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Abstract Continuous monitoring of spray velocity during

the cold spray process would be desirable to support

quality control, as spray velocity is the key process

parameter determining the deposit quality. This study

explores the feasibility of utilising Airborne Acoustic

Emission (AAE) for real-time monitoring of spray velocity.

Six spray tests were conducted, varying pressure and

temperature to achieve different velocities. Optical means

were used to measure velocity; while, the signal from the

AAE was captured during deposition via a microphone.

Features demonstrating a strong correlation with velocity

were extracted from the acoustic signals. Both rule-based

and machine learning models were employed to identify

the moments where the nozzle was engaged with the sub-

strate and diagnose the velocity. The results indicate that

monitoring the spray velocity of the cold spray process

using AAE is feasible.

Keywords acoustic emission � cold spray � machine

learning � particle velocimetry � process monitoring

Introduction

The cold spray process, an emerging additive manufac-

turing technique, accelerates metallic powder particles at

supersonic velocities through a converging–diverging

nozzle using a carrier gas. Upon impact with a substrate, it

forms a dense, adherent deposition favourable for coating

and repair applications. Its advantages include low-tem-

perature operation, minimal oxidation, and reduced thermal

degradation, making it particularly appealing for the

aerospace, automotive, and maritime industries (Ref 1-5).

Reliable process monitoring of cold spray is crucial for

ensuring robust quality control and advancing the devel-

opment of a fully automated process. Among the many

process parameters that can be controlled directly or indi-

rectly, it has been found that the impact velocity and par-

ticle temperature govern the quality of the deposit. (Ref

6, 7). Regarding the effort of monitoring the process,

ultrasonic acoustic techniques have been used to diagnose

coating thickness buildup (Ref 8). Thermocouples and

infrared cameras have been employed successfully to

acquire data in line with the process (Ref 6, 9-11). Particle

velocimetry techniques have also been used to diagnose the

particle velocity at the exit of the nozzle (Ref 12, 13). In

addition, other optical methods have been proposed to

extract the characteristics of the micro-particle motion (Ref

14, 15). The most crucial drawback of the particle

velocimetry techniques is the difficulty of implementation

during the actual spraying of the component due to the

relatively short spray distance of the process and the bulky

monitoring equipment available today.

Airborne acoustic emission (AAE) is a promising

alternative technique for monitoring the cold spray particle

velocity and the cold spray process in general due to its

non-intrusive nature. AAE has been used to monitor

industrial equipment and diagnose process anomalies suc-

cessfully, and when combined with statistical and machine

learning models, it is a powerful tool for process moni-

toring (Ref 16). Regarding AAE monitoring of the thermal

spray process, Burkert et al. (Ref 17) used AAE to identify

when clogging appeared inside the nozzle. Duan et al.

correlated the health condition of the anode with the power
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spectrum of the acoustic signal captured during the process

of plasma spray (Ref 18). Kamnis et al. (Ref 19) diagnosed

the microhardness of a thermal sprayed coating with the

help of a multilayer perceptron (MLP) for a varying

powder feed rate and standoff distance using AAE. Mala-

mousi et al. (Ref 20) classified sound samples of different

thermal spray experiments according to the powder feed

rate. These examples illustrate that AEE can provide

detailed information about various aspects of the thermal

spray process, including equipment health, process

parameters, and material properties of the deposit. It is

hypothesised that AAE could similarly be applied to the

cold spray process to address similar challenges due to the

similarities between the two processes. However, no work

is available where AAE has been applied to cold spray.

Developing an acoustic system for process monitoring

starts with data acquisition. This involves capturing signals

from acoustic sensors placed strategically within the sys-

tem. Then, the raw signals (time domain) can be directly

utilised or subjected to signal decomposition techniques to

analyse their frequency content. The feature extraction step

follows and involves deriving statistical metrics from the

signals in different domains (time, frequency, time-fre-

quency). Another approach is directly using the raw signal

as input for the machine learning models. Additionally, a

combination of both statistical metrics and raw signals can

be used simultaneously (Ref 16).

