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Abstract Continuous monitoring of spray velocity during
the cold spray process would be desirable to support
quality control, as spray velocity is the key process
parameter determining the deposit quality. This study
explores the feasibility of utilising Airborne Acoustic
Emission (AAE) for real-time monitoring of spray velocity.
Six spray tests were conducted, varying pressure and
temperature to achieve different velocities. Optical means
were used to measure velocity; while, the signal from the
AAE was captured during deposition via a microphone.
Features demonstrating a strong correlation with velocity
were extracted from the acoustic signals. Both rule-based
and machine learning models were employed to identify
the moments where the nozzle was engaged with the sub-
strate and diagnose the velocity. The results indicate that
monitoring the spray velocity of the cold spray process
using AAE is feasible.

Keywords acoustic emission - cold spray - machine
learning - particle velocimetry - process monitoring

Introduction

The cold spray process, an emerging additive manufac-
turing technique, accelerates metallic powder particles at
supersonic velocities through a converging—diverging
nozzle using a carrier gas. Upon impact with a substrate, it
forms a dense, adherent deposition favourable for coating
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and repair applications. Its advantages include low-tem-
perature operation, minimal oxidation, and reduced thermal
degradation, making it particularly appealing for the
aerospace, automotive, and maritime industries (Ref 1-5).

Reliable process monitoring of cold spray is crucial for
ensuring robust quality control and advancing the devel-
opment of a fully automated process. Among the many
process parameters that can be controlled directly or indi-
rectly, it has been found that the impact velocity and par-
ticle temperature govern the quality of the deposit. (Ref
6, 7). Regarding the effort of monitoring the process,
ultrasonic acoustic techniques have been used to diagnose
coating thickness buildup (Ref 8). Thermocouples and
infrared cameras have been employed successfully to
acquire data in line with the process (Ref 6, 9-11). Particle
velocimetry techniques have also been used to diagnose the
particle velocity at the exit of the nozzle (Ref 12, 13). In
addition, other optical methods have been proposed to
extract the characteristics of the micro-particle motion (Ref
14, 15). The most crucial drawback of the particle
velocimetry techniques is the difficulty of implementation
during the actual spraying of the component due to the
relatively short spray distance of the process and the bulky
monitoring equipment available today.

Airborne acoustic emission (AAE) is a promising
alternative technique for monitoring the cold spray particle
velocity and the cold spray process in general due to its
non-intrusive nature. AAE has been used to monitor
industrial equipment and diagnose process anomalies suc-
cessfully, and when combined with statistical and machine
learning models, it is a powerful tool for process moni-
toring (Ref 16). Regarding AAE monitoring of the thermal
spray process, Burkert et al. (Ref 17) used AAE to identify
when clogging appeared inside the nozzle. Duan et al.
correlated the health condition of the anode with the power

@ Springer


http://orcid.org/0009-0006-1536-7720
http://orcid.org/0000-0001-9068-6859
http://orcid.org/0000-0001-5177-5138
http://orcid.org/0000-0003-2771-8285
http://crossmark.crossref.org/dialog/?doi=10.1007/s11666-024-01878-1&amp;domain=pdf
https://doi.org/10.1007/s11666-024-01878-1

J Therm Spray Tech

spectrum of the acoustic signal captured during the process
of plasma spray (Ref 18). Kamnis et al. (Ref 19) diagnosed
the microhardness of a thermal sprayed coating with the
help of a multilayer perceptron (MLP) for a varying
powder feed rate and standoff distance using AAE. Mala-
mousi et al. (Ref 20) classified sound samples of different
thermal spray experiments according to the powder feed
rate. These examples illustrate that AEE can provide
detailed information about various aspects of the thermal
spray process, including equipment health, process
parameters, and material properties of the deposit. It is
hypothesised that AAE could similarly be applied to the
cold spray process to address similar challenges due to the
similarities between the two processes. However, no work
is available where AAE has been applied to cold spray.

