y ⊗ x.3 We extend these maps to
linear maps on C ⊗D. ∎

2.3 Bialgebras

Before delving into the definition of a bialgebra, we present a lemma that establishes a relation
between algebras and coalgebras:
Lemma 2.15. Let (H,�, �) be an algebra and (H,Δ, �) a coalgebra. We equip H ⊗H with
the tensor product of algebras and coalgebras as defined in examples 2.7 and 2.14, and provide
K with the ground algebra and coalgebra structures (examples 2.5 and 2.12). The following two
statements are equivalent:

1. Both �∶ H ⊗H → H and �∶ K → H are coalgebra homomorphisms.

2. Both Δ∶ H → H ⊗H and �∶ H → K are algebra homomorphisms.

The proof of this lemma can be found in [25, thm. III.2.1]. It demonstrates that these two
statements are equivalent by showing that they correspond to the same set of commutative
diagrams.

Now, let’s move on to the definition of a bialgebra:
Definition 2.16 (Bialgebra, bialgebra homomorhism). Let (H,�, �) be an algebra and (H,Δ, �)
a coalgebra such that the (equivalent) statements in lemma 2.15 are satisfied. The quintuple
(H,�, �,Δ, �) is called a bialgebra.

A bialgebra homomorphism is a map that is simultaneously an algebra homomorphism and
a coalgebra homomorphism and hence preserves algebraic and coalgebraic structures.

In simpler terms, a bialgebra combines the structures of both an algebra and a coalgebra.
It requires that the product and unit maps “commute" with the coproduct and counit maps,
respectively, as established by the equivalence presented in Lemma 2.15.

3Note that we need this map �C,D here, as ΔC ⊗ ΔD maps into C ⊗ C ⊗D ⊗D. Note that we can write the
product on A⊗ B (example 2.7) using this map �A,B as well: �A⊗B = (�A ⊗ �B)◦(id⊗ �A,B ⊗ id).
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Definition 2.17 (Star-bialgebra). Let H be a bialgebra with ground field ℂ. Let ∗∶ H → H to
be an antilinear involution, and write x∗ = ∗(x). Suppose that for all x, y ∈ H

(xy)∗ = y∗x∗ and Δ(x∗) = (∗ ⊗ ∗)Δ(x).

Then we call (H,�, �,Δ, �, ∗) a star-bialgebra.
The notion of star-bialgebra extends the concept of a star-algebra, which we did not discuss.

Two star structures ∗ and ∙ on a bialgebra are called equivalent if there exists a bialgebra
automorphism f such that ∗ ◦f = f◦ ∙.
Example 2.18. Recall the coalgebra of 2 × 2-matrices we discussed in example 2.13. It is not a
bialgebra if we equip it with the standard matrix product, as

�

(

1 1
0 0

)

⋅ �

(

1 0
0 0

)

= 2 ⋅ 1 ≠ 1 = �

((

1 1
0 0

)(

1 0
0 0

))

,

so that � is not an algebra homomorphism. ∎

Example 2.19 (Group bialgebra). Consider the group G = {1, e, f} with ef = fe = 1, ee = f
and ff = e. We can define an algebra product on the linear span H of G by linearly extending
the group product to H . We define the unit by �(�) = �1. Writing the element a11 + aee + aff
in H as a vector (a1, ae, af ), we can write this product as

�

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

a1
ae
af

⎞

⎟

⎟

⎟

⎠

⊗

⎛

⎜

⎜

⎜

⎝

b1
be
bf

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

a1b1 + aebf + afbe
a1be + aeb1 + afbf
a1bf + aebe + afb1

⎞

⎟

⎟

⎟

⎠

.

We can define a coalgebra on the basis elements by setting
Δ(1) = 1⊗ 1, Δ(e) = e ⊗ e and Δ(f ) = f ⊗ f,

and expand it to a linear map onH . Similarly, we define the counit on the basis by �(1) = �(e) =
�(f ) = 1 and extend it to a linear map, this defines a coalgebra structure (cf. example 2.13).

To see that (H,�, �,Δ, �) defines a bialgebra, we should check item 2 of lemma 2.15. We
have e.g.

Δ(�(e, f )) = Δ(1) = 1⊗ 1

and
�H⊗H (Δ(e),Δ(f )) = �H⊗H (e ⊗ e, f ⊗ f ) = ef ⊗ ef = 1⊗ 1,

so that Δ(�(e, f )) = �H⊗H (Δ(e),Δ(f )). We also have
�(�(e, f )) = �(1) = 1 = �(e) ⋅ �(f ).

In a similar way one checks that the above relations on other basis elements.
We can define a star structure on H by setting 1∗ = 1 and e∗ = f and extending it to an

antilinear map on H . One could check that this defines a star-structure on the bialgebra H . ∎

Example 2.20 (Tensor product of bialgebras). Let A and B be bialgebras. We’ve seen already
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(examples 2.7 and 2.14) how to equip A ⊗ B with algebra and coalgebra structures. We can
show that the resulting coproduct and counit are algebra homomorphisms.

Let a and c be elements of A and b and d elements of B. Write ΔA(a) =
∑

j a
′
j ⊗ a′′j with

the sum taken over some finite index set and a′j , a′′j elements of A. Note that this is possible for
any a ∈ A as ΔA(a) ∈ A⊗ A. Similarly, we write ΔA(c) =

∑

k c
′
k ⊗ c′′k , ΔB(b) = ∑

l b
′
l ⊗ b′′l

and ΔB(d) =
∑

m d
′
m ⊗ d′′m . Then

ΔA⊗B�A⊗B(a ⊗ b ⊗ c ⊗ d)

= (id⊗ �A,B ⊗ id)
(

ΔA(ac)⊗ ΔB(bd)
)

= (id⊗ �A,B ⊗ id)
(

(ΔA(a)ΔA(c))⊗ (ΔB(b)ΔB(d))
)

= (id⊗ �A,B ⊗ id)
∑

j,k,l,m
a′jc

′
k ⊗ a′′j c

′′
k ⊗ b′ld

′
m ⊗ b′′l d

′′
m

=
∑

j,k,l,m
a′jc

′
k ⊗ b′ld

′
m ⊗ a′′j c

′′
k ⊗ b′′l d

′′
m

= �A⊗B⊗A⊗B

(

∑

j,l
a′j ⊗ b′l ⊗ a′′j ⊗ b′′l ,

∑

k,m
c′k ⊗ d′m ⊗ c′′k ⊗ d′′m

)

= �A⊗B⊗A⊗B
(

ΔA⊗B(a ⊗ b),ΔA⊗B(c ⊗ d)
)

= �A⊗B⊗A⊗B
(

ΔA⊗B ⊗ ΔA⊗B
)

(a ⊗ b ⊗ c ⊗ d).

By linearity this result extends to A⊗ B ⊗A⊗B, so that ΔA⊗B is an algebra homomorphism.
It is left to the reader to check that �A⊗B is an algebra homomorphism as well. We conclude

that A ⊗ B, equiped with the algebra and coalgebra structures of the tensor products, is a
bialgebra. ∎

2.4 Hopf algebras

If A is an algebra and C is a coalgebra, we can define a convolution on linear maps from A to C .
For linear maps f and g, the convolution is defined as

f ★ g = �◦(f ⊗ g)◦Δ.

Note that if we have Δ(x) =
∑

j x
′
j ⊗ x′′j , we can write the convolution as f ★ g(x) =

∑

j f (x
′
j)g(x

′′
j ). Just as for the convolution of functions ℝ → ℝ, it can be shown that the

bialgebra convolution is associative. Unlike the convolution of functions on the real line, how-
ever, the bialgebra convolution admits an inverse: �◦�. These properties were proved in [25,
prop. III.3.1].

We use the convolution to define the antipode, which transforms a bialgebra into a Hopf
algebra.
Definition 2.21 (Antipode, Hopf algebra). Let (H,�, �,Δ, �) be a bialgebra. An antipode is a
linear map S ∶ H → H that satisfies

S ★ id = id★ S = �◦�.

If S is an antipode, the sextuple (H,�, �,Δ, �, S) is called a Hopf algebra. A bialgebra homo-
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morphism f between two Hopf algebras H1 and H2 that satisfies f◦SH1
= SH2

◦f is called a
Hopf algebra homomorphism. If a star-bialgebra admits an antipode, we call (H,�, �,Δ, �, S, ∗)
a Hopf star-algebra.

Not every bialgebra admits an antipode. If an antipode exists, however, it is unique: suppose
S and S′ are both antipodes, then by associativity and unitality of the convolution,

S = S ★ (�◦�) = S ★ (id★S′) = (S ★ id)★ S′ = (�◦�)★ S′ = S′.

Two Hopf star-involutions ∗ and ∙ are called equivalent if there exists a Hopf algebra homomor-
phism f such that ∗ ◦f = f◦ ∙

Remark 2.22. Many authors, including Kassel ([25]), impose an additional requirement on a star-
operatation ∗ in their definition of a Hopf star-algebra, demanding that it satisfies ∗◦S◦∗◦S = id.
However, it has been shown in [41] that this additional condition is a direct consequence of the
conditions imposed in definition 2.17. As ∗◦S◦∗◦S = id on a Hopf star-algebra, it follows
that the antipode of a Hopf star-algebra is invertible. Or, put differently, if the antipode of a
Hopf-algebra is non-invertible, it cannot admit a star-structure. ∎

Example 2.23 (Group Hopf algebra). Consider the group bialgebra (H,�, �,Δ, �) from exam-
ple 2.19. We define a linear map S ∶ H → H by setting S(g) = g−1 for all g ∈ G = {1, e, f}.
Then for all g ∈ G,

S ★ id(g) = �(S ⊗ id)Δ(g) = �(S ⊗ id)(g ⊗ g) = S(g)g = e = �(�(g)),

and similarly id★S(g) = �(�(g)). By linearity, S★ id = id★S = �◦�, so S is an antipode and
(H,�, �,Δ, �, S) is a Hopf algebra. ∎

Example 2.24 (Tensor product of Hopf algebras). We have seen in example 2.20 that the tensor
product of two bialgebras is again a bialgebra. We will show that the sensor product of Hopf
algebras is again a Hopf algebra. To do so, equip the vector spaces A and B with a Hopf algebra
structure, with antipodes SA and SB. Set SA⊗B(a ⊗ b) = SA(a)⊗SB(b) for a ∈ A and b ∈ B
and extend it to a linear map.

Then, writing ΔA(a) =
∑

j a
′
j ⊗ a′′j and ΔB(b) =

∑

k b
′
k ⊗ b′′k , we have

SA⊗B ★ idA⊗B(a ⊗ b) = �A⊗B
(

∑

j,k
S(a′j)⊗S(b′k)⊗ a′′j ⊗ b′′k

)

= �A
(

∑

j
S(a′j)⊗ a′′j

)

⊗ �B
(

∑

k
S(b′k)⊗ b′′k

)

= SA ★ idA(a)⊗SB ★ idB(b) = �A(�A(a))⊗ �B(�B(b))

= �A⊗B(�A⊗B(a ⊗ b)).

Similarly, idA⊗B(a ⊗ b) ★ SA⊗B = �A⊗B(�A⊗B(a ⊗ b)), and by linearity this result can be
extended to A⊗ B, so that SA⊗B is an antipode. ∎

If (A, �, �) is an algebra, we define �op(x, y) = �(y, x) to be opposite algebra product. The
triple (A, �op, �) defines an algebra again. We conclude this chapter with a lemma.
Lemma 2.25. Let H be a bialgebra and S ∶ H → H be an algebra homomorphism from
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(H,�, �) to (H,�op, �). Let X ⊆ H be a set that generates H as an algebra. If for all x ∈ X

S ★ id(x) = id★S(x) = �(�(x)), (2.5)
then S is an antipode for H .

Proof. As S, Δ and � are algebra homomorphisms, it follows that eq. (2.5) holds on the unit
element of H . As all elements in H can be written as a linear combination of iterated products
of elements in X, and eq. (2.5) preserves linear combinations, it suffices to show that if eq. (2.5)
is satisfied for x = y and for x = z, then it is also satisfied for x = yz.

Write Δy =
∑

j y
′
j ⊗ y′′j and Δz =

∑

k z
′
k ⊗ z′′k with j and k running over some finite

indexing sets. Then Δ(yz) = ΔyΔz =
∑

j,k(y
′
jz

′
k)⊗ (y′′j z

′′
k ), so that

S ★ id(yz) =
∑

j,k
S(y′jz

′
k)y

′′
j z

′′
k

=
∑

j,k
S(z′k)S(y

′
j)y

′′
j z

′′
k (by our assumption on S)

=
∑

k
S(z′k)

[

∑

j
S(y′j)y

′′

]

z′′k

=
∑

k
S(z′k)�(�(y))z

′′
k (by our assumption on y)

= �(�(y))
∑

k
S(z′k)z

′′
k (as � commutes with all elements of H)

= �(�(y))�(�(z)) = �(�(yz)),

and in a similar way we can show that
id★S(yz) = �(�(yz)).
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Chapter 3

Uq(sl(2)) and its modular double D

Heisenberg introduced theory of representing physical observables in quantum theory by Her-
mitian matrices. He noted that, unlike the classical analogue, multiplication of those matrix
observables was not commutative. Dirac then described how the observables formed a noncom-
mutative algebra, with its noncommutativity quantised by ℏ, the reduced Plank constant. Dirac
coined this deformed algebra the quantum algebra ([46]). The term ‘quantum’ has then since
become a common prefix for referring to the study of noncommutative analogues of classical
commutative objects such as groups and algebras.

A subclass of those quantum algebras is formed by the so-called quantum groups. Unlike
the name suggests, they are not groups, but Hopf algebras. In particular, the name is used for
deformations of algebras related to Lie groups and Lie algebras, formalised independently by
Drinfeld ([5]) and Jimbo ([22]) around the year 1985. In the case of Lie groups, deformations
are done on the commutative algebra of functions on the group manifold of the Lie group. In
the case of Lie algebras, the deformation is done on the enveloping algebra (we will recapitulate
the definitions), which is in fact not commutative, but is cocommutative as a Hopf algebra.1 The
underlying procedures in deforming these Hopf algebras were originally inspired by applications
from mathematical physics, being quantum integrable models and statistical physics ([6]).

In this chapter, we introduce the quantum group that is obtained from deforming the en-
veloping algebra of the Lie algebra sl(2), which we denote Uq(sl(2)) or just Uq, with q being
the deformation parameter. This deformation was first introduced (as an algebra) in 1981 ([32])
and has been studied by many authors since. We start our discussion of Uq by recapitulating
the definition of the Lie algebra sl(2) and its enveloping algebra, denoted U (sl(2)) or U . Then
we introduce Uq and show its relation to U . We introduce a parameter q̃, dual to q, and use it
to introduce a larger Hopf algebra D, which is isomorphic to Uq ⊗Uq̃, and which we call the
modular double of Uq. Lastly, we introduce and discuss some star-structures on Uq and D.

There exist some different ways of defining the Hopf algebra Uq, not all of which are
equivalent. We decide to stick to the definition provided in [25] and match all our results to this
definition.

1An algebra is said to be commutative if � = �◦�, with � the map that flips the factors of the tensor product. A
coalgebra is cocommutative if Δ = �◦Δ.
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3.1 The Lie algebra sl(2)

To provide the necessary background for introducing Uq(sl(2)), we briefly recap the definition
of a Lie algebra and especially of sl(2), which lies at the root of Uq . For a more comprehensive
treatment of Lie algebras, we recommend consulting e.g. [20], in which one will find more
background on the concepts discussed in this section.
Definition 3.1 (Lie bracket, Lie algebra). Let L be a vector space. A Lie bracket is a bilinear
vector space map [ ⋅ , ⋅ ]∶ L × L → L satisfying the two axioms [x, x] = 0 and [x, [y, z]] +
[y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. The pair (L, [ ⋅ , ⋅ ]) defines a Lie algebra.

Lie algebras are in general non-associative non-unital algebras, although some nontrivial
examples of associative Lie algebras exist.
Example 3.2 (L(A)). Let A be an associative algebra. One could check that [a, b] ∶= ab − ba
defines a Lie bracket on A, so that (A, [ ⋅ , ⋅ ]) is a Lie algebra. We denote this Lie algebra by
L(A). ∎

The Lie algebra sl(2) is a non-associative algebra that we define as follows: its vector space
is the linear span over ℂ of three elements, which we call ℎ, e and f . Its algebra product is the
Lie bracket is given by

[ℎ, e] = 2e, [ℎ, f ] = −2f and [e, f ] = ℎ.

One can identify sl(2) with the vector space of 2× 2-matrices with zero trace, equipped with the
product [x, y] = xy − yx. In this case, the basis elements ℎ, e and f correspond to the matrices

ℎ =

(

1 0
0 −1

)

, e =

(

0 1
0 0

)

and f =

(

0 0
1 0

)

.

3.2 Enveloping algebra

We will now introduce the concept of the enveloping algebra (sometimes referred to as the
universal enveloping algebra) of a Lie algebra. The enveloping algebra U (L) of a Lie algebra L
is an associative algebra that preserves many of the properties of L, making it a valuable tool in
the study of Lie algebras.

We define the enveloping algebra using the tensor and quotient algebras in examples 2.8
and 2.9. Let L be a Lie algebra, T (L) the tensor algebra, and let I(L) be the ideal of T (L)
generated by all elements in T (L) of the form xy − yx − [x, y], for x, y ∈ L.2 We define the
enveloping algebra of L as

U (L) ∶= T (L)∕I(L).

We now move over to the enveloping algebra of sl(2). We will show that the algebra
U (sl(2)) equals, up to isomorphism, the algebra U generated by the three elements E, F ,H

2The ideal I(L) thus is the space of all finite sums of the form v(xy−yx−[x, y])w for v,w ∈ T (L) and x, y ∈ L.
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with relations
HE − EH = 2E, HF − FH = −2F and EF − FE = H.

To see why U is isomorphic to U (sl(2)), define a map �∶ T (sl(2)) → U by sending the
elements ℎ, e and f in T (sl(2)) to H , E and F respectively in U and extending the map to a
homomorphism. From the defining relations of U , it is clear that � maps I(sl(2)) to 0. We can
thus let � descend to a well-defined map �′ ∶ U (sl(2)) → U , setting �′([x]) = �(x).

We now define the linear map  ∶ U → U (sl(2)) on the generators by  (H) = [ℎ] and
 (E) = [e] and  (F ) = [f ]. It is easy to check that the map  can be extended to a well
defined algebra homomorphism, satisfying the defining relations of U . Note that  and �′ are
eachothers inverses, so that indeed U is isomorphic to U (sl(2)).

We can define a Hopf algebra stucture on U by defining a coproduct and a counit. On the
generators, set

ΔH = 1⊗H + H ⊗ 1, ΔE = 1⊗E + E ⊗ 1 and ΔF = 1⊗ F + F ⊗ 1,

and extend Δ to the span of the generators. One checks that such a map preserves the algebra
structure, e.g. for the relation EF − FE = H we find

ΔEΔF = 1⊗ (EF ) + F ⊗ E + E ⊗ F + (EF )⊗ 1,

and
ΔFΔE = 1⊗ (FE) + E ⊗ F + F ⊗ E + (FE)⊗ 1,

so that
ΔEΔF − ΔFΔE = 1⊗ (EF − FE) + (EF − FE)⊗ 1 = ΔH.

Similarly, the other defining relations are preserved under Δ, so that we can extend it to an
algebra homomorphism.

The counit of U can be by defining � to map the span of H , E and F to 0 and �U to �K = id.
Preservation of the defining relations now is automatic, so that it extends to a homomorphism.

Lastly, for n = 0, 1, 2, ... and v1, ..., vn ∈ span{H,E, F }, we set
S(v1v2⋯ vn) = (−1)nvnvn−1⋯ v1

and extend it to a linear map on H . One checks that S preserves the defining relations (e.g.
S(EF − FE) = FE − EF = −H = S(H)) and is an algebra homomorphism from (H,�, �)
into (H,�op, �), so that we can use lemma 2.25 to conclude that S is an antipode. It can be
shown that S extends to an antipode of U , so that U is a Hopf algebra.

Several star structures exist on U , some of which are given on the generators by
E∗ = E, F ∗ = F and H∗ = −H,

and
E∙ = F , F ∙ = E and H ∙ = H.
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3.3 The quantum group Uq(sl(2))

For complex q not equal to −1, 0 or 1, we define Uq(sl(2)) to be the algebra generated by the
elements K , K−1, E and F with relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, EF − FE = K −K−1

q − q−1
. (3.1)

To simplify the notation, we will often write Uq instead of Uq(sl(2)). We denote the product by
� and the unit by � as usual. The parameter q quantifies the deformation of Uq with respect to
U . (We will show in what sense U can be seen as a limiting case of Uq in the next section.)

We will extend Uq to a bialgebra. Let Δ∶ Uq → Uq ⊗Uq be the algebra homomorphism
defined by

ΔK = K ⊗K, Δ(K−1) = K−1 ⊗K−1,

ΔE = 1⊗E + E ⊗K and ΔF = K−1 ⊗ F + F ⊗ 1.

It is straightforward to verify that Δ preserves the relations given in eq. (3.1), for example,
ΔKΔE = K ⊗KE +KE ⊗K2 = K ⊗ (q2EK) + (q2EK)⊗K2 = q2ΔEΔK.

Hence the extension to an algebra homomorphism is well defined.
Let the homomorphism �∶ Uq → ℂ be defined by
�(K) = �(K−1) = 1 and �(E) = �(F ) = 0.

(Compatibility with the relations eq. (3.1) follows almost immediately in this case.) The quintuple
(Uq, �, �,Δ, �) is a bialgebra.

Define S to be the algebra homomorphism from (Uq, �, �) to (Uq, �op, �) satisfying
S(K) = K−1, S(K−1) = K, S(E) = −EK−1 and S(F ) = −KF .

One can check that the defining relations are preserved under S, e.g.
S(KE) = S(E)S(K) = −EK−2 = −q2K−1EK−1 = q2S(K)S(E) = S(q2EK),

so that the homomorphism is well-defined. By lemma 2.25, S is an antipode, showing that Uq is
a Hopf algebra.

3.4 Relating Uq to U

In the previous section, I said that the parameter q quantifies the deformation of Uq with respect
to U . We will see that in the limit q = 1, we retrieve, more or less, the algebra U .

The defining relations in eq. (3.1) do not allow us to set q = 1. Defining the elementH ∈ Uq
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as H ∶= K−K−1

q−q−1 , we have EF − FE = H and we can calculate

HE − EH = 1
q − q−1

(

(KE − EK) − (K−1E − EK−1)
)

= 1
q − q−1

(

(q2 − 1)EK − (q−2 − 1)EK−1)

= qEK + q−1EK−1,

and similarly
HF − FH = −qFK−1 − q−1FK.

Hence, using H , we can rewrite the defining relations to
KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK,

(q − q−1)H = K −K−1, HE − EH = qEK + q−1EK−1,

HF − FH = −qFK−1 − q−1FK, and EF − FE = H.

This more complicated set allows for setting q = 1. Simultaneously setting K = 1, we retieve
the defining relations of U . If we denote by ⟨K − 1⟩q the ideal of Uq generated by K − 1, we
find that U ≅ U1∕⟨K − 1⟩1. (Setting q = −1, we can also retrieve U , but now with the roles of
the generators E and F interchanged.)

3.5 The modular double D

The modular double is a structure first described by Faddeev ([7]) which unifies two quantum
groups Uq and Uq̃ into one object. This new object is modular in the sense that it is compatible
with the original structures.

For q ∈ ℂ ⧵ {0}, set b in such a way that q = ei�b2 . The dual parameter q̃ is defined as
q̃ = ei�∕b2 . We can define the modular double as

D ∶= Uq ⊗Uq̃

By example 2.7, Uq and Uq̃ can be identified with commuting subalgebras. Hence we identify
D with the algebra generated by K,K−1, E, F , K̃, K̃−1, Ẽ, F̃ with relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, EF − FE = K −K−1

q − q−1
,

K̃K̃−1 = K̃−1K̃ = 1, K̃Ẽ = q̃2ẼK̃, K̃F̃ = q̃−2F̃ K̃, ẼF̃ − F̃ Ẽ = K̃ − K̃−1

q̃ − q̃−1
,

and MN = NM for M ∈ {K,K−1, E, F } and N ∈ {K̃, K̃−1, Ẽ, F̃ }. By example 2.24, the
Hopf algebra structures of Uq and Uq̃ carry over to D. Note that q does not uniquely determine
the values of b and q̃, and hence D is not determined by the choice of q alone.

One could of course take the tensor product of Uq with Ur with any arbitrary r, and all of
the above would still apply, but the two factors Uq and Uq̃ of the modular double turn out to
be related in a more fundamental way: Faddeev showed how they can both be embedded in a
natural way in an algebra generated by Heisenberg-type elements ([7]). We will present the main
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idea of this procedure in this chapter. It should be noted that while the derivation presented by
Faddeev is not rigorous from a mathematical point of view, it serves as an illustration of the
underlying thought process, and has proven to be useful e.g. in detemining representations of D,
as will be shown in the next chapter.

First, let pn, with n ∈ ℤ4 be elements with commutation relations [pn, pn+1] = 2�iI (with I
the unit element) and [pn, pn+2] = 0. Set vn = ebpn (assuming for now that this is well-defined
as an element of the algebra generated by {p1, p2, p3, p4}). By the Baker-Campbell-Hausdorff
formula, the elements vn satisfy

vnvn+1 = eb(pn+pn+1)+
b2
2 [pn,pn+1] = qeb(pn+pn+1)

and
vn+1vn = eb(pn+1+pn)−

b2
2 [pn,pn+1] = q−1eb(pn+pn+1),

so that
vnvn+1 = q2vn+1vn and vnvn+2 = vn+2vn (3.2)

for n ∈ ℤ4. Denote the algebra generated by four elements v1, v2, v3, v4 and the relations in
eq. (3.2) by Cq.

The algebra Cq has two central elements3, Z1 = v0v2 and Z2 = v1v3. Consider the
subalgebra generated by the elements

K = qv0v3 = q−1v3v0, K ′ = q−1v1v2, E = i
v0 + v1
q − q−1

and F = i
v2 + v3
q − q−1

, (3.3)
and their inherited relations. It is straightforward to check that these generators satisfy Uq-
like commutation relations: KK ′ = K ′K , EF − FE = K−K ′

q−q−1
and KE = q2EK . Note that

KK ′ = K ′K = Z1Z2, so that it is in the centre. Taking the quotient over the ideal generated by
KK ′ − 1, we retrieve an algebra with equivalent relations as Uq . Thus, Uq is (isomorphic to) a
quotient algebra of a subalgebra of Cq.

In a similar way, setting ṽn = epn∕b for n ∈ ℤ4, we can find commutation relations on the
elements ṽn to generate the algebra Cq̃. We define

K̃ = q̃ṽ0ṽ3 = q̃−1ṽ3ṽ0, K̃ ′ = q̃−1ṽ1ṽ2, Ẽ = i
ṽ0 + ṽ1
q̃ − q̃−1

and F̃ = i
ṽ2 + ṽ3
q̃ − q̃−1

, (3.4)

and retrieve Uq̃ by taking the quotient over the ideal generated by K̃K̃ ′ − 1.
Again by the Baker-Campbell-Hausdorff formula, we conclude that for all m, n ∈ ℤ4,
vmṽn = ebpmepn∕b = e[pm,pn]epn∕bebpm = ṽnvm (3.5)

in the algebra generated by the pn’s, as [pm, pn] equals either ±2�i or 0. Hence the elements K ,
K ′, E and F commute with K̃ , K̃ ′, Ẽ and F̃ in the algebra generated by the pn’s.

Although the algebras Cq and Cq̃ are well-defined, from a mathematical viewpoint, there
seems to be some difficulty in viewing them as subalgebras of the algebra generated by p0, p1, p2
and p3. I see no evident direct way of how to define a notion of convergence such that vn = ebpn

3An element is called central if it commutes with all elements of the algebra.
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can be defined by a convergent power series and can be seen as an element of this algebra.4

3.6 The Hopf star-algebras Uq and D

It has been shown (cf. [25, 33]) that a Hopf star-structure exists on Uq(sl(2)) if either q2 ∈ ℝ
or |q| = 1. In the former case (of real q2), any Hopf star-involution on Uq is equivalent to an
involution ∙ of the form

K ∙ = K, (K−1)∙ = K−1, E∙ =
q
|q|
KF and F ∙ =

q
|q|
EK−1.

Using the definition of Uq in section 3.4, we see that in the limit q → 1 over the real line this star-
operation corresponds to the operation ∙ we defined on U , as H ∙ =

(

K−K−1

q−q−1

)∙
= K−K−1

q−q−1 = H
for real q.

In the case |q| = 1, any star-involution is equivalent to
K∗ = K, (K−1)∗ = K−1, E∗ = E, and F ∗ = F . (3.6)

This structure corresponds to the operation ∗ we defined on U when we take the limit q → 1
over the complex unit circle, as H∗ =

(

K−K−1

q−q−1

)∗
= K−K−1

q−1−q = −H for |q| = 1 and q ≠ ±1.
Both star structures can be extended in a natural way to D, if the parameter b is chosen such

that b2 is imaginary for real q, so that q̃ is again real, or if b2 is chosen real, such that q and q̃ are
both contained in the unit circle.

Faddeev has noted ([7]) that a third type of star-involution exists on D, not corresponding to
any star-involution on Uq. It corresponds to the case q̃ = q̄−1, or b = ei� for some real �. We
denote this third type of involution by the symbol ⋆, and define it as

K⋆ = K̃, (K−1)⋆ = K̃−1, E⋆ = Ẽ and F⋆ = F̃ .

One can check that the defining relations of D are preserved under ⋆, e.g.
(KE)⋆ = E⋆K⋆ = ẼK̃ = q̃−2K̃Ẽ = q̃−2K⋆E⋆ = ( ̄̃q−2EK)⋆ = (q2EK)⋆.