These features or raw signals are used as input for

machine learning models, often neural networks, widely

used for classification or regression tasks. Neural networks

consist of interconnected nodes usually organised in layers.

Each node performs simple computations, and the con-

nections between nodes allow information to flow through

the network. During training, a neural network learns to

adjust its parameters based on the input data, aiming to

make accurate predictions (Ref 21).

Neural networks have been used with acoustic data in

different applications, including diagnostics and prognos-

tics. Diagnostics help identify process conditions and the

health state of a system that can either be healthy or faulty

(Ref 16) or even quantify the health state using a health

indicator. Meanwhile, in prognostics, they predict out-

comes like the remaining useful life of a system (Ref 22-

24). For the case of cold spray, such an acoustic system

would have the potential to perform a real-time diagnosis

of the spray velocity, identify process anomalies, and

diagnose the health state of critical components such as the

spray nozzle.

This work aims to investigate the feasibility of AAE in

monitoring the particle velocity in the cold spray process.

A feature exploration from the acoustic signal is performed

to identify features significantly correlating with the par-

ticle velocity. A methodology was also developed to

determine the process segments where the nozzle is

engaged with the substrate, and for those moments,

velocity diagnosis was performed.

Experimental Procedure

Cold Spray Process and Particle Velocity

Measurements

The selected material system was an aluminium alloy 6061

substrate and the AM103 aluminium powder from VALI-

MET (Stockton, California, USA), which, according to the

manufacturer’s specifications (Ref 25), has the chemical

composition reported in Table 1. As per the same specifi-

cations, the particle size distribution indicates that 90% of

the particles had a diameter below 52 lm, 50% below

34 lm, and 10% below 1 lm. The substrate material was

made of flat plates with a thickness of 3 mm that were

sandblasted before the deposition to improve adhesion. The

aim was to create a deposition with dimensions of

approximately 45x30 mm, with the thickness being an

output of the experiment.

A high-pressure cold spray system (PCS-1000) from

Titomic Europe (Akkrum, The Netherlands) was employed

for the tests. A PBI (Polybenzimidazole) nozzle was used.

To achieve uniform deposition, the path of the nozzle

extends beyond the edges of the specimen so that the

starting and ending points of each pass do not lie within the

surface of the specimen; this is called overspray. Three

layers were deposited, each consisting of 20 parallel pas-

ses, resulting in 60 passes in total. The spray path is shown

in Fig. 1. The standoff distance was 25 mm, and the

powder feeder was set to 3 rpm.

A sensitivity analysis was performed concerning tem-

perature and pressure to create deposits with different spray

velocities. The goal was to achieve velocities above the

Table 1 Chemical composition of the powder used for tests

Al Si Mg Fe Mn Ti Zn Cu Others (each) Others (total)

Balance 9.0-11.0% 0.25-0.45% \ 0.40% 0.15% \ 0.15% \ 0.10% \ 0.03% \ 0.05% \ 0.15%
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critical for deposition velocity, about 600 m/s (Ref 26, 27)

to produce acoustic data simultaneously and investigate the

possibility of velocity diagnosis. Six experiments were

performed. For four experiments, the temperature was kept

constant at 600 �C, and the selected pressures were 3.5,

4.5, 6, and 7 MPa. Two additional experiments were con-

ducted with the pressure set to 5 MPa for both; while, the

temperatures were set to 400 and 500 �C, respectively.

This sensitivity analysis also aimed to investigate if fea-

tures that are not sensitive to pressure and temperature

separately but are affected only by the resulting spray

velocity can be extracted from the AAE, irrespective of

how this velocity was achieved.

A commercial system containing a laser to Illuminate

particles and a high-speed camera was used to measure

particle velocity via the particle image velocimetry

method. Before each test, the nozzle was positioned in

front of the camera, and the average particle velocity was

measured at a distance from the nozzle tip equal to the

standoff distance (25 mm). Then, the nozzle was moved to

the spray position, and cold spray was performed. The

deposition lasted approximately 70 s. Therefore, the

assumption was made that the average particle velocity

remained constant throughout the deposition.