Developing an acoustic system for process monitoring
starts with data acquisition. This involves capturing signals
from acoustic sensors placed strategically within the sys-
tem. Then, the raw signals (time domain) can be directly
utilised or subjected to signal decomposition techniques to
analyse their frequency content. The feature extraction step
follows and involves deriving statistical metrics from the
signals in different domains (time, frequency, time-fre-
quency). Another approach is directly using the raw signal
as input for the machine learning models. Additionally, a
combination of both statistical metrics and raw signals can
be used simultaneously (Ref 16).

These features or raw signals are used as input for
machine learning models, often neural networks, widely
used for classification or regression tasks. Neural networks
consist of interconnected nodes usually organised in layers.
Each node performs simple computations, and the con-
nections between nodes allow information to flow through
the network. During training, a neural network learns to
adjust its parameters based on the input data, aiming to
make accurate predictions (Ref 21).

Neural networks have been used with acoustic data in
different applications, including diagnostics and prognos-
tics. Diagnostics help identify process conditions and the
health state of a system that can either be healthy or faulty
(Ref 16) or even quantify the health state using a health
indicator. Meanwhile, in prognostics, they predict out-
comes like the remaining useful life of a system (Ref 22-
24). For the case of cold spray, such an acoustic system
would have the potential to perform a real-time diagnosis

Table 1 Chemical composition of the powder used for tests

of the spray velocity, identify process anomalies, and
diagnose the health state of critical components such as the
spray nozzle.

This work aims to investigate the feasibility of AAE in
monitoring the particle velocity in the cold spray process.
A feature exploration from the acoustic signal is performed
to identify features significantly correlating with the par-
ticle velocity. A methodology was also developed to
determine the process segments where the nozzle is
engaged with the substrate, and for those moments,
velocity diagnosis was performed.

Experimental Procedure

Cold Spray Process and Particle Velocity
Measurements

The selected material system was an aluminium alloy 6061
substrate and the AM103 aluminium powder from VALI-
MET (Stockton, California, USA), which, according to the
manufacturer’s specifications (Ref 25), has the chemical
composition reported in Table 1. As per the same specifi-
cations, the particle size distribution indicates that 90% of
the particles had a diameter below 52 pm, 50% below
34 pm, and 10% below 1 pm. The substrate material was
made of flat plates with a thickness of 3 mm that were
sandblasted before the deposition to improve adhesion. The
aim was to create a deposition with dimensions of
approximately 45x30 mm, with the thickness being an
output of the experiment.

A high-pressure cold spray system (PCS-1000) from
Titomic Europe (Akkrum, The Netherlands) was employed
for the tests. A PBI (Polybenzimidazole) nozzle was used.
To achieve uniform deposition, the path of the nozzle
extends beyond the edges of the specimen so that the
starting and ending points of each pass do not lie within the
surface of the specimen; this is called overspray. Three
layers were deposited, each consisting of 20 parallel pas-
ses, resulting in 60 passes in total. The spray path is shown
in Fig. 1. The standoff distance was 25 mm, and the
powder feeder was set to 3 rpm.

A sensitivity analysis was performed concerning tem-
perature and pressure to create deposits with different spray
velocities. The goal was to achieve velocities above the

Al Si Mg Fe Mn

Ti Zn Cu Others (each) Others (total)

Balance 9.0-11.0% 0.25-0.45% < 0.40% 0.15%

< 0.15%

< 0.10% < 0.03% < 0.05% < 0.15%
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Spray
path

Cold spray

Substrate

Fig. 1 Spray path that was followed during the experiments. To
achieve a uniform deposition, the start and end points were not within
the specimen (overspray)

critical for deposition velocity, about 600 m/s (Ref 26, 27)
to produce acoustic data simultaneously and investigate the
possibility of velocity diagnosis. Six experiments were
performed. For four experiments, the temperature was kept
constant at 600 °C, and the selected pressures were 3.5,
4.5, 6, and 7 MPa. Two additional experiments were con-
ducted with the pressure set to 5 MPa for both; while, the
temperatures were set to 400 and 500 °C, respectively.
This sensitivity analysis also aimed to investigate if fea-
tures that are not sensitive to pressure and temperature
separately but are affected only by the resulting spray
velocity can be extracted from the AAE, irrespective of
how this velocity was achieved.