The commutativity of the coproduct Δ with ⋆ follows almost automatically, and we conclude
that ⋆ is a valid Hopf star-involution.

The existence of this latter star-structure on D is another indicator that something special is
going on with the modular double. The star structures ∗ and ⋆ correspond to the cases of weak
and strong coupling, respectively, in certain applications in conformal field theory. Hence, the
modular double is needed for studying the strong coupling case ([8]). In the rest of this thesis,
we will be using the star-structures induced by ∗ and ⋆. The star structure ∗ agrees with the star
given by v∗n = vn and ṽ∗n = ṽn on Cq , for n ∈ ℤ4. The star ⋆ agrees with the star on Cq defined
by w⋆

n = w̃n for n ∈ ℤ4, interchanging factors in the modular double.

4One could think to define a norm on the algebra and use it to define convergence. Note however that by the
Wintner-Wielandt theorem, [pn, pn+1] = 2�iI cannot hold for elements of a normed unital algebra.
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Chapter 4

Representations on D

In this chapter, we will introduce representations of D on the space  of meromorphic functions
on ℂ. Additionally, we will discuss a sesquilinear form on  that establishes a connection
between these representations and the star-structures on D.

The representations ofUq have been classified in [42]. We will utilise a specific representation
defined in that work for |q| = |q̃| = 1. While this representation was originally defined for Uq , it
can be extended to a representation on D, see e.g. [21]. Furthermore, it admits a generalisation
that allows for the case q̃ = q̄−1 as well. To derive these representations, we will refer back
to our earlier discussion of Faddeev’s mathematical derivation of D, as presented in Section
section 3.5.

4.1 Position and momentum operators, and their exponentials

Before introducing the representation, we will shortly discuss the position operator X and the
momentum operator P . They are defined on  by

Xf (x) = x ⋅ f (x) and Pf (x) = 1
2�i

df
dx

(x).

Note that the derivative of a meromorhphic function is meromorhpic, so that this is well-defined.
The operators X and P satisfy the commutation relation [X,P ] = − 1

2�iI . We can define
the exponentials of X and P as operators on  using power series expansions. For a in ℂ, the
Taylor series of f (x + a

2�i ) around x gives

f (x + a
2�i

) =
∞
∑

n=0

1
n!

( a
2�i

)n dnf
dxn

(x) =
∞
∑

n=0

1
n!
[(aP )nf ](x),

which converges for all x ∈ ℂ, except at the poles of f . Based on this, we define
eaPf (x) ∶= f (x + a

2�i
).

Similarly,

eaxf (x) =
∞
∑

n=0

1
n!
(ax)nf (x) =

∞
∑

n=0

1
n!
[

(aX)nf
]

(x),
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which justifies setting
eaXf (x) ∶= eaxf (x).

It is straightforward to check that eaXebP = eab[X,P ]ebP eaX , and we can use the Baker-
Campbell-Hausdorff formula to express the exponentials of linear combinations of X and P :

eaX+bP = e−
1
2ab[X,P ]eaX+bP+ 1

2ab[X,P ] = e
ab
4�i eaXebP .

4.2 The representation ��

We define the representation �� of D using the following construction. Let q = ei�b2 either with
a real positive value for b with b2 ∉ ℚ, or with b = ei�∕2 for some � ∈ (−�, 0) ∪ (0, �). Pick
w1 and w2 in the following way: if b > 0, select positive values for w1 and w2 and such that
w1∕w2 = b2; if b = ei�∕2, choosew1 andw2 with positive real parts in such a way that w̄1 = w2

and w1∕w2 = b2 = ei�. Let � ∶= w1∕b = bw2.
Now set
p0 =

2�
�
X − ��

�
− 2��P ,

p1 =
2�
�
X + ��

�
,

p2 = −2�
�
X − ��

�
+ 2��P ,

p3 = −2�
�
X + ��

�
,

where X and P are the position and momentum operators defined in the previous section. It can
be checked that [pn, pn+1] = 2�iI and [pn, pn+2] = 0 for all n ∈ ℤ4.

We set vn = exp
(

bpn
) and ṽn = exp

(

pn∕b
), and define a representation �� of Uq by setting

��(K) = qv0v3, ��(K−1) = q−1v1v2, ��(E) = i
v0 + v1
q − q−1

and ��(F ) = i
v2 + v3
q − q−1

.

It is straight-forward to see that the map �� extends to an algebra homomorphism: Note how
the elements vn satisfy the relations described in eq. (3.2). By comparing the definition of ��
above with eq. (3.3), we see that �� preserves the product of Uq, modulo the ideal I generated
by KK ′ − 1 = v0v3v1v2 − 1. (In section 3.5 we retrieved Uq by factoring out KK ′ − 1 from
the algebra generated by the elements in eq. (3.3).) By the Baker-Campbell-Hausdorff formula
applied to our current elements vn, we have

(v0v3)(v1v2) − 1 = ebp0+bp3+
1
2 b

2[p0,p3]ebp1+bp2+
1
2 b

2[p1,p2] − 1

= e−2��P−4�
2b2�2[X,P ]e2��P+4�

2b2�2[X,P ] − 1 = 1 − 1 = 0,

so that I equals {0}. It follows that �� is well defined as a representation.
We can use the elements ṽn to extend the representation �� to D, as vmṽn = ṽnvm for

m, n ∈ ℤ4 (cf. eq. (3.5)), setting
��(K̃) = q̃ṽ0ṽ3, ��(K̃−1) = q̃−1ṽ1ṽ2, ��(Ẽ) = i

ṽ0 + ṽ1
q̃ − q̃−1

and ��(F̃ ) = i
ṽ2 + ṽ3
q̃ − q̃−1

.
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The elements vn and ṽn might be useful when defining the representation, but the above
notation is less convenient when we want to let the representation act on an element in . We
therefore rewrite the action of �� on the generators of D to the following equivalent form:

��(K) = T iw1 , ��(K−1) = T −iw1 ,

��(E) =
iq

1
2

q − q−1
S1∕iw2

(

q−
1
2 e��∕w2 + q

1
2 e−��∕w2T iw1

)

,

��(F ) =
iq

1
2

q − q−1
S−1∕iw2

(

q−
1
2 e��∕w2 + q

1
2 e−��∕w2T −iw1

)

,

��(K̃) = T iw2 , ��(K̃−1) = T −iw2 ,

��(Ẽ) =
iq̃

1
2

q̃ − q̃−1
S1∕iw1

(

q̃−
1
2 e��∕w1 + q̃

1
2 e−��∕w1T iw2

)

, and

��(F̃ ) =
iq̃

1
2

q̃ − q̃−1
S−1∕iw1

(

q̃−
1
2 e��∕w1 + q̃

1
2 e−��∕w1T −iw2

)

,

(4.1)

where T yf (x) ∶= f (x + y) = e2�iyPf (x) and Syf (x) = e2�ixyf (x) = e2�iyXf (x), and w1 and
w2 are defined as above. I leave it to the reader to verify that the representation thus defined
coincides with the earlier definition. Note that the definitions on the generators of Uq̃ are now
obtained by interchanging w1 and w2 in the relations that define �� in Uq . (Just as q̃ = ei�w2∕w1

is obtained from interchanging w1 and w2 in q = ei�w1∕w2 .)

4.3 A sesquilinear form on 

In this section we introduce a sesquilinear form on a subspace of . Moreover, we relate it to
the representation ��, showing that the representation is compatible with the star-structures we
defined on the modular double. We start by defining some auxiliary concepts and notations.

Let  be a directed contour in ℂ with c ∶ ℝ →  a parametrisation of . We call  a
deformation of the real line if

- c is continuous, piecewise differentiable and injective;
- the imaginary part of c is bounded, i.e. supx∈ℝ |Im c(x)| <∞; and
- Re c(x) → ∞ as x→ ∞ and Re c(x) → −∞ if x→ −∞.

For any b ∈ ℂ,  + b is the deformation of ℝ parametrised by c1(x) ∶= c(x) + b, the notation ̄
refers to the deformation parametrised by c2(x) ∶= c(x) and − is parametrised by c3(x) ∶=
−c(−x).

Let f ∈  be a meromorphic function. Let r ∈ ℝ. If for any compact interval K ⊂ ℝ
there exists some R > 0 such that f (x + iy) has no poles in for |x| ≥ R and y ∈ K , and
|f (x + iy)| = O(er|x|), we say that f has exponential growth with rate r.

For any function f ∈ , we define the conjugate function f̄ by f̄ (z) ∶= f (z̄).
Now let  be a deformation of the real line and let f, g ∈  be functions with exponential

growths rf and rg , with f and ḡ having no singularities on . If rf + rg < 0, we define ⟨ ⋅ , ⋅ ⟩
by

⟨f, g⟩ ∶= ∫
f (z)ḡ(z) dz. (4.2)
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Note that the conditions imposed on f and g are sufficient to guarantee convergence of this
integral. Restricting ⟨ ⋅ , ⋅ ⟩ to the subspace of  of functions f with negative exponential
growth rates and with f and f̄ both having no poles on , it defines a sesquilinear form, i.e.
linear in its first argument and antilinear in the second one.

We call two deformations  and ′ homologous with respect to the poles of the function f
if, intuitively speaking, a pole lies above  in the complex plane if and only if it lies above ′. A
more formal definition would be to say that  and ′ are homologous with respect to the poles
of the function f if both curves have the same winding number with respect to all poles. (This
requires e.g. a compactification of ℂ to turn the deformations of ℝ into closed contours. We
will not go into detail, as we expect the concept of homology to be clear.)

If  and ′ are homologous with respect to the poles of f , then  + s and ′ + s are
homologous with respect to the poles of f ( ⋅ − s) for any s ∈ ℂ. If  and ′ are homologous
with respect to the poles of both f and ḡ, we have ⟨f, g⟩ = ⟨f, g⟩′ by Cauchy’s integral
theorem, provided that both sides of the equation are well-defined.

We use this to relate the sesquilinear form to the star structures on D:
Lemma 4.1. Let  be a deformation of the real line. Let f, g ∈  be such that the sum of
exponential growth rates of f and g is negative. Suppose that f and ḡ have no poles on  − iw1,
 and  + iw1, and, moreover, that these three curves are homologous with respect to both f
and ḡ. Then

⟨��(M)f, g⟩ =

{

⟨f, ��̄(M∗)g⟩ if b > 0,

⟨f, ��̄(M⋆)g⟩ if |b| = 1.
(4.3)

for all M ∈ span{1, K,K−1, E, F , FK,K−1E}.

The above justifies calling M∗ (or M⋆) the adjoint of M .
Proof. Note that �� maps span{1, K,K−1, E, F , FK,K−1E} to span{T i�1w1S�2∕iw2 ∣ �1, �2 ∈
{−1, 0, 1}}. Let us first relate the latter to the sesquilinear form.

We have
⟨T i�1w1S�2∕iw2f, g⟩ = ∫

e2��2∕w2⋅(z+i�1w1)f (z + i�1w1)g(z̄) dz

= ∫+i�1w1

e2��2∕w2⋅zf (z)g(z − i�1w1) dz.

We now want to replace the integral domain by  again, by using the Cauchy integral theorem.
We thus want to show that  and  + i�1w1 are homologous with respect to the poles of the
integrand. Note that the factor e2��2∕w2⋅z has no poles. By assumption  and  + i�1w1 are
homologous with respect to the poles of f , so it suffices to show that they are homologous with
respect to the poles of g( ⋅ − i�1w1) = ḡ(z − i�1w1). As we noted, this is true if  − i�1w1 and
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 are homologous with respect to the poles of ḡ, which is true by assumption. Hence, we have
⟨T i�1w1S�2∕iw2f, g⟩ = ∫

e2��2∕w2⋅zf (z)g(z − i�1w1) dz

= ∫
f (z)e2��2∕w2⋅z̄g(z̄ + i�1w1) dz

= ∫
f (z)S�2∕iw2T i�1w1g(z̄) dz

= ⟨f, S�2∕iw2T i�1w1g⟩

= ⟨f, e−2�i�1�2w1∕w2T i�1w1S�2∕iw2g⟩ (using commutation
relations for S and T )

= e2�i�1�2w1∕w2
⟨f, T i�1w1S�2∕iw2g⟩ (4.4)

For the case b > 0, remember that we chose w1 and w2 positive, so that the bars on
w1 and w2 in eq. (4.4) have no effect. We can check that eq. (4.3) holds on the elements in
{1, K,K−1, E, F , FK,K−1E}. For 1, K and K−1, this follows rather directly from eq. (4.4)
with �2 = 0 and �1 = 0, 1,−1, as (K±1)∗ = K±1. We check it for E. We had E∗ = E, so we
will verify whether

⟨

i
q−q−1

(

e��∕w2S1∕iw2 + qe−��∕w2S1∕iw2T iw1
)

f, g⟩
?
= ⟨f, i

q−q−1
(

e��̄∕w2S1∕iw2 + qe−��̄∕w2S1∕iw2T iw1
)

g⟩ .

Note that i
q−q−1 is real for |q| = 1, and by sesquilinearity it suffices to check the two equalities

⟨e��∕w2S1∕iw2f, g⟩
?
= ⟨f, e��̄∕w2S1∕iw2g⟩

and
⟨qe−��∕w2S1∕iw2T iw1f, g⟩

?
= ⟨f, qe−��̄∕w2S1∕iw2T iw1g⟩ .

The first one follows from eq. (4.4) with �1 = 0 and �2 = 1 after taking the exponentials out of
the sesquilinear form. For the second equation, we can rewrite it to

qe−��∕w2
⟨S1∕iw2T iw1f, g⟩

?
= q−1e−��∕w2

⟨f, S1∕iw2T iw1g⟩ .

Noting that e2�iw1w2 = q2, we see that this is true from the case �1 = �2 = 1 in eq. (4.4). Similar
reasoning shows that eq. (4.3) is true on F , FK and K−1E in the case b > 0.

The case |b| = 1 of eq. (4.3) is checked by similar calculations. (Note |b| = 1 corresponds
to complex conjugate parameters w1 and w2 = w1.)

Replacing w1 by w2 in the conditions of lemma 4.1, the relation eq. (4.3) holds on the span
of {1, K̃, K̃−1, Ẽ, F̃ , F̃ K̃, K̃−1Ẽ}.
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Part II

Skew-primitive elements in D and their
eigenfunctions

So far, we have discussed properties of Hopf algebras, the quantum quantum group Uq(sl(2))
and its modular double D, and their representation ��. In this second part, we zoom in on certain
elements of D, called the skew-primitive elements. We will define them and study some of their
properties in chapter 5. In chapter 6 we will introduce the hyperbolic gamma function, which, in
chapter 7 will be used to construct eigenfunctions of the skew-primitive elements under ��.

From this point onwards, unless stated otherwise, we assume all vector spaces to be over
the field ℂ. We assume the deformation parameter q to be of the form q = ei�w1∕w2 , with w1

and w2 either a pair of positive parameters with w1∕w2 ∉ ℚ, or a pair of complex conjugate
parameters with strictly positive real part and nonzero imaginary parts. Let w = (w1 +w2)∕2
and q̃ = ei�w2∕w1 .





Chapter 5

Skew-primitive elements

This chapter introduces the notion of skew-primitive elements in the context of coalgebras
and their properties in bialgebras. Skew-primitive elements are a generalisation of primitive
elements, which play an important role in the representation theory of bialgebras and Hopf
algebras. Many properties of the primitive elements carry over to skew-primitive elements,
which receive considerable attention in the literature, cf. [26, 35]. We take over definitions and
notation from the latter source.

After discussing primitive and skew-primitive elements in the context of general coalgebras
and bialgebras, we will introduce two families of skew-primitive elements in D. We will study
the effect of the star-operations on the skew primitive elements and we will relate the two families
in a three-term relation.

We will use these specific elements later to derive properties of Ruijsenaars’s R-function in
part III. Especially, we use properties of skew-primitive elements for deriving a multivariate
generalisation of the Ruijsenaars function transform in chapter 11.

5.1 Primitive elements

Let (C,Δ, �) be a co-algebra. A primitive element is an element x ∈ C that satisfies the relation
Δx = 1⊗ x + x ⊗ 1. If we introduce use the inductive notation

Δn ∶= (Δ⊗ id⊗(n−1))◦Δn−1 (5.1)
with Δ0 = id, then for n ∈ ℕ, a primitive element x satisfies

Δnx = 1⊗n ⊗ x + 1⊗(n−1) ⊗ x⊗ 1 +⋯ + x ⊗ 1⊗n.

Note that due to coassociativity nothing changes if we apply the coproduct to another factor in
eq. (5.1), so that we could equivalently write e.g.

Δn = (id⊗(n−1)⊗Δ)◦Δn−1.

In a bialgebra H , the primitive elements can be used to construct a basis for the Lie algebra
of the bialgebra, with the Lie bracket defined by the commutator [x, y] = xy − yx. Indeed, if x
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and y are primitive, then
Δ(xy − yx) = ΔxΔy − ΔyΔx

= (1⊗ xy + y ⊗ x + x ⊗ y + xy ⊗ 1) − (1⊗ yx + x ⊗ y + y ⊗ x + yx ⊗ 1)

= 1⊗ (xy − yx) + (xy − yx)⊗ 1,

so that the commutator of two primitive elements is primitive.
Let �1 be a representation of H on V1 and �2 a representaion of H on V2, and let x be a

primitive element. If v1 ∈ V1 and v2 ∈ V2 are eigenvectors of �1(x) and �2(x) respectively, with
eigenvalues �1 and �2 then v1 ⊗ v2 is an eigenvector of (�1 ⊗ �2)(Δx), as

(�1 ⊗ �2)(Δx) = �1(1)v1 ⊗ �2(x)v2 + �1(x)v1 ⊗ �2(1)v2 = (�1 + �2)v1 ⊗ v2.

5.2 Skew-primitive elements

The concept of primitive elements can be generalised via group-like elements. A nonzero element
g ∈ C is called group-like if Δg = g ⊗ g. From the counit’s defining relations, one deduces that
�(g) = 1 if g is group-like. It follows from the defintion of the antipode that group-like elements
in a Hopf algebra are invertible. Hence, the group-like elements of a Hopf algebra form a group.

Suppose g and ℎ are both group-like elements. We say that the element x ∈ C is (g, ℎ)-
primitive or skew-primitive if it satisfies Δx = g ⊗ x + x ⊗ ℎ. The coproduct of such skew-
primitive elements mimics the convenient form of the coproduct of a (regular) primitive element.
Iteratively applying the coproduct shows that

Δnx = g⊗n ⊗ x + g⊗(n−1) ⊗ x⊗ ℎ +⋯ + x ⊗ ℎ⊗n. (5.2)
We distinguish some special cases of skew-primitive elements. Let g ∈ C be group-

like. We might call x ∈ C left g-primitive or just left primitive if it is (1, g)-primitive, i.e.
Δx = 1 ⊗ x + x ⊗ g. The element x is called right g-primitive or right primitive if it is
(g, 1)-primitive. In a Hopf algebra, an element x is called a twisted primitive element if it is
(g, g−1)-primitive. Sometimes left or right primitive elements are also referred to as twisted
primitives. The concepts are closely related, since if x is (g, g−1)-primitive, then g−1x and xg−1
are (1, g−2)-primitive, while gx and xg are (g2, 1)-primitive.

Suppose that the group-like elements form a commutative group. Then the set of all skew-
primitive set is a Lie algebra with the Lie bracket defined by the commutator.

5.3 Left- and right-primitive elements in D

We will first define two families of primitive elements on Uq, each parametrised by a pair of
variables. A second pair of families is given by their analogues in Uq̃. The skew primitive
elements in this chapter are generalisations of the elements discussed in [4].

We start with a family of left K-primitives in Uq . Note that ΔE = 1⊗E + E ⊗K , so that
E is left K-primitive. Also, FK and K − 1 are left K-primitive, as

Δ(FK) = (K−1 ⊗ F + F ⊗ 1)(K ⊗K) = 1⊗ FK + FK ⊗K
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and
Δ(K − 1) = K ⊗K − 1⊗ 1 = (K − 1)⊗K + 1⊗ (K − 1).

By linearity of the coproduct, any linear combination ofE, FK andK−1 is also leftK-primitive.
We set �� = 2 cosh 2��

w2
and define our family of left K-primitive elements by

Yu,� ∶= e2�u∕w2E + e−2�u∕w2q−1FK +
i��

q − q−1
(K − 1), (5.3)

with � and u complex parameters.
Similarly, F , K−1E and K−1 − 1 are right K−1-primitives, so that
Xv,� ∶= e2�v∕w2F + e−2�v∕w2qK−1E +

i��
q − q−1

(K−1 − 1), (5.4)
with v, � ∈ ℂ gives a family of right primitive elements.

Both give rise to an equivalent family in Uq̃ by adding tildes and interchanging w1 and w2.
If we set �̃� ∶= 2 cosh 2��

w1
, the resulting families are given by

Ỹu,� ∶= e2�u∕w1Ẽ + e−2�u∕w1 q̃−1F̃ K̃ +
i�̃�

q̃ − q̃−1
(K̃ − 1) (5.5)

and
X̃v,� ∶= e2�v∕w1F̃ + e−2�v∕w1 q̃−1K̃−1Ẽ +

i�̃�
q̃ − q̃−1

(K̃−1 − 1). (5.6)

Let ��� ∶= i ��−��
q−q−1 for �, � ∈ ℂ. It follows from a direct calculation that

Yu,� = Yu,� − ��� (K − 1), (5.7)
and

Xv,� = Xv,� − ��� (K
−1 − 1). (5.8)

Tilded versions of these equations hold as well, with �̃�� ∶= i �̃�−�̃�
q̃−q̃−1 .

5.4 Adjoints of the skew-primitive elements

Note that the primitive elements Yu,� andXv,� are contained in span{1, K,K−1, E, F , FK,K−1E},
so that we can use lemma 4.1 to calculate the adjoints of ��(Yu,�) and ��(Xv,�) with respect to
the sesquilinear form ⟨ ⋅ , ⋅ ⟩ . In this section, we will calculate the adjoints of the primitive
elements with respect to the star involutions ∗ and ⋆ on D.

The involution ∗

First consider the involution ∗, which applies if w1 and w2 are positive-valued. Recall the
star-involution ∗ on D defined in eq. (3.6). Let w = (w1 + w2)∕2. As i∕(q − q−1) is real, we
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find that
Y ∗
u,� = e2�ū∕w2E + e−2�ū∕w2qKF +

i��̄
q − q−1

(K − 1)

= e2�ū∕w2E + e−2�ū∕w2q−1FK +
i��̄

q − q−1
(K − 1) (KF = q−2FK)

= Yū,�̄.

Note that �� = 2 cosh 2��
w2

, so that �� = ��̄ whenever Re � = 0 or Im � ∈ w2
2 ℤ. Hence, Y ∗

u,� = Yu,�
if � ∈ iℝ ∪ (ℝ + iw2

2 ℤ) and u ∈ ℝ + iw2ℤ.
A similar calculation shows that
X∗

v,� = Xv̄,�̄ ,

and we have X∗
v,� = Xv,� if � ∈ iℝ ∪ (ℝ + iw2

2 ℤ), v ∈ ℝ + iw2ℤ. Moreover,
Ỹ ∗
u,� = Ỹū,�̄,

and
X̃∗

v,� = X̃v̄,�̄ ,

which are self-adjoint if � ∈ iℝ∪ (ℝ+ iw1
2 ℤ) and u ∈ ℝ+ iw2 + iw1ℤ and � ∈ iℝ∪ (ℝ+ iw1

2 ℤ),
v ∈ ℝ − iw2 + iw1ℤ.

We find that Yu,� and Ỹu,� are simultaneously self-adjoint if � ∈ iℝ ∪ ℝ and u ∈ ℝ, and
similarly for Xv,� and X̃v,� if � ∈ iℝ ∪ℝ, v ∈ ℝ.

The involution ⋆

For the involution ⋆, corresponding to a pair of complex conjugate parameters w1 and w2,
similar calculations can be performed, resulting in

Y ⋆u,� = Ỹū,�̄

and
X⋆

v,� = X̃v̄,�̄ ,

with u, v, �, � ∈ ℂ.
We might construct self-adjoint elements with respect to ⋆, as
(Yu,� + Ỹu,�)⋆ = Ỹū,�̄ + Yū,�̄,

so that Yu,� + Ỹu,� is self-adjoint if � ∈ iℝ ∪ ℝ and u ∈ ℝ. We can do a similar thing for
Xv,� + X̃v,� .

5.5 Relating the left- and right primitive elements

We will close this chapter with a relation that expresses X−v,� in terms of products of Yu,� and
K−1, for arbitrary u, v, �, � ∈ ℂ. We present it as a lemma:
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Lemma 5.1. Let u, v, �, � ∈ ℂ, then

Xv,� = au+vK
−1Yu,� + a−u−vYu,�K

−1 + b�,�u+v(K
−1 − 1),

with

ax ∶=
qe2�x∕w2 − q−1e−2�x∕w2

q2 − q−2
and b�,�x ∶=

i��(ax + a−x)
q − q−1

+
i��

q − q−1
.

Proof. Using EK−1 = q2K−1E, K−1FK = q2F and K−1(K − 1) = −(K−1 − 1), we find by
applying the definition in eq. (5.3) that

au+vK
−1Yu,� + a−u−vYu,�K

−1 + b�,�u+v(K
−1 − 1)

= e2�u∕w2(au+vq
−1 + a−u−vq)qK−1E

+ e−2�u∕w2(au+vq + a−u−vq
−1)F

+
(

−
i��(au+v + a−u−v)

q − q−1
+ b�,�u+v

)

(K−1 − 1).

Now
au+vq

−1 + a−u−vq =
e2�(u+v)∕w2 − q−2e2�(−u−v)∕w2 + q2e2�(−u−v)∕w2 − e2�(u+v)∕w2

q2 − q−2

= e2�(−u−v)∕w2

and flipping the signs of u and v,
au+vq + a−u−vq

−1 = e2�(u+v)∕w2 .

Moreover,

−
i��(au+v + a−u−v)

q − q−1
+ b�,�u+v =

i��
q − q−1

,

so that by substitution we find

au+vK
−1Yu,� + a−u−vYu,�K

−1 + b�,�u+v(K
−1 − 1)

= e2�v∕w2F + e−2�v∕w2qK−1E +
i��

q − q−1
(K−1 − 1) = Xv,� .
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Chapter 6

The hyperbolic gamma function

The hyperbolic gamma function G is a generalisation of the regular gamma function. It was
first introduced in this form by Ruijsenaars in [39] as a minimal solution to a set of three
analytic difference equations. Up to a change of parameters, G is equivalent to the generalisation
of Hölder’s double sine function (cf. [19]) that was presented in [44]. In this latter form,
the hyperbolic gamma function has been extensively studied within the field of multiple zeta
functions (see [31] for a short overview). The hyperbolic gamma function is also equivalent to
the quantum dilogarithm (see e.g. [27, 9]), which has applications in quantum conformal field
theory.

In this chapter, we will introduce the hyperbolic gamma function in stages. We will begin
by defining G on a strip in the complex plane, studying its analytic properties there. We will
then explore its symmetries and derive a pair of difference equations. Using these difference
equations, we will extend G to a meromorphic function on the complex plane and identify its
zero and pole locations. We will close the chapter studying asymptotics of G and products of G.

Our derivation is mainly based on the derivation in [23]. Additional sources will be explicitly
referenced when relevant.

6.1 The hyperbolic gamma function on a strip

We introduce the function G through an auxiliary function g. Consider two parameters w1 and
w2 with positive real parts, and set w ∶= (w1 +w2)∕2. We define g as follows:

g(w1, w2; z) ∶= ∫

∞

0

(

sin(2yz)
2 sinh

(

w1y
)

sinh
(

w2y
) − z

w1w2y

)

dy
y
. (6.1)

We verify that g is well-defined and analytic for z ∈ ℝ × i(−Rew,Rew): the integrand is
continuous for y > 0. By applying l’Hôpital’s rule, we can see that the singularity at y = 0 is
removable, yielding a value of −(z(w2

1 +w
2
2 + 4z2))∕(6w1w2) for the integrand at y = 0. Thus,

the integral over [0, 1] converges. As
|

|

|

|

|

sin(2yz)
2 sinh

(

w1y
)

sinh
(

w2y
)

|

|

|

|

|

= O(e2y(|Im z|−Rew)),
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one can deduce that the integral over [1,∞) converges as well, provided Im(z) ∈ (−Rew,Rew).
Therefore, g is well defined on the said domain. By restricting z to a compact subset of the
strip, we can uniformly bound the integrand. Noting that the derivative with respect to z of the
integrand is also continuous and has a finite limit for y → 0, we can apply Leibniz integral rule
(as stated in [11, lem. II.3.3]), to see that the piecewise integrals

gn(w1, w2; z) ∶= ∫

n+1

n

(

sin(2yz)
2 sinh

(

w1y
)

sinh
(

w2y
) − z

w1w2y

)

dy
y
,

with n = 0, 1, 2, ... all converge to analytic functions of z. By the above, we can bound the gn’s
locally uniformly in z, so that by the Weierstrass M-test, ∑∞

n=0 gn converges locally uniformly to
g. As the uniform limit of analytic functions is analytic, g is analytic as a function of z on the
strip ℝ × i(−Rew,Rew).

For z in the same strip , we define the hyperbolic gamma function by
G(w1, w2; z) ∶= eig(w1,w2;z).

It is clear that G is also analytic on the same domain as g. From the definition of g, we can
derive the symmetries g(w̄1, w̄2; z̄) = g(w1, w2; z) and g(w1, w2; −z) = −g(w1, w2; z), which
translate to symmetries of G:

G(w1, w2; −z) = G(w1, w2; z)−1 = G(w̄1, w̄2; z̄) (6.2)
Moreover, G(w1, w2; z) = G(w2, w1; z), so that whenever w1, w2 > 0 or w̄1 = w2, (i.e.
corresponding to the values of q = ei�w1∕w2 we consider), the latter term in eq. (6.2) equals
G(w1, w2; z̄). As we consider w1 and w2 to be fixed parameters, we will often use the shorter
notation G(z) = G(w1, w2; z), and similarly for other functions that depend on w1 and w2.