AAE Data Acquisition

An M51 microphone (1/2-inch condenser pre-amplified)

from LinearX Systems (Tualatin, Oregon, USA) was used

to capture the airborne acoustic emission of the process.

The microphone was placed at 1870 mm from the centre of

the substrate to minimise any effect of the small dis-

placement of the nozzle relative to the distance from the

microphone. The microphone exhibits an almost flat

response for frequencies between 20 Hz and 20 KHz, with

a slight drop for higher frequencies. The maximum sound

pressure level is 150 dB to ensure no distortion while

recording such a loud process. The microphone shows high

directionality for sound waves with an incidence angle

higher than ± 15�, so it was placed at 90� from the spray

plume, aiming to capture mainly the sound coming from

the nozzle-substrate system, reducing the ambient noise. A

calibration pistonphone was used to calibrate the micro-

phone with a sound wave of frequency 250 Hz and

amplitude 114 dB. The microphone’s response was found

to be 0.0152 V/Pa of sound pressure. A DC power supply

was used with the microphone, and the output voltage was

set at 9.15 V. The PicoScope 5443D data acquisition sys-

tem from Pico technology (Cambridgeshire, UK) was used

to convert the analogue signal to digital with a sampling

rate of 50 KHz. A schematic of the experimental setup is

shown in Fig. 2

Results and Discussion

Sprayed Specimens, Measured Spray Velocity

and AAE Acquisition

Successful deposition was achieved in all six tests/speci-

mens, as was expected based on the deposition window of

this material (Ref 26, 27). Figure 3 shows the top view of

the sprayed specimens. The measured spray velocities were

from 580 to 690 m/s and are summarised in Table 2. While

performing particle velocimetry for test 6, the velocity was

less stable than for the rest of the experiments, and the

value of 600 m/s was taken as an average value of that

fluctuation.

An important effect to consider regarding the velocity

measurements is the bow shock phenomenon. The bow

shock phenomenon occurs when the supersonic flow

encounters an obstacle, creating a shock wave that reduces

the particle velocity. This can lead to a reduction in particle

velocity just before impact, directly influencing deposition

quality. The analysis in this study did not consider the

effect of the bow shock because the particle velocimetry

was performed without a substrate. While the bow shock

effect may indeed be present at the selected spray distance,

leading to a potential overestimation of the actual impact

velocity, we assume that its influence is constant across

measurements. However, for more precise velocity deter-

mination, an additional correction is be necessary to

account for the bow shock’s influence on the measured

velocities. Computational fluid dynamics (CFD) simula-

tions could be used to make this correction (Ref 28).

Fig. 1 Spray path that was followed during the experiments. To

achieve a uniform deposition, the start and end points were not within

the specimen (overspray)
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A short representative segment of the AAE’s raw signal

captured by the microphone is shown in Fig. 4. The vertical

axis indicates the pressure of the acoustic wave (fluctuation

from the ambient pressure). The parts of spray and over-

spray are also visible in the same figure, each with a

duration of approximately 0.55 s. Due to a malfunction of

the data acquisition system, only the first 24 s were cap-

tured for the first experiment.

Feature Extraction from the Whole Raw Signal

The first step of the investigation was to extract features

from the raw signal. A sliding time window of 3 s was used

with a stride of 1 s. This time window was chosen to ensure

that the extracted features exhibited minimal variation over

time, indicating that the time window contained represen-

tative data of the process conditions. Among the different

features examined in the time domain, root mean square

(RMS) (Eq 1) exhibited a clear trend with velocity, with xi
being the value of the discrete signal at the moment i and N

is the length of the time window.