A commercial system containing a laser to Illuminate
particles and a high-speed camera was used to measure
particle velocity via the particle image velocimetry
method. Before each test, the nozzle was positioned in
front of the camera, and the average particle velocity was
measured at a distance from the nozzle tip equal to the
standoff distance (25 mm). Then, the nozzle was moved to
the spray position, and cold spray was performed. The
deposition lasted approximately 70 s. Therefore, the
assumption was made that the average particle velocity
remained constant throughout the deposition.

AAE Data Acquisition

An M51 microphone (1/2-inch condenser pre-amplified)
from LinearX Systems (Tualatin, Oregon, USA) was used
to capture the airborne acoustic emission of the process.
The microphone was placed at 1870 mm from the centre of
the substrate to minimise any effect of the small dis-
placement of the nozzle relative to the distance from the

microphone. The microphone exhibits an almost flat
response for frequencies between 20 Hz and 20 KHz, with
a slight drop for higher frequencies. The maximum sound
pressure level is 150 dB to ensure no distortion while
recording such a loud process. The microphone shows high
directionality for sound waves with an incidence angle
higher than + 15°, so it was placed at 90° from the spray
plume, aiming to capture mainly the sound coming from
the nozzle-substrate system, reducing the ambient noise. A
calibration pistonphone was used to calibrate the micro-
phone with a sound wave of frequency 250 Hz and
amplitude 114 dB. The microphone’s response was found
to be 0.0152 V/Pa of sound pressure. A DC power supply
was used with the microphone, and the output voltage was
set at 9.15 V. The PicoScope 5443D data acquisition sys-
tem from Pico technology (Cambridgeshire, UK) was used
to convert the analogue signal to digital with a sampling
rate of 50 KHz. A schematic of the experimental setup is
shown in Fig. 2

Results and Discussion

Sprayed Specimens, Measured Spray Velocity
and AAE Acquisition

Successful deposition was achieved in all six tests/speci-
mens, as was expected based on the deposition window of
this material (Ref 26, 27). Figure 3 shows the top view of
the sprayed specimens. The measured spray velocities were
from 580 to 690 m/s and are summarised in Table 2. While
performing particle velocimetry for test 6, the velocity was
less stable than for the rest of the experiments, and the
value of 600 m/s was taken as an average value of that
fluctuation.

An important effect to consider regarding the velocity
measurements is the bow shock phenomenon. The bow
shock phenomenon occurs when the supersonic flow
encounters an obstacle, creating a shock wave that reduces
the particle velocity. This can lead to a reduction in particle
velocity just before impact, directly influencing deposition
quality. The analysis in this study did not consider the
effect of the bow shock because the particle velocimetry
was performed without a substrate. While the bow shock
effect may indeed be present at the selected spray distance,
leading to a potential overestimation of the actual impact
velocity, we assume that its influence is constant across
measurements. However, for more precise velocity deter-
mination, an additional correction is be necessary to
account for the bow shock’s influence on the measured
velocities. Computational fluid dynamics (CFD) simula-
tions could be used to make this correction (Ref 28).

@ Springer
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Fig. 2 Experimental setup used
to capture the signal from the
AAE of the cold spray process

Nozzle

Fig. 3 Top view of the cold-
sprayed specimens from the six
tests

I Substrate
e 1870mMM —— 5 D)

Microphone

Data acquisition system

L /]
Computer

Table 2 Pressure temperature

Temperature, °C Average particle velocity, m/s

. K Test Pressure, MPa
and average particle velocity of
the experiments performed 1 6
2 45
3 7
4
5 35
6

600 670
600 625
600 690
500 620
600 580
400 600

A short representative segment of the AAE’s raw signal
captured by the microphone is shown in Fig. 4. The vertical
axis indicates the pressure of the acoustic wave (fluctuation
from the ambient pressure). The parts of spray and over-
spray are also visible in the same figure, each with a
duration of approximately 0.55 s. Due to a malfunction of
the data acquisition system, only the first 24 s were cap-
tured for the first experiment.