6.2 Difference equations for G

By applying the identity sin(a + bi) = sin(a − bi) + 2i cos a sinh b, we may write

g(z + i
w1
2
) = ∫

∞

0

⎛

⎜

⎜

⎜

⎝

sin
(

2y(z + iw1
2 )

)

2 sinh
(

w1y
)

sinh
(

w2y
) −

z + iw1
2

w1w2y

⎞

⎟

⎟

⎟

⎠

dy
y

= ∫

∞

0

⎛

⎜

⎜

⎜

⎝

sin
(

2y(z − iw1
2 )

)

+ 2i cos(2yz) sinh
(

w1y
)

2 sinh
(

w1y
)

sinh
(

w2y
) −

(z − iw1
2 ) + iw1

w1w2y

⎞

⎟

⎟

⎟

⎠

dy
y

= g(z − i
w1
2
) + i ∫

∞

0

(

cos(2yz)
sinh

(

w2y
) − 1

w2y

)

dy
y
,

provided that the integral in the last step is convergent. As suggested in [23], we split it into

∫

∞

0

(

cos(2yz)
sinh

(

w2y
) − 1

w2y

)

dy
y

= ∫

∞

0

(

1
sinh y

− 1
y

)

dy
y

+ ∫

∞

0

cos
(

2yz
w2

)

− 1

sinh y
dy
y
,
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which equals − log
(

2 cosh �z
w2
) whenever |z| < |

|

|

w2
2
|

|

|

, cf. [14, nrs. 3.529.1-2], so that

g(z + i
w1
2
) = g(z − i

w1
2
) − i log

(

2 cosh �z
w2

)

.

For |z| < |

|

|

w2
2
|

|

|

, we use the above g-difference equation to obtain
G(z + iw1

2 )

G(z − iw1
2 )

= 2 cosh �z
w2
, (6.3)

and by interchanging w1 and w2, we find for |z| < |

|

|

w1
2
|

|

|

G(z + iw2
2
)

G(z − iw2
2
)
= 2 cosh �z

w1
. (6.4)

Remark 6.1. By eq. (6.2), the equations eqs. (6.3) and (6.4) can be rewritten into
G(−iw1

2 + z)G(−iw1
2 − z) = 1

2
sech �z

w2

and
G(−iw2

2 + z)G(−iw2
2 − z) = 1

2
sech �z

w1
.

One could regard this pair of difference equations as the hyperbolic analogue of the Γ-difference
equation

Γ(12 + x)Γ(
1
2 − x) = � sec�x

for x + 1
2 ∉ ℤ. ∎

6.3 Meromorphic extension to ℂ

The difference equations eqs. (6.3) and (6.4) allow us to extend the hyperbolic gamma function
G to a meromorphic function on ℂ through analytic continuation. By the continuity of g on
ℝ × i(−Rew,Rew), the function G has no poles or zeros on this strip. From the difference
equations, we can conclude that the extension, which will also call G, is analytic on the upper
half-plane and nonzero on the lower half-plane.

The zeros of G are contained in the set
Z+ = i{w + kw1 + lw2 ∣ k, l = 0, 1, 2,…}. (6.5)

The poles of G are contained in the lower half-plane, in the set Z− = −Z+. The pole at −iw
is simple, and if w1

w2
∉ ℚ, all poles are simple, and their residues can be computed using the

difference equations.
We will explicitly compute the residue at −iw: Using the difference equation eq. (6.3) to
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derive the second equality below, we have

G(z − iw) = G(z − i
w1
2

− i
w2
2
) =

G(z + iw1
2
− iw2

2
)

2 cosh
�(z−iw22 )

w2

= i
G(z + iw1

2
− iw2

2
)

2 sinh �z
w2

,

so that
Res(G; −iw) =

iw2
2�

G(i
w1
2

− i
w2
2
).

Interchanging the roles of w1 and w2, we similarly find
Res(G; −iw) =

iw1
2�

G(i
w2
2

− i
w1
2
).

Equating the two, and noting that G(iw2
2 − iw1

2 ) = 1∕G(iw1
2 − iw2

2 ) by eq. (6.2), we find

G(i
w1
2

− i
w2
2
)2 =

w1
w2
,

which gives our explicit expression for the residue:
Res(G; −iw) = i

2�
√

w1w2. (6.6)
The set of zeros Z+ is contained in the sector S+ ∶= {iw + iz ∣ arg z ∈ [argw1, argw2]},

and the poles are contained in the sector S− ∶= −S+. As ℂ ⧵ (S+ ∪ S−) is simply connected
and contains the strip ℤ × i(−Rew,Rew), and G is nonzero and analytic on ℂ ⧵ (S+ ∪ S−), we
can extend g to an analytic function on this area by setting g(z) = −i logG(z), with its branch
chosen to agree with the original definition of g.

6.4 Asymptotics of G

We will describe the limiting behaviour ofG(z) as |Re z| → ∞ using estimates due to Ruijsenaars.
These asymptotics can be given for arbitrary w1 and w2 with positive real part. Restricting
ourselves to a pair of either positive or complex conjugate parameters w1 and w2, notation
simplifies considerably, and we limit our study to theses cases.

While discussing the asymptotics, we use the symbol C to denote any bounding constant. If
the symbol appears in subsequent equations, it need not resemble the same constant, but just any
positive finite number, chosen independently of the variable z.

Let w = (w1 + w2)∕2. In case of positive parameters, let w0 ∶= min{w1, w2}. In the
conjugate case, let w0 ∶= w = Rew1. Let � ∶= 2�

w1w2
and fix & ∈ (0, 1).

We define functions
g̃(z) ∶= −�

4
z2 − �

48
(w2

1 +w
2
2).

and
f (z) ∶= g(z) − g̃(z)

for z ∈ ℂ ⧵ (S+ ∪ S−). Then
G(z) = eig̃(z)+if (z).
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As g is analytic on ℂ ⧵ (S+ ∪ S−), it follows that f is analytic on that domain as well.

+

Figure 6.1: This figure illustrates the complex plane, show-
ing the locations of the zeros and poles of G for conjugate
parameters w1 and w2. The origin is marked with a black
+. The open dots represent the positions of the zeros in
Z+ closest to the real line (corresponding to k + l ≤ 4 in
eq. (6.5)). The solid dots indicate the positions of the poles
in ℤ− closest to the real line. The shaded region represents
S�+ ∪ S�− for some small value of �. In the case of positive
w1 and w2, Z+ and Z− are contained in halflines on the
imaginary axis.

For � > 0, let S�+ denote the set of points in
ℂ with Euclidian distance less than � to S+ and
let S�− = −S�+. See fig. 6.1 for an illustration of
S�+ and S�−.

The following lemma describes the asymp-
totics of G:
Lemma 6.2. Let K ⊂ ℝ be compact and � > 0.
There exists a positive constant C such that

|

|

f (w1, w2; z)|| < Ce
−�&w0 Re z

for all z ∉ (S�+∪S
�
−) with Im z ∈ K and Re z ≥

0.

The conditions imposed on z ensure that it
stays away a distance of at least � from the zeros
and poles of G, which correspond to singulari-
ties of f . These conditions allow, for example,
for z on the real halfline [�,∞). In general, if K
is a compact interval, there exists some R > 0
such that the conditions also allow for z in the
halfstrip [R,∞) × iK . Ruijsenaars proved a slightly stronger version of this lemma ([36, thm.
A.1]). The proof of the lemma took him eight pages ([36, app. C]), and we are not going to
reproduce it here. It should be noted that for positive parameters w1 and w2, our lemma equals
[39, prop. III.4], which admits a considerably simpler proof. Such a simpler proof might also
exist in the case of conjugate parameters.

By lemma 6.2, we can see that |f (z)| approaches 0 as Re z → ∞. Since ex = 1 + O(|x|)
for x around 0, we can derive the following asymptotic expression for the hyperbolic gamma
function:

G(z) = eig̃(z)eif (z) = eig̃(z)(1 + O(e−�&w0|Re z|)) (6.7)
for Re z→ ∞ and Im z restricted to a compact interval. Since

G(−z) = 1∕G(z) = e−ig̃(z)e−if (z),

similar bounds exist for Re z→ −∞ whenever Im z is restricted to a compact interval.
As we have |

|

eif (z)|
|

∈ (e−C , eC ) when z is restricted as in the lemma, we may write
e−C < |

|

|

G(z)∕eig̃(z)||
|

< eC

for z ∈ ℂ ⧵ (S�+ ∪S�−) with Im z contained in some compact interval and Re z positive. For Re z
negative, we similarly have

e−C < |

|

|

G(z)∕e−ig̃(−z)||
|

< eC .
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Using the definition of g̃, we can collect these results into
0 < e−C < |G(z)| ⋅ e−� Im z|Re z|∕2 < eC . (6.8)

If we restrict the imaginary part of z to a compact set, then for a, b ∈ ℂ and some R large
enough, we can use eq. (6.7) derive the following asymptotic expression for the ratio of the
hyperbolic gamma function at two different arguments:

G(z − a)
G(z − b)

= exp
(

−i�
2
z ⋅ (b − a) + i�

4
(b2 − a2)

)

⋅ (1 + O(e−�&w0 Re z)), (6.9)

and by analyticity of f , the remaining O(e−�&w0 Re z)-term is uniform for a and b restricted to a
compact domain.

We can write
|

|

|

|

G(z − a)
G(z − b)

|

|

|

|

∕ exp(−� Im zRe(b − a)∕2 − � Im(b − a) Re z∕2) = (1 + O(e−�&w0 Re z))

for Re z ≥ R. For Re z→ −∞, similar estimates can be made, so that we conclude
0 < C− <

|

|

|

|

G(z − a)
G(z − b)

|

|

|

|

e−� Im(b−a)|Re z|∕2 < C+, (6.10)
for some positive constants C−, C+ and |Re z| large enough.

We introduce the notation F (x ± z) ∶= F (x + z)F (x − z) for whenever a ±-sign appears in
the argument of a function. As a special case of eq. (6.9), let a = −b = −iy for some y ∈ ℂ,
then

G(iy ± z) = exp(�yz) ⋅ (1 + O(e−�&w0|Re z|)) (6.11)
and

0 < C− < |G(iy ± z)|e−� Re y|Re z| < C+ (6.12)
if Im z is restricted to some compact set and Re z→ ±∞, with all bounds uniform with respect
to y if it is restricted to a compact set.
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Chapter 7

Eigenfunctions of skew-primitives

We conclude part II with a brief chapter in which we calculate the eigenfunctions of ��(Yu,�)
and ��(Xv,�).

7.1 Eigenfunctions of ��(Yu,�)

Suppose f is an eigenfunction of ��(Yu,�) with eigenvalue ��� = i ��−��
q−q−1 . We closely follow the

calculation of eigenfunctions in [4]. We can calculate that

��(Yu,�)f (z) = e2�u∕w2��(E)f (z) + e−2�u∕w2q−1��(FK)f (z) +
i��

q − q−1
��((K − 1))f (z)

=
iq

1
2 e2�u∕w2

q − q−1
e2�z∕w2

(

q−
1
2 e��∕w2f (z) + q

1
2 e−��∕w2f (z + iw1)

)

+
iq−

1
2 e−2�u∕w2

q − q−1
e−2�z∕w2

(

q−
1
2 e��∕w2f (z + iw1) + q

1
2 e−��∕w2f (z)

)

+
i��

q − q−1
f (z + iw1) −

i��
q − q−1

f (z)

= i
q − q−1

[

(

−�� + 2 cosh
(

2�u∕w2 + 2�z∕w2 + ��∕w2
)

)

f (z)

+
(

�� + 2 cosh
(

2�u∕w2 + 2�z∕w2 + i�
w1
w2

− ��∕w2
)

)

f (z + iw1)

]

,

If we now require ��(Yu,�)f = ���f , we can rewrite the above to

f (z + iw1) =
�� − 2 cosh

(

2�u∕w2 + 2�z∕w2 + ��∕w2
)

�� + 2 cosh
(

2�u∕w2 + 2�z∕w2 + i�
w1
w2

− ��∕w2
)f (z)

=
�� + 2 cosh

(

2�u∕w2 + 2�z∕w2 + ��∕w2 − i�
)

�� + 2 cosh
(

2�u∕w2 + 2�z∕w2 + i�
w1
w2

− ��∕w2
)f (z).
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Using �x = 2 cosh 2�x∕w2, and the sum rule for hyperbolic cosines1, we can rewrite this to

f (z + iw1) =
cosh �

w2

(

z + u + �
2 − i

w2
2 ± �

)

cosh �
w2

(

z + u − �
2 + i

w1
2 ± �

)f (z).

Replacing z by z − iw1
2

, we find

f (z + i
w1
2
) =

cosh �
w2

(

z + u + �
2 − iw ± �

)

cosh �
w2

(

z + u − �
2 ± �

) f (z − i
w1
2
),

where we use convention to write F (x ± z) = F (x + z)F (x − z) for any function F .
From the difference equation for the hyperbolic gamma function, we see that this requirement

is satisfied by

f (z) =
G
(

z + u − iw + �
2 ± �

)

G
(

z + u − �
2 ± �

)
,

so that f is an eigenfunction of ��(Yu,�) with eigenvalue ��� .
As G is invariant under interchanging w1 and w2, we see that

H�,u
�,� (z) ∶=

G
(

z + u − iw + �
2 ± �

)

G
(

z + u − �
2 ± �

)
(7.1)

is simultaneously an eigenfunction of Yu,� and Ỹu,�, with ��(Ỹu,�)H�,u
�,� = �̃��H�,u

�,� .
Let H�

�,�(z) = H�,0
�,� (z), and observe that

H�,u
�,� (z) = T uH�

�,�(z). (7.2)
One could also check that ��(Yu,�) = T u��(Y�)T −u.

7.2 The symmetry � and the representation ��
We’re planning to calculate eigenfunctions of our families of left and right primitive elements
under the action of ��. Before doing so, we discuss a symmetry between the two families, and
show how it relates to the representation. This will save us a lot of effort when calculating the
eigenfunctions.

We can relate the two families of twisted primitive elements by introducing an involutive
algebra automorphism �, which we define on the generators of Uq by

�(K) = K−1 and �(E) = F .

Using the map �, one easily calculates from eqs. (5.3) and (5.4) that
�(Yu,�) = Xu,�. (7.3)

Define the operator R on  to be the reflection operator Rf (z) ∶= f (iw − z) for f ∈ .
1The sum rule reads cosh a + cosh b = 2 cosh a+b

2
cosh a−b

2
.

464646



Then
RT iw1Rf (z) = R[z′ → f (−(z′ + iw1)](z) = f (z − iw1) = T −iw1f (z),

and
RS1∕iw2Rf (z) = R[z′ → e2�z

′∕w2f (−z′)](z) = e−2�z∕w2f (z) = S−1∕iw2f (z).

Using these relations, one easily checks on eq. (4.1) that
��(�( ⋅ )) = R ◦ ��( ⋅ ) ◦ R (7.4)

holds on the generators of Uq . Clearly eq. (7.4) extends to an algebra homomorphism and hence
it holds on the algebra. In a similar way one checks that this relation also holds on Uq̃ and hence
on D. We conclude that if f is an eigenfunction of ��(Y ) for some Y ∈ D, then Rf is an
eigenfunction of ��(�(Y )) with the same eigenvalue.

7.3 Eigenfunctions of ��(Xv,�)

By using eqs. (7.3) and (7.4), we find thatRH�,v
�,� is an eigenfunction of ��(Xv,�) with eigenvalue

��� , and of ��(X̃v,�) with eigenvalue �̃�� . We define F �,v�,� = RH �̄,v̄
�̄,�̄ , so that

��̄(X∗
v,�)F

�,v
�,� = ��̄�̄F

�,v
�,� = ���F

�,v
�,� (7.5a)

in the case of positive w1 and w2. For a conjugate pair w1 and w2, we similarly have
��̄(X⋆

v,�)F
�,v
�,� = �̃�̄�̄F

�,v
�,� = ���F

�,v
�,� (7.5b)

We may explicitly write

F �,v�,� (z) =
G(−z + v̄ − iw + �̄

2 ± �̄)

G(−z + v̄ − �̄
2 ± �̄)

.

For future reference, note that by eq. (6.2)

F �,v�,� (z̄) =
⎛

⎜

⎜

⎝

G(−z̄ + v̄ − iw + �̄
2
± �̄)

G(−z̄ + v̄ − �̄
2 ± �̄)

⎞

⎟

⎟

⎠

=
G(z − v − iw − �

2
± �)

G(z − v + �
2 ± �)

. (7.6)

This introduction of eigenfunctions of the skew-primitive elements closes this chapter and
the second part of this thesis. At this point, we have laid the foundation for the rest of this
text. In the next part, we will start the construction of our version of Ruijsenaars’s generalised
hypergeometric function.
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Part III

The function  

In this third part, we use the eigenfunctions H�,u
�,� and F �,v�,� to define a function  in chapter 8,

where we also study its symmetric and analytic properties, relating it to Ruijsenaars’s functionsR,
Rren and  . In chapter 9 we show that the function solves a set of Askey-Wilson difference equa-
tions. In chapter 10 we show that  and  can be used as kernels of Hilbert space isomorphisms,
the -based transformation being unitary. In Chapter 11, lastly, we derive the multivariate
versions of  and  and extend the difference equations and the unitary transformation to these
multivariate versions.





Chapter 8

Definition and basic properties of  

This chapter introduces the function  , defined as an integral over a product of the eigenfunctions
H�,u
�,� and F �,v�,� , which were introduced in the previous part. We relate this function  to the

generalised hypergeometric function R, defined by Ruijsenaars in [40] and extensively studied
in [36, 37, 38], as a generalisation of the 2F1-functions. We will prove the analyticity of  and
derive its asymptotics.

8.1 The function  

Recall the sesquilinear form we defined in section 4.3. By substituting a ← −u + iw − �
2 ± �

and b ← −u + �
2 ± � into eq. (6.10), we find that the function H�,u

�,� defined in eq. (7.1) exhibits
exponential growth with a growth rate of �(Im �−w). Similarly, the function F �,v�,� has a growth
rate of �(− Im � − w). Consequently, the product H�,u

�,� F
�,v
�,� has exponential growth with rate

−2�w.
Let u, �, �, �, � and � be complex parameters. The productH�,u

�,� F
�,0
�,� possesses poles located

in the sets
Z− − u + iw − �

2
± � and Z− + iw + �

2
± �, (8.1)

which we refer to as the downward pole sequences. (Their elements have imaginary parts
bounded from above but not from below.) Its other poles are contained in

Z+ − u + �
2
± � and Z+ − �

2
± �, (8.2)

which we call the upward pole sequences.
Let  denote a deformation of the real line that separates the upward and downward pole

sequences of H�,u
�,� F

�,0
�,� . We define

 �,u�,� (�, �) ≔ ⟨H�,u
�,� , F

�,0
�,� ⟩ . (8.3)

Such a curve  exists whenever the upward and downward pole sequences are disjoint as sets.
This is true, for example, if �, �, �, � ∈ ℝ and |Im u|, |Im �| < Rew, as can be seen from
eqs. (8.1) and (8.2). As a consequence of the Cauchy integral theorem, the value of  �,u�,� (�, �)
does not depend on the specific choice of  (as long as it separates the poles correctly).
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We can express  �,u�,� as an integral, using eq. (7.6):

 �,u�,� (�, �) = ∫

G(z + u − iw + �
2 ± �)

G(z + u − �
2
± �)

G(z − iw − �
2 ± �)

G(z + �
2
± �)

dz. (8.4)

We can use this integral expression to deduce certain symmetries: Firstly, by substituting
z′ = z + u, we obtain from the integral that

 �,u�,� (�, �) =  −�,−u
�,� (�, �). (8.5)

Additionally, by performing the substitution z′ = z + u
2
− �

2
in the integral, we find

 �,u�,� (�, �) =  u,��,�(�, �). (8.6)
Combining this with eq. (8.5), we obtain

 �,u�,� (�, �) =  −u,−�
�,� (�, �). (8.7)

Lastly, we consider the complex conjugate of  , and find

 �,u�,� (�, �) = ∫
H�,0
�,� (z + u)H

�̄,0
�̄,�̄ (−z̄) dz

= ∫
H�,0
�,� (z + u)H

�̄,0
�̄,�̄ (−z̄) dz.

By performing the change of variables z′ = −z̄ − ū, the above expression becomes
= ∫−−ū

H�,0
�,� (−z′)H

�̄,0
�̄,�̄ (z

′ + ū) dz′

=  �̄,ū�̄,�̄(�̄, �̄) =  −�̄,−ū
�̄,�̄ (�̄, �̄), (8.8)

where the latter equality follows from eq. (8.5).
One should note that in each of the above symmetries, each shifted integral domain is again

a curve separating the upward and downward pole sequences.
Remark 8.1. In eq. (8.3), we intentionally set the parameter v of F �,v�,� to be equal to 0. This choice
was made because ⟨H�,u

�,� , F
�,v
�,� ⟩ would depend on u and v only in the combination u + v. ∎

Remark 8.2. Equation (8.6) highlights a duality between the parameters u and �. Our derivation
however does not allow for an algebraic interpretation for this duality. The parameter � is
associated to the representation, the parameter u is not related to any algebra operation.

The derivation of  as presented in [4] is highly similar to ours, but uses the notion of an
extended modular double, defined as the crossed product of the modular double with an algebra
of complex powers of K and K̃ . We can regard the parameter u as the exponent of such a
complex power of K . This might allow for an algebraic interpretation, but we did not pursue
this. ∎
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8.2 Ruijsenaars’s generalised hypergeometric function

Our function  bears very close resemblance to three closely related functions studied by
Ruijsenaars in his triptych on a generalised hypergeometric function ([36, 37, 38]). In this
section, we will introduce the functions studied by Ruijsenaars and show how  relates to each
of these functions.

Let  = (0, 1, 2, 3) ∈ ℝ4, and let w1 and w2 have positive real parts, and let w =
(w1 +w2)∕2 as usual. We define the action of ̂ on ℝ4 by

̂ ≔ 1
2

( 1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

)

.

We also introduce the map c, defined by
c() ≔ (0 +w, 1 +

w1
2
, 2 +

w2
2
, 3). (8.9)

Ruijsenaars’s function R can be written in terms of those maps as

R(w1, w2, c(); �, �)

= 1
√

w1w2
∫

1
G(z + iw)

G(z ± � + i0)
G(±� + i0)

G(z ± � + î0)
G(±� + î0)

3
∏

j=1

G(i(w + 0 + j))
G(z + i(w + 0 + j))

dz,

(8.10)
with  again a deformation of the real line that separates the upward and downward pole sequences
of the integrand. In Ruijsenaars’s original definition of R in [40], the function depended on
c ∈ ℝ4. However, when studying the symmetries of R in [37] and its properties as the kernel of
a unitary map in [38], Ruijsenaars started using the shifted parameter set  , and the map c to
relate the two. Thus the appearance of c() in the arguments of R is a remnant of his original
formulation.

Although originally defined for  (or c) in ℝ4, the function was extended by Ruijsenaars to a
meromorphic function for  ∈ ℂ4 and w1, w2 complex with positive real parts. We can express
R in terms of our function  by setting �, u, �, � ∈ ℂ4 and considering the parameter relation

 = −i(� + �, � − �, � − u,−� − u). (8.11)
(This gives ̂ = −i(� − u, � + u, � + �,−� + �), so that ̂ acts on  by interchanging � with −u
and vice versa.) With this parameter relation for  , we can write

R(w1, w2, c(); �, �)

= 1
√

w1w2

G(iw + 2�)G(iw + � + � ± � − u)
G(±� + � + �)G(±� + � − u)

× ∫
G(z ± � + � + �)G(z ± � + � − u)

G(z + iw)G(z + iw + 2�)G(z + iw + � + � ± � − u)
dz.

By substituting z′ = z + � + �
2 − u − iw, we can rewrite the integral as

∫+�+ �
2−u+iw

G(z′ + u − iw + �
2
± �)G(z′ − iw − �

2
± �)

G(z + u − �
2 ± �)G(z +

�
2 ± �)

dz =  �,u�,� (�, �).
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Considering the relation in eq. (8.11) as a bijection from ℂ4 to ℂ4, we denote   ≔  �,u�,� with
the parameters linked through eq. (8.11). We have

R(w1, w2, c(); �, �) =
1

√

w1w2

∏3
j=1G(i(w + 0 + j))

G(±� + i0)G(±� + î0)
×   (�, �). (8.12)

Ruijsenaars also introduced a renormalised version of R, denoted as Rren, which is given by

Rren(w1, w2, c(); �, �) ≔
R(w1, w2, c(); �, �)

∏3
j=1G(i(w + 0 + j))

= 1
√

w1w2

  (�, �)
G(±� + i0)G(±� + î0)

. (8.13)

This renormalised version of the function has only �- and �-related poles and zeros. Ruijsenaars
showed that Rren is meromorphic as a function of � and �,  and w1 and w2, with pole locations
given by

±� = −ij +Z+ and ± � = −î +Z+

for j = 0, 1, 2, 3.
From the above relations, one may readily observe a symmetry with regard to the triplet

(1, 2, 3): any permutation of its elements leaves   , R and Rren invariant (note that ̂0 does
not change either under such permutations). Also, as G is invariant under interchanging w1

and w2, also   , R and Rren are invariant under this action. Noting that 0 + j = ̂0 + ̂j , one
observes  ̂ (�, �) =   (�, �), and similar relations hold for R and Rren.

In [37], Ruijsenaars introduced a third version of his function,  , which observes some
additional symmetries. He set

c(; �) ≔
∏3

j=0G(� − ij)

G(2� + iw)

and

�() ≔ exp

(

i�

[ 4
∑

j=0

2j
4

−
w2

1 +w
2
2 +w1w2

8

])

.

The function  then is defined as
(w1, w2, ; �, �) ≔

�()Rren(w1, w2, c(); �, �)
c(; �)c(̂; �)

(8.14)

=
�()

√

w1w2

G(2� + iw)G(2� + iw)
G(� + i0)G(� + î0)

∏3
j=1G(� − ij)G(� − îj)

  (�, �).

(8.15)
Note that �(̂) = �(), so that all symmetries of   ,R andRren that we described in the previous
paragraph carry over to  .

Let W be the group of all operations on (0, 1, 2, 3) that consist of permutations and an
even number of sign flips. (This group W is isomorphic to the Weyl group of the Lie algebra
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D4.) By [37, thm 1.1],  satisfies
(w1, w2, p(); �, �) = (w1, w2, ; �, �) (8.16)

for all p ∈ W . As a consequence of this W -invariance, the function  is even in all four
parameters �, u, �, �, and is invariant under the simultaneous interchange of any two pairs of
these parameters.
Remark 8.3. For some elements in p ∈ W , the property in eq. (8.16) is immediately clear from
our above analysis, as is the case for any permutation of the elements 1, 2, 3. One could deduce
from eq. (8.4) that  is even in � and thus is also invariant under the map p() = (−1,−0, 2, 3)
(which flips the sign of �). This is not sufficient to prove the equality eq. (8.16) for all p ∈ W .
We will not provide a full prove for the claim in eq. (8.16), but rely on the proof of Ruijsenaars
in [37]. Another proof, relying on a more general result, is found in [3, prop. 4.18]. ∎

8.3 Analyticity of  

In this section, we aim to prove the analyticity of the function (�, u, �, �, �, �) →  �,u�,� (�, �) on
the domain Ω defined by

Ω = ℂ6 ⧵ {(�, u, �, �, �, �) ∣ ±� ∈ Z+ + � ± � or ± � ∈ Z+ + u ± �

or ± � ∈ Z+ − u ± � or ± � ∈ Z+ − � ± �}. (8.17)
The domain Ω is defined in such a way that for (�, u, �, �, �, �) ∈ Ω, the downward (eq. (8.1))

and upward (eq. (8.2)) pole sequences are disjoint as sets, so that a deformation  exists that
separates those upward and downward pole sequences. The following lemma captures the
analyticity of  :
Lemma 8.4 (Analyticity of   ). Let Ω be as defined in eq. (8.17). The function  �,u�,� (�, �) is
analytic as a function from Ω ⊂ ℂ6 → ℂ.

Proof. Let (�, u, �, �, �′, �) be an arbitrary point inΩ. We will first show that �,u�,� (�, �) is analytic
for � around �′.

Let  be a deformation of the real line that separates the upward and downward pole
sequences determined by the choice of (�, u, �, �, �′, �). Let � = inf{d(z, p) ∣ z ∈ , p ∈
Z− − u + iw − �

2 ± �′}, so that � is the shortest distance between a point on  and a pole in
Z− − u+ iw− �

2 ± �
′. The imaginary part of  is bounded (by definition of a deformation), and

for each R ∈ ℝ the set Z− contains only finitely many points z with |Im z| ≤ R. It follows that
� > 0. Given this �, if � ∈ ℂ is such that |

|

� − �′|
|

< �, we have (�, u, �, �, �, �) ∈ Ω and the same
 can be used to separate the upward and downward pole sequences induced by (�, u, �, �, �, �)
for all � in an open ball around �′.

Let c ∶ ℝ →  be a parametrisation of . Define n as the curve {c(x) ∣ x ∈ [−n, n]} and
define

 n(�) ≔ ∫n

G(z + u − iw + �
2 ± �)

G(z + u − �
2 ± �)

G(z − iw − �
2 ± �)

G(z + �
2 ± �)

dz.
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Note that the integrand is analytic for z ∈ n and � in the neighbourhood of �′. We can apply
the Leibniz integral rule ([11, lem. II.3.3]) to conclude that each  n is analytic in the open
neighbourhood of �′ with radius �. As the integrand has exponential growth rate −2�w, which
is independent of �,  n converges uniformly to � →  �,u�,� (�, �). As the uniform limit of analytic
functions is analytic, it follows that the limit is an analytic function.