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

i

x2
i

s

ðEq 1Þ

The RMS of the signal throughout the six tests is shown

in Fig. 5. The average per test RMS is demonstrated in

Fig. 6. Both figures show that RMS tends to increase with

Fig. 2 Experimental setup used

to capture the signal from the

AAE of the cold spray process

Fig. 3 Top view of the cold-

sprayed specimens from the six

tests

Table 2 Pressure temperature

and average particle velocity of

the experiments performed

Test Pressure, MPa Temperature, �C Average particle velocity, m/s

1 6 600 670

2 4.5 600 625

3 7 600 690

4 5 500 620

5 3.5 600 580

6 5 400 600
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increasing spray velocity. Both the spray and overspray

segments were used for the feature extraction, and the RMS

showed that it is informative of the spray velocity. A

simple statistical model has the potential to be used to

monitor particle velocity in standardised cold spray appli-

cations, such as in an industrial line where a specific

number of cold spray deposits with known dimensions and

material systems are performed. Such a model would be

able at least to identify permanent shifts in the spray

velocity reflected on the signal’s RMS. However, it has two

significant limitations: (1) the large time window that

cannot catch short-duration events that can be detrimental

to the quality of the deposit and (2) that it is specific to a

single type of substrate and not flexible to spray on sub-

strates with different geometries due to the different

sequence of spray/overspray segments that it would intro-

duce. To develop a generalised model, it is essential to

identify the segments where the spray is performed and

examine them separately.

Time Windowing

In this study, every spray and overspray event lasted

approximately 0.55 s. A time window of 0.11 s was

selected allowing the model to capture more diagnostic

steps for a given sound segment of a specific duration. This

short time window ensures that the model can effectively

capture the frequent transitions between spray and over-

spray conditions. However, a time window of 0.11 s was

too small to capture comprehensive information for accu-

rate diagnostics. An overlap of 0.22 s with the previous and

the next time windows was introduced to address this

challenge (Fig. 7). This overlap extends the analysis span

to 0.55 s, providing a larger window for monitoring the

Fig. 4 Segment of the raw

signal from the cold spray

process. The amplitude

indicates the measured pressure

fluctuation from the ambient

pressure caused by the acoustic

wave. The spray and overspray

parts of the segment are

highlighted

Figure 5 RMS of the raw signal for the different tests for a time window of 3 s with a stride of 1 s
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process while retaining the high resolution of the 0.11-

second windows.

Feature Extraction Separating Spray

from Overspray Segments

All the spray and overspray segments of the signal acquired

from the AAE were separated manually, and statistical

features were extracted from both the time and frequency

domain. The aim was first to extract features that distin-

guish spray from overspray. Then, features that show a

clear trend with spray velocity were identified for the spray

segments.

The RMS (Eq 1) and the zero crossing rate (Eq 2) were

selected where x represents the signal sample at time

instant i. In Fig. 8, it is shown that the average RMS of the

spray segments of each experiment shows a positive cor-

relation with the spray velocity. The largest error from the

linear interpolation is for the last experiment of 600 m/s,

which showed instability in its velocity. Furthermore, the

average zero crossing rate can separate spray from over-

spray segments in the examined velocity domain by setting

a threshold.

ZCR ¼ 1

2N

X

N�1

i¼1

sgn xiþ1ð Þ � sgn xið Þj jwith sgn xð Þ

¼
1 if x[ 0

0 if x ¼ 0

�1 if x\0

8

<

:

ðEq 2Þ

A Fast Fourier Transform (FFT) was performed at each

spray segment of a length of 0.55 s to extract features from

the frequency domain. Then, the power spectral density

Fig. 6 Average RMS per

experiment shows a positive

correlation with velocity

Fig. 7 Time window used to

perform diagnostics
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(PSD) was calculated to investigate how the power of the

signal is distributed among the frequencies. This analysis

aimed to identify dominant frequency peaks and observe

potential changes in their amplitudes or shifts within the

frequency domain as the spray velocity increases. The PSD

was calculated through (Eq 3) where Pf is the magnitude of

the complex number that the FFT outputs and corresponds

to a single frequency bin, Fr is the sampling rate, and D is

the number of points in the time window. By dividing Fr

by D, the frequency resolution of the FFT is calculated

along with the length of the frequency bin. So, the power is

normalised per Hz of the frequency bin.