Feature Extraction from the Whole Raw Signal
The first step of the investigation was to extract features

from the raw signal. A sliding time window of 3 s was used
with a stride of 1 s. This time window was chosen to ensure

@ Springer

that the extracted features exhibited minimal variation over
time, indicating that the time window contained represen-
tative data of the process conditions. Among the different
features examined in the time domain, root mean square
(RMS) (Eq 1) exhibited a clear trend with velocity, with x;
being the value of the discrete signal at the moment i and N
is the length of the time window.

(Eq 1)

The RMS of the signal throughout the six tests is shown
in Fig. 5. The average per test RMS is demonstrated in
Fig. 6. Both figures show that RMS tends to increase with
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Fig. 4 Segment of the raw
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Figure 5 RMS of the raw signal for the different tests for a time window of 3 s with a stride of 1 s

increasing spray velocity. Both the spray and overspray
segments were used for the feature extraction, and the RMS
showed that it is informative of the spray velocity. A
simple statistical model has the potential to be used to
monitor particle velocity in standardised cold spray appli-
cations, such as in an industrial line where a specific
number of cold spray deposits with known dimensions and
material systems are performed. Such a model would be
able at least to identify permanent shifts in the spray
velocity reflected on the signal’s RMS. However, it has two
significant limitations: (1) the large time window that
cannot catch short-duration events that can be detrimental
to the quality of the deposit and (2) that it is specific to a
single type of substrate and not flexible to spray on sub-
strates with different geometries due to the different
sequence of spray/overspray segments that it would intro-
duce. To develop a generalised model, it is essential to

identify the segments where the spray is performed and
examine them separately.

Time Windowing

In this study, every spray and overspray event lasted
approximately 0.55s. A time window of 0.11s was
selected allowing the model to capture more diagnostic
steps for a given sound segment of a specific duration. This
short time window ensures that the model can effectively
capture the frequent transitions between spray and over-
spray conditions. However, a time window of 0.11 s was
too small to capture comprehensive information for accu-
rate diagnostics. An overlap of 0.22 s with the previous and
the next time windows was introduced to address this
challenge (Fig. 7). This overlap extends the analysis span
to 0.55 s, providing a larger window for monitoring the

@ Springer
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Fig. 6 Average RMS per
experiment shows a positive
correlation with velocity 2200 4
2000 A
1800
wn
=
o
1600 -
1400 1
1200 A

® Average RMS (+2 st.d)

580

600 620 640 660 680

Velocity (m/s)
Fig. 7 Time window used to Time Window
perform diagnostics (0.11s)
Overlap Overlap
(0.22's) (0.22 5)
Time
Stride = 0.11 s
Diagnosis

process while retaining the high resolution of the 0.11-
second windows.

Feature Extraction Separating Spray
from Overspray Segments

All the spray and overspray segments of the signal acquired
from the AAE were separated manually, and statistical
features were extracted from both the time and frequency
domain. The aim was first to extract features that distin-
guish spray from overspray. Then, features that show a
clear trend with spray velocity were identified for the spray
segments.

The RMS (Eq 1) and the zero crossing rate (Eq 2) were
selected where x represents the signal sample at time
instant i. In Fig. 8, it is shown that the average RMS of the

@ Springer

spray segments of each experiment shows a positive cor-
relation with the spray velocity. The largest error from the
linear interpolation is for the last experiment of 600 m/s,
which showed instability in its velocity. Furthermore, the
average zero crossing rate can separate spray from over-
spray segments in the examined velocity domain by setting
a threshold.