We can show analyticity with respect to the other variables in a similar way. By Hartogs’s
theorem it then follows that (�, u, �, �, �, �) →  �,u�,� (�, �) is analytic on Ω.
Remark 8.5. Ruijsenaars has shown ([36, thm. 2.2]) that Rren is meromorphic with poles located
at

±� = −ij +Z+ and ± � − îj +Z+, j = 0, 1, 2, 3,

their orders agreeing with the orders of the zeros of ∏3
j=0G(±� + ij)G(±� + îj).

It follows from eq. (8.13) that   has poles at
±� = ±�+�+Z+, ±� = ±�−u+Z+, ±� = ±�−u+Z+ and ±� = ±�−�+Z+,

so that   is meromorphic. Orders of the poles agree with the zero orders of
G(±� ± � − �)G(±� ± � − u)G(±� ± � + u)G(±� ± � + �).

As we will not explicitly need this result, we will not provide a proof for it. ∎

8.4 Asymptotics of  

The asymptotics of (w1, w2, ; �, �) for Re � → ∞ were derived in [37] for real-valued w1 and
w2, and for  ∈ ℝ4. However, for our study, we want to consider complex values for  and we
also want to allow for conjugate parameters w1 and w2, along with their induced asymptotics.
Hence, we need to adapt Ruijsenaars results for our own case. We will derive and prove the
asymptotics for  ; the corresponding result for  can then be computed from the G-asymptotics
and eq. (8.15). The proof follows a similar approach as presented in [37], with adjustments made
to accommodate our complex parameters.

Recall that we consider the parameters w1 and w2 to form a fixed pair of either positive or
complex conjugate parameters with positive real parts. We set w = (w1 +w2)∕2. In the case of
positive parameters, we define w0 ∶= min{w1, w2}. For the conjugate case, we set w0 ∶= w,
which equals Rew1. Let � ∶= 2�

w1w2
and fix & ∈ (0, 1).

Our approach to finding the asymptotics consists of two steps. The first step involves
deforming the curve  from the definition of  into a curve s. This deformation isolates two
of the poles in the downward pole sequences. Since these specific poles are simple, we can
compute their residues. By utilising the asymptotics of G (as given in equation 6.7), we can
approximate these residues with exponential functions, and use the result as an approximation.
The second step involves demonstrating that the integral along the shifted curve s vanishes as
Re � → ∞, showing that our approximation is accurate.
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Step 1: Approximation via residues

By performing a change of variables z← z − u + iw + �
2
, we can write

  (�, �) = ∫
I (�, �; z)dz, (8.18)

where
I (�, �; z) ≔

G(z + � ± �)
G(z + iw ± �)

G(z − u ± �)
G(z + iw + � − u ± �)

, (8.19)
and  represents the shifted integral path.

The integrand I has poles in upward pole sequences due to the denominator, located at
z = ±� + ikw1 + ilw2 and z = ±� − (� − u) + ikw1 + ilw2,

and downward pole sequences due to the numerator at
z = ±� − (iw + �) − ikw1 − ilw2 and z = ±� − (iw − u) − ikw1 − ilw2,

for any combination of k, l = 0, 1, 2, 3, ....
Let u, �, �, � be such that |Im �| + Im u < w and |Im �| + Im � < w. Note that these

conditions ensure that the upward pole sequences are disjoint from the downward ones. Let r1
and r2 be such that 0 < r1 < r2 and Re u,Re �,Re �,Re � ∈ [−r2, r2]. Choose � ∈ [r1, r2].

Assume that Im � ∈ [−w0, w0] and Re � > R, where R is some positive constant for which
we will specify additional conditions shortly. Fix some � ∈ (0, w0).

We define the contour s by indenting the line Im z = −(w − Im u) − � upwards around
Re z = ±Re � along compact intervals such that the curve s stays a distance of at least w0 + 1
away from the sectors S− ± Re � − � (with S− the sector containing all points in Z−, see
section 6.4). As |Im �| ≤ w0, the distance of the indentation to the �-dependent poles is at least
1.

We now pick the the lower bound R on Re � sufficiently large, in such a way that both
indentations stay away a distance 1 from the sectors containing the other poles of I . Let the
shape of the indentations be independent of the value of the parameters �, �, � and �, and let
their positions depend linearly on Re � with coefficient ±1. A visualisation of the poles and the
ℝ-deformation s is provided in fig. 8.1.

Note that all upward pole sequences (black squares in fig. 8.1) lie above the curve s: the
poles related to � at ±� + ikw1 + ilw2 with k, l = 0, 1, 2, ... have their imaginary parts bounded
below by −|Im �|. Hence, as |Im �|+ Im u < w by assumption, all these poles lie above the line
Im z = −(w − Im u) − �. The �-related poles lie above the line by a similar argument. By our
conditions on R, the indentations in the curve also lay below the upward pole sequences.

The points in the downward pole sequences, on the other hand, lie below the curve, except
for two of them. It is immediate that the poles at ±� − (iw+ �) − ikw1 − ilw2 (solid blue bullets
in fig. 8.1) lie below s.

The �-related poles at ±�−(iw−u)− ikw1− ilw2 lie below the line Im z = −(w−Im u)−�
whenever at least k or l is nonzero (open blue bullets). The poles at ±� − (iw − u) (open pink
bullets in the sketch) have imaginary parts equal to −(w − Im u), and as � ∈ (0, w0), these two
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s

Figure 8.1: This figure shows the pole locations of the function I for a certain choice of u, �, �, �, � and
�. The upward pole sequences are marked with black solid squares, whilst the downward pole sequences
are marked with cyan and pink bullets. The open bullets correspond to poles centred around ±�, whilst
the closed bullets correspond to poles around ±�. The shaded areas mark the sectors containing poles.
The curve in the illustration represents a section of s and has been divided into coloured segments. The
curve has indentations around the �-related poles, which are green in the picture. The other coloured
sections lie on the line −iw − i� + iIm u. The colours of these sections will be explained in-text. The
contour s separates the upward and downward pole sequences, except for the two poles at ±�− (iw− u)
(pink), which deliberately lie above the curve.

poles lie above the line.
Let
L (�, �) ≔ ∫s

I (�, �; z) dz. (8.20)

By the residue theorem and eq. (6.6) we can write
  (�, �) − L (�, �) = −2�i

[

Res
(

I (�, �; ⋅); −� − (iw − u)
) (8.21)

+ Res
(

I (�, �; ⋅); � − (iw − u)
)]

=
√

w1w2

[

G(−� − iw + u + � ± �)
G(−� + u ± �)

G(−2� − iw)
G(−� + � ± �)

+ (� ↔ −�)
]

=
√

w1w2
[

c′(̂; �)G(−� − iw + u + � ± �) + (� ↔ −�)
]

, (8.22)
where c′ is defined by

c′(; �) ≔
G(� + i0)

∏3
j=1G(� − ij)

G(� + iw)
. (8.23)

(We can retrieve c′(; �) from c(; �) by flipping the sign of 0.)
Using eq. (6.11), we can derive the asymptotic behavior of   (�, �) − L (�, �):

  (�, �) − L (�, �)

=
√

w1w2e
−�(w+iu+i�)�[c′(̂; �)ei�� + (�↔ −�)

]

⋅ (1 + O(e−�&w0|Re �|)), (8.24)
where the term O(e−�&w0|Re �|) is uniformly bounded in  and � if their values are restricted to a
compact set. Therefore, if we define

 ass
 (�, �) ≔

√

w1w2e
−�(w+iu+i�)�[c′(̂; �)ei�� + (�↔ −�)

]

, (8.25)
we have

  (�, �) = L (�, �) +  ass
 (�, �) ⋅ (1 + O(e−�&w0|Re �|)). (8.26)
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Step 2: The remainder vanishes

We will now demonstrate that L (�, �) → 0 as Re � → ∞, provided that Im � ∈ [−w0, w0]:
Lemma 8.6. Set r1 and r2 such that 0 < r1 < r2 and fix some � ∈ (0, w0). Let u, �, �, � be such
that |Im �|+Im u < w, |Im �|+Im � < w and Im �+Im u < w+�, with Re u,Re �,Re �,Re � ∈
[−r2, r2], and let � ∈ [r1, r2]. Set � = min{w+�−Im �−Im u, 2w−w0}. There exists constants
C and R independent of � and �, such that

|

|

|

L (�, �)
|

|

|

< Ce−�� Re �

whenever Im � is restricted to [−w0, w0] andRe � > R. Furthermore, if we restrict the imaginary
parts of � and � to a compact set, the constants C and R can be chosen independently of � and
� as well.

Proof. Throughout this proof, any occurrence of the symbol C , possibly subscripted, refers to
some finite positive constant independent of Re � and Re �, �, and � subject to the restrictions in
the lemma. The value of this C may change every time the symbol is used. We consider the
values of � and u to be fixed.

We will establish upper bounds for ∫ I (�, �; z) dz along different sections of the curve s,
and utilise them to show that the contributions of these parts vanish as Re � → ∞. We analyse
the sections of s corresponding to different colors in fig. 8.1 consecutively, starting from the
red ones.

The red half-lines Let us begin by examining the part of the integral along the half-line to the
right of the right indentation (which is red in fig. 8.1). Let t+ be such that the real part of the
half-line is given by [Re(� − �) + t+,∞). The value of t+ is independent of � by our definition
of s. Let R be so large that all instances of G in I (eq. (8.19) have arguments with a positive
real part along the half-line.

We use eq. (6.8) to estimate each of the hyperbolic gamma functions in I on this half-line,
giving

|

|

|

I (�, �; z)
|

|

|

< C e
�
2 Im(z+�+�) Re(z+�+�)e

�
2 Im(z+�−�) Re(z+�−�)

e
�
2 Im(z+iw+�) Re(z+iw+�)e

�
2 Im(z+iw−�) Re(z+iw−�)

× e
�
2 Im(z−u) Re(z−u+�)e

�
2 Im(z−u) Re(z−u−�)

e
�
2 Im(z+iw+�−u+�) Re(z+iw+�−u+�)e

�
2 Im(z+iw+�−u−�) Re(z+iw+�−u−�)

= C e
�(Im(z+�) Re(z+�)+Im � Re �)

e�((w+Im z) Re z+Im �Re �)
e�(Im(z−u) Re(z−u))

e�((w+Im(z+�−u)) Re(z+�−u)+Im � Re �)

= Ce�(−2wRe z+Im � Re �−Im �Re �−Im � Re �−wRe(�−u)).

By exploiting the compactness of the domains of �, �, and �, we can find a weaker bound that is
independent of those parameters (but might depend on u and �):

< Ce�(−2wRe z+Im � Re �),

which, by Im � ≤ w0, simplifies to
< Ce�

(

−2wRe z+w0 Re �
)

.
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Integrating this along the half-line with real part [Re(�−�)+ t+,∞), we find that its contribution
to L is dominated by Ce�(w0−2w) Re � . For the other tail of the integral (to the left of the left
indentation) we obtain the same bound by a similar calculation.

The green indentations Next we turn to the indentation around � (the right indentation in
fig. 8.1, which has been given a green colour). The length of this indentation is bounded and, by
definition of s, independent of �, �, � and �. By continuity we can therefore bound the value of
|G(z + � − �)| along this indentation, independently of �, �, � and �.

Similarly to before, we can estimate the remaining terms in I using eq. (6.8), which gives
|

|

|

I (�, �; z)
|

|

|

< C e
�
2 Im(z+�+�) Re(z+�+�)

e
�
2 Im(z+iw+�) Re(z+iw+�)e

�
2 Im(z+iw−�) Re(z+iw−�)

× e
�
2 Im(z−u) Re(z−u+�)e

�
2 Im(z−u) Re(z−u−�)

e
�
2 Im(z+iw+�−u+�) Re(z+iw+�−u+�)e

�
2 Im(z+iw+�−u−�) Re(z+iw+�−u−�)

which by similar reasoning as above simplifies to
< Ce�(−2wRe z+w0 Re �)e−

�
2 Im(z+�−�) Re(z+�−�)).

Since z − � is bounded (independently of �) along the indentation, the second exponential term
is bounded, and we can simplify the first one to

< Ce�
(

w0−2w
)

Re � .

As the length of the indentation is finite, its contribution to L is also bounded by Ce�(w0−2w) Re � .
The same bound holds for the indentation around−Re �, as can be seen from a similar calculation.

The yellow middle part Thirdly, we turn to estimating the contribution along the line segment
with |Re z| ≤ 3r2 + 1, which is yellow in fig. 8.1.1 Since this line segment has a finite length,
independent of our parameters, we can estimate the contribution of the hyperbolic gamma
functions involving �, � and � by their maximum value along the line segment. As we take
the parameters in a compact subspace, we can make this bound independent of �, � and �. By
continuity of G(z−u±�)

G(z+iw±�)G(z+iw+�−u±�)
, this bound is finite.

We can thus bound the contribution of I on this line segment by focusing on the two
�-dependent hyperbolic gamma functions. Let R be at least so large that |Re(z + � − �)| =
Re(� − z − �) and Re(z + � − �) > 0 whenever z is in the segment and Re � > R. Then we find
using eq. (6.8) that

|

|

|

I (�, �; z)
|

|

|

< Ce
�
2 (Im(z+�+�) Re(z+�+�)+Im(z+�−�) Re(�−�−z))

= Ce�(Im � Re(z+�)+Im(z+�) Re �).

Since Re z is bounded along this curve, and Im z = −w − � + Im u, we can bound this by
< Ce−�(w+�−Im �−Im u) Re � .

As the line segment has finite length, its contribution toL is thus bounded byCe−�(w+�−Im �−Im u) Re � .
1The poles at ±� − (� − u) have their real part bounded absolutely by 3r2. The additional +1 ensures that the

remaining (blue in fig. 8.1) parts of the integral stay away sufficiently far from all poles.

606060



The blue remaining sections Lastly, we turn to estimate the contribution of the two remaining
line segments. Let t− be such that the right one of the remaining line segments is given by
Re z ∈ (3r2 + 1,Re(� − �) − t−) and Im z = −w − � + Im u. This t− is independent of �, �, �
and � by definition of s.

We estimate an upper bound for the contribution to L along this right line segment with
positive real part. The calculation is highly similar to the one for the integral tails, note however
that along this segment |Re(z + � − �)| = Re(� − z − �).

We find
|

|

|

I (�, �; z)
|

|

|

< C e
�
2 Im(z+�+�) Re(z+�+�)e

�
2 Im(z+�−�) Re(�−z−�)

e
�
2 Im(z+iw+�) Re(z+iw+�)e

�
2 Im(z+iw−�) Re(z+iw−�)

× e
�
2 Im(z−u) Re(z−u+�)e

�
2 Im(z−u) Re(z−u−�)

e
�
2 Im(z+iw+�−u+�) Re(z+iw+�−u+�)e

�
2 Im(z+iw+�−u−�) Re(z+iw+�−u−�)

which, using boundedness of parameters and Im z = −w − � + Im u, we can simplify to
< Ce−�(w+�−Im �−Im u) Re �e−�(w+Im �+Im u−�−Im �) Re z.

We integrate this along the line-segment to find the following bound for its contribution to L :
C1e

−�(w+�−Im �−Im u) Re � × (C2e
−�(w+Im �+Im u−�−w0) Re � + C3).

If w + Im � + Im u − � − w0 ≥ 0, the C3-term dominates the one involving C2 as Re � → ∞,
and the contribution is bounded by

Ce−�(w+�−Im �−Im u) Re � .

If w + Im � + Im u − � −w0 < 0, the C2-term is dominant and the estimate is
Ce−�(w+�−Im �−Im u+w+Im �+Im u−�−w0) Re � = Ce�(w0−2w) Re � .

In both cases the estimate equals
Ce−�� Re � .

Similarly, we bound the part of the integral along other remaining line segment by the same
expression.

Now we have bounded all contributions toL by eitherCe−�(w+�−Im �−Im u) Re � orCe�(w0−2w) Re � ,
concluding our proof.

We now easily derive the following theorem:
Theorem 8.7 (Asymptotic behaviour of  ). Set r1 and r2 such that 0 < r1 < r2 and fix
some � ∈ (0, w0). Let u, �, �, � be such that |Im �| + Im u < w, |Im �| + Im � < w and
Im � + Im u < w + �, with Re u,Re �,Re �,Re � ∈ [−r2, r2], and let � ∈ [r1, r2]. Set � =
min{w + � − Im � − Im u, 2w −w0}. There exists constants C and R independent of � and �,
such that

|

|

|

  (�, �) −  ass
 (�, �)||

|

< Ce−�� Re � (8.27)
whenever Im � is restricted to [−w0, w0] andRe � > R. Furthermore, if we restrict the imaginary
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parts of � and � to a compact set, the constants C and R can be chosen independently of � and
� as well.

Proof. If we set & = �∕w0, the theorem follows immediately from combining eqs. (8.25)
and (8.26) with lemma 8.6 and the triangle inequality.
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Chapter 9

Solution to the Askey-Wilson difference
equation

In 1985, Askey and Wilson published a paper ([2]) introducing a special family of polynomials,
now known as the Askey-Wilson polynomials. This family of polynomials depends on four
parameters and a coefficient q, and encompasses all classical families of orthogonal polynomials,
either as a special case or as a limiting case ([29]).

A fundamental result in the theory of special functions is that if (Pn) is a family of orthogonal
polynomials with Pn of degree n and P0 ≡ 1, then there exist coefficients an and bn so that

xPn(x) = an+1Pn+1(x) + bnPn(x) + anPn−1(x), (9.1)
with P−1 ≡ 0, see e.g. [12]. The coefficients an and bn can be expressed in terms of inner products,
with an = ⟨XPn, Pn−1⟩∕⟨Pn−1, Pn−1⟩ and bn = ⟨XPn, Pn⟩∕⟨Pn, Pn⟩, where XPn(x) = xPn(x).

We can see eq. (9.1) as difference equation in the discrete parameter n. Some systems of
classical orthogonal polynomials also satisfy a difference equation for the continuous variable,
of the form

�nPn(x) = A(x)Pn(x + 1) + B(x)Pn(x) + C(x)Pn(x − 1),

with coefficients independent of n and an eigenvalue �n independent of x. An example of such
polynomials are the Krawtchouk polynomials ([34]).

The Askey-Wilson difference equations generalise this second form of difference equation,
and have the orthogonal family of Askey-Wilson polynomials as their eigenfunctions. However,
nonpolynomial eigenfunctions to the corresponding difference operator exist, and Ruijsenaars has
demonstrated that his generalised hypergeometric function R is an eigenfunction of this operator
([36]). In this chapter, we will use properties of the quantum group D and the representation ��
to provide a novel proof for this established result.

Our approach in this proof is similar to that used by Groenevelt in [15, 16] on other solutions
of the Askey-Wilson difference equations. We will first present the difference equation in the
upcoming section, and subsequently outline the steps we will undertake in constructing the
proof.
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9.1 The Askey-Wilson difference equation

This section defines the Askey-Wilson difference equation in the form we will use. Let  ∈ ℂ4

and let w1 and w2 be either positive or complex conjugate parameters with positive real parts as
before. Set

w1,w2
 (x) =

∏3
j=0 cosh

�
w2

(

x + iw1
2 + ij

)

sinh 2�x
w2

sinh 2�(x+iw)
w2

. (9.2)

Then1

w1,w2
,x f (x, y) = w1,w2

 (x)
[

f (x + iw1, y) − f (x, y)
]

+w1,w2
 (−x)

[

f (x − iw1, y) − f (x, y)
] (9.3)

defines the second-order Askey-Wilson difference operator. In this relation, the continuous
variable y has replaced the discrete variable n of eq. (9.1). The x in the subscript indicates that it
acts on the x-variable. The operator w1,w2

,y (with a y in the subscript) acts in a similar manner,
with the coefficients taken as a function of y, and the shifts applied in the y-variable:

w1,w2
,y f (x, y) = w1,w2

 (y)
[

f (x, y + iw1) − f (x, y)
]

+w1,w2
 (−y)

[

f (x, y − iw1) − f (x, y)
]

.

It can been shown that R is an eigenfunction of w1,w2
,x , with eigenvalue

v(w1, w2, ; y) =
1
2

[

cosh
2�y
w2

+ cosh �i
w2

(

w1 + 2̂0
)

]

. (9.4)

In section 9.2, we will prove that the function H�,u
�,� we defined in chapter 7 satisfies a

three-term relation
H�,u
�,� (z − iw1) = B��,�H

�,u
�+iw1,�

(z) + C��,�H
�,u
�,� (z) + B

�
−�,�H

�,u
�−iw1,�

(z),

with coefficients B��,� and C��,� independent of z. This relation shows that a shift of −iw1 in the
variable z can be translated to shifts in �. By identifying the left-hand side of this expression as
��(K−1)H�,u

�,� , we can then use lemma 5.1 to express ��(X0,�)H�,u
�,� in terms of H�,u

�+iw1,�
, H�,u

�,�

and H�,u
�−iw1,�

. Furthermore, using lemma 4.1, and the fact that F �,0�,� is an eigenfunction of
��̄(X∗

0,�) (or of ��̄(X⋆
0,�), in the case of conjugate parameters), we can express

���  = ⟨H�,u
�,� , ��̄(X

∗∕⋆
0,� )F ��,�⟩

in terms of   (� + iw1, �),   (�, �) and   (� − iw1, �). We discuss this in section 9.3. By
rewriting this result using Ruijsenaars’s function R, we derive a three-term relation for R that is
equivalent to

w1,w2
,� R(w1, w2, c(); �, �) = v(w1, w2, ; �)R(w1, w2, c(); �, �),

1The difference operator as we present it here resembles the form used in [36], with the map in eq. (8.9) used to
retrieve c from  . Up to a reparametrisation, the coefficients in this operator are equivalent to the coefficients used by
Askey and Wilson in [2].
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which will be shown in section 9.4.
After we have shown this, we will use the symmetries of R to show that it satisfies three

other Askey-Wilson-type difference equations, and we will define a difference operator for which
  is an eigenfunction.

9.2 Calculating ��(K−1)H�,u
�,�

The calculation of ��(K−1)H�,u
�,� follows from straightforward applications of the difference

equations for G (eqs. (6.3) and (6.4)). We will first find an expression for H�,u
�,� (z − i

w1
2 ) and

then apply it twice to find the desired expression for ��(K−1)H�,u
�,� (z) = H�,u

�,� (z − iw1).

Lemma 9.1. Let � ∉ iw2
2 ⋅ ℤ. Set A��,� ∶= i

cosh �
w2

(

�+�+iw12 −�
)

sinh 2��
w2

. Then

H�,u
�,� (z − i

w1
2
) = A��,�H

�,u
�+iw12 ,�+i

w1
2

(z) + A�−�,�H
�,u
�−iw12 ,�+i

w1
2

(z) (9.5)
= A��,−�H

�,u
�+iw12 ,�−i

w1
2

(z) + A�−�,−�H
�,u
�−iw12 ,�−i

w1
2

(z). (9.6)

Proof. Note that the coefficients in the lemma are independent of u. As H�,u
�,� = H�,0

�,� ( ⋅ + u), it
suffices to prove the lemma for the case u = 0, which simplifies the notation. As H�,u

�,� is even in
�, the second line of the equality follows from the first by flipping the sign of �. It thus remains
to prove the first equality for u = 0.

By the definition of H�,u
�,� in eq. (7.1), we have

H�,0
�,� (z − i

w1
2
) =

G(z − iw + �
2 ± � − i

w1
2 )

G(z − �
2 ± � − i

w1
2 )

which by simple arithmetic can be written as

=
G(z − �

2 + (� + iw1
2 ))

G(z − �
2 + (� − iw1

2 ))

G(z − iw + �
2 + (� − iw1

2 ))

G(z − iw + �
2 + (� + iw1

2 ))

×
G(z − iw + �

2
± (� + iw1

2
))

G(z − �
2 ± (� + iw1

2 ))
.

We can apply the difference equation eq. (6.3) to both the first and the second fraction, rewriting
them in terms of hyperbolic cosines. The third fraction we recognise as a shifted version of
H�,0
�,� , so that we can write

H�,0
�,� (z − i

w1
2
) =

cosh �
w2

(

z − �
2 + �

)

cosh �
w2

(

z − iw + �
2
+ �

)
×H�,0

�+iw12 ,�+i
w1
2

(z).

Dividing both sides by the fraction of hyperbolic cosines, we have

H�,0
�+iw12 ,�+i

w1
2

(z) =
cosh �

w2

(

z − iw + �
2
+ �

)

cosh �
w2

(

z − �
2
+ �

)
H�,0
�,� (z − i

w1
2
). (9.7)
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Multiplying this latter expression by A��,�, we find, using the product rule cosh a cosh b =
1
2 (cosh(a + b) + cosh(a − b)), that

A��,�H
�,0
�+iw12 ,�+i

w1
2

(z)

= i
cosh �

w2

(

� + � + iw1
2
− �

)

sinh 2��
w2

cosh �
w2

(

z − iw + �
2
+ �

)

cosh �
w2

(

z − �
2
+ �

)
H�,0
�,� (z − i

w1
2
)

= i
cosh �

w2

(

z − iw − �
2
+ 2� + � + iw1

2

)

+ cosh �
w2

(

z − iw + 3�
2
− � − iw1

2

)

2 sinh 2��
w2

cosh �
w2

(

z − �
2
+ �

)

×H�,0
�,� (z − i

w1
2
).

As H�,0
�,� is even in �, we can flip the sign of � in the latter expression to find

A�−�,�H
�,0
�−iw12 ,�+i

w1
2

(z)

= −i
cosh �

w2

(

z − iw − �
2 − 2� + � + iw1

2

)

+ cosh �
w2

(

z − iw + 3�
2 − � − iw1

2

)

2 sinh 2��
w2

cosh �
w2

(

z − �
2 + �

)

×H�,0
�,� (z − i

w1
2
).

Hence,

A��,�H
�,0
�+iw12 ,�+i

w1
2

(z) + A�−�,�H
�,0
�−iw12 ,�+i

w1
2

(z)

= i
cosh �

w2

(

z − iw − �
2 + 2� + � + iw1

2

)

− cosh �
w2

(

z − iw − �
2 − 2� + � + iw1

2

)

2 sinh 2��
w2

cosh �
w2

(

z − �
2 + �

)

×H�,0
�,� (z − i

w1
2
).

Using 1
2 (cosh(a + b) − cosh(a − b)) = sinh a sinh b, we can rewrite the fraction in this expression

to
sinh 2��

w2
sinh �

w2

(

z − iw − �
2 + � + i

w1
2

)

sinh 2��
w2

cosh �
w2

(

z − �
2 + �

) =
−i cosh �

w2

(

z − �
2
+ �

)

cosh �
w2

(

z − �
2 + �

) = −i,

concluding our proof.
IfH�,u

�+iw12 ,�+i
w1
2

(z) has no pole for � → 0, the singularities of the right-hand sides of eqs. (9.5)
and (9.6) at � = 0 are removable.

The desired expression for ��(K−1)H�,u
�,� can now be derived easily:

Corollary 9.2. For � ∉ iw2
2
⋅ ℤ ∪ (±iw1

2
+ iw2

2
⋅ ℤ),

��(K−1)H�,u
�,� = B��,�H

�,u
�+iw1,�

+ C��,�H
�,u
�,� + B

�
−�,�H

�,u
�−iw1,�

.
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with

B��,� ≔
cosh �

w2
(� ± � − � + iw1

2 )

sinh 2��
w2

sinh 2�(�+iw)
w2

and

C��,� ≔ −
cosh �

w2
(� + � ± � + iw1

2 )

sinh 2��
w2

sinh 2�(�+iw)
w2

−
cosh �

w2
(� − � ± � − iw1

2 )

sinh 2��
w2

sinh 2�(�−iw)
w2

.

Proof. By applying the relation eq. (9.5) of lemma 9.1 in the second equality below, we have
��(K−1)H�,u

�,� (z) = H�,u
�,� ((z − i

w1
2
) − i

w1
2
)

= A��,�H
�,u
�+iw12 ,�+i

w1
2

(z − i
w1
2
) + A�−�,�H

�,u
�−iw12 ,�+i

w1
2

(z − i
w1
2
). (9.8)

Setting �̂ = � + iw1
2

, �̂ = � + iw1
2

, applying lemma 9.1 now in the form of eq. (9.6) to derive the
second equality below gives

H�,u
�+iw12 ,�+i

w1
2

(z − i
w1
2
) = H�,u

�̂,�̂ (z − i
w1
2
)

= A��̂,−�̂H
�,u
�̂+iw12 ,�̂−i

w1
2

(z) + A�−�̂,−�̂H
�,u
�̂−iw12 ,�̂−i

w1
2

(z)

= A�
�+iw12 ,−�−i

w1
2

H�,u
�+iw1,�

(z) + A�
−�−iw12 ,−�−i

w1
2

H�,u
�,� (z). (9.9)

Flipping the sign of � and using the fact that H�,u
�,� is even in �, we derive

H�,u
�−iw12 ,�+i

w1
2

(z − i
w1
2
) = A�

−�+iw12 ,−�−i
w1
2

H�,u
�−iw1,�

(z) + A�
�−iw12 ,−�−i

w1
2

H�,u
�,� (z). (9.10)

Substituting eqs. (9.9) and (9.10) into eq. (9.8) gives

��(K−1)H�,u
�,� = A��,�A

�
�+iw12 ,−�−i

w1
2

H�,u
�+iw1,�

+
(

A��,�A
�
−�−iw12 ,−�−i

w1
2

+ A�−�,�A
�
�−iw12 ,−�−i

w1
2

)

H�,u
�,�

+ A�−�,�A
�
−�+iw12 ,−�−i

w1
2

H�,u
�−iw1,�

.