PSD ¼
P2
f

Fr=D
ðEq 3Þ

Fig. 9 plots the average PSD of all the spray segments

per test. The power increases with increasing velocity, as

shown from the RMS of the time domain signal. The power

Fig. 8 (a) Zero crossing rate

(with two standard deviations)

of the spray and overspray

segments can be used to

separate these two conditions.

(b) The average RMS of the

spray segments (with two

standard deviations) shows a

positive correlation with the

spray velocity
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peaks do not show any apparent frequency shift for dif-

ferent velocities.

Since the PSD increased gradually with increasing

velocity, a Pearson correlation analysis was performed to

identify frequency bands demonstrating a high linear cor-

relation with the velocity. To do that, the resolution of the

PSD was reduced to approximately 26 Hz. The averaged

PSDs of every test were correlated with the velocity. It was

found that 17 frequency bins scored higher than 0.99,

meaning a highly linear relationship, as shown in Fig. 10.

Although the average PSD of each experiment scored high

in Pearson correlation, implying that a simple linear rela-

tionship could calculate the velocity from the power of

specific frequency bins, the standard deviation of the

samples from every experiment is so high that it makes it

difficult to use a straightforward model for velocity diag-

nosis, as is depicted in Fig 11.

Fig. 9 Averaged PSDs of all

the tests performed. Frequency

shifts are not apparent; power

increases gradually with

velocity
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The PSDs of experiments 4 (620 m/s) and 6 (625 m/s)

were plotted on top of each other for comparison (Fig. 12).

For these two experiments, almost the same spray velocity

was achieved with a different combination of pressure and

temperature. The average PSDs match well enough,

implying that features that are agnostic of the pressure and

temperature separately and only depend on the velocity can

be extracted.

Process Diagnostics

To perform process diagnostics, it is essential to identify

the spray segments. A threshold of 0.43 on the zero

crossing rate (ZCR) was used to achieve that. This was the

middle point between the minimum ZCR of the spray

segments and the maximum ZCR of the overspray

segments (Fig. 8). A zero crossing rate higher than 0.43

indicates the spray condition. The time window described

in the previous section (Fig. 7) was used to investigate the

signal acquired from all six experiments. This statistical

algorithm correctly classified 83% of the experiments’ time

windows. Although this model is simple and performed

well, it is very specific to the domain examined and highly

dependent on the data from the overspray condition. This

highlights the need for a model that identifies the spray

condition while being agnostic of the overspray condition.

Considering the determination of the velocity through

the RMS or the PSD, both failed to give an accurate model

that either performs regression or classification to low

(580-600 m/s) medium (620-625 m/s) high (670-690 m/s)

spray velocity. The high standard deviation of those fea-

tures during the same experiment posed a challenge,

Fig. 10 Frequencies that scored high in Pearson correlation analysis and exhibit an almost linear relationship with velocity

Fig. 11 Example of the power

of the frequency of 11197 Hz

with respect to the spray

velocity. The average values

exhibit a linear relationship.

Two standard deviations are

also shown
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resulting in substantial overlap among the features across

different operating conditions. Consequently, a linear rule-

based model could not diagnose velocity based on those

features.

The feature extraction successfully classified spray and

overspray segments. However, a more generic model that

identifies spray segments and distinguishes them from

anything else would be desirable. Therefore, an autoen-

coder was employed to determine the spray segments. An

autoencoder is an artificial neural network used for unsu-

pervised learning tasks. It consists of two main compo-

nents: an encoder and a decoder. The encoder compresses

the input data into a lower-dimensional representation,

capturing the most important features of the input. This

compressed representation retains the essential information

and discards irrelevant details. The decoder then takes this

compact representation and reconstructs the original input

data as precisely as possible. During training, the autoen-

coder learns to minimise the reconstruction error by tuning

its parameters to produce accurate reconstructions (Ref 16).