N—-1

1 .
ZCR = ﬁ; [sgn(x;11) — sgn(x;)|with sgn(x)
1 ifx>0
=0  ifx=0 (Eq 2)
-1 ifx<0

A Fast Fourier Transform (FFT) was performed at each
spray segment of a length of 0.55 s to extract features from
the frequency domain. Then, the power spectral density
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Fig. 8 (a) Zero crossing rate
(with two standard deviations)
of the spray and overspray 0.46 - T
segments can be used to
separate these two conditions.
(b) The average RMS of the ®
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(b)

(PSD) was calculated to investigate how the power of the
signal is distributed among the frequencies. This analysis
aimed to identify dominant frequency peaks and observe
potential changes in their amplitudes or shifts within the
frequency domain as the spray velocity increases. The PSD
was calculated through (Eq 3) where Py is the magnitude of
the complex number that the FFT outputs and corresponds
to a single frequency bin, F, is the sampling rate, and A is
the number of points in the time window. By dividing F,

620 640 660 680

Velocity (m/s)

600

by A, the frequency resolution of the FFT is calculated
along with the length of the frequency bin. So, the power is
normalised per Hz of the frequency bin.

2

PSD Fi
~F,/A

(Eq 3)
Fig. 9 plots the average PSD of all the spray segments

per test. The power increases with increasing velocity, as
shown from the RMS of the time domain signal. The power

@ Springer
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peaks do not show any apparent frequency shift for dif-
ferent velocities.

Since the PSD increased gradually with increasing
velocity, a Pearson correlation analysis was performed to
identify frequency bands demonstrating a high linear cor-
relation with the velocity. To do that, the resolution of the
PSD was reduced to approximately 26 Hz. The averaged
PSDs of every test were correlated with the velocity. It was
found that 17 frequency bins scored higher than 0.99,

@ Springer

Frequency (Hz)

meaning a highly linear relationship, as shown in Fig. 10.
Although the average PSD of each experiment scored high
in Pearson correlation, implying that a simple linear rela-
tionship could calculate the velocity from the power of
specific frequency bins, the standard deviation of the
samples from every experiment is so high that it makes it
difficult to use a straightforward model for velocity diag-
nosis, as is depicted in Fig 11.
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Fig. 10 Frequencies that scored high in Pearson correlation analysis and exhibit an almost linear relationship with velocity

Fig. 11 Example of the power le7
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The PSDs of experiments 4 (620 m/s) and 6 (625 m/s)
were plotted on top of each other for comparison (Fig. 12).
For these two experiments, almost the same spray velocity
was achieved with a different combination of pressure and
temperature. The average PSDs match well enough,
implying that features that are agnostic of the pressure and
temperature separately and only depend on the velocity can
be extracted.

Process Diagnostics

To perform process diagnostics, it is essential to identify
the spray segments. A threshold of 0.43 on the zero
crossing rate (ZCR) was used to achieve that. This was the
middle point between the minimum ZCR of the spray
segments and the maximum ZCR of the overspray

600 620 640 660 680

Velocity (m/s)

segments (Fig. 8). A zero crossing rate higher than 0.43
indicates the spray condition. The time window described
in the previous section (Fig. 7) was used to investigate the
signal acquired from all six experiments. This statistical
algorithm correctly classified 83% of the experiments’ time
windows. Although this model is simple and performed
well, it is very specific to the domain examined and highly
dependent on the data from the overspray condition. This
highlights the need for a model that identifies the spray
condition while being agnostic of the overspray condition.

Considering the determination of the velocity through
the RMS or the PSD, both failed to give an accurate model
that either performs regression or classification to low
(580-600 m/s) medium (620-625 m/s) high (670-690 m/s)
spray velocity. The high standard deviation of those fea-
tures during the same experiment posed a challenge,

@ Springer
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Fig. 12 Comparison of PSD between experiments of 620 and 625 m/
s using different combinations of pressure and temperature; no
significant differences are apparent, implying that features that are
only dependent on the velocity can be extracted

resulting in substantial overlap among the features across
different operating conditions. Consequently, a linear rule-
based model could not diagnose velocity based on those
features.

The feature extraction successfully classified spray and
overspray segments. However, a more generic model that
identifies spray segments and distinguishes them from
anything else would be desirable. Therefore, an autoen-
coder was employed to determine the spray segments. An
autoencoder is an artificial neural network used for unsu-
pervised learning tasks. It consists of two main compo-
nents: an encoder and a decoder. The encoder compresses
the input data into a lower-dimensional representation,
capturing the most important features of the input. This
compressed representation retains the essential information
and discards irrelevant details. The decoder then takes this
compact representation and reconstructs the original input
data as precisely as possible. During training, the autoen-
coder learns to minimise the reconstruction error by tuning
its parameters to produce accurate reconstructions (Ref 16).