By direct calculation we find

A��,�A
�
�+iw12 ,−�−i

w1
2

= −
cosh �

w2
(� ± � − � + iw1

2 )

sinh 2��
w2

sinh
2�(�+iw12 )

w2

=
cosh �

w2
(� ± � − � + iw1

2 )

sinh 2��
w2

sinh 2�(�+iw)
w2

= B��,�

and similarly

A��,�A
�
−�−iw12 ,−�−i

w1
2

+ A�−�,�A
�
�−iw12 ,−�−i

w1
2

= −
cosh �

w2
(� + � ± � + iw1

2 )

sinh 2��
w2

sinh 2�(�+iw)
w2

−
cosh �

w2
(� − � ± � − iw1

2 )

sinh 2��
w2

sinh 2�(�−iw)
w2

= C��,�,

finishing the proof.
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The results in this section remain true after interchanging the roles ofw1 andw2. Additionally,
we have

��̄(K)F �,v�,� = B�̄�̄,�̄F
�,v
�+iw1,�

+ C �̄�̄,�̄F
�,v
�,� + B�̄−�̄,�̄F

�,v
�−iw1,�

.

To see this, recall that F �,v�,� (z) = H �̄,v̄
�̄,�̄ (−z), so that

��̄(K)F �,v�,� (z) = F �,v�,� (z + iw1) = H �̄,v̄
�̄,�̄ (−z − iw1) = ��̄(K−1)H �̄,v̄

�̄,�̄ (−z).

The result now follows from applying corollary 9.2 to the right-hand side.
The following result will be relevant in our discussion of the multivariate hypergeometric

function in chapter 11. We state it here because of its likeness to corollary 9.2.
Corollary 9.3. For � ∉ iw2

2
⋅ ℤ ∪ (iw1

2
+ iw2

2
⋅ ℤ),

��(K−1)H�,u
�,� = B̂��,�H

�,u
�+iw1,�+iw1

+ Ĉ��,�H
�,u
�,�+iw1

+ B̂�−�,�H
�,u
�−iw1,�+iw1

(9.11)
= B̂��,−�H

�,u
�+iw1,�−iw1

+ Ĉ��,−�H
�,u
�,�−iw1

+ B̂�−�,−�H
�,u
�−iw1,�−iw1

, (9.12)
with

B̂��,� = A��,�A
�
�+iw12 ,�+i

w1
2

, and Ĉ��,� = A��,�A
�
−�−iw12 ,�+i

w1
2

+ A�−�,�A
�
�−iw12 ,�+i

w1
2

.

Proof. The proof of this corollary is highly similar to the proof of corollary 9.2. The first equality
follows from applying eq. (9.5) instead of eq. (9.6) in the step after eq. (9.8). The second equality
follows from flipping the sign of �.

9.3 A three-term relation for  
In this section we will combine previous results to derive a three-term relation for   .

Recall the coefficient
b�,�x =

i��(ax + a−x)
q − q−1

+
i��

q − q−1
.

of lemma 5.1, and let
b̂�,�x =

i��ax + i��+iw1
a−x

q − q−1
+

i��
q − q−1

. (9.13)
Using these coefficients, we state a difference equation for   :
Proposition 9.4. Let u, �, �, �, �, � ∈ ℂ, related to  ∈ ℂ4 by eq. (8.11)). The following difference
equation holds:

���  (�, �) = �,u�,�(�)  (� + iw1, �) + �,u�,�(�)  (�, �) + �,u�,�(−�)  (� − iw1, �),

with �,u�,�(�) ∶= b̂�,�u B��,�, and �,u�,�(�) ∶= b�,�u C��,� − b
�,�
u .

Proof. The verification of this relation is quite straightforward from results we have proved
before. We will give the proof for the case of positive w1 and w2. The proof for conjugate
parameters follows from a similar reasoning, and in fact only requires replacing the ∗ by a ⋆ in
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the equation below. We have
���  (�, �) = ��� ⟨H

�,u
�,� , F

�,0
�,� ⟩ = ⟨H�,u

�,� , ��̄(X
∗
0,�)F

�,0
�,� ⟩ (by eq. (7.5))

= ⟨��(X�)H�,u
�,� , F

�,0
�,� ⟩ (by lemma 4.1)

= au⟨��(K−1Yu,�)H�,u
�,� , F

�,0
�,� ⟩

+ a−u⟨��(Yu,�K−1)H�,u
�,� , F

�,0
�,� ⟩

+ b�,�u ⟨��(K−1 − 1)H�,u
�,� , F

�,0
�,� ⟩ .

(by lemma 5.1)

We can use corollary 9.2 to translate all instances of ��(K−1) into �-shifts. We can leverage the
fact that ��(Yu,�)H�,u

�,� = ���H�,u
�,� for any value of � to get rid of all ��(Yu,�)’s. We arrive at

���  (�, �) = au�
�
�

(

B��,�  (� + iw1, �) + C��,�  (�, �) + B
�
−�,�  (� − iw1, �)

)

+ a−u
(

B��,��
�
�+iw1

  (� + iw1, �) + C��,��
�
�  (�, �)

+ B�−�,��
�
�−iw1

  (� − iw1, �)
)

+ b�,�u
((

B��,�  (� + iw1, �) + C��,�  (�, �)

+ B�−�,�  (� − iw1, �)
)

−   (�, �)
)

. (9.14)
By regrouping coefficients, we find

���  (�, �) =
(

au�
�
� + a−u�

�
�+iw1

+ b�,�u
)

B��,�  (� + iw1, �)

+
[

(

(au + a−u)��� + b
�,�
u

)

C��,� − b
�,�
u

]

  (�, �)

+
(

au�
�
� + a−u�

�
�−iw1

+ b�,�u
)

B�−�,�  (� − iw1, �). (9.15)
We conclude the proof by observing that the coefficients of lemma 5.1 satisfy

au�
�
� + a−u�

�
�+iw1

+ b�,�u = au
i�� − i��
q − q−1

+ a−u
i��+iw1

− i��
q − q−1

+
i��(au + a−u)
q − q−1

+
i��

q − q−1

=
i��au + i��+iw1

a−u
q − q−1

+
i��

q − q−1
= b̂�,�u , (9.16)

and similarly
(au + a−u)��� + b

�,�
u =

i��(au + a−u)
q − q−1

+
i��

q − q−1
= b�,�u (9.17)

and
au�

�
� + a−u�

�
�−iw1

+ b�,�u = b̂−�,�u , (9.18)
so that filling in these values into eq. (9.15) gives the desired result.
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9.4 Ruijsenaars’s function R solving the Askey-Wilson difference
equations

By now, we have collected most ingredients for proving that Ruijsenaars’s function R is an
eigenfunction of the Askey-Wilson operator, which we will do in this section. The proposition
below shows that it is actually an eigenfunction of four related Askey-Wilson difference operators:

Proposition 9.5. Let  ∈ ℂ4 and let w1 and w2 be either both positive, or a conjugate pair with
positive real part. Let the operator w1,w2

,x , the functions v and R, and the vector ̂ be defined as
before. Then

w1,w2
,� R(w1, w2, ; �, �) = v(w1, w2, ; �)R(w1, w2, ; �, �),

and

w1,w2
̂ ,� R(w1, w2, ; �, �) = v(w1, w2, ̂; �)R(w1, w2, ; �, �).

Furthermore, we can interchange the roles of w1 and w2 in these relations, so that also

w2,w1
,� R(w1, w2, ; �, �) = v(w2, w1, ; �)R(w1, w2, ; �, �),

and

w2,w1
̂ ,� R(w1, w2, ; �, �) = v(w2, w1, ̂; �)R(w1, w2, ; �, �).

Proof. The second equality follows from the first one if we recalling from section 8.2 that
R(w1, w2, ; �, �) = R(w1, w2, ̂; �, �).

The latter two equalities follow directly from the former two by observing that R is invariant
under the interchange of w1 and w2. Thus, it suffices to show that the first equality holds.

Recall from eq. (8.12) that

R(w1, w2, c(); �, �) =
1

√

a1a2

∏3
j=1G(i(w + 0 + j))

G(±� + i0)G(±� + î0)
×   (�, �).

Since the operator w1,w2
,� only acts on the variable �, the proposition holds if and only if

Ψ(�) ≔ 1
G(±� + i0)

×   (�, �) = G(±� − i0)  (�) (9.19)

is an eigenfunction with eigenvalue v(w1, w2, ; �).2
First, note that

Ψ(� + iw1) =
cosh �

w2

(

� + iw1
2 − i0

)

cosh �
w2

(

� + iw1
2 + i0

)G(±� − i0)  (� + iw1, �) (9.20)

by the difference equation eq. (6.3) of G.
2Although the function Ψ implicitly depends on � and  , we do not add them as arguments in order to simplify

the notation.
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Writing out w1,w2
,� Ψ(�) as a difference equation, we have

w1,w2
,� Ψ(�) = w1,w2

 (�)
[

Ψ(� + iw1) − Ψ(�)
]

+w1,w2
 (−�)

[

Ψ(� − iw1) − Ψ(�)
]

.

Using eq. (9.20), we can rewrite the right-hand side as

G(±� − i0)

[

w1,w2
 (�)

⎛

⎜

⎜

⎝

cosh �
w2

(

� + iw1
2 − i0

)

cosh �
w2

(

� + iw1
2
+ i0

)  (� + iw1, �) −   (�, �)
⎞

⎟

⎟

⎠

+w1,w2
 (−�)

⎛

⎜

⎜

⎝

cosh �
w2

(

−� + iw1
2
− i0

)

cosh �
w2

(

−� + iw1
2 + i0

)  (� − iw1, �) −   (�, �)
⎞

⎟

⎟

⎠

]

. (9.21)

We will focus our attention on the part of the expression between the square brackets. In
appendix A, we show (eq. (A.2)) that the coefficient of   (� + iw1, �) in this part equals

−i
q − q−1

4
�,u�,�(�).

Flipping the sign of �, the coefficient of   (� − iw1, �) equals −i q−q−14 �,u�,�(−�). The coefficient
of   (�, �) within the square brackets of eq. (9.21) is equal to

−i
q − q−1

4
�,u�,�(�) + cosh �

w2

(

� + i
w1
2

− u ± �
)

,

which follows from eq. (A.6) in appendix A.
By proposition 9.4, we find that the contents of the pair of square brackets in eq. (9.21) equal
[

−i
q − q−1

4
��� + cosh �

w2

(

� + i
w1
2

− u ± �
)

]

  (�, �)

= 1
2

[

cosh 2��
w2

− cosh 2��
w2

+ cosh �
w2

(iw1 + 2� − 2u) + cosh 2��
w2

]

  (�, �)

= 1
2

[

cosh 2��
w2

+ cosh �
w2

(iw1 + 2î0)
]

  (�, �).

We conclude that
w1,w2
,� Ψ(�) = v(w1, w2, ; �)Ψ(�) (9.22)

and hence that
w1,w2
,� R(w1, w2, ; �, �) = v(w1, w2, ; �)R(w1, w2, ; �, �).

We define Lw1,w2
,x to be the operator acting on a function f by

Lw1,w2
,x f (x) ∶=

w1,w2
,x

[

G(±( ⋅ ) − i0) × f
]

(x)
G(±x − i0)

. (9.23)
Then the following corollary is immediate from eqs. (9.19) and (9.22) in the proof of proposi-
tion 9.5:
Corollary 9.6. The function   is an eigenfunction of Lw1,w2

,x :

Lw1,w2
,�   (�, �) = v(w1, w2, ; �)  (�, �),
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and similarly

Lw1,w2
̂ ,�   (�, �) = v(w1, w2, ̂; �)  (�, �),

Lw2,w1
,�   (�, �) = v(w2, w1, ; �)  (�, �) and

Lw2,w1
̂ ,�   (�, �) = v(w2, w1, ̂; �)  (�, �).

Remark 9.7. Our derivation of the difference equations explicitly employs the star structure on
the modular double. As we defined that structure only for w1 and w2 either positive of complex
conjugates, we cannot straightforwardly extend the results to arbitrary w1 and w2. Ruijsenaars
has shown ([36, thm. 3.1]) that the results can be extended to all w1 and w2 in the complex
plane with positive real parts. ∎
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Chapter 10

Kernel of a unitary map on L2(0,∞)

In [38], Ruijsenaars demonstrated that the function Rren discussed in section 8.2 can be viewed
as the kernel of a Hilbert space isomorphism1 on weighted L2 function spaces. The function
 moreover is the kernel of a unitary map on L2(0,∞). Ruijsenaars proved these results for
real parameters  ∈ ℝ4 and positive w1 and w2. By these results, we can straightforwardly
conclude that, under the same conditions on  , w1, and w2,   is also the kernel of a Hilbert
space isomorphism between weighted L2 spaces.

The real values of  for which  forms the kernel of a Hilbert space isomorphism correspond
to purely imaginary values of u, �, � and �, as follows from eq. (8.11). In our multivariate
generalisation of this kernel in chapter 11 of this thesis, we need to choose � and � on the
real axis. Additionally, we desire our results to hold for a pair of conjugate parameters w1 and
w2. Therefore, we must adapt Ruijsenaars’s results to our specific requirements, which we will
accomplish in this chapter.

Our approach does not mimic Ruijsenaars’s proof. We used a method similar to methods used
for other quantum group-related transformations in e.g. [24, 28, 17, 18]. It has been employed
in [23] to recover Ruijsenaars’s results on Rren and  as kernels of Hilbert space isomorphisms.

The function transformation we study will be of the form
f (�) ≔ ∫ f (�)  (�, �)W (�) d�

for f ∈ L2((0,∞),W ), and the image will be in L2((0,∞),Ŵ ). We will specify the weight
functions shortly in section 10.1. Our objective is to establish conditions on  ensure the
convergence of  for all f ∈ L2(0,∞) and preserves the inner product. To achieve this,
we will define a truncated inner product in section 10.2, using the weight function. We then
introduce an integral form related to the concept of a Wronski determinant. This form allows
us to compute the truncated inner product of two copies of   . By utilising the asymptotics of
  , we demonstrate in section 10.3 that this truncated inner product approximates the Dirac
delta function (in a weak sense and up to a certain weight function). We use the latter result
in section 10.4 to show that our function transform preserves inner products. By explicit
construction of the inverse transformation, we show that  is a Hilbert space isomorphism. In

1A surjective map U ∶ H1 → H2 between Hilbert spaces is a Hilbert space isomorphism if it preserves the inner
product: ⟨f, g⟩H1

= ⟨Uf,Ug⟩H2
. If H1 = H2, so that U is an endomorphism, we call U a unitary map.
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section 10.4, we employ the aforementioned result to show that our function transform preserves
inner products. Furthermore, through explicit construction of the inverse transformation, we
establish that  is a Hilbert space isomorphism. Likewise, we show that  is the kernel of a
unitary operator, and we identify its inverse.

Throughout this chapter, we assume again that w1 and w2 are either positive or a pair of
conjugate parameters with positive real part. In the case of positive parameters, assumew1 < w2,
else interchange their roles. Let w = (w1 +w2)∕2. Let w0 = w when dealing with conjugate
parameters, and let w0 = w1 in the positive case. In the latter case, we have w0 −w = w1−w2

2
;

in the conjugate case, w0 −w = 0 holds.

10.1 The weight function W

In this chapter, we will work with the weight function defined as follows:

W (�) ≔
1

w1w2

1
c′(; ±�)

= 1
w1w2

G(iw ± 2�)G(−i0 ± �)
3
∏

j=1
G(ij ± �)

= 1
w1w2

G(iw ± 2�)G(±� ± � − �)G(±� ± � − u). (10.1)

By using the relation G(a + bi) = G(−a + bi) = G(−a + bi) for real a and b, we observe that
G(±a + bi) is real and positive (non-negative). Therefore, for � ∈ ℝ, the weight W (�) is a
positive (non-negative) weight function whenever � and u are purely imaginary, and � and � are
either real or imaginary.

We denote  ≔ L2((0,∞),W ). Its inner product is given by

⟨f, g⟩ = ∫

∞

0
f (x)g(x)W (x) dx.

We use the convention to regard the functions in  as even functions on the real line, extending
them the obvious way.

10.2 The truncated inner product and the Wronskian

We will now define the truncated inner product and our version of the Wronskian. In the case
of conjugate parameters w1 and w2, we will need a slightly more complicated notion of the
truncated inner product, to avoid integration over a singularity in a later stage.

−N
N

− Imw1

Imw1

Figure 10.1: An illustration of the curve N,� in the
case Imw1 > 0. The curve is a deformation of the line-
segment [−N,N] with oppositely facing indentations
at ± Imw1.

We will start with this complicated version of
the truncated inner product for the case w1 = w2.
For N > 2|

|

Imw1
|

|

and � ∈ [0, |
|

Imw1
|

|

), we define
the curve N,� by modifying the directed line seg-
ment [−N,N] as follows: we remove line segments
of length 2� around the points ± Imw1, replacing
them by an upward-facing half-circle of radius � at
− Imw1 and a downward-facing one around Imw1, as sketched in fig. 10.1, so that the curve
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passes above the point − Imw1 and below the point Imw1. We introduce those circular arcs to
avoid the upcoming singularities I mentioned.

Let f and g be functions on ℂ, let N > 2 Imw1 and � ∈ [0, |
|

Imw1
|

|

). We define

⟨f, g⟩N,� ∶= ∫N,�
f (x)ḡ(x)W (x) dx,

whenever the integral converges, with ḡ(x) = g(x̄) as before. If the restrictions of f and g to ℝ
are in  , and f and g are continuous around ± Imw, taking the limits N → ∞, � → 0 gives
twice the (W -weighted) inner product of f and g.

In the general case, so for either positive or conjugate parametersw1 andw2, and for functions
f and g functions defined on ℝ (not necessarily in  ) and N > 0, we define the �-independent
truncated inner product ⟨f, g⟩N by

⟨f, g⟩N ≔ ∫

N

−N
f (x)ḡ(x)W (x) dx.

If f and g are analytic on the strip ℝ × i[−w0, w0], we define their Wronskian [f, g] by

[f, g](z) ∶= ∫

z

z−iw1

(

f (x + iw1)ḡ(x) − f (x)ḡ(x + iw1)
)

× t (x)
w1,w2
 (x)W (x) dx,

(10.2)
where w1,w2

 is the Askey-Wilson coefficient defined in eq. (9.2), t is defined as

t (x) ≔
cosh �

w2

(

x + iw1
2 − i0

)

cosh �
w2

(

x + iw1
2
+ i0

) = G(±x + i0)G(±(x + iw1) − i0),

and the integration is performed along the line segment from z − iw1 to z.
Note that the product t (x)w1,w2

 (x)W (x) is invariant under interchanging x by −x − iw1,
as we derive in appendix B. Abbreviating V (x) ≔ t (x)

w1,w2
 (x)W (x), and assuming f and

g to be even, we can write
[f, g](−z) = ∫

−z

−z−iw1

(

f (x + iw1)ḡ(x) − f (x)ḡ(x + iw1)
)

V (x) dx

= − ∫

z−iw1

z

(

f (−x′)ḡ(−x′ − iw1) − f (−x′ − iw1)ḡ(−x′)
)

V (−x′ − iw1) dx′

(by substituting x′ = −x − iw1)
= ∫

z

z−iw1

(

f (x′)ḡ(x′ + iw1) − f (x′ + iw1)ḡ(x′)
)

V (x′) dx′

(as f, g are even and using the symmetry of V )
= − ∫

z

z−iw1

(

f (x′ + iw1)ḡ(x′) − f (x′)ḡ(x′ + iw1)
)

V (x′) dx′

= −[f, g](z),

so that [f, g] is an odd function for even f and g. We will use this property in proving the
following lemma, which relates the truncated inner product, the difference operator Lw1,w2

 and
the Wronskian. The lemma comes in two versions, one for the case of a conjugate pair w1 and
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w2, one for the positive case. We will first state and prove the lemma for conjugate parameters.
Lemma 10.1 (Conjugate wj’s). Suppose that w1 = w2 with Imw1 ≠ 0 and Rew1 > 0, and that
Im � and Im u are both smaller than w. Let f, g be even functions that are analytic on the strip
ℝ × i[−w,w]. Then for N sufficiently large, and � > 0 sufficiently small, the following relation
holds:

⟨Lw1,w2
 f, g⟩N,� − ⟨f,Lw2,w1

̄ g⟩N,� = 2[f, g](N).

Proof. Let f and g be as in the statement of the lemma. From the definition of w1,w2
 in

eq. (9.2), we can directly derive that
w2,w1
̄ (x̄) = w2,w1

 (−x) = w1,w2
 (−x).

Additionally,
G(−ī0 ± x̄) = G(−i0 ± x).

Hence,
Lw2,w1
̄ g(x̄)

= Conj
[

1
G(−ī0 ± x̄)

×
(

w2,w1
̄ (x̄)

(

G(−ī0 ± (x̄ + iw1))g(x̄ + iw1) − G(−ī0 ± x̄)g(x̄)
)

+ (x↔ −x)
)

]

= Conj
[

1
G(−ī0 ± x̄)

×
(

w2,w1
̄ (x̄)

(

G(−ī0 ± (x − iw1))g(x − iw1) − G(−ī0 ± x̄)g(x̄)
)

+ (x↔ −x)
)

]

= 1
G(−i0 ± x)

(

w1,w2
 (−x)

(

G(−i0 ± (x − iw1))ḡ(x − iw1) − G(−i0 ± x)ḡ(x)
)

+ (x↔ −x)
)

= Lw1,w2
 ḡ(x). (10.3)

Note moreover that we can use the function t to express
Lw1,w2
 f (x) = w1,w2

 (x)
(

t (x)f (x + iw1) − f (x)
)

+ (x↔ −x). (10.4)
Applying both eqs. (10.3) and (10.4), for N > 2|

|

Imw1
|

|

and � > 0 sufficiently small,2 we can
2By the assumptions on f and g, f ( ⋅ + iw1) is analytic around at the point Imw1. Analyticity at a point

implies analyticity in some open neighbourhood of that point by definition, hence by picking � > 0 sufficiently small,
f ( ⋅ + iw1) is analytic on N,� . The same extends to ḡ(x + iw1), possibly after picking � even smaller.
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write
⟨Lw1,w2

 f, g⟩N,� − ⟨f,Lw2,w1
̄ g⟩N,�

= ∫N,�

[

A(x)
(

t (x)f (x + iw1) − f (x)
)

+ (x↔ −x)
]

ḡ(x)W (x) dx

− ∫N,�
f (x)

[

A(x)
(

t (x)ḡ(x + iw1) − ḡ(x)
)

+ (x↔ −x)
]

W (x) dx.

Reordering terms, we write this as
= ∫N,�

A(x)t (x)
[

f (x + iw1)ḡ(x) − f (x)ḡ(x + iw1)
]

W (x) dx

+ ∫N,�
A(−x)t (−x)

[

f (x − iw1)ḡ(x) − f (x)ḡ(x − iw1)
]

W (x) dx.

Recall that tAW is invariant under replacing x by −x− iw1, and thatW is even in x, as shown
in appendix B. We can utilise this to rewrite the latter integral to

∫N,�
A(x − iw1)t (x − iw1)

[

f (x − iw1)ḡ(x) − f (x)ḡ(x − iw1)
]

W (x − iw1) dx.

By a shift of the integral domain this equals

∫N,�−iw1

A(x)t (x)
[

f (x)ḡ(x + iw1) − f (x + iw1)ḡ(x)
]

W (x) dx.

With a slight abuse of notation,3 we can thus write
⟨Lw1,w2

 f, g⟩N,� − ⟨f,Lw2,w1
̄ g⟩N,�

=

[

∫N,�
− ∫N,�−iw1

]

A(x)t (x)
[

f (x + iw1)ḡ(x) − f (x)ḡ(x + iw1)
]

W (x) dx.

(10.5)
Assumed that the integrand in analytic in the area enclosed by N,�, N,� − iw1 and the line
segments connecting the endpoints at −N and −N − iw1, respectively at N and N − iw1, by
Cauchy’s integral theorem this equals

=
[

∫

N

N−iw1

− ∫

−N

−N−iw1

]

A(x)t (x)
[

f (x + iw1)ḡ(x) − f (x)ḡ(x + iw1)
]

W (x) dx

(10.6)
= [f, g](N) − [f, g](−N) = 2[f, g](N),

the last equality holding as [f, g] is odd.
It remains to check that the integrand is indeed analytic in the given region. By the premise

of the lemma, the product f (x + iw1)ḡ(x) − f (x)ḡ(x + iw1) is analytic in the given region. We
may rewrite eq. (B.4) as follows:

t (x)A(x)W (x) =
1

4w1w2

sinh 2�x
w1

sinh 2�(x+iw)
w2

G(x + iw1 − i0)
G(x + i0)

3
∏

j=1

G(x + iw1 + ij)
G(x − ij)

. (10.7)

3We use the notation [

∫A − ∫B
]

f (x) dx to abbreviate ∫A f (x) dx − ∫B f (x) dx.
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−N N

−N − iw1 N − iw1

×

×

×

×

×

×

Figure 10.2: An illustration of the area enclosed by the paths of integration in eqs. (10.5) and (10.6) in
the case Imw1 > 0. The marks "×" indicate the positions of the poles at ±m = 1, 2, 3 given by eq. (10.9).

We study its analytic properties.
The hyperbolic gamma functions in eq. (10.7) have poles at
x = ±� + � − iw − iw1 − ikw1 − ilw2, x = ±� − � + iw + ikw1 + ilw2,

x = ±� + u − iw − iw1 − ikw1 − ilw2 and x = ±� − u + iw + ikw1 + ilw2,
(10.8)

with j = 1, 2, 3 and k, l = 0, 1, 2, 3, .... Clearly, if Im �, Im u < w, then for � > 0 sufficiently
small, all of these poles are located outside the enclosed region.

The fraction of hyperbolic sines in eq. (10.7) has a removable singularity at x = −iw1
2 , and

has its remaining poles are located at
x = −i

w1
2

+ im
w2
2
, (10.9)

with m ∈ ℤ ⧵ {0}. Note that the poles with m = ±1 are located at −iw1
2 + iw2

2 = Imw1 and
−iw1

2 − iw2
2 = −iw. Our choice of indentations of N,� was done in such a way that for � > 0,

these poles remain outside the enclosed region; see fig. 10.2 for an illustration. Thus, if we
choose � > 0 sufficiently small and N > 2|

|

Imw1
|

|

, indeed the equality eq. (10.6) holds.
For the case of positive coefficients w1 and w2, a similar result holds. We state it for the

case 0 < w1 < w2. In case w1 > w2, the result holds by interchanging the roles of w1 and w2.
Lemma 10.2 (Positive wj’s). Suppose that 0 < w1 < w2, and that Im � and Im u are both
smaller than w. Let f, g be even functions that are analytic on the strip ℝ × i[−w1, w1]. For N
sufficiently large, the following relation holds:

⟨Lw1,w2
 f, g⟩N − ⟨f,Lw1,w2

̄ g⟩N = 2[f, g](N).

Proof. The proof of this lemma is highly similar to the proof of lemma 10.1, but slightly simpler.
We provide only the general outline.

In a similar way as in the proof of the conjugate case, one checks that Lw1,w2
̄ g(x̄) =

Lw1,w2
 ḡ(x). Following our earlier reasoning we observe that

⟨Lw1,w2
 f, g⟩N − ⟨f,Lw1,w2

̄ g⟩N

=
[

∫

N

−N
− ∫

N−iw1

−N−iw1

]

A(x)t (x)
[

f (x + iw1)ḡ(x) − f (x)ḡ(x + iw1)
]

W (x) dx.
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As the pole locations of AtW are again adequately described by eqs. (10.8) and (10.9) with
j = 1, 2, 3, k, l = 0, 1, 2, 3, ... and m ∈ ℤ ⧵ {0}, and since we assumed Im �, Im u < w and
w2 > w1, the integrand is analytic in the rectangle with corners {−N,N,N − iw1,−N − iw1}.
Therefore, by Cauchy’s integral theorem, the right-hand side of above expression equals

[

∫

N

N−iw1

− ∫

−N

−N−iw1

]

A(x)t (x)
[

f (x + iw1)ḡ(x) − f (x)ḡ(x + iw1)
]

W (x) dx

= [f, g](N) − [f, g](−N) = 2[f, g](N).

The following result holds in both the conjugate case as in the real case and follows from
lemmas 10.1 and 10.2 respectively.
Corollary 10.3. Let �, � ∈ ℝ and u, � ∈ i(w0 − w,w). Let y, y′ ∈ ℝ with y ≠ ±y′. The
following equality holds:

⟨  ( ⋅ , y),   ( ⋅ , y′)⟩N =
2[  ( ⋅ , y),   ( ⋅ , y′)](N)

sinh �
w2
(y ± y′)

.

Proof. Our plan is to use the fact that   ( ⋅ , y) is an eigenfunction of Lw1,w2
 , together with the

appropriate choice from the previous two lemmas.
Let us introduce the shortened notation  y ≔   ( ⋅ , y).
In the case of conjugate parameters w1, w2, note that by corollary 9.6,
⟨Lw1,w2

  y ,  
y′
 ⟩N,� = v(w1, w2, ; y)⟨ y ,  

y′
 ⟩N,�.

Considering ⟨ y ,  
y′
 ⟩N,� as an integral, we observe that its integrand is analytic and has no

singularities around ± Imw1. Thus, for � ≥ 0 sufficiently small, ⟨ y ,  y′ ⟩N,� is independent of
� and equals ⟨ y ,  y′ ⟩N by Cauchy’s integral theorem. Hence, for � > 0 sufficiently small,

⟨Lw1,w2
  y ,  

y′
 ⟩N,� = v(w1, w2, ; y)⟨ y ,  

y′
 ⟩N . (10.10)

As  = −i(� + �, � − �, � − u,−� − u), for � and � real, and u and � on the imaginary axis,
we have ̄ = −i(−� + �,−� − �,−� − u, � − u), i.e. the signs of � and � have flipped. Since  
is even in � and �, this flip of signs is irrelevant, and we conclude that  ̄ =   . By a similar
reasoning as the one proceeding eq. (10.10), we find

⟨ y , L
w2,w1
̄  y

′

 ⟩N,� = ⟨ y , L
w2,w1
̄  y

′

̄ ⟩N,� = v(w2, w1, ̄; y′)⟨ y ,  
y′
 ⟩N

for small values of �.
By lemma 8.4, when �, � ∈ ℝ and u, � ∈ i(w0−w,w), the function y has no singularities on

the strip ℝ× [−iw0, iw0]. Therefore, we can apply either lemma 10.1 or lemma 10.2, depending
on the values of w1 and w2.