An autoencoder was trained only with the spray seg-

ments from different velocities. As a result, a high recon-

struction error was expected when the autoencoder receives

as input a segment where overspray takes place (or any

condition other than normal spray condition). Then, the

reconstruction error can be used to classify the process

condition (spray or not).

To reduce the data size and thus the complexity required

from the autoencoder to perform an accurate reconstruc-

tion, the same frequency bins of 26 Hz applied in Pearson

correlation analysis were used. Due to the large magnitude

of the PSD values, they were normalised using their mean

value per spray sample. This was done to ensure the sta-

bility of the training process.

The autoencoder consists of a convolutional layer with

ten filters, each with a kernel size of 5 and a stride of 1. A

flattening layer is added to concatenate the output of the

convolutional layer to a one-dimensional array that can

then be used as input to a fully connected layer of 20

neurons. The bottleneck layer consists of 10 neurons. The

rest of the network is symmetric to the bottleneck layer.

The hyperparameters of the network were selected empir-

ically, and no optimisation algorithm was used. A mean

square error (MSE) loss function is used to calculate the

reconstruction error between input and output (Eq 4). To

calculate MSE, n is the number of frequency bins of the

PSD of a sample, yi is the value of the PSD of the ith

frequency bin and byi is the reconstructed value of the PSD

of the same frequency bin. Leaky Rectified Linear Unit

(LReLU) was used as an activation function with a nega-

tive slope of 0.2 (Ref 29), and the Adam optimiser (Ref 30)

was used to update the learnable parameters after each

epoch. A batch size of 40 was used for training. The net-

work architecture and the hyperparameters are summarised

In Fig. 13.

MSE ¼ 1

n

X

n

i¼1

ðyi � byiÞ2 ðEq 4Þ

To test the performance of the autoencoder, 10% of the

spray dataset was kept as test data. This is data that the

network does not see during training and is used for

evaluation. From the remaining spray data, 80% was used

as train data, which is the data used to update the learnable

parameters of the network and 20% as validation, which is

data that the network does not see during training and is

used to monitor its performance on unseen data during

training.

The training was stopped when the validation loss was

not decreased for 15 consecutive epochs, and the last

model that showed a decrease was kept. The average

reconstruction MSE on the test data was 0.181, with a

standard deviation of 0.025. The reconstruction loss of the

overspray segments—which the network was not trained

on—was also plotted along with the training and validation

loss in Fig. 14. This gave a better overview of the ability of

the network to separate spray from overspray based on the

reconstruction error.

To further validate the robustness of the autoencoder, a

whole experiment was kept entirely out of the training

dataset and was used as test data. Then, from the remaining

data, an 80-20 split was used for training and validation

data, respectively. With this, it was ensured that the model

does not memorise the segments of each experiment but

extracts essential information that makes it able to

Fig. 12 Comparison of PSD between experiments of 620 and 625 m/

s using different combinations of pressure and temperature; no

significant differences are apparent, implying that features that are

only dependent on the velocity can be extracted
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generalise for cold spray tests performed with spray

velocities that the algorithm was never trained with. The

results are presented in Table 3. The reconstruction error

was kept low no matter which test was kept out, even if it

was the two limit values of the domain (580 and 690 m/s).

This means the model is generalised, at least in the

examined domain (580-690 m/s).

All six signals acquired from the AAE of the six

experiments were tested with the autoencoder using the

sliding window explained above, and the goal was to

classify each time window to spray or overspray. Five

different but random weight initialisations were tested to

ensure the robustness of the autoencoder. The training

process was performed as previously described for each

initialisation. After each model was trained, the value of

the average test reconstruction error and its standard

deviation were used to set a threshold that effectively

distinguishes between spray and overspray. That threshold

was the average reconstruction error on the test data plus

two standard deviations (st.d.). For the five different ini-

tialisations, the average accuracy of time windows in which

the condition was diagnosed correctly was 84%, with a

standard deviation of 1%. As explained above, the case

study was considered an extreme case where the transition

between the two conditions happens frequently, so the

accuracy is considered satisfactory.