An autoencoder was trained only with the spray seg-
ments from different velocities. As a result, a high recon-
struction error was expected when the autoencoder receives
as input a segment where overspray takes place (or any
condition other than normal spray condition). Then, the
reconstruction error can be used to classify the process
condition (spray or not).

To reduce the data size and thus the complexity required
from the autoencoder to perform an accurate reconstruc-
tion, the same frequency bins of 26 Hz applied in Pearson
correlation analysis were used. Due to the large magnitude
of the PSD values, they were normalised using their mean

@ Springer

value per spray sample. This was done to ensure the sta-
bility of the training process.

The autoencoder consists of a convolutional layer with
ten filters, each with a kernel size of 5 and a stride of 1. A
flattening layer is added to concatenate the output of the
convolutional layer to a one-dimensional array that can
then be used as input to a fully connected layer of 20
neurons. The bottleneck layer consists of 10 neurons. The
rest of the network is symmetric to the bottleneck layer.
The hyperparameters of the network were selected empir-
ically, and no optimisation algorithm was used. A mean
square error (MSE) loss function is used to calculate the
reconstruction error between input and output (Eq 4). To
calculate MSE, n is the number of frequency bins of the
PSD of a sample, y; is the value of the PSD of the ith
frequency bin and y; is the reconstructed value of the PSD
of the same frequency bin. Leaky Rectified Linear Unit
(LReLU) was used as an activation function with a nega-
tive slope of 0.2 (Ref 29), and the Adam optimiser (Ref 30)
was used to update the learnable parameters after each
epoch. A batch size of 40 was used for training. The net-
work architecture and the hyperparameters are summarised
In Fig. 13.

n

1 .
MSE = - N
nE =)

i=1

(Eq 4)

To test the performance of the autoencoder, 10% of the
spray dataset was kept as test data. This is data that the
network does not see during training and is used for
evaluation. From the remaining spray data, 80% was used
as train data, which is the data used to update the learnable
parameters of the network and 20% as validation, which is
data that the network does not see during training and is
used to monitor its performance on unseen data during
training.

The training was stopped when the validation loss was
not decreased for 15 consecutive epochs, and the last
model that showed a decrease was kept. The average
reconstruction MSE on the test data was 0.181, with a
standard deviation of 0.025. The reconstruction loss of the
overspray segments—which the network was not trained
on—was also plotted along with the training and validation
loss in Fig. 14. This gave a better overview of the ability of
the network to separate spray from overspray based on the
reconstruction error.

To further validate the robustness of the autoencoder, a
whole experiment was kept entirely out of the training
dataset and was used as test data. Then, from the remaining
data, an 80-20 split was used for training and validation
data, respectively. With this, it was ensured that the model
does not memorise the segments of each experiment but
extracts essential information that makes it able to
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Fig. 13 Autoencoder architecture that was trained with spray segments of different velocities aiming to separate spray from overspray condition

based on the reconstruction error
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Fig. 14 Autoencoder learning curve. The reconstruction loss of the
overspray segments is also shown to evaluate the ability of the
autoencoder to separate spray from overspray segments based on the
reconstruction error

Table 3 Validation of the autoencoder model, where Test X refers to
the experiment that was used as test data to evaluate the algorithm
performance

Test kept out Test 1 Test2 Test3 Test4 Test5 Test6
Training loss 0.167 0.179 0.181 0.172 0.184 0.193
Validation loss  0.177  0.188  0.455 0.177 0.183 0.189
Test loss 0.190 0.192 0.190 0.180 0.182 0.190
Test loss st.d.  0.032 0.031 0.035 0.017 0.020 0.033
Overspray loss  0.392 0.448 0455 0398 0.043 0451

generalise for cold spray tests performed with spray
velocities that the algorithm was never trained with. The
results are presented in Table 3. The reconstruction error
was kept low no matter which test was kept out, even if it
was the two limit values of the domain (580 and 690 m/s).
This means the model is generalised, at least in the
examined domain (580-690 m/s).