In both the conjugate case and the real case, utilising either lemma 10.1 or lemma 10.2, we
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obtain that (in the conjugate case: for � sufficiently small):
2[ y ,  

y′
 ](N) = ⟨Lw1,w2

  y ,  
y′
 ⟩N(,�) − ⟨ y , L

w1,w2
̄  y

′

 ⟩N(,�)

= 1
2

[

cosh 2�y
w2

+ cosh �i
w2

(

w1 + 2̂0
)

]

⟨ y ,  
y′
 ⟩N

− 1
2

[

cosh 2�y′
w2

+ cosh �i
w2

(

w1 + 2̂̄0
)]

⟨ y ,  
y′
 ⟩N

= 1
2

(

cosh
2�y
w2

− cosh
2�y′

w2

)

⟨ y ,  
y′
 ⟩N (as ̄̄̂0 = ̂0)

= sinh
�(y ± y′)
w2

⟨ y ,  
y′
 ⟩N .

10.3 Convergence to Dirac delta

In this section, we aim to demonstrate that 1
2
⟨ y ,  

y′
 ⟩N weakly converges to the Dirac delta

function, up to some weight factor. More precisely, we want to show that
lim
N→∞

1
2 ∫

∞

0
f (y)⟨ y ,  

y′
 ⟩NŴ (y) dy = f (y′)

for suitable functions f .
To prove this result, we will first study the asymptotic behaviour of ⟨ y ,  

y′
 ⟩N using

corollary 10.3. For the rest of this chapter, we assume � and � to be real, and � and u to be
purely imaginary.

We begin by considering the expression

[ y ,  
y′
 ](N) = ∫

N

N−iw1

(

 y (x + iw1) 
y′
 (x̄) −  y (x) 

y′
 (x + iw1)

)

t (x)A(x)W (x) dx

which, for real �, �, y′ and purely imaginary u and � by eq. (8.8) equals
= ∫

N

N−iw1

(

 y (x + iw1) y
′

 (x) − (y↔ y′)
)

t (x)A(x)W (x) dx. (10.11)

We examine the asymptotics of the factor t (x)A(x)W (x) that appears in the Wronskian.
Recall from eq. (10.7) that we can express it as

t (x)A(x)W (x) =
1

4w1w2

sinh 2�x
w1

sinh 2�(x+iw)
w2

G(x + iw1 − i0)
G(x + i0)

3
∏

j=1

G(x + iw1 + ij)
G(x − ij)

.

For Re x→ ∞ with the imaginary part of x bounded, we can write
sinh 2�x

w1

sinh 2�(x+iw)
w2

= e
2�x
w1

− 2�(x+iw)
w2 ⋅

e
2�(x+iw)

w2 − e
2�(x+iw)

w2
−2 2�x

w1

e
2�(x+iw)

w2 − e−
2�(x+iw)

w2

= e
2�x
w1

− 2�(x+iw)
w2 ⋅

⎛

⎜

⎜

⎝

1 + e
−2�(x+iw)

w2 − e
2�(x+iw)

w2
−2 2�x

w1

e
2�(x+iw)

w2 − e−
2�(x+iw)

w2

⎞

⎟

⎟

⎠

= e
�i(w2−w1)

w2 e
2�x(w2−w1)

w1w2 ⋅ (1 + O(e−2Re
2�
w1

Re x)).

The term Re 2�
w1

in the exponent equals � Rew2. In the real case, Rew2 = w2 > w1 = w0, in
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the conjugate case, Rew2 = Rew1 = w0, so that we have (possibly with a weaker bound)
sinh 2�x

w1

sinh 2�(x+iw)
w2

= e
�i(w2−w1)

w2 e
2�x(w2−w1)

w1w2 ⋅ (1 + O(e−2�w0 Re x)). (10.12)

Using eq. (6.9), we can express
G(x + iw1 − i0)
G(x + i0)

= e�(w1∕2−0)xei�(w
2
1∕4−0w1∕2)(1 + O(e−�&w0 Rex)),

for & ∈ (0, 1) chosen arbitrarily. Similar expressions hold for the other fractions of hyperbolic
gamma functions, so that we may write

t (x)A(x)W (x) =
1

4w1w2
e
�i(w2−w1)

w2 e
2�x(w2−w1)

w1w2 e�(2w1−(0−1−2−3))x

× ei�(w
2
1−(0−1−2−3)w1∕2)(1 + O(e−�&w0 Rex)),

which, noting 0 − 1 − 2 − 3 = −2i� − 2iu, we rewrite as
= 1

4w1w2
e�(2x+iw1)(w+iu+i�) ⋅ (1 + O(e−�&w0 Re x)). (10.13)

Using theorem 8.7, we can estimate

 y (x + iw1) y
′

 (x) = w1w2 ⋅ e
−�(2x+iw1)⋅(w+iu+i�)

×
∑

�1,�2∈{−1,1}
c′̂ (�1y)c

′
̂ (�2y

′)ei�x(�1y+�2y′)e−�w1�1y

+ O(e−� Re(w+iu+i�) Re xe−�� Re x),

and, as O(e−� Re(w+iu+i�) Re xe−�� Re x) = O(e�(−iu−i�−w−�) Re x for u, � ∈ iℝ, we have
(

 y (x + iw1) y
′

 (x) − (y↔ y′)
)

=

w1w2 ⋅ e
−�(2x+iw1)⋅(w+iu+i�)

×
∑

�1,�2∈{−1,1}
c′̂ (�1y)c

′
̂ (�2y

′)ei�x(�1y+�2y′)
(

e−�w1�1y − e−�w1�2y′
)

+ O(e−�(i�+iu+w+�) Re x). (10.14)
Substituting x = N + iz into eq. (10.11) gives

[ y ,  
y′
 ](N) = i ∫

0

−w1

(

 y (N + i(z +w1)) y
′

 (N + iz) − (y↔ y′)
)

× t (N + iz)A(N + iz)W (N + iz) dz,

and using our estimates in eqs. (10.13) and (10.14), we rewrite this as
= i

4
∑

�1,�2∈{−1,1}
c′̂ (�1y)c

′
̂ (�2y

′)
(

e−�w1�1y − e−�w1�2y′
)

× ∫

0

−w1

ei�(N+iz)(�1y+�2y′) dz

+ O(e2�(w+iu+i�)Ne−�(i�+iu+w+�)N ).
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Working out the integral gives
= i

4
∑

�1,�2∈{−1,1}
c′̂ (�1y)c

′
̂ (�2y

′)
(

e−�w1�1y − e−�w1�2y′
)

×
ei�(N+iz)(�1y+�2y′)|

|

|

0

−w1

−�(�1y + �2y′)
+ O(e�(w+i�+iu−�)N ),

which we can rewrite as
= − i

4�
∑

�1,�2∈{−1,1}
c′̂ (�1y)c

′
̂ (�2y

′)e
i�N(�1y+�2y′)

�1y + �2y′

×
(

1 − e�w1(�1y+�2y′)
)(

e−�w1�1y − e−�w1�2y′
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=2(cosh 2�y

w2
−cosh 2�y′

w2
)=4 sinh �

w2
(y±y′)

+ O(e�(w+i�+iu−�)N ).

Hence, according to corollary 10.3 and considering that � = 2�
w1w2

, we obtain

⟨  ( ⋅ , y),   ( ⋅ , y′)⟩N = −i
w1w2
�

∑

�1,�2∈{−1,1}
c′̂ (�1y)c

′
̂ (�2y

′)e
i�N(�1y+�2y′)

�1y + �2y′

+ O(e�(w+i�+iu−�)N ).

Using Euler’s formula, we may rewrite this as

⟨  ( ⋅ , y),   ( ⋅ , y′)⟩N = �1(y, y′) cos �N(y + y′) + �2(y, y′) sin �N(y + y′)

+ �3(y, y′) cos �N(y − y′) + �4(y, y′)
sin �N(y − y′)

y − y′
+ O(e�(w+i�+iu−�)N ), (10.15)

with

�1(y, y′) ≔ −i
w1w2
�

×
c′̂ (y)c

′
̂ (y

′) − c′̂ (−y)c
′
̂ (−y

′)

y + y′
,

�2(y, y′) ≔
w1w2
�

×
c′̂ (y)c

′
̂ (y

′) + c′̂ (−y)c
′
̂ (−y

′)

y + y′
,

�3(y, y′) ≔ −i
w1w2
�

×
c′̂ (y)c

′
̂ (−y

′) − c′̂ (−y)c
′
̂ (y

′)

y − y′
and

�4(y, y′) ≔
w1w2
�

×
(

c′̂ (y)c
′
̂ (−y

′) + c′̂ (−y)c
′
̂ (y

′)
)

.

If we fix y′ > 0 and consider the �j’s solely as functions of y, we observe that all of them
have a simple pole at y = 0 due to the terms c′̂ (y) and c′̂ (−y). Moreover, since c′̂ (y)c′̂ (−y′) −
c′̂ (−y)c

′
̂ (y

′) is zero for y = y′ (and analytic), �3 has a removable singularity at y = y′. The
other �j’s (with j = 1, 2, 4) do not have any singularities for y ∈ (0,∞).
Remark 10.4. Let us consider the convergence of the remaining term in eq. (10.15). Recalling
the definition of � from theorem 8.7, note that

w + i� + iu − � = w − Im(� + u) − � = max{w0 −w − Im(� + u),−w − �}.
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For this factor to be negative, so that the O(e�(w+i�+iu−�)N ) converges to 0 as N → ∞, we thus
need to impose the condition Im(� + u) > w0 −w.

If we restrict y and y′ to some closed interval [r1, r2] (with 0 < r1 < r2), by continuity of c′̂
on ℝ ⧵ {0} and by theorem 8.7, this remaining term converges to 0 uniformly in y and y′, i.e.

|

|

|

|

|

⟨  ( ⋅ , y),   ( ⋅ , y′)⟩N −
(

�1(y, y′) cos �N(y + y′) + �2(y, y′) sin �N(y + y′)

+ �3(y, y′) cos �N(y − y′) + �4(y, y′)
sin �N(y − y′)

y − y′

)

|

|

|

|

|

< Ce�(w+i�+iu−�)N , (10.16)

for sufficiently large N , where C is independent of N , y and y′. ∎
We can use the above approximations to establish the following result:

Lemma 10.5. Let �, u ∈ i(w0 − w,w) with Im(� + u) > w0 − w and let � and � be real. Let
f ∈ C∞

c (0,∞). The following limit holds:

lim
N→∞ ∫

∞

0
f (y)⟨ y ,  

y′
 ⟩N dy = 2

f (y′)
Ŵ (y′)

.

Proof. Since f is bounded with compact support, using eq. (10.15), we can apply the dominated
convergence to the integral over the remaining term, and we have

lim
N→∞ ∫

∞

0
f (y)⟨ y ,  

y′
 ⟩N dy

= lim
N→∞ ∫

∞

0
f (y)

(

�1(y, y′) cos �N(y + y′) + �2(y, y′) sin �N(y + y′)

+ �3(y, y′) cos �N(y − y′) + �4(y, y′)
sin �N(y − y′)

y − y′
)

dy,

provided that the limit on the right-hand side exists.
By the conditions imposed on f , we have f�j( ⋅ , y′) ∈ L1(0,∞) for j = 1, 2, 3. Conse-

quently, we can employ the Riemann-Lebesgue lemma to the terms involving �1, �2, and �3 in
the integrand. This lemma allows us to conclude that their contributions vanish as N tends to
infinity.

A well-known result from the theory of Fourier analysis (see e.g., [47, sec. 9.7]) states that if
g is a continuous function on (0,∞) with bounded variation4 that is differentiable around x′ > 0,
then

lim
t→∞ ∫

∞

0
g(x)

sin t(x − x′)
x − x′

dx = �g(x′).

Since f�4 is compactly supported and smooth on (0,∞) by our assumptions, we can employ
4We say that f ∶ (0,∞) → ℂ has bounded variation if there exists a finite number M such that for any choice of

x0 < x1 < ... < xn in (0,∞), we have ∑n
i=1

|

|

f (xi) − f (xi−1)|| ≤ M . Compactly supported smooth functions have
bounded variation.
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the above result to compute the limit

lim
N→∞ ∫

∞

0
f (y)�4(y, y′)

sin �N(y − y′)
y − y′

dy

= �f (y′)�4(y′, y′) = 2�
w1w2
�

c′̂ (±y
′)f (y′) = 2

f (y′)
Ŵ (y′)

.

Suppose that g is a compactly supported smooth function. It follows that gŴ∕2 is also
compactly supported and smooth. Therefore, we have

lim
N→∞

1
2 ∫

∞

0
g(y)⟨ y ,  

y′
 ⟩NŴ (y) dy = g(y′)

for such functions g.
Remark 10.6. It is important to note that lemma 10.5 is not invariant under interchanging  with
the dual parameters ̂: This interchange corresponds to replacing � with −u and vice versa, as
shown in the paragraph containing eq. (8.11). If we perform this interchange in the lemma, the
conditions for �, u, and � + u would undergo a sign change. For positive parameters w1 and w2,
we can define a smaller domain for � and u where the lemma holds true simultaneously for a
fixed  and its dual parameter set ̂ .

In the case of conjugate parameters, the lower bound w0 −w of the open interval is zero.
Consequently, it is impossible to find a range that accommodates both � and −�, as well as u and
−u simultaneously. As a result, we will encounter difficulties in obtaining an explicit formula
for the inverse of the Ruijsenaars function transform with kernel  ̂ in this case of conjugate
parameters. However, we can overcome this obstacle by utilising the kernel  instead, taking
advantage of its symmetries. ∎

10.4 The Ruijsenaars function transform

In this final section of the chapter, we introduce a function transform on a dense subspace of
 that has   as its kernel. We use the results of the previous section to show that for certain
values of  this transformation extends to a Hilbert space isomorphism, and we try to identify its
inverse.

We define the Ruijsenaars function transform  with kernel   for f ∈ C∞
c (0,∞) as

f (y) ∶= ∫

∞

0
f (x)  (x, y)W (x) dx.

For f ∈ ,0, the integral converges pointwise for any y ∈ (0,∞) since the integrand has
compact support and is continuous. In the following theorem we extend the operator to a Hilbert
space isomorphism.
Theorem 10.7. Let �, u ∈ i(w0 −w,w) satisfy Im(� + u) > w0 −w, and let �, � ∈ ℝ. Suppose
f ∈ C∞

c (k�, (k + 1)�) for some k ∈ ℕ and let g ∈ C∞
c (0,∞). Then, we have

⟨̂f,̂g⟩ = ⟨f, g⟩̂ .
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As a consequence, ̂ uniquely extends to a Hilbert space isomorphism from ̂ onto its image,
which is a subspace of  .

Proof. Using on our previous results, we can calculate
⟨̂f,̂g⟩ = ∫

∞

0
̂f (x)̂g(x)W (x) dx

= lim
N→∞ ∫

N

0 ∫

∞

0 ∫

∞

0
f (y) ̂ (y, x)

⏟⏟⏟
=  (x,y)

Ŵ (y)ḡ(z) ̂ (z, x)
⏟⏟⏟
=  (x,z)

Ŵ (z)W (x) dz dy dx.

Note that the integrand of the triple integral is continuous and has compact support on [0, N] ×
(0,∞)×(0,∞), so that we can apply Fubini’s theorem to interchange the order of the integrations.
By eq. (8.7), we can rewrite  ̂ (y, x) =   (x, y). Using the truncated inner product notation, we
can rewrite the above integral to

= lim
N→∞

1
2 ∫

∞

0
ḡ(z)Ŵ (z) ∫

∞

0
f (y)Ŵ (y)⟨ y ,  

z
 ⟩N dy dz.

If we could interchange the limit and the outer integration, the first claim of the theorem would
follow from lemma 10.5. Our goal now is to show that we can indeed do this using the dominated
convergence theorem.

We need to bound ∫∞0 f (y)Ŵ (y)⟨ 
y
 ,  z ⟩N dy independently of N , for z ∈ supp g. Using

eq. (10.15) and recalling remark 10.4, we observe that

∫

∞

0
f (y)Ŵ (y)

(

⟨ y ,  
z
 ⟩N − �4(y, z)

sin �N(y − z)
y − z

)

dy

can be bounded independently of N and z. By our reasoning in appendix C, we can bound

∫

∞

0
f (y)Ŵ (y)�4(y, z)

sin �N(y − z)
y − z

dy

independently ofN , so that indeed we may apply the dominated convergence theorem to conclude
⟨̂f,̂g⟩ =

1
2 ∫

∞

0
ḡ(z)Ŵ (z) lim

N→∞ ∫

∞

0
f (y)Ŵ (y)⟨ y ,  

z
 ⟩N dy dz

= ∫

∞

0
f (z)ḡ(z)Ŵ (z) dz (by lemma 10.5)

= ⟨f, g⟩̂ .

Now we turn to extend the transformation to ̂ . By linearity, the latter result still holds
for f ∈ C∞

c ((0,∞) ⧵ �ℕ), and then obviously also for g in the latter space. Note the following
properties:

1. If f ∈ C∞
c ((0,∞) ⧵ �ℕ), then f√Ŵ ∈ C∞

c ((0,∞) ⧵ �ℕ) and vice versa, as Ŵ is a
strictly positive analytic function on compact subsets of (0,∞).

2. We have f ∈ ̂ if and only if f√Ŵ ∈ L2(0,∞), with ‖f‖̂
= ‖

‖

‖

f
√

Ŵ
‖

‖

‖L2
.

3. The spaceC∞
c ((0,∞)⧵�ℕ) is densely contained inL2(0,∞), as e.g. the indicator functions

on finite intervals can be approximated with elements in the former set, and those span a
dense subspace of L2(0,∞).
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Hence, if f ∈ ̂ , there exist functions fn ∈ C∞
c ((0,∞) ⧵ �ℕ) such that fn

√

Ŵ converges
to f√Ŵ with respect to the L2 norm, and therefore fn → f with respect to the norm of ̂ .
Thus, C∞

c ((0,∞) ⧵ �ℕ) is dense in ̂ .
For arbitrary f ∈ ̂ , let (fn) ⊂ C∞

c ((0,∞) ⧵ �ℕ) be a sequence converging to f . Since
̂ is complete, (fn) is a Cauchy sequence. Note that

‖

‖

‖

̂fn −̂fm
‖

‖

‖
= ‖

‖

‖

̂ (fn − fm)
‖

‖

‖
= ‖

‖

fn − fm‖‖̂
,

so (̂fn) is a Cauchy sequence as well, and therefore converges in  . Denoting the limit by
̂f , we have extended ̂ to a Hilbert space isomorphism from ̂ to its image.

Recall remark 10.6; its reasoning also applies to theorem 10.7. Moving to dual parameters,
if � and u are in −i(w0 −w,w) = i(−w,w−w0) with Im(�+ u) < w−w0, with �, � ∈ ℝ, then
by theorem 10.7, we conclude that  is a Hilbert space isomorhpism from  onto a subspace
of ̂ . For the case of positive w1 and w2 we thus can conclude:
Corollary 10.8. Suppose 0 < w1 < w2 with w1

w2
∉ ℚ. Let �, u ∈ i(w0 − w,w − w0) with

� + u ∈ i(w0 −w,w −w0) as well, and let �, � ∈ ℝ. Then ̂ is a Hilbert space isomorphism
onto  with inverse  .

Proof. The conditions on u, �, �, � imply, by theorem 10.7, that ̂ and  are Hilbert space
isomorphisms onto their ranges. For f ∈ C∞

c (0,∞) ⊆ ̂ , we have ̂f ∈  , so that
 [̂f ] is defined.

We have
 [̂f ](z) = lim

N→∞ ∫

N

0 ∫

∞

0
f (x)Ŵ (x) ̂ (x, y)W (y)  (y, z) dx dy

with an absolutely integrable integrand, so that we can apply Fubini’s theorem to find

= lim
N→∞ ∫

∞

0
f (x)Ŵ (x) ∫

N

0
  (y, x)  (y, z)W (y) dy dx

= lim
N→∞

1
2 ∫

∞

0
f (x)Ŵ (x)⟨ x ,  

z
 ⟩N dx

= f (z)

by lemma 10.5. Therefore, ◦̂ = id holds on a dense subspace of ̂ and hence on ̂ .
Replacing  by ̂ and vice versa in lemma 10.5, we find that ̂◦ = id on  . We conclude
that  = −1

̂ .
The result of corollary 10.8 does not carry over to the case where w1 and w2 are a conjugate

pair, as w0 −w = 0 in that case, making the interval (w0 −w,w −w0) empty.
Abbreviate (; �, �) = (w1, w2, ; �, �). By eq. (8.15), we can write

(; �, �) ≔
�()

√

w1w2

  (�, �)
c′(; �)c′(̂; �)

.

We define, for f ∈ C∞
c (0,∞),

̃f (y) ≔
1

√

w1w2
∫

∞

0
f (x)(; x, y) dx.
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We can use the results on ̂ to prove the following corollary:
Corollary 10.9. Let �, u ∈ i(w0 − w,w) satisfy Im(� + u) > w0 − w and let �, � ∈ ℝ. The
operator ̃̂ extends to a Hilbert space isomorphism from L2(0,∞) to its range.

Proof. Recall that � is defined as

�() = exp

(

i�

[ 4
∑

j=0

2j
4

−
w2

1 +w
2
2 +w1w2

8

])

.

Note that
4
∑

j=0
2j = −(� + �)2 − (� − �)2 − (� − u)2 − (−� − u)2 = −2(�2 + �2 + u2 + �2)

is real for our choice of parameters. Moreover, w2
1 +w

2
2 +w1w2 = w2

1 +w
2
1 +w1w2 is real, so

|�()| = 1, and the same holds when  is replaced by ̂ .
Note from the definition of c′ (eq. (8.23)) and the symmetries ofG (eq. (6.2)) that c′(; −�) =

c′(; �). Hence
√

W (�) =
1

√

w1w2

|

|

|

|

1
c′(; �)

|

|

|

|

,

so that
� (�) =

√

W (�)
√

w1w2c
′(; �)

satisfies ||
|

� (�)
|

|

|

= 1.
Now let f ∈ C∞

c ((0,∞) ⧵ �ℕ) and g ∈ C∞
c (0,∞). We have

⟨̃̂f, ̃̂g⟩L2 =
(

1
w1w2

)2

∫

∞

0 ∫

∞

0 ∫

∞

0

�(̂)�(̂)

c′(̂; x)c′(̂; y)c′(; z)c′(; z)
×  ̂ (x, z) ̂ (y, z)f (x)ḡ(y) dx dy dz,

which we can rewrite as

∫

∞

0 ∫

∞

0 ∫

∞

0
[f (x)c′(̂; −x)

√

w1w2][g(y)c′(̂; −y)
√

w1w2]

×  ̂ (x, z) ̂ (y, z)Ŵ (x)Ŵ (y)W (z) dx dy dz.

Identifying f (x)c′(̂; −x)√w1w2 = f (x)
√

Ŵ (x)
�̂ (x) and similarly for g, we recognise that the

above equals
⟨̂ [f�̂∕

√

Ŵ ],̂ [g�̂∕
√

Ŵ ]⟩ = ⟨f�̂∕
√

Ŵ , g�̂∕
√

Ŵ⟩̂

by theorem 10.7. The right-hand side can be recognised as
⟨f�̂ , g�̂⟩L2 = ⟨f, g⟩L2 ,

so that ̃̂ preserves the inner product. By a similar reasoning as in the proof of theorem 10.7,
we extend it to a Hilbert space isomorphism on L2(0,∞).

878787



We can extend the result of corollary 10.9 to ̃ (without a hat on ) using theD4-symmetry
of  . Initially, it may seem that we need to flip the signs of � and u in the corollary’s conditions
to ensure −u and −� are in i(w0 − w,w) with Im(−u − �) > w0 − w. Recall that we did this
previously in corollary 10.8 for the transformation with kernel   .

However, by the D4-symmetry with respect to  (eq. (8.16)), the function (; �, �) is even
in both u and �. We find that ̃ = ̃ ′ , where the prime acts on  by flipping the signs of both
u and �. Therefore, we can apply corollary 10.9 to derive the desired properties via ̃ ′ , without
changing the domain of � and u.

We will now present the main result of this chapter.
Theorem 10.10 (Unitarity of the Ruijsenaars transform). Let �, u ∈ i(w0 −w,w) satisfy Im(�+
u) > w0 −w and let �, � ∈ ℝ. The operator ̃̂ is a unitary map on L2(0,∞) with inverse

̃−1
̂ f (y) ≔

1
√

w1w2
∫

∞

0
f (x)(; x, y) dx.

Proof. We observe that ̃−1
̂ f (y) = ̃f (y). Thus, based on the discussion above the theo-

rem, ̃−1
̂ is a Hilbert space isomorphism from L2(0,∞) onto its range. As in the proof of

corollary 10.8, for f ∈ Cc(0,∞), we calculate

̃−1
̂ ̃̂f (z) =

1
w1w2

lim
N→∞ ∫

N

0 ∫

∞

0
f (x)(̂; x, y)(; y, z) dy dx

=
(

1
w1w2

)2

lim
N→∞ ∫

∞

0 ∫

N

0
f (x)

�(̂)�()

c′(̂; x)c′(; y)c′(; y)c′(̂; z)
×  ̂ (x, y)  (y, z) dx dy

= 1
2w1w2

lim
N→∞ ∫

∞

0

f (x)
c′(̂; x)c′(̂; −z)

⟨ x ,  
z
 ⟩N dx

= 1
w1w2

f (z)
c′(̂; z)c′(̂; −z)

∕Ŵ (z) = f (z),

where we deployed lemma 10.5 once more. This result extends to f ∈ L2(0,∞) by density, thus
establishing ̃−1

̂ ◦̃̂ = id on L2(0,∞).
To see that also ̃̂◦̃−1

̂ = id, again take note of remark 10.6. We can use theD4-symmetry
to flip the signs of u and �, leaving ̃̂ and ̃−1

̂ invariant. On the result, we can use lemma 10.5
in a similar fashion as above to show that ̃̂◦̃−1

̂ = id. We conclude that ̃̂ is unitary with
inverse ̃−1

̂ .
Remark 10.11. By the D4-symmetry on  , the statement of the theorem is still true if �, u ∈
i(w0−w,w) and Im(�+u) > w0−w hold only after flipping signs on � and/or u. Moreover, the
D4-symmetry on  allows us to interchange the roles of any two pairs of parameters in (u, �, �, �)
simultaneously, e.g. we can interchange (u, �) ↔ (�, �) or (u, �) ↔ (�, �), as can be seen from
eq. (8.11). These symmetries imply that we could take � and u to be real parameters and � and
� to be imaginary parameters with certain restrictions.

Ruijsenaars has established unitarity for the transformation with w1 and w2 positive and
all parameters u, �, � and � restricted to the imaginary axis, without any constraints on their
size ([38]). This result cannot be deduced from the D4-symmetry. However, it does raise an
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intriguing question regarding the possibility of relaxing the restrictions imposed on � and u. For
now, it remains an open question if this is possible. ∎
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Chapter 11

The multivariate generalisation of  

In this chapter, we derive a multivariat version of the hypergemoemetric funcitons   and  .
We will motivate our derivation based on properties of elements of the Hopf algebra D and
its representations. The generalisation we perform is closely related to the methods used on
Askey-Wilson polynomials and Askey-Wilson functions, respectively, in [15, 16].

11.1 Coproducts of skew-primitives and their eigenfunctions

In this section, we generalise results of part II: we study coproducts of skew-primitive elements
and their eigenfunctions, which are multivariate versions of the eigenfunctions we derived in
chapter 7. We will use these multivariate eigenfunctions later to define multivariate hypergeo-
metric functions.

Throughout this chapter, fix N ∈ ℕ>0. As before, we assume that the parameters w1 and
w2 are either positive, with 0 < w1 < w2 and w1∕w2 ∉ ℚ, or a pair of conjugate parameters
with positive real part. Taking N = 1, we retrieve the original functions and their properties as
discussed in the previous chapters.

For j ∈ {1, ..., N}, we set
YYY (j)
u,� = 1⊗(N−j) ⊗ Δj−1Yu,� and XXX(j)

� = 1⊗(N−j) ⊗ Δj−1X0,� . (11.1)
These are elements in D⊗N . We construct them by using of iterated coproducts of the skew-
primitive elements, tensored from the left by the algebra unit.

By induction, we show that for n ∈ ℕ>0

ΔnYu,� = 1⊗n ⊗ Yu,� + Δn−1Yu,� ⊗K. (11.2)
For n = 1 this follows from our original discussion of Yu,�. Assuming that eq. (11.2) holds for
some n ≥ 1, we find

Δn+1Yu,� =
(

Δ⊗ id⊗n
)

ΔnYu,�
= 1⊗(n+1) ⊗ Yu,� + (Δ⊗ id⊗n−1)Δn−1Yu,� ⊗ id(K)

= 1⊗(n+1) ⊗ Yu,� + ΔnYu,� ⊗K.