Fig. 13 Autoencoder architecture that was trained with spray segments of different velocities aiming to separate spray from overspray condition

based on the reconstruction error

Fig. 14 Autoencoder learning curve. The reconstruction loss of the

overspray segments is also shown to evaluate the ability of the

autoencoder to separate spray from overspray segments based on the

reconstruction error

Table 3 Validation of the autoencoder model, where Test X refers to

the experiment that was used as test data to evaluate the algorithm

performance

Test kept out Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Training loss 0.167 0.179 0.181 0.172 0.184 0.193

Validation loss 0.177 0.188 0.455 0.177 0.183 0.189

Test loss 0.190 0.192 0.190 0.180 0.182 0.190

Test loss st.d. 0.032 0.031 0.035 0.017 0.020 0.033

Overspray loss 0.392 0.448 0.455 0.398 0.043 0.451

Fig. 15 Evolution of the reconstruction loss of the autoencoder when

transition from spray to overspray takes place
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To explain better how the classification based on the

reconstruction error works, in Fig. 15, the reconstruction

error for the first 100 time windows of the signal of test 4 is

presented as an example. The spray and overspray time

windows are also labelled in the same figure. For the

experiments of this work, a time window requires five

strides to scan a whole spray segment and another five to

scan the following overspray segment. At the first stride,

the total time window (including overlap) used as input for

the autoencoder consists of 60% spray condition but also

includes 40% of the overspray condition. At the next stride,

the total time window contains 80% spray and 20% over-

spray. At the third stride, 100% spray. At the fourth stride,

80% spray and 20% overspray; at the fifth and final stride,

60% spray and 20% overspray. Among the five time win-

dows it takes until the transition from spray to overspray,

the error reaches a minimum when the time window,

including the overlap, coincides with the pure spray con-

dition and increases as noise from the transition is intro-

duced. Despite introducing noise from the overlap, the

variation of the reconstruction error for the spray segments

shows a slight fluctuation. This makes it possible to sepa-

rate the two conditions by setting a simple threshold at the

reconstruction error. The reconstruction error can also be

helpful in an automated process so that the system can be

informed about the transition from spray to overspray

before this happens.

The final step is to perform a velocity diagnosis on the

spray segments. This was done by employing an MLP. A

multilayer perceptron (MLP) is a specific type of neural

network characterised by multiple layers of nodes,

including an input layer, one or more hidden layers, and an

output layer. Each node in a layer is connected to all nodes

in the next layer. The MLP is trained by adjusting its

parameters, called weights and biases, across these layers.

These adjustments allow the network to capture complex

patterns in the data. Like other neural networks, MLPs are

often used for classification and regression tasks, learning

from the input data to make predictions. The resolution of

the frequency bins remained at 26 Hz since frequency bins

of this size were found to score high in Pearson correlation

with velocity. Furthermore, an MLP can extract higher-

order relations between the PSD bins and the velocity. The

first 50 and the last 200 frequency bins were removed from

the PSD since the bands 0-1294 Hz and 19824-25000 Hz

seemed to contain little information, and the microphone

exhibited a drop in its response above 20 kHz.

The aim was to perform a three-class classification into

low (580-600 m/s), medium (620-625 m/s), and high (670-

690 m/s) velocity. The classification aimed at establishing

a framework for using airborne acoustic emission (AAE)

signals for cold spray velocity diagnostics. The absence of

velocities between the classes reflects the limited experi-

mental data available at this stage. As more data are col-

lected, it is expected to refine the model, potentially

moving towards a continuous classification or a regression

approach. The architecture of the MLP is shown in Fig. 16.