All six signals acquired from the AAE of the six
experiments were tested with the autoencoder using the
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Fig. 15 Evolution of the reconstruction loss of the autoencoder when
transition from spray to overspray takes place

sliding window explained above, and the goal was to
classify each time window to spray or overspray. Five
different but random weight initialisations were tested to
ensure the robustness of the autoencoder. The training
process was performed as previously described for each
initialisation. After each model was trained, the value of
the average test reconstruction error and its standard
deviation were used to set a threshold that effectively
distinguishes between spray and overspray. That threshold
was the average reconstruction error on the test data plus
two standard deviations (st.d.). For the five different ini-
tialisations, the average accuracy of time windows in which
the condition was diagnosed correctly was 84%, with a
standard deviation of 1%. As explained above, the case
study was considered an extreme case where the transition
between the two conditions happens frequently, so the
accuracy is considered satisfactory.
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To explain better how the classification based on the
reconstruction error works, in Fig. 15, the reconstruction
error for the first 100 time windows of the signal of test 4 is
presented as an example. The spray and overspray time
windows are also labelled in the same figure. For the
experiments of this work, a time window requires five
strides to scan a whole spray segment and another five to
scan the following overspray segment. At the first stride,
the total time window (including overlap) used as input for
the autoencoder consists of 60% spray condition but also
includes 40% of the overspray condition. At the next stride,
the total time window contains 80% spray and 20% over-
spray. At the third stride, 100% spray. At the fourth stride,
80% spray and 20% overspray; at the fifth and final stride,
60% spray and 20% overspray. Among the five time win-
dows it takes until the transition from spray to overspray,
the error reaches a minimum when the time window,
including the overlap, coincides with the pure spray con-
dition and increases as noise from the transition is intro-
duced. Despite introducing noise from the overlap, the
variation of the reconstruction error for the spray segments
shows a slight fluctuation. This makes it possible to sepa-
rate the two conditions by setting a simple threshold at the
reconstruction error. The reconstruction error can also be
helpful in an automated process so that the system can be
informed about the transition from spray to overspray
before this happens.

The final step is to perform a velocity diagnosis on the
spray segments. This was done by employing an MLP. A

Fig. 16 MLP for classification
of the spray segments according
to their spray velocity

multilayer perceptron (MLP) is a specific type of neural
network characterised by multiple layers of nodes,
including an input layer, one or more hidden layers, and an
output layer. Each node in a layer is connected to all nodes
in the next layer. The MLP is trained by adjusting its
parameters, called weights and biases, across these layers.
These adjustments allow the network to capture complex
patterns in the data. Like other neural networks, MLPs are
often used for classification and regression tasks, learning
from the input data to make predictions. The resolution of
the frequency bins remained at 26 Hz since frequency bins
of this size were found to score high in Pearson correlation
with velocity. Furthermore, an MLP can extract higher-
order relations between the PSD bins and the velocity. The
first 50 and the last 200 frequency bins were removed from
the PSD since the bands 0-1294 Hz and 19824-25000 Hz
seemed to contain little information, and the microphone
exhibited a drop in its response above 20 kHz.

The aim was to perform a three-class classification into
low (580-600 m/s), medium (620-625 m/s), and high (670-
690 m/s) velocity. The classification aimed at establishing
a framework for using airborne acoustic emission (AAE)
signals for cold spray velocity diagnostics. The absence of
velocities between the classes reflects the limited experi-
mental data available at this stage. As more data are col-
lected, it is expected to refine the model, potentially
moving towards a continuous classification or a regression
approach. The architecture of the MLP is shown in Fig. 16.
The neural network consists of a series of three dense

—>
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connected
PSD layer
716x1 (50 units)

Batch Norm.
Dropout (0.2)
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layers with batch normalisation (Ref 31) and a dropout
layer (Ref 32) following every dense layer to increase the
stability of the training process and avoid overfitting. The
Rectified Linear Unit (ReLU) function was used as an
activation function (Ref 24) for the hidden Ilayers.
A SoftMax activation function was used for the last layer to
convert the neuron’s output to probabilities belonging to
each class (Ref 33). The Adam optimiser (Ref 25) was used
to update the learnable parameters after each epoch with a
learning rate of 0.005.