This property can also be derived in a more direct way from eq. (5.2).
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To be able to discuss eigenfunctions of these elements, we first need to extend our represen-
tation to D⊗N . A natural generalisation of the representation �� is to consider the representation
�⊗N� . However, from a mathematical perspective, it is not necessary to have copies of the same
representation on each factor of the tensor product. Letting ��� = (�1, ..., �N ) ∈ ℂN , we define
���� to be a representation of D⊗N acting on the space NNN of meromorphic functions on ℂN ,
given by ���� = ��1 ⊗⋯⊗ ��N . The element in the kth factor of the representation acts on the
kth variable of the function in NNN .

Let � ∈ ℂ and uuu,���,���,zzz ∈ ℂN . We define a meromorphic functionHHH���,uuu
���,� ∈ NNN ∶ ℂN →

ℂ⊗N ≅ ℂ by

HHH���,uuu
���,�(zzz) =

N
⨂

j=1
H�j ,uj
�j ,�j−1(zj), (11.3)

where �0 = �. Since ℂ⊗N ≅ ℂ, we can replace the symbol ⨂ by ∏. For uuu = (u, u, ..., u) with
u ∈ ℂ, we use the notation HHH���,u

���,�(zzz), where the symbol u in the superscript now has regular
weight.

Using induction, we can show that
����(ΔN−1Yu,�)HHH���,u

���,� = ���NHHH
���,u
���,�.

ForN = 1 this was clear already from chapter 7. ForN > 1 let ���,��� ∈ ℂN+1, we define �̚�� ∈ ℂN

to be a version of ��� with its last entry chopped off, i.e. �̚�� = (�1, ..., �N ). We similarly define
�̚�� = (�1, ..., �N ) . We assume for the sake of induction that

��̚��(Δ
N−1Yu,�)HHH

�̚��,u
�̚��,� = ���NHHH

�̚��,u
�̚��,�.

Observe thatHHH���,u
���,� =HHH

�̚��,u
�̚��,� ⊗H�N+1,u

�N+1,�N . By eq. (11.2), we can express

����(ΔNYu,�)HHH���,u
���,� =

(

1⊗N ⊗ ��N+1
(Yu,�) + ��̚��(Δ

N−1Yu,�)⊗ ��N+1
(K)

)

HHH���,u
���,�.

Using eq. (5.7), we can write
(

1⊗N ⊗ ��N+1
(Yu,�)

)

HHH���,u
���,� =HHH

�̚��,u
�̚��,� ⊗ ��N+1

(Yu,�)H
�N+1,u
�N+1,�N

=HHH�̚��,u
�̚��,� ⊗ ��N+1

(

Yu,�N − ���N (K − 1)
)

H�N+1,u
�N+1,�N

=
(

��N�N+1
+ ���N

)

HHH���,u
���,� − �

�
�N
HHH�̚��,u

�̚��,� ⊗ ��N+1
(K)H�N+1,u

�N+1,�N ,

where we used ��N+1
(Yu,�N )H

�N+1,u
�N+1,�N = ��N�N+1

in the last line.
Using the induction hypothesis, we also compute
(

��̚��(Δ
N−1Yu,�)⊗ ��N+1

(K)
)

HHH���,u
���,� = ���NHHH

�̚��,u
�̚��,� ⊗ ��N+1

(K)H�N+1,u
�N+1,�N .

Adding the latter two results, and observing that ��N�N+1
+ ���N = ���N+1

, completing the induction.
Moving back to ���,��� ∈ ℂN , we conclude that the element YYY (j)

u,�N−j
acts similarly under the

representation, but only effects the latter j factors of the tensor product. In that case we have
����(YYY (j)

u,�N−j
)HHH���,u

���,� = ��N−j
�N HHH���,u

���,�. (11.4)
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By eqs. (5.2) and (11.1) we can write

YYY (j)
u,� = 1⊗(N−j) ⊗ Δj−1Yu,� =

N
∑

k=N−j+1
1⊗(k−1) ⊗ Yu,� ⊗KN−k.

For uuu ∈ ℂN , we modify the right-hand side of the above to define define the element YYY (j)
uuu,� as

YYY (j)
uuu,� ≔

N
∑

k=N−j+1
1⊗(k−1) ⊗ Yuk,� ⊗KN−k. (11.5)

There is no direct way to express this newly defined element by means of the coproduct. By
eq. (7.2) and note below it, we can however write

����(YYY (j)
uuu,�) = (T u1 ⊗⋯⊗ T uN )����(1⊗(N−j) ⊗ ΔjY�)(T −u1 ⊗⋯⊗ T −uN ),

with each shift operator T ±uk acting on the kth variable for k = 1, ..., N . Since
HHH���,uuu

���,� = (T u1 ⊗⋯⊗ T uN )HHH���,0
���,�,

we can use the above and eq. (11.4) to conclude thatHHH���,uuu
���,� is an eigenfunction of ����(YYY (j)

uuu,�) with
eigenvalue ��N−j

�N .
We set

FFF������,�(zzz) =
N
⨂

j=1
F �j ,0�j ,�j+1(zj), (11.6)

with �N+1 = �. (We have set the parameter v in the superscripts of F equal to zero, as we will
not need different values for it.) We extend the star involution of D to a star involution on D⊗N

by applying the star to each factor of the tensor product simultaneously. We can apply a similar
procedure as above. In the case of real parameters w1 and w2, we compute

����(XXX(j)∗
� )FFF������,� = ���N−j+1

FFF������,� .

In the case of conjugate parameters w1 and w2 we have
����(XXX(j)⋆

� )FFF������,� = ���N−j+1
FFF������,� .

11.2 Multivariate hypergeometric functions

We use the eigenfunctions derived in the previous section to define our multivariate version of
 . We define it by

   ���,uuu�,�(���, ���) ≔
N
∏

j=1
⟨H�j ,uj

�j ,�j−1 , F
�̄j
�j ,�j+1⟩j , (11.7)

where we define each curve j in such a way that it separates the upward and downward pole
sequences of  �j ,uj�j−1,�j+1(�j , �j). Note that the terms appearing in the sesquilinear form are exactly
the factors of the tensor products eqs. (11.3) and (11.6). If uuu = (u, u, ..., u), we use the notation
   ���,u�,� , where the symbol u in the superscript has regular weight. From the definition we observe
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that

   ���,uuu�,�(���, ���) =
N
∏

j=1
 �j ,uj�j−1,�j+1(�j , �j).

Many properties, such as the analyticity and the positions of the poles, carry over from the
original function  : the function    ���,uuu�,� is analytic if all its factors are analytic. We can also
deduce analogues of some symmetries of the original function. Let us introduce the notation
x⃩xx ≔ (xN , xN−1, ..., x1) to denote the reversely ordered version of a vectorxxx = (x1, ..., xN ) ∈ ℂN ,
so that x⃩k = xN+1−k (we set �⃩N+1 = � and �⃩0 = �). We use this notation to deduce analogues
of eq. (8.5), by applying the symmetry to each factor of the product. It results in the following
relation:

   ���,uuu�,�(���, ���) =
N
∏

j=1
 −�j ,−uj
�j+1,�j−1(�j , �j) =

N
∏

j=1
 −�⃩j ,−u⃩j
�⃩j−1,�⃩j+1

(�⃩j , �⃩j) =    −�⃩��,−u⃩uu
�,� (�⃩��, �⃩��). (11.8)

Using eq. (8.8) we derive in a similar way that
   ���,uuu�,�(���, ���) =    

⃩̄���,⃩̄uuu
�̄,�̄(⃩̄���, ⃩̄���) =    

−�̄��,−ūuu
�̄,�̄ (�̄��, �̄��).

Setting
j = −i(�j−1 + �j , �j−1 − �j ,−�j+1 − uj , �j+1 − uj),

we may write

   ���,uuu�,�(���, ���) =
N
∏

j=1
 j (�j , �j),

and define

 ̂̂ ̂ ���,uuu�,�(���, ���) ≔
N
∏

j=1
 ̂j (�j , �j) (11.9)

with
̂j = −i(�j−1 − uj , �j−1 + uj ,−�j+1 + �j .�j+1 + �j).

(By observing  ̂j (�j , �j) =  j (�j , �j), we deduce from eq. (11.8) that  ̂̂ ̂ ���,uuu�,�(���, ���) =    ���,uuu�,�(���, ���).)
We define the multivariate version of  as

���,uuu�,�(���, ���) ≔
N
∏

j=1
(j ; �j , �j) =

[ N
∏

j=1

�(j)
√

w1w2

1
c′(j ; �j)c′(̂j ; �j)

]

   ���,uuu�,�(���, ���). (11.10)

Its dual version we define as

̂̂̂���,uuu�,�(���, ���) ≔
N
∏

j=1
(̂j ; �j , �j) =

[ N
∏

j=1

�(̂j)
√

w1w2

1
c′(̂j ; �j)c′(j ; �j)

]

 ̂̂ ̂ ���,uuu�,�(���, ���). (11.11)

One could similarly define multivariate generalisations of the functions R and Rren. We will
not state these generalisations, but the procedure should be clear from the above two cases. We
will use the multivariate   in the upcoming section to show that is satisfies a difference equation.
The function  will later be used to define a unitary transformation on multivariate functions.
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Remark 11.1. Observe that the jth factor of the product defining    depends on the variables �j
and �j , but also on variables �j−1 and �j+1. Multivariate versions of the Krawtchouk polynomials
have be derived in a similar way, cf. [45]. ∎

11.3 A multivariate difference equation

Now that we have defined the multivariate versions of  and  , we move to discuss their applica-
tions. In this section, we will present and prove a multivariate version of proposition 9.4, where
we replace each of the variables �, �, � with vectors in ℂN . Similar equations for multivariate
Askey-Wilson functions have been derived in [13]. The methods used in this section have previ-
ously been applied on multivariate Askey-Wilson polynomials and multivariate Askey-Wilson
functions in [15, 16].

The original difference equation in proposition 9.4 expresses   in terms of a three-term
relation. The multivariate version we discuss here will involve (up to) 3N terms. The derivation
of the multivariate version will mainly consist of repeatedly applying previous results and
employing some bookkeeping skills.

We understand that the derivations in this section can be tedious to read. Due to the
exponential growth in the number of coefficients, some notational inconvenience seems inevitable.
To manage, and hopefully slightly ease, the bookkeeping process, we introduce new notation
before presenting the results. Additionally, we provide some examples throughout this section
to illustrate the meaning of the notation and demonstrate the workings of the proofs.

We begin by introducing some notation. We define difference operators Dk, where k ∈
{1, ..., N}, that act on the ��� variable, applying a shift of −iw1 to the kth entry of ���:

DkHHH
���,u
���,� =HHH

���,u
(�1,...,�k−1,�k−iw1,�k+1,...,�N ),�.

If we expressHHH���,u
���,� in the form of a tensor product we did as in eq. (11.3), then Dk modifies the

kth and (k + 1)th factors, replacing them with H�k,uk
�k−iw1,�k−1

and H�k+1,uk+1
�k+1,�k−iw1

, respectively.
We define D⃖kHHH

���,u
���,� as a copy ofHHH���,u

���,� with �k replaced by �k − iw1 only in the kth factor of
the tensor product, while leaving the (k + 1)th factor untouched. Note that D⃖NHHH

���,u
���,� = DNHHH

���,u
���,�,

as there is no (N + 1)th factor.
Example 11.2. For N = 3, the functionHHH���,u

���,� can be written as
HHH���,u

���,� = H�1,u1
�1,� ⊗H�2,u2

�2,�1 ⊗H�3,u3
�3,�2 .

We have
D2HHH

���,u
���,� = H�1,u1

�1,� ⊗H�2,u2
�2−iw1,�1

⊗H�3,u3
�3,�2−iw1

,

and
D⃖2HHH

���,u
���,� = H�1,u1

�1,� ⊗H�2,u2
�2−iw1,�1

⊗H�3,u3
�3,�2 .

∎
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For ��� = (�1, ..., �N ) ∈ {−1, 0, 1}N , we set D��� = D�1
1 ⋯D�N

N . If we regard iw1��� as a vector
in ℂN , we may also write D���HHH���,u

���,� =HHH
���,u
���−iw1���,�

.
We further define
KKK−1−1−1,(j) ∶= 1⊗(N−j) ⊗ (K−1)⊗j = 1⊗(N−j) ⊗ Δj−1(K−1)

and
KKK−1−1−1,(j,k) = 1⊗(N−j) ⊗ (K−1)⊗k ⊗ 1⊗(j−k),

for k = 0, 1, ..., j. It should be noted that
KKK−1−1−1,(j) = KKK−1−1−1,(j−k) ⋅KKK−1−1−1,(j,k),

where ⋅ denotes the (Hopf) algebra product.
For k = 0, 1, ..., j, we set
Ξ(j,k) ≔ {0}N−j × {−1, 0, 1}k × {0}j−k

and
Ξ(j) ≔ Ξ(j,j).

Using the coefficients defined in corollaries 9.2 and 9.3, we set

B�,��,� ≔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

B̂��,� if � = −1,

B��,� if � = 0,

B̂��,−� if � = 1,

and C�,��,� ≔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ĉ��,� if � = −1,

C��,� if � = 0,

Ĉ��,−� if � = 1.

Furthermore, we set

E(k)
���,�(���) ≔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

B�,�k−1�k,�k−1 if �k = −1,

C�,�k−1�k,�k−1 if �k = 0,

B�,�k−1−�k,�k−1 if �k = 1,

where �0 ≔ 0, and

EEE(j)
���,���(���) ≔

N
∏

k=N−j+1
E(k)
���,�k

(���).

Lastly, we set

b�,�u,� ≔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b̂�,�u = −
ax��+a−x��+iw1+��

q−q−1 if � = −1,

b�,�u = − ax��+a−x��+��
q−q−1 if � = 0,

b̂−�,�u = −
ax��+a−x��−iw1+��

q−q−1 if � = 1.

(11.12)

We will prove the following multivariate generalisation of corollary 9.2:
Lemma 11.3. Let j ∈ {1, ..., N}. For �k ∉ iw2

2 ⋅ ℤ ∪ (±iw1
2 + iw2

2 ⋅ ℤ), where k = N − j +
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1, N − j + 2, ..., N , we have

����(KKK−1−1−1,(j))HHH���,uuu
���,� =

∑

���∈Ξ(j)

EEE(j)
���,���(���)D

���HHH���,uuu
���,�. (11.13)

Before proving the general result, I will show that the lemma holds true for a simple case in
the following example.
Example 11.4. We show that lemma 11.3 holds in the case N = 3, j = 2. We have

HHH���,u
���,� = H�1,u1

�1,� ⊗H�2,u2
�2,�1 ⊗H�3,u3

�3,�2

and
����(KKK−1−1−1,(2)) = 1⊗ ��2(K

−1)⊗ ��3(K
−1) =

(

1⊗ 1⊗ ��3(K
−1)

)

⋅
(

1⊗ ��2(K
−1)⊗ 1

)

.

We first calculate
(

1⊗ ��2(K
−1)⊗ 1

)

HHH���,u
���,� = H�1,u1

�1,� ⊗
(

��2(K
−1)H�2,u2

�2,�1

)

⊗H�3,u3
�3,�2

= H�1,u1
�1,� ⊗

(

��2(K
−1)H�2,u2

�2,�1

)

⊗H�3,u3
�3,�2 .

By corollary 9.2, we can rewrite this to
= H�1,u1

�1,� ⊗
(

B��2,�1H
�2,u2
�2+iw1,�1

+ C��2,�1H
�2,u2
�2,�1

+ B�−�2,�1H
�2,u2
�2−iw1,�1

)

⊗H�3,u3
�3,�2 . (11.14)

For the sake of the general proof of the lemma, note that we can write this as
=
(

B��2,�1D⃖
1
2 + C

�
�2,�1

D⃖0
2 + B

�
−�2,�1

D⃖−1
2

)

HHH���,u
���,�

=
∑

���∈Ξ(2,1)

E(2)
���,�2

(���)D⃖�2
2 HHH

���,uuu
���,�.

Now we apply
(

1⊗ 1⊗ ��3(K
−1)

)

each term in the sum to find ����(KKK−1−1−1,(2))HHH���,u
���,�. We do

this in the following way: Note that the third factor of the tensor product has been left untouched
so far, whereas a shift has been applied to the �2-variable in the middle factor of some terms
in the sum. We use corollaries 9.2 and 9.3 to apply K−1 to the terms in the third factor: For
each term in the sum, whenever a shift has been applied to �2 in the second factor ofHHH���,u

���,� in
eq. (11.14), i.e. we’re talking about the termsH�2,u2

�2±iw1,�1
that appear in the sum, we want to apply

the suitable form of corollary 9.3 to apply the same shift in �2 in the third factor. If no shift has
been applied, i.e. we have a term H�2,u2

�2,�1 , we apply corollary 9.2.
We use eq. (9.11) to write

B��2,�1

(

1⊗ 1⊗ ��3(K
−1)

)

H�1,u1
�1,� ⊗H�2,u2

�2+iw1,�1
⊗H�3,u3

�3,�2

= B��2,�1H
�1,u1
�1,� ⊗H�2,u2

�2+iw1,�1
⊗

(

B̂�3�3,�2H
�3,u3
�3+iw1,�2+iw1

+ Ĉ�3�3,�2H
�3,u3
�3,�2+iw1

+ B̂�3−�3,�2H
�3,u3
�3−iw1,�2+iw1

)

,

so that all instances of �2 in the third factor of this term have now been replaced by �2 + iw1, as
they are in the second term.
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Similarly, by eq. (9.12),

B�−�2,�1

(

1⊗ 1⊗ ��3(K
−1)

)

H�1,u1
�1,� ⊗H�2,u2

�2−iw1,�1
⊗H�3,u3

�3,�2

= B�−�2,�1H
�1,u1
�1,� ⊗H�2,u2

�2−iw1,�1
⊗

(

B̂�3�3,−�2H
�3,u3
�3+iw1,�2−iw1

+ Ĉ�3�3,−�2H
�3,u3
�3,�2−iw1

+ B̂�3−�3,−�2H
�3,u3
�3−iw1,�2−iw1

)

,

and corollary 9.2 gives

C��2,�1

(

1⊗ 1⊗ ��3(K
−1)

)

H�1,u1
�1,� ⊗H�2,u2

�2,�1 ⊗H�3,u3
�3,�2

= C��2,�1H
�1,u1
�1,� ⊗H�2,u2

�2−iw1,�1
⊗

(

B�3�3,�2H
�3,u3
�3+iw1,�2

+ C�3�3,�2H
�3,u3
�3,�2 + B�3−�3,�2H

�3,u3
�3−iw1,�2

)

.

Taking the sum over these last three expressions and factoring out the brackets, we find
����(KKK−1−1−1,(2))HHH���,uuu

���,� =
∑

���∈Ξ(2)

EEE(2)
���,���(���)D

���HHH���,uuu
���,�

as we wanted to show. ∎
We now generalise this procedure in the following proof:

Proof of lemma 11.3. For k = 1, ..., j, we set k′ ≔ N − j + k. We can write ����(KKK−1−1−1,(j)) =
����(KKK−1−1−1,(j−1))����(KKK−1−1−1,(j,1)), where the latter term ����(KKK−1−1−1,(j,1)) is just K−1 applied in the (N −
j + 1)th variable (so the 1′th factor). By applying corollary 9.2 to 1′th factor, we obtain that

����(KKK−1−1−1,(j))HHH���,uuu
���,� = ����(KKK−1−1−1,(j−1))����(KKK−1−1−1,(j,1))HHH���,uuu

���,�

= ����(KKK−1−1−1,(j−1))
(

B��1′ ,�0′ D⃖
−1
1′ + C��1′ ,�0′ D⃖

0
1′ + B

�
−�1′ ,�0′

D⃖1
1′

)

HHH���,uuu
���,�

= ����(KKK−1−1−1,(j−1))
∑

���∈Ξ(j,1)

E(1′)
���,�1′

(���)D⃖�1′
1′ HHH

���,uuu
���,�.

Next, if j > 1, we factor ����(KKK−1−1−1,(j−1)) = ����(KKK−1−1−1,(j−2))����(KKK−1−1−1,(j−1,1)) and apply it to
∑

���∈Ξ(j,1) E(1′)
���,�1′

(���)D⃖�1′
1′ HHH

���,uuu
���,�. For each term in the sum we apply one of the following steps:

for the term with �1′ = 0 we apply corollary 9.2 to the 2′th factor of the tensor product, for the
terms with �1′ = −1 and �1′ = 1 we apply eqs. (9.11) and (9.12) from corollary 9.3 respectively.
As a result, for �1′ = ±1, we add or subtract iw1 in the �1′ that appears in the 2′th factor ofHHH���,uuu

���,�,
according to the action of D⃖�1′

1′ . We may therefore remove the ⃖ from D1′ . The result can be
written as

����(KKK−1−1−1,(j))HHH���,uuu
���,� = ����(KKK−1−1−1,(j−2))

∑

���∈Ξ(j,2)

E(1′)
���,�1′

(���)E(2′)
���,�2′

(���)D�1′
1′ D⃖

�2′
2′ HHH

���,uuu
���,�.

In our example with j = 2, we were finished at this point. If j > 2, we keep iterating this
procedure for k = 3, ..., j, writing ����(KKK−1−1−1,(j−k)) = ����(KKK−1−1−1,(j−k−1)) ⋅ ����(KKK−1−1−1,(j−k,1)). We apply
this to ∑

���∈Ξ(j,k−1)

(

∏k−1
l=1 E

(l′)
���,�l′

(���)
)(

∏k−2
l=1 D

�l′
l′

)

D⃖�(k−1)′
(k−1)′HHH

���,uuu
���,� in the following way: for terms of

the sum with �(k−1)′ = 0 we apply corollary 9.2, and for terms with �(k−1)′ = −1 and �(k−1)′ = 1
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we apply eqs. (9.11) and (9.12) respectively to the k′th factor and variable. We find

����(KKK−1−1−1,(j))HHH���,uuu
���,� = ����(KKK−1−1−1,(j−k))

∑

���∈Ξ(j,k)

(

k
∏

l=1
E(l′)
���,�l′

(���)
)(

k−1
∏

l=1
D�l′
l′

)

D⃖�k′
k′ HHH

���,uuu
���,�.

The procedure terminates after handling the case j = k. At that point, we have derived the
relation stated in eq. (11.13).

The above lemma allows uuu to be an arbitrary vector in ℂN , whereas the coefficients are
uuu-independent. SinceHHH���,uuu

���,�(zzz) =HHH
���,0
���,�(zzz + uuu)), and this uuu-shift commutes with ����(KKK−1−1−1,(j)), the

uuu-independence of the coefficients is quite immediate. For the difference equation below, we
need uuu = (u, u, ..., u) however.
Proposition 11.5. Let j ∈ {1, ..., N}. For �k ∉ iw2

2
⋅ ℤ ∪ (±iw1

2
+ iw2

2
⋅ ℤ), where k =

N − j + 1, N − j + 2, ..., N , we have

���N−j+1
 ���,u�,� (���, ���) =

∑

���∈Ξ(j)

[

b�N ,�u,�N
EEE(j)
���,���(���) − ����,0b

�N−j ,�
u

]

D��� ���,u�,� (���, ���).

Note that the coefficients in the sum depend on u,���, �, �, ���, but not on ��� (except for �N+1 = �).
The eigenvalue on the left-hand side, ���N−j+1

, is independent of u,���, � and ���.
Proof. We are going to apply variations of lemmas 4.1 and 5.1 to mimic the proof of proposi-
tion 9.4. We first define a sesquilinear form on NNN by setting

⟨f, g⟩1,...,N = ∫1
⋯ ∫N

f (zzz)ḡ(zzz) dzN ⋯ dz1,

with ḡ(zzz) ≔ g(zzz) and 1, ...,N being N deformations of the real line. We may use this notation
for whenever the integral converges.

Let f, g ∈N be of the form f (zzz) = f1(z1)⋯ fN (zN ), and similarly g(zzz) = g1(z1)⋯ gN (zN ).
LetMMM = M1 ⊗⋯⊗MN ∈ {1, K,K−1, E, F , FK,EK−1}⊗N . For such functions and such
elements in D⊗N we can write

⟨����(MMM)f, g⟩1,...,N =
N
∏

j=1
⟨��j (Mj)fj , gj⟩j .

If each pair fj , gj satisfies the conditions of lemma 4.1, we can apply that lemma to each term,
resulting in either

⟨����(MMM)f, g⟩1,...,N = ⟨f, ��̄��(MMM
∗)g⟩1,...,N

or
⟨����(MMM)f, g⟩1,...,N = ⟨f, ��̄��(MMM

⋆)g⟩1,...,N ,

depending on whether w1 and w2 are positive or complex conjugates. By linearity, this result
carries over to elements in the span of {1, K,K−1, E, F , FK,EK−1}⊗N , such asXXX(j)

� .
As the coproduct is an algebra homomorphism, we can apply lemma 5.1 to write this element
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XXX(j)
� as

XXX(j)
� = 1⊗(N−j) ⊗ Δj−1X0,�

= 1⊗(N−j) ⊗ Δj−1
(

auK
−1Yu,�N−j

+ a−uYu,�N−j
K−1 + b�N−j ,�

u (K−1 − 1)
)

= auKKK
−1−1−1,(j)YYY (j)

u,�N−j
+ a−uYYY (j)

u,�N−j
KKK−1−1−1,(j) + b�N−j ,�

u (KKK−1−1−1,(j) − 1). (11.15)
Note that we have
 ���,u�,� (���, ���) = ⟨HHH���,u

���,�,FFF
���,0
���,�⟩1,...,N ,

so that for real w1 and w2,
���N−j+1

 (���, ���) = ⟨HHH���,u
���,�, ��̄̄�̄�(XXX

(j)∗
� )FFF���,0���,�⟩1,...,N = ⟨����(XXX(j)

� )HHH���,u
���,�,FFF

���,0
���,�⟩1,...,N . (11.16)

For a conjugate pair w1, w2, the above relation holds after replacing the ∗ by ⋆.
Using eq. (11.15), we can write
����(XXX(j)

� )HHH���,u
���,� = au����(KKK−1−1−1,(j)YYY (j)

u,�N−j
)HHH���,u

���,� + a−u����(YYY
(j)
u,�N−j

KKK−1−1−1,(j))HHH���,u
���,�

+ b�N−j ,�
u

(

����(KKK−1−1−1,(j)) − 1
)

HHH���,u
���,�.

By eq. (11.4) and lemma 11.3, we have
����(KKK−1−1−1,(j)YYY (j)

u,�N−j
)HHH���,u

���,� = ����(KKK−1−1−1,(j))��N−j
�N HHH���,u

���,� = ��N−j
�N

∑

���∈Ξ(j)

EEE(j)
���,���(���)D

���HHH���,u
���,�,

and
����(YYY (j)

u,�N−j
KKK−1−1−1,(j))HHH���,u

���,� = ����(YYY (j)
u,�N−j

)
∑

���∈Ξ(j)

EEE(j)
���,���(���)D

���HHH���,u
���,�

=
∑

���∈Ξ(j)

��N−j
�N−iw1�N

EEE(j)
���,���(���)D

���HHH���,u
���,�.

Hence,
����(XXX(j)

� )HHH���,u
���,� =

(

−b�N−j ,�
u +

∑

���∈Ξ(j)

[

au�
�N−j
�N + a−u�

�N−j
�N−iw1�N

+ b�N−j ,�
u

]

EEE(j)
���,���(���)D

���
)

HHH���,u
���,�,

which, using eqs. (9.16) to (9.18), rewrites to

=
(

−b�N−j ,�
u +

∑

���∈Ξ(j)

au��N + a−u��N−iw1�N + ��
q − q−1

EEE(j)
���,���(���)D

���
)

HHH���,u
���,�

=
(

−b�N−j ,�
u +

∑

���∈Ξ(j)

b�N ,�u,�N
EEE(j)
���,���(���)D

���
)

HHH���,u
���,�.

We obtain the expression in the statement of the proposition by substituting this back into the
right-hand side of eq. (11.16).

The proposition gives a system of N difference equations (i.e. for j = 1, ..., N , we get N
independent difference equations). Interchanging the roles of w1 and w2 in these equations, we
find another N difference equations. Moreover, we can move to the multivariate version of the
dual function, as given in eq. (11.8), and find two more systems of N difference equations.

100100100



Remark 11.6. In the original function   , we discovered a duality between the parameters � and
u, see eq. (8.6). We did not present an algebraic interpretation of this duality; it merely followed
from a shift of the domain in the integral form of   , remark 8.2.

In the above multivariate difference equation, the parameter � was generalised into a vector.
Naturally, the question rises whether we can still write down a difference equation if we also
vectorise u. Our attempts to extend the above equations for a vector uuu have failed thus far. In the
next section we will see, however, that the results of chapter 10 extend to a transformation with
kernel  , even for vectors uuu ∈ ℂN . ∎

11.4 A unitary transformation on L2((0,∞)N)

We conclude this chapter, as well as this thesis, by extending the unitary transformation ̃ from
chapter 10 to a unitary transformation on L2((0,∞)N ) and identifying its inverse.

Let N ∈ ℕ>0 and let f be a bounded function with compact support in L2((0, N)N ). We
define

̃̃̃���,uuu
�,�f (yyy) ≔

(

w1w2
)−N

2
∫

∞

0
⋯ ∫

∞

0
f (xxx)���,uuu�,�(xxx,yyy) dxN ⋯ dx1 (11.17)

and
̃̃̃���,uuu −1
�,� f (xxx) ≔

(

w1w2
)−N

2
∫

∞

0
⋯ ∫

∞

0
f (yyy)̂̂̂���,uuu�,�(yyy,xxx) dy1⋯ dyN . (11.18)

Remark 11.7. Note that the order of the integration is different in eq. (11.17) as compared to
eq. (11.18). Although the integrands are bounded with compact support, so that we may apply
Fubini’s theorem to reorder the integrations at will, our choice of ordering them was not arbitrary:

Considering the integral kernels as a product as in eqs. (11.10) and (11.11), we note that in
eq. (11.17) the variable xj appears in both the jth and (j + 1)th factor of the kernel. Integrating
over xN first (which appears only in the very last factor), the inner integral is just an application
of the transformation ̃ that we studied in chapter 10. Next, each subsequent integration, over
xN−1, xN−2, etc., is another application of the transformation ̃ , with different parameters.