The neural network consists of a series of three dense

Fig. 16 MLP for classification

of the spray segments according

to their spray velocity
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layers with batch normalisation (Ref 31) and a dropout

layer (Ref 32) following every dense layer to increase the

stability of the training process and avoid overfitting. The

Rectified Linear Unit (ReLU) function was used as an

activation function (Ref 24) for the hidden layers.

A SoftMax activation function was used for the last layer to

convert the neuron’s output to probabilities belonging to

each class (Ref 33). The Adam optimiser (Ref 25) was used

to update the learnable parameters after each epoch with a

learning rate of 0.005.

20% of the spray segments were kept as test data, and

the remaining dataset was split into 80% train data and

20% validation data. A batch size of 40 was used for

training. Again, the hyperparameters of the network were

selected empirically, and no optimisation algorithm was

used. The training was done five times for five different but

random weight initialisations to evaluate stability. The

average confusion matrix of the test set with the standard

deviation is shown in Fig. 17. The confusion matrix shows

the true labels of the test dataset and the labels that the

machine learning algorithms assigned to those segments.

The result showed that the MLP could accurately identify

the high-velocity class. However, there is some confusion

among the first two classes. It is believed that the spray

velocity instability observed during the fifth experiment

(600 m/s) affected the training process. Based on the RMS

(Fig. 8) and the PSD (Fig. 9) of this experiment, it can have

features that can be characteristics of both ‘‘low’’ and

‘‘high’’ classes, making the classification task challenging.

Furthermore, the first and the second classes are closer in

terms of velocity range than the second and the third,

making it more possible to share similar features.

It should be noted that at present the velocity classifi-

cation is based on the velocity measured through the

optical particle velocimetry; while, the actual impact

velocity may be affected by the bow shock phenomenon.

Therefore, in future, to improve the accuracy of AAE-

based monitoring, it is essential to incorporate corrections

for the bow shock effect when relevant. In most cases, the

standoff distance is known, and CFD simulations can

model and quantify the velocity reduction caused by the

bow shock. Furthermore, future AAE developments should

allow for standoff distance diagnosis, as demonstrated for

thermal spray applications (Ref 19), enabling real-time

correction of AAE velocity estimations.

Conclusions

The feasibility of the AAE for monitoring the cold spray

process was investigated. Both statistical and machine

learning tools were used to identify the segments where the

nozzle is engaged with the substrate and diagnose the spray

velocity. The main conclusions are listed below:

• Monitoring the cold spray process using AAE is

feasible; it can provide information about the spray

velocity and detect when the nozzle is engaged with the

substrate.

• The RMS of the signal from the AAE exhibits a

positive correlation with the spray velocity, and it can

be used to identify permanent shifts in the process

conditions for a standardised cold spray process without

the need to distinguish spray from overspray segments.

• PSD showed evidence of being agnostic of the pressure

and temperature combination that resulted in a specific

velocity, reducing the number of experiments required

to obtain data for the development of AAE-based

process monitoring.

• Although PSD was informative of the spray–overspray

condition and the spray velocity, straightforward rule-

based models are challenging to develop due to the high

variability of the PSD when a short time window is

used. To overcome this, larger time windows or more

complicated algorithms are required.

• An autoencoder which is trained with the PSD of the

spray segments and is agnostic of the overspray

segments can identify the spray segments successfully

based on its reconstruction error.

• An MLP performed well on diagnostics of the spray

velocity. However, further validation is needed with

more experimental data.

• While AAE offers a promising, non-intrusive method

for real-time monitoring, its accuracy may be affected

if the bow shock is not considered in the cases where it

is relevant. Incorporating CFD simulations or experi-

mental data to model and quantify the bow shock effectFig. 17 Average confusion matrix with one standard deviation for the

velocity classification model tested with five random initialisations
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can enhance the precision of AAE-based velocity

estimation.

In summary, the present study suggests the feasibility of

using AAE to monitor the key process parameter of impact

velocity during a cold spray process. Future studies will

focus on refining the diagnostic algorithms and investi-

gating their robustness.
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26. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding

Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15),

p 4379-4394.
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