20% of the spray segments were kept as test data, and
the remaining dataset was split into 80% train data and
20% validation data. A batch size of 40 was used for
training. Again, the hyperparameters of the network were
selected empirically, and no optimisation algorithm was
used. The training was done five times for five different but
random weight initialisations to evaluate stability. The
average confusion matrix of the test set with the standard
deviation is shown in Fig. 17. The confusion matrix shows
the true labels of the test dataset and the labels that the
machine learning algorithms assigned to those segments.
The result showed that the MLP could accurately identify
the high-velocity class. However, there is some confusion
among the first two classes. It is believed that the spray
velocity instability observed during the fifth experiment
(600 m/s) affected the training process. Based on the RMS
(Fig. 8) and the PSD (Fig. 9) of this experiment, it can have
features that can be characteristics of both “low” and
“high” classes, making the classification task challenging.
Furthermore, the first and the second classes are closer in
terms of velocity range than the second and the third,
making it more possible to share similar features.

It should be noted that at present the velocity classifi-
cation is based on the velocity measured through the

74.0% (+10.0%) 25.0% (£12.0%) 1.0% (%£20.0%)

Low

12.0% (+7.0%) 81.0% (£7.0%) 7.0% (£6.0%)

True labels
Medium

High

2.0% (£3.0%) 5.0% (+2.0%) 93.0% (+4.0%)

Low Medium High
Predicted labels

Fig. 17 Average confusion matrix with one standard deviation for the
velocity classification model tested with five random initialisations

optical particle velocimetry; while, the actual impact
velocity may be affected by the bow shock phenomenon.
Therefore, in future, to improve the accuracy of AAE-
based monitoring, it is essential to incorporate corrections
for the bow shock effect when relevant. In most cases, the
standoff distance is known, and CFD simulations can
model and quantify the velocity reduction caused by the
bow shock. Furthermore, future AAE developments should
allow for standoff distance diagnosis, as demonstrated for
thermal spray applications (Ref 19), enabling real-time
correction of AAE velocity estimations.

Conclusions

The feasibility of the AAE for monitoring the cold spray
process was investigated. Both statistical and machine
learning tools were used to identify the segments where the
nozzle is engaged with the substrate and diagnose the spray
velocity. The main conclusions are listed below:

e Monitoring the cold spray process using AAE is
feasible; it can provide information about the spray
velocity and detect when the nozzle is engaged with the
substrate.

e The RMS of the signal from the AAE exhibits a
positive correlation with the spray velocity, and it can
be used to identify permanent shifts in the process
conditions for a standardised cold spray process without
the need to distinguish spray from overspray segments.

e PSD showed evidence of being agnostic of the pressure
and temperature combination that resulted in a specific
velocity, reducing the number of experiments required
to obtain data for the development of AAE-based
process monitoring.

e Although PSD was informative of the spray—overspray
condition and the spray velocity, straightforward rule-
based models are challenging to develop due to the high
variability of the PSD when a short time window is
used. To overcome this, larger time windows or more
complicated algorithms are required.

e An autoencoder which is trained with the PSD of the
spray segments and is agnostic of the overspray
segments can identify the spray segments successfully
based on its reconstruction error.

e An MLP performed well on diagnostics of the spray
velocity. However, further validation is needed with
more experimental data.

e While AAE offers a promising, non-intrusive method
for real-time monitoring, its accuracy may be affected
if the bow shock is not considered in the cases where it
is relevant. Incorporating CFD simulations or experi-
mental data to model and quantify the bow shock effect

@ Springer



J Therm Spray Tech

can enhance the precision of AAE-based velocity
estimation.

In summary, the present study suggests the feasibility of
using AAE to monitor the key process parameter of impact
velocity during a cold spray process. Future studies will
focus on refining the diagnostic algorithms and investi-
gating their robustness.
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