The kernel factors in eq. (11.18) have a reversed cross-dependence: the variable yj appears
in the jth and in the (j − 1)th factor. This explains the reversed order of integration. ∎

We will show that, under appropriate conditions on ��� and uuu, the above transformations define
unitary maps and are each other’s inverses. We start with the following lemma.
Lemma 11.8. Let �j , uj ∈ i(w0 −w,w) with Im(�j + uj) ∈ (w0 −w,w) for j = 1, 2, ..., N . Let
�, � ∈ ℝ, let R = [a1, b1] ×⋯ [aN , bN ] be a closed N-rectangle in (0,∞)N and let f ≔ 1R be
the indicator function on R. The maps ̃̃̃���,uuu

�,� and ̃̃̃���,uuu −1
�,� preserve the norm of f and

̃̃̃���,uuu −1
�,� ̃̃̃���,uuu

�,�f = ̃̃̃���,uuu
�,�̃̃̃

���,uuu −1
�,� f = f. (11.19)

Proof. For j = 1, ..., N , let fj = 1[aj ,bj ], so that f (xxx) = f1(x1) × ⋯ × fN (xN ). We will
recursively write the action of ̃̃̃���,uuu

�,� on f . Set f̂ (N)(yN ; −) = 1. For j = N − 1, N − 2, ..., 1, 0,
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in decreasing order, set
f̂ (j)(xj ; yj+1, ..., yN ) ≔ ̃j+1

[

xj+1 → fj+1(xj+1) × f̂ (j+1)(xj+1; yj+2, ..., yN )
]

,

with ̃ the transformation with kernel (; ⋅ , ⋅ ) as defined in chapter 10. Note that f̂ (j) depends
on xj , as j+1 depends on xj .

We rewrite eq. (11.17) as an iterated integral over kernels, i.e.

̃̃̃���,uuu
�,�f (yyy) =

(

w1w2
)−N

2
∫

∞

0
f1(x1)(1; x1, y1) ∫

∞

0
f2(x2)(2; x2, y2)

⋯ ∫

∞

0
fN (xN )(N ; xN , yN ) dxN ⋯ dx1. (11.20)

We observe that we can write the innermost integral as √w1w2̃NfN =
√

w1w2f̂ (N−1). (Note
that ̃NfN is a function of the transformation parameter yN , but it also implicitly depends on
xN−1 due to its appearance in N .)

The function fN is continuous and differentiable on its support, and (N ; xN , yN ) is analytic
as a function of (xN−1, xN , yN ) for xN−1 in the support of fN−1, xN in the support of fN and
yN ∈ (0,∞). Thus, by Leibniz rule, f̂ (N−1)(xN−1; yN ) is analytic for xN−1 on supp fN−1

and yN ∈ (0,∞). It follows that fN−1(xN−1) × f̂ (N−1)(xN−1; yN ), as a function of xN−1, is
continuous and differentiable on its (compact) support, so that it is in L2(0,∞). Therefore, we
can apply the transformation ̃N−1 on it to compute f̂ (N−2)(xN−2; yN−1, yN ). In doing so, we
obtain the result of the two innermost integrals in eq. (11.20) (up to a factor w1w2). By iterating
this process, we eventually arrive at f̂ (0)(−; y1, ..., yN ) = ̃̃̃���,uuu

�,�f (yyy). Moreover, we can write

f̂ (j)(xj ; yj+1, ..., yN ) = ∫

∞

0
⋯ ∫

∞

0
fj+1(xj+1)×⋯×fN (xN )

N
∏

k=j+1
(k; xk, yk) dxj+1⋯ dxN .

(11.21)
Let us compute ̃̃̃���,uuu −1

�,� ̃̃̃���,uuu
�,�f now. We can write this as

̃̃̃���,uuu −1
�,� ̃̃̃���,uuu

�,�f (zzz)

=
(

w1w2
)−N

2
∫

∞

0
(̂N ; yN , zN ) ∫

∞

0
(̂N−1; yN−1, zN−1)

⋯ ∫

∞

0
(̂1; y1, z1)f̂ (0)(−;yyy) dy1⋯ dyN

=
(

w1w2
)−N−1

2
∫

∞

0
(̂N ; yN , zN ) ∫

∞

0
(̂N−1; yN−1, zN−1)

⋯ ∫

∞

0
(̂2; y2, z2)̃−1

̂1

[

̃̂1
[

f1( ⋅ )f̂ (1)( ⋅ ; y2, ..., yN )
]]

(z1) dy2⋯ dyN .

By the conditions on u1 and �1, we have ̃−1
̂1
̃̂1 = id (this follows from theorem 10.10), so

that the above expression can be rewritten to
=
(

w1w2
)−N−1

2
∫

∞

0
(̂N ; yN , zN ) ∫

∞

0
(̂N−1; yN−1, zN−1)

⋯ ∫

∞

0
(̂2; y2, z2)f1(z1)f̂ (1)(z1; y2, ..., yN ) dy2⋯ dyN .
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We can iterate these steps to rewrite the expression to
=
(

w1w2
)−N−2

2 f1(z1) ∫

∞

0
(̂N ; yN , zN ) ∫

∞

0
(̂N−1; yN−1, zN−1)

⋯ ∫

∞

0
(̂3; y3, z3)̃−1

̂2

[

̃̂2
[

f2( ⋅ )f̂ (2)( ⋅ ; y3, ..., yN )
]]

(z2) dy3⋯ dyN

=
(

w1w2
)−N−2

2 f1(z1)f2(z2) ∫

∞

0
(̂N ; yN , zN ) ∫

∞

0
(̂N−1; yN−1, zN−1)

⋯ ∫

∞

0
(̂3; y3, z3)f̂ (2)(z2; y3, ..., yN ) dy3⋯ dyN .

After a total of N iterations, we retrieve f (zzz), so that ̃̃̃���,uuu −1
�,� ̃̃̃���,uuu

�,�f = f on indicator functions
of closed N-rectangles. A similar approach may be applied to show that ̃̃̃���,uuu

�,�̃̃̃
���,uuu −1
�,� f = f .

It remains to show the norm preservation. We will compute ‖f‖2L2 = ⟨̃̃̃���,uuu
�,�f, ̃̃̃

���,uuu
�,�f ⟩L2 ,

which we can write as
⟨̃̃̃���,uuu

�,�f, ̃̃̃
���,uuu
�,�f ⟩L2 = ⟨f̂ (0), f̂ (0)

⟩L2

= ∫

∞

0
⋯ ∫

∞

0
f̂ (0)(yyy)f̂ (0)(yyy) dy1...dyN

= ∫

∞

0
⋯ ∫

∞

0
̃1

[

f1( ⋅ )f̂ (1)( ⋅ ; y2, ..., yN )
]

(y1)

× ̃1
[

f1( ⋅ )f̂ (1)( ⋅ ; y2, ..., yN )
]

(y1) dy1...dyN .

Viewing the inner integral as an inner product, and noting that ̃1 is unitary by theorem 10.10,
we rewrite the above to

= ∫

∞

0
⋯ ∫

∞

0
f1(x1)f̂ (1)(x1; y2, ..., yN )

× f1(x1)f̂ (1)(x1; y2, ..., yN )](y1) dx1dy2...dyN .

Since the integrand is nonnegative, we can apply Tonelli’s theorem to change the order of
integration:

= ∫

∞

0
f1(x1)f1(x1) ∫

∞

0
⋯ ∫

∞

0
̃2

[

f2( ⋅ )f̂ (2)( ⋅ ; y3, ..., yN )
]

(y2)

× ̃2
[

f2( ⋅ )f̂ (2)( ⋅ ; y3, ..., yN )
]

(y2) dy2...dyNdx1.

Proceeding this way, we are eventually left with
= ∫

∞

0
⋯ ∫

∞

0
f1(x1)⋯ fN (xN )f1(x1)⋯ fN (xN ) dx1⋯ dxN

= ⟨f, f ⟩L2 = ‖f‖2L2 .

In a similar way, it can be shown that ̃̃̃���,uuu −1
�,� preserves the norm of f .

We use the above result to prove the main theorem of this section:
Theorem 11.9 (Unitarity of the multivariate Ruijsenaars transform). Let �j , uj ∈ i(w0 −w,w)
with Im(�j + uj) ∈ (w0 − w,w) for j = 1, 2, ..., N . Let �, � ∈ ℝ. The map ̃̃̃���,uuu

�,� extend to a
unitary operator on L2((0,∞)), and ̃̃̃���,uuu −1

�,� extends to its inverse.

103103103



Proof. One easily deduces that the results of lemma 11.8 extend to scalar multiples of indicator
functions. The equality eq. (11.19) immediately extends to linear combinations of indicator
functions as well. It will take a little more work to show that norm-preservation also extends to
linear combinations of indicator functions:

If f and g are scalar multiples of indicator functions of N-rectangles with disjoint interiors,
then by lemma D.1 we have ⟨̃̃̃���,uuu

�,�f, ̃̃̃
���,uuu
�,�g⟩L2 = 0. Hence,

⟨̃̃̃���,uuu
�,�(f + g), ̃̃̃���,uuu

�,�(f + g)⟩L2 = ⟨̃̃̃���,uuu
�,�f, ̃̃̃

���,uuu
�,�f⟩L2 + ⟨̃̃̃���,uuu

�,�f, ̃̃̃
���,uuu
�,�g⟩L2

+ ⟨̃̃̃���,uuu
�,�g, ̃̃̃

���,uuu
�,�f ⟩L2 + ⟨̃̃̃���,uuu

�,�g, ̃̃̃
���,uuu
�,�g⟩L2

= ⟨f, f ⟩L2 + ⟨g, g⟩L2 = ⟨f + g, f + g⟩L2 .

This result generalises to finite sums of scalar multiples of indicator functions of rectangles that
have mutually disjoint interiors.

Now suppose that two such functions f and g have supports with non-disjoint interiors. We
can find a finite set of (scalar multiples of) indicator functions ℎ1, ..., ℎn of which the supports
do have mutually disjoint interiors, and which satisfy f + g = ℎ1 +⋯ + ℎn almost everywhere.
Hence we can use them to compute

⟨̃̃̃���,uuu
�,�(f + g), ̃̃̃���,uuu

�,�(f + g)⟩L2 = ⟨̃̃̃���,uuu
�,�(ℎ1 +⋯ + ℎn), ̃̃̃���,uuu

�,�(ℎ1 +⋯ + ℎn)⟩L2

= ⟨ℎ1 +⋯ + ℎn, ℎ1 +⋯ + ℎn⟩L2 = ⟨f + g, f + g⟩L2 .

This, we extend the norm preservation to the linear span of the indicator functions ofN-rectangles.
By the polarisation identity, also the inner product is preserved under ̃̃̃���,uuu

�,� on this space. As the
span of indicator functions of N-rectangles is a dense subspace of L2((0,∞)N ), we can now
extend the transformation ̃̃̃���,uuu

�,� to a unitary transformation on L2((0,∞)N ).
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Appendix A

The coefficients of proposition 9.5

In this appendix, we perform manipulations on the coefficients in eq. (9.21) to help prove
proposition 9.5.

First, we aim to demonstrate that

w1,w2
 (�)

cosh �
w2

(

� + iw1
2 − i0

)

cosh �
w2

(

� + iw1
2 + i0

) = −i
q − q−1

4
�,u�,�(�).

Using the definition of w1,w2
 (eq. (9.2)), we can express the left-hand side as

cosh �
w2

(

� + iw1
2 − i0

)
∏3

j=1 cosh
�
w2

(

� + iw1
2 + ij

)

sinh 2��
w2

sinh 2�(�+iw)
w2

= cosh �
w2

(

� + i
w1
2

− u ± �
)

×
cosh �

w2

(

� + iw1
2
− � ± �

)

sinh 2��
w2

sinh 2�(�+iw)
w2

,

where we utilised eq. (8.11) to relate  to (u, �, �, �). The term in the fraction is recognisable as
B��,�. Thus, we need to establish

cosh �
w2

(

� + i
w1
2

− u ± �
)

= −i
q − q−1

4
b̂�,�u .

We begin from the right-hand side. Using the definition of b̂�,�u (eq. (9.13)), we have

−i
q − q−1

4
b̂�,�u =

��au + ��+iw1
a−u

4
+
��
4
.

Since au = 2
q2−q−2 sinh

2�
w2

(

u + iw1
2

), we can rewrite the right-hand side as

sinh 2�
w2

(

u + iw1
2

)

cosh 2��
w2

− sinh 2�
w2

(

u − iw1
2

)

cosh 2�(�+iw1)
w2

q2 − q−2
+
��
4
.
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By applying the product rules for hyperbolic sines and cosines, we can further simplify it to
sinh 2�

w2

(

u+iw1
2
+�
)

+sinh 2�
w2

(

u+iw1
2
−�
)

−
(

sinh 2�
w2

(

u+iw1
2
+�
)

+sinh 2�
w2

(

u−3iw1
2
−�
))

2(q2−q−2)
+
��
4

=
sinh 2�

w2

(

u + iw1
2 − �

)

− sinh 2�
w2

(

u − 3
2 iw1 − �

)

2(q2 − q−2)
+
��
4

=
sinh 2�iw1

w2
cosh 2�

w2

(

u − � − iw1
2

)

q2 − q−2
+
��
4

and using sinh 2�iw1
w2

= 1
2 (q

2 − q−2), this simplifies to

= 1
2
cosh 2�

w2

(

u − � − i
w1
2
)

+ 1
2
cosh 2��

w2

= cosh �
w2

(

u − � − i
w1
2

± �
)

= cosh �
w2

(

� + i
w1
2

− u ± �
)

,

which shows that indeed
−i
q − q−1

4
b̂�,�u =

��au + ��+iw1
a−u

4
+
��
4

= cosh �
w2

(

� + i
w1
2

− u ± �
)

. (A.1)
Thus, we indeed have

w1,w2
 (�)

cosh �
w2

(

� + iw1
2 − i0

)

cosh �
w2

(

� + iw1
2 + i0

) = −i
q − q−1

4
�,u�,�(�). (A.2)

We moreover want to show that
−w1,w2

 (�) −w1,w2
 (−�) = −i

q − q−1

4
�,u�,�(�) + cosh �

w2

(

� + i
w1
2

− u ± �
)

.

We begin by writing the left-hand side of this expression as

−
cosh �

w2

(

� + iw1
2
+ � ± �

)

cosh �
w2

(

� + iw1
2
− u ± �

)

sinh 2��
w2

sinh 2�(�+iw)
w2

+ (� ↔ −�)

= −
[��au + ��+iw1

a−u
4

+
��
4

]cosh �
w2

(

� + iw1
2 + � ± �

)

sinh 2��
w2

sinh 2�(�+iw)
w2

+ (� ↔ −�),

using eq. (A.1) to replace the term cosh �
w2

(

� + iw1
2
− u ± �

). We can rewrite the right-hand
side to

i
[ i��(au + a−u) − i(�� − ��+iw1

)a−u
4

+
i��
4

]cosh �
w2

(

� + iw1
2 + � ± �

)

sinh 2��
w2

sinh 2�(�+iw)
w2

+ (� ↔ −�)
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and we recognise this as

i
q − q−1

4
b�,�u

⎡

⎢

⎢

⎣

cosh �
w2

(

� + iw1
2 + � ± �

)

sinh 2��
w2

sinh 2�(�+iw)
w2

+ (� ↔ −�)
⎤

⎥

⎥

⎦

− i
⎡

⎢

⎢

⎣

i(�� − ��+iw1
)a−u

4

cosh �
w2

(

� + iw1
2 + � ± �

)

sinh 2��
w2

sinh 2�(�+iw)
w2

+ (� ↔ −�)
⎤

⎥

⎥

⎦

(A.3)

We recognise the coefficient C��,� of corollary 9.2 in the term in the first pair of square brackets.
Moreover, we can write

�� − ��+iw1
= 2 cosh 2��

w2
− 2 cosh

2�(� + iw1)
w2

= 4 sinh
2�(� + iw1

2 )

w2
sinh

−i�w1
w2

= −2(q − q−1) sinh
2�(� + iw1

2 )

w2
= 2(q − q−1) sinh

2�(� + iw)
w2

(A.4)
so that eq. (A.3) rewrites to

−i
q − q−1

4
b�,�u C��,� − i

⎡

⎢

⎢

⎣

i(q − q−1)a−u
2

cosh �
w2

(

� + iw1
2 + � ± �

)

sinh 2��
w2

+ (� ↔ −�)
⎤

⎥

⎥

⎦

. (A.5)

Now we write out the term within the square brackets, and simplify it using sum and product
rules for hyperbolic sines and cosines. We arrive at

i(q − q−1)a−u
2

cosh �
w2

(

� + iw1
2
+ � ± �

)

− cosh �
w2

(

� − iw1
2
− � ± �

)

sinh 2��
w2

=
i(q − q−1)a−u

2

cosh 2�
w2

(

�+iw1
2
+�
)

+cosh 2��
w2

−cosh 2�
w2

(

�−iw1
2
−�
)

−cosh 2��
w2

sinh 2��
w2

=
i(q − q−1)a−u

2

cosh 2�
w2

(

� + iw1
2 + �

)

− cosh 2�
w2

(

� − iw1
2 − �

)

sinh 2��
w2

=
i(q − q−1)a−u

2

sinh 2��
w2

sinh 2�
w2

(

� + iw1
2

)

sinh 2��
w2

=
i(q − q−1)a−u

2
sinh 2�

w2

(

� + i
w1
2
)

= −
i(q − q−1)a−u

2
sinh 2�

w2

(

� + iw
)

= −
i(�� − ��+iw1

)a−u
4

,

where we used eq. (A.4) in the last step, with � replaced by �. Substituting this back into eq. (A.5),
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we get

−i
q − q−1

4
b�,�u C��,� + i

i(�� − ��+iw1
)a−u

4

= −i
q − q−1

4

[

b�,�u C��,� −
i(�� − ��+iw1

)a−u
q − q−1

]

= −i
q − q−1

4

[

b�,�u C��,� −
i��(au + a−u)
q − q−1

−
i��

q − q−1

+
i��au + i��+iw1

a−u
q − q−1

+
i��

q − q−1

]

= −i
q − q−1

4

[

b�,�u C��,� − b
�,�
u +

i��au + i��+iw1
a−u

q − q−1
+

i��
q − q−1

]

= −i
q − q−1

4

[

b�,�u C��,� − b
�,�
u +

i��au + i��+iw1
a−u

q − q−1
+

i��
q − q−1

]

= −i
q − q−1

4
�,u�,�(�) + cosh �

w2

(

� + i
w1
2

− u ± �
)

,

where we apply the definition of �,u�,� in proposition 9.4 and the relation eq. (A.1) in the last step.
We conclude that

−w1,w2
 (�) −w1,w2

 (−�) = −i
q − q−1

4
�,u�,�(�) + cosh �

w2

(

� + i
w1
2

− u ± �
)

, (A.6)
as we desired to show.
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Appendix B

Invariance of the product t
w1,w2
 W

We want to show that the product t (x)w1,w2
 (x)W (x) is invariant under replacing x by−x−iw1.

First, note that we can write this product as

t (x)
w1,w2
 (x)W (x) = G(±x − i0)G(±(x + iw1) − i0)

×
G(iw ± x)
w1w2

∏3
j=0G(±x + ij) cosh

�
w2

(

x + iw1
2
+ ij

)

sinh 2�x
w2

sinh 2�(x+iw)
w2

. (B.1)

We immediately see that the factor G(±x − i0)G(±(x + iw1) − i0) satisfies this invariance, so
that it remains to check that the invariance holds on

G(iw ± x)

∏3
j=0G(±x + ij) cosh

�
w2

(

x + iw1
2 + ij

)

sinh 2�x
w2

sinh 2�(x+iw)
w2

(B.2)

By using the difference equations eqs. (6.3) and (6.4), we deduce that

G(iw ± 2x) =
G(2x + iw)
G(2x − iw)

= 2 cosh �
w2

(

2x + i
w2
2

)G(2x + iw2
2 − iw1

2 )

G(2x − iw)

= 4 cosh �
w2

(

2x + i
w2
2

)

cosh �
w1

(

2x − i
w1
2

)G(2x − iw)
G(2x − iw)

= 4 sinh 2�x
w1

sinh 2�x
w2

.

Thus, eq. (B.2) rewrites to

4
sinh 2�x

w1

sinh 2�(x+iw)
w2

3
∏

j=0
G(±x + ij) cosh

�
w2

(

x + i
w1
2

+ ij
)

. (B.3)

It is straightforward to check that the fraction of hyperbolic sines is invariant under replacing x
by −x − iw1, as

sinh
2�(−x − iw1)

w1
= − sinh

2�(x + iw1)
w1

= − sinh 2�x
w1

,
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and

sinh
2�(−x − iw1 + iw)

w2
= − sinh

2�(x + iw1 − iw)
w2

= − sinh
2�(x + iw − iw2)

w2
= − sinh

2�(x + iw)
w2

.

We’re left with checking that
3
∏

j=0
G(±x + ij) cosh

�
w2

(

x + i
w1
2

+ ij
)

is invariant. To see this, note that
2 cosh �

w2

(

x + i
w1
2

+ ij
)

= G(x + ij + iw1)∕G(x + ij),

so that
3
∏

j=0
G(±x + ij) cosh

�
w2

(

x + i
w1
2

+ ij
)

= 1
16

3
∏

j=0
G(−x + ij)G(x + ij + iw1),

and the right-hand side is indeed invariant under replacing x by −x − iw1.
Note that we have shown also that

t (x)
w1,w2
 (x)W (x)

= 1
4w1w2

sinh 2�x
w1

sinh 2�(x+iw)
w2

G(−x − i0)G(x − i0 + iw1)

×
3
∏

j=1
G(−x + ij)G(x + ij + iw1). (B.4)
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Appendix C

Dominating the Dirichlet integral

Let k ∈ ℕ and f ∈ C∞c (k�, (k + 1)�). Let K be a compact set. Our objective in this appendix
is to demonstrate that the integral

∫

∞

0
f (x)

sin
(

(N + 1
2
)(x − y)

)

x − y
dx (C.1)

can be bounded independently of N for y ∈ K .
By a general result from Fourier theory, the integral

1
2 ∫

∞

0
f (x)

sin
(

(N + 1
2 )(x − y)

)

sin 1
2
(x − y)

dx (C.2)

converges to 2�f (y) uniformly for y ∈ [k�, (k + 1)�]. This result, that can be derived from e.g.
[43, cor. 10.4], allows us to bound the integral independently of N on [k�, (k + 1)�].

Note that ||
|

2
x−y −

1
sin(x−y)

|

|

|

remains bounded for y ∈ [k�, (k + 1)�] and x ∈ supp f . As a
consequence, the integral

1
2 ∫

∞

0
f (x) sin

(

(N + 1
2
)(x − y)

)

(

2
x − y

− 1
sin 1

2 (x − y)

)

dx (C.3)

can be bounded independently of N for y ∈ [k�, (k + 1)�]. By adding eq. (C.2) and eq. (C.3),
we can now bound the integral eq. (C.1) independently of N for y within [k�, (k + 1)�].

It remains to establish a bound for eq. (C.1) for y ∈ K ⧵ (k�, (k + 1)�). As the support
of f is compact, there exists a positive � such that |x − y| ≥ � for all x ∈ supp f and y ∈
K ⧵ (k�, (k + 1)�). Due to the smoothness of f , the term |

|

|

f (x)
x−y

|

|

|

is bounded for such x and
y, and as the sine function is also absolutely bounded, we find that eq. (C.1) can be bounded
independently of N for y ∈ K ⧵ (k�, (k + 1)�).
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Appendix D

Lemma for the multivariate
transformation

We require the following lemma to establish the unitarity of ̃̃̃���,uuu
�,�:

Lemma D.1. Let N ∈ ℕ>0 and let ̃̃̃���,uuu
�,� denote the transformation defined in eq. (11.17).

Suppose �j and uj (j = 1, 2, ..., N) are in i(w0 − w,w) with Im(�j + uj) ∈ (w0 − w,w). Let
�, � ∈ ℝ and let f and g be indicator functions of the N-rectangles Rf and Rg with disjoint
interiors. We have

⟨̃̃̃���,uuu
�,�f, ̃̃̃

���,uuu
�,�g⟩L2 = 0. (D.1)

Proof. We will prove this lemma using induction on N . For N = 1, the lemma holds true
based on theorem 10.10. Now, let us assume that the lemma holds for N = 1, 2, ..., N ′ − 1,
where N ′ > 1. We express f (x1, ..., xN ′) = f1(x1) × ⋯ × fN ′(xN ′) and g(x1, ..., xN ′) =
g1(x1) ×⋯× gN ′(xN ′). Let f⃖ (x2, ..., xN ′) = f2(x2) ×⋯× fN ′(xN ′) and similarly for g. As the
interiors of Rf and Rg are disjoint, at least one of the equalities f1g1 = 0 and f⃖ g⃖ = 0 must hold
almost everywhere.

Using the notation with hats as introduced in the proof of lemma 11.8, we calculate
⟨̃̃̃���,uuu

�,�(f + g), ̃̃̃���,uuu
�,�(f + g)⟩L2

= ⟨f̂ (0) + ĝ(0), f̂ (0) + ĝ(0)⟩L2

= ∫

∞

0
⋯ ∫

∞

0
̃1

[

f1( ⋅ )f̂ (1)( ⋅ ; y2, ..., yN ′) + g1( ⋅ )ĝ(1)( ⋅ ; y2, ..., yN ′)
]

(y1)

× ̃1
[

f1( ⋅ )f̂ (1)( ⋅ ; y2, ..., yN ′) + g1( ⋅ )ĝ(1)( ⋅ ; y2, ..., yN ′)
]

(y1) dy1...dyN ′ .

Viewing the inner integral as an inner product and noting that ̃1 is unitary according to
theorem 10.10, we can rewrite the above expression as

= ∫

∞

0
⋯ ∫

∞

0

[

f1(x1)f̂ (1)(x1; y2, ..., yN ′) + g1(x1)ĝ(1)(x1; y2, ..., yN ′)
]

×
[

f1(x1)f̂ (1)(x1; y2, ..., yN ′) + g1(x1)ĝ(1)(x1; y2, ..., yN ′)
]

dx1dy2...dyN ′ .
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Since the integrand is nonnegative, we can apply Tonelli’s theorem to change the order of
integration, allowing us to write

= ∫

∞

0
⋯ ∫

∞

0

[

f1(x1)f̂ (1)(x1; y2, ..., yN ′) + g1(x1)ĝ(1)(x1; y2, ..., yN ′)
]

×
[

f1(x1)f̂ (1)(x1; y2, ..., yN ′) + g1(x1)ĝ(1)(x1; y2, ..., yN ′)
]

dy2...dyN ′dx1.

Expanding the brackets, we can rewrite this as
= ∫

∞

0
⋯ ∫

∞

0
f1(x1)f̂ (1)(x1; y2, ..., yN ′)f1(x1)f̂ (1)(x1; y2, ..., yN ′) dy2...dyN ′dx1

+ ∫

∞

0
⋯ ∫

∞

0
g1(x1)ĝ(1)(x1; y2, ..., yN ′)g1(x1)ĝ(1)(x1; y2, ..., yN ′) dy2...dyN ′dx1

+ ∫

∞

0
f1(x1)g1(x1) ∫

∞

0
⋯ ∫

∞

0
f̂ (1)(x1; y2, ..., yN ′)ĝ(1)(x1; y2, ..., yN ′) dy2...dyN ′dx1

+ ∫

∞

0
g1(x1)f1(x1) ∫

∞

0
⋯ ∫

∞

0
ĝ(1)(x1; y2, ..., yN ′)f̂ (1)(x1; y2, ..., yN ′) dy2...dyN ′dx1.

The first two integrals in the latter expression can be recognised ⟨f, f ⟩L2 and ⟨g, g⟩L2 respectively.
The remaining two integrals can be shown to be zero by the following observations:

• If f1g1 = 0, then the latter two integrals are trivially zero.
• If f⃖ g⃖ = 0, the indicator functions f⃖ and g⃖ have supports with disjoint interiors. Consider

the integral

∫

∞

0
⋯ ∫

∞

0
f̂ (1)(x1; y2, ..., yN ′)ĝ(1)(x1; y2, ..., yN ′) dy2...dyN ′

that appears in the third line of the expression. It represents an instance of eq. (D.1) with
a transformation for the case N = N ′ − 1, where f and g are replaced by the functions f⃖
and g⃖. Since f⃖ and g⃖ are indicator functions of sets with disjoint interiors, the integral in
the third line of the expression vanishes. A similar reasoning applies to the integral in the
fourth line.

Therefore, we have
⟨̃̃̃���,uuu

�,�(f + g), ̃̃̃���,uuu
�,�(f + g)⟩L2 = ⟨f, f ⟩L2 + ⟨g, g⟩L2 .

Expanding the left-hand side, we find
⟨̃̃̃���,uuu

�,�f, ̃̃̃
���,uuu
�,�g⟩L2 + ⟨̃̃̃���,uuu

�,�g, ̃̃̃
���,uuu
�,�f ⟩L2 = 0.

By replacing g with ig, we obtain
⟨̃̃̃���,uuu

�,�f, ĩ̃̃
���,uuu
�,�g⟩L2 + ⟨ĩ̃̃���,uuu

�,�g, ̃̃̃
���,uuu
�,�f ⟩L2 = −i⟨̃̃̃���,uuu

�,�f, ̃̃̃
���,uuu
�,�g⟩L2 + i⟨̃̃̃���,uuu

�,�g, ̃̃̃
���,uuu
�,�f⟩L2 = 0.

Combining these two results, we conclude that ⟨̃̃̃���,uuu
�,�f, ĩ̃̃

���,uuu
�,�g⟩L2 = 0.